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The spectrum of prime ideals in tensor
triangulated categories

By Paul Balmer at Zürich

Abstract. We define the spectrum of a tensor triangulated category K as the set of
so-called prime ideals, endowed with a suitable topology. In this very generality, the spec-
trum is the universal space in which one can define supports for objects of K. This con-
struction is functorial with respect to all tensor triangulated functors. Several elementary
properties of schemes hold for such spaces, e.g. the existence of generic points or some
quasi-compactness. Locally trivial morphisms are proved to be nilpotent. We establish in
complete generality a classification of thick n-ideal subcategories in terms of arbitrary
unions of closed subsets with quasi-compact complements (Thomason’s theorem for
schemes, mutatis mutandis). We also equip this spectrum with a sheaf of rings, turning it
into a locally ringed space. We compute examples and show that our spectrum unifies the
schemes of algebraic geometry and the support varieties of modular representation theory.

Introduction

Several mathematicians brought to light the amazing analogies between a priori dis-
tinct theories, by means of the triangulated categories naturally appearing in these di¤erent
areas and more precisely via the so-called classification of thick subcategories. Initiated in
homotopy theory, see Devinatz, Hopkins and Smith [5], this classification was transposed
to algebraic geometry by Hopkins [7], Neeman [13] and Thomason [17]. An analogous clas-
sification, in terms of support varieties, has been achieved in modular representation theory
by Benson, Carlson and Rickard [4] and extended to finite group schemes by Friedlander
and Pevtsova [6].

The importance of triangulated categories is becoming more and more visible all over
mathematics. Forged in homological algebra (Grothendieck-Verdier) and in topology
(Puppe), these concepts gradually invaded algebraic geometry and marched towards mod-
ular representation theory shortly after. Always hidden in the shadow of every newly born
Quillen model structure (for instance in complex geometry, see Lárusson [10]), triangulated
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categories famously appeared at the front line of the motivic battle, where Voevodsky won
his titles of glory. Recently moving towards more analytic fields, they successfully entered
the C �-realm of Kasparov’s KK-theory, see Thom’s thesis [16], following a path opened by
Higson, Cuntz and others; compare Meyer and Nest [12]. So, few are the mathematicians
who can still be sure that no triangulated category is floating in their ink-pot.

This being said, it is commonly admitted that a triangular structure alone is too arid
to be successfully cultivated, as illustrated in K-theory. So for irrigation, we adopt the axi-
omatic of tensor triangulated categories ðK ;n; 1Þ, since a bi-exact symmetric monoidal
structure n : K�K ! K usually comes along with the triangulation in many examples.
See Def. 1.1.

Many sources deal with triangulated categories: Apart from the original source Ver-
dier [18], the reader can find a systematic treatise in Neeman [14] and more material in
Hovey, Palmieri and Strickland [8]. The latter is strongly inspired by classical stable homo-
topy theory and deals with tensor triangulated categories admitting infinite coproducts in
order to use Brown representability, compare [14]. Such additional assumptions have their
cost though, in the constant eye one has to keep open for set-theoretical pitfalls. Our lighter
setting seems to avoid this burden, so far. Another source is Rosenberg’s preprint series [15]
on non-commutative geometry. Although its focus seems to be more on abelian rather than
triangulated categories, it still contains definitions of spectra for triangulated categories, see
[15], §12. However, no recourse to tensor products is made there and, ipso facto, these def-
initions di¤er from ours. Further comparison with other trends in non-commutative geom-
etry seems beyond the scope of this introduction (and far beyond the author’s present
knowledge). Finally, let us mention the ad hoc definition of spectrum that Balmer [1] used
to reconstruct a scheme from its derived category of perfect complexes. As prudently an-
nounced there, the definition of [1] needs modification before extension outside algebraic
geometry. We believe that the construction given below is the right improvement, as we
now explain.

Here, we basically introduce only one ‘‘new’’ concept: We call prime a proper
thick n-ideal PkK which contains a product only if it contains one of the factors:
an b A P ) a A P or b A P. Reminding us of the very well-known algebraic notion, this
definition certainly passes the first test in being highly digestible. The second test is concep-
tual quality. It is not obvious a priori why a concept borrowed from commutative algebra
should be relevant in the generality explained above. So, we prove that the spectrum of K
is the best locus in which to construct supports for objects of K (see precise statement be-
low). Of course, we could first define the spectrum by this universal property and then
prove that it can be constructed via prime ideals. We proceed in the reverse order because
we expect every reader to be at ease with the classical notion of prime ideal. The output of
the theory for the various examples is the third and final test.

We assume that our tensor triangulated category K is essentially small. We de-
note by SpcðKÞ the set of prime thick n-ideals of K. For any object a A K, we
define the support of a to be suppðaÞ :¼ fP A SpcðKÞ j a B PgH SpcðKÞ. The Zariski

topology on SpcðKÞ is the one generated by the following basis of open subsets:
fUðaÞ :¼ SpcðKÞnsuppðaÞ j a A Kg. As announced above, the space SpcðKÞ is the best lo-
cus for supports, see Theorem 3.2 below, which says:
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Theorem (Universal property of the spectrum). We have:

(a) suppð0Þ ¼ j and suppð1Þ ¼ SpcðKÞ.

(b) suppðal bÞ ¼ suppðaÞW suppðbÞ.

(c) suppðTaÞ ¼ suppðaÞ, for T : K ! K the translation (shift, suspension).

(d) suppðaÞH suppðbÞW suppðcÞ for any exact triangle a ! b ! c ! Ta.

(e) suppðan bÞ ¼ suppðaÞX suppðbÞ.

Moreover, for any pair ðX ; sÞ, where X is a topological space and s an assignment of closed

subsets sðaÞHX to objects a A K, which satisfy (a)–(e) above (namely, sð0Þ ¼ j, sð1Þ ¼ X ,
etc.), there exists a unique continuous map f : X ! SpcðKÞ such that sðaÞ ¼ f �1

�
suppðaÞ

�
.

The spectrum Spcð�Þ is a contravariant functor, for a tensor triangulated functor
F : K ! L induces a continuous map SpcðFÞ : SpcðLÞ ! SpcðKÞ via Q 7! F�1ðQÞ. In
Proposition 2.3, we prove that SpcðKÞ is non-empty as soon as K3 0 and in Corollary
2.12 that SpcðKÞ even has closed points. Although such details might seem trivial to unac-
quainted readers, let us remind them that former constructions (e.g. by means of ‘‘atomic’’
subcategories, see [1], or by means of indecomposable objects) did not always produce non-
empty spaces and were hardly functorial.

