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Recent work of Biedermann and Röndigs has translated Goodwillie’s calculus of 
functors into the language of model categories. Their work focuses on symmetric 
multilinear functors and the derivative appears only briefly. In this paper we focus on 
understanding the derivative as a right Quillen functor to a new model category. This 
is directly analogous to the behaviour of Weiss’s derivative in orthogonal calculus. 
The immediate advantage of this new category is that we obtain a streamlined and 
more informative proof that the n-homogeneous functors are classified by spectra 
with a Σn-action. In a later paper we will use this new model category to give 
a formal comparison between the orthogonal calculus and Goodwillie’s calculus of 
functors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Goodwillie’s calculus of homotopy functors is a highly successful method of studying equivalence-
preserving functors, often with source and target either spaces or spectra. The original development is 
given in the three papers by Goodwillie [9–11], motivated by the study of Waldhausen’s algebraic K-theory 
of a space. A family of related theories grew out of this work; our focus is on the homotopy functor cal-
culus and (to a lesser extent in this paper) the orthogonal calculus of Weiss [23]. The orthogonal calculus 
was developed to study functors from real inner-product spaces to topological spaces, such as BO(V ) and 
TOP(V ).

The model categorical foundations for the homotopy functor calculus and the orthogonal calculus have 
been established; see Biedermann–Chorny–Röndigs [5], Biedermann–Röndigs [6] and Barnes–Oman [3]. 
However, we have found these to be incompatible. Most notably, the symmetric multilinear functors of 
Goodwillie appear to have no analogue in the theory of Weiss. In this paper, we re-work the classification 
results of Goodwillie to make it resemble that of the orthogonal calculus. In a subsequent paper [2], we will 
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use this similarity to give a formal comparison between the orthogonal calculus and Goodwillie’s calculus 
of functors.

This re-working marks a substantial difference from the existing literature on model structures (or infinity 
categories) for Goodwillie calculus, as they follow the pattern of Goodwillie’s work in a variety of different 
contexts (see also Pereira [21] or Lurie [16]). Our setup takes a more equivariant perspective and has 
the advantage of using one less adjunction and fewer categories than those of [6] and [11]. In detail, we 
construct a new category (Σn � (WnTop), Section 4.2) which will be the target of an altered notion of 
the derivative over a point (diffn, Section 6.1). This approach simplifies the classification of homogeneous 
functors in terms of spectra with Σn-action, whilst retaining Goodwillie’s original classification at the level 
of homotopy categories, see Theorem 6.7. It also provides a new characterisation of the n-homogeneous 
equivalences, see Lemma 6.5 and clarifies some important calculations, see Examples 6.8 and 6.9.

1.1. Recent history and context

What the family of functor calculi have most in common is that they associate, to an equivalence-
preserving functor F , a tower (the Taylor tower of F ) of functors

DnF Dn−1F D1F

· · · PnF Pn−1F · · · P1F P0F

where the PnF have a kind of n-polynomial property, and for nice functors, the inverse limit of the tower, 
denoted P∞F , is equivalent to F . The layers of the tower, DnF , are then analogous to purely-n-polynomial 
functors – called n-homogeneous. Fig. 1 represents Goodwillie’s classification of (finitary) n-homogeneous 
functors in terms of spectra with Σn-action. This classification is phrased in terms of three equivalences of 
homotopy categories.

Ho(n-homog-Fun(C,Top))

[11, §2]

Ho(n-homog-Fun(C, Sp))

[11, Thm. 3.5]

Ho(Symm-Fun(Cn, Sp)ml)

[11, §5]

Ho(Σn � Sp)

Fig. 1. Goodwillie’s classification.

Here, “Ho” indicates that we are working with homotopy categories, n-homog-Fun(A, B) is the category 
of n-homogeneous functors from A to B, C is either spectra (Sp) or spaces (Top) and Σn � Sp denotes 
(Bousfield–Friedlander) spectra with an action of Σn. The category (Symm-Fun(Cn, Sp)ml) consists of 
symmetric multi-linear functors of n-inputs: those F with F (X1, . . . , Xn) ∼= F (Xσ(1), . . . , Xσ(n)) for σ ∈ Σn

and which are degree 1-polynomial in each input.
Goodwillie, in [11], suggested that his classification would be well-served by being revised using the 

structure and language of model categories and hence phrased in terms of Quillen equivalences. For the 
homotopy functor calculus, Biedermann, Chorny and Röndigs [5] and Biedermann and Röndigs [6] completed 
Goodwillie’s recommendation. For simplicial functors with fairly general target and domain, they follow 
the same pattern as Goodwillie’s paper [11]. This classification involves several intermediate categories, 
similar to Fig. 1. In Fig. 2, S denote based simplicial sets, Sf denotes finite based simplicial sets and 
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Fun(Σn � (Sf )∧n, C)ml denotes a model structure of symmetric multi-linear functors with target C being 
simplicial sets or spectra.

Fun(Σn � (Sf )∧n,S)ml

(−)/Σn◦Δn

Σ∞

Fun(Sf ,S)n-homog
crn

Σ∞

Σn � Sp
Leval

S0

Fun(Σn � (Sf )∧n, Sp)ml

Ω∞

(−)/Σn◦Δn

evalS0

Fun(Sf , Sp)n-homog
crn

Ω∞

Fig. 2. Classification of Biedermann–Röndigs for C = Sf ,D = S [6, (6.2)].

For the orthogonal calculus, the classification of n-homogeneous functors by Weiss [23, Section 7] was 
re-worked and promoted to a description in terms of Quillen equivalences of model categories in Barnes 
and Oman [3]. In the notation of this paper, their classification diagram ([3, p. 962]) is Fig. 3. Without 
going into detail, the left hand category is a model structure for n-homogeneous functors and the right hand 
category is spectra with an action of O(n).

(n-homog-Fun(J0,Top)) O(n) � (JnTop) O(n) � Sp

Fig. 3. Weiss’s classification.

1.2. Re-working the classification

The middle category of Fig. 3 is not a kind of orthogonal version of symmetric multilinear functors. 
Indeed, there appears to be no such analog in the orthogonal setting. With that in mind, as well as our goal 
of a model-category comparison of the two calculi, we re-work the homogeneous classification for homotopy 
functors without using symmetric multilinear functors. We instead use the homotopy functor analog of the 
middle category of Fig. 3, which we denote Σn � (WnTop). This notation reflects our choice to use the 
category WTop (continuous functors from finite based CW-complexes to based topological spaces) as our 
model for homotopy functors from spaces to spaces, which we will say more about later.

In this paper, we construct the diagram of Quillen equivalences of Fig. 4. The top line of this diagram 
provides an alternate classification of n-homogeneous functors and is analogous to Fig. 3. We also compare 
our classification with the model category of symmetric multi-linear functors.

WTopn-homog

crn

diffn

Σn � (WnTop)stable

Lob-diag

W∧Wn−(−)/Σn◦map-diag∗

Σn � WSp
φ∗

n

Sym-Fun(Wn,Top)ml

(−)/Σn◦Δn

ob-diag∗

Fig. 4. Diagram of Quillen equivalences.

We show that the derivative construction (denoted diffn, see Definition 3.1) in the setting of spaces over 
a point naturally takes values in Σn � (WnTop) and that this construction is a Quillen equivalence. We 
furthermore construct a Quillen equivalence between Σn� (WnTop) and spectra with a Σn-action (denoted 
Σn � WSp). Our new classification then resembles the orthogonal version of Barnes and Oman [3], which 
involves one less adjunction and fewer categories than that of [6] and [11].
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The category Σn � (WnTop) is a relatively standard construction of equivariant spectra, similar to the 
constructions of equivariant orthogonal spectra of Mandell and May [17]. If we are prepared to work with this 
category rather than spectra with a Σn-action we have a one-stage classification of homogeneous functors in 
terms of spectra. We also claim that our category Σn � (WnTop) is no more complicated than the category 
of symmetric functors. See Section 4 for a definition of Σn � (WnTop) and Section 7 for a comparison with 
symmetric multi-linear functors.

Another useful aspect of this work is that we choose to work with the category WTop as our model of 
homotopy functors. Every object of this category is a homotopy functor, which removes the need for the 
homotopy functor model structure, a prominent feature of [5,6]. We comment more on this in Section 2.3.

In a sequel to this paper: Given a functor F ∈ WTop we can consider the functor of vector spaces V �→
F (SV ) (where SV is the one-point compactification of V ), which we call the restriction of F . We show that 
the restriction of an n-homogeneous functor (in the sense of Goodwillie) gives an n-homogeneous functor (in 
the sense of Weiss). Similarly, we show that restriction sends n-excisive functors to n-polynomial functors. 
These statements currently have the status of folk-results; we will provide formal proofs in [2].

Our primary aim in the sequel is to show that when F is analytic the restriction of the Goodwillie 
tower of F and the Weiss tower associated to the functor V �→ F (SV ) agree. From this, we obtain two 
applications. Firstly, we prove convergence of the Weiss tower of the functor V �→ BO(V ) (as claimed in [1, 
p. 13]). Secondly, we lift the comparisons of the two forms of calculus to a commutative diagram of model 
categories and Quillen pairs, see [2, Section 5].

