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Let V (0) be the mod 2 Moore spectrum and let C be the 
supersingular elliptic curve over F4 defined by the Weierstrass 
equation y2 + y = x3. Let FC be its formal group law and 
EC be the spectrum classifying the deformations of FC . The 
group of automorphisms of FC , which we denote by SC , acts 
on EC . Further, SC admits a surjective homomorphism to 
Z2 whose kernel we denote by S1

C . The cohomology of S1
C

with coefficients in (EC)∗V (0) is the E2-term of a spectral 
sequence converging to the homotopy groups of EhS1

C
C ∧ V (0), 

a spectrum closely related to LK(2)V (0). In this paper, we 
use the algebraic duality resolution spectral sequence to 
compute an associated graded for H∗(S1

C ; (EC)∗V (0)). These 
computations rely heavily on the geometry of elliptic curves 
made available to us at chromatic level 2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper can be read as a sequel to [2]. For this reason, this section builds upon 
the deeper discussion of [2, Section 2]. We give an overview of the tools that were not 
introduced in the prequel and state our results. More background and motivation can 
be found in [2].
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1.1. Background

In this paper, we work at the prime p = 2. Recall that Morava K-theory K(2) is 
the unique ring spectrum with coefficients K(2)∗ = F2[v±1

2 ], for v2 in degree 6, and with 
formal group law the Honda formal group law F2 of height 2. The group S2 is the group of 
automorphisms of F2 over F4. The extended Morava stabilizer group G2 is the extension 
of S2 by the Galois group. Morava E-theory E2 is the Landweber exact spectrum for 
which π0E2 corepresents isomorphism classes of deformations of F2. Its homotopy groups 
can be described as follows. Let ζ be a primitive third root of unity and let

W := W (F4) ∼= Z2[ζ]

be the Witt vectors on F4. Then (E2)∗ ∼= W[[u1] ][u±1], where u1 has degree zero and 
u has degree −2. The group G2 acts on the spectrum E2. For a finite spectrum X, 
LK(2)X � EhG2

2 ∧X. Further, for closed subgroups G of G2 and finite spectra X, there 
are descent spectral sequences

Es,t
2 := Hs(G, (E2)tX) =⇒ πt−s(EhG

2 ∧X). (1.1.1)

The groups S2 and G2 both admit a surjective homomorphism to Z2 whose kernels 
are denoted by S1

2 and G1
2 respectively and

S2 ∼= S
1
2 � Z2, G2 ∼= G

1
2 � Z2. (1.1.2)

The group S2 has a unique conjugacy class of maximal finite subgroups, which can be 
described as follows. The automorphism of F2 given by [−1]F2(x) generates a central 
subgroup C2. The power series ω(x) = ζx generates a subgroup of order three in S2, 
denoted C3. The group C3 acts on a quaternion subgroup Q8 of S2 whose center is C2. 
The semi-direct product G24 = Q8�C3 is a maximal finite subgroup of S2. The subgroup 
C6 = C2 × C3 of G24 will also play a central role.

Both C6 and G24 are contained in S1
2. However, S1

2 has two conjugacy classes of 
maximal finite subgroups. A representative for the other conjugacy class is given by 
G′

24 = πG24π
−1 for π a topological generator of Z2 in the decomposition S2 ∼= S

1
2 � Z2.

The next theorem follows from [2, Theorem 1.2.1, Theorem 1.2.4, Corollary 3.4.6]. 
(See Section 4 below for more details.)

Theorem 1.1.1. Let Z2 be the trivial Z2[[S1
2] ]-module. There is an exact sequence of com-

plete left Z2[[S1
2] ]-modules

0 → C3
∂3−−→ C2

∂2−−→ C1
∂1−−→ C0

ε−→ Z2 → 0,

where C0 ∼= Z2[[S1
2/G24] ], C3 ∼= Z2[[S1

2/G
′
24] ] and C1 ∼= C2 ∼= Z2[[S1

2/C6] ]. Let e be the unit 
in Z2[[S1

2] ] and ep be the resulting generator of Cp. The maps ∂p can be chosen to satisfy:
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(a) ∂1(e1) = (e − α)e0,
(b) ∂2(e2) ≡ (e + α + E )e1 for E ∈ (2, (IS1

2)2).
(c) ∂3(e3) = π(e + i + j + k)(e − α−1)π−1e2.

Let F0 = G24, F1 = F2 = C6 and F3 = G′
24. For a profinite Z2[[S1

2] ]-module M , there is 
a first quadrant spectral sequence

Ep,q
1 = Extq

Z2[[S1
2]]

(Cp,M) ∼= Hq(Fp,M) =⇒ Hp+q(S1
2,M)

with differentials dr : Ep,q
r → Ep+r,q−r+1

r .

Remark 1.1.2. The exact sequence of Theorem 1.1.1 is called the algebraic duality res-
olution because it satisfies a certain duality. This is described in Theorem 1.2.2 of [2]. 
The associated spectral sequence is called the algebraic duality spectral sequence which 
we abbreviate as ADSS.

Let V (0) be the mod 2 Moore spectrum, that is, the cofiber of multiplication by 2 on 
the sphere spectrum S0. The goal of this paper is to compute the E∞-term of the ADSS 
for M = (E2)∗V (0). We obtain an associated graded for H∗(S1

2; (E2)∗V (0)). Taking 
the Galois fixed points of the E∞-term gives an associated graded for the cohomology 
H∗(G1

2; (E2)∗V (0)). Therefore, this computation can be used to understand the E2-term 
of the descent spectral sequence (1.1.1) when G = G

1
2 and X = V (0), that is

Hs(G1
2; (E2)tV (0)) =⇒ πt−s(E

hG1
2

2 ∧ V (0)).

Further, recall that there is a fiber sequence

LK(2)V (0) → E
hG1

2
2 ∧ V (0) → E

hG1
2

2 ∧ V (0).

Hence, computing H∗(S1
2; (E2)∗V (0)) is a first step for computing π∗LK(2)V (0).

The computations will be done using the fact that, at chromatic level n = 2, one 
can replace Morava K-theory K(2) by a spectrum KC whose formal group law is the 
formal group law of a supersingular elliptic curve C. This allows us to use the geometry 
of elliptic curves to get a better understanding of the action of the Morava stabilizer 
group S2 on (E2)∗. Before stating the results, we explain this point of view.

Consider the supersingular elliptic curve C : y2+y = x3 defined over F4. Let FC be the 
formal group law of C. It satisfies [−2]FC(x) = x4. Let KC denote the complex oriented 
ring spectrum whose ring of coefficients is (KC)∗ = F4[u±1], where u is in degree −2, 
and whose formal group law is FC.

In this paper, EC := E(F4, FC) will denote the complex oriented Landweber exact 
spectrum for which π0EC corepresents isomorphism classes of deformations of FC. There 
is an abstract isomorphism (EC)∗ ∼= (E2)∗, but it cannot be realized by a map of E∞-ring 
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spectra. Such a map would induce an F4-isomorphism on the formal group laws FC and 
F2. These formal group laws are not isomorphic over F4, but become isomorphic after 
passing to the algebraic closure of F2.

Let SC := Aut(FC) be the group of automorphisms of FC over F4. The groups S2 and 
SC are isomorphic. An explicit isomorphism is constructed in Lemma 3.1.2. The group 
SC admits an action of the Galois group and the group GC is the extension of SC by this 
action. The group GC acts on the deformations. By the Goerss–Hopkins–Miller Theorem 
(see Goerss and Hopkins [5, Section 7]), it acts on EC by maps of E∞-ring spectra.

The isomorphism of Lemma 3.1.2 does not extend to an isomorphism of the groups 
G2 and GC . In fact, these groups are not isomorphic. However, over an algebraic closure 
of F2, the formal group laws F2 and FC are isomorphic. Therefore, the Bousfield classes 
of K(2) and KC are the same. Their localization functors are weakly equivalent, so that 
LK(2)X � LKCX. As before, it follows from the work of Devinatz and Hopkins in [3]
that for X a finite spectrum LKCX � EhGC

C ∧X. Further, for any closed subgroup G of 
GC , there is a spectral sequence analogous to (1.1.1).

The groups SC and GC also admit a surjective homomorphism to Z2 and S1
C and G1

C are 
defined to be the kernel of this homomorphism as before. Further, since SC is isomorphic 
to S2, the results of [2] also hold for SC. In particular, the resolution of Theorem 1.1.1 can 
be constructed using S1

C and the algebraic duality resolution gives rise to an algebraic 
duality resolution spectral sequence

Ep,q
1

∼= Hq(Fp,M) =⇒ Hp+q(S1
C ; (EC)∗V (0)). (1.1.3)

In this paper, we compute the E∞-term of (1.1.3).
The main advantage of using SC is that the elliptic curve C has a large automorphism 

group. In fact, Aut(C) is isomorphic to G24 and it injects into Aut(FC). Its image is a 
choice of maximal finite subgroup. Using level structures, Strickland has computed the 
action of Aut(C) on (EC)∗. We use this result and, since it is not in print, we describe it 
Section 2.2. From now on, we will let G24 denote the image of Aut(C) in SC .

1.2. Statement of results

In order to state the results, we will describe the E1-term of (1.1.3). First, note that 
(EC)∗V (0) ∼= F4[[u1] ][u±1], where u1 has degree 0 and u has degree −2. Let FEC be the 
graded formal group law of EC. Then

[2]FEC
(x) ≡ u1u

−1x2 + . . . mod (2)

(see Section 6), hence we define v1 = u1u
−1 in (EC)∗V (0). The element v1 is invariant 

under the action of SC on (EC)∗V (0). Let δ be the connecting homomorphism associated 
to the exact sequence

0 → (E2)∗
2−→ (E2)∗ → (E2)∗V (0) → 0.
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Let η = δ(v1) and v2 = u−3. Then

H∗(C6; (EC)∗V (0)) ∼= F4[[u3
1]][v1, v

±1
2 , h]/(v−1

2 v3
1 = u3

1),

for a class h in H1(C6; (EC)∗V (0)) satisfying η = hv1. In particular, {vn2 hs}n∈Z is a 
set topological generators of Hs(C6; (EC)∗V (0)) as an F4[v1]-module. That is, in the 
category of profinite graded F4[v1]-modules, there is an isomorphism

Hs(C6; (EC)∗V (0)) ∼=
∏
n∈Z

F4[v1]{vn2 hs}.

The cohomology G24 is related to the cohomology of the Hopf algebroid classifying 
Weierstrass curves over F4 with their strict isomorphisms, a computation originally due 
to Hopkins and Mahowald and presented by Bauer in [1]. In particular, the G24 fixed 
points are related to modular forms modulo 2. However, we have included a self-contained 
computation of H∗(G24, (EC)∗V (0)) in an appendix (see Appendix A). This computation 
is based on unpublished notes of Hans-Werner Henn. In Appendix A, it is shown that 
there is an isomorphism

H∗(G24, (EC)∗V (0)) ∼= F4[[j]][v1,Δ±1, k, η, ν, x, y]/(∼)

where Δ of degree (0, 24) is the reduction modulo (2) of the discriminant of a universal 
deformation of C over (EC)∗ (see Theorem 2.1.1), j of degree (0, 0) is the j-invariant 
of this deformation. The element k in H4(G24, (EC)∗V (0)) is the image of the period-
icity generator in H4(G24, F4) ∼= H4(Q8, F4)C3 under the natural inclusion of F4 into 
(EC)0V (0). The class ν has degree (1, 4), x has degree (1, 8) and y has degree (1, 16). 
The relations (∼) contain η4 = v4

1k and v12
1 = jΔ. We refer the reader to Theorem 4.2.2

for the complete ideal of relations.
A set of topological F4[v1]-module generators for H0(G24, (EC)∗V (0)) is given by 

{Δn}n∈Z so that, in the category of profinite graded F4[v1]-modules,

H0(G24; (EC)∗V (0)) ∼=
∏
n∈Z

F4[v1]{Δn}.

Note that conjugation by π induces an F4[v1, η]-linear isomorphism

H∗(G′
24, (EC)∗V (0)) ∼= H∗(G24, (EC)∗V (0)).

We let Δ′ and j′ be the image of Δ and j under this isomorphism. For z in positive 
cohomological dimension in H∗(G24, (EC)∗V (0)), we abuse notation and denote its image 
under the conjugation isomorphism by the same name. In this spirit, letting k act on 
the left via this isomorphism, we will treat H∗(G′

24, (EC)∗V (0)) as an F4[v1, η, k]-module 
(see Remark 4.2.5).
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Finally, H∗(C6, (EC)∗V (0)) is an F4[v1, η, k]-module where k acts by multiplication 
by h4 and η by multiplication by v1h.

In the following result, we adopt notation similar to that of Henn, Karamanov and 
Mahowald [7, Theorem 1.2].

Theorem 1.2.1. The ADSS converging to H∗(S1
2, (EC)∗V (0)) collapses at the E2-term. 

The spectral sequence is an F4[v1, η, k]/(η4 − v4
1k)-module. There exist F4[v1]-generators 

Δn ∈ E0,0
1 , bn ∈ E1,0

1 , bn ∈ E2,0
1 and Δn ∈ E3,0

1 with

Δn ≡ Δn bn ≡ bn ≡ vn2 , Δn ≡ (Δ′)n

where the congruences are modulo the ideal (v1) and such that, for r ≥ 0 and t ∈ Z,

d1(Δn) =
{
v6·2r

1 b2r+1(1+4t) n = 2r(1 + 2t)
0 n = 0

d1(bn) =

⎧⎪⎪⎨⎪⎪⎩
v3·2r

1 b2r+1(1+2t) n = 2r(3 + 4t)
v3·2r+1

1 b1+2r+1(1+4t) n = 1 + 2r+2(1 + 2t)
0 otherwise

d1(bn) =
{
v
3(2r+1+1)
1 Δ2r(1+2t) n = 1 + 2r+1(3 + 4t)

0 otherwise.

For q > 0, a the differential d1 : Ep,q
1 → Ep,q

1 is non-zero if and only if it is forced by 
η-linearity and the F4[v1]-module structure. All differentials dr : Ep,q

r → Ep+1,q
r for r ≥ 2

are zero, so that E2 = E∞.

Theorem 1.2.2 below gives an explicit description of the E∞-term for the interested 
reader. Theorem 1.2.1 and Theorem 1.2.2 are also displayed in Fig. 1 and Fig. 3.

Theorem 1.2.2. As an F4[v1, k]-module, the E∞-term of the ADSS with coefficients in 
(EC)∗V (0) is isomorphic to a direct sum of cyclic modules generated by the following 
elements and with the following annihilator ideals.

(a) For E0,∗
∞ ,

ηsΔ0 0 ≤ s ≤ 3

νsΔt 1 ≤ s ≤ 3, t ∈ Z (v1)

ηsxrΔt 1 ≤ r ≤ 2, 0 ≤ s ≤ 1, t ∈ Z (v2
1)

νsyΔt 0 ≤ s ≤ 2, t ∈ Z (v1)
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corresponding to p = 3. The grading is given by 
l grading by 1. A • denotes a copy of F4. Dashed 
Fig. 1. The E1-term for the ADSS with coefficients (EC)∗V (0). The rows represent Ep,∗
1 , the top row 

(t − q − p, q), where t is the internal grading, so that dr : Ep,q
r → Ep+r,q−r+1

r decreases the horizonta
horizontal lines denote multiplication by v1, and a © denotes a copy of F4[v1]. A � is a copy of Fig. 2.
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Fig. 2. The pattern � in Fig. 1.

(b) For E1,∗
∞ ,

hqbs 0 ≤ s ≤ 1, 0 ≤ q ≤ 3

hqb2r+1(1+4t) 0 ≤ r, 0 ≤ q ≤ 3 (v6·2r+q
1 )

(c) For E2,∗
∞ ,

hqbs 0 ≤ s ≤ 1, 0 ≤ q ≤ 3

hqb2r+1(1+2t) 0 ≤ r, t ∈ Z, 0 ≤ q ≤ 3 (v3·2r

1 )

hqb1+2r+1(1+4t) 0 ≤ r, t ∈ Z, 0 ≤ q ≤ 3 (v3·2r+1

1 )

(d) For E3,∗
∞ ,

ηqΔ0 0 ≤ q ≤ 3

ηqΔ2r(1+2t) 0 ≤ r, t ∈ Z, 0 ≤ q ≤ 3 (v3·(2r+1+1)−q
1 )

νsΔt 1 ≤ s ≤ 3, t ∈ Z (v1)

ηsxrΔt 1 ≤ r ≤ 2, 0 ≤ s ≤ 1, t ∈ Z (v2
1)

νsyΔt 0 ≤ s ≤ 2, t ∈ Z (v1)

If one inverts v1, the situation is much simpler. The following result is an immediate 
consequence of Theorem 1.2.1 and Theorem 1.2.2.

Corollary 1.2.3. The spectral sequence

v−1
1 Ep,q

1 = v−1
1 Hq(Fp, (EC)∗V (0)) =⇒ v−1

1 Hp+q(S1
C ; (EC)∗V (0))

collapses at the E2-term. As an F4[v±1
1 , η]-module,

v−1
1 H∗(S1

C , (EC)∗V (0)) ∼= F4[v±1
1 , η]{Δ0, b0, b1, b0, b1,Δ0}.

Let s be the cohomological degree and t be the internal degree. Then the (s, t)-degrees of 
the generators are |Δ0| = (0, 0), |b0| = (1, 0), |b1| = (1, 6), |b0| = (2, 0), |b1| = (2, 6) and 
|Δ0| = (3, 0).
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ddition, a © is a copy of F4[v1]/(vc
1). In Section 5.5, 
Fig. 3. The E2-term of the ADSS with coefficients (EC)∗V (0). The notation and grading is as in Fig. 1. In a

we prove that E2 ∼= E∞. Therefore, this is also the E∞-term of the ADSS.
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This result is important because v−1
1 H∗(S1

C , (EC)∗V (0)) is the E2-term of a spectral 
sequence that computes the homotopy groups of L1(E

hS1
C

2 ∧ V (0)). This spectrum plays 
a central role in the study of the chromatic splitting conjecture at n = p = 2.

It is worth mentioning here that the related computation of the E2-page of the 
Johnson–Wilson E(2)-local Adams–Novikov spectral sequence converging to L2S was 
done by Shimomura and Wang in [13]. These computations were done independently. 
However, historically, they depend on the work of Shimomura and Wang. Indeed, results 
similar to those of Theorem 1.2.1 can be extracted from [13], and it is using Shimo-
mura and Wang’s computation that Mahowald conjectured the existence of the duality 
resolution for the K(2)-local sphere.

1.3. Organization of the paper

In Section 2.1, we describe a choice of universal deformation FCU
of FC , where FCU

is the formal group law of an elliptic curve CU . This allows us to define EC . The choice 
for the curve CU is due to Strickland and, in Section 2.2, we present his formulas for the 
right action of Aut(C) on (EC)∗. In Section 2.3, we tie this to the right action of Aut(FC)
on (EC)∗. In Section 2.4 we adopt conventions that allow us to use the corresponding 
left action as in Henn, Karamanov and Henn [7] and settle our notation for the rest of 
the paper.