Sections 2 and 3 contain other basic results which hopefully illustrate the internal har-
mony of the theory and which are used in Section 4 to prove the classification of thick n-
ideals. In [17], Thm. 3.15, for X a scheme, Thomason classifies thick n-ideals of DperfðX Þ
via subsets Y HX , by assigning to Y the subcategory Dperf

Y ðXÞ of those objects whose ho-
mological support is contained in Y . For an arbitrary tensor triangulated category K,
since SpcðKÞ is the universal locus for supports, the general version of Thomason’s Theo-
rem should involve the following construction:

SpcðKÞI Y 7! KY :¼ fa A K j suppðaÞHYg HK:

Observe though that a subcategory of the form KY is necessarily radical, in the usual sense
that ann A KY ) a A KY . This follows from suppðannÞ ¼ suppðaÞ, see property (e) above.
Usually, in examples, all thickn-ideals are radical, see Remark 4.3 and Proposition 4.4, but
we do not see any reason for this to hold in general. Hence the statement of Theorem 4.10:

Theorem (Classification of thick n-ideal subcategories). Let S be the set of those

subsets Y H SpcðKÞ which are unions Y ¼
S
i A I

Yi of closed subsets Yi with quasi-compact

complement SpcðKÞnYi for all i A I . Let R be the set of radical thick n-ideals of K. Then

there is an order-preserving bijection S !@ R given by Y 7! KY ¼ fa A K j suppðaÞHYg
with inverse J 7! suppðJÞ :¼

S
a AJ

suppðaÞ.

It is then time for computing examples and this is done in Section 5. Indeed, a kind
of converse to the above classification holds, namely, a good classification of thick sub-
categories yields a description of the spectrum (Theorem 5.2). Therefore, from the classifi-
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cations available in the literature, we can easily describe SpcðKÞ for K ¼ DperfðXÞ the
derived category of perfect complexes over a topologically noetherian scheme X and for
K ¼ stabðkGÞ the stable category of finitely generated kG-modules modulo projective
ones, where G is a finite group and k a field of positive characteristic p (dividing the order
of G ). Corollaries 5.6 and 5.10 contain the identification of SpcðKÞ in those two examples,
see statement below.

In Section 6, for a general tensor triangulated category K, we equip the space
SpcðKÞ with a sheaf of rings denoted OK by means of endomorphisms of the unit. The
ringed space

SpecðKÞ :¼
�
SpcðKÞ;OK

�

is always a locally ringed space. For the above examples, Theorem 6.3 gives:

Theorem. With the above notation and hypotheses, we have isomorphisms of schemes:

(a) Spec
�
DperfðXÞ

�
FX .

(b) Spec
�
stabðkGÞ

�
FProj

�
H�ðG; kÞ

�
.

Acknowledgments. I thank Eric Friedlander, Bruno Kahn and Ralf Meyer for in-
structive discussions, Zoran Skoda for the reference to [15], and Ivo Dell’Ambrogio, Stefan
Gille and Charles Mitchell for their interest and their comments.

1. Terminology and notation

Our triangulated category K will be essentially small (or choose a fixed universe in
which to work). We denote by Ta the translation of an object a A K.

Definition 1.1. Here, a tensor triangulated category is a triple ðK;n; 1Þ consisting
of a triangulated category K (see [18]), a symmetric monoidal ‘‘tensor’’ product
n : K�K ! K which is exact in each variable. The unit is denoted 1 or 1K. A tensor

triangulated functor F : K ! L is an exact functor respecting the monoidal structures
and sending the unit to the unit, Fð1KÞ ¼ 1L, unless otherwise stated. At the present stage
of the theory, we do not need the higher axiomatic of May [11], cf. also Keller and Neeman
[9].

Definition 1.2. A thick tensor-ideal A of K is a full subcategory containing 0 and
such that the following conditions are satisfied:

(a) A is triangulated: for any distinguished triangle a ! b ! c ! Ta in K if two out
of a, b and c belong to A, then so does the third.

(b) A is thick: if an object a A A splits in K as aF bl c then both summands b and
c belong to A.

(c) A is a tensor-ideal: if a A A and b A K then an b also belongs to A.
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Note that (a) forces A to be replete, i.e. closed under isomorphisms:
aF b A A ) a A A. Since K is essentially small, we only have a set of such subcategories.

Notation 1.3. The intersection of any family of thick n-ideals is again a thick
n-ideal. Given a collection E of objects in K, we denote by hEiHK the smallest
thick n-ideal of K which contains E.

2. Prime ideals and Zariski topology

The main definition of the paper is the following.

Definition 2.1. We call prime of K a proper thick n-ideal PkK such that

an b A P ) a A P or b A P:

Let the spectrum of K, denoted SpcðKÞ, be the set of all primes of K

SpcðKÞ ¼ fP prime of Kg:

For any family of objects SHK we denote by ZðSÞ the following subset of SpcðKÞ:

ZðSÞ ¼ fP A SpcðKÞ jSXP ¼ jg:ð2:1Þ

We clearly have
T

j A J

ZðSjÞ ¼ Z
� S

j A J

Sj

�
and ZðS1ÞWZðS2Þ ¼ ZðS1 lS2Þ where

S1 lS2 :¼ fa1 l a2 j ai A Si for i ¼ 1; 2g. Since ZðKÞ ¼ j and ZðjÞ ¼ SpcðKÞ, the col-
lection fZðSÞH SpcðKÞ jSHKg defines the closed subsets of a topology on SpcðKÞ,
called the Zariski topology. We denote the open complement of ZðSÞ by

UðSÞ :¼ SpcðKÞnZðSÞ ¼ fP A SpcðKÞ jSXP3jg:ð2:2Þ

For any object a A K, denote by suppðaÞ the following closed subset of SpcðKÞ:

suppðaÞ :¼ ZðfagÞ ¼ fP A SpcðKÞ j a B Pgð2:3Þ

which we call the support of the object a A K.

A collection of objects SHK is called (tensor) multiplicative if 1 A S and if
a1; a2 A S ) a1 n a2 A S.

Lemma 2.2. Let K be a non-zero tensor triangulated category. Let JHK be a thick

n-ideal and SHK a n-multiplicative family of objects such that SXJ ¼ j. Then there

exists a prime ideal P A SpcðKÞ such that JHP and PXS ¼ j.

Proof. Consider the collection F of those thick n-ideals AHK satisfying:

(1) AXS ¼ j.

(2) JHA.

(3) If c A S and a A K are such that an c A A then a A A.
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Let A0 :¼ fa A K j bc A S with an c A Jg. One checks directly that A0 is a thick n-ideal
satisfying properties (1)–(3), hence F is non-empty. By Zorn, there exists an element
P A F maximal for inclusion, which we claim to be prime. Indeed, assume that an b A P
and that b B P and let us see that a A P. Consider

A1 :¼ fd A K j an d A Pg:

One checks easily that A1 is a thick n-ideal, which contains P properly since b A A1nP.
By maximality of P in F, our subcategory A1 does not belong to F. Since A1 clearly sat-
isfies properties (2) and (3), it cannot satisfy property (1), i.e. there is an object d A S with
an d A P. Now, using property (3) for P, we deduce a A P. r

In the above proof, note that in case S ¼ f1g, condition (3) is void and P merely is a
maximal proper ideal containing J. This proves (b) in the statement below.