With this aim in mind, working with a topologically enriched category of homotopy functors rather 
than simplicially enriched is necessary: there is no good way to study orthogonal calculus using simplicial 
enrichments, due to the continuity of the O(n) actions. Similarly, while [6] considers the case of homotopy 
functors between categories other than simplicial sets or spectra, there is no analogous generalisation for 
orthogonal calculus (since the domain is the category J0 of real inner product spaces and linear isometries). 
As our overall aim is a comparison between these two kinds of calculus, we choose to work in the specific 
context of WTop in this paper.

1.3. Organisation

In Section 2 we remind the reader of some important model category definitions and introduce WTop, 
the category of functors that we will use to model homotopy functors. We then follow the structure of [6]
and establish model structures on WTop analogous to their work. Specifically, in Section 3 we define the 
cross effect model structure, the n-excisive model structure and the n-homogeneous model structure.

With these basics completed, we can turn to the construction of the new category Σn � (WnTop). In 
Section 4, we start by giving the construction of the stable model structure on spectra with a Σn-action 
and then move on to constructing the stable model structure on Σn � (WnTop). Section 5 establishes the 
Quillen equivalence between Σn� (WnTop) and spectra with a Σn-action. The Quillen equivalence between 
n-homogeneous functors and Σn � (WnTop) induced by differentiation is established in Section 6. This is 
the primary result of this part of the paper. We finish by giving the Quillen equivalence between symmetric 
multilinear functors and Σn � (WnTop) in Section 7.

2. Model structures on spaces and functors

2.1. Model category background

The conditions we use are essentially those which make arbitrary model categories most like spaces: the 
ability to pushout or pullback weak equivalences (properness) and a good notion of cellular approximation 
(cofibrantly generated). We take our definitions and results from Hirschhorn [13] and May and Ponto [19].
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Similarly to Mandell et al. [18], we use topological, rather than simplicial model categories. When we say 
a category is topological we mean that it is enriched in Top in the sense of Kelly [15] (the category has 
spaces of morphisms and continuous composition). Whereas a model category is said to be topological if it 
satisfies the following definition, which is analogous to the concept of a simplicial model category.

Definition 2.1. (See [18, Definition 5.12].) For maps i : A → X and p : E → B in a model category M, let 
the map below be the map of spaces induced by M(i, id) and M(i, p) after passing to the pullback.

M(i∗, p∗) : M(X,E) → M(A,E) ×M(A,B) M(X,B)

A model category M is topological, provided that M(i∗, p∗) is a Serre fibration of spaces if i is a 
cofibration and p is a fibration; it is a weak equivalence if, in addition, either i or p is a weak equivalence.

Definition 2.2. (See [13, Definition 11.1.1].) Let M be a model category, and let the following be a commu-
tative square in M:

A
f

i

B

j

C
g

D

.

M is called left proper if, whenever f is a weak equivalence, i a cofibration, and the square is a pushout, 
then g is also a weak equivalence. M is called right proper if, whenever g is a weak equivalence, j is a
fibration, and the square is a pullback, then f is also a weak equivalence. M is called proper if it is both 
left and right proper.

This concept can also be phrased as the set of (co)fibrations being closed under (co)base change.

Definition 2.3. (See [13, Definition 13.2.1].) A cofibrantly generated model category is a model category M
with sets of maps I and J such that I and J support the small object argument (see [19, Definitions 15.1.1 
and 15.1.7]) and

1. a map is a trivial fibration if and only if it has the right lifting property with respect to every element 
of I, and

2. a map is a fibration if and only if it has the right lifting property with respect to every element of J .

2.2. Model structures on spaces

There are three model structures that we use on Top, the q-(“Quillen”) model structure, the 
h-(“Hurewicz”) model structure and the m-(“mixed”) model structure.

Theorem 2.4. (See [19, Theorem 17.1.1, Corollary 17.1.2].) The category Top of based spaces has a monoidal 
and proper model structure, the h-model structure, where the weak equivalences are the homotopy equiva-
lences; the fibrations are the Hurewicz fibrations and the cofibrations are the h-cofibrations (those maps with 
the homotopy extension property). All spaces are both fibrant and cofibrant.

Theorem 2.5. (See [19, Theorem 17.2.2, Corollary 17.2.4].) The category Top of based spaces has a cofi-
brantly generated monoidal and proper model structure, the q-model structure, where the weak equivalences 
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are the weak homotopy equivalences; the fibrations are the Serre fibrations (those maps that satisfy the right 
lifting property with respect to JTop as defined below). The cofibrations are the q-cofibrations (defined by the 
left lifting property). All spaces are fibrant.

The q-model structure on spaces is cofibrantly generated. The generating cofibrations (ITop) are the 
inclusions Sn−1

+ → Dn
+, n ≥ 0 and the generating acyclic cofibrations (JTop) are the maps i0 : Dn

+ →
(Dn × I)+, n ≥ 0.

Theorem 2.6. (See [19, Theorem 17.4.2, Corollary 17.4.3].) The category Top of based spaces has a monoidal 
and proper model structure, the m-model structure, where the weak equivalences are the weak homotopy 
equivalences; the fibrations are the Hurewicz fibrations and the cofibrations defined by the left lifting property 
with respect to Hurewicz fibrations which are also q-equivalences.

Note that every m-cofibration is a h-cofibration and the h-cofibrations are closed inclusions of spaces, 
see Mandell et al. [18, p. 457].

2.3. The category WTop of topological functors

Goodwillie calculus studies equivalence-preserving functors from the category of based spaces to itself. 
In this section we introduce WTop and show how it is a good model for these.

Let W be the category of based spaces homeomorphic to finite CW complexes. We note immediately 
that W is Top-enriched, but not W-enriched. We define WTop to be the category of W-spaces: continuous 
functors from W to Top (for full details see Mandell et al. [18]). In particular, an X ∈ WTop consists of the 
following information: a collection of based spaces X(A) for each A ∈ W and a collection of maps of based 
spaces

XA,B : W(A,B) −→ Top(X(A), X(B))

for each pair A, B in W. These maps must be compatible with composition and also associative and unital. 
The map XA,B induces a structure map:

X(A) ∧W(A,B) −→ X(B)

The category WTop is complete and cocomplete with limits and colimits taken objectwise. This category is 
tensored and cotensored over based spaces. For a functor X in WTop and a based space A, the tensor X∧A

is the objectwise smash product. The cotensor Top(A, X) is the objectwise function space. The category 
WTop is also enriched over based spaces, with the space of natural transformations from X to Y given by 
the enriched end (for more on (co)ends, see Kelly [15, Section 3.10])

Nat(X,Y ) =
∫

A∈W

Top(X(A), Y (A))

The category WTop is a closed symmetric monoidal category by Mandell et al. [18, Theorem 1.7]. The 
smash product and internal function object are defined as follows, where X and Y are objects of WTop and 
A ∈ W.

(X ∧ Y )(A) =
B,C∈W∫

X(B) ∧ Y (C) ∧W(B ∧ C,A)
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Hom(X,Y )(A) =
∫

B∈W

Top(X(B), Y (A ∧B))

There is another important natural construction that we will use. Let X be an object of WTop, then the
assembly map of X is

aA,B : X(A) ∧B → X(A ∧B).

It may be defined as the following composition, where the final map is the structure map of X.

X(A) ∧B ∼= X(A) ∧W(S0, B)
Id ∧(A∧−)

X(A) ∧W(A,A ∧B) X(A ∧B)

The existence of the assembly map tells us that X takes homotopic maps to homotopic maps (compose the 
assembly map with X applied to the homotopy between the maps). Since W consists of CW-complexes, it 
follows that X preserves weak homotopy equivalences, that is, X is a homotopy functor.

We record here an important observation about objects of WTop. Since Id∗ is the basepoint of W(∗, ∗), 
the map IdX(∗) = X(Id∗) is the base point of Top(X(∗), X(∗)). Hence X(∗) = ∗ for any X ∈ W. We 
therefore say that every functor of WTop is reduced.

The category W has a small skeleton skW, which fixes set-theoretic problems with the totality of natural 
transformations between functors from Top to Top. In particular, it ensures that all small limits exist 
in WTop. Biedermann and Röndigs [6] work (in particular) with the simplicial analogue of WTop and 
considers Goodwillie calculus in terms of simplicial functors from the category of finite simplicial sets Sf

to the category of all simplicial sets S. A nice discussion of the set-theoretic problem can be found in 
Biedermann–Chorny–Röndigs [5, Section 2].

We now want to equip the category WTop with a model structure, the following result is [18, Theorem 6.5].

Lemma 2.7. The projective model structure on the category WTop has fibrations and weak equivalences 
which are defined objectwise in the q-model structure of spaces. The cofibrations are determined by the left 
lifting property. In particular they are objectwise m-cofibrations of spaces. This model structure is proper, 
cofibrantly generated and topological. The generating sets are given below, where skW denotes a skeleton 
of W.