Section 3 is dedicated to describing the structure of SC. In Section 3.1, we give an 
explicit isomorphism between the group of automorphisms S2 of the Honda formal group 
law and the group SC. In Section 3.2, we recall the standard filtration on SC. In Sec-
tion 3.3, we give the information about the action SC on (EC)∗ that will be used in the 
computation of H∗(S1

C , (EC)∗V (0)).
The goal of Section 4 is to introduce the ADSS for SC and to give the information 

necessary to begin the computation. The ADSS is not multiplicative, but it has some 
nice properties which we describe in Section 4.1. In Section 4.2, we describe the E1-term. 
The discriminant Δ of the curve CU has useful linearity properties which are given in 
Section 4.3.

The bulk of the paper is the computation of the E∞-term of the ADSS with coefficients 
in (EC)∗V (0). This is done in Section 5. In Section 5.1, Section 5.2 and Section 5.3, we 
compute the differentials d1 : Ep,0

1 → Ep+1,0
1 . In Section 5.4, we compute the differentials 

d1 : Ep,q
1 → Ep+1,q

1 for q > 0. In Section 5.5, we prove that all differentials dr : Ep,q
r →

Ep,1
r for r ≥ 2 are zero.
In Section 6, we describe the action of SC on (EC)∗ and deduce the formulas used in 

our computations. We give formulas for the minus two series of C and CU and use them 
to give estimates for the action.

Appendix A gives a self-contained computation of the cohomology of G24 with coef-
ficients in (EC)∗V (0). It consists of unpublished notes of by Hans-Werner Henn, which 
were edited by the author. The author is grateful for his blessing to include them in this 
document.
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2. Morava E-theory and elliptic curves

In this section, we define the spectrum EC and compute the action of Aut(C) on (EC)∗. 
This computation is due to Strickland. For the deformation theory of formal group laws, 
we refer the reader to Rezk [11] or Goerss and Hopkins [5, Section 7]. In particular, if 
F is a formal group law over a field k, then E(F, k) denotes the associated Lubin–Tate 
spectrum.

2.1. The supersingular elliptic curve

Consider the elliptic curve C : y2+y = x3 over F4. It is a standard fact that the formal 
group law of C has height 2 (see Silverman [14, Section V.4] or Proposition 6.1.4 below) 
so that C is a supersingular elliptic curve. Elliptic curves over fields of characteristic 
p > 0 admit a theory of deformations which is analogous to that of formal group laws. 
It follows from the Serre–Tate theorem that the deformation theory of a supersingular 
elliptic curve is equivalent to that of its formal group law. However, in our case, we make 
this concrete by the following result.

Theorem 2.1.1. The formal group law FCU
of the elliptic curve

CU : y2 + 3u1xy + (u3
1 − 1)y = x3

defined over W[[u1] ] is a universal deformation of FC. This specifies a Lubin–Tate spec-
trum EC = E(FC , F4) with an isomorphism (EC)∗ ∼= W[[u1] ][u±1], where u has degree −2
and u1 has degree zero, and a graded formal group law

FEC = uFCU
(u−1x, u−1y).

Proof. We can verify directly that FCU
satisfies the criteria for a universal deformation 

(see Lubin and Tate [8, Proposition 1.1]). Indeed, in Proposition 6.1.1 below, we compute 
that

FCU
(x, y) ≡ x + y − 3u1xy − 2(u3

1 − 1)xy(x2 + y2) − 3(u3
1 − 1)x2y2 mod (x, y)5

so that

FCU
(x, y) ≡ x + y + u1xy mod (2, (x, y)3)

FCU
(x, y) ≡ x + y + x2y2 mod (2, u1, (x, y)5). �

Remark 2.1.2. A more obvious choice of universal deformation of C is

C′
U : y2 + u1xy + y = x3
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defined over W[[u1] ]. Lubin and Tate [8, Section 3.5] prove that the formal group law 
associated to this curve is a universal deformation of FC . However, the choice of the 
curve CU , due to Strickland, yields nice formulas for the action of Aut(C) on (EC)∗. 
For ϕ the W-linear isomorphism of W[[u1] ] determined by ϕ(u1) = −3u1(1 − u3

1)−
1
3 , the 

change of coordinates

x = (u3
1 − 1)− 2

3x′ y = (u3
1 − 1)−1y′

is an isomorphism from CU to ϕ∗CU ′ , where (1 − u3
1)−

1
3 is interpreted as its Taylor 

expansion.

2.2. The automorphisms of C

The group Aut(FC) acts on (EC)∗ and, hence, so does its subgroup Aut(C). In unpub-
lished notes, Strickland has computed the right action of the group Aut(C) on (EC)∗. 
We explain his results in this section.

The automorphisms of the supersingular curve C are computed in Silverman [14, 
Appendix A]. The results are stated here without proof. Fix a primitive third root of 
unity ζ ∈ F4. For the curve C over F4, the group Aut(C) is generated by the maps on 
points in the affine chart given by

a(x, y) = (ζ2x, ζ3y),

b(x, y) = (x + 1, y + x + ζ2).

The elements a and b generate a group of order 24 which will be described in more details 
at the end of Section 2.4.

Let ψa, ψb : (EC)0 → (EC)0 be the W-linear isomorphisms determined by

ψa(u1) = ζu1, ψb(u1) = u1 + 2
u1 − 1 . (2.2.1)

Since a and b are generators of Aut(C), this determines a right action of Aut(C) on (EC)0. 
The action of γ is denoted by ψγ .

For , r, s and t in W[[u1] ] and  a unit, let

A(, r, s, t) : P2(W[[u1]]) → P
2(W[[u1]])

be the automorphism

A(, r, s, t)[x : y : z] = [2x + rz : 3y + 2sx + tz : z].

Let
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fa = A(ζ, 0, 0, 0)

fb = A

(
ζ2 − ζ

u1 − 1 , 3
1 − u3

1
(u1 − 1)3 , 3

ζ2u1 − 1
u1 − 1 , 3 u3

1 − 1
(u1 − 1)4 ((1 − ζ) + (1 − ζ2)u1)

)
.

This determines a left action of Aut(C) on P2(W[[u1] ]) and, for γ in Aut(C), let fγ =
A(γ , rγ , sγ , tγ) be the corresponding automorphism. Then fγ induces an isomorphism 
fγ : CU → ψ∗

γCU which pulls back to γ over F4.
The pair (fγ , ψγ) induces an isomorphism of formal group laws. (For the formal group 

law associated to an elliptic curve, see Silverman [14, Chapter IV]). We abuse notation 
and denote this isomorphism

fγ : FCU
→ ψ∗

γFCU

by (fγ , ψγ) for fγ the corresponding power series in (EC)0[[x] ]. One can verify directly by 
chasing through the change of coordinates in [14, Chapter IV] that

f ′
γ(0) = −1

γ . (2.2.2)

2.3. The right action of SC

We first describe a right action SC = Aut(FC) on ECU
, following Rezk [11] as this 

meshes well with the geometry of the elliptic curves. However, it will be convenient in 
our computations to have a left action of SC and the reader should be warned that 
in Section 2.4, we will make the switch from a right to a left action and adopt the 
conventions of Henn, Karamanov and Mahowald in [7, Section 4].

Throughout, for ψ : R1 → R2 a ring homomorphism and F a formal group law over 
a ring R1, then

ψ∗F (x, y) =
∑
i,j

ψ(ai,j)xiyj

is a formal group law over R2.
An element γ ∈ SC is a power series in F4[[x] ]. Let g be any lift of γ in (EC)0[[x] ]. Define 

a new formal group law by

Fg(x, y) = gFCU
(g−1(x), g−1(y)).

Then Fg is a deformation of FC over (EC)0 and there is a unique ring isomorphism 
ψγ : (EC)0 → (EC)0 and a unique �-isomorphism fg : Fg → (ψγ)∗FCU

which classify Fg. 
If g′ is another lift of γ, then

fg′ = fg ◦ (g(g′)−1) : Fg′ → (ψγ)∗FCU

is a �-isomorphism. Therefore, ψγ is independent of the choice of lift g. The composite
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FCU

g−→ Fg
fg−−→ (ψγ)∗FCU

is also independent of g and is denoted by fγ . This gives a right action of SC on (EC)0
where γ acts via ψγ . This action extends to an action of SC on (EC)∗ with

ψγ(u) := f ′
γ(0)−1u (2.3.1)

(see Rezk [11, Section 6.7], noting that uFi
in this reference is in degree 2, while our u is 

in degree −2 and corresponds to the inverse of uFi
). Note that by the Goerss–Hopkins–

Miller theorem, this action can be realized through maps of E∞-ring spectra on ECU
(see 

Goerss and Hopkins [5]).
Further, Gal(F4/F2) acts on W; hence, it acts on the coefficients (ECU

)∗. Since FC is 
fixed by Gal(F4/F2), this extends the action of SC to an action of

GC = SC � Gal(F4/F2).

Now, let γ in SC = Aut(FC) be induced by an element of Aut(C). The action of γ
is classified by the pair (fγ , ψγ) described in Section 2.2. Hence, the action of ψγ is 
determined by the formulas (2.2.1), (2.2.2) and (2.3.1). In particular,

ψγ(u) = f ′
γ(0)−1u = γu.

2.4. The left action of SC

The left action of an element γ in SC on (EC)∗ is naturally given by ψγ−1 . For conve-
nience, we thus adopt the notation

φγ = ψγ−1 hγ = (fγ−1)−1

so that hγ : φ∗
γFCU

→ FCU
. With these conventions, we have a left action of SC on (EC)∗

which satisfies

φγ(u) = h′
γ(0)u. (2.4.1)

These correspond to the conventions of Henn, Karamanov and Mahowald in [7, Section 4].
Finally, we fix our notation for the group G24 = Aut(C). We let

ω = a−1 i = b−1

so that φω = ψa and φi = ψb. It then follows that

φω(u1) = ζu1, φω(u) = ζu

φi(u1) = u1 + 2
u1 − 1 , φi(u) = u

ζ2 − ζ

u1 − 1 .
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The element ω has order 3 and, from now on, we denote the group it generates by C3. 
The element i has order four and i2 = −1, the inversion of the curve C. We let

j := ωiω2, k := ω2iω

and note that ij = k. The elements i and j generate a normal subgroup isomorphic to 
the quaternions Q8 and hence G24 ∼= Aut(C) = Q8 � C3.

3. The Morava stabilizer group

The Morava stabilizer group S2 is the group of automorphisms of the Honda formal 
group law F2, which is the p-typical formal group law over F4 specified by the series 
[2]F2(x) = x4. The standard presentation for S2 is the non-commutative extension

S2 ∼=
(
W 〈S〉 /(S2 = 2, aS = Saσ)

)×
,

where S is the automorphism S(x) = x2, a ∈ W and σ is the Frobenius (see Ravenel 
[10, Appendix A2] for more details). In this section, we specify an isomorphism S2 ∼= SC , 
whose construction is due to Henn. We also recall some of the key properties of the 
structure of the group S2, which transfer to properties of SC via this isomorphism.

3.1. The isomorphism of S2 and SC

As opposed to the Honda formal group law, it is the [−2]-series of the formal group 
law FC which has a nice presentation. The following result is proved in Proposition 6.1.4
of Section 6.

Lemma 3.1.1. Let C : y2 + y = x3 be defined over a field of characteristic two. If FC is 
the associated formal group law, then [−2]FC(x) = x4.

The curve C and its formal group law FC are defined over F2. Therefore, T (x) = x2

is an endomorphism of FC. Lemma 3.1.1 implies that T (T (x)) = [−2](x). The element 
ω defined in Section 2.2 induces the isomorphism ω(x) = ζx of FC, so that ωT = Tωσ. 
This shows that

W 〈T 〉 /(T 2 = −2, ωT = Tωσ) ⊆ End(FC)

and this is in fact an equality (see for example Hazewinkel [6, Proposition 21.8.17]). 
Therefore,

SC ∼=
(
W 〈T 〉 /(T 2 = −2, ωT = Tωσ)

)×
.

The action of the Galois group on W induces an action on SC defined by σ(a + bT ) =
aσ + bσT .
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Let α = (1 − 2ω)(−7)− 1
2 , where (−7) 1

2 in W is chosen to be congruent to 1 modulo 
(4). It follows that α = 1 + ωT 2 + T 4 modulo (T 6) and αασ = −1. The proof of the 
following result follows immediately.

Lemma 3.1.2. The map φ : SC → S2 given by φ(a + bT ) = a + b(αS) is an isomorphism.

3.2. The filtration and the norm

Lemma 3.1.2 implies that all the results of [2] can be restated for the group SC instead 
of S2. Here, we briefly review the results which will be important for the computations 
of this paper.

As in [2], any element γ ∈ SC can be expressed as a power series

γ =
∞∑

n=0
anT

n,

where the ai’s satisfy the equation x4 − x = 0 and a0 �= 0. Let F0/2SC := SC . For n > 0, 
let

Fn/2SC := {γ ∈ SC | γ ≡ 1 mod Tn }.

Define SC := F1/2SC . Then SC is the 2-Sylow subgroup of SC. This filtration is compatible 
with the 2-adic filtration on W×. Further, {Fn/2SC}n≥0 forms a system of open subgroups 
and SC is a profinite topological group.

The group SC acts on End(FC) by right multiplication. This gives rise to a represen-
tation ρ : SC → GL2(W), given by

ρ(a + bT ) =
(
a −2bσ
b aσ

)
.

The restriction of the determinant to SC is given by det(a +bT ) = aaσ +2bbσ. Therefore, 
the determinant induces a map det : SC → Z

×
2 . The norm is defined as the composite

N : SC
det−−→ Z

×
2 → Z

×
2 /{±1} ∼= Z2.

The norm is split surjective. Indeed, let π = 1 + 2ω. Then det(π) = 3 projects to a 
topological generator of Z×

2 /{±1}. The subgroup S1
C is then defined by the short exact 

sequence,

1 → S
1
C → SC

N−→ Z
×
2 /{±1} → 1,

and SC ∼= S
1
C � Z

×
2 /{±1}. Note that Z×

2 /{±1} ∼= Z2 is torsion-free; hence, G24 is a 
subgroup of S1

C.
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As discussed in [2, Lemma 2.27], the group SC has a unique conjugacy class of maximal 
finite subgroups isomorphic to G24. The group S1

C has two, and they are represented by 
G24 and G′

24 = πG24π
−1.

3.3. The action of the Morava stabilizer group

In order to compute the cohomology of SC, we must have some understanding of its 
action on (EC)∗. Recall from [2, Theorem 2.29] that SC is topologically generated by 
G24, π and α. Since the action of G24 was described in Section 2.2, it remains to study 
the action of α and π.

A concrete method for approximating the action of SC on (EC)∗ is explained by Henn, 
Karamanov and Mahowald in [7, Section 4]. We describe it in Section 6 and give detailed 
proofs of the results needed for the following computations. For the sake of exposition, 
we recall the key points here.

It follows from Theorem 6.2.2 that, for γ in SC , there exists continuous functions 
t0 : SC → (EC)×0 and t1 : SC → (EC)0 such that

φγ(u) = t0(γ)u, φγ(u1) = t0(γ)u1 + 2
3
t1(γ)
t0(γ) . (3.3.1)

In particular, modulo (2), φγ(u1) ≡ t0(γ)u1 and φγ(u) ≡ t0(γ)u. Therefore, v1 = u1u
−1

is fixed by the action of SC modulo (2).
Any γ ∈ SC can be expressed as γ = 1 +

∑∞
i=1 ai(γ)T i for ai(γ) ∈ W satisfying 

ai(γ)4 − ai(γ) = 0. It follows from Corollary 6.3.7 that

t0(γ) ≡ 1 + a1(γ)2u1 + a1(γ)u2
1 mod (2, u3

1). (3.3.2)

In particular, φγ ≡ id mod (2, u1).
For γ ∈ F2/2SC , we obtain better approximations. We prove in Proposition 6.3.10

that, modulo (4, 2u2
1, u

9
1),

t0(γ) ≡ 1 + 2a2(γ) + 2a3(γ)2u1 + (a2(γ) + a2(γ)2)u3
1 + a3(γ)u5

1 + a3(γ)u8
1.

It also follows from Proposition 6.3.9 that t1(γ) ≡ a2(γ)2u1 modulo (2, u3
1).

We apply this to study the action of α and π. Modulo (T 6), we have

α ≡ 1 + ωT 2 + T 4, π ≡ 1 + ωT 2 + ωT 4.

Proposition 3.3.1. Let γ = α or γ = π. The unit t0(γ) satisfies:

t0(γ) ≡ 1 + 2ω + u3
1 mod (4, 2u2

1, u
9
1)

t1(γ) ≡ ω2u1 mod (2, u3
1).
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Therefore, for v2 = u−3

φγ(v2) = v2 + v3
1 mod (2, u9

1).

Further

φγ ≡ φγ−1 mod (2, u9
1).

Proof. Since π ≡ α mod T 4, it follows from ai(α) = ai(π) for i = 1 and i = 2. Therefore, 
modulo (2, u9

1), they have the same action. The claim for t0(γ) follows immediately using 
the fact that for γ either α or π, the coefficient a2(γ) = ω and a3(γ) = 0. Modulo (2),

φγ(v2) ≡ t0(γ)−3v2

≡ t0(γ)t0(γ)−4v2

≡ t0(γ)v2 mod (u12
1 ),

which proves the identity for φγ(v2).
Note that γ2 ∈ F4/2SC . It then follows from the formula for t0(γ2) that t0(γ2) ≡ 1

modulo (2, u9
1). Hence, φγ2 = φγ ◦ φγ ≡ id modulo (2, u9

1). �
4. The algebraic duality resolution spectral sequence

4.1. Preliminaries

The groups S1
2 and S1

C are isomorphic. Further, the isomorphism we constructed re-
stricts to the identity on W, so it preserves α and π (see Lemma 3.1.2). Therefore, 
Theorem 1.1.1 holds if we replace S1

2 by S1
C.

Remark 4.1.1. This is a good place to justify the slight differences between Theorem 1.1.1
and the results of [2]. The existence of the resolution is [2, Theorem 1.2.1], but for 
the isomorphic group S1

2. However, the descriptions of the maps is different from [2, 
Theorem 1.2.6] and this requires an explanation. The map ∂1 is unchanged. However, 
in the notation of [2, Theorem 1.2.6], we replace ∂2 with g−1

2 ◦ ∂2 and ∂3 with ∂′
3. The 

resulting chain complex of Z2[[S1
2] ]-modules is isomorphic to that of [2, Theorem 1.2.1]. 

As g−1
2 is an isomorphism, the map F2 ⊗Z2[[S1

2 ]] g
−1
2 : F2 → F2 is non-zero, so that

g−1
2 (e2) = e2 mod (2, IS1

2). (4.1.1)

Since e + α ∈ (2, IS1
2), the description of the middle map follows from the fact that 

Θ ≡ e + α modulo (2, (IS1
2)2). The last map clearly satisfies (c).
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In our computation, we will need to use some additional structure in the algebraic 
duality resolution spectral sequence (ADSS). We record that here. For any complete 
Z2[[S1

C ] ]-modules A and B, let

Ext(A,B) := ExtZ2[[S1
C ]](A,B).