Proposition 2.3. Let K be a non-zero tensor triangulated category.

(a) Let S be an-multiplicative collection of objects which does not contain zero. Then

there exists a prime ideal P A SpcðKÞ such that PXS ¼ j.

(b) Let JkK be a proper thickn-ideal. Then there exists a maximal proper thickn-
ideal MkK which contains J.

(c) Maximal proper thick n-ideals are prime.

(d) The spectrum of K is not empty: SpcðKÞ3j.

Proof. (a) is the case J ¼ 0 of Lemma 2.2. As mentioned above, (b) is settled. For
(c), apply Lemma 2.2 to J maximal and to S ¼ f1g: there exists a prime containing J,
hence equal to it. Finally, (d) follows from (a), for instance. r

Corollary 2.4. An object a A K belongs to all primes, a A
T

P A SpcðKÞ
P, i.e.

UðaÞ ¼ SpcðKÞ, i.e. suppðaÞ ¼ j, if and only if it is n-nilpotent, i.e. there exists an nf 1
such that ann ¼ 0.

Proof. If ann ¼ 0 A P then a A P for any prime P. Conversely, if the object a is not
nilpotent then 0 B S :¼ fann j nf 0g and we conclude by Prop. 2.3 (a). r

Corollary 2.5. An object a A K belongs to no prime, i.e. UðaÞ ¼ j, i.e.
suppðaÞ ¼ SpcðKÞ, if and only if it generates K as a thick n-ideal, i.e. hai ¼ K.

Proof. If hai ¼ K then a belongs to no proper thick n-ideal. Conversely, if
haikK is proper, there exists by Prop. 2.3 (b)–(c) a prime M A UðaÞ. r

Lemma 2.6. The assignment a 7! UðaÞ ¼def : fP j a A Pg, from objects of K to open

subsets of SpcðKÞ, satisfies the following properties:

(a) Uð0Þ ¼ SpcðKÞ and Uð1Þ ¼ j.
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(b) Uðal bÞ ¼ UðaÞXUðbÞ.

(c) UðTaÞ ¼ UðaÞ.

(d) UðaÞIUðbÞXUðcÞ for any exact triangle a ! b ! c ! Ta.

(e) Uðan bÞ ¼ UðaÞWUðbÞ.

‘‘Dual ’’ properties hold for the closed complements (see Def. 3.1 and Thm. 3.2).

Proof. The properties of a proper thick n-ideal, see Def. 1.2, yield properties (a) to
(d) as well as UðaÞWUðbÞHUðan bÞ in (e). The other inclusion in (e) expresses the fact of
being prime, see Def. 2.1. r

Remark 2.7. Since for any SHK, we have UðSÞ ¼
S

a AS
UðaÞ, it follows from

Lemma 2.6 (b) that fUðaÞ j a A Kg is a basis of the topology on SpcðKÞ. Equivalently,
their complements fsuppðaÞ j a A Kg form a basis of closed subsets.

Proposition 2.8. Let W H SpcðKÞ be a subset of the spectrum. Its closure is

W ¼
T

a AK s:t:
WHsuppðaÞ

suppðaÞ:

Proof. Given a basis B of closed subsets, the closure of a subset W is the intersec-
tion of all those B A B such that W HB. We conclude by Remark 2.7. r

Proposition 2.9. For any point P A SpcðKÞ its closure in SpcðKÞ is

fPg ¼ fQ A SpcðKÞ jQHPg:

In particular, if fP1g ¼ fP2g then P1 ¼ P2. (The space SpcðKÞ is T0.)

Proof. Let S0 :¼ KnP. Clearly P A ZðS0Þ and if P A ZðSÞ then SHS0 and
hence ZðS0ÞHZðSÞ. So, ZðS0Þ is the smallest closed subset which contains the point P,
i.e. fPg ¼ ZðS0Þ ¼ fQ A SpcðKÞ jQHPg. The second assertion is immediate. r

Remark 2.10. Proposition 2.9 is the first indication of the ‘‘reversal of inclusions’’
with respect to commutative algebra where the Zariski closure of a point of the spectrum
consists of all the bigger prime ideals. We shall see in Section 5 that the natural homeomor-
phism f : SpecðRÞ !@ Spc

�
KbðR � projÞ

�
is order-reversing, that is, if pH q, as subsets of

R, then f ðpÞI f ðqÞ, as subcategories of K. In this logic, the proof of Lemma 2.2, which is
inspired by the algebraic existence of maximal ideals, does indeed construct maximal ideals
of SpcðKÞ but these would be minimal in SpecðRÞ when applied to K ¼ KbðR � projÞ.
Fortunately, prime ideals also exist at the other end, as we now prove in the usual way.

Proposition 2.11. If K is non-zero, there exists minimal primes in K. More precisely,
for any prime PHK, there exists a minimal prime P 0HP.
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Proof. To apply Zorn’s Lemma, it su‰ces to see that for any non-empty chain
CH SpcðKÞ, the thick n-ideal Q 0 :¼

T
Q AC

Q is a prime. Assume that a1 B Q 0 and a2 B Q 0.

Then there exist Qi A C such that ai B Qi for i ¼ 1; 2. Since C is a chain for inclusion,
let Q0 be the smallest of Q1 and Q2. Then a1; a2 B Q0 and hence a1 n a2 B Q0, thus
a1 n a2 B Q 0 HQ0. In short, a; b B Q 0 ) an b B Q 0. r

Corollary 2.12. If the space SpcðKÞ is not empty, it admits a closed point. More pre-

cisely, any non-empty closed subset contains at least one closed point.

Proof. Let j3Z H SpcðKÞ be closed and let P A Z. There exists a P 0HP mini-
mal by Prop. 2.11. By Prop. 2.9, we have P 0 A fPgHZ and fP 0g ¼ fP 0g. r

Lemma 2.13. Let a A K be an object and SHK be a collection of objects. We have

UðaÞHUðSÞ, i.e. ZðSÞH suppðaÞ, if and only if there exists b1; . . . ; bn A S such that

b1 n � � �n bn A hai.

Proof. Let S 0 be then-multiplicative collection made of finite products of elements
of SW f1g. Primes being prime, we have UðSÞ ¼ UðS 0Þ. So, it clearly su‰ces to prove
the following claim: For S 0 n-multiplicative, UðaÞHUðS 0Þ if and only if S 0 Xhai3j.
Clearly, if S 0Xhai3j then any prime containing a meets S 0, that is, UðaÞHUðS 0Þ.
Conversely, if S 0 Xhai ¼ j, then Lemma 2.2 (with J :¼ hai) guarantees the existence of
a prime in UðaÞnUðS 0Þ. r

Proposition 2.14. The following hold true.

(a) For any object a A K, the open UðaÞ ¼ SpcðKÞnsuppðaÞ is quasi-compact.

(b) Any quasi-compact open of SpcðKÞ is of the form UðaÞ for some a A K.