IWTop = {W(X,−) ∧ i | i ∈ ITop, X ∈ skW}

JWTop = {W(X,−) ∧ j | j ∈ JTop, X ∈ skW}

Recall from Goodwillie [11, Definition 5.10] that a homotopy functor from Top to Top is said to be
finitary if it commutes with filtered homotopy colimits. Such functors are determined by their restriction 
to W. Since any space A is naturally weakly equivalent to a homotopy colimit of finite CW-complexes 
hocolimn An, we can extend a homotopy functor X ∈ WTop by the formula X(A) = hocolimn X(An) to 
obtain a finitary homotopy functor from Top to itself.

To relate WTop to the work of Biedermann and Röndigs, consider the category of simplicial functors 
from the category of finite based simplicial sets to the category of based simplicial sets, Fun(Sf , S). This 
category can be equipped the homotopy functor model structures of [6, Section 4]. It is then an exercise left 
to the enthusiast to show that WTop with its projective model structure is Quillen equivalent to Fun(Sf , S)
with the homotopy functor model structure. The result is a consequence of the simplicial approximation 
theorem, which implies that a finite CW complex is homotopy equivalent to the realisation of a finite 
simplicial complex.
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3. Model structures for Goodwillie calculus

In this section, we explain how to construct model categories of n-excisive functors and n-homogeneous 
functors. Only brief details are given, as the method is similar to that of [6] and Barnes and Oman [3]. 
Many of the following constructions and definitions may be found originally in [11].

3.1. The cross effect model structure

We need the cross effect and the functor diffn (defined below) to be right Quillen functors for the 
classification of the n-homogeneous functors. That is, if f : F → G is a fibration of WTop, we need 
diffn(f) : diffn F → diffn G (and the same for the cross effect) to be an objectwise fibration of WTop. This 
does not hold for the projective model structure, as explained in the introduction to [6, Section 3.3].

Similar to Biedermann and Röndigs (albeit topologically rather than simplicially), we introduce another 
model structure on WTop that is Quillen equivalent to the projective model structure. This alternative 
model structure will be called the cross effect model structure (see Theorem 3.6). It has the same weak 
equivalences as the projective model structure.

Definition 3.1. For F ∈ WTop and an n-tuple of spaces in W, (X1, . . . , Xn), the nth-cross effect of F at 
(X1, . . . , Xn) is the space

crn(F )(X1, . . . , Xn) = Nat(
n∧

l=1

W(Xl,−), F )

Pre-composing crn(F ) with the diagonal map W(X, Y ) →
n∧

i=1
W(X, Y ) yields an object of WTop which we 

call diffn(F ), which in keeping with language of orthogonal calculus, is the nth (unstable) derivative. That is

diffn(F )(X) = Nat(
n∧

l=1

W(X,−), F ).

In Section 6 we elaborate on how the spaces (diffn F )(X) define a spectrum. As it is defined in terms of 
the cross-effect we only work in the based setting, so it is the derivative over the point.

Remark 3.2. We caution the reader that there is a difference between what Goodwillie [11] calls the nth 
cross-effect and the above notation. As is now standard, Goodwillie’s version is called the homotopy cross-
effect.

To make the cross effect into a right Quillen functor we need to have more cofibrations than in the 
projective model structure on WTop. The extra maps we need are defined below in Definition 3.4. We first 
need the following formalism for cubical diagrams.

Definition 3.3. Let n denote the set {1, . . . , n} and let P(n) denote the powerset of n. We define P0(n) as 
the set of non-empty subsets of n.

Definition 3.4. Consider the following collection of maps, where φX,n is defined via the projections which 
send those factors in S to the basepoint.

Φn = {φX,n : colim
S∈P0(n)

W(
∨

l∈n−S
Xl,−) −→ W(

∨n

l=1
Xl,−) | X = (X1, . . . , Xn), Xl ∈ skW}

We then also define Φ∞ = ∪n�1Φn.
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The cofibre of Nat(−, F )(φX,n) is the cross effect of F at X, crn(F )(X1, . . . , Xn); see [6, Lemma 3.14].

Definition 3.5. Given f : A → B a map of based of spaces and g : X → Y in W, the pushout product of f
and g, f�g, is given by

f�g : B ∧X
∨

A∧X

A ∧ Y → B ∧ Y.

Theorem 3.6. There is a cofibrantly generated model structure on WTop, the cross effect model structure, 
whose weak equivalences are the objectwise weak homotopy equivalences and whose generating sets are given 
by

IWcr = Φ∞�ITop JWcr = Φ∞�JTop

We call the cofibrations of this model structure cross effect cofibrations and call the fibrations the cross effect 
fibrations. We write WTopcross for this model category and r̂cross for its fibrant replacement functor.

Proof. Similar to the arguments of [6, Section 3.3]. Note the following two facts:

1. φX,n is an objectwise m-cofibration (and hence a h-cofibration) of based spaces,
2. the domains of the generating sets are small with respect to the objectwise h-cofibrations by Hovey [14, 

Proposition 2.4.2] and Hirschhorn [13, Proposition 10.4.8]. �
Corollary 3.7. The cross effect model structure on WTop is proper and the cofibrant objects are small with 
respect to the class of objectwise h-cofibrations.

Proof. Every cross effect cofibration is an objectwise h-cofibration. Similarly every cross effect fibration is 
an objectwise q-fibration. Since the weak equivalences, limits and colimits are all defined objectwise, the 
result follows from standard properties of Top. The smallness follows from [13, Section 10.4] and the second 
point of the proof of Theorem 3.6. �
Corollary 3.8. For k : A → B a cofibration of based spaces and (X1, . . . , Xn) an n-tuple of objects of W, the 
map

n∧
l=1

W(Xl,−) ∧ k :
n∧

l=1

W(Xl,−) ∧A →
n∧

l=1

W(Xl,−) ∧B

is a cross effect cofibration.

Proof. The map α : ∗ →
n∧

l=1
W(Xl, −) is a cross effect cofibration, where ∗ denotes here the one point space. 

It follows that α�k is a cross effect cofibration. �
The proof of the following is effectively Biedermann and Röndigs [6, Lemma 3.24].

Lemma 3.9. If F is a cross effect fibrant object of WTop then the nth homotopy cross effect of F is given 
by the strict nth cross effect.
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3.2. The n-excisive model structure

As in Barnes and Oman [3, Section 6], we perform a left Bousfield localisation of the cross effect model 
structure on WTop to obtain the n-excisive model structure. The class of fibrant objects of this model struc-
ture will be the class of n-excisive objects of WTop; see Definition 3.11 and Theorem 3.14. The cofibrations 
will remain unchanged and the weak equivalences will be the Pn-equivalences, those maps f : F → G such 
that Pnf (see Definition 3.12) is an objectwise weak homotopy equivalence.

Definition 3.10. An n-cube in W (or Top) is a functor X from P(n) to W (resp. Top). An n-cube is said to 
be strongly cocartesian if all of its two-dimensional faces are homotopy pushout squares. An n-cube is said 
to be cartesian if the map

X (∅) −→ holimS∈P0(n) X (S)

induced by the maps X (∅) → X (S) is a weak homotopy equivalence.

Definition 3.11. An object F ∈ WTop is said to be n-excisive if it sends strongly cocartesian (n + 1)-cubes 
in W to cartesian (n + 1)-cubes in Top.

We now give the construction of the homotopy-universal approximation to F by an n-excisive functor, 
denoted PnF . Note that we use X ∗ Y to denote the topological join of X and Y .

Definition 3.12. We first define a functor Tn : WTop → WTop and a natural transformation tn : Id → Tn. 
Let F ∈ WTop then TnF is given below.

(TnF )(X) = Nat( hocolim
S∈P0(n+1)

W(S ∗X,−), F ) = holim
S∈P0(n+1)

F (S ∗X)

The inclusion of the empty set as the initial object of P0(n + 1) and that ∅ ∗ X ∼= X gives a natural 
transformation tn,F from F (−) ∼= F (∅ ∗ −) to the homotopy limit TnF .

Furthermore, we define

PnF := hocolim
(
F

tn,F−−−→ TnF
tn,TnF−−−−−→ T 2

nF
tn,T2

nF−−−−−→ T 3
nF −→ . . .

)
For more details on homotopy limits in functor categories see Heller [12]. In particular TnF and PnF are 

continuous functors from W to based topological spaces. One could also apply model category techniques 
and take a strict limit of a suitably fibrant replacement of the diagram.

The proof of Goodwillie [11, Theorem 1.8] implies the following result.

Lemma 3.13. An object F ∈ WTop is n-excisive if and only if the map tn,F : F → TnF is an objectwise 
weak homotopy equivalence.