If B is an Z2[[S1
C ] ]-module which is free over the 2-adics Z2, then the Bockstein

β : Ext∗(A,B/2) → Ext∗+1(A,B/2)

is the connecting homomorphism associated to the exact sequence

0 → B/2 → B/4 → B/2 → 0.

The algebraic duality resolution

0 → C3 → C2 → C1 → C0 → Z2 → 0

is obtained from splicing exact sequences

0 → Np → Cp → Np−1 → 0 (4.1.2)

with C3 = N2 and N−1 = Z2 (see [2]). For B a profinite Z2[[S1
C ] ]-module, the spectral 

sequence

Ep,q
r = Extq

Z2[[S1
C ]](Cp, B) ∼= Hq(Fp, B) =⇒ Hp+q(S1

C , B)

associated to the exact couple

Ext(N∗, B)
δ∗ Ext(N∗−1, B)

r∗

Ext(C∗, B)
i∗

(4.1.3)

is the ADSS with coefficients in B. In (4.1.3), the dotted arrows are the connecting 
homomorphisms for the exact sequences (4.1.2).

Lemma 4.1.2. For x ∈ Ep,q
r , β(x) ∈ Ep,q+1

r and dr(β(x)) = β(dr(x)).

Proof. The maps r∗, i∗ and δ∗ in the exact couple (4.1.3) commute with β. A diagram 
chase shows that dr(β(x)) = β(dr(x)). �
Lemma 4.1.3. Let R be an Z2[[S1

C ] ]-module which is also a ring. Suppose that the action 
of S1

C is given by ring homomorphisms. The ADSS with coefficients R is a module over 
the cohomology H∗(S1

C ; R).
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Proof. Note that Ext(A, R) is a module over Ext(Z2, R) for any Z2[[S1
C ] ]-module A. Fur-

ther, the maps in the algebraic duality resolution are maps of Z2-modules. Therefore, 
the maps r∗, i∗ and δ∗ in (4.1.3) are morphisms of Ext(Z2, R)-modules, hence so are the 
differentials in the ADSS. �

Recall that

(EC)∗V (0) ∼= (EC)∗/(2) ∼= F4[[u1]][u±1].

The spectrum EC was chosen so that FEC = uFCU
(u−1x, u−1y), where CU is the curve

CU : y2 + 3u1xy + (u3
1 − 1)y = x3

(see Theorem 2.1.1). It follows from Silverman [14, Section IV.1] that

[2]FEC
(x) ≡ u−1u1x

2 + u−3(u3
1 + 1)x4 + . . . mod (2).

We adopt the notation

v1 = u−1u1, v2 = u−3. (4.1.4)

Warning 4.1.4. The reader should note that the formal group law FEC is not 2-typical. 
The image of the Araki generators “v1” and “v2” under the map ϕ : BP∗ → (EC)∗ which 
classifies the 2-typification of FEC does not correspond to our choice of notation (4.1.4).

The element v1 is invariant under the action of SC on (EC)∗V (0) so it is an element 
of H0(S1

C , (EC)∗V (0)). However, it does not lift to an invariant in (EC)∗. Therefore, 
the image of v1 in H1(S1

C , (EC)∗) under the connecting homomorphism δ for the exact 
sequence

0 → (EC)∗
2−→ (EC)∗ → (EC)∗V (0) → 0 (4.1.5)

is non-zero. Let η = δ(v1) in H1(S1
C , (EC)∗). We also call the image of η in 

H1(S1
C , (EC)∗V (0)) by the same name and note that η is the image of v1 under the 

Bockstein β : H0(S1
C , (EC)∗V (0)) → H1(S1

C , (EC)∗V (0)), i.e., η = β(v1).

Lemma 4.1.5. The ADSS is a spectral sequence of modules over F4[v1, η].

Proof. The ADSS is a module over H∗(S1
C , (EC)∗V (0)) (see Lemma 4.1.3), which is a 

module over F4[v1, η]. �
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4.2. The E1-term

The input for the ADSS is the group cohomology of G24 and C6 with coefficients in 
(EC)∗V (0). These cohomology groups are described in this section.

The computation of H∗(G24, (EC)∗V (0)) is related to that of H∗(A, Γ) for (A, Γ) the 
Hopf algebroid classifying Weierstrass curves and their strict isomorphisms. This result 
is originally due to Hopkins and Mahowald and can be found in Bauer in [1, Section 7]. 
A self-contained presentation of the computation of H∗(G24, (EC)∗V (0)) is included in 
Appendix A.

Some invariants of the curve CU play a central role. The following classes of (EC)∗ are 
invariant under the action of Aut(C). The reader may refer to either Appendix A or to 
Silverman [14, Section III.1]).

Δ = 27v3
2(v3

1 − v2)3 c4 = 9(v4
1 + 8v1v2)

c6 = −27(8v2
2 + 20v3

1v2 − v6
1) j = c34

Δ .

Warning 4.2.1. The reader must be careful not to confuse the j-invariant above and the 
element of G24. Similarly, c4 and c6 differ from the elements of Theorem 1.2.1. Our 
meaning should be clear from the context.

We abuse notation and call the corresponding invariants in (EC)∗V (0) by the same 
name, so that Δ ≡ v3

2(v3
1 + v2)3, j ≡ v12

1 Δ−1, c4 ≡ v4
1 and c6 ≡ v6

1 in (EC)∗V (0).

The main result of Appendix A is the following theorem.

Theorem 4.2.2. There is an isomorphism

H∗(G24, (EC)∗V (0)) ∼= F4[[j]][v1,Δ±1, k, η, ν, x, y]/(∼)

where (∼) is the ideal generated by the relations

v12
1 = jΔ v1ν = 0, v2

1x = 0, v1y = 0,

ην = 0, νx = v1ηx, ηy = v1x
2, xy = 0,

η2x = ν3, x3 = ν2y, y2 = ν2Δ, η4 = v4
1k

and degrees (s, t), for s the cohomological grading and t the internal grading,

|j| = (0, 0), |v1| = (0, 2), |Δ| = (0, 24), |η| = (1, 2),

|ν| = (1, 4) |x| = (1, 8), |y| = (1, 16) |k| = (4, 0).

Lemma 4.2.3. The cohomology of C6 with coefficients in (EC)∗V (0) is given by

H∗(C6; (EC)∗V (0)) = F4[[u3
1]][v1, v

±1
2 , h]/(v3

1 = v2u
3
1),
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where |h| = (1, 0), |v2| = (0, 6), |v1| = (0, 2) and |u3
1| = (0, 0). Further, the action of η is 

determined by

η · 1 = v1h.

Proof. Recall that C2 = {±1} denotes the center of G24 and that C6 = C2×C3. Because 
C2 acts trivially on (EC)∗V (0) and C3 has order coprime to 2,

H∗(C6, (EC)∗V (0)) ∼= H∗(C2; (EC)∗V (0))C3

= ((EC)∗V (0))C3 [h]

= F4[[u3
1]][v1, v

±1
2 , h]/(v3

1 = v2u
3
1),

where h is in (s, t) degree (1, 0). To prove that η = v1h, note that the action of C2 on 
(EC)∗ = W[[u1] ][u±1] is given by φ−1(u) = −u and φ−1(u1) = u1. One computes that 
δ(v1) = v1h for δ the connecting homomorphism associated to (4.1.5). The claim follows 
from the fact that δ(v1) = η (see Section 4.1). �
Lemma 4.2.4. Let π = 1 + 2ω in SC. Let G′

24 = πG24π
−1. Let φπ : (EC)∗ → (EC)∗ give 

the action of π on (EC)∗. Then φπ induces an F4[v1, η]-linear isomorphism

H∗(G24, (EC)∗V (0)) ∼= H∗(G′
24, (EC)∗V (0)).

Proof. Conjugation by any element of SC induces an isomorphism on cohomology. 
The linearity follows from the fact that v1 is invariant under the action of π, and 
η = β(v1). �
Remark 4.2.5. To avoid ambiguities, define Δ′ := φπ(Δ) and j′ := φπ(j). For an el-
ement z of positive dimension in the cohomology of G24, we will abuse notation and 
denote φπ(z) by z since there will be little room for confusion. Further, we let k act 
on H∗(G′

24, (EC)∗V (0)) via φπ(k) and treat the isomorphism of Lemma 4.2.4 as one of 
F4[v1, η, k]-modules.

4.3. Approximate Δ-linearity

Here, we make the key observation for the computations of Section 5. Namely, that 
the action of (IS1

C)2 on (EC)∗V (0) is approximately Δ-linear.

Theorem 4.3.1. Let x be in (EC)∗V (0). Let g and h be elements of SC. Then,

(a) φh(Δ) ≡ Δ modulo (2, u6
1),

(b) (id − φg)(id − φh)(Δ) ≡ 0 modulo (2, u8
1),

(c) (id −φg)(id −φh) 
(
xΔ2k(1+2t)

)
≡ (id −φg)(id −φh)(x)Δ2k(1+2t) modulo (2, u1+3·2k+1

1 ).
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Proof. For (a), note that by (3.3.2),

t0(h) ≡ 1 + a1(h)2u1 + a1(h)u2
1 mod (2, u3

1),

where ai(h)4 = ai(h). It follows that t0(h)16 ≡ 1 mod (2, u16
1 ). Since Δ = u−12(1 +u3

1)3, 
modulo (2, u6

1) we compute

(id− φh)(Δ) ≡ u−12(1 − t0(h)−12) + u3
1u

−12(1 − t0(h)−9)

≡ u−12(1 − t0(h)4) + u3
1u

−12(1 − t0(h)7)

≡ u−12(a1(h)8u4
1) + u3

1u
−12(a1(h)2u1 + a1(h)u2

1 + a1(h)4u2
1)

≡ 0 mod (2, u6
1).

To prove (b) Since id − φg applied to the ideal (u6
1) is contained in the ideal (u8

1), the 
claim follows from (a). Finally, it follows from (a) that for h ∈ SC , there exists yh such 
that φh(Δ2k(1+2t)) = Δ2k(1+2t) + v6·2k

1 yh. Hence,

(id− φh)(Δ2k(1+2t)) = Δ2k(1+2t)(id− φh)(x) + v6·2k

1 yhφh(x).

Therefore,

(id− φg)(id− φh)(Δ2k(1+2t)) = (id− φg)(Δ2k(1+2t)(id− φh)(x) + v6·2k

1 yhφh(x))

= Δ2k(1+2t)(id− φg)(id− φh)(x)

+ v6·2k

1 ygφg((id− φh)(x)) + v6·2k

1 (id− φg)(yhφh(x))).

Since h and g are in SC,

(id− φh)(x) ≡ (id− φg)(yhφh(x))) ≡ 0 mod (2, u1).

This proves (c). �
5. Computation of the E∞-Term

Now we turn to the computation of the ADSS

Ep,q
1 = Extq

Z2[[S1
C ]](Cp, (EC)∗V (0)) =⇒ Hp+q(S1

C , (EC)∗V (0)),

with Ep,q
1

∼= Hq(Fp, (EC)∗V (0)), whose construction was described in Section 4. Recall 
also that the spectral sequence comes from a resolution

0 → C3
∂3−−→ C2

∂2−−→ C1
∂1−−→ C0

ε−→ Z2 → 0,
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Further, d1 : Ep,q
1 → Ep+1,q

1 is induced by Extq
Z2[[S1

C ]](∂p+1, (EC)∗V (0)) for ∂p+1 as de-
scribed in Theorem 1.1.1. We use these descriptions together with our partial knowledge 
of the action of SC on (EC)∗ to compute the d1-differentials.

Recall that E0,0
1

∼= (EC)G24∗ and Ep,0
1

∼= (EC)C6∗ for p = 1 and p = 2. Since there is an 
inclusion

(EC)G24
∗ → (EC)C6

∗ ,

there is an action of (EC)G24∗ on Ep,0
1 for 0 ≤ p ≤ 2. Therefore, it will make sense to talk 

about the image of Δ defined in Theorem 4.2.2 in Ep,0
1 . To avoid ambiguity, we will use 

the convention

Δk[p] = Δk · 1 ∈ Ep,0
1

in the statement of the results. However, in the proofs, we will assume that the con-
text is sufficient to determine which elements are meant. Similarly, for v2 in (EC)C6∗ , to 
distinguish between E1,0

1 and E2,0
1 , we let

vk2 [p] = vk2 · 1 ∈ Ep,0
1 .

Although the differentials d1 are not ring homomorphisms, they are induced by the 
action of elements in Z2[[SC ] ]. Since Z2[[SC ] ] is generated by ring homomorphisms and 
(EC)∗V (0) is an F2-vector, it follows that the differentials commute with the squaring 
operation. That is, for any b in Ep,q

1 ,

d1(b2) = d1(b)2 mod (2). (5.0.1)

5.1. The differential d1 : E0,0
1 → E1,0

1

The differential d1 : E0,0
1 → E1,0

1 is induced by the map ∂1 : C1 → C0, given by 
∂1(γe1) = γ(e − α)e0. Here, ei is the canonical generator of Ci. Therefore,

d1 = id + φα : E0,0
1 → E1,0

1 .

Recall from Theorem 4.2.2 that the powers of Δ = v2(v2 + v3
1)3 generate H0(G24,

(EC)∗V (0)) ∼= (EC)G24∗ as an F4[v1]-module. So it is sufficient to compute d1 on Δn[0]
for n ∈ Z. Therefore, we begin by recording a result on the action of α on the powers 
of Δ.

Proposition 5.1.1. Let n = 2k(2t + 1), then

φα(Δn) ≡ Δn(1 + v6·2k

1 v−2k+1

2 ) ≡ Δn + v6·2k

1 v
2k+1(4t+1)
2 mod (2, u9·2k

1 ).
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Proof. By Proposition 3.3.1, φα(v2) ≡ v2 + v3
1 modulo (2, u9

1). Since φα(v1) ≡ v1 mod-
ulo (2),

φα(Δ) ≡ φα(v2)(φα(v2) + v3
1)3

≡ (v2 + v3
1)v3

2 mod (2, u9
1)

≡ Δ(1 + v−2
2 v6

1) mod (2, u9
1).

It suffices to prove the claim for n = 2t + 1 odd as the more general statement then 
follows from (5.0.1). Using Δn ≡ v4n

2 modulo (2, u1), we have

φα(Δn) = (Δ(1 + v−2
2 v6

1))n mod (2, u9
1)

≡ Δn(1 + n · v−2
2 v6

1) mod (2, u9
1)

≡ Δn + v
2(4t+1)
2 v6

1 mod (2, u9
1). �

Corollary 5.1.2. Let n = 2k(2t + 1), then for d1 : E0,0
1 → E1,0

1 ,

d1(Δn[0]) = v6·2k

1 v
2k+1(4t+1)
2 [1] mod (u9·2k

1 ).

5.2. The differential d1 : E1,0
1 → E2,0

1

The goal of this section is to prove the following result.

Proposition 5.2.1. Let n = 2k(1 + 2t) where t ∈ Z and k ≥ 0. There exist homogeneous
elements bn, such that bn ≡ vn2 [1] modulo (u1). The elements bn satisfy

d1(Δn[0]) =
{

v6·2k

1 b2k+1(1+4t) n = 2k(1 + 2t)
0 n = 0,

and

d1(bn) =

⎧⎪⎨⎪⎩
v3·2k

1 v
2k+1(1+2t)
2 [2] mod (2, u3·2k+3

1 ) n = 2k(3 + 4t)
v3·2k+1

1 vm−2k+1

2 [2] mod (2, u3·2k+1+3
1 ) n = 1 + 2k+2 + 2k+3t

0 n = 0, 1 and 2k+1(1 + 4t).

We will break up the proof into a series of propositions.
The differential d1 : E1,0

1 → E2,0
1 is induced by the map ∂2 : C2 → C1. Recall from 

Theorem 1.1.1 that

∂2(γe2) = γ(e + α + E )e1

where E ∈ (2, (IS1
C)2). Therefore, modulo (2), E =

∑
ag,h(e − g)(e − h) is in (IS1

C)2. It 
is to be thought of as the error. Let
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φE =
∑

ag,h(id− φg)(id− φh). (5.2.1)

We first construct the d1-cycle b1. The idea for its construction comes from Mahowald 
and Rezk [9, Corollary 6.2]. We need the following result.

Lemma 5.2.2. Let c4 in (EC)G24
8 be given by

c4 = 9(v4
1 + 8v1v2) = 9u−4u1(u3

1 + 8)

as in Section 4.2. For any γ in GC,

φγ(c4) ≡ c4 mod (16).

Further, if an element γ in SC has the form γ ≡ 1 + a2(γ)T 2 modulo T 3 for a2(γ) as in 
Section 3.3, then

c4 − φγ(c4) ≡ 16(a2(γ) + a2(γ)2)u1u
−4 mod (32, 16u2

1).

Proof. The first step is to show that φγ(c4) ≡ c4 modulo 16. Since the Galois group acts 
trivially on c4, it suffices to prove the claim for γ in SC . Let t0 = t0(γ) and t1 = t1(γ) as 
defined in (3.3.1). A direct computation using (3.3.1) implies that

c4 − φγ(c4) ≡ 8u−4
(
u1 + 3u1

t30
+ t21u

2
1

t40
+ t1u

3
1

t20
+ 2t1

t50
+ 2t41

t80

)
mod (32)

≡ 8u−4u1t
−4
0

(
t40 + t0 + u1t

2
1 + u2

1t1t
2
0
)

mod (16)

It follows from Proposition 6.3.3 of Section 6 that

t0 ≡ t40 + u1t
2
1 + u2

1t1t
2
0 mod (2).

This proves that c4 − φγ(c4) ≡ 0 modulo (16).
Let ai = ai(γ) as in Section 3.3. By Proposition 6.3.9 and Proposition 6.3.10 applied 

to γ, we have

t0 ≡ 1 + 2a2 + 2a2
3u1 mod (4, u2

1), t1 ≡ a2
2u1 mod (2, u2

1).

Therefore, t40 ≡ 1 modulo (4, u2
1) and t41 ≡ 0 modulo (4, u2

1) so that

c4 − φγ(c4) ≡ 8u−4 (u1 + 3u1t0 + 2t1t30
)

mod (32, u2
1)

≡ 8u−4 (u1 + 3u1(1 + 2a2 + 2a2
3u1) + 2a2

2u1
)

mod (32, u2
1)

≡ 16(a2 + a2
2)u−4u1 mod (32, u2

1)

This implies that c4 − φγ(c4) = 16((a2 + a2
2)u−4u1 + . . .). �
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Consider the spectral sequence

Ẽp,q
1 = Extq

Z2[[S1
C ]](Cp, (EC)∗) =⇒ Hp+q(S1

C , (EC)∗). (5.2.2)

Let

f : Ẽp,q
1 → Ep,q

1 (5.2.3)

be the map of spectral sequences induced by the reduction modulo (2) on the coefficients. 
Let d1 : Ẽ0,0

1 → Ẽ1,0
1 denotes the differential in the spectral sequence Ẽp,q

r . Since d1(x) =
x − φα(x), and α ≡ 1 + ωT 2 modulo T 3, it follows from Lemma 5.2.2 that

d1(c4) = 16(v1v2 + . . .).