Proof. Consider an open covering fUðSiÞ j i A Ig of UðaÞ. Let S :¼
S
i A I

Si, so that

UðaÞH
S
i A I

UðSiÞ ¼ UðSÞ. By Lemma 2.13, there exists b1; . . . ; bn A S such that

b1 n � � �n bn A hai, but those finitely many objects b1; . . . ; bn already belong to
S

i A I0

Si for
some finite subset of indices I0 H I , hence UðaÞH

S
i A I0

UðSiÞ.

For (b), let U ¼ UðSÞ be a quasi-compact open for some SHK. Then
U ¼

S
a AS

UðaÞ and by quasi-compactness of U there exists a1; . . . ; an A S such that

U ¼ Uða1ÞW � � �WUðanÞ ¼ Uða1 n � � �n anÞ, as was to be shown. r

Corollary 2.15. Suppose that UðSÞ ¼ SpcðKÞ for some collection of objects

SHK. Then there exists b1; . . . ; bn A S such that b1 n � � �n bn ¼ 0. In particular, the

spectrum SpcðKÞ is quasi-compact.

Proof. Take a ¼ 0 in Lem. 2.13 and Prop. 2.14 (a) and use Uð0Þ ¼ SpcðKÞ. r

Remark 2.16. A topological space is called noetherian if any non-empty family of
closed subsets has a minimal element. This is equivalent to all open subsets being quasi-
compact. Hence Proposition 2.14 gives for SpcðKÞ:
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Corollary 2.17. The topological space SpcðKÞ is noetherian if and only if any closed

subset of SpcðKÞ is the support of an object of K. r

Proposition 2.18. Non-empty irreducible closed subsets of SpcðKÞ have a unique ge-

neric point. Indeed, for j3Z H SpcðKÞ closed, the following are equivalent:

(i) Z is irreducible.

(ii) For all a; b A K, if Uðal bÞXZ ¼ j then UðaÞXZ ¼ j or UðbÞXZ ¼ j.

(iii) P :¼ fa A K jUðaÞXZ 3jg is a prime.

Moreover, when these conditions hold, we have Z ¼ fPg.

Proof. Uniqueness of generic points is already in Proposition 2.9.

(i) ) (ii). Z irreducible means that for any open subsets U1, U2 in SpcðKÞ, if
Z XU1 XU2 ¼ j then

Z XU1 ¼ j or Z XU2 ¼ j:

This gives (ii), since Uðal bÞ ¼ UðaÞXUðbÞ.

(ii) ) (iii). The assumption (ii) gives a; b A P ) al b A P. Using this, we see that if
a; b A P and a ! b ! c ! TðaÞ is a distinguished triangle, then c A hal bi hence
Uðal bÞHUðcÞ and since Uðal bÞXZ 3j, we get UðcÞXZ 3j, i.e. c A P. The other
conditions for P to be a prime thick n-ideal are easy by Lemma 2.6.

(iii) ) (i). Let us prove that Z ¼ fPg which proves (i) and the ‘‘moreover part’’. Let
Q A Z. For a A Q, we have Q A UðaÞXZ 3j, hence a A P. We have proved QHP, i.e.
Q A fPg (Prop. 2.9) for any Q A Z. So, we have Z H fPg. Conversely, it su‰ces to prove
P A Z ¼ Z. To see this, let s A K be an object such that Z H suppðsÞ. Then UðsÞXZ ¼ j
which means s B P or equivalently P A suppðsÞ. In short, P A

T
s AK;ZHsuppðsÞ

suppðsÞ ¼ Z by
Proposition 2.8. r

Corollary 2.19. The spectrum SpcðKÞ is irreducible if and only if for any a, b such

that hal bi ¼ K one has hai ¼ K or hbi ¼ K.

Proof. From Proposition 2.18 applied to Z ¼ SpcðKÞ, using Corollary 2.5. r

Remark 2.20. We have already established in Corollary 2.4 that an object a A K is
n-nilpotent if and only if it belongs to all primes P, which is the same as saying that its
image vanishes in the localization K=P for every P A SpcðKÞ. We now want to describe
the analogue property for morphisms. For a morphism f : a ! b, the notation f nn of
course means the n-fold product f n � � �n f : ann ! bnn.

Proposition 2.21. Let f : a ! b be a morphism in K. Suppose that f vanishes in

K=P for all P A SpcðKÞ. Then there exists an integer nf 1 such that f nn ¼ 0.

Lemma 2.22. Let f : a ! b be a morphism in K and let PHK be a thick subcate-

gory ( for instance a prime). The following conditions are equivalent:
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(i) f maps to zero in K=P.

(ii) There exists an object c A P such that f factors via c:
a �����!f

b
��

!
��!
c

.

Proof. As for any Verdier localization, the assumption f ¼ 0 in K=P implies
the existence of a morphism s : z ! a such that f � s ¼ 0 and such that coneðsÞ A P. By
the weak cokernel property of the cone, this implies the wanted factorization with
c ¼ coneðsÞ. Conversely, if f factors via some object which maps to zero in K=P then f

maps to zero in K=P. r

Proof of Proposition 2.21. By assumption and by Lemma 2.22, there exists for
every P A SpcðKÞ an object cP A P such that f factors via cP. We have an open
covering SpcðKÞ ¼

S
P A SpcðKÞ

UðcPÞ ¼ U
�
fcP jP A SpcðKÞg

�
, see notation in Eq. (2.2).

By quasi-compactness of the spectrum, see Cor. 2.15, there exist finitely many objects
c1; . . . ; cn A K such that c1 n � � �n cn ¼ 0 and such that f factors via each ci. Then
f nn : ann ! bnn factors via c1 n � � �n cn ¼ 0. r

3. Universality, functoriality, localization and cofinality

Definition 3.1. A support data on a tensor triangulated category ðK;n; 1Þ is a pair
ðX ; sÞ where X is a topological space and s is an assignment which associates to any object
a A K a closed subset sðaÞHX subject to the following rules:

(SD 1) sð0Þ ¼ j and sð1Þ ¼ X .

(SD 2) sðal bÞ ¼ sðaÞW sðbÞ.

(SD 3) sðTaÞ ¼ sðaÞ.

(SD 4) sðaÞH sðbÞW sðcÞ for any distinguished triangle a ! b ! c ! Ta.

(SD 5) sðan bÞ ¼ sðaÞX sðbÞ.

A morphism f : ðX ; sÞ ! ðY ; tÞ of support data on the same category K is a contin-
uous map f : X ! Y such that sðaÞ ¼ f �1

�
tðaÞ

�
for all objects a A K. Such a morphism is

an isomorphism if and only if f is a homeomorphism.

We now give a universal property for the spectrum.