In particular, tn,F : F → TnF is a Pn-equivalence for any F . To make a new model structure where the 
Pn-equivalences are weak equivalences, it is necessary and sufficient to turn the class of maps tn,F into weak 
equivalences. Consider the following set of maps

Sn = {sn,X : hocolim
S∈P0(n+1)

W(S ∗X,−) −→ W(X,−) | X ∈ skW}.

By the Yoneda lemma, Nat(−, F )(sn,X) � tn,F (X). Hence, a model structure on WTop will have Sn

contained in the weak equivalences if and only if the Pn-equivalences are weak equivalences. We proceed to 
alter WTop so that the maps in Sn are weak equivalences.
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We replace the set of maps Sn by a set of objectwise h-cofibrations, Kn. For sn,X ∈ Sn let kn,X be the 
map from the domain of sn,X into the mapping cylinder Msn,X . Similarly, let rn,X : Msn,X → W(X, −) be 
the retraction. Define

Kn = {kn,X : hocolim
S∈P0(n)

W(S ∗X,−) −→ Msn,X | X ∈ skW}.

Theorem 3.14. There is a cofibrantly generated model structure on WTop whose weak equivalences are the 
Pn-equivalences and whose generating sets are given by

In-exs = Φ∞�ITop Jn-exs = (Φ∞�JTop) ∪ (Kn�ITop)

The cofibrations are the cross effect cofibrations and the fibrations are called n-excisive fibrations. In par-
ticular, every n-excisive fibration is a cross effect fibration. The fibrant objects are the cross effect fibrant 
n-excisive functors. We write WTopn-exs for this model category, which we call the n-excisive model struc-
ture.

Proof. Much of the work is similar to Biedermann and Röndigs [6, Theorem 5.8 and Lemma 5.9]. The lifting 
properties and classification of the weak equivalences are consequences of the following statement: a map 
f has the right lifting property with respect to Jn-exs if and only if f is a cross effect fibration and either 
(and hence both) of the squares below is a homotopy pullback for all X ∈ W.

F (X) (TnF )(X)

G(X) (TnG)(X)

F (X) (PnF )(X)

G(X) (PnG)(X)

The small object argument holds in this setting by Hirschhorn [13, Theorem 18.5.2] and Corollary 3.7. �
Proposition 3.15. The n-excisive model structure on WTop is proper.

Proof. The functor Pn satisfies the assumptions of Bousfield [7, Theorem 9.3] (as verified in [6, Theo-
rem 5.8]). Hence there is a proper model structure on WTop with weak equivalences the Pn-equivalences 
and cofibrations the cross effect cofibrations – which is precisely our n-excisive model structure, so it is 
proper. �

Note that every n-excisive functor in WTop is objectwise weakly equivalent to a cross effect fibrant 
n-excisive functor.

Lemma 3.16. Fibrant replacement in WTopn-exs is given by first applying the functor Pn and then applying 
r̂cross, the fibrant replacement functor of WTopcross.

Proof. For F ∈ WTop, PnF is n-excisive. Applying r̂cross we obtain an objectwise weakly equivalent object 
r̂crossPnF . This object is also n-excisive and is cross effect fibrant. Hence it is fibrant in WTopn-exs. Thus 
we can set r̂n-exs = r̂crossPn. �
3.3. The n-homogeneous model structure

Our next class of functors to study are those which are ‘purely’ n-excisive, that is, those F such that 
PnF � F but Pn−1F � ∗.
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Definition 3.17. An object F ∈ WTop is said to be n-homogeneous if it is n-excisive and Pn−1F (X) is 
weakly equivalent to a point for each X ∈ W.

For F ∈ WTop, define DnF ∈ WTop as the homotopy fibre of PnF → Pn−1F . Since Pn and Pn−1
commute with finite homotopy limits the functor DnF takes values in n-homogeneous functors and hence 
is called the n-homogeneous approximation to F .

Similarly to Barnes and Oman [3, Section 6] and Biedermann and Röndigs [6, Section 6] we perform 
a right Bousfield localisation of WTopn-exs – this adds weak equivalences whilst preserving the class of 
fibrations. The aim is to obtain a new model structure WTopn-homog where the weak equivalences are 
the Dn-equivalences and the cofibrant–fibrant objects are precisely the n-homogeneous objects which are 
fibrant and cofibrant in the cross effect model structure. Thus every n-homogeneous object of WTop will be 
objectwise weakly equivalent to a cofibrant–fibrant object of this new model structure. This will give us a 
‘short exact sequence’ of model structures as below, where the composite derived functor WTopn-homog →
WTop(n−1)-nexs sends every object to the trivial object.

WTopn-homog WTopn-exs WTop(n−1)-nexs

Fig. 5. Sequence of localisations.

The required n-homogeneous model structure will have weak equivalences those maps f ∈ WTop such 
that

hodiffn f = diffn r̂n-exsf = diffn r̂crossPnf

is an objectwise weak homotopy equivalence. The name hodiffn refers to the fact it is defined in terms of 
the homotopy cross effect (see Remark 3.2 and Lemma 3.9). In Section 6 we shall turn the construction 
diffn into a Quillen functor (indeed, into a Quillen equivalence) and hodiffn will be its derived functor.

A pointed model category is called stable if the suspension functor is an equivalence on the homotopy 
category; this definition agrees with Schwede and Shipley [22, Definition 2.1.1].

Theorem 3.18. There is a model structure on WTop whose fibrations are the n-excisive fibrations and whose 
weak equivalences are the hodiffn-equivalences. We call this the n-homogeneous model structure and denote 
it by WTopn-homog. The model structure is cofibrantly generated, proper and stable.

Proof. By Christensen and Isaksen [8, Theorem 2.6] the right Bousfield localisation of the model category 
WTopn-exs at the set

Mn = {
n∧

l=1

W(X,−) | X ∈ skW}

exists and is right proper. We have used the fact that cofibrantly generated model categories (such as 
WTopn-exs) always satisfy [8, Hypothesis 2.4]. Note that this set is substantially smaller than that of [6, 
Definition 6.2], where the X terms depend on l.

The model category WTopn-exs is topological (see Definition 2.1). Hence the weak equivalences of 
WTopn-homog are given by those maps f : F → G which induce weak homotopy equivalences of spaces 
as below for all X ∈ W.

Nat(
n∧

W(X,−), r̂n-exsF ) �−→Nat(
n∧

W(X,−), r̂n-exsG)

l=1 l=1
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By Lemma 3.16 there is a weak homotopy equivalence of spaces

Nat(
n∧

l=1

W(X,−), r̂n-exsF ) � Nat(
n∧

l=1

W(X,−), r̂crossPnF ) = diffn r̂crossPnF = hodiffn F.

It follows that the weak equivalences of WTopn-homog are as claimed. In particular, every object of this 
model category is weakly equivalent to an n-homogeneous functor.

The proof of Biedermann and Röndigs [6, Theorem 6.11] adapted to our setting shows that WTopn-homog
is stable. Given that it is stable, the work of Barnes and Roitzheim [4, Proposition 5.8] tells us that the 
category is left proper. A small variation on [4, Theorem 5.9] yields that the generating cofibrations are 
given by the union of the generating acyclic cofibrations for WTopn-exs along with the set of morphisms

{Sk
+ ∧

n∧
l=1

W(X,−) −→ Dk
+ ∧

n∧
l=1

W(X,−) | k � 0, X ∈ skW}. �
Our next task is to show that Fig. 5 does indeed behave like a ‘short exact sequence’ of model categories. 

That is, we want to show that an object F of the n-excisive model structure has Pn−1F � ∗ if and only if 
it is in the image of the derived functor from WTopn-homog to WTopn-exs.

Lemma 3.19. A map is a hodiffn-equivalence if and only if it is a Dn-equivalence.

Proof. Let f be a Dn-equivalence, so Dnf is an objectwise weak homotopy equivalence. Since hodiffn f =
diffn r̂crossPnf , it is weakly equivalent to diffn r̂crossDnf , the first half of the result follows.

For the converse, we use a method similar to Biedermann and Röndigs [6, Lemma 6.19]. Take some 
hodiffn-equivalence f . We can extend this to a map Σ∞f between functors which take values in sequential 
spectra. Applying hodiffn levelwise to Σ∞f gives an objectwise weak equivalence of spectra.

By Goodwillie [11, Proposition 5.8] it follows that hocrn Σ∞f is an objectwise weak equivalence of spectra. 
The result [11, Proposition 3.4] (see also [6, Corollary 6.9]) implies that DnΣ∞f is also an objectwise weak 
equivalence. Hence so is the zeroth level of DnΣ∞f , Ev0DnΣ∞f . The functor Ev0 commutes with Dn (up 
to objectwise weak equivalence) and Ev0Σ∞ � Id since we are in a stable model structure. Thus Dnf is an 
objectwise weak equivalence. �

We state the following without proof as it follows from [6, Lemma 6.24].

Proposition 3.20. An object of WTopn-homog is cofibrant and fibrant if and only if it is n-homogeneous and 
fibrant and cofibrant in the cross effect model structure. The cofibrations of WTopn-homog are the cross effect 
cofibrations that are Pn−1-equivalences.