Definition 5.2.3. Let B1 ∈ Ẽ1,0
1 be defined by B1 = d1(c4)

16 . Since Ẽ1,0
1 is torsion free, this 

specifies B1 uniquely and

B1 ≡ v1v2 mod (2, u2
1).

Proposition 5.2.4. There is an element b1 ∈ E1,0
1 specified by the identity f(B1) = v1b1

such that b1 ≡ v2[1] modulo (u3
1) and d1(b1) = 0.

Proof. Let B1 be as in Definition 5.2.3. Then, f(B1) is divisible by v1. Therefore, we can 
define an element b1 ∈ E1,0

1 by b1 := v−1
1 f(B1). Since E1,0

1 is v1-torsion free, this specifies 
b1 uniquely. Further, it implies that b1 ≡ v2 modulo (2, u1). Since b1 is an element of

(EC)6V (0)C6 = F4[[u3
1]]{v2}.

This forces the congruence b1 ≡ v2 modulo (2, u3
1).

Finally, in the spectral sequence Ẽp,q
r , we have d2

1(c4) = 16d1(B1). Since there is no 
torsion in Ẽp,0

1 and d2
1 = 0, d1(B1) = 0 so that d1(v1b1) = 0 in E2,0

1 . Since there is no 
v1-torsion in Ep,0

1 , this implies that d1(b1) = 0. �
Proposition 5.2.5. Let n = 2k(3 + 4t). Define bn = vn2 . Then

d1(bn) ≡ v3·2k

1 v
2k+1(1+2t)
2 mod (2, u6·2k

1 ).

Proof. By (5.0.1) is sufficient to prove the claim when k = 0. First, note that if h ∈ SC , 
by (3.3.2),

t0(h) ≡ 1 + a1(h)2u1 + a1(h)u2
1 mod (2, u3

1)

where a1(h)4 = a1(h). Therefore, t0(h)4 ≡ 1 modulo (2, u4
1) and
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(id− φh)(v3+4t
2 ) = v3+4t

2 + t0(h)−3(3+4t)v3+4t
2

≡ v3+4t
2 + t0(h)3v3+4t

2 mod (2, u3
1)

≡ v3+4t
2 + v3+4t

2 (1 + a1(h)2u1 + a1(h)u2
1 + a1(h)4u2

1) mod (2, u3
1)

≡ v3+4t
2 a1(h)2u1 mod (2, u3

1).

For any g ∈ SC , the image of (2, u3
1) under id − φg is in (2, u4

1). Further, since t0(g)4 ≡ 1
mod (2, u4

1)

(id− φg)(v3+4t
2 u1) ≡ (1 − t0(g)−8−12t)v3+4t

2 u1

≡ 0 mod (2, u5
1).

Hence, (id − φg)(id − φh)(v3+4t
2 ) ≡ 0 modulo (2, u4

1). For φE be as in (5.2.1), it follows 
that

φE (v3+4t
2 ) ≡ 0 mod (2, u4

1).

Hence, since φα(v2) ≡ v2 + v3
1 mod (2, u9

1) (see Proposition 3.3.1),

d1(v3+4t
2 ) = v3+4t

2 + φα(v3+4t
2 ) + φE (v3+4t

2 )

≡ v3+4t
2 + (v2 + v3

1)3+4t

≡ v3
1v

2+4t
2 mod (2, u4

1).

Since d1(bn) is C6-invariant, the congruence can be improved to d1(bn) ≡ v3
1v

2(1+2t)
2

modulo (2, u6
1). �

Proposition 5.2.6. Let n = 1 + 2k+2(1 + 2t). Define bn = b1Δ2k(1+2t). Then

d1(bn) ≡ v3·2k+1

1 v
1+2k+1(1+4t)
2 mod (u3·2k+1+3

1 ).

Proof. By Theorem 4.3.1,

φE (bn) ≡ φE (b1)Δ2k(1+2t) mod (2, u1+3·2k+1

1 ).

Therefore,

d1(bn) ≡ bn + φα(bn) + φE (bn)

≡ b1Δ2k(1+2t) + φα(b1)Δ2k(1+2t)(1 + v−2
2 v6

1)2
k(1+2t) + φE (b1)Δ2k(1+2t)

≡ b1Δ2k(1+2t) + φα(b1)Δ2k(1+2t)(1 + v−2k+1

2 v3·2k+1

1 ) + φE (b1)Δ2k(1+2t)

≡ (b1 + φα(b1) + φE (b1)) Δ2k(1+2t) + φα(b1)v−2k+1

2 v3·2k+1

1 Δ2k(1+2t)

≡ d1(b1)Δ2k(1+2t) + φα(b1)v−2k+1

2 v3·2k+1

1 Δ2k(1+2t) mod (2, u1+3·2k+1

1 ).
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But d1(b1) = 0 and φα(b1) ≡ v2 modulo (2, u3
1). Furthermore, Δ2k(1+2t) ≡ v2k+2+2k+3t

2 , 
so that

d1(bn) ≡ v3·2k+1

1 v1−2k+1+2k+2+2k+3t
2

≡ v3·2k+1

1 v1+2k+1+2k+3t
2 mod (2, u3·2k+1+1

1 ).

Since d1(bn) is C6 invariant, the congruence holds modulo (2, u3·2k+1+3
1 ). �

Proof of Proposition 5.2.1. Let t ∈ Z and k ≥ 0

bn :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bn1 n = 0, 1;
vn2 n = 2k(3 + 4t);
b1Δ2k+2k+1t n = 1 + 2k+2(1 + 2t);
v−6·2k

1 d1

(
Δ2k(2t+1)

)
n = 2k+1(4t + 1).

The element bn is in degree 6n and bn ≡ vn2 modulo (2, u3
1). That d1(b0) = 0 follows from 

the fact that it is invariant under the action of SC. It is the content of Proposition 5.2.4
that d1(b1) = 0. Let n = 2k+1(1 + 4t). Since d1 is v1-linear and there is no v1-torsion in 
E2,0

1 , it follows from

d1(v6·2k

1 bn) = d2
1

(
Δ2k(2t+1)

)
= 0,

that d1(bn) = 0. The remaining claims follow from Proposition 5.2.5 and Proposi-
tion 5.2.6. �
5.3. The differential d1 : E2,0

1 → E3,0
1

Recall that

E3,0
1

∼= Hq(G′
24, (EC)∗V (0)) = F4[[j′]][v1,Δ′]/(j′ = v12

1 Δ′ −1)

where Δ′ = φπ(Δ). We let Δ′[3] = Δ′ · 1 ∈ E3,0
1 . The next goal is to prove:

Proposition 5.3.1. Let n = 2k(1 + 2t) where t ∈ Z and k ≥ 0. There exist homogeneous
elements bn such that

bn ≡ vn2 [2] mod (u1) (5.3.1)

and

d1(bn) =

⎧⎪⎨⎪⎩
v3·2k

1 b2k+1(1+2t) n = 2k(3 + 4t)
v3·2k+1

1 b1+2k+1(1+4t) n = 1 + 2k+2(1 + 2t)
0 otherwise.
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Further,

d1(bn) = v
3(1+2k+1)
1 Δ′ 2k(1+2t)[3] mod (u3(1+2k+1)+12

1 )

if n = 1 + 2k+1(3 + 4t) and is zero otherwise.

Proof of Proposition 5.3.1. For n = 2k(3 + 4t) and n = 1 + 2k+2(1 + 2t), define bn by 
the identities

d1(bn) =
{

v3·2k

1 b2k+1(1+2t) n = 2k(3 + 4t);
v3·2k+1

1 b1+2k+1(1+4t) n = 1 + 2k+2(1 + 2t).

The classes b2k+1(1+2t) and b1+2k+1(1+4t) are well-defined since E2,0
1 is torsion free. Fur-

ther, the bn satisfies equation (5.3.1) and d1(bn) = 0.
Let m = 1 + 2k+1(1 + 4t). For n = 1 + 2k+1(3 + 4t), define

bn = bm(Δ′)2
k

.

Because (Δ′)2k ≡ v2k+2

2 modulo (2, u1), the elements bn satisfy (5.3.1). We will prove 
that

d1(bn) ≡ v
3(2k+1+1)
1 (Δ′)2

k(2t+1) mod (u3(2k+1+1)+1
1 ). (5.3.2)

Because d1(bn) is G′
24 invariant, if (5.3.2) holds, then the congruence also holds modulo 

(u3(1+2k+1)+12
1 ). This will finish the proof of the theorem.
By Theorem 1.1.1, the map d1 : E2,0

1 → E3,0
1 is given by

φπ(id + φi + φj + φk)(id + φ−1
α )φ−1

π .

Since φ−1
π (Δ′) = Δ,

d1(bn) = φπ(id + φi + φj + φk)(id + φ−1
α )(φ−1

π (bm)Δ2k

).

By Proposition 3.3.1, we can φα = φα−1 modulo u9
1. By Proposition 5.1.1, this implies 

that

φα−1(Δ2k

) = Δ2k

(1 + v6·2k

1 v−2k+1

2 ) mod (2, u9·2k

1 ).

Hence, modulo (2, u9·2k

1 ),

(id + φα−1)(φ−1
π (bm)Δ2k) ≡ φ−1

π (bm)Δ2k

+ φα−1(φ−1
π (bm))Δ2k

(1 + v6·2k

1 v−2k+1

2 )

≡ (id + φα−1)(φ−1
π (bm)) · Δ2k

+ φα−1(φ−1
π (bm))(v6·2k

1 v−2k+1

2 )Δ2k

.
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We treat both terms separately. First, note that i, j and k fix Δ, so that

φπ

(
(id + φi + φj + φk)

(
(id + φα−1)(φ−1

π (bm)) · Δ2k
))

= d1(bm) · (Δ′)2
k

= 0.

Next, note that φα−1φπ−1(bm) = φ(πα)−1(bm). Since πα ∈ F2/2SC , it follows from Propo-
sition 3.3.1 that

φα−1φπ−1(bm) ≡ bm mod (2, u3
1).

Since bm ≡ v
1+2k+1(1+4t)
2 mod (2, u3

1), this implies that

φα−1(φ−1
π (bm))(v6·2k

1 v−2k+1

2 ) ≡ v6·2k

1 v1+2k+3t
2 mod (2, u3(2k+1+1)

1 )

Further, (2, u9·2k

1 ) ⊆ (2, u3(2k+1+1)
1 ) and, since (id + φi + φj + φk) is in ISC it maps 

(2, u3(2k+1+1)
1 ) to the ideal (2, u3(2k+1+1)+1

1 ), we can ignore the error terms. Hence,

d1(bn) = φπ((id + φi + φj + φk)(v1+2k+3t
2 )) · v6·2k

1 (Δ′)2
k

mod (2, v3(2k+1+1)+1
1 ).

From Section 2.2,

t0(i)−1 = 1 + u1 t0(j)−1 = 1 + ζu1 t0(k)−1 = 1 + ζ2u1.

We have t0(i)−8 ≡ t0(j)−8 ≡ t0(k)−8 ≡ 1 modulo (2, u8
1). Modulo (2, u8

1),

t0(i)−3(1+2k+3t) ≡ (1 + u1)3 ≡ 1 + u1 + u2
1 + u3

1

t0(j)−3(1+2k+3t) ≡ (1 + ζu1)3 ≡ 1 + ζu1 + ζ3u2
1 + u3

1

t0(k)−3(1+2k+3t) ≡ (1 + ζ2u1)3 ≡ 1 + ζ2u1 + ζu2
1 + u3

1.

Since φγ(vn2 ) = t0(γ)nvn2 ,

(id + φi + φj + φk)(v1+2k+3t
2 ) ≡ v3

1v
2k+3t
2 mod (2, u8

1).

Hence,

d1(bn) ≡ v
3(1+2k+1)
1 φπ(v2k+3t

2 )(Δ′)2
k

mod (2, v3(2k+1+1)+1
1 )

≡ v
3(1+2k+1)
1 (Δ′)2

k(1+2t) mod (2, v3(2k+1+1)+1
1 ).

The only element bn which has not been constructed is b1. Its existence follows from 
Lemma 5.3.2 below. �



A. Beaudry / Advances in Mathematics 306 (2017) 722–788 753
Lemma 5.3.2. There exists a sequence of elements {b1,n} such that

(1) b1,n ≡ v2 modulo (u6
1),

(2) d1(b1,n) ≡ 0 modulo (u3(1+4n)
1 ),

(3) b1,n+1 − b1,n ≡ 0 modulo (u6n
1 ).

If (EC)6V (0) is given the topology induced by the maximal ideal m = (u1), then the limit

b1 := lim
n→∞

b1,n

exists. The element b1 satisfies equation (5.3.1) and d1(b1) = 0.

Proof. The construction of {b1,n} is by induction on n. First, define b1,1 := v2 and note 
that

b1,1 + φα−1(b1,1) ≡ v3
1 + u6

1ε.

The F4-vector space with basis

{v3
1 , v

3·5
1 Δ′ −1, v3·9

1 Δ′ −2, . . . , v
3(1+4s)
1 Δ′ −s, . . .}

is dense in ((EC)6V (0))G
′
24 . Hence, d1(b1,1) ≡ 0 modulo (u6

1).
Suppose that b1,n has been defined. If d1(b1,n) = 0, then let b1,N := b1,n for all N ≥ n. 

Otherwise,

d1(b1,n) = v3+12sn
1 Δ′ −sn + . . . (5.3.3)

for sn ≥ n. Let sn = 2kn(1 + 2tn) and let mn = 3 · 2kn+1(1 + 4tn). Then mn ≥ 6n. For

rn = 1 + 2kn+1 + 2kn+2 + 2kn+3(−tn − 1),

(5.3.3) together with the fact that

d1(brn) = v
3(1+2kn+1)
1 Δ′ 2k

n(1+2(−tn−1) + . . . ,

implies that d1(b1,n) = vmn
1 d1(brn) + . . . Define b1,n+1 := b1,n + vmn

1 brn . Then b1,n+1
satisfies properties (1), (2) and (3).

Now consider the sequence {b1,n}. Since mn+k ≥ 6n for k ≥ 0,

b1,n+k − b1,n = v
mn+1
1 brn+1 + . . . + v

mn+k

1 brn+k
∈ (u1)6n,

so the sequence {b1,n} is Cauchy. Since ((EC)6V (0))C6 is complete with respect to m, 
the limit exists and b1 is well-defined. The map d1 is continuous, so that,

d1(b1) = lim
n→∞

d1(b1,n).
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But d1(b1,n) ∈ m3(1+4N) for all n ≥ N , which implies that

d1(b1) ∈
∞⋂

n=0
mn = 0. �

Remark 5.3.3. Define

Δn :=
{

Δn[0] n = 2k(1 + 2t)
1 · [0] n = 0,

Δn :=
{

v
−3(1+2k+1)
1 d1(b1+2k+1+2k+2+2k+3t) n = 2k(1 + 2t)

1 · [3] n = 0.

Combining the results of this section to proves the first part of Theorem 1.2.1.
An analysis of the definition of the elements shows that the congruences stated in 

Theorem 1.2.1 can be improved as follows:

Δn = Δn[0]

bn =

⎧⎪⎪⎨⎪⎪⎩
vn2 [1] n = 0 or 2k(3 + 4t)
vn2 [1] mod (u3

1) n = 1 or 1 + 2k+2(1 + 2t)
vn2 [1] mod (2, u3·2k

1 ) n = 2k+1(4t + 1)

bn =

⎧⎪⎪⎨⎪⎪⎩
vn2 [2] n = 0
vn2 [2] mod (u3·2k

1 ) n = 1 or n = 2k+1(1 + 2t)
vn2 [2] mod (u3

1) n = 1 + 2k+1(1 + 4t) or n = 1 + 2k+1(3 + 4t)

Δn =
{

1 · [3] n = 0
Δ′ n[3] mod (u12

1 ) n �= 0

5.4. The differentials d1 : Ep,q
1 → Ep+1,q

1 for q > 0

Although V (0) is not a ring spectrum, (EC)∗V (0) ∼= (EC)∗/2, and a canonical gener-
ator is given by the image of the unit in (EC)0 in the long exact sequence

. . . → (EC)∗
2−→ (EC)∗ → (EC)∗V (0) → . . .

Thus, (EC)∗V (0) inherits a ring structure from (EC)∗. Lemma 4.1.3 implies that the 
ADSS for (EC)∗V (0) is a module over H∗(SC , (EC)∗V (0)). The canonical inclusion of F4
into (EC)∗V (0) induces a map

H∗(S1
C ,F4) → H∗(S1

C , (EC)∗V (0))

and the ADSS for (EC)∗V (0) is also a module over H∗(S1
C , F4).
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Let

F p,q
1 = Extq

Z2[[S1
C ]](Cp,F4) =⇒ Hp+q(S1

C ,F4). (5.4.1)

Let k ∈ F 0,4
1 be the periodicity generator for the cohomology of G24, (see Lemma A.1). 

The extension

1 → K1 → S
1
C → G24 → 1

is split. Therefore, the map

H∗(S1
C ,F4) → H∗(G24,F4)

induced by the inclusion of G24 in S1
C is split surjective. This implies that the image of 

k is a permanent cycle in F 0,4
1 . Therefore, it represents a class

k ∈ H4(SC ;F4),

and the differentials in the ADSS commute with the action of k. To make sense of this, 
we compute the action of k on Ep,q

1 .
First, k acts by multiplication by the element of the same name in E0,q

1 and E3,q
1 . 

Further, the map

H∗(S1
C ;F4) → H∗(C6; (EC)∗V (0))

factors through the map

H∗(G24; (EC)∗V (0)) → H∗(C6; (EC)∗V (0))

induced by the inclusion of C6 in G24. Therefore, k acts by multiplication by h4 on Ep,q
1

for p = 1 and p = 2. We collect these remarks in the following lemma.

Lemma 5.4.1. The differentials in the ADSS are k-linear, where the action of k is given 
by multiplication by k on E0,∗

r and E3,∗
r , and by multiplication by h4 on Ep,∗

r for p = 1, 2.

This will allow us to compute some of the differentials d1 : Ep,q
1 → Ep+1,q

1 for q > 0
based on our results for q = 0.

Lemma 5.4.2. Let x ∈ E0,q
1 . The differential d1 : E0,q

1 → E1,q
1 is zero unless x = vr1η

sΔt

or x = vr1k
sΔt, in which case it is given by

d1(vr1ηsΔt) = vr1η
sd1(Δt)

and

d1(vr1ksΔt) = vr1h
4sd1(Δt).
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Proof. There is no v1-torsion in E1,q
1 , and d1 is v1-linear. Therefore, if x is v1-torsion, 

we must have d1(x) = 0. The only classes in E0,q
1 which are not v1-torsion are of the 

form x = vr1η
sΔt or x = vr1k

sΔt. The statement then follows from the η and k-linearity 
of the differentials. �
Lemma 5.4.3. Let x ∈ E1,q

1 . The differential d1 : E1,q
1 → E2,q

1 satisfies

hkd1(x) = d1(hkx).