Theorem 3.2. Let ðK;n; 1KÞ be a tensor triangulated category. The spectrum�
SpcðKÞ; supp

�
of Def. 2.1 is the final support data on K in the sense of 3.1. In other words,�

SpcðKÞ; supp
�

is a support data and for any support data ðX ; sÞ on K there exists a unique

continuous map f : X ! SpcðKÞ such that sðaÞ ¼ f �1
�
suppðaÞ

�
for any object a A K. Ex-

plicitly, the map f is defined, for all x A X , by

f ðxÞ ¼ fa A K j x B sðaÞg:
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Lemma 3.3. Let X be a set and let f1; f2 : X ! SpcðKÞ be two maps such that

f �1
1

�
suppðaÞ

�
¼ f �1

2

�
suppðaÞ

�
for all a A K. Then f1 ¼ f2.

Proof. Let x A X . Observe first that for any object a A K, we have by assumption
the equivalence f1ðxÞ A suppðaÞ , f2ðxÞ A suppðaÞ. This implies in turn that the following
two closed subsets of SpcðKÞ coincide:

T
f1ðxÞ A suppðaÞ

suppðaÞ ¼
T

f2ðxÞ A suppðaÞ
suppðaÞ:

But the left-hand side is nothing but f f1ðxÞg and the right-hand side is f f2ðxÞg by Prop. 2.8.
So, f f1ðxÞg ¼ f f2ðxÞg in SpcðKÞ, hence f1ðxÞ ¼ f2ðxÞ by Prop. 2.9. r

Lemma 3.4. Let ðX ; sÞ be a support data on K and Y HX any subset. Then the full

subcategory of K with objects fa A K j sðaÞHYg is a thick n-ideal.

Proof. Def. 1.2 is immediately verified using (SD 1)–(SD 5) of Def. 3.1. r

Proof of Theorem 3.2. We have seen in Lemma 2.6 that
�
SpcðKÞ; supp

�
is a support

data. For the universal property, let ðX ; sÞ be a support data on K. Uniqueness of the
morphism f : X ! SpcðKÞ follows from Lemma 3.3 so let us check that the announced
map f ðxÞ :¼ fa A K j x B sðaÞg is as wanted. Applying Lemma 3.4 to Y ¼ Xnfxg we see
that f ðxÞ is a thick n-ideal. To see that f ðxÞ is a prime of K, take an b A f ðxÞ; this
means x B sðan bÞ ¼ sðaÞX sðbÞ and hence x B sðaÞ or x B sðbÞ, that is, a A f ðxÞ or
b A f ðxÞ. By definition, see Eq. (2.3), we have f ðxÞ A suppðaÞ , a B f ðxÞ , x A sðaÞ,
hence f �1

�
suppðaÞ

�
¼ sðaÞ. This also gives continuity by definition of the topology on

SpcðKÞ, see Rem. 2.7. r

Remark 3.5. We now want to change the tensor triangulated category K. When the
dependency on K has to be made explicit, we shall denote the support of an object a A K
by suppKðaÞ :¼ suppðaÞH SpcðKÞ.

Proposition 3.6. The spectrum is functorial. Indeed, given a n-triangulated functor

F : K ! L, the map

Spc F : SpcðLÞ ! SpcðKÞ;

Q 7! F�1ðQÞ

is well-defined, continuous and for all objects a A K, we have

ðSpc FÞ�1�suppKðaÞ
�
¼ suppL

�
FðaÞ

�

in SpcðLÞ. This defines a contravariant functor Spcð�Þ from the category of essentially

small tensor triangulated categories to the category of topological spaces. So, if

F : ðK;n; 1KÞ ! ðL;n; 1LÞ and G : ðL;n; 1LÞ ! ðM;n; 1MÞ are n-triangulated func-

tors, then SpcðG � FÞ ¼ SpcðFÞ � SpcðGÞ : SpcðMÞ ! SpcðKÞ.

Proof. This is immediate and left as a familiarizing exercise. r
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Corollary 3.7. Suppose that two n-triangulated functors F1;F2 : K ! L satisfy the

following property: for any a A K we have hF1ðaÞi ¼ hF2ðaÞi in L, using notation 1.3. Then

the induced maps on spectra coincide: Spc F1 ¼ Spc F2. This holds in particular if F1 and F2

are (objectwise) isomorphic functors.

Proof. For Q A SpcðLÞ, i A f1; 2g, a A K, we have a A F�1
i ðQÞ , hFiðaÞiHQ. r

Corollary 3.8. Suppose that a n-triangulated functor F : K ! L is essentially

surjective (i.e. any object of L is isomorphic to the image by F of an object of K ). Then

Spc F : SpcðLÞ ! SpcðKÞ is injective.

Proof. Any prime QHL is replete (see Def. 1.2) and so
�
F
�
F�1ðQÞ

��
¼ Q, by as-

sumption on F . Therefore, F�1ðQ1Þ ¼ F�1ðQ2Þ forces Q1 ¼ Q2. r

Proposition 3.9. Let F : K ! L be a n-triangulated functor. Let S be the

collection of those objects a A K whose image generate L as a thick n-ideal, i.e.
S ¼ fa A K j hFðaÞi ¼ Lg. Then, in the notation of Definition 2.1, the closure of the image

of SpcðFÞ : SpcðLÞ ! SpcðKÞ is

ImðSpc FÞ ¼ ZðSÞ:

Proof. Let a A K. We have a A S if and only if suppL

�
FðaÞ

�
¼ SpcðLÞ, by Cor.

2.5. Now, since ðSpc FÞ�1�suppKðaÞ
�
¼ suppL

�
FðaÞ

�
by Prop. 3.6, the condition a A S

becomes equivalent to ImðSpc FÞH suppKðaÞ. Hence by Prop. 2.8, we have

ImðSpc FÞ ¼
T

a AK s:t:
ImðSpc F ÞHsuppKðaÞ

suppKðaÞ ¼
T

a AS
suppKðaÞ ¼def :

ZðSÞ: r

Remark 3.10. Let JHK be a thick n-ideal of a tensor triangulated category
ðK;n; 1Þ. Consider q : K ! L :¼ K=J the localization functor. Recall from [18] that
the quotient category L has the same objects as K and that its morphisms are obtained
via calculus of fractions by inverting those morphisms having their cone in J. The category
L inherits an-structure since J is an-ideal. We have a so-called exact sequence of tensor
triangulated categories:

0 ! J !j
K !q L ! 0:ð3:1Þ

The functor q is n-triangulated (but not j, only because J does not have a unit).

Proposition 3.11. Let q : K ! L ¼ K=J be a localization as in Remark 3.10. The

map SpcðqÞ : SpcðLÞ ! SpcðKÞ induces a homeomorphism between SpcðLÞ and the sub-

space fP A SpcðKÞ jJHPg of SpcðKÞ of those primes containing J.