Thus we now see that the cofibrant–fibrant objects of WTopn-homog are exactly those functors of 
WTopn-exs that are trivial in WTop(n−1)-nexs. Thus Fig. 5 is a ‘short exact sequence’ of model categories.

4. Capturing the derivative over a point

We begin this section by giving a stable model structure for the category of spectra with a Σn-action (as 
these classify the n-homogeneous functors). It plays the role analogous to the intermediate category O(n)En
of Barnes and Oman, see [3, Section 7]. This category has been designed to receive Goodwillie’s derivative 
and we shall show in Section 6 that the derivative is part of a Quillen equivalence.

After defining the category Σn � (WnTop), we establish the projective model structure in Theorem 4.8, 
then left Bousfield localise to get the stable structure. This makes use of the definition of nπ∗-isomorphisms 
(analogous to [3, Definition 7.7]).
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4.1. A model category for spectra with a Σn-action

One can model spectra by putting a stable model structure on WTop as in Mandell et al. [18]. This 
model category is Quillen equivalent to the other models of the stable homotopy category. We perform the 
same operation but Σn-equivariantly.

The next result follows immediately from applying the transfer argument, Hirschhorn [13, Theorem 
11.3.2], to the free functor (Σn)+∧− : Top → Σn � Top where Top is equipped with the q-model structure. 
See also Mandell and May [17, Section II.1].

Lemma 4.1. The category Σn � Top of based spaces with an action of Σn has a cofibrantly generated monoidal 
and proper model structure. The weak equivalences are those which are weak homotopy equivalences after 
forgetting the Σn-action. Similarly, the fibrations are those maps whose underlying map in Top is a Serre 
fibration. The cofibrant objects are free. The monoidal product is given equipping the smash product of 
two Σn-spaces with the diagonal action. The internal function object is given by equipping the space of 
non-equivariant maps with the conjugation action: if f ∈ Top(X, Y ), σ · f = σY ◦ f ◦ σ−1

X .

Combining the projective model structure on WTop (Lemma 2.7) with Lemma 4.1, we obtain the following 
model structure on Σn � WTop, the category of Σn-objects in WTop and Σn-equivariant morphisms.

Lemma 4.2. The projective model structure on the category Σn � WTop has as generating sets

IΣn�Top = {W(X,−) ∧ (Σn)+ ∧ i | i ∈ ITop, X ∈ skW}

JΣn�Top = {W(X,−) ∧ (Σn)+ ∧ j | j ∈ JTop, X ∈ skW}.

A fibration (resp. weak equivalence) in this model structure is a Σn-equivariant map f such that each 
f(X) is a q-fibration (resp. weak homotopy equivalence) of the underlying non-equivariant spaces. If F ∈
Σn � WTop is cofibrant, then each F (X) is a free Σn-space. This model structure is proper, cofibrantly 
generated and topological.

We now modify the projective model structure to obtain the stable model structure. We first relate 
Σn � WTop to sequential spectra, which allows us to define the weak equivalences of the stable model 
structure.

Definition 4.3. Let F ∈ Σn � WTop and A ∈ W. We define a spectrum F [A] via

F [A]k := F (A ∧ Sk),

where we have forgotten the Σn-action. The assembly maps provide the structure maps of F [A] as well as 
maps F [A] ∧B → F [A ∧B]. We call F [S0] the underlying spectrum of F .

Definition 4.4. A map f : F → G in Σn � WTop is said to be a π∗-isomorphism if f induces a π∗-isomorphism 
on the underlying spectra of F and G.

We then have the following Σn-equivariant analogue of Mandell et al. [18, Theorem 9.2], which we state 
without proof. Note that we are using the absolute stable model structure of [18, Section 17].

Lemma 4.5. There is a stable model structure on Σn � WTop. It is formed by left Bousfield localising the 
projective model structure at the set of maps below
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{W(A ∧ S1,−) ∧ S1 −→ ∧W(A,−) | A ∈ skW}

The cofibrations are the same as for the projective model structure and the weak equivalences are the 
π∗-isomorphisms. This model structure is cofibrantly generated, proper and topological. We denote it by 
Σn � W Sp.

4.2. Definition of Σn � (WnTop) and the projective model structure

We are interested in the functor diffn, which is defined in terms of maps out of the functor Wn(X, −)
(Definition 4.6). To help us study diffn we construct a category Σn � (WnTop) where the Wn(X, −) are 
the representable functors. In Section 6 we show how diffn takes values in this category. We also note that 
the stable model structure on Σn � (WnTop) is very similar to the constructions of equivariant orthogonal 
spectra in Mandell and May [17]. In Section 5 we will show it is Quillen equivalent to spectra with a 
Σn-action.

The motivation for this construction was the classification of n-homogeneous functors in orthogonal 
calculus done by Barnes and Oman [3], by means of the category O(n)En (which in our current notation is 
O(n) � (JnTop)). This category is a variation of the usual model structure on orthogonal spectra with an 
O(n) action; the model structure of Mandell et al. [18] on orthogonal spectra transferred over the functor 
O(n)+ ∧ −.

Definition 4.6. Let Wn be the category enriched over topological spaces with Σn-action whose objects are 
those of W and whose spaces of morphisms are given by

Wn(X,Y ) :=
n∧

i=1
W(X,Y )

with the Σn-action which permutes the factors. (Note that this differs from the wreath product of Defini-
tion 7.2.)

Definition 4.7. The category Σn � (WnTop) is the category of Σn � Top-enriched functors from Wn to 
Σn � Top.

A functor X in the category Σn � (WnTop) consists of the following information: a collection of based 
Σn-spaces X(A) for each A ∈ Wn and a collection of Σn-equivariant maps of based Σn-spaces

XA,B : Wn(A,B) −→ Top(X(A), X(B))

for each pair A, B in Wn. The Σn-structure on Top(X(A), X(B)) is given by conjugation. The maps XA,B

must be compatible with composition and also associative and unital. They induce a structure map, where 
Σn acts diagonally on the smash product:

X(A) ∧Wn(A,B) −→ X(B).

Note that when n = 1, Σn � (WnTop) is just WTop.
We present the following without proof, as it is basically that of [18, Theorem 6.5].

Theorem 4.8. Σn � (WnTop) has a projective model structure, starting with the free model structure on 
Σn-spaces. The generating cofibrations and trivial cofibrations are
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IWn
= {Wn(A,−) ∧ (Σn)+ ∧ i | i ∈ ITop, A ∈ skW}

JWn
= {Wn(A,−) ∧ (Σn)+ ∧ j | j ∈ JTop, A ∈ skW}.

This defines a compactly generated topological proper model category denoted Σn � (WnTop)proj.

4.3. The stable equivalences

We will equip Σn�(WnTop) with a stable model structure. To do so, we must define the weak equivalences. 
Compare the following with Barnes and Oman [3, Definition 7.7] and Definitions 4.3 and 4.4.

Definition 4.9. The n-homotopy groups of an object F of Σn � (WnTop) at A are denoted nπA
p (F ) and 

defined as nπA
p (F ) := colimk∈Z πp(ΩnkF (A ∧ Sk)) ∼= colimk∈Z πp+nk(F (A ∧ Sk)). The maps of this colimit 

diagram are induced by adjoints of the structure maps of F

F (A ∧ Sk) ∧ Sn = F (A ∧ Sk) ∧Wn(S0, S1) −→ F (A ∧ Sk+1).

A map is said to be an nπA
∗ -isomorphism if it induces isomorphisms on nπA

p for all p ∈ Z.

We establish independence of choice of space A via Proposition 4.10, which follows by the same arguments 
as in Mandell et al. [18, Proposition 17.6], so we omit the proof. Consequently, we may speak of n-homotopy 
groups and nπ∗-isomorphisms without reference to a choice of space A.

Proposition 4.10. A map f : F → G in Σn � (WnTop) is an nπA
∗ -isomorphism for A = S0 if and only if it 

is an nπA
∗ -isomorphism for all A ∈ W. We therefore call an nπS0

∗ isomorphism an nπ∗-isomorphism.

The following corollary is analogous to [18, Lemma 8.6]. This says that our n-stable equivalences are in 
particular nπ∗-isomorphisms.

Corollary 4.11. The generalised evaluation maps

λA,n : Wn(A ∧ S1,−) ∧ Sn −→ Wn(A,−)

are nπ∗-isomorphisms, as are the morphisms (Σn)+ ∧ λA,n.

Proof. This follows from verifying that the following map is an isomorphism

colimk∈Z πp+nk(ΣnΩnWn(A,Sk)) −→ colimk∈Z πp+nk(Wn(A,Sk)).

