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Foreword 

This book contains a collection of articles summarizing together the state of knowl
edge in a broad portion of modern homotopy theory. These articles were assembled 
during 1998 and 1999, on the occasion of an emphasis semester organized by the 
Centre de Recerca Matematica (CRM) and its highlight, the 1998 Barcelona Con
ference on Algebraic Topology (BCAT) . First of all, we are indebted to all the 
authors for submitting their work, and to the referees for their help in the selec
tion and for their generous contribution to the content of the articles. 

Many talks given during the CRM semester or at the conference focused 
on aspects of the following topics: abstract stable homotopy, model categories, 
homotopical localizations and cellular approximations, p-compact groups, mod
ules over the Steenrod algebra, classifying spaces for proper actions of discrete 
groups, K-theory and other generalized cohomology theories, cohomology of fi
nite and profinite groups, Hochschild homology, configuration spaces, Lusternik
Schnirelmann category, stable and unstable splittings. Other talks treated multi
disciplinary subjects related to quantum field theory, differential geometry, homo
topical dynamics, tilings, and various aspects of group theory. 

In addition, an advanced course on Classifying Spaces and Cohomology of 
Groups was organized by the CRM in the days preceding the conference. Lecture 
notes from this course will be published by Birkhauser Verlag as the first volume 
of a newly created CRM Advanced Course series. 

The 1998 BCAT was a Euroconference, sponsored by the European Commis
sion under the TMR Programme. Its training purpose was largely fulfilled. A large 
number of young researchers participated in the conference and in the course. It is 
remarkable that more than 40% of contributed talks to the conference were given 
by participants aged less than 35 years, with an impressive publication record. 
As one of the plenary speakers remarked, this is a clear sign of good health of 
homotopy theory. 

We wish to thank the CRM Director, Manuel Castellet, for his fundamen
tal collaboration. The CRM Secretaries, Consol Roca and Maria Julia, offered 
their best skills to make the above-mentioned activities very smooth, even for the 
organizers. In addition to the European Commission, financial support is acknowl
edged from DGESIC, CIRIT, and Universitat Autonoma de Barcelona. We are 
also indebted to Birkhauser Verlag for their kind assistance. 

Jaume Aguade 
Carles Broto 

Carles Casacuberta 

Bellaterra, December 2000 
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Etale approximations 
and the mod I! cohomology of G Ln 

Marian Florin Anton 

Abstract. In this paper, we present counter-examples to the unstable version 
of a conjecture postulating the relationship between cohomology of arithmetic 
groups and the "etale models" of their classifying spaces. 

1. Introduction 

Let ( be an odd prime number and 0 a ring of integers that contains the (th roots 
of unity, has only one prime ideal above ( and its Picard group has no (-torsion. 
Let A be the ring O[ i J regarded as a fixed subring of the field C of complex 

numbers and consider the etale approximation map BGLn(A) ~ Xn(A) at the 
prime ( (see 3.5). Here, BGLn(A) means the classifying space of the group of n x n 
invertible matrices over A. 

In this setting, it is conjectured (see [5]) that for n = 00 the map Xn induces 
an isomorphism on mod ( cohomology. The goal of this article is to study the 
unstable version of this conjecture. Our main result is the following: 

Theorem 1.1. The map Xn does not induce an isomorphism on mod ( cohomology 
for n sufficiently large. 

As an example of a prime ( and a ring A for which X2 does induce an iso
morphism we can cite our earlier result [1 J 3.2, Step 2: 

Theorem 1.2. If A = Z[~, ~J then X2 induces an isomorphism on mod 3 coho
mology. 

The failure of Xn to be a mod-( equivalence will be shown by considering the 
homotopy classes of maps from the classifying space BIl of a finite (-group Il into 
BGLn(A) and by using representations of finite (-groups. 

The article is organized as follows. In §2, we prepare a number theoretical 
ingredient needed later. In §3 we study the etale approximation BGLn(A) ~ 
Xn(A) at the prime ( and give a homotopical description of Xn(A) (see 3.9). The 
proof of theorem 1.1 is given in §4. 

The author is very grateful to William Dwyer for many enlightening discus
sions about this subject. 
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Notation 1.3. Throughout the entire article we reserve the letter A for a ring that 
satisfies the prescribed hypotheses. Also, we keep the notation 2r2 for the number 
of complex embeddings of A. 

2. A Useful Lemma 

The goal of this section is to prove lemma 2.1 that will be needed later. Its proof 
is independent from the rest of the article. 

Lemma 2.1. There is a finite set of prime ideals PI, P2, ... , Pr in the ring A such 
that the natural map 

r 

i=l 

is a group isomorphism, where Ap is the p-adic completion of A with respect to 
the prime ideal P and r = r2 + 1. 

Proof. Let Sl, S2, ... , Sn be a set of representatives in AX for all the nontrivial 
elements of AX / (A x )f. We can choose this set to be finite in agreement with the 
Dirichlet Unit Theorem. We claim that for each i between 1 and n, there exists at 
least one prime ideal qi of A such that Si is not an C-power in A qi . 

Indeed, suppose by contradiction that for a given i between 1 and n, and 
every prime ideal q of A, Si is an Cth power in Aq . In other words, if K is the field 
of fractions of A, then for each prime ideal q of A there exists at least one prime 
idealD of A[~ over q, such that 

~n=kq 
where on the left hand side it is the completion with respect to D and on the right 
hand side with respect to q. Observe that, because 0 is in K, the field exten
sion K[ ~J / K is a Galois extension and the Galois group of this extension after 
completing with respect to D is the decomposition group Vn /q of Dover q, [13J 
p.179. Therefore, we can reformulate our conclusion by saying that in particular, 
the following set of prime ideals 

{q : q is unramified in A[~ with Vn / q = 1 for some D} 

has the density 1. But, according to the Tchebotarev Theorem, the density of this 
set of prime ideals is [K[~ : KJ- 1 and this number is < 1 because Si is not 
an Cth power in K. This contradiction shows that the assumption made at the 
beginning is false, proving our claim. 

Also, we have that ([13], p.146) 

A:i = lF~ x pro qi-groUP 

where IF qi is the residual field of A at qi, and C -=1= 0 mod qi , because C is a 
unit in A. Therefore, the image of Si via the canonical map A -t Aqi generates 
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A~j(A~y ~ 'Llf. In this way, it follows not only that the natural map 
n 

i=l 

is injective, but also that it is a linear map between two vector spaces over lFt, 
given by an r x n matrix, where r = r2 + 1 is given by the Dirichlet Unit Theorem. 
By finding an r x r invertible minor of this matrix we can choose in fact a finite set 
of prime ideals PI,"" Pr among Q1, ... , qn, such that the corestriction of the above 
map is an isomorphism as stated in our lemma. 

D 

3. The Etale Approximation to BGLn(A) 

The goal of this section is to describe the etale approximation Xn(A) to BGLn(A) 
at the prime e which comes together with a natural map 

Xn : BGLn(A) --t Xn(A) 

After recalling the concepts of "etale topological type" and "etale approximation" 
we show that Xn(A) can be expressed up to homotopy in terms of Xn(lFp)'s for 
various residual fields IF p 's of the ring A. 

A simplicial object in a category C is a contravariant functor from the cat
egory .6. of standard simplices n = {O, 1,2, ... , n}, n 2: 0, to C. With the natural 
transformations of functors as morphisms, the simplicial objects of C form a new 
category simplicial-C. A pro-object in a category C is a functor from a small left 
filtering category to C ([3], III, 8.1). Similarly, the pro-objects of C form a new 
category pro-C. 