Proof. Let us denote by V ¼ fP A SpcðKÞ jJHPg. It is clear that for any
Q A SpcðLÞ, we have SpcðqÞðQÞ ¼ q�1ðQÞI q�1ð0Þ ¼ J, i.e. Im

�
SpcðqÞ

�
HV . We already

know from Corollary 3.8 that the map SpcðqÞ is injective, since q : K ! L is (essentially)
surjective. Conversely, if P A SpcðKÞ contains J then qðPÞ is a prime of L and
q�1

�
qðPÞ

�
¼ P. This is an easy exercise on Verdier localization and is left to the reader.
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Finally, let b ¼ qðaÞ A L and let P A V . Then b A qðPÞ if and only if a A P and so
SpcðqÞ

�
ZðbÞ

�
¼ ZðaÞXV which proves that the continuous bijection

SpcðqÞ : SpcðLÞ ! V

is also a closed map. Hence the result. r

Remark 3.12. Recall from [2] that the idempotent completion ~KK (which exists
for any additive category) of a triangulated category K is canonically triangulated in
such a way that the functor i : K ! ~KK is exact. If K is a tensor triangulated category, it
is easy to turn ~KK into a tensor triangulated category as well so that the functor i : K ! ~KK
is n-triangulated. We now show that this does not a¤ect the spectrum. We prove this
slightly more generally.

Proposition 3.13. Let L be a tensor triangulated category and let KHL be a full

tensor triangulated subcategory with the same unit and which is co f ina l, i.e. for any object

a A L there exists a 0 A L such that al a 0 A K. Then the map Q 7! QXK defines a homeo-

morphism SpcðLÞ !@ SpcðKÞ.

Proof. Replacing K by its isomorphic-closure, we can assume that K is replete (see
Def. 1.2). The above map SpcðLÞ ! SpcðKÞ is nothing but SpcðiÞ where i : K ,! L is the
inclusion, so it is well-defined and continuous. Recall the well-known fact:

for any object a A L; we have alTðaÞ A K;ð3:2Þ

whose proof we give for the reader’s convenience. There exists by assumption an object
a 0 A L such that al a 0 A K. Let us add to the distinguished triangle

a 0 ! 0 ! Tða 0Þ ! Tða 0Þ

two other triangles, namely a ! a ! 0 ! TðaÞ and 0 ! TðaÞ ! TðaÞ ! 0, to obtain the
distinguished triangle

ðal a 0Þ ! alTðaÞ ! Tðal a 0Þ ! Tðal a 0Þ

which has two entries in K and hence the third: alTðaÞ A K. This proof also shows that
if al a 0 belongs to some triangulated subcategory (e.g. a prime) of K then so does
alTðaÞ. So, given a prime P A SpcðKÞ, we have the equality

fa A L j alTðaÞ A Pg ¼ fa A L j ba 0 A L s:t: al a 0 A Pg ¼: ~PP:ð3:3Þ

We claim that ~PP is a prime of L. It is easy to check that it is a thickn-ideal. Suppose that
an b A ~PP and that a B ~PP. This means that if we let c :¼ alTðaÞ we have c A KnP and
cn bF ðan bÞlTðan bÞ A P. The latter cn b A P implies that

cn
�
blTðbÞ

�
F ðcn bÞlTðcn bÞ A P

and hence that blTðbÞ A P, since P is prime and does not contain c. So, we have proved
that b A ~PP, as wanted. Since P is thick, it is easy to see that ~PPXK ¼ P. So, P 7! ~PP is a
right inverse to SpcðiÞ.
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Let Q A SpcðLÞ. Then Q ¼ ~PP where P :¼ QXK A SpcðKÞ. The inclusion QH ~PP is
obvious from Eq. (3.2) above. The other inclusion follows from thickness of Q.

So SpcðiÞ is a continuous bijection with inverse given by P 7! ~PP. Clearly, for any
a A L we have a A Q if and only if alTðaÞ A Q if and only if alTðaÞ A P, where P
and Q are corresponding primes, i.e. P ¼ QXK and Q ¼ ~PP. This shows that the image
by SpcðiÞ of the closed subset suppLðaÞ is suppK

�
alTðaÞ

�
which is closed. Hence SpcðiÞ

is a closed map (see Rem. 2.7). r

Corollary 3.14. We have a homeomorphism SpcðiÞ : Spcð ~KKÞ !@ SpcðKÞ where

i : K ,! ~KK is the idempotent completion of K, see Remark 3.12. r

4. Classification of thick subcategories

Definition 4.1. As usual, the radical
ffiffiffiffiffi
J

p
of a thick n-ideal JHK is defined to be

ffiffiffiffiffi
J

p
:¼ fa A K j bnf 1 such that ann A Jg:

A thick subcategory J is called radical if
ffiffiffiffiffi
J

p
¼ J.

Lemma 4.2.
ffiffiffiffiffi
J

p
is a thick n-ideal equal to the intersection

T
PIJ

P of all the primes

P A SpcðKÞ containing J.

Proof. It su‰ces to prove the claimed equality
ffiffiffiffiffi
J

p
¼

T
PIJ

P since an intersection

of thick n-ideals still is a thick n-ideal. Clearly, by definition of primes,
ffiffiffiffiffi
J

p
HP for any

prime P containing J. Conversely, let a A K be an object such that a A P for all PIJ.
Consider the n-multiplicative S :¼ fann j nf 1g. We have to show that SXJ3j. In-
deed, SXJ ¼ j is excluded by Lemma 2.2 which would give us a prime P with JHP
and a B P, contradicting the choice of the object a. r

Remark 4.3. In practice, it is very frequent that all thick n-ideals are radical. In-
deed, as soon as an object a A K is dualizable, we have that a is a direct summand of
an anDðaÞ where DðaÞ is the dual of a. See details in [8], Lem. A.2.6. In particular, it is
very common that a A han ai, in which case we can use:

Proposition 4.4. The following conditions are equivalent:

(i) Any thick n-ideal of the category K is radical.

(ii) We have a A han ai for all objects a A K.

Proof. If any thick n-ideal J is radical, then so is J :¼ han ai, giving (ii). Con-
versely, suppose that (ii) holds and let J be a thick n-ideal. We have to show that
ann A J ) a A J. By induction on n, it su‰ces to treat the case n ¼ 2, which is immediate
from the assumption: a A han aiHJ ) a A J. r

Notation 4.5. The support of a collection of objects EHK is defined to be the union
of the supports of its elements:
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suppðEÞ ¼
S

a AE
suppðaÞH SpcðKÞ:

Warning: the subset suppðEÞH SpcðKÞ is not the same thing as the closed subset
ZðEÞH SpcðKÞ of Eq. (2.1), although both coincide with suppðaÞ when E ¼ fag.

Lemma 4.6. Let EHK. Then suppðEÞ ¼ fP A SpcðKÞ jESPg.

Proof. We have P A suppðEÞ if and only if there exists an a A E such that
P A suppðaÞ which means a B P, by definition of the support, see Eq. (2.3). r

Notation 4.7. Given a subset Y H SpcðKÞ we define the subcategory supported on Y

to be the full subcategory KY of K on the following objects:

KY ¼ fa A K j suppðaÞHYgHK:

It is a thick n-ideal by Lemma 3.4.