This is simply an n-fold version of the π∗-isomorphism ΣΩX → X for X a spectrum. �
4.4. The stable model structure

The stable model structure on Σn � (WnTop) is the left Bousfield localisation of the projective model 
structure at the set of maps

λA,n : Wn(A ∧ S1,−) ∧ Sn −→ Wn(A,−) (1)

where Sn, viewed as S1∧· · ·∧S1, and Wn(A, −) have the Σn-action which permutes factors. Smash products 
are equipped with the diagonal action.
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Proposition 4.12. The category Σn � (WnTop) has a stable and proper model structure with cofibrations 
the projective cofibrations and whose weak equivalences are the nπ∗-isomorphisms (of Definition 4.9). This 
model structure is denoted Σn � (WnTop)stable.

Analogous to [18, Proposition 9.5], the fibrations are objectwise fibrations such that the square below is a 
homotopy pullback.

F (A) ΩnF (A ∧ S1)

G(A) ΩnG(A ∧ S1)

The fibrant objects are the those F such that the maps F (A) → ΩnF (A ∧ S1) are weak homotopy equiv-
alences for all A ∈ W. An nπ∗-isomorphism between fibrant objects is an objectwise weak equivalence.

The generating cofibrations are as in Theorem 4.8; the generating acyclic cofibrations differ by including 
the maps of following form, constructed from equation (1) by taking mapping cylinders and taking the 
pushout product with maps of the form (Σn)+ ∧ i for i ∈ ITop.

{(Σn)+ ∧ i)� (
Wn(A ∧ S1,−) ∧ Sn −→ M(λA,n)

)
| A ∈ skWn, i ∈ ITop}

The homotopy category of Σn � (WnTop)stable is generated by the object (Σn)+ ∧Wn(S0, −).

Proof. This follows by the same arguments used in both Barnes and Oman [3, Section 7] and Mandell et 
al. [18, Section 9], together with Corollary 4.11 (the weak equivalences are the nπ∗-isomorphisms). The 
statement about generators for the homotopy category (see Schwede and Shipley [22, Definition 2.1.2]) 
follows from the isomorphism nπ∗(F ) ∼= [(Σn)+ ∧Wn(S0, −), F ]∗ and Proposition 4.10. �
5. Equivalence of the two versions of spectra

We now provide an adjunction between Σn � (WnTop) and Σn � WTop, then show that it is a Quillen 
equivalence when both categories are equipped with their stable model structures.

Σn � (WnTop)stable

W∧Wn−

Σn � W Sp
μ∗
n

We start by defining the right adjoint.

5.1. The adjunction between Σn � (WnTop) and Σn � W Sp

Definition 5.1. We define a Top-enriched functor μn : Wn → W. It sends the object X to X∧n and on 
morphisms acts as the smash product. It is the adjoint to n-fold evaluation:

Wn(X,Y ) ∧X∧n −→ Y ∧n.

This map of enriched categories μn induces a functor μ∗
n, which is (almost) pre-composition with μn.

Let F be an object of Σn � WTop. Then we define (μ∗
nF )(X) = F (X∧n), but with an altered action of 

Σn. The space F (X∧n) has an action of Σn by virtue of F being a functor to Σn-spaces. We denote this 
action by σ �→ σF (X∧n) and refer to it as the external action. The space X∧n also has an action of Σn, 
denoted σX for σ ∈ Σn. We thus have a second action on F (X∧n), the internal action. We combine these 
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and define the action on (μ∗
nF )(X) to be σ ∈ Σn �→ σF (X) · F (σX). Note that the internal and external 

actions commute.
We complete our definition of μ∗

nF by giving its structure map below, where νF is the structure map 
of F .

Wn(X,Y ) ∧ F (X∧n)
(μn)X,Y ∧Id

W(X∧n, Y ∧n) ∧ F (X∧n)
νF
X∧n,Y ∧n

F (Y ∧n).

We must now show that this map is Σn-equivariant using the altered action on F (X∧n) and F (Y ∧n) and 
the permutation action on Wn(X, Y ). The action on W(X∧n, Y ∧n) is via conjugation: f �→ σY ◦ f ◦ σ−1

X . 
The first map is clearly Σn-equivariant. For the second map, we look at the actions separately. By naturality 
of νF , the second map is equivariant with respect to the internal actions on F (X∧n) and F (Y ∧n) and the 
action on W(X∧n, Y ∧n). It is also equivariant with respect to the external actions on F (X∧n) and F (Y ∧n)
(with no action on W(X∧n, Y ∧n)). Composing the two actions gives the result.

Remark 5.2. We compare the different versions of equivariance for Σn � (WnTop) and Σn � Top. Consider 
some F : W → Σn � Top. Then F (A) ∈ Σn � Top and for a map f ∈ W(A, B), the map F (f) : F (A) →
F (B) is Σn-equivariant. That is, F induces a map

FA,B : W(A,B) → Top(F (A), F (B))Σn .

In contrast, for G ∈ Σn � (WnTop), the following is a Σn-equivariant map.

GA,B : W(A,B)∧n → Top(G(A), G(B))

The functor μ∗
n allows us to compare these two types of equivariance. Indeed, the altered action on (μ∗

nF )(X)
is designed precisely to take account of the non-trivial Σn-action on Wn(X, Y ).

The left adjoint W ∧Wn
− takes an object F of Σn � (WnTop) to the coend

A∈Wn∫
F (A) ∧W(A∧n,−).

The term W(A∧n, −) has an action of Σn by permuting the factors of A∧n. Establishing the adjunction is 
a formal exercise in manipulating ends and coends.

5.2. The Quillen equivalence

In this section we prove that the adjunction we have established is a Quillen equivalence.

Σn � (WnTop)stable

W∧Wn−

Σn � W Sp
μ∗
n

Lemma 5.3. The adjoint pair (W ∧Wn
−, μ∗

n) is a Quillen pair with respect to the stable model structures.

Proof. A generating cofibration of Σn� (WnTop) is of the form Wn(A, −) ∧ (Σn)+ ∧ i, for i a cofibration of 
based spaces. The left adjoint sends this map to W(A∧n, −) ∧(Σn)+∧i, which is a cofibration of Σn � W Sp. 
Similarly, it sends the generating acyclic cofibrations of the projective model structure on Σn � (WnTop)
to acyclic cofibrations of Σn � W Sp.
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The stable model structure on Σn � (WnTop) comes from taking the projective model structure and 
localising at the maps

Wn(A ∧ S1,−) ∧ Sn → Wn(A,−)

The left adjoint will take a map of the form above to the π∗-isomorphism

W(A∧n ∧ Sn,−) ∧ Sn → W(A∧n,−).

It follows that the left adjoint is a left Quillen functor. �
Proposition 5.4. The adjoint pair (W ∧Wn

−, μ∗
n) is a Quillen equivalence.

Proof. We claim that the right adjoint preserves all weak equivalences. A map f is a weak equivalence 
of Σn � W Sp if and only if f [S0] is a π∗-isomorphism of spectra by Definition 4.4. Similarly a map g
is a weak equivalence of Σn � (WnTop) if and only if it is an nπ∗-isomorphism, by Proposition 4.12. By 
Proposition 4.10, g is an nπ∗-iso if and only if nπS0

∗ (g) : nπS0

∗ (F ) → nπS0

∗ (G) is an isomorphism.
Consider μ∗

nF for some object F in Σn � W Sp. It is routine to check that

nπS0

p (μ∗
nF ) = colimk∈Z πp+nkF (Snk).

By cofinality of the terms p + nk in Z, if follows that μ∗
nf is an nπ∗-isomorphism whenever f [S0] is a 

π∗-isomorphism. Hence we have shown our claim that the right adjoint preserves all weak equivalences.
By [14, Corollary 1.3.16], we must now show that for cofibrant F ∈ Σn � (WnTop), the derived unit 

map of the adjunction is a weak equivalence. Since the right adjoint preserves all weak equivalences (in 
particular, that between an object and its fibrant replacement), it is enough to consider the unit map

F −→ μ∗
nW ∧Wn

F.

By stability, it suffices to check this in the case of the single generator of the homotopy category of Σn �

(WnTop). Replacing F by this generator and simplifying, we are left with the map below, which is induced 
by μn.

(Σn)+ ∧W(S0,−)∧n −→ (Σn)+ ∧W(μn(S0), μn(−)) = (Σn)+ ∧W(S0, (−)∧n)

This map is an isomorphism, hence it is a weak equivalence as desired. �
6. Differentiation is a Quillen equivalence

In this section we define differentiation as an adjunction between the homogeneous model structure on 
WTop and the stable model structure on Σn�(WnTop). We then show that it is a Quillen equivalence. Thus 
we will have a diagram of Quillen equivalences as below, showing that WTopn-homog is Quillen equivalent to 
spectra with a Σn-action. Finally we will show that this diagram captures precisely Goodwillie’s classification 
theorem.

WTopn-homog
diffn

Σn � (WnTop)stable

W∧Wn−(−)/Σn◦map-diag∗

Σn � WSp
μ∗
n
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6.1. The adjunction between Σn � (WnTop) and WTopn-homog

Recall Definition 3.1 where we define the nth-cross effect. The nth-derivative of F is

diffn(F )(X) = Nat(
n∧

l=1

W(X,−), F )

which is cross effect pre-composed with the diagonal, which we originally considered as an object of WTop. 
The category Σn � (WnTop) is the most natural target for the functor diffn, as its representable functors 
are of the form Wn(X, −) =

n∧
l=1

W(X, Y ).