The etale topological type as defined in Friedlander [7], p. 36, is a covariant 
functor ( )et from the category of locally noetherian simplicial schemes to the 
category of pro-simplicial sets. Recall that the category of schemes (as defined in 
[8], p. 74) contains the opposite category of commutative rings with identity. In 
particular, if a noetherian ring R is regarded as an affine scheme X = Spec(R) and 
a scheme X as a simplicial scheme represented by the constant functor n t---> X, 
we can apply ( )et to the ring R. Also, the category of pro-simplicial sets can be 
regarded as a generalization of the category of CW-complexes [2]. In this context, 
we have the following basic examples ([7], 4.5, [2], p. 115, 125, [6], 3.2). 

Example 3.1. pt --t (C)et is a homotopy equivalence, where pt is a point. 

Example 3.2. (IF q )et --t (R)et is a homotopy equivalence induced by the canonical 
map from a complete discrete valuation ring R to its residual finite field IF q' 

Example 3.3. Sl --t (IF q )et induces an isomorphism on mod f cohomology if the 
finite field IF q has the characteristic :/; f and the given map sends the generator 
Of7r1(Sl) to the Frobenius element of7r1((lFq )et). Here, Sl is the one dimensional 
sphere. 
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Let L = Z[~] and GLn,L the group scheme over Spec(L) defined by the ring 
L[Xij; 1 :S i,j :S nj[t]/(t . det(xij) - 1). Next, let BGLn,L be the (classifying) 
simplicial scheme over Spec(L) defined by sending n to the n-fold fibre product 
of G Ln,L with itself over Spec( L) [7], p. 8. As in [5], p. 250 we can naturally 
associate a pro-object of Kan fibrations {T/3 --+ V/3} to the fibrewise i-completion 
of (BGLn ,det over (L)et. Let U --+ (L)et be a map of pro-simplicial sets, and 
think of U as a pro-simplicial set sending each object a of a left filtering category 
to the simplicial set Uo . For each induced diagram Uo --+ V/3 <-- T/3 of simplicial 
sets we define the simplicial set Hom(Uo , T/3)v~ by sending n to the set of natural 
transformations Uo 0 ~[n] --+ T/3 over V/3. (Uo 0 A[n] is the simplicial set sending 
m to the disjoint union of copies of Uo,m, the image of m via Uo , indexed by maps 
m --+ n in the category A). Finally, we define as in [5], p. 250, 

Hom£(U, (BGLn,ded(L)et == h0ll!!! lim Hom( Uo , T{3)v~ (1) 
{3 0 

This is a simplicial set with a distinguished point induced by the "identity" section 
Spec(L) --+ GLn,L of the group scheme GLn,L over Spec(L). 

Notation 3.4. The connected component of the distinguished point in (1) will be 
denoted by Xn(U). 

In particular, if R is a noetherian L-algebra, then we get a map (R)et --+ (L )et 
which allows us to define Xn((R)ed. This simplicial set will be simply denoted 
by Xn(R). With this notation, according to [5] 2.5 and p. 278, there exists a 
transformation 

which is natural with respect to the functoriality of both sides in R. 

Definition 3.S. The pair (Xn, Xn(R)) will be called the "etale approximation" of 
BGLn(R) at the prime i. 

Recall that the goal of this section is to describe Xn(A) . In order to do this, 
the first step is to start with the fixed embedding Ace and, by elementary 
field theory, to embed each Api in C, i = 1, ... , r, in such a way that the following 
diagrams are commutative: 

A ----+ C 

1 II (2) 

Api ----+ C 

where the prime ideals Pi'8 of A are those the existence of which is proved in 2.1 
(in particular, r = r2 + 1). 
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By applying the etale topological type functor ( )et to all of these commutative 
diagrams, we get commutative diagrams of pro-spaces: 

(A)et <----- (C)et 

(3) 

where (C)et is contractible by 3.1. Hence, we get a map 
r 

(A) et f- V (ApJet (4) 
i=1 

from the homotopy fibre sum of all of the maps (C)et -+ (ApJet, i = 1, ... , r, to 
(A)et. 

Proposition 3.6. The above map (4) induces an isomorphism on the mod i coho
mology. 

Proof. Both pro-spaces in (4) being connected, the isomorphism on the zero di
mensional cohomology is trivial. Also, recall that for any noetherian ring R we 
have a natural isomorphism ([7], p. 49) 

H*((R)et,IF£) ~ H;t(Spec(R),IF£) 

and the following short exact sequence ([12] 4.11) 

1 -+ R X j(RX)£ -+ HJt(Spec(R),IF£) -+ i-torsion of Pic(R) -+ 0 

where IF£ is the constant sheaf and H;t is the etale cohomology (see [12], p. 84). 
Because in our case, Pic(R) does not have i-torsion for R = A or Ap with p any 
prime ideal of A, by the assumptions made about A (see also [13] p. 74), it follows 
that 

(5) 

and 
r r r 

Hl(V (ApJ et, 1Ft) ~ II Hl((ApJet,IF£) ~ II A;j(A;y 
i=1 i=1 i=1 

Hence, the map induced by (4) on the first mod i cohomology can be identified by 
naturality with the map of lemma 2.1 which is an isomorphism by construction. 

In order to finish the proof, it is enough to show that both pro-spaces in 
(4) have trivial mod i cohomology in dimensions higher than 1. While this fact is 
obvious for V~=1 (Ap.)et, according to 3.2 and 3.3, for (A)et it follows from Mazur 
[11]. Indeed, let {3 be the unique prime ideal of 0 over i (see the Introduction). 
Then we have the following exact sequence ([11], p. 540) 

... -+ H!t(Spec(O),IF£) -+ H!t(Spec(A),IF£) -+ E%-i-l -+ ... (6) 
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where ([11], p. 540) 

and ([11J, p. 539) 
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if i = 0 
if i = 1 

otherwise 

if i = 0,3 
if i = 2 

otherwise 

in agreement with the fact that Pic(O) has no C-torsion and 0 contains V'1. More
over, the map Eg -+ H~t(Spec(O),lFe) which appears in (6) is surjective (compare 
with [11], p. 241) and hence it immediately follows that H~t(Spec(A),lFe) = 0 for 
i > 2. Finally, Ox/(Ox)e ~ IF/2 and 6;/(6;)e ~ IF/r2 +l by the Dirichlet Unit 
Theorem and [13], p. 146. Hence, (6) and (5) give the following exact sequence 

0-+ IF/2+l -+ IF/r2 +l -+ IF/2 -+ H;t(Spec(A),lFe) -+ lFe -+ lFe -+ 0 

from which it follows that H;t (Spec( A), IF e) = 0 as it was stated. 0 

The second step is to apply the etale approximation functor Xn to all of the 
commutative diagrams (3) and to study the induced map 

(7) 

from Xn(A) to the homotopy fibre product of all of the maps Xn(ApJ -+ Xn(C), 
i = 1, ... , r, denoted by Xn(A p" ... , APr; C}. In order to do this, we can use the 
following known results: 

Proposition 3.1 ([4J 2.7). Let R be a notherian Z[~J-algebra containing V'1 and let 
U -+ (R}et be a map of pro-simplicial sets which induces an isomorphism on mod 
C cohomology. Then the induced etale approximation map 

is a homotopy equivalence. 

Proposition 3.8 ([lJ 2.3). There are natural homotopy equivalences oflFe- complete 
simplicial sets 

(lFe)ooBGLn(lFp) -+ Xn(Ap} 

(lFe}ooBGLn(Ctop) -+ Xn(C) 

where p is any prime ideal of A and lFp is the residual field of A at p. 