Lemma 4.8. Let Y H SpcðKÞ be a subset. Then KY is equal to the intersectionT
P BY

P of all the primes P A SpcðKÞ not belonging to Y.

Proof. This is easy, for instance as follows: For an object a A K, we have a A KY

if and only if suppðaÞHY . Taking complements, suppðaÞHY is in turn equivalent to
‘‘EP B Y , P B suppðaÞ’’. Now, by definition of suppðaÞ ¼ fP A SpcðKÞ j a B Pg, the latter
property of the object a is equivalent to: ‘‘EP B Y , a A P’’. r

Proposition 4.9. Let JHK be a thick n-ideal. Then we have KsuppðJÞ ¼
ffiffiffiffiffi
J

p
.

Proof. By Lemma 4.8, KsuppðJÞ ¼
T

P B suppðJÞ
P. By Lemma 4.6, P B suppðJÞ is

equivalent to JHP. So, we conclude by Lemma 4.2. r

Theorem 4.10. Let S be the set of those subsets Y H SpcðKÞ of the form Y ¼
S
i A I

Yi

for closed subsets Yi of SpcðKÞ with SpcðKÞnYi quasi-compact for all i A I . Let R be the set

of radical thick n-ideals of K. Then there is an order-preserving bijection S !@ R given by

Y 7! KY ¼def : fa A K j suppðaÞHYg ðsee Notation 4:7Þ

whose inverse is

J 7! suppðJÞ ¼def : S
a AJ

suppðaÞ ðsee Notation 4:5Þ:

Proof. Let us see that the maps are well-defined. A thick n-ideal of the form KY is
necessarily radical since suppðannÞ ¼ suppðaÞX � � �X suppðaÞ ¼ suppðaÞ by Lem. 2.6 (e).
By Prop. 2.14 (a), suppðJÞ is a union of closed subsets with quasi-compact complements
SpcðKÞnsuppðaÞ ¼ UðaÞ. Both maps are clearly inclusion-preserving. Let us now check
that both composites are equal to the identity.

We already know from Prop. 4.9 that KsuppðJÞ ¼
ffiffiffiffiffi
J

p
¼ J for J radical. We now

turn to the other composition: suppðKY Þ. Observe that for any subset Y H SpcðKÞ, we

163Balmer, The spectrum of tensor triangulated categories



have directly from the definitions that suppðKY ÞHY . Conversely, let P A Y and let us
prove that P A suppðKY Þ. By assumption on Y , there exists a closed subset Yi HY such
that P A Yi and SpcðKÞnYi is quasi-compact. By Prop. 2.14 (b), there exists an object
a A K such that SpcðKÞnYi ¼ UðaÞ, that is, Yi ¼ suppðaÞ. So, we have P A suppðaÞHY .
This means P A

S
a AKY

suppðaÞ ¼ suppðKY Þ as was to be shown. r

Remark 4.11. If SpcðKÞ is a noetherian topological space, then one can replace
Thomason’s condition ‘‘Y ¼

S
Yi with SpcðKÞnYi quasi-compact’’ by the simpler condi-

tion ‘‘Y specialization closed’’. In case of doubt, see Definition 5.1 below, or Remark 2.16
and Corollary 2.17.

Remark 4.12. Assume for simplicity that all thickn-ideals are radical (see Rem. 4.3
and Prop. 4.4). Then, if we want to describe n-ideals A of K which are not necessarily
thick, we can do it in two steps. First, consider J :¼ fa A K j alTðaÞ A Ag which is the
same by (3.2) as J ¼ fa A K j bb A K with al b A Ag and which obviously admits A as
a cofinal subcategory. This category J is a thick n-ideal of K and can be classified via its
support, as explained above. Finally, A can be recovered from J via the subgroup it de-
fines in the zeroth K-theory group K0ðJÞ of J, as explained in Thomason [17], Thm. 2.1
(whose ‘‘dense’’ is our ‘‘cofinal’’).

5. Examples

To avoid repeating several times the same property, we give it a name:

Definition 5.1. Recall that a subset Y HX of a topological space X is specialization

closed if it is a union of closed subsets or equivalently if y A Y implies fygHY . We say for
short that a support data ðX ; sÞ on a tensor triangulated category K (Def. 3.1) is a classi-

fying support data if the following two conditions hold:

(a) The topological space X is noetherian and any non-empty irreducible closed sub-
set Z HX has a unique generic point: b!x A Z with fxg ¼ Z.

(b) We have a bijection

y : fY HX jY specialization closedg !@ fJHK jJ radical thick n-idealg

defined by Y 7! fa A K j sðaÞHYg, with inverse J 7! sðJÞ :¼
S

a AJ
sðaÞ.

Theorem 5.2. Suppose that ðX ; sÞ is a classifying support data on K. Then the canon-

ical map f : X ! SpcðKÞ of Theorem 3.2 is a homeomorphism.

Proof. Theorem 3.2 tells us that the map f is continuous and satisfies
f �1

�
suppðaÞ

�
¼ sðaÞ for all objects a A K. We first prove the following:

Claim. Any closed subset Z HX is of the form Z ¼ sðaÞ for some object a A K.
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Since sða1ÞW � � �W sðanÞ ¼ sða1 l � � �l anÞ and since the space X is noetherian,
it su‰ces to prove the claim for an irreducible Z ¼ fxg for some x A X . Now,
fxg ¼ Z ¼ y�1

�
yðZÞ

�
¼

S
a A yðZÞ

sðaÞ forces the existence of some object a A K such that

x A sðaÞHZ. Hence fxgH sðaÞHZ ¼ fxg which proves the claim.

For x A X define Y ðxÞ :¼ fy A X j x B fygg. It is easy to check that Y ðxÞ is spe-
cialization closed. Let a A K. Let us see that sðaÞHYðxÞ , x B sðaÞ. Since x B YðxÞ we
have: sðaÞHYðxÞ ) x B sðaÞ. Conversely, since sðaÞ is (specialization) closed, and since
x B sðaÞ, we have x B fyg, Ey A sðaÞ, which exactly means sðaÞHYðxÞ by definition of
the latter. So, we have established:

y
�
YðxÞ

�
¼def : fa A K j sðaÞHY ðxÞg ¼ fa A K j x B sðaÞg ¼def :

f ðxÞ:ð5:1Þ

In particular, if f ðx1Þ ¼ f ðx2Þ then Y ðx1Þ ¼ Yðx2Þ which immediately implies fx1g ¼ fx2g
and x1 ¼ x2 since X is T0, see Def. 5.1 (a). Hence f is injective.