Definition 6.1. We define the nth (stable) derivative of F ∈ WTop, to be the functor diffn(F ) in Σn �

(WnTop). The structure map below is induced from the composition of Wn and is Σn-equivariant

Wn(X,Y ) ∧ Nat(Wn(X,−), F ) −→ Nat(Wn(X,−), F ).

Proposition 6.2. The functor diffn has a left adjoint:

(−)/Σn ◦ map-diag∗ : Σn � (WnTop) −→ WTop

which we define in the proof below.

Proof. We begin by defining the Top-enriched functor map-diag : W → Wn. It is the identity on objects 
and the diagonal on morphisms:

f ∈ W(A,B) �→ [(f, . . . , f)] ∈ W(A,B)∧n = Wn(A,B).

In particular, map-diag lands in the Σn-fixed points of Wn(A, B). Let E ∈ Σn� (WnTop), then for X ∈ W, 
E(X) is a space with an action of Σn. We use a shorthand

E(X)/Σn := ((−)/Σn ◦ map-diag∗(E))(X)

We must also describe the structure maps of E(−)/Σn ∈ WTop. Consider the composite

E(X) ∧W(X,Y ) −→ E(X) ∧Wn(X,Y ) −→ E(Y )

where the first map is Id∧map-diag as defined above and the second is the structure map of E ∈ Σn �

(WnTop). If we equip W(X, Y ) with the trivial action, then this composite is Σn-equivariant. Hence, we 
can apply (−)/Σn to this map, the result of which is the structure map of E(−)/Σn ∈ WTop.

A gentle exercise in category theory shows that we have an adjunction:

WTop(E/Σn ◦ map-diag, F ) =
∫

X∈W

Top(E(X)/Σn, F (X))

∼=
∫

Y ∈Wn

ΣnTop (E(Y ),diffn(F )(Y ))

= Σn � (WnTop) (E,diffn(F )) . �
Lemma 6.3. The adjunction ((−)/Σn ◦ map-diag∗, diffn) is Top-enriched.
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Proof. There is an isomorphism, natural in E ∈ Σn � (WnTop) and K ∈ Top

(((−)/Σn ◦ map-diag∗)(E)) ∧K → ((−)/Σn ◦ map-diag∗)(E ∧K))

induced by the isomorphism E(X)/Σn ∧K → (E(X) ∧K)/Σn. It follows that the right adjoint commutes 
with the cotensoring with Top and that the adjunction is enriched over topological spaces. �

With the language of parameterised spectra (in the sense of May and Sigurdsson [20]) we could extend 
our definitions of Σn� (WnTop) and diffn to capture derivatives of functors of spaces over Y . As is common 
in the modern literature, we concentrate on the fundamental case of the derivative over a point.

6.2. The Quillen equivalence

Proposition 6.4. The adjunction ((−)/Σn ◦ map-diag∗, diffn) is a Quillen pair with respect to the following 
pairs of model structures.

1. Σn � (WnTop)proj and WTopcross.
2. Σn � (WnTop)proj and WTopn-exs.
3. Σn � (WnTop)stable and WTopn-exs.
4. Σn � (WnTop)stable and WTopn-homog.

Proof. A generating (acyclic) cofibration of the projective model structure on Σn � (WnTop) has the form 
Wn(A, −) ∧ (Σn)+ ∧ i, where i is a generating (acyclic) cofibration for based spaces. By Lemma 6.3 the 
functor (−)/Σn ◦ map-diag∗ takes this to the map Wn(A, −) ∧ i of WTop, which is a (acyclic) cofibration 
of the cross effect model structure on WTop by Corollary 3.8. Thus (−)/Σn ◦ map-diag∗ is a left Quillen 
functor as claimed in Part (1.).

Part (2.) holds as every (acyclic) cofibration of the cross effect model structure on WTop is a (acyclic) 
cofibration of the n-excisive model structure on WTop.

For Part (3.), by Hirschhorn [13, Theorem 3.1.6] we only need to show that diffn takes fibrant objects 
of the n-excisive model structure to fibrant objects of the stable model structure. That is, if F is n-excisive 
and cross effect fibrant, then for any A ∈ W

(diffn F )(A) → Ωn(diffn F )(A ∧ S1)

is a weak homotopy equivalence. This is the content of Goodwillie [11, Proposition 3.3] with the assumption 
that F (∗) is equal to ∗, rather than just weakly equivalent. This assumption holds true for any object of 
WTop as is noted in Section 2.3.

For Part (4.), the cofibrations of the n-stable model structure have the form Wn(A, −) ∧(Σn)+∧ i. Such a 
map is sent by (−)/Σn ◦map-diag∗ to Wn(A, −) ∧ i, which is a cofibration of the n-excisive model structure 
by Corollary 3.8. This map is a cofibration of the n-homogeneous model structure by [13, Proposition 3.3.16]
and [13, Lemma 5.5.2]. So the left adjoint preserves cofibrations. The acyclic cofibrations are the same as 
in Part (3.), hence the left adjoint preserves acyclic cofibrations. �

The following lemma provides an even simpler description of the weak equivalences of the n-homogeneous 
model structure. That is, one only has to know how to calculate the spaces diffn r̂crossF (X) (which is the 
homotopy cross effect precomposed with the diagonal) to understand the behaviour of hodiffn F . There 
is no need to apply Pn as we are no longer interested in the objectwise weak homotopy equivalences, but 
the nπ∗-isomorphisms. This justifies the use of stable when calling diffn F ∈ Σn � (WnTop) the nth stable 
derivative.
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Lemma 6.5. Let f : F → G be a map of cross-effect fibrant functors. If f is a weak equivalence in the 
n-homogeneous model structure on WTop, then diffn f is an nπ∗-isomorphism. In particular, the weak 
equivalences of WTopn-homog are those maps f such that diffn r̂crossf is an nπ∗-isomorphism.

Proof. Let F ∈ WTop, then Goodwillie’s functor T1,...,1, which is T1 applied in each variable, applied to 
crn F can be written as

(T1,...,1 crn F )(A, . . . , A) � Ωn(crn F )(A ∧ S1, . . . , A ∧ S1) = Ωn(diffn F )(A ∧ S1)

Abusing notation, we will write T1,...,1 diffn F (A) for Ωn(diffn F )(A ∧ S1), even though diffn is not an 
n-variable functor. Recall that the functor P1,...,1 is the homotopy colimit of repeated applications of T1,...,1. 
Hence the map diffn F → P1,...,1 diffn F is (weakly equivalent to) the fibrant replacement functor of the 
stable model structure on Σn � (WnTop). Consequently, the maps α and δ below are stable equivalences.

diffn r̂crossF
α

β

P1,...,1 diffn r̂crossF

γ

diffn r̂crossPnF
δ

P1,...,1 diffn r̂crossPnF

The map γ is an objectwise homotopy weak equivalence by Biedermann and Röndigs [6, Theorem 5.35], 
when viewed as a map

P1,...,1 crn r̂crossF → P1,...,1 crn r̂crossPnF.

So β is an nπ∗-isomorphism and the result follows immediately. �
Theorem 6.6. The adjunction ((−)/Σn◦map-diag∗, diffn) is a Quillen equivalence with respect to the n-stable 
model structure on Σn � (WnTop) and the n-homogeneous model structure on WTop.

Proof. We show that the right adjoint reflects weak equivalences between fibrant objects. Let g : X → Y be a 
map between cross effect fibrant n-excisive functors in WTop such that diffn g is an nπ∗-isomorphism in Σn�

(WnTop). The domain and codomain of diffn g are fibrant in the stable model structure by Proposition 6.4. 
Hence, diffn g is an objectwise weak homotopy equivalence by Proposition 4.12. The fibrancy assumption also 
tells us that g � r̂n-exsg, so that diffn g is weakly equivalent to hodiffn g. Thus diffn g is a weak equivalence 
of the n-homogeneous model structure.

We now show that for any cofibrant E ∈ Σn � (WnTop), the derived unit map

E −→ hodiffn((−)/Σn ◦ map-diag∗(E))

is an nπ∗-isomorphism. But this derived unit map is the map θ of Goodwillie [11, Theorem 3.5], which is 
an equivalence. Thus by Hovey [14, Corollary 1.3.16] this adjunction is a Quillen equivalence. �

Recall the functor μn of Definition 5.1 and μ∗
n : Σn � W Sp → Σn � (WnTop)stable, the right adjoint of 

the Quillen equivalence of Proposition 5.4.