Here, (lFe)ooX means the lFe- completion of the simplicial set X in the sense 
of Bousfield and Kan [3J. It follows that 

Proposition 3.9. The above map (7) is a homotopy equivalence. 
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Proof. The idea of the proof is to factorize the map (7) as follows 
r 

i=l 

where the first map is the etale approximation map induced by (4), and according 
to 3.6 and 3.7 it is a homotopy equivalence, while the second map is given by the 
universal property of the homotopy fibre product. 

All we have to prove is that the second map is also a homotopy equivalence. 
This fact can be immediately deduced by induction on r, the case r = 2 being 
shown in [1] (2.5). 0 

Corollary 3.10. If Xn induces an isomorphism on the mod e cohomology then it 
induces a homotopy equivalence 

(1Ft)ooBGLn(A) -t Xn(A) 

Proof. According to 3.9 and [3], I, §5, it is enough to show that 

Xn(A p1 , ... , APr; C) 

is an 1Ft-complete simplicial set. This fact follows at once by induction on r, the 
case r = 2 being shown in the proof of [1] 2.3. 0 

4. Proof of Theorem 1.1 

Suppose that X~ is an isomorphism for n = no. According to 3.10, it follows that 
Xno induces a homotopy equivalence 

(8) 

where [ , ] stands for the homotopy classes of unpointed maps, m is any natural 
number, and J.Lm is the cyclic group of order em . 

Next, observe that by 3.9 we have 

[BJ.Lm' Xno(A)] ~ [BJ.Lm,Xno(App ... , APr; C)] 

Moreover, we can think of the space of unpointed maps 

Map(BJ.Lm, Xno(A p1 , ... , APr; C)) 

as the homotopy fibre product of all of the maps 

Map(BJ.Lm,Xno(Ap.)) -t Map(BJ.Lm,Xno«C)) 

induced by (2). 

Lemma 4.1. The induced map 
r 

[BJ.Lm,Xno(App ... ,APr;C)]-t II[BJ.Lm,Xno(Ap.)] 
i=l 

is injective. 

(9) 
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Proof. By using the homotopy exact sequence associated to a homotopy fibre 
product, it is enough to check that each component of Map(B/-lm,Xno«C)) is 
simply connected and this was shown in [4], 3.6. 0 

Finally, by 3.8, we have 

(10) 

and also, by [14], p. 124, all of the groups G Lno (A) and G Lno (If pJ, i = 1,2, ... , r, 
satisfy the finiteness condition of the following 

Theorem 4.2 (Lee [10]). Let <I> be a group of virtually finite cohomological dimen
sion, and let /-l be a finite f-group. Then the natural map 

Rep(/L, <I» -> [B/-l, (lFe)ooB<I>] 

is a bijection. 

Here Rep(/-l, <I» stands for the set of conjugacy classes of group homomor
phisms /-l -> <I> . 

From (8), (9), 4.1 , (10) and 4.2 we get a commutative square 

Rep(/-lm, GLno(A)) ---7 TI~=tlB/-lm' (lFe)ooBGLno(lFpJ] 

~ 1 1 ~ 
[B/-lm' (lFe)ooBGLno(A)] ---7 TI~=I[B/-lm,Xno(A.pJ] 

in which the bottom horizontal arrow is injective. Hence, it follows that the map 
r 

i=1 

induced by the canonical maps A -> A/Pi ~ IFPi is injective for any m ~ O. At this 
point, we conclude the proof of theorem 1.1 by referring to the following 

Lemma 4.3. There exists nl such that for every no ~ nl we can find at least one 
mo for which the above map Tm ,no is not injective for m = mo. 

Proof. We distinguish between two cases: Case 1. A is a principal ideal domain; 
and Case 2. A is not such a ring. 

Case 1. Suppose by contradiction that for each nl there exists no ~ nl such 
that Tm,no is injective for all m ~ O. Let m ~ a be fixed for a moment, where 
a ~ 1 is the maximum exponent having the property that A contains the fa-th 
root of unity. Denote A[ i\II] by Am and let P be any prime ideal of Am not 
dividing PI ..... Pro Choose an embedding of /-lm in A;;' and use it to define a 
module structure of P, Am over the groupal ring A[/-lm] by letting /-lm act on P, 
Am by multiplication. Let nl be the degree of the minimal polynomial of l\II 
over A and no = nl + n', where n' ~ 0 is chosen such that Tm ,no is injective. Let 
An' be the trivial A[/-lm]-module of rank n' as a free module over A . Because A 
is a principal ideal domain, both P and Am are free modules over A of the same 
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rank n1. Therefore, the A[J.lm]-modules M = P EB An' and N = Am EB An' can be 
regarded as elements of ReP(J.lm, G Lno (A) ). 

Also, for each i between 1 and r, P has an index in Am relative prime to 
Pi, by the way P was chosen. Therefore, IF Pi 0 A P is isomorphic to IF Pi 0 A Am as 
lFp;[J.lm]-modules, and hence Tm,no(M) = Tm,no(N). Meanwhile, it is known that 
e is divisible by (1 - l~) in Am and e is a unit in A. Therefore, by choosing a 
generator a of J.lm we have (1 - a)M = P and (1 - a)N = Am· Because Tm ,no is 
injective, it follows that P is isomorphic to Am as A[J.lm]-modules. In other words, 
P is a principal ideal in Am. By the Tchebotarev Theorem, we conclude that Am 
must be a principal ideal domain. But this is not true for m sufficiently large, 
according to [9], p. 298, and [15], p. 44. 

Case 2. Let I be a nonprincipal prime ideal of A not dividing Pl' .... Pro The 
existence of such an ideal I follows from the Tchebotarev Theorem. Suppose that 
Ih is principal for some exponent h > 1. Consider M := I h- 1 EBI and N := AEBA 
as A[J.l1]-modules by letting J.l1 act by multiplication on the second and trivially 
on the first summands. Observe that M is a free module of rank 2 over A because 
A is a Dedekind ring, and in this way we can regard M and N as elements in 
Rep(J.l1, G L2 (A)). Because I has index prime to Pi, we conclude that if T1 ,2 is 
injective, then I must be a principal ideal, contradiction. D 
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On the Hurewicz map and 
Postnikov invariants of KZ 

Christian Ausoni 

Abstract. The purpose of this note is to present a calculation of the Hurewicz 
homomorphism h: K.Z ---'t H. (G L(Z); '1.) on the elements of K. '1. known 
to generate direct summands. These results are then used to produce lower 
bounds for the Postnikov invariants of the space KZ. Under extra hypotheses 
(compatible with the Quillen-Lichtenbaum conjecture for '1.), we give the 
exact p-primary part of the order of the latter invariants. 

1. Introduction 

D. Quillen defined, for any integer n ~ 1, the higher algebraic K-theory group 
KnR of a ring R as the homotopy group KnR = 1Tn(BGL(R)+). In this paper, we 
will calculate the Hurewicz homomorphism 

h: K/ll -+ H.(BGL('ll)+; 'll) ~ H.(GL('ll); 'll) 

on elements of K.'ll that are known to generate direct summands. One motivation 
for such a calculation is to obtain information on the homotopy type of the space 
BGL('ll)+ , which we will denote in the sequel by K'll. Its weak homotopy type is 
uniquely determined by its homotopy groups K.'ll and by its Postnikov invariants, 
which are related to the Hurewicz homomorphism. 