Let us check surjectivity of the map f . Let P be a prime of K. By assumption, there
exists a specialization closed subset Y HX such that P ¼ yðYÞ. The complement XnY is
non-empty since P3K. Let x; y A XnY . By the Claim, there exist objects a; b A K such
that fxg ¼ sðaÞ and fyg ¼ sðbÞ. Since x and y are outside Y , the objects a and b do not
belong to yðY Þ ¼ P. The latter being a prime, we then have an b B P. So, sðan bÞSY ,

i.e. there is a point z A XnY such that z A sðan bÞ ¼ sðaÞX sðbÞ ¼ fxgX fyg and hence
fzgH fxg and fzgH fyg. In short, we have established that the non-empty family of
closed subsets

F :¼ ffxgHX j x A XnYg

has the property that any two elements admit a lower bound for inclusion. On the other
hand, since X is noetherian, there exists a minimal element in F which is then the lower
bound for F by the above reasoning. This shows that there exists a point x A XnY such
that XnY H fy A X j x A fygg, the reverse inclusion also holds because x B Y , which is spe-
cialization closed. In other words,

Y ¼ fy A X j x B fygg ¼ YðxÞ:

Therefore P ¼ yðYÞ ¼ y
�
YðxÞ

�
¼ð5:1Þ f ðxÞ, which proves the surjectivity of f .

The relation f �1
�
suppðaÞ

�
¼ sðaÞ now gives f

�
sðaÞ

�
¼ suppðaÞ. This shows that f is

a closed map, since we know from the Claim that any closed subset of X is of the form
sðaÞ. Hence the map f is a homeomorphism. r

Remark 5.3. Theorem 5.2 is a converse to Theorem 4.10 in the noetherian case. We
now want to use it in order to describe SpcðKÞ in two classes of examples.

Notation 5.4. Let X be a (topologically) noetherian scheme and let DperfðX Þ be the
derived category of perfect complexes over X , with the usual tensor productn¼nL

OX
. For

any perfect complex a A DperfðXÞ we denote by supphðaÞHX the homological support of a,
which is the support of the (total) homology of a.
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Theorem 5.5 (Thomason [17], Thm. 3.15). The pair (X , supph) is a classifying sup-

port data on DperfðXÞ in the sense of Definition 5.1.

Corollary 5.6. There is a homeomorphism f : X !@ Spc
�
DperfðXÞ

�
with

f ðxÞ ¼ fa A DperfðX Þ j ax F 0 in DperfðOX ;xÞg for all x A X :

Moreover, for any perfect complex a A DperfðXÞ, the closed subset supphðaÞ in X corresponds

via f to the closed subset suppðaÞ in Spc
�
DperfðXÞ

�
.

Proof. Theorems 5.2, 5.5 and 3.2. r

Remark 5.7. Note that we cannot expect any scheme to be recovered as SpcðKÞ
from K ¼ DperfðX Þ, nor from other tensor triangulated categories K associated to X ,
since SpcðKÞ is always quasi-compact (Cor. 2.15) and quasi-separated, i.e. it admits a basis
of quasi-compact open (Rem. 2.7 and Prop. 2.14).

Notation 5.8. Let G be a finite group or more generally a finite group scheme and
let k be a field of characteristic p. We adopt the notations of [6]. Let H�ðG; kÞ beL
i AZ

H iðG; kÞ for p ¼ 2 and
L

i A 2Z

H iðG; kÞ for p odd respectively (we stress the awkwardness

of this definition). Let stabðkGÞ be the tensor triangulated category of finitely generated
(left) kG-modules modulo projective modules, where n¼nk. Let us denote by
PðGÞ :¼ Proj

�
H�ðG; kÞ

�
and for any finitely generated kG-module, by sðMÞ :¼ PðGÞM

the P-support of M as defined in [6], Def. 4.1.

Theorem 5.9. The pair
�
PðGÞ; s

�
is a classifying support data on stabðkGÞ.

Proof. See [6], Thm. 5.3, for finite group schemes or [4], Thm. 3.4, for finite groups;
in fact M 7! PðGÞM is a support data by [6], Prop. 4.2, or [4], Prop. 2.2. r

Corollary 5.10. We have a homeomorphism f : PðGÞ !@ Spc
�
stabðkGÞ

�
with

f ðxÞ ¼ fa A stabðkGÞ j x B PðGÞMg for all x A PðGÞ:

Moreover, for any finitely generated kG-module M, the closed subset PðGÞM HPðGÞ corre-

sponds via f to suppðaÞ in Spc
�
stabðkGÞ

�
.

Proof. Theorems 5.2, 5.9 and 3.2. r

6. The structure sheaf

Definition 6.1. For any open U H SpcðKÞ, let Z :¼ SpcðKÞnU be its closed com-
plement and let KZ be the thick n-ideal of K supported on Z (see 4.7). We denote by
OK the sheafification of the following presheaf of rings:

U 7! EndK=KZ
ð1UÞ
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where the unit 1U A K=KZ is the image of the unit 1 of K via the localization
K ! K=KZ. The restriction homomorphisms in the above presheaf are given by localiza-
tion in the obvious way. The sheaf of commutative rings OK turns SpcðKÞ into a ringed
space, that we denote

SpecðKÞ :¼
�
SpcðKÞ;OK

�
:

Remark 6.2. This construction is inspired by the author’s [1]. There, we considered a

presheaf of triangulated categories on SpcðKÞ given by U 7! gK=KZK=KZ, with Z ¼ SpcðKÞnU

(for the idempotent completion ~KK, see Rem. 3.12). This was in turn inspired by Thoma-

son’s theorem, see [1], Thm. 2.13, which identifies the latter category gK=KZK=KZ with DperfðUÞ
when K ¼ DperfðXÞ. Note that the endomorphism ring of the unit is commutative, see e.g.
[1], Lem. 9.6, and that the idempotent completion is harmless for the definition of the struc-
ture sheaf OK, since K ,! ~KK is always a full embedding.

In [1], we established that this sheaf of rings recovers the structure sheaf OX when ap-
plied to K ¼ DperfðXÞ. We will not repeat this in the present context and we leave it as an
easy exercise to the reader, considering the above comments. The computation of the
‘‘right’’ structure sheaf in the case of K ¼ stabðkGÞ comes more as a surprise because of
the rather non-conceptual definition of H�ðG; kÞ, see 5.8 and compare Benson [3], Vol. II,
Rem. after 5.6.4, p. 175. Nevertheless, we have:

Theorem 6.3. Via the homeomorphisms of Corollaries 5.6 and 5.10, the structure

sheaves also identify. That is, we have isomorphisms of schemes as follows:

(a) For X a topologically noetherian scheme, Spec
�
DperfðX Þ

�
FX .

(b) For G a finite group (scheme), Spec
�
stabðkGÞ

�
FProj

�
H�ðG; kÞ

�
.

Proof. As already mentioned, Part (a) follows as in [1] from Thomason’s theorem,
see [1], Thm. 2.13. Part (b) has been established recently by Friedlander and Pevtsova and
is precisely the statement of [6], Thm. 7.3. r

Remark 6.4. It is an open question to know when SpecðKÞ is a scheme. For the mo-
ment, we can prove that SpecðKÞ is always a locally ringed space. Since we do not have
applications of this fact yet, we do not include its proof here.
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