Proof. This follows from the fact that the differentials are η = hv1 and v1-linear. Indeed, 
since η = v1h, we have the following equalities

vk1h
kd1(x) = ηkd1(x) = d1(ηkx) = d1(vk1hkx) = vk1d1(hkx).

There is no v1 or h-torsion in E1,q
1 and E2,q

1 , so hkd1(x) = d1(hkx). �
Understanding the differential d1 : E2,q

1 → E3,q
1 is more subtle as there is v1-torsion 

in E3,q
1 for q > 0. We will use the following result. Its proof is postponed until the end 

of the section.

Lemma 5.4.4. For x ∈ E2,0
1 , there is a unique y ∈ E3,0

1 with d1(x) = v3
1y.

Proof. Let τ ′ = πτπ−1. Recall that d1 : E2,q
1 → E3,q

1 is given by

φπ(id + φi + φj + φk)(e− φ−1
α )φ−1

π = (id + φi′ + φj′ + φk′)(e− φ−1
α ).

Further, this factors as the composite

E2,q
1

e−φ−1
α

E2,q
1

(id+φi′+φj′+φk′ )
E3,q

1 .

Let x ∈ E2,0
1 . It follows from Proposition 3.3.1 that there exists z ∈ E2,q

1 such that 
(e − φ−1

α )(x) = v3
1z. Then, by v1-linearity,

d1(x) = v3
1(id + φi′ + φj′ + φk′)(z),

and y = (id + φi′ + φj′ + φk′)(z). This element is uniquely determined since E3,0
1 is 

v1-torsion free. �
Lemma 5.4.5. Let x be an element of E2,0

1 . Consider d1 : E2,q
1 → E3,q

1 . Let q = 4t + s

for 0 ≤ s ≤ 3. Then d1(hqx) = ktηs(v−s
1 d1(x)), where (v−s

1 d1(x)) is uniquely determined 
since E3,0

1 is v1-torsion free.
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Proof. Let y be as in Lemma 5.4.4 so that d1(x) = v3
1y. Since α is in the centralizer of 

C6 in S2, it has a trivial action on H∗(C6, F4) ∼= F4[h]. Hence, e − φ−1
α : E2,∗

1 → E2,∗
1

is h-linear. Let q = 4t + s as in the statement of the result. Recall that η = v1h, that 
k = h4 and that all maps are v1, k and η-linear. Therefore,

d1(hqx) = (id + φi′ + φj′ + φk′)(e− φα−1)(hqx)

= kt(id + φi′ + φj′ + φk′)(hs(e− φα−1)(x))

= kt(id + φi′ + φj′ + φk′)(ηsv3−s
1 z)

= ktηsv3−s
1 y

= ktηsv−s
1 d1(x). �

This completes the computation of the E2-term (see Fig. 3).

5.5. Higher differentials

In this section, we prove that all differentials dr : E0,q
r → Er,q−r+1

r for r ≥ 2 are zero. 
Because of the sparsity of the spectral sequence, the only differentials dr for r ≥ 2 which 
do not have a zero target are

d2 : E0,q
2 → E2,q−1

2 , q ≥ 2

d2 : E1,q
2 → E3,q−1

2 , q ≥ 2

d3 : E0,q
3 → E3,q−2

3 , q ≥ 3.

The proof of the following result is a direct computation similar to that of 
Lemma 4.2.3.

Lemma 5.5.1. Let v1 have degree (s, t) = (0, 2), v2 have degree (0, 6), and h have degree 
(1, 0). Then

H∗(C6; (EC)∗) ∼= W[[u3
1]][v2

1 , v1v2, v
±1
2 , h]/(2h).

As in Lemma 4.1.2, let β be the connecting homomorphism for the long exact sequence 
in cohomology associated to

0 → (EC)∗/2 → (EC)∗/4 → (EC)∗/2 → 0

and note that (EC)∗V (0) ∼= (EC)∗/2.

Lemma 5.5.2. All differentials d2 : E1,q
2 → E3,q−1

2 are zero.
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Proof. Let bn be as in Proposition 5.2.1. The set

B = {hkbn | n = 0, 1, 2s+1(1 + 4t), 0 ≤ k ≤ 3, 0 ≤ s}

generates E1,∗
2 as an F4[v1, k]-module, for k as in Lemma 5.4.1. Because the differentials 

are F4[v1, k]-linear and k acts via multiplication by h4, it suffices to show that the 
d2-differentials are zero on the elements of B. First, note that d2(bn) = 0 for all n, since 
the targets of these differentials are zero. Hence, it suffices to show that d2(hkbn) = 0
for 1 ≤ k ≤ 3.

The first remark is that, if d2(hkbn) = 0, then

v1d2(hk+1bn) = d2(v1h
k+1bn) = d2(ηhkbn) = ηd2(hkbn) = 0.

Hence, if d2(hkbn) = 0, then v1d2(hk+1bn) = 0. Further,

vk1d2(hkbn) = d2(ηkbn) = ηkd2(bn).

Since d2(bn) = 0, we must have that vk1d2(hkbn) = 0 for all k ≥ 0.
Let 1 ≤ k ≤ 3. Then d2(hkb0) is an element of internal degree t = 0 in E3,k−1

2 . Since 
d2(b0) = 0, v1d2(hb0) = 0. However, there is no v1-torsion in (E3,0

2 )0, hence d2(hb0) = 0. 
Further, (E3,1

2 )0 and (E3,2
2 )0 are zero and d2(hkb0) = 0 for k = 2, 3.

Next, consider the elements of the form hkb1 for 1 ≤ k ≤ 3. Since d2(hkb1) is an 
element of internal degree t = 6 in E3,k−1

2 and there is no v1-torsion in (E3,k−1
2 )6 for 

1 ≤ k ≤ 3, these differentials must be zero.
The classes hkb2s+1(1+4t) have internal degree 3 · 2s+2(1 + 4t). Hence, their degree is 

congruent to zero modulo 3. First, consider the case when k = 1. The possible targets for 
the d2 differentials on these classes are in E3,0

2 and must be annihilated by v1. Therefore, 
they must be of the form

v
3(1+2s′+1)−1
1 Δ2s′ (1+2t′).

However, such classes have internal degree congruent to 1 modulo 3, since the degree of 
Δ2s′ (1+2t′) is 24 · 2s(1 + 2t′) and the degree of v1 is 2. Hence, there is no appropriate 
target for these differentials. Further, this implies that d2(h2bn) is annihilated by v1.

The classes which are annihilated by v1 in E3,1
2 are of one of the forms

v
3(1+2s′+1)−2
1 ηΔ2s′ (1+2t′),

νΔ2s′ (1+2t′), v1xΔ2s′ (1+2t′), or yΔ2s′ (1+2t′). Here, ν has internal degree 4, x has internal 
degree 8 and y has internal degree 16. Again, such classes have internal degree congruent 
to 1 modulo 3, so there is no possible target for the differentials. This, in turn, implies 
that d2(h3bn) is annihilated by v1.
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The classes in E3,2
2 which are annihilated by v1 are of one of the forms

v
3(1+2s′+1)−3
1 η2Δ2s′ (1+2t′),

ν2Δ2s′ (1+2t′), v1ηxΔ2s′ (1+2t′), ηyΔ2s′ (1+2t′) or νyΔ2s′ (1+2t′). Of these classes, both 

v1ηxΔ2s′ (1+2t′) and ηyΔ2s′ (1+2t′) have internal degree congruent to 0 modulo 3, so we 
must make a more careful analysis.

Note that 3 · 2s+2(1 + 4t) ≡ 0 mod 24 if s ≥ 1, and 3 · 22(1 + 4t) ≡ 12 mod 24. 
Since the internal degree of ηyΔ2s′ (1+2t′) is congruent to 18 modulo 24, it cannot be 

hit by a differential. The internal degree of v1ηxΔ2s′ (1+2t′) is 12 modulo 24. There-
fore, there are possible differentials d2(h3b2(1+4t)) with targets v1ηxΔ2t. However, by 
Lemma 5.5.3 and Lemma 5.5.4 below, β(d2(h3b2(1+4t))) = 0 and β(v1ηxΔ2t) �= 0. There-
fore, d2(h3b2(1+4t)) �= v1ηxΔ2t and we must have d2(h3b2(1+4t)) = 0. �
Lemma 5.5.3. β(d2(h3b2(1+4t))) = 0.

Proof. The maps H0(C6, (EC)12(1+4t)) → H0(C6, (EC)12(1+4t)/2) are surjective and fac-
tor through H0(C6, (EC)12(1+4t)/4). Hence, β(b2(1+4t)) = 0. Since β(h2t+1) = h2t+2, it 
follows that

β(h3b2(1+4t)) = β(h3)b2(1+4t) + h3β(b2(1+4t)) = h4b2(1+4t).

By Lemma 4.1.2,

β(d2(h3b2(1+4t))) = d2(β(h3b2(1+4t))) = d2(h4b2(1+4t)) = kd2(b2(1+4t)) = 0. �
Lemma 5.5.4. β(v1ηxΔ2t) ≡ ν3Δ2t modulo (v12

1 ) and, hence, is non-zero.

Proof. By Remark 5.3.3, Δ2t ≡ Δ′ 2t modulo (v12
1 ). Since β is a derivation and we are 

working in characteristic two, it is zero on squares. Hence,

β(v1ηxΔ2t) ≡ β(v1ηx)Δ′ 2t mod (v12
1 ).

So it is enough to prove that β(v1ηx) = ν3. By definition, β(v1) = η, so β(η) = 0. 
Further, using the fact that η2x = ν3,

β(v1ηx) = β(v1η)x + v1ηβ(x) = η2x + v1ηβ(x) = ν3 + v1ηβ(x).

However, since v2
1x = 0, β(x) is v1-torsion and in H∗(G′

24, (EC)8V (0)), the v1-torsion is 
annihilated by (v1). Hence, v1ηβ(x) = 0. �

The next few results will be necessary to prove that all remaining higher differentials 
are zero. Let C2 = {±1} in S2. For any group G ⊆ SC that contains C2, let PG = G/C2. 
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For any Z2[[S2] ]-module M on which C2 acts trivially, the action of G descends to an 
action of PG. Further, there is a homomorphism

H∗(PG,M) → H∗(G,M)

which is an isomorphism when ∗ = 0.
Note that PG24 ∼= A4 and PC6 ∼= C3 and that the algebraic duality resolution is 

a resolution of PS
1
C-modules, where C0 ∼= Z2[[PS

1
C/A4] ], C1 ∼= C2 ∼= Z2[[PS

1
C/C3] ] and 

C3 ∼= Z2[[PS
1
C/A

′
4] ] for A′

4 = PG′
24. Further, since C2 acts trivially on (EC)∗V (0), the 

action of S1
C descends to an action of PS

1
C. There is a corresponding ADSS

F p,q
1 = Extq

Z2[[PS1
C ]](Cp, (EC)∗V (0)) =⇒ Hp+q(PS

1
C , (EC)∗V (0)), (5.5.1)

with F p,q
1

∼= Hq(PFp, (EC)∗V (0)) and a map of spectral sequences

ϕ : F p,q
r → Ep,q

r

induced by the projection from S1
C to PS

1
C .

We will relate the computation of some differentials in Ep,q
r to the computation of 

differentials F p,q
r . The advantage of this method is that the spectral sequence F p,q

r is 
sparser than Ep,q

r . Indeed, C1 and C2 are projective Z2[[PS
1
C ] ]-modules. Hence, for p = 1

or p = 2,

F p,q
1

∼= Extq
Z2[[PS1

C ]](Z2[[PS
1
C/C3]], (EC)∗V (0))

is zero when q > 0. Hence, F p,q
r = 0 when q ≥ 0 for p = 1 or and p = 2. Further, 

the induced maps F p,0
1 → Ep,0

1 are isomorphisms as noted above. In fact, the complexes 
E∗,0

1
∼= F ∗,0

1 are isomorphic. Therefore, the computation of F p,q
2 follows immediately 

from that of Ep,q
2 and F p,0

2
∼= Ep,0

2 .
Let A4 = G24/C2. Since C2 acts trivially on (EC)∗V (0), the action of G24 descends 

to an action of A4.

Lemma 5.5.5. Let R∧ = F4[[j] ][v1, Δ±1]/(v12
1 = jΔ). The inclusion

H1(A4, (EC)∗V (0)) → H1(G24, (EC)∗V (0))

gives an isomorphism of R∧-modules

H1(A4, (EC)∗V (0)) ∼= R∧/(v2
1){x} ⊕R∧/(v1){ν, y}.

In particular, the module H1(A4, (EC)∗V (0)) is annihilated by v2
1.

Proof. Let S∗(ρ) be as in Remark A.2. It suffices to prove that, for R = F4[v1, Δ],

H1(A4, S∗(ρ)) ∼= R/(v2
1){x} ⊕R/(v1){ν, y}.
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Consider the spectral sequence for the group extension

1 → C2 → G24 → A4 → 1.

From the associated inflation-restriction exact sequence, using the fact that S∗(ρ)C2 =
S∗(ρ), we obtain an exact sequence

0 → H1(A4, S∗(ρ)) → H1(G24, S∗(ρ)) → H1(C2, S∗(ρ))A4 .

From Theorem A.14, for R = F4[v1, Δ], we have S∗(ρ)G24 ∼= S∗(ρ)A4 ∼= R and

H1(G24, S∗(ρ)) ∼= R{η} ⊕R/(v2
1){x} ⊕R/(v1){ν, y}.

Further, H1(C2, S∗(ρ))A4 ∼= R{h} for h of internal degree 0. Since R{h} is v1-free, 
R/(v2

1){x} ⊕R/(v1){ν, y} maps to zero and the map H1(G24, S∗(ρ)) → H1(C2, S∗(ρ))A4

sends η to v1h. �
Proposition 5.5.6. The map

φ : H∗(A4, (EC)∗V (0)) → H∗(G24, (EC)∗V (0))/(η)

induced by the projection G24 → G24/C2 ∼= A4 is an isomorphism in degree ∗ = 0 and is 
surjective in degrees ∗ ≤ 3.

Proof. It suffices to prove that φ is surjective if we replace (EC)∗V (0) by S∗(ρ). It 
follows from Theorem A.14 that H∗(G24, S∗(ρ))/(η) is generated by the fixed points 
H0(G24, S∗(ρ)) and the elements ν, x and y in degrees 0 ≤ ∗ ≤ 3. Since C2 has a trivial 
action, S∗(ρ)A4 ∼= S∗(ρ)G24 . Hence, φ is an isomorphism in degree zero. By Lemma 5.5.5, 
ν, x and y are in the image of φ. The result follows from the fact that φ is a ring 
homomorphism. �
Remark 5.5.7. It follows from Proposition 5.5.6 that the map

ϕ : F 0,∗
1 → E0,∗

1 /(η)

induced by the projection G24 → G24/C2 ∼= A4 is surjective in degrees ∗ ≤ 3. All classes 
of degree q ≥ 4 in E0,q

r are multiples of k, so their differentials will be determined by 
differentials on classes of degree q ≤ 3. Further, by η-linearity it suffices to show that the 
differentials on the classes in the image of ϕ of Proposition 5.5.6 are zero. It is therefore 
sufficient to compute some of the differentials dr : F 0,q

r → F r,q−r+1
r for q ≤ 3.

The following results are generalizations of results that can be found in Henn, Kara-
manov and Mahowald [7, Section 6]. The first is [7, Lemma 6.1].
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Lemma 5.5.8 (Henn–Karamanov–Mahowald). Let R be a Z2-algebra and M be an 
R-module. Let

0 → C3
∂3−−→ C2

∂3−−→ C1
∂2−−→ C0

∂1−−→ Z2 → 0

be an exact sequence of R-modules such that C1 and C2 are projective. Define Ni recur-
sively by 0 → Ni → Ci

∂i−→ Ni−1 → 0, and let F s,t
r be the first quadrant spectral sequence 

of the exact couple

ExtR(Ni,M) ExtR(Ni−1,M)

ExtR(Ci,M)

Then Ep,q
1 = 0 for 0 < p < 3 and q > 0. Further, there are isomorphisms

ExtqR(N0,M) ∼=

⎧⎪⎪⎨⎪⎪⎩
ker(F 1,0

1 → F 2,0
1 ) q = 0

F q+1,0
2

∼= F q+1,0
3 q = 1, 2

F q−2,0
3 q ≥ 3.

Let j : N0 → C0 be the inclusion. The only possible non-zero higher differentials are of 
the form dr : F 0,q

r → F r,q−r+1
r , and they can be identified with the map ExtqR(C0, M) →

ExtqR(N0, M) induced by j.

Note that the algebraic duality resolution viewed as a resolution of the trivial 
Z2[[PS

1
C ] ]-module Z2 and the associated spectral sequence (5.5.1) satisfy the conditions 

of Lemma 5.5.8.
Let P−1 = Z2[[PS

1
C/A4] ] and P0 = Z2[[PS

1
C/C3] ]. Let P0

ε−→ P−1 be the natural aug-
mentation which sends the coset [C3] to [A4]. Complete this to a projective resolution P∗
of Z2[[PS

1
C/A4] ]. Let P ′

∗ be any projective resolution of Z2[[PS
1
C/A

′
4] ]. Let N0 be defined 

by the exact sequence

0 → N0 → C0
ε−→ Z2 → 0.

Letting Q−1 = N0, Qq = Cq+1 = Z2[[PS
1
C/C3] ] for q = 0, 1, the complex

Q2 → Q1 → Q0 → Q−1, (5.5.2)

with maps as in the algebraic duality resolution, is the beginning of a projective resolution 
of N0. The kernel of Q2 → Q1 is isomorphic to Z2[[PS

1
C/A

′
4] ]. Splicing (5.5.2) with 

Q∗ = P ′
∗−3 gives a projective resolution Q∗ of N0.
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Lemma 5.5.9. There is a map φ : Q∗ → P∗ such that

φ0 : Q0 → P0

covers the map j : N0 → C0 = P−1 which sends e1 → (e − α)e0.

Proof. Note that Q0 ∼= P0 ∼= Z2[[PS
1
C/C3] ]. So the map which sends the generator of 

e ⊗ 1 ∈ Q0 to (e − α) ⊗ 1 ∈ P0 is well defined and covers j. Hence, it extends to a chain 
map φ. �

The following is an observation in Henn, Karamanov and Mahowald [7, Section 6]. It 
follows from Lemma 5.5.8.

Lemma 5.5.10. Let T∗,∗ be the double complex satisfying T∗,0 = P∗ and T∗,1 = Q∗ with 
vertical differentials δP and δQ and horizontal differentials φs : Qs → Ps. Up to reindex-
ing, the filtration of the spectral sequence of this double complex agrees with that of the 
ADSS.

The following result is an adaptation of part of [7, Lemma 6.5].