The Hurewicz homomorphism h: K.'ll-+ H.(GL('ll);'ll) has first been used 
by Borel [7] to calculate the rank of the finitely generated abelian group Km'll for all 
m ~ 1: by the Milnor- Moore Theorem, the Hurewicz homomorphism induces an 
isomorphism from K.'ll®Q onto the primitives of H.(GL('ll); Q) ~ /\Q(U3, U5, ... ), 

where IUil = 2i - 1. Hence, if n is an odd integer ~ 3, the group K 2n- 1'll contains 
an infinite cyclic direct summand which injects in H2n-l(GL('ll);'ll). How? In The
orem 3.2, we show that this injection is far from being split: it is multiplication by 
(n-1)! (up to primes that do not satisfy Vandiver's Conjecture from number the
ory). Theorem 3.2 also gives the Hurewicz homomorphism on all 2-torsion classes 
of K.'ll, and on the odd torsion classes of K.'ll corresponding to 1m 1. We then 
apply these results to estimate the order of the Postnikov invariants of the space 
K'll (Theorem 4.1). 
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These calculations are made by comparing the p-adic completion KZ; of 
the space KZ to one of its topological models, called J KZ; and first defined by 
M. B6kstedt in [5]. We begin by reviewing some links between these spaces. 

2. The model J KZ~ for KZ~ 

Let £ be an odd prime, and define J KZ( £) as the homotopy fibre of the composite 
map 

BO ~ BSpin ~ BSU (2.1) 

where w~ is the Adams operation ([1]), and where c is induced by the complex
ification of vector bundles. The homotopy groups of the space JKZ(£) are given 
by 

7rn(JKZ(£)) = 

Z/2 

Z EB Z/2 

Z/2(£~ -1) 
Z 

Z/(£~ -1) 

o 

if n = 1 or if n == 2 mod (8), 

if n 2 9 and if n == 1 mod (8), 

if n == 3 mod (8) , 

if n == 5 mod (8), 

if n == 7 mod (8), 

otherwise. 

(2.2) 

Let p be a prime number, and choose £ = 3 if P = 2, £ a generator of the group of 
units of Z/p2 if P is odd. Following B6kstedt [5], let us then call J KZ; the space 
JKZ(£);. Here, X; means the p-adic completion of a suitable space or group X. 
The homotopy group 7r n (J KZ;) is isomorphic to 7r n ( J KZ( £)) 0 Z; and can be 
explicitly computed using (2.2) and the following formulas: if n == 3,7 mod (8) 
and if £ is chosen as above with respect to p, then 

{ 
{

ifP#2and2(p-l)\n+l, 
~ vp (n + 1) + 1 or if p = 2 and n == 7 mod (8), 

Vp (£ 2 - 1) = 
3 if p = 2 and n == 3 mod (8) , 

o otherwise. 

(2.3) 

Here vp denotes the p-adic valuation. 
B6kstedt showed that there is a map cp: KZ~ -+ J KZ~ which, after looping 

once, is a homotopy retraction (Theorem 2 of [5]). The recent calculation (in [18] 
and [15]) of the 2-primary part of K*Z implies that the map 

cp : KZ~~JKZ~ 
is actually a homotopy equivalence. 

(2.4) 

When p is odd, the homotopy groups of J KZ; are isomorphic to direct sum
mands of (K*Z); (see [7] and [14]). If p is a regular prime, the Quillen-Lichtenbaum 
conjecture asserts that KZ; and J KZ; have same homotopy groups (see [10], 
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Corollary 2.3), while if p is irregular, there are p-torsion classes in (K*Z); which 
do not appear in the homotopy groups of J KZ; (see [16]). It is not known in 
whole generality whether the group-level splitting 

can be induced by a space level retraction KZ; --+ J KZ; or not. However, it 
follows from the work of Quillen and Dwyer-Mitchell that this is the case when p 
is a Vandiver prime (Proposition 2.5), that is when p is an odd prime that does not 
divide the class number h+(Q((p)) of the maximal real subfield of the cyclotomic 
field Q((p). It is a conjecture by Vandiver that all primes verify this condition, and 
it is known to be true for p < 4'000'000 (see [17], page 158). 

Proposition 2.5. If p is a Vandiver prime, then J KZ; is a retract of KZ; . 

Proof. If p is an odd prime, the space BSU; splits as a product BSU; 
BO; x B(SU j SO);, thus induces a splitting J KZ; ~ (FI}i~J; x (SU j SO);, where 
(Fl}ifJ; is the p-adic completion of the homotopy fibre FI}i~ of I}i~ -1: BU ----+ BU, 
or equivalently the homotopy fibre of I}i~ -1: BO; ----+ BO; (because of the above 
choice of e). However, the space FI}i~ is homotopy equivalent to KlFl', and the re
duction map KZ; ----+(KlFl'); is a retraction according to [14]. 

On the other hand, W. Dwyer and S. Mitchell proved in [11], Theorem 9.3 and 
Example 12.2, that if p is a Vandiver prime, then (UjO); is a retract of KZ[~];. 
The space (SUjSO); is the universal cover of (UjO); and, by the localization 
exact sequence, KZ; is the universal cover of KZ[~];. This implies that (SU j SO); 
is a retract of KZ;. The product of the above retractions 

KZ/\ ----+(Fl}il')/\ X (SUjSO)/\ '" J KZ/\ P Cp p- P 

is then itself a retraction. o 

3. The Hurewicz homomorphism for KZ 

Let us choose for all odd n 2:: 3 a representative bn E K2n- 1Z of a generator of 
K2n_1Zj(Torsion) ~ 71., thus obtaining a decomposition K2n- 1Z ~ (bn) EB T2n- 1 , 

where T2n- 1 is the (finite) torsion subgroup of K 2n- 1Z. Since the homomorphism 
h: K 2n- 1Z----+H2n- 1(GL(Z); 71.) is injective after rationalization, there exists a 
generator Vn of an infinite cyclic summand of H2n- 1 (GL(Z); 71.) and an integer 
J.Ln > 0 such that h(bn) == J.LnVn modulo torsion elements. Equivalently, we may 
define J.Ln as the order of the torsion subgroup of the cokernel of the homomorphism 
h: K 2n- 1Z --+ H2n_l(GL(Z);Z)j{Torsion}. On the other hand, if n 2:: 1, it is 
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known that KnZ contains the following finite cyclic groups as direct summands: 

if n :::::;: 1, 2 mod (8), 

if n :::::;: 3 mod (8), 

if n :::::;: 7 mod (8), 

if p is an odd prime and if 2(p - 1)ln + 1. 

(3.1) 

We know, because of the equivalence 4>: KZ~ ~ J KZ~ and of (2.2) , that this 
is all the 2-torsion there is in K*Z. The odd torsion direct factors in (3.1) are 
given by [14] (see proof of Proposition 2.5). Let us choose a generator W2 ,n of the 
2-torsion subgroup of KnZ whenever n :::::;: 1,2,3, 7 mod (8), and a generator wp,n 
of the p-torsion subgroup of KnZ given by (3.1) whenever p is an odd prime with 
2(p - 1)ln + 1. 

Theorem 3.2. The Hurewicz homomorphism h: K*Z ----> H*(GL(Z);Z) has the 
following properties: 

(a) If p = 2 or if p is a Vandiver prime, and if n ~ 3 is odd, then 

vp(J.Ln) = vp( (n - I)!). 

(b) Ifp is an odd prime and if (p, n) =I- (p, 2p- 3) , (3, 11), then wp,n belongs to 
the kernel of h . The image h(Wp,2p-3) generates a direct summand of or
derp of H 2p_3(GL(Z);Z), and h(W3,1l) is of order 3 in a direct summand 
of order 9 of Hll (GL(Z); Z). 