Theorem 6.7. The composite of the derived functors of map-diag∗ ◦ (−)/Σn and μ∗
n agrees with Goodwillie’s 

classification of n-homogeneous functors (recall Fig. 1, see [11, Section 2-5]). That is, for a Σn-spectrum, 
D, we have that (Lmap-diag∗ ◦ (−)/Σn ◦ Rμ∗

n)(D) is weakly equivalent in WTopn-homog to the functor

A �→ Ω∞(
(D ∧A∧n)/hΣn

)
.
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Proof. The functor map-diag∗ ◦ (−)/Σn preserves objectwise weak homotopy equivalences (such as acyclic 
fibrations in the stable model structure) between Σn-free objects. Hence the derived composite of map-diag∗◦
(−)/Σn and μ∗

n applied to some E ∈ Σn � Sp is given by

A �→ (EΣn) + ∧Σn

(
hocolimk∈Z ΩkE(A∧n ∧ Sk)

)
(a)

We claim that the functor (a) is weakly equivalent in WTopn-homog to each of the following two functors

A �→ (EΣn) + ∧Σn

(
Ω∞(E ∧B∧n)

)
(b)

A �→ Ω∞(
(EΣn) + ∧Σn

(E ∧B∧n)
)
. (c)

That (a) is equivalent to (b) follows from Mandell et al. [18, Proposition 17.6], which implies that there is 
a natural weak homotopy equivalence of spaces

Ω∞(E ∧B∧n) := hocolimk∈Z Ωk(E(Sk) ∧B∧n) −→ hocolimk∈Z ΩkE(B∧n ∧ Sk)

By the connectivity arguments of Weiss [23, Example 6.4], the functors (b) and (c) agree up to order n, in 
the sense of [11, Definition 1.2]. By [11, Proposition 1.6] they are Pn-equivalent. Hence our derived functor 
is weakly equivalent in WTopn-homog to Goodwillie’s formula. �

Note that our derived composite sends a spectrum E to a functor in WTopn-homog which is weakly equiv-
alent to that of Goodwillie’s theorem. However the formula of Goodwillie actually creates an n-homogeneous
functor directly.

Example 6.8. As an example of how our version of the classification can make calculations easier, consider 
the cofibrant object (Σn)+ ∧ Wn(X, −) of Σn � (WnTop). The derived functor of W ∧Wn

− sends this 
to (Σn)+ ∧ W(X∧n, −). Equally the derived functor of (−)/Σn ◦ map-diag∗ sends this to Wn(X, −) in 
WTopn-homog. Hence we have that the n-homogeneous part of Wn(X, −) is classified by the Σn-spectrum 
(Σn)+ ∧W(X∧n, −). In the case X = S0, this says that the functor A → A∧n has nth derivative (Σn)+ ∧S, 
(recall the sphere spectrum in W Sp is given by W(S0, −)). This is analogous to the statement that the nth 
derivative of xn is n!.

Example 6.9. We may also make an analogy to the statement: the nth derivative of xn/n! is 1. Consider 
the non-cofibrant object Wn(X, −) of Σn � (WnTop). The derived functor of W ∧Wn

− sends this to 
W(X∧n, −). Equally the derived functor of (−)/Σn ◦map-diag∗ sends Wn(X, −) to (EΣn)+ ∧Σn

Wn(X, −)
in WTopn-homog. In the case X = S0, this says that the functor A → A∧n/hΣn has nth derivative given 
by S.

In general, we can take a spectrum with Σn-action, find a model for it in Σn � (WnTop) and then easily 
calculate its image in WTopn-homog. Finding a model for a spectrum with Σn-action in Σn � (WnTop) is a 
standard problem, akin to finding a nice point-set model of an EKMM spectrum in terms of orthogonal spec-
tra or symmetric spectra. This combined with Lemma 6.5 shows how our new perspective and description 
of the classification simplifies some calculations.

7. Quillen equivalence with symmetric multilinear functors

We establish in Theorem 7.3 a Quillen equivalence between our new category Σn � (WnTop)stable and 
Sym-Fun(Wn, Top)ml, the category of symmetric functors with the symmetric-multilinear model structure. 
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This result makes it clearer still that the category of symmetric multilinear functors can be omitted from 
the classification of n-homogeneous functors.

We begin by giving some definitions and recalling the statement of the symmetric-multilinear model 
structure of Biedermann and Röndigs [6, Theorem 5.20]. Let Wn be the topological category with objects 
n-tuples of spaces in W and morphisms spaces W(X1, Y1) ∧· · ·∧W(Xn, Yn) for (X1, . . . , Xn) and (Y1, . . . , Yn)
in Wn. There are a pair of obvious Top-enriched functors, Δ and ∧, between this category and W given by

Δ : W −→ Wn ∧ : Wn −→ W
X �→ (X, . . . ,X) (X1, . . . , Xn) �→ X1 ∧X2 ∧ · · · ∧Xn

f : X → Y �→ [(f, . . . , f)] [(f1, . . . , fn)] �→ f1 ∧ f2 ∧ · · · ∧ fn.

There is a less obvious Top-enriched functor from Wn to Wn, which we call ob-diag. It is the diagonal 
on objects and the identity on morphism spaces. That is,

ob-diag : Wn −→ Wn

X �→ (X, . . . ,X)

Wn(X,Y ) =
n∧

l=1
W(X,Y ) Id�→ Wn(X,Y ) =

n∧
l=1

W(X,Y )

Recall the functor map-diag, defined in the proof of Proposition 6.2. The diagonal functor Δ as given above 
is the composite ob-diag ◦ map-diag.

Let Sym-Fun(Wn, Top) denote the category of symmetric functors from Wn to Top. An n-variable 
functor F is symmetric precisely when, for each σ ∈ Σn, there is a natural isomorphism F (X1, . . . , Xn) ∼=
F (Xσ(1), . . . , F (Xσ(n))). When F is symmetric and Xl = X for all l, F (X, . . . , X) has an action of Σn. Using 
this action and pre-composition with ob-diag, we obtain a functor from Sym-Fun(Wn, Top) to Σn�(WnTop)
which we call ob-diag∗. We can also consider crn as a functor from WTop to Sym-Fun(Wn, Top). Since the 
cross effect precomposed with the diagonal is the functor diffn, we have the following commutative diagram 
of functors.

Σn � (WnTop) WTop
diffn

crn

Sym-Fun(Wn,Top)
ob-diag∗

We use this diagram to relate our work and that of Biedermann and Röndigs [6]. They develop a
symmetric multilinear model structure on Sym-Fun(Wn, Top), a modification of their hf (“homotopy func-
tor”)-model structure. In WTop, all of our functors are homotopy functors and the hf-model structure is 
then the projective model structure. We modify their statements (see [6, Definition 5.19]) accordingly:

Theorem 7.1. There is a model category Sym-Fun(Wn, Top)ml whose underlying category is the category 
of symmetric functors from Wn to Top. The weak equivalences are the maps f such that P1,...,1(f) is an 
objectwise weak homotopy equivalence, called multilinear equivalences; the cofibrations are the projective 
cofibrations; and the fibrations are the objectwise fibrations f : F → G such that either (and hence both) of 
the following squares
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F P1,...,1F

P1,...,1(f)

G P1,...,1G

F T1,...,1F

T1,...,1(f)

G T1,...,1G

is an objectwise homotopy pullback square. Moreover, the fibrant objects are the symmetric multilinear 
functors.

In proving this result, it is helpful to have a different, but equivalent, description of the category. This 
alternate description (adjusted to our setting) is given below, see [6, Lemma 3.6].

Definition 7.2. The wreath product category Σn � Wn has objects the class of n-tuples (X1, . . . , Xn) of 
objects of W. The morphisms from X = (X1, . . . , Xn) to Y = (Y1, . . . , Yn) are given by

(Σn � Wn) (X,Y ) =
∨

σ∈Σn

n∧
l=1

W(Xl, Yσ−1(l))

with composition defined as for the wreath product of groups.

The category of continuous functors from Σn � Wn to Top is equivalent to the category of symmetric 
functors from Wn to Top.

Given the model structure of Theorem 7.1, we may now establish the following formal comparison of our 
work with that of [6].

Theorem 7.3. The functor ob-diag∗ is a right Quillen adjoint, and induces a Quillen equivalence between 
Sym-Fun(Wn, Top)ml and Σn � (WnTop) with the stable model structure.

Proof. Recall that in the stable model structure on Σn � (WnTop) (Proposition 4.12) the fibrations are 
those maps f : F → G which are objectwise fibrations, such that square below is an objectwise homotopy 
pullback.

F

f

ΩnF (− ∧ S1)

f(−∧S1)

G ΩnG(− ∧ S1)

The functor ob-diag∗ preserves objectwise (acyclic) fibrations. Moreover if the right hand square of Theo-
rem 7.1 is an objectwise pullback square, then ob-diag∗ sends it to a square of the same form as the above. 
Therefore, ob-diag∗ is a right Quillen functor.

The functor diffn is the right adjoint of a Quillen equivalence by Theorem 6.6 whereas crn is the right 
adjoint of a Quillen equivalence by [6, Corollary 6.17]. Since ob-diag∗ ◦ crn = diffn, it follows that ob-diag∗

is also part of a Quillen equivalence. �
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