Lemma 5.5.11. Let s > 0. Let z ∈ Hs(A4, (EC)∗V (0)) be such that vr1z = 0. Let c ∈
HomZ2[[PS1

C ]](Ps, (EC)∗V (0)) be a cocycle which represents z. Choose an element h in 
HomZ2[[PS1

C ]](Ps−1, (EC)∗V (0)) such that δP (h) = vr1c. Let

φ∗ : HomZ2[[PS1
C ]](P∗, (EC)∗V (0)) → HomZ2[[PS1

C ]](Q∗, (EC)∗V (0))

be induced by φ. There are elements d and d′ in HomZ2[[PS1
C ]](Qs−1, (EC)∗V (0)) and an 

element d′′ in HomZ2[[PS1
C ]](Qs, (EC)∗V (0)) such that

φ∗
s−1(h) = d′ + vr1d (5.5.3)

and δQ(d′) = vr1d
′′. For d′′ as above and j as in Lemma 5.5.8,

j∗(z) = [d′′] ∈ Exts
Z2[[PS1

C ]](N0, (EC)∗V (0)).

Proof. Note that HomZ2[[PS1
C ]](T∗,∗, (EC)∗V (0)) for T∗,∗ as in Lemma 5.5.10 is a double 

complex of F4[v1]-modules which have no (v1)-torsion. We can write

φ∗
s−1(h) = d′ + vr1d.

To prove (5.5.3), note that by v1-linearity,

δQ(d′) + vr1δQ(d) = δQ(φ∗
s−1(h)) = φ∗

s(δP (h)) = vr1φ
∗
s(c).

Hence, δQ(d′) ≡ 0 modulo (vr1), that is, δQ(d′) = vr1d
′′ for some d′′.
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Now, note that

vr1j
∗(c) = φ∗

s(vr1c) = φ∗
s(δP (h)) = δQ(φ∗

s−1(h)) = vr1d
′′ + vr1δQ(d).

Since there is no v1-torsion in HomZ2[[PS1
C ]](T∗,∗, (EC)∗V (0)), we must have j∗(c) = d′′ +

δQ(d). This reduces to

j∗(z) = [d′′] ∈ Exts
Z2[[PS1

C ]](N0, (EC)∗V (0)). �
Lemma 5.5.12. Let z be in F 0,q

2 . Then d2(z) = 0.

Proof. If q > 1, then d2(z) = 0 since the target of the differential is zero. Suppose 
that q = 1. Then z is v1-torsion. Let r be the smallest integer such that vr1z = 0. By 
Lemma 5.5.5 of Appendix A, we can choose r = 1 or r = 2. Choose h as in Lemma 5.5.11
and write

φ0(h) = (e− φα)(h) = d′ + vr1d.

However, φα ≡ id modulo (2, u3
1). So we must have d′ = 0. By Lemma 5.5.8 and 

Lemma 5.5.11, this implies that d2(z) = 0 in the ADSS for PS
1
C. �

Corollary 5.5.13. All differentials d2 : E0,q
2 → E2,q−1

2 are zero.

Proof. This follows from Remark 5.5.7 and Lemma 5.5.12. �
Lemma 5.5.14. All differentials d3 : E0,q

3 → E3,q−1
3 are zero.

Proof. Differentials d3 : E0,q
3 → E3,q−2

3 are zero for degree reasons if 0 ≤ q < 2. By Corol-
lary 5.5.13, the classes νΔs survive to the E3-term, and hence they must be permanent 
cycles. Thus, they represent cohomology classes in H∗(S1

C , (EC)∗V (0)). By Lemma 4.1.3, 
the differentials are νΔs-linear for all s ∈ Z. Using this fact and linearity with respect 
to η and v1, the problem reduces to verifying the claim for x2Δs. However, by the same 
argument, x is a permanent cycle and d3(x2Δs) = xd3(xΔs) = 0. �
Lemma 5.5.15. All differentials dr : E0,q

r → Er,q−r+1
r are zero.

Proof. By Lemma 5.5.12 and Lemma 5.5.14, E∗,∗
2

∼= E∗,∗
4 and the spectral sequence 

collapses at E4 since the targets for higher differentials are zero. �
6. The action of the Morava stabilizer group

The goal of this section is to approximate the action of elements of SC on (EC)∗. Some 
of our results are stronger than needed for the computations of this paper, but the better 
estimates are necessary for future computations. Note that the results of Section 3.3 rely 
on this section.



A. Beaudry / Advances in Mathematics 306 (2017) 722–788 765
6.1. The formal group laws

Let E be an elliptic curve with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Let FE(z1, z2) be the formal group law of E , where the coordinates (z, w) at the origin 
are chosen so that

w(z) = z3 + a1zw(z) + a2z
2w(z) + a3w(z)2 + a4zw(z)2 + a6w(z)3. (6.1.1)

That the group SC acts on (EC)∗ is a consequence of the fact that the formal group law 
FEC of EC is a universal deformation of the formal group law FC of the elliptic curve

C : y2 + y = x3

defined over any field extension of F2. Further, FEC is the formal group law of an elliptic 
curve, namely

CU : y2 + 3u1xy + (u3
1 − 1)y = x3

defined over (EC)0. That is, FEC = FCU
.

We start by gathering information about FCU
. We will also compute information about 

the formal group law of the curve

CW : y2 − y = x3

defined over W. The curve CW is a lift of C to W, and CU reduces to CW modulo (u1). 
We will derive information about FCU

from knowledge of FCW
.

The following results are proved using the methods described in Silverman [14, Section 
4]. We recall the key tools here. We restrict to elliptic curves E with homogeneous
Weierstrass equation of the form

E : y2z + a1xyz + a3yz
2 = x3.

Let z = −x
y and w = − z

y , so that (z, w(z)) is a coordinate chart of E at the origin, with

w(z) = z3 + a1zw(z) + a3w(z)2. (6.1.2)

This can be used to write w(z) as a power series in z. Letting

λ(z1, z2) = w(z2) − w(z1)
,

z2 − z1
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the line through the points (z1, w(z1)) and (z2, w(z2)) has equation

w(z) = λ(z1, z2)z + w(z1) − λ(z1, z2)z1. (6.1.3)

(Note that there is a sign mistake in Silverman [14, Section 4.1] in the equation of the con-
necting line.) Substituting (6.1.3) in (6.1.1), we obtain a monic cubic polynomial whose 
roots are z1, z2 and [−1]FE (F (z1, z2)). The coefficient of z2 is a1λ(z1, z2) + a3λ(z1, z2)2. 
This implies that

[−1]FE (F (z1, z2)) = −z1 − z2 − a1λ(z1, z2) − a3λ(z1, z2)2. (6.1.4)

Noting that

λ(z, z) = lim
s→z

w(s) − w(z)
s− z

= w′(z),

it follows that

[−2]FE (z) = −2z − a1w
′(z) − a3w

′(z)2.

Finally, the series [−1]FE (z), which is [−1]FE (F (z, 0)), is given by

[−1]FE (z) = −z − a1
w(z)
z

− a3
w2(z)
z2

so that FE can be computed as [−1]FE ([−1]FE (F (z1, z2))). For example,

FE(x, y) ≡ x + y − a1xy − 2a3xy(x2 + y2) − 3a3x
2y2 mod (x, y)5. (6.1.5)

The following two results give formulas for the formal group law of the curve CU and 
of its [−2]-series, both integrally and modulo 2. Corollary 6.1.2 was observed computa-
tionally by the author, but was proved by Henn.

Proposition 6.1.1. Modulo (x, y)5,

FCU
(x, y) ≡ x + y − 3u1xy − 2(u3

1 − 1)xy(x2 + y2) − 3(u3
1 − 1)x2y2.

The formal group law FCU
has [−2]-series

[−2]FCU
(z) = −2z − 9z zu1 − 2z2u2

1 + z3(u3
1 − 1)

1 − 6zu1 + 9z2u2
1 − 4z3(u3

1 − 1) ,

so that

[−2]FCU
(z) = −2z − 9u1z

2 − 36u2
1z

3 + 9z4 − 144u3
1z

4 + O(z5).
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Proof. The first claim follows directly from (6.1.5). For the curve CU , we have

w′(z) = 3(z2 + u1w(z))
1 − 3u1z − 2(u3

1 − 1)w(z) .

Combining

[−2]FCU
(z) = −2z − 3u1w

′(z) − (u3
1 − 1)w′(z)2

and

(u3
1 − 1)w(z)2 = w(z) − z3 − 3u1zw(z),

gives the result for [−2]FCU
(z). Its Taylor expansion is the last estimate. �

Corollary 6.1.2.

[−2]FCU
(x) ≡ u1x

2 +
∑
k≥0

u2k
1 x2k+4 mod (2).

Proof. It follows from Proposition 6.1.1 that modulo 2,

[−2]FCU
(z) ≡ u1z

2 + u3
1z

4 + z4

1 + u2
1z

2 .

Therefore, modulo 2,

[−2]FCU
(z) ≡

(
u1z

2 + u3
1z

4 + z4)∑
k≥0

u2k
1 z2k

≡ u1z
2 +

∑
k≥0

u2k
1 z2k+4. �

Some of the key ingredients for the proof of the next result were brought to the 
author’s attention by Inna Zakharevich. Let Ck = (2k)!

k!(k+1)! be the k’th Catalan number. 
Let

C(y) =
∑
k≥0

Cky
k = 1 −√

1 − 4y
2y (6.1.6)

be their generating series (see, for example, Wilf [15, (2.3.9)]). Let D(y) = yC(y), so 
that

D(y) = 1 −√
1 − 4y
2 .
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Proposition 6.1.3. Let CW be the elliptic curve defined over W by the Weierstrass equation 
CW : y2 − y = x3. Then

[−2]CW
(z) = −2z + 9z4

∑
n≥0

(−1)n4nz3n.

For (z, w(z)) a coordinate chart at the origin with w(z) = z3 − w(z)2,

w(z) = −D((−z)3) =
∑
n≥0

(−1)nCnz
3(n+1) =

√
1 + 4z3 − 1

2 .

Further,

[−1]CW
FCW

(z1, z2) = −z1 − z2 + (z3
1 + z3

2) + D(−(z3
1 + z3

2 + 4z3
1z

3
2))

(z2 − z1)2
.

Proof. It follows from Proposition 6.1.1 that, modulo u1,

[−2]CW
(z) = −2z + 9z4 1

1 + 4z3 .

This proves the first claim. The second claim is equivalent to showing that w(z) =
z3C((−z)3). It follows from (6.1.6) that C(z) = 1 + zC(z)2. Therefore,

C((−z)3) = 1 + (−z)3C((−z)3)2,

so that

z3C((−z)3) = z3 − (z3C((−z)3))2.

It also follows from (6.1.2) that, for the curve CW, w(z) = z3 − w(z)2. Since w(z) and 
z3C((−z)3) satisfy the same functional equation, they must be equal. Further, this im-
plies that

w(z) =
√

1 + 4z3 − 1
2 .

Finally, note that

λ(z1, z2) = 1
z2 − z1

(√
1 + 4z3

2 − 1
2 −

√
1 + 4z3

1 − 1
2

)

=
√

1 + 4z3
2 −

√
1 + 4z3

1
2(z2 − z1)

.
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Using (6.1.4), it follows that

[−1]FCW
(FCW

(z1, z2)) = −z1 − z2 + λ(z1, z2)2

= −z1 − z2 + (z3
1 + z3

2) + D(−(z3
1 + z3

2 + 4z3
1z

3
2))

(z2 − z1)2
. �

Proposition 6.1.4. Let C be defined over F4 by the Weierstrass equation C : y2 + y = x3. 
The local uniformizer at the origin w(z) = z3 + w(z)2, satisfies w(z) =

∑
k≥0 z

3·2k . 
Further, [−2]FC (z) = z4 and

[−1]FC (FC(z1, z2)) = z1 + z2 +
∑
k≥1

3·2k−1−1∑
n=0

(z2(3·2k−1−1−n)
1 z2n

2 ).

Finally, [−1]FC (z) =
∑

k≥0 z
3·2k−2, so that

FC(z1, z2) = z1 + z2 + z2
1z

2
2 + z6

1z
4
2 + z4

1z
6
2 + z8

1z
8
2 + z12

1 z4
2 + z4

1z
12
2 + . . .

where the next term has order 22.

Proof. One can compute directly that w(z) =
∑

k≥0 z
3·2k . This implies that Cn �= 0

modulo 2 if and only if n + 1 = 2k. Therefore, we have the following identity of power 
series

D(y) =
∑
n≥0

Cny
n+1 =

∑
k≥0

y2k

.

Hence, using Proposition 6.1.3 modulo (2), we obtain

[−1]FC (FC(z1, z2)) = z1 + z2 + (z3
1 + z3

2) + D(z3
1 + z3

2)
z2
2 + z2

1

= z1 + z2 + 1
z2
2 + z2

1

⎛⎝∑
k≥1

(z2
1)3·2

k−1
+ (z2

2)3·2
k−1

⎞⎠
= z1 + z2 +

∑
k≥1

3·2k−1−1∑
n=0

(z2(3·2k−1−1−n)
1 z2n

2 ).

This gives the result for [−1]FC (FC(z1, z2)). Letting z1 = z and z2 = 0 gives it for 
[−1]FC (z). A direct computation gives the estimate for FC(z1, z2). �
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6.2. The technique for computing the action of SC

The method presented here is an adaptation of the techniques used by Henn, Kara-
manov and Mahowald in [7]. Let γ be in SC . Then γ ∈ F4[[x] ] is a power series which 
satisfies

γ(FC(x, y)) = FC(γ(x), γ(y)).

Recall from Section 2.4 that γ gives rise to isomorphisms φγ : (EC)∗ → (EC)∗ and 
hγ : φ∗

γFEC → FEC , where hγ ∈ (EC)0[[x] ]. The action of γ on (EC)∗ is given precisely by 
φγ .

The isomorphism φγ is linear over W; hence it is sufficient to specify φγ(u) and φγ(u1). 
The morphism hγ is a power series

hγ(x) = t0(γ)x + t1(γ)x2 + t2(γ)x3 + . . .

where

ti(γ) : SC → (EC)0 = W[[u1]]

are continuous maps. By (2.4.1) φγ(u) = h′
γ(0)u = t0(γ)u, which gives the action of γ

on u.
The morphism hγ must satisfy

hγ([−2]φ∗
γFEC

(x)) = [−2]FEC
(hγ(x)). (6.2.1)

This imposes a set of relations on the parameters ti(γ) and φγ(u1). Further, hγ is a lift 
of γ, so that hγ ≡ γ modulo (2, u1). This specifies the parameters ti(γ) modulo (2, u1). 
With this information, the relations imposed by (6.2.1) are sufficient to approximate φγ . 
Before executing this program, we prove a preliminary result.

Proposition 6.2.1. If γ ∈ Z
×
2 ∩ SC, so that γ =

∑
i≥0 aiT

2i, for ai ∈ {0, 1}. Let  =∑
i≥0 ai(−2)i in Z×

2 ⊆ (EC)0. Then φγ(u1) = u1 and φγ(u) = u.

Proof. The element γ is given by

γ(x) = a0x +FC a1[−2]FC (x) +FC a2[4]FC (x) +FC . . .

Let g be the lift for γ given by

g(x) = a0x +FEC
a1[−2]FEC

(x) +FEC
a2[4]FEC

(x) +FEC
. . .

Then g is an automorphism of FEC , hence φγ : (EC)0 → (EC)0 is the identity and 
hγ(x) = g(x). Since [n]FEC

(x) ≡ nx modulo (x2) for n ∈ Z, g(x) ≡ x modulo (x2). 
Therefore, g′(0) =  and φγ(u) = u. �
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Theorem 6.2.2. Let γ ∈ SC and ti = ti(γ). Then

φγ(u1) = u1t0 + 2
3
t1
t0
.

In particular, φγ(u1) ≡ t0u1 and φγ(u) ≡ t0u modulo (2) and v1 = u1u
−1 is fixed by the 

action of SC modulo (2).

Proof. Recall from (6.2.1) that

hγ([−2]φ∗
γFEC

(x)) = [−2]FEC
(hγ(x)).

Using Proposition 6.1.1, one obtains the following relation on the coefficients of x2,

−9φγ(u1)t0 + 4t1 = −9u1t
2
0 − 2t1.

Because φγ is an isomorphism, t0 is invertible. Isolating φγ(u1) and dividing both sides 
by −9t0 proves the claim. �

Therefore, to approximate the action of an element γ in SC on (EC)∗, it suffices to 
approximate the parameters t0(γ) and t1(γ).

6.3. Approximations for the parameters ti(γ)

In this section, we use the technique described in Section 6.2 to approximate the 
parameters ti(γ).

Corollary 6.3.1. Modulo (2, u6
1),

ts ≡ t4s + u1t
2
2s+1 +

(
s + 2

2

)
t20ts+1u

2
1 +

s−1∑
i=0

u2
1t

4
i t

2
2s−1−2i

+
((

s

1

)
t40ts−1 +

(
s

2

)
t40ts−1 +

(
s + 3

4

)
t40ts+2 +

(
s + 2

1

)
t8s−1

2

)
u4

1.

Proof. Let hγ(x) =
∑∞

i=0 tix
i+1. Using Corollary 6.1.2, we obtain

hγ([−2]φ∗
γFEC

(x)) =
∞∑
i=0

ti

(
t0u1x

2 + x4 +
∞∑
i=1

(t0u1)2ix4+2i

)i+1

≡
∞∑
i=0

ti
(
t0u1x

2 + x4 + t20u
2
1x

6 + t40u
4
1x

8)i+1

≡
∞∑

ti

(
x4(i+1) +

(
i + 1

1

)
(t0u1x

4i+2 + t20u
2
1x

4i+6 + t40u
4
1x

4i+8)

i=0
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+
(
i + 1

2

)
(t20u2

1x
4i + t40u

4
1x

4i+8)

+
(
i + 1

3

)
(t30u3

1x
4i−2 + t40u

4
1x

4i+2 + t50u
5
1x

4i+6)

+
(
i + 1

4

)
t40u

4
1x

4i−4 +
(
i + 1

5

)
t50u

5
1x

4i−6
)
.

Further,

[−2]FEC
(hγ(x)) = u1

( ∞∑
i=0

tix
i+1

)2

+
( ∞∑

i=0
tix

i+1

)4

+
∞∑
k=1

u2k
1

( ∞∑
i=0

tix
i+1

)2k+4

≡
∞∑
i=0

(
u1t

2
ix

2(i+1) + t4ix
4(i+1) + u4

1t
8
ix

8(i+1)
)

+ u2
1

( ∞∑
i=0

t2ix
2(i+1)

)3

Next, note that 
(∑

i≥0 aix
i
)3

≡
∑

k≥0
∑

2i+j=k a
2
i ajx

k. Therefore,

u2
1

( ∞∑
i=0

t2ix
2(i+1)

)3

≡
∑
k≥0

∑
2i+j=k

u2
1t

4
i t

2
jx

2k+6.