(c) If n =I- 1,2,3, 7,15, then W2 ,n belongs to the kernel of h. If n = 1 or 2, 
then KnZ S:! Z/2 and h: KnZ ----> Hn(GL(Z); Z) is an isomorphism. The 
image h(W2,3) generates the 2-torsion subgroup of H3(GL(Z);Z), which is 
of order 8. The image h(W2,7) is of order 8 in a cyclic direct summand 
of order 16 of H7(GL(Z); Z), and h(W2,15) is of order 2 in a cyclic direct 
summand of order 32 of H 15 (GL(Z); Z). 

To prove Theorem 3.2 we will need the equivalence (2.4), Proposition 2.5, as 
well as a computation of the Hurewicz homomorphism h' for J KZ(C). The next 
Lemma is the main ingredient of this computation. 

For any n ~ 2, let us choose a generator En of 'Tr2n-l (SU) S:! Z. Recall that 
there is an isomorphism of algebras H * (SU; Z) S:! A'lL (X2, X3, ... ). Here Xi is a 
primitive class of degree 2i - 1, defined as the dual of the class ei = a(ci) E 

H2i-l(SU; Z), where a is the cohomology suspension and Ci E H2i(BSU; Z) is the 
ith Chern class. The Hurewicz homomorphism for SU was calculated by Douady 
([9], Theoreme 6), and is given by the rule 

En 1---+ ±(n - I)! X n . (3.3) 

By looping the fibration 

J KZ(C) ~ BO ~ BSU, (3.4) 
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where g is the composition (2.1), we get a map a: SU ----> JKZ(e) having the 
following properties. 

Lemma 3.5. Let e be an odd prime and n an integer 2: 2. The image of the element 
Xn E H2n- 1 (SU; Z) under the homomorphism 

0*: H2n- 1 (SU;Z) ----> H2n_1(JKZ(e) ; Z) 

generates a direct summand in H2n- 1 (J KZ(e); Z). This summand is of infinite 
order if n is odd, and of order (en - 1) if n is even. 

Proof. Suppose first n is odd. The integral cohomology algebra of SU is given by 
an isomorphism H*(SU; Z) ~ f\Z(e2, e3, . . . ) , where ei is the dual class of Xi. We 
must show that the class en is in the image of the homomorphism 

0*: H*(JKZ(e);Z) ----> H*(SU;Z). 

Consider the homotopy commutative diagram 

(1) SU~JKZ(e)--L BO 

'P 1 1 = 1 1 g=(W~ -l)c (3.6) 
(2) SU ---+ PBSU ---+ BSU 

whose rows (1) and (2) are homotopy fibrations. Here PBSU ----> BSU is the 
path fibration. For i = 1 or 2, let us call (E:'* (i), d~) the Serre spectral sequence 
for H* ( -; Z) associated to the fibration (i). The fibration morphism cp induces 
a morphism between these spectral sequences, which we will denote by CP:'*. It 
suffices to verify that the element en in Eg,2n-l (1) ~ H2n- 1 (SU; Z) is a permanent 
cycle. Since the cohomology suspension a: H2n(BSU; Z) ----> H2n-l (SU; Z) maps 
the n-th Chern class Cn to en, en is transgressive in (E: '* (2), d;) and by naturality 
belongs to Eg;,2n-l(I). Now E~~,o(l) is a quotient of H2n(BO; Z), which contains 
only elements of order 2 since n is odd (see [6], Theorem 24.7 page 86). On the 
other hand, one can show by induction on n that d~n(en) is equal to cp;~ ,o(Cn) = 
(en - l)c*(cn) in E~~,o(I), so is divisible by 2. Hence en is a permanent cycle 
in E:'*(I) . 

If n is even, we work with the Serre spectral sequences (E: *(i) , d;) for 
H*( -; Z) of the fibrations (i = 1,2) of diagram (3.6). Using the homoiogy suspen
sion, one verifies that there is a primitive generator Pn E H2n (BSU; Z) = Ein 0(2) 
that transgresses to Xn E H2n- 1 (SU) = E5 2n-l (2) at the 2n-th stage. Since' n is 
even, there is in H2n (BO; Z) an element Pn (the n-th Pontryagin class) that verifies 
c*(Pn) = Pn (see [8], equation 61, page 19). Now (\)i~ -1)*(Pn) = (en -1)Pn, so by 
naturality, the class Pn E H2n(BO; Z) = Ein 0(1) is transgressive in the spectral 
sequence (E: *(I),di) and transgresses to (en' - l)xn. It follows that a*(xn) is of 
order en -1 in H2n- 1(JKZ(e); Z). To verify that 0* (xn) indeed generates a direct 
summand, it is enough to check that the dual class of Xn in H2n- 1 (SU; Zj(en -1)) 
is in the image of 0*: H2n-l (JKZ(e); Zj(en -1)) ----> H2n-l(SU;Zj(en -1)). 
This can be proven using again a Serre spectral sequence argument of the same 
flavour as above. 0 
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Remarks 3.7. 

(a) Lemma 3.5, together with (3.3), allows one to compute the Hurewicz homo
morphism h' of J KZ( e) on all elements of 'Tr * ( J KZ( e)) that are in the image of 
0*: 'Tr * (SU) ---+ 'Tr * (J KZ( e)). The only elements of 'Tr * (J KZ( e)) that are not in 
this image are the 2-torsion elements in dimensions n with n == 1,2 mod (8). 

(b) A very similar argument to the one of the proof of Lemma 3.5 implies that , 
for any prime e, the connecting map 0: SU ---+ FlJlt has the following property: 
for any integer n 2: 2, the image of the element Xn E H2n- 1 (SU; Z) under the ho
momorphism 0*: H2n- 1(SU; Z) ---+ H2n - l(FlJlt; Z) generates a direct summand 
in H2n-l(FlJlt; Z) of order (en - 1). 

(c) Notice that if n == 2 mod (4), the element o*(cn) is of order 2(en - 1) in 
'Tr2n-l (JKZ(e)) , while 0* (xn) is of order (en - 1) in H2n- 1(JKZ(e) ; Z). 

Proof of Theorem 3.2. 

(a) Let p = 2 and e = 3, or let p be a Vandiver prime and e an odd prime 
that generates the units of Z/p2. We compare the Hurewicz homomorphisms of 
KZ and JKZ(e) by means of the following commutative diagram. Let us call 
'ljJ: J KZ; ---+ KZ; the inclusion as a summand given by Proposition 2.5, and 
choose an integer k > max {Vp(J.ln) , vp ((n - I)!)} + vp(T), where T is the largest 
order of any p-torsion element in K2n- 1Z or H2n - 1 (KZ; Z). 

Here 'Tr*( -, Z/pk) and h, h' are the mod pk homotopy groups and Hurewicz maps 
(see Chapter 3 of [13]). The map ax given in the diagram is the composite 

'Tr*(X) ---+ 'Tr*(X) ® Z/pk ~ 'Tr*(X; Z/pk) ~ 'Tr*(X;; Z/pk) 

and the map IX is defined in a similar way. The assertion is proven by inspection of 
this diagram, using our knowledge of h': 'Tr2n-l(JKZ(e)) ---+ H2n- 1(JKZ(e);Z) 
(see Remark 3.7.a). 

(b) If p is any odd prime and e an odd prime that generates the units of 
Z/p2, the space FlJlt splits off KZ after being localized at p. The element wp,n 
generates the factor 'Trn((FlJlt)(p)) of KnZ, and is in the image of the homomor
phism 0*: 'Trn(SU) ---+ 'Trn((FlJlt)(p)). It then follows from the rule (3.3) and the 
Remark 3.7.b that h(wp,n) = (n;-l )!Zn' where Zn is the generator of a direct 

summand of Hn(KZ; Z) of order the p-primary part of e~ -1 (see (2.3) for a de
scription of it). The assertions then follow from the arithmetic behavior of (n;-l )! 
in z/(e~ - 1) at p. 
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(c) If X is a simple space of finite type, p a prime and TJ: X -t X; the p-adic 
completion of X, the homomorphism TJ. : H. (X; '1.) -t H. (X;; '1.) restricts to an 
isomorphism from the p-torsion subgroup of H.(X; '1.) onto the p-torsion subgroup 
of H.(X;; '1.). The same is also true for homotopy groups. For us, this means that 
using the equivalence ¢: K'1.~ -t J K'1.~, we can just read off the Hurewicz map 
of K'1. on 2-torsion elements from the Hurewicz map h' of JK'1.(3). 

The Eilenberg- Mac Lane space K('1./2, 1) splits off JK'1.(3), so by the Hure
wicz Theorem, h' must be an isomorphism in dimensions 1 and 2, and surjective 
in dimension 3. 

The classes W2,n with n == 3 mod (4) correspond to classes of 7l"n(JK'1.(3)) 
coming from 7l"n(SU). Their image under the Hurewicz homomorphism can there
fore be calculated as for the odd-p-torsion classes wp,n in part (b) of this proof. 

Choose n ~ 9 satisfying n == 1,2 mod (8), and let us show that the class 
w~,n E 7l"n(JK'1.(3)) corresponding to W2,n is in the kernel of h'. Consider the 
following diagram 

7l"n+1(JK'1.(3);'1./2) ~ 7l"n(JK'1.(3)) 

h'l h'l 
Hn+1 (J K'1.(3); '1./2) ~ Hn (J K'1.(3); '1.) 

where d. denotes the connecting homomorphism associated to the coefficient exact 
sequence ° -+ '1. -+ '1. -+ '1./2 -+ 0. It is commutative (see [13], Lemma 3.2). The 
class w~,n E 7l"n(JK'1.(3)) is of order 2 and is in the image of d., so it suffices to 
show that the mod 2 Hurewicz homomorphism h' is trivial in dimension n + 1. 

Consider the mod 2 Moore space pn+1 (2) = sn /2. By definition, an element 
n in 7l"n+1(JK'1.(3);'1./2) is the homotopy class of a map n: pn+1(2) -t JK'1.(3), 
and h(n) is defined as n.(e), where n. is the homomorphism induced by n in 
mod 2 homology, and where e is the generator of Hn+1 (pn+1 (2); '1./2) ~ '1./2. We 
claim that any such induced homomorphism n. is zero. By duality, it is equiva
lent to prove the corresponding statement in mod 2 cohomology. There exists an 
isomorphism of Hopf algebras and of modules over the Steenrod algebra 

H·(JK'1.(3); '1./2) ~ H*(BO; '1./2) Q9 H*(SU; '1./2) 

(see [12], Remark 4.5). Recall the isomorphisms H*(BO;'1./2) ~ '1./2[Wl,W2, ... ] 
and H·(SU;'1./2) ~ !\Z/2(e2,e3, ... ), where Wi is the Stiefel- Whitney class of 
degree i, and ei is primitive of degree 2i - 1. The action of the Steenrod algebra on 
these cohomology classes is well known. For instance, Sql(Wi) = Wi+1 +WIWi and 
Sq2(Wi) = Wi+2+W2Wi ifi is even, and Sq2kei = C"k1)ei+k. These relations, as well 
as the fact that H*(pn+l(2);'1./2) is concentrated in dimensions 0, nand n + 1, 
force any induced homomorphism Hn+1(JK'1.(3); '1./2) -t Hn+1(pn+l(2); '1./2) 
to be zero for the above choices of n. 0 
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4. The order of the Postnikov invariants of KZ 

Let X be a connected simple space, for instance a connected H-space. For any 
integer n ~ 1, let us denote by X -----> X[nJ the nth-Postnikov section of X, and 
by k~+l the (n + l)th-Postnikov invariant of X. Recall that k~+l is an element of 
the cohomology group Hn+l (X[n-lJ; 7rn(X)), which can be chosen canonically as 
the image of the fundamental class u~+l E Hn+l (X[n - 1], X; 7rn(X)) under the 
homomorphism induced by the inclusion of pairs (X[n - 1], 0) '----> (X[n - 1], X). 
The Postnikov invariant k~+l corresponds to a map X[n - 1] -----> K(7rnX, n + 1) 
whose homotopy fiber is the nth-Postnikov section X[nJ of X. 

If X is an H-space of finite type, all its Postnikov invariants are cohomology 
classes of finite order: this is the Arkowitz-Curjel Theorem ([2]). In particular, 
the Postnikov invariant of K7l., are of finite order. The orders Pn of the Postnikov 
invariants k~~l of K7l., have previously been studied by Arlettaz and Banaszak 
in [3J. See especially their Proposition 5, which states that if n ~ 5 is an integer 
with n == 1 mod (4) and if Kn7l., has no p-torsion, where p is an odd prime, then 
vp(Pn) ::; vp (n21!). 

Theorem 4.1. For any integer n ~ 2, the order Pn of the Postnikov invariant k~~l 
of K7l., verifies: 

(a) 

1 
V2(n 2 1!) 

4 

v2(n+l)+1 

o 

ifn = 3, 7, or ifn ~ 10 and n == 2 mod (8), 

if n == 1 mod (4), 

if n ~ 11 and n == 3 mod (8), or if n = 15, 

if n ~ 23 and n == 7 mod (8) , 

otherwise. 

(b) If p is a Vandiver prime and n ~ 5 is an integer with n == 1 mod (4), then 

and equality holds if the order e of the torsion subgroup of Kn7l., verifies 
vp(e) ::; Vp (n21!). 

(c) Let p be an odd prime. If 2(p - 1) is a proper divisor of n + 1, then 

(except if p = 3 and n = 11, where V3 (Pll) ~ 1 holds). 

Proof. This is a consequence of Theorem 3.2, using the following general argument. 
If X is a connected simple space, n an integer ~ 2, and P an integer ~ 1, then the 
following statements are equivalent: 
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(1) The Postnikov invariant k~+l verifies pk'Jc+l = 0 in Hn+l (X[n - 1] , 7fn(X)), 

(2) There exists a homomorphism g: Hn(X; 7l) --+ 7fn(X) such that the composi
tion gh: 7fn(X) --+ 7fn(X) is multiplication by p, where h: 7fn(X) --+ Hn(X; 7l) 
is the Hurewicz homomorphism. 0 

Remark 4.2. If p is a regular prime and if the p-adic Quillen-Lichtenbaum Con
jecture for 7l holds, then equality for vp(Pn) holds in the inequalities (b) and (c) 
of Theorem 4.1, and for other values of n, vp(Pn) = O. 
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Recognition principle for 
generalized Eilenberg-Mac Lane spaces 

Bernard Badzioch 

Abstract. We give a homotopy theoretical characterization of generalized 
Eilenberg-Mac Lane spaces which resembles the r -space structure used by 
Segal to describe infinite loop spaces. 

1. Introduction 

A generalized Eilenberg-MacLane space (GEM) is a space weakly equivalent to 
a product of Eilenberg-Mac Lane spaces rt K(7ri' i) with 7ri abelian. The goal of 
this note is to prove the following characterization of GEMs: 

Theorem 1.1. Let R be a commutative ring with a unit and let FModR be the cat
egory of finitely generated free R-modules. If H: FModR --> Spaces is a functor 
such that 

• H (0) is a contractible space, 
• H(R) is connected and for every n the projections prk: Rn --> R induce a 

weak equivalence H(Rn) ~ H(R)n, 

then the space H(R) is weakly equivalent to a product IT:l K(Mi' i) where Mi is 
an R-module. 