Now, using (6.2.1), the coefficient of x4(s+1) gives the relation

ts ≡ t4s + u1t
2
2s+1 +

(
s + 2

2

)
t20ts+1u

2
1 +

∑
2i+j=2s−1

u2
1t

4
i t

2
j

+
((

s

1

)
+

(
s

2

))
t40ts−1u

4
1 +

(
s + 3

4

)
t40ts+2u

4
1 +

(
s + 2

1

)
t8s−1

2
u4

1

(Note that the coefficient of the last term is chosen to be zero when s is even, so that 
when t s−1

2
has a non-zero coefficient, (s − 1)/2 is an integer.) �

Proposition 6.3.2. For ti = ti(γ) where γ ∈ SC, then

ti ≡ t4i + u1t
2
2i+1 + 2t4i+3 + 2

∑
r+s=2i
0≤r<s

t2rt
2
s mod (2, u1)2.

Proof. Modulo (4, u1), we have [−2]FCU
(x) ≡ 2x + x4. This gives

hγ([−2]φ∗
γFEC

(x)) ≡
∞∑
i=0

ti

(
x4(i+1) + 2

(
i + 1

1

)
x4i+1

)

and
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[−2]FEC
(hγ(x)) ≡

∞∑
i=0

2tixi+1 +
(∑

i=0
tix

i+1

)4

≡
∞∑
i=0

2tixi+1 +
∑
i=0

t4ix
4(i+1) +

∞∑
i=1

x4+2i2
∑

r+s=i
0≤r<s

t2rt
2
s.

Using (6.2.1), the coefficient of x4(i+1) gives the relation

ti = 2t4i+3 + t4i + 2
∑

r+s=2i
0≤r<s

t2rt
2
s mod (4, u1).

The claim then follows from Corollary 6.3.1. �
Proposition 6.3.3. Modulo (4)

t0 ≡ t40 + 2t3 + 3t21u1 + 2t0t2u1 + 3t20t1u2
1.

Modulo (2),

t1 ≡ t41 + t23u1 + t40t
2
1u

2
1 + t20t2u

2
1 + t50u

4
1 + t80u

4
1 + t40t3u

4
1.

Proof. Modulo (4), the coefficient of x4 in hγ([−2]φ∗
γFEC

(x)) is t0 + φγ(u1)2t1 and the 
coefficient of [−2]FEC

(hγ(x)) is given by

t40 + 2t3 + 3t21u1 + 2t0t2u1

Recall from Theorem 6.2.2 that φγ(u1) = u1t0 + 2
3
t1
t0

. This and (6.2.1) imply that

t0 + t20t1u
2
1 ≡ t40 + 2t3 + 3t21u1 + 2t0t2u1.

Isolating t0 proves the first claim. A similar argument using the coefficients of x8 give 
the desired relation for t1. �

Recall that γ ∈ SC has an expansion of the form

γ = a0 + a1T + a2T
2 + a3T

3 + . . .

Here the ai are solutions to the equation x4 − x = 0. Recall from Section 3 that if ωs ∈
End(FC) is a solution to the equation x4−x = 0, then it corresponds the automorphism

ωs(x) = ζsx,

where ζ ∈ F4 = (EC)∗/(2, u1). There is a copy of F4 in End(FC) given by the ring 
generated by the automorphism ω(x). Further, (EC)∗/(2, u1) is isomorphic to F4, with 
generator the image of ζ. Define a map
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f : F4 ⊆ End(FC) → (EC)∗/(2, u1) ∼= F4

by f(ωs(x)) = ζs. If γ is as above, using the fact that T (x) = x2,

γ(x) = f(a0)x +FC f(a1)x2 +FC f(a2)x4 +FC f(a3)x8 + . . .

For simplicity, we will identify ai with f(ai) and write

γ(x) = a0x +FC a1x
2 +FC a2x

4 +FC a3x
8 + . . . (6.3.1)

Proposition 6.3.4. For γ ∈ SC, modulo (x18),

γ(x) = x + a1x
2 + a2x

4 + a2
1x

6 + a3x
8 + a2

2x
10 + a2

1a
2
2x

12 + a1x
14 + (a3

1 + a4)x16.

Proof. This is a direct computation using (6.3.1) and the formal group law of Proposi-
tion 6.1.4, noting that for γ ∈ SC , a0 = 1. �
Corollary 6.3.5. Let ti = ti(γ) where γ ∈ SC. Modulo (2, u1), t0 ≡ 1, t2i ≡ 0 for i �= 0
and

t1 ≡ a1 t5 ≡ a2
1 t9 ≡ a2

2 t13 ≡ a1

t3 ≡ a2 t7 ≡ a3 t11 ≡ a2
1a

2
2 t15 ≡ a3

1 + a4.

Proof. This follows from Proposition 6.3.4, noting that ti is congruent to the coefficient 
of xi+1 modulo (2, u1). �
Proposition 6.3.6. Let ti = ti(γ) for γ ∈ SC. Then modulo (2, u2

1),

t0 ≡ 1 + a2
1u1 t1 ≡ a1 + a2

2u1 t2 ≡ a1u1

t3 ≡ a2 + a2
3u1 t4 ≡ a2u1 t5 ≡ a2

1 + a1a2u1

t6 ≡ a2
1u1 t7 ≡ a3 + (a3

1 + a2
4)u1

Proof. This follows from Corollary 6.3.5 and Corollary 6.3.1. �
Corollary 6.3.7. Let ti = ti(γ) where γ ∈ SC. Then

t0 ≡ 1 + a2
1u1 + a1u

2
1 + (a2 + a2

2)u3
1 mod (2, u4

1).

Proof. This follows from Proposition 6.3.6 and Proposition 6.3.3. �
We will need better estimates for elements which are in F2/2SC . Therefore, for the 

remainder of this section, we will always assume that γ ∈ F2/2SC .
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Proposition 6.3.8. Let ti = ti(γ) where γ ∈ F2/2SC. Modulo (2, u4
1),

t3 ≡ a2 + a2
3u1 + a4u

3
1.

Modulo (2, u3
1), t1 ≡ a2

2u1 and t5 ≡ (a2 + a3
2)u2

1. Modulo (2, u6
1),

t2 ≡ a2
2u

2
1 + a3u

4
1 + (a2 + a3

2)u5
1.

Proof. It follows from Corollary 6.3.1 that, modulo (2, u4
1),

t3 ≡ t43 + t27u1 + t21t
4
2u

2
1 + t41t

2
3u

2
1 + t40t

2
5u

2
1

t5 ≡ t45 + t211u1 + t63u
2
1 + t21t

4
4u

2
1 + t42t

2
5u

2
1 + t20t6u

2
1 + t41t

2
7u

2
1 + t40t

2
9u

2
1.

The results for t3 and t5 then follow from Corollary 6.3.5 and Proposition 6.3.6. It also 
follows from Corollary 6.3.1 that, modulo (2, u6

1),

t2 ≡ t42 + t25u1 + t61u
2
1 + t40t

2
3u

2
1 + t40t1u

4
1 + t40t4u

4
1.

The identity for t2 then follows from the Corollary 6.3.5 and Proposition 6.3.6, using the 
identity for t5 modulo (2, u3

1). �
Proposition 6.3.9. Let γ ∈ F2/2SC. Modulo (2, u8

1),

t1(γ) ≡ a2
2u1 + a3u

3
1 + a2

3u
5
1 + a3u

6
1 + (a2

2 + a3
2 + a4 + a2

4)u7
1.

Modulo (2, u10
1 ),

t0(γ) ≡ 1 + (a2 + a2
2)u3

1 + a3u
5
1 + a3u

8
1 + (a2 + a2

2 + a4 + a2
4)u9

1.

Proof. Apply Proposition 6.3.3, Corollary 6.3.7 and Proposition 6.3.8 for the estimate 
for t1. The result for t0 then follows from Proposition 6.3.3. �
Proposition 6.3.10. Let γ ∈ F2/2SC. Modulo (4, 2u2

1, u
10
1 ),

t0(γ) ≡ 1 + 2a2 + 2a2
3u1 + (a2 + a2

2)u3
1 + a3u

5
1 + a3u

8
1 + (a2 + a2

2 + a4 + a2
4)u9

1.

Proof. Apply Proposition 6.3.3, Proposition 6.3.6 and Proposition 6.3.9. �
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Appendix A. The cohomology of G24 (by Hans-Werner Henn)

The following consists of unpublished notes by Hans-Werner Henn, which were edited 
by the author. She thanks him for letting her include them here.

Let C be the supersingular elliptic curve over F4 with equation y2 + y = x3. In this 
appendix, we calculate the cohomology of the automorphism group of this elliptic curve 
with coefficients in the Lubin–Tate module (EC)∗V (0) (see Section 2 for definitions).

None of the results are original. In some sense, this appendix redoes calculations 
by other people, for example by Bauer [1, Section 7] and by Rezk [12, Section 18]. 
The basic ideas go back to Hopkins. Bauer and Rezk calculate the cohomology of the 
Weierstrass Hopf algebroid and the calculation here can, in principle, be deduced from 
their calculation by inverting the discriminant Δ and passing to a suitable completion.

Our purpose is to give an independent and self-contained calculation of the group co-
homology including the complete multiplicative structure. Furthermore, all elements in 
cohomology are defined via “Greek letter constructions” avoiding any explicit cocycles or 
Massey products. Everything is deduced from the knowledge of H∗(G24, (EC)∗/(2, u1)) ∼=
H∗(G24, F4[u±1]), from the structure of the G24-invariants of the symmetric alge-
bra of a certain two dimensional representation ρ of G24, and from the structure of 
v−1
1 H∗(G24, S∗(ρ)/(ΔS∗(ρ))), where the discriminant Δ is an invariant class in degree 

24. This knowledge is established in Lemma A.1, Corollary A.7 and Lemma A.10 below. 
The main computation is that of H∗(G24, S∗(ρ)) and is given in Theorem A.14. The 
computation of H∗(G24, (EC)∗V (0)) then follows and is recorded in Theorem A.22.

Lemma A.1. (a) There are classes z ∈ H4(Q8, F4), x̃ ∈ H1(Q8, F4) and ỹ ∈ H1(Q8, F4)
and an isomorphism of graded algebras with C3-linear algebra action

H∗(Q8,F4) ∼= F4[x̃, ỹ, z]/(x̃ỹ, x̃3 + ỹ3),

where C3 acts on Q8 via the conjugation action of G24 on its normal subgroup Q8, and 
C3 acts on the right hand side by ω∗(x̃) = ζx̃, ω∗(ỹ) = ζ2ỹ and ω∗(z) = z.
(b) There are classes k ∈ H4(G24, F4[u±1]0), a ∈ H1(G24, F4[u±1]2) and b ∈
H1(G24, F4[u±1]4) and an isomorphism of graded algebras

H∗(G24,F4[u±1]) ∼= F4[v±1
2 , k, a, b]/(ab, b3 − v2a

3).

(c) The subalgebra H∗(G24, F4[u−1]) ⊆ H∗(G24, F4[u±1]) is generated as an F4-algebra 
by the elements v2, k, a, b, v−1

2 b2 and v−1
2 a3.

Proof. (a) We start from the well known result that there is an isomorphism of graded 
algebras

H∗(Q8,F2) ∼= F2[x, y, z]/(x2 + xy + y2, x2y + xy2)
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where x and y are in dimension 1 and z is in dimension 4. The action of G24/Q8 on this 
algebra is trivial on z and the unique nontrivial action on H1 ∼= (Z/2)2. With suitable 
choices of x and y, we get ω∗x = y, ω∗y = x +y. This action has no eigenvectors over F2, 
but it has two eigenvectors over F4 with Galois conjugate eigenvalues equal to ζ and ζ2. 
If we define x̃ = x + ζy and ỹ = x + ζ2y, then ω∗x̃ = ζx̃ and ω∗ỹ = ζ2ỹ. Furthermore,

x̃ỹ = x2 + xy + y2 = 0

and

x̃3 = x3 + ζx2y + ζ2xy2 + y3 = x3 + ζ2x2y + ζxy2 + y3 = ỹ3.

The claim now follows.
(b) Let a = u−1x̃, b = u−2ỹ and k = z. Then we get an isomorphism of bigraded algebras

F4[v±1
2 , k, a, b]/(v2a

3 − b3, ab) ∼= H∗(Q8,F4[u±1])C3 .

(c) This follows from the fact that H2(Q8, F4[u−1]2)C3 ∼= F4 is generated by v−1
2 b2 and 

H3(Q8, F4[u−1]0)C3 ∼= F4 is generated by v−1
2 a3. �

Consider u−1 and v1 = u1u
−1 as elements in (EC)2. By Section 2.2, the action of G24

is given by

ω∗(v1) = v1 ω∗(u−1) = ζ2u−1

i∗(v1) = v1 + 2u−1

ζ2 − ζ
i∗(u−1) = v1 − u−1

ζ2 − ζ

j∗(v1) = v1 + 2ζ2u−1

ζ2 − ζ
j∗(u−1) = ζv1 − u−1

ζ2 − ζ

k∗(v1) = v1 + 2ζu−1

ζ2 − ζ
k∗(u−1) = ζ2v1 − u−1

ζ2 − ζ
.

Remark A.2. The two dimensional W-module generated by u−1 and v1 is a representation 
of G24 which we denote by �. We denote its mod-2 reduction by ρ and the respective 
graded symmetric algebras by S∗(�) and S∗(ρ). Because i2∗(u) = −u and i2∗(u1) = u1, we 
see that for each integer n ≥ 0 the action of G24 on S2n(�) factors through the quotient 
A4 = G24/(±1). Likewise, the action of G24 on all of S∗(ρ) factors through an action 
of A4.

It follows that the element

Δ̃ :=
∏
g∈V4

g∗(u−1)

in S∗(ρ) is a Q8-invariant. One computes that Δ̃ ≡ u−1(u−3 + v3
1) modulo (2). It is an 

eigenvector for the residual action of G24/Q8; in fact,
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ω∗(Δ̃) = ζ2Δ̃. (A.3)

Hence, Δ̃3 is a G24-invariant and equal to the mod-2 reduction of the discriminant Δ
(see Section 4.2).

The proof of the following theorem is similar to that of Goerss, Henn and Mahowald 
[4, Proposition 2].

Theorem A.4. Completion at the maximal ideal I ⊆ S∗(�)[Δ̃−1] induces a continuous 
isomorphism of F4[G24]-algebras.

S∗(ρ)[Δ̃−1]Î → (EC)∗.

Therefore to compute the cohomology H∗(G24, (E2)∗V (0)), we start by analyzing 
S∗(ρ) and its invariants. Let n ≥ 0 be an integer and

S̃n(ρ) =
{
Sn(ρ) 0 ≤ n ≤ 3
Sn(ρ)/(Δ̃Sn−4(ρ)) 4 ≤ n.

Lemma A.5. Multiplication with Δ̃ induces a split short exact sequence of F4[Q8]-modules

0 → Σ8Sn(ρ) Δ̃−→ Sn+4(ρ) → S̃n+4(ρ) → 0 .

Further, for n ≥ 3, multiplication by v1 induces isomorphisms of F4[Q8]-modules

v1 : Σ2S̃n(ρ)
∼=−→ S̃n+1(ρ).

Proof. The n + 1 elements Δ̃u−kvn+1−k
1 , k = 0, . . . n, together with the four elements 

u−lvn+4−l
1 , l = 0, . . . , 3 form a basis of the F4-vector space Sn+4(ρ). Therefore, the 

sequence is exact as a sequence of F4[Q8]-modules. Furthermore, the subspace generated 
by u−lvn+4−l

1 with 0 ≤ l ≤ 3 is Q8-invariant. This gives the splitting.
If n ≥ 3, the image of the elements u−lvn−l

1 for 0 ≤ l ≤ 3 form a basis for S̃n(ρ). 
Multiplication by v1 sends this basis of S̃n(ρ) to the corresponding basis of S̃n+1(ρ). �

The next step is to identify the invariants.

Proposition A.6. The Q8-invariants of S∗(ρ) are given as F4[v1, Δ̃].

Proof. The split short exact sequence of Lemma A.5 gives a short exact sequence of 
Q8-invariants. Consider the following commutative diagram
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0 Σ8
F4[v1, Δ̃] Δ̃

F4[v1, Δ̃] F4[v1] 0

0 Σ8S∗(ρ)Q8
Δ̃

S∗(ρ)Q8 (S̃∗)Q8 0.

From part (c) of Lemma A.5 and an easy calculation, we get (S̃n)Q8 ∼= F4{vn1 } for each 
n ≥ 0. The claim now follows from an induction over the internal degree and the five 
lemma. �
Corollary A.7. The G24-invariants of S∗(ρ) are given as F4[v1, Δ].

We turn towards analyzing the cohomology algebra H∗(G24, (EC)∗V (0)). We begin 
by introducing certain classes in H1(G24, (EC)∗V (0)). For this we consider the exact 
sequence G24-modules

0 → ρ
2−→ �/(4) → ρ → 0 (A.8)

with associated Bockstein δ.

Lemma A.9. (a) The class v1 in ρ is G24-invariant. The class η := δ(v1) in H1(G24, ρ)
is nontrivial.
(b) η is v1-torsion free in H∗(G24, S∗(ρ)).
(c) η is not divisible by v1.

Proof. (a) A direct computation shows that v1 is invariant modulo (2), but not invariant 
modulo (4). Hence, η is non-trivial.
(b) More generally, v2k

1 is invariant modulo (4) while v2k+1
1 is not. This shows that 

δ(v2k+1
1 ) = v2k

1 η is non-trivial.
(c) If η is divisible, then there is a class η′ ∈ H1(G24, S0(ρ)) such that v1η

′ = η. However, 
S0(ρ) = F4 and H1(G24; S0(ρ)) = 0 by Lemma A.1. �

Consider the graded F4[v1][G24]-algebras

S̃∗(ρ) := S∗(ρ)/(Δ̃S∗(ρ))

and
S∗(ρ) := S∗(ρ)/(ΔS∗(ρ)).

By part (a) of Lemma A.5, multiplication with v1 determines an isomorphism S̃n(ρ) →
S̃n+1(ρ) if n ≥ 3. Therefore, S̃∗(ρ)[v−1

1 ] is a graded F4[v±1
1 ][G24]-algebra with

(S̃∗(ρ)[v±1
1 ])2k ∼= vk−3

1 S3(ρ)

for every integer k.
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Lemma A.10. (a) There is an isomorphism of G24-modules

S3(ρ) ∼= F4[G24] ⊗F4[C6] F4.

(b) The Q8-cohomology of S̃∗(ρ)[v±1
1 ] is given by

H∗(Q8, S̃∗(ρ)[v±1
1 ]) ∼= F4[v±1

1 , η].

It is C3 invariant so that H∗(G24, S̃∗(ρ)[v±1
1 ]) ∼= F4[v±1

1 , η].
(c) The G24-cohomology of S∗(ρ)[v±1

1 ] is given by

H∗(G24, S∗(ρ)[v±1
1 ]) ∼= F4[v±1

1 , η].

Proof. (a) The C6-linear map which sends 1 to u−3 extends to a G24-linear isomorphism 
F4[G24] ⊗F4[C6] F4 → S3(ρ).
(b) The isomorphism of (a) restricts to an isomorphism of Q8-modules

F4[Q8] ⊗F4[C2] F4 ∼= S3(ρ).