Notation 1.2. By Spaces above and in the rest of this paper we denote the cate
gory of simplicial sets. Consequently, by 'space' we always mean an object of this 
category. 

The above description of GEMs is modeled after the f-space structure intro
duced by Segal in [Se] to characterize infinite loop spaces. Just as for infinite loop 
spaces one gets the following corollary which is implicitly present in the work of 
Bousfield [Bo] and Dror [D1] who apply it to localization functors. 

Corollary 1.3. If F: Spaces --> Spaces is a functor preserving weak equivalences 
and preserving products up to weak equivalence then F preserves GEMs. 

The rest of the paper is organized as follows. In Section 2 the Grothendieck 
construction on a diagram of small categories is recalled and some of its properties 
are stated. In Section 3 we give a description suitable for our purposes of the infinite 
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symmetric product Spoo X on a space X. In Section 4 the proof of Theorem 1.1 
is presented. It essentially amounts to showing that for a functor H: FModR --> 

Spaces satisfying the assumptions of the theorem the space H(R) is a homotopy 
retract of Spoo H(R). Since Spoo H(R) is a GEM and the class of GEMs is closed 
under homotopy retractions the claim of the theorem will follow. 

I am indebted to W. G. Dwyer for suggesting the topic of this work to me and 
for many discussions. The referee's comments were very helpful in improving the 
presentation of the paper. I also want to thank Sylwia Zablocka for her support 
and friendship. 

2. The Grothendieck construction 

Definition 2.1. Let Cat denote the category of small categories and let N be the 
telescope category: 

For a functor P: N --> Cat the Grothendieck construction on P [Th] is the cat
egory Gr(P) whose objects are pairs (n,c) where n E Nand c E P(n). A mor
phism ( n, c) --> (n', c') is a pair (i, ~) where i is the unique morphism n --> n' 
in N and ~ E Morp(n,)(P(i)c,c'). The composition of (i,~): (n,c) --> (n',c') and 
(i',~'): (n',c') --> (n",c") is defined to be the pair 

(i' 0 i,~' 0 P(i')~): (n, c) --> (n" , c"). 

For every n E N there is a functor 

In: P(n) --> Gr(P), In(c) = (n, c), 

which lets us identify P(n) with a subcategory of Gr(P). It follows that any functor 
F: Gr(P) --> C defines a sequence of functors Fn: P(n) --> C, n = 0,1, .... 
Moreover, for n EN and c E P(n) let f3n ,c be the image under F of the morphism 
(in,idP(in)(c») E MorGr(p)((n,c), (n + 1, P(in)(c))). It is easy to check that the 
morphisms {f3n ,c }cEP(n) define a natural transformation of functors 

f3n: Fn --> Fn+1 0 P(in)' 

The converse is also true [ChS, A.9]: any sequence offunctors {Fn: P(n) --> C}n>O 
and natural transformations {f3n: Fn --> Fn+1 0 P(in)}n>o can be used to define-a 
functor F: Gr(P) --> C such that F IP(n)= Fn. -

Proposition 2.2. For any functor F: Gr(P) --> C the natural morphism 

colimN colimp(n)Fn --> colimGr(p)F 

is an isomorphism. Moreover, if C = Spaces then the natural map 

hocolimN hocolimp(n)Fn --> hocolimGr(p)F 

is a weak equivalence. 
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Proof. The first statement follows directly from the definition of Gr(P). The proof 
of the second can be found in [Sl, Prop. 0.2] or [ChS, Cor. 24.6]. 0 

3. Infinite symmetric products 

Let ~n be the permutation group of the set {I, . .. , n}. We will denote by OEn 

the orbit category of ~n whose objects are sets ~n/G for G ~ ~n and whose 
morphisms are ~n-equivariant maps ~n/G -+ ~n/ H. Let Ot: be the opposite 
category. We can identify ~n with the subgroup of all elements of ~n+l which 
leave the element n + 1 fixed. The inclusion ~n C ~n+l induces a functor 

J O op Oop 
n: E -+ " , n L.ln+l 

This data in turn can be used to define a functor 0 : N -+ Cat, 

O(n) = 0t:, O(in ) = I n · 

Let Spaces* denote the category of pointed spaces and let X E Spaces*. The 
group ~n acts on xn by permuting the coordinates. As usual we have the fixed 
point functor 

Fn X : Ot: -+ Spaces* 

defined by FnX(~n/G) = (xn)G - the fixed point set of the action of G on xn. 

Remark 3.1. For G ~ ~n let lorb GI denote the number of orbits of the action 
of G on {I , ... ,n}. Then there is a natural isomorphism (xn)G ~ xlorbGI. 

Using the embedding ~n C ~n+l one can think of G ~ ~n as a subgroup 
of ~n+l' There is an obvious isomorphism 

and since X is a pointed space, we have a map 

One can check that the morphisms {,Bn ,G }G~En give a natural transformation 

,Bn: FnX -+ Fn+lX 0 I n 

and from the remarks made in Section 2 it follows that the functors {Fn}n>o and 
natural transformations {,Bn}n:;::O can be assembled to define a functor 

FX: Gr(O) -+ Spaces*. 
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Lemma 3.2. hocolimGr(o)FX ~ Spoo X. 

Proof. By Proposition 2.2 we have a weak equivalence 

hocolimGr(o)FX c:::: hocolimN hocolimo~n FnX. 

Moreover, by [D1, Ch. 4, Lemma A.3], 

hocolimoop FnX c:::: colimoop FnX 
En En 

(this follows from the fact that FnX is a free diagram of spaces [D2, 2.7], and 
that for free diagrams homotopy colimits coincide with ordinary colimits). But 
colimoop FnX ~ Spn X and so we have 

En 

hocolimN hocolimOop FnX c:::: hocolimN Spn X c:::: colimNSpn X ~ Spoo X, 
En 

where the second equivalence is a consequence of [BK, Ch. XII, 3.5]. o 

4. Proof of Theorem 1.1 

Let H: FModR -+ Spaces be a functor as in the theorem. One can assume that 
H takes its values in the category Spaces* of pointed spaces (if not , replace H 
with iI, where iI(M) = cofib(H(O) -+ H(M)) for M E FModR). Moreover, once 
we know that the theorem holds for R = Z, the ring of integers, the embedding 
Z '--+ R will induce a functor FModz -+ FModR, and so the space H(R) will 
have the structure of a GEM. Furthermore the action of the ring R on its free 
module R E FModR via multiplications will induce an action of Ron H(R) and 
so the homotopy groups 1ri(H(R)) will be R-modules as claimed. Therefore for the 
rest of this paper we will assume that R = Z and that H: FModz -+ Spaces*. 

For a free abelian group on n generators zn E FModz the group L:n acts on 
zn by permuting the set of generators. For G S;; L:n let (zn)G be the subgroup of 
all elements of zn which are fixed by the action of G. 

Remark 4.1. It is not difficult to check that, using the notation of 3.1, there is a 
natural isomorphism of groups (zn)G ~ zlorbGI . 

For any n E N we have a functor 

FnZ: O[ -+ FModz, FnZ(L:n/G) = (zn)G. 

Arguments similar to those in Section 3 show that one can define a functor 

FZ: Gr(O) -+ FModz 

such that FZ loop = FnZ. Observe that L:I is a trivial group and so FZ loop = F1Z 
En El 

is the constant functor with value Z. 