The isomorphisms (S̃∗(ρ)[v±1
1 ])2k ∼= vk−3

1 S3(ρ) and part (a) show that there is a class 
h′ ∈ H1(Q8, S3(ρ)) ∼= H1(C2, F4) ∼= F4 and, for h = v−3

1 h′, an isomorphism of graded 
algebras H∗(Q8, S̃∗(ρ)[v±1

1 ]) ∼= F4[v±1
1 , h]. By Lemma A.9 we know that η is v1-torsion 

free in

H∗(G24, S̃∗(ρ)) ∼= H∗(Q8, S̃∗(ρ))C3 ,

hence it is also v1-torsion free in H∗(Q8, S̃∗(ρ)). Therefore, v2
1η must agree with h′ up 

to a scalar. This gives the isomorphism H∗(Q8, S̃∗(ρ)[v±1
1 ]) ∼= F4[v±1

1 , η]. The invariance 
with respect to the residual action of G24/Q8 follows from the fact that both v1 and η
are invariant.
(c) By iterated use of Lemma A.5, we obtain an isomorphism

S∗(ρ) ∼= S̃∗(ρ) ⊕ Δ̃S̃∗(ρ) ⊕ Δ̃2S̃∗(ρ) ⊕ Δ̃3S̃∗(ρ)

of G24-modules and therefore an isomorphism

S∗(ρ) ∼= S̃∗(ρ) ⊕ Δ̃S̃∗(ρ) ⊕ Δ̃2S̃∗(ρ).

Part (b) implies that

H∗(Q8, S∗(ρ)[v±1
1 ]) ∼= F4[v±1

1 , η] ⊕ Δ̃F4[v±1
1 , η] ⊕ Δ̃2

F4[v±1
1 , η].

The result follows by observing that, for the residual action of C3 ∼= G24/Q8, the first 
summand is invariant while the other two summands are eigenspaces for the eigenvalues 
ζ2 and ζ respectively (see (A.3)). �



A. Beaudry / Advances in Mathematics 306 (2017) 722–788 781
Next we observe that multiplication by vk1 determines exact sequences of graded 
G24-modules

0 → Σ2kSn(ρ) vk
1−→ Sn+k(ρ)

p−→ (F4[u−1, v1]/(vk1 ))2(n+k) → 0 (A.11)

with associated Bockstein δk. In the remainder of this chapter, the Bockstein associated 
with the exact sequence (A.8) will not play any role, and therefore we take the liberty 
to simply write δ instead of δ1.

Remark A.12. The classes v2, v2
2 and v3

2 are invariant in H0(G24, F4[u±1]) but do not 
lift to invariants in H0(G24, S∗(ρ)). Further, v2

2 is invariant in F4[u−1, v1]/(v2
1) but is not 

invariant in F4[u−1, v1]/(v3
1). Therefore, δ(v2), δ(v2

2), δ(v3
2) and δ2(v2

2) are non-trivial. 
Define

ν := δ(v2) ∈ H1(G24, S2(ρ)),

y := δ(v3
2) ∈ H1(G24, S8(ρ)),

x := δ2(v2
2) ∈ H1(G24, S4(ρ)).

Given a ring R and a set X, we will use the notation RX to denote the free R-module 
generated by the elements of X.

Lemma A.13.

(a) There are relations v1ν = 0, v1y = 0 and v2
1x = 0.

(b) There is a relation v1x = δ(v2
2).

(c) The classes ν, x and y are not divisible by v1.

Proof. (a) This follows from the definition of these classes and exactness of the long 
exact cohomology sequences.
(b) This is straightforward by comparing the two short exact sequences (A.11) for k = 1
and k = 2.
(c) One verifies by a direct computation that

H0(G24,F4[u−1, v1]/(v2
1)) ∼= F4[v2

2 , v1]/(v2
1){1} ⊕ F4[v2

2 , v1]/(v1){v1v2}

and that

H0(G24,F4[u−1, v1]/(v3
1)) ∼= F4[v4

2 , v1]/(v3
1){1} ⊕ (F4[v4

2 , v1]/(v2
1)){v1v

2
2}

⊕ (F4[v4
2 , v1]/(v1)){v2

1v2, v
2
1v

3
2}.

If ν is v1-divisible, then there is a non-trivial class in H1(G24, S1(ρ)) which is annihilated 
by v2

1 and, hence, is in the image of δ2. However, this contradicts the triviality of the 
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group H0(G24, F4[u−1, v1]/(v2
1)) in internal degree 6. Likewise, if y is v1-divisible, then 

there is a non-trivial class in H1(G24, S7(ρ)) which is annihilated by v2
1. Again, this is 

a contradiction since H0(G24, F4[u−1, v1]/(v2
1)) is trivial in internal degree 18. Finally, if 

x is v1-divisible then there is a non-trivial class in H1(G24, S3(ρ)) which is annihilated 
by v3

1 and, hence, in the image of δ3. However, the group H0(G24, F4[u−1, v1]/(v3
1)) is 

trivial in internal degree 12. �
Here is the main theorem giving the complete structure of the cohomology algebra 

H∗(G24, S∗(ρ)).

Theorem A.14. Let R = F4[v1, Δ, k], where k ∈ H4(G24, F4) is the cohomological period-
icity generator.
(a) As an R-module, H∗(G24, S∗(ρ)) is isomorphic to

R{1, η, η2, η3} ⊕R/(v2
1){x, ηx, x2, ηx2} ⊕R/(v1){ν, y, ν2, νy, ν3,Δ−1ν2y},

where Δ−1ν2y is a class in H3(G24, S0(ρ)) such that Δ(Δ−1ν2y) = ν2y.
(b) The products η2, ν2, νy, ηx and x2 are R-module generators and the remaining five 
products satisfy ην = 0, xy = 0 and

ηy = v1x
2, νx = v1ηx, y2 = ν2Δ.

(c) The element Δ−1ν2y and the products η3, ν3 and ηx2 are R-module generators. 
There are relations:

x3 = ν2y, η2x = ν3, νx2 = v1ηx
2,

η2y = v1ηx
2, νy2 = ν3Δ, y3 = ν2yΔ

and the remaining possible threefold products are zero.
(d) All products of η, x and y with Δ−1ν2y and all fourfold products among η, ν, x and 
y are trivial except for η4 = v4

1k.

In order to prove Theorem A.14, we calculate the cohomology of S∗(ρ) as a module 
over F4[v1, k]. In fact we will find the following result.

Proposition A.15. Let R := F4[v1, k]. As an R-module, H∗(G24, S∗(ρ)) is isomorphic to

R{1, η, η2, η3} ⊕R/(v2
1){x, ηx, x2, ηx2} ⊕R/(v1){ν, y, ν2, νy, ν3,Δ−1ν2y}.

Note that, in Proposition A.15, we are using the product structure in order to describe 
the generators of H∗(G24, S∗(ρ)), but are not yet attempting to describe the cohomology 
as an algebra.

Proposition A.15 is deduced from the following three lemmas. We write s 
.= t if s = t

for some  ∈ F4.
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Lemma A.16. (a) There is an isomorphism of F4[v1]-modules

H1(G24, S∗(ρ)) ∼= F4[v1]{η} ⊕ F4[v1]/(v1){ν, y} ⊕ F4[v1]/(v2
1){x}.

(b) The reduction homomorphism

p∗ : H1(G24, S∗(ρ)) → H1(G24, S∗(ρ)/(v1))

satisfies

p∗(η)
.= a, p∗(ν) .= b, p∗(x) .= v2a, p∗(y)

.= v2
2b,

for a and b as in Lemma A.1.
(c) The connecting homomorphism associated to the exact sequence (A.11) is trivial on 
a, v2a, b and v2

2b. It is nontrivial on the generators v2
2a, v3

2a, v2b and v3
2b. In fact,

δ(v2
2a)

.= v1ηx, δ(v3
2a)

.= v1x
2, δ(v2b)

.= ν2, δ(v3
2b)

.= νy.

Further, νx 
.= ηv1x and ηy

.= v1x
2.

Proof. (a) Any finitely generated graded F4[v1]-module is a direct sum of a free module 
and of cyclic torsion modules of the form F4[v1]/(vn1 ). On the other hand, we know from 
Lemma A.10 that the free part of H1(G24, S∗(ρ)) is of rank one. By the long exact 
sequence in cohomology associated to the short exact sequence

0 → S∗(ρ)
v1−→ S∗(ρ)

p−→ S∗(ρ)/(v1) ∼= F4[u−1]/(u−12) → 0,

we know that the submodule of H1(G24, S∗(ρ)) which is annihilated by v1 is generated 
by the classes ν, v1x and y. By Lemma A.9 and Lemma A.13 the classes η, ν, x and y
are not divisible by v1, proving (a).
(b) We know from Lemma A.1 that H1(G24, F4[u−1]/(u−12)) is an F4-vector space on 
generators of the form vi2a, vi2b for 0 ≤ i ≤ 3 and the four generators of H1(G24, S∗(ρ))
have to map to four of these classes. The four other generators map via δ to non-trivial 
elements of H2(G24, S∗(ρ)). The claim in (b) then follows for degree reasons.
(c) From (a) and (b), it is clear by exactness that δ is trivial on a, b, v2a and v2

2b and 
nontrivial on the four other generators. We use that δ is p∗-linear (i.e. δ(p∗(t)s) = tδ(s)) 
and Lemma A.13 to conclude that

δ(v2
2a)

.= δ(v2
2p∗(η)) = ηδ(v2

2) = ηv1x

δ(v3
2a)

.= δ(v2
2p∗(x)) = xδ(v2

2) = v1x
2

δ(v2b)
.= δ(v2p∗(ν)) = νδ(v2) = ν2

δ(v3
2b)

.= δ(v3
2p∗(ν)) = νδ(v3

2) = νy.
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Note further that

δ(v2
2a)

.= δ(v2p∗(x)) = νx, δ(v3
2a)

.= δ(v3
2p∗(η)) = ηy

and hence νx 
.= ηv1x and ηy

.= v1x
2. �

Lemma A.17. (a) The elements η2, ν2, ηx, x2 and νy are non-trivial in H2(G24, S∗(ρ))
and

p∗(η2) .= a2, p∗(ν2) .= b2, p∗(ηx) .= v2a
2, p∗(x2) .= v2

2a
2, p∗(νy)

.= v2
2b

2.

(b) There is an isomorphism of F4[v1]-modules

H2(G24, S∗(ρ)) ∼= F4[v1]/{η2} ⊕ F4[v1]/(v1){ν2, νy} ⊕ F4[v1]/(v2
1){ηx, x2} .

(c) The connecting homomorphism associated to the exact sequence (A.11) is trivial on 
the generators a2, v2a

2, v2
2a

2, b2 and v2
2b

2. It is nontrivial on the generators v3
2a

2, v2b
2

and v−1
2 b2, and

δ(v3
2a

2) .= v1ηx
2, δ(v2b

2) .= ν3, δ(v−1
2 b2) .= Δ−1ν2y.

Further, v1ηx
2 .= νx2 .= η2y.

Proof. (a) This follows from the fact that p∗ is a map of algebras and the images of the 
given elements are non-trivial.
(b) We claim that H2(G24, S∗(ρ)) is generated as a F4[v1]-module by the elements η, ν2, 
ηx, x2 and νy. In fact, by part (c) of Lemma A.16 the submodule of H2(G24, S∗(ρ)) which 
is annihilated by v1 is generated by the elements v1ηx, v1x

2, ν2 and νy. In particular, 
the v1-torsion submodule is of rank four. Furthermore, we know from Lemma A.10
that the v1-torsionfree part is of rank one and hence H2(G24, S∗(ρ)) is generated as a 
F4[v1]-module by five elements. By (a) these must be the five elements η2, ν2, ηx, x2 and 
νy. By part (c) of Lemma A.16, the v1-torsion submodule is as specified. This leaves η2

which must generate a free F4[v1] submodule by Lemma A.10.
(c) By (a) and exactness, δ is trivial on a2, b2, v2a

2, v2
2a

2 and v2
2b

2. Finally we get from 
Lemma A.13 and p∗-linearity

δ(v3
2a

2) .= xηδ(v2
2)

.= v1ηx
2

δ(v2b
2) .= ν2δ(v2)

.= ν3

δ(v−1
2 b2) = δ(v−4

2 v3
2b

2) .= Δ−1δ(v3
2b

2) = Δ−1ν2y.

(The last calculation is a calculation in the cohomology of Δ−1S∗(ρ) which, in that of 
S∗(ρ), gives the desired relation. It uses the relation p∗(Δ−1) = v−4

2 .)
Note further that, δ(v3

2a
2) .= x2δ(v2) 

.= νx2 and δ(v3
2a

2) .= η2δ(v3
2) .= η2y. Hence, 

v1ηx
2 .= νx2 .= η2y. This finishes the proof of (c). �
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Lemma A.18. (a) The elements η3, ν3, ηx2 and Δ−1ν2y are non-trivial in H3(G24, S∗(ρ))
and

p∗(η3) .= a3 p∗(ν3) .= b3 = v2a
3

p∗(ηx2) .= v2
2a

3 p∗(Δ−1yν2) .= v−4
2 v2

2b
3 = v−1

2 a3.

(b) There is an isomorphism of F4[v1]-modules

H3(G24, S∗(ρ)) ∼= F4[v1]{η3} ⊕ F4[v1]/(v1){Δ−1ν2y, ν3} ⊕ F4[v1]/(v2
1){ηx2} .

Proof. (a) The first part follows from the fact that p∗ is a map of algebras.
(b) From (a) we see that p∗ : H3(G24, S∗(ρ)) → H3(G24, S∗(ρ)/(v1)) is onto and hence 
H3(G24, S∗(ρ)) is generated by η3, ν3, ηx2 and Δ−1ν2y. By part (c) of Lemma A.17, ν3

and Δ−1ν2y are annihilated by v1. Further, v1ηx
2 is nontrivial and also annihilated by 

v1. By Lemma A.10, the torsionfree part is of rank one, so this proves the claim. �
We finally turn towards the proof of Theorem A.14.

Proof of Theorem A.14. (a) Consider the short exact sequence of F4[G24]-modules

0 → Σ24S∗(ρ)
Δ−→ S∗+12(ρ) → S∗+12(ρ) → 0.

As in the proof of Lemma A.5, one can show that it is split. Therefore, the maps

H∗(G24, S∗+12(ρ)) → H∗(G24, S∗+12(ρ))

are surjective and the long exact sequence on cohomology groups gives rise to short 
exact sequences in each degree. The claim then follows from Proposition A.15 and the 
five lemma.
(b) Note that νx 

.= v1ηx and ηy
.= v1x

2 follow from part (c) of Lemma A.16. For the 
other relations, first note that p∗(Δ) = v4

2 so that

p∗(ην) .= ab = 0, p∗(y2) .= v4
2b

2,

p∗(xy)
.= v3

2ab = 0, p∗(Δν2) .= v4
2b

2.

Hence, up to elements in the kernel of

p∗ : H2(G24, S∗(ρ)) → H2(G24, S∗(ρ)/(v1)),

the relations hold in H2(G24, S∗(ρ)). However, in these degrees, the non-zero elements 
in the kernel of p∗ are v1-torsion free. Since ην, xy and y2 − Δν2 are v1-torsion, the 
relations hold as claimed.
(c) Note that v1ηx

2 .= νx2 .= η2y follow from part (c) of Lemma A.17. Further,
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Fig. 4. The cohomology H∗(G24, S∗(ρ)), drawn in the Adams grading (t −s, s). It is periodic with respect to 
s with period 4 and periodicity generator k and with respect to t with period 24 and periodicity generator 
Δ. A • denotes a copy of F4. Lines of slope 1 denote multiplication by η and lines of slope 1/3 denote 
multiplication by ν. Lines of slope 1/7 denote multiplication by x and those of slope 1/15 multiplication by 
y. Horizontal lines denote multiplication by v1. Classes attached to horizontal arrows are free over F4[v1].

p∗(ν3) = b3 = v2a
3 .= p∗(xη2).

Therefore, for an appropriate  ∈ F4, ν3 − η2x must be a v1 multiple of η3. It must be 
zero since it is v1-torsion and η3 is v1-torsion free. Hence, ν3 .= xη2. Finally, since

p∗(x3) .= v3
2a

3 = v2
2b

3 .= p∗(ν2y),

for an appropriate choice of  in F4, we must have that x3 − ν2y is a v1-multiple of η, 
and again, must therefore be zero since it is v1-torsion and η3 is v1-torsion free. That 
the other threefold products vanish follows from part (b).
(d) With the exception of η4 which is v1-free, all fourfold products and all products of 
η, ν, x and y with Δ−1ν2y are v1-torsion. However,

H4(G24;S∗(ρ)) ∼= F4[v1,Δ]{k}

is v1-torsion free. By Lemma A.10 the class η4 is v1-torsion free and, for degree reasons, 
it must be equal to v4

1k, up to a nontrivial scalar in F4.
Finally, note that the generators v1, Δ and k are Galois invariant classes. Likewise, η

as the mod-2 Bockstein of v1, and ν, x and y as Bocksteins of Galois invariant classes 
are also Galois invariant. It follows that the multiplicative relations, which we have only 
proved modulo units in F4, do hold on the nose. �
Remark A.19. If we extend G24 ∼= SL2(F3) by the Galois group to G48 = GL2(F3), then 
the G48-cohomology of S∗(ρ) is obtained from that of G24 by taking Galois invariants. 
This is the content of the following result (see Fig. 4).

Theorem A.20. There is a ring isomorphism

H∗(G48, S∗(ρ)) ∼= F2[v1,Δ, k, η, ν, x, y,Δ−1ν2y]/(∼)

where (∼) is the ideal generated by

v1ν, v2
1x, v1y,
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in cohomological degree 1,

ην, νx− v1ηx, ηy − v1x
2, xy, y2 − ν2Δ,

in cohomological degree 2,

η2x− ν3, x3 − ν2y, Δ(Δ−1ν2y) − ν2y

in cohomological degree 3 and

η4 − v4
1k

in cohomological degree 4. Further,

H∗(G24, S∗(ρ)) ∼= F4 ⊗F2 H
∗(G48, S∗(ρ)).

We deduce the main result from Theorem A.20 and the following lemma, whose proof 
is analogous to that of Goerss, Henn and Mahowald [4, Theorem 6].

Lemma A.21. Let m = 48 or m = 24. There is an isomorphism

H∗(Gm, S∗(ρ)[Δ−1]∧(j)) ∼= (H∗(Gm, S∗(ρ))[Δ−1])∧(j).

Theorem A.22. There is an isomorphism

H∗(G48, (EC)∗V (0)) ∼= F2[[j]][v1,Δ±1, k, η, ν, x, y]/(∼)

where (∼) is the ideal generated by

v12
1 − jΔ

in cohomological degree 0

v1ν, v2
1x, v1y,

in cohomological degree 1,

ην, νx− v1ηx, ηy − v1x
2, xy, y2 − ν2Δ,

in cohomological degree 2,

η2x− ν3, x3 − ν2y,

in cohomological degree 3 and
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η4 − v4
1k

in cohomological degree 4. Further,

H∗(G24, (EC)∗V (0)) ∼= F4 ⊗F2 H
∗(G48, (EC)∗V (0))).
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