Lemma 4.2. Let Z: Gr(O) -+ FModz be the constant functor with value Z. There 
exists a natural transformation 

(): FZ -+ Z 
such that () loop is an isomorphism. 

El 
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Proof. For L,n/G E 0[' C Gr(G) define 

OEn/G: (zn)G ~ Z 

(kl' k2 , ... , kn ) t--+ L ki . 

It is easy to check that these maps give the required transformation of functors. 0 

Let H: FModz ~ Spaces* be a functor satisfying the conditions of Theorem 1.1; 
that is, the projections zn -> Z induce weak equivalences H(zn) ~ H(z)n. 

Lemma 4.3. hocolimGr(o)H 0 FZ '::::: Spoo H(Z). 

Proof. It follows from 3.1 and 4.1 that for G ~ En we have isomorphisms 

H((zn)G) ~ H(zlorbGI) 

and 
(H(z)n)G ~ H(z)lorbGI. 

Their composition with the map H(zlorbGI) ~ H(z)lorbGI induced by projections 
zlorbGI ~ Z gives a map 'Pn,G: H((zn)G) ~ (H(z)n)G which, in view of the 
properties of H, is a weak equivalence. Moreover, the maps {'Pn,G }n~O, G<;;En define 
a natural transformation of functors 

'P: H 0 FZ -> FH(Z). 

Therefore we have a weak equivalence 

hocolimGr(o)H 0 FZ -=--. hocolimGr(o)FH(Z). 

But by Lemma 3.2 hocolimGr(o)FH(Z) '::::: Spoo H(Z). o 
To conclude the proof of the theorem observe that the natural transforma

tion 0 from Lemma 4.2 gives a transformation 

H(O): H 0 FZ -> H 0 Z 
and so induces a map 

hocolimGr(o)H 0 FZ ~ hocolimGr(o)H 0 Z ~ colimGr(o)H 0 Z ~ H(Z). 

On the other hand, the inclusion O~ ~ Gr( G) gives a map 

H(Z) '::::: hocolimo~ H 0 F1Z ~ hocolimGr(o)H 0 FZ 

and since 0 loop is an isomorphism it is easy to see that the composition 
El 

H(Z) -> hocolimGr(o)H 0 FZ ~ H(Z) 

has to be a weak equivalence. But, by 4.3, hocolimGr(o)H 0 FZ '::::: Spoo H(Z), 
and so H(Z) must be a GEM as a homotopy retract of a GEM (see [D1, Ch. 4, 
Thm. B.2]). 

Remark 4.4. The above proof remains valid if we replace FModz by the category 
of free, finitely generated abelian monoids. 
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Groups with infinite homology 

A. J. Berrick and P. H. Kropholler 

1. Introduction 

We consider the reduced homology of a group G with coefficients in the trivial 
module: 

00 

H(G) = EB Hn(G; Z) . 
n=l 

A group is said to be acyclic if its reduced homology vanishes. Many interesting 
classes of groups have been discovered having this property ([2] is a useful survey). 
This is an indication that the reduced homology carries limited information. 

Here we obtain information about H (G) for a class of groups G that includes 
all locally finite groups and all soluble groups of finite rank. We show that non
locally-finite groups in the class cannot be acyclic, and that in fact their reduced 
homology is infinite. 

Our main result is as follows. 

Theorem 1.1. Let G be a group having a series of finite length whose factors are 
either infinite cyclic or locally finite. Then the reduced homology H (G) is infinite 
or zero. Indeed, if H (G) is a torsion group, then G is locally finite, and either: 

(i) for some prime p occurring as the order of an element of G, and for 
infinitely many n, Hn(G; Z) contains elements of order p; or 

(ii) G is acyclic. 

The proof brings together some techniques from homotopy theory and some 
Euler characteristic arguments. There is an interesting dichotomy between the 
cases of torsion-free and non-torsion-free groups. This shows up in the choice of 
prime field that results in infinite homology. When G is torsion-free it has finite 
cohomological dimension, and in this case one must prove that at least one of 
its rational homology groups is nonzero. At the other extreme, when G is locally 
finite it may be acyclic - the McLain group M(Q, lFp) is an example. (The McLain 
group M(Q,lFp) may be thought of as the group of upper unitriangular matrices 
with entries in lFp, but with rows and columns indexed by the rational numbers 
rather than the natural numbers; see [1].) Otherwise, we show that for some prime 
p that is the order of an element of G the integral homology contains elements of 
order p in arbitrarily high dimensions; this has long been known to be the case for 
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finite G. The phrase "for some prime" is best possible, in that the example of the 
direct product of a locally finite acyclic group and a group of prime order shows 
that there may be a unique prime that is detected by integral homology. 

Note that for groups in general it is possible to have the second sentence of 
the theorem hold but neither (i) nor (ii). For instance, by [3] there is a perfect, 
torsion-generated group with nth integral homology group of order n whenever n 
is prime, and zero otherwise. 

2. Two ingredients from homotopy theory 

Our arguments rest on two results, of independent interest , which have a homo
topy theoretic pedigree. They sharpen results of [3] which consider only integral 
coefficients. Let k be a commutative ring. We write thdk(G) for the trivial homo
logical dimension of Gover k; this is the largest integer m for which Hm(G; k) is 
nonzero, or infinity in case there is no such integer. We also use similar notation 
with G replaced by a topological space. First , here is a lemma that is a useful 
ancillary result for applications of Miller's Theorem [5] . It is used implicitly in [3]. 

Lemma 2.1. If X has the homotopy type of a CW-complex and thdz(X) is finite, 
then the suspension L;X has the homotopy type of a finite CW-complex. 

Proof. Write k = thdz(X). When k = 0, X is acyclic, making L;X contractible; 
so we may suppose that k 2: 1. Assuming also that X is actually a CW-complex, 
let C(j) be the mapping cone of the inclusion j: X(k) '--> X of its k-skeleton. 
Then the homology exact sequence of the pair (X,X(k») shows that Hk+l(C(j)) 
embeds in Hk(X(k»), which is in turn a subgroup of the free abelian group of 
k-chains on X(k). Thus C(j) has the homology of a wedge of (k+ I)-spheres. Since 
k 2: I, it follows from van Kampen's theorem that C(j) is homotopy equivalent 
to V Sk+l. Therefore L;X has the homotopy type of the mapping cone of some 
map V Sk+l -+ L;X(k) , a CW-complex of dimension at most k + 2. 0 

Theorem 2.2. Let p be a fixed prime and let G be a group with thdlFp (G) finite. 
Then any homomorphism G -+ GL(C) is trivial on all elements of p-power order. 

Proof. Since the argument involves only a tweaking of that given in [3] Theo
rem 3, we indicate it briefly. As in [3], for any cyclic subgroup C of p-power order 
in G, by change of basis the homomorphism can be made to restrict to a unitary 
representation on C, giving rise to the commuting diagram 

BC ---+ BU ....=... n2 BU 

! ! '" 
BG ---+ B GL(C). 

We focus on the adjunction L;2 BC -+ L;2 BG -+ BU. Since ~2 BG is simply
connected with thdlFp(L;2BG) finite , by Theorems C, D of [5] map*(BC, L;2BG) 
is weakly contractible. This makes [L;2 BC, L;2 BG] = O. Then the result follows as 
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in [3] by appeal to Atiyah's embedding of the complex representation ring of C 
in Zx[BC,BU]. 0 

Theorem 2.3. Let p be a fixed prime and let G be a locally finite group with 
k = thdJFp(G) finite. Then G is IFp-acyclic, that is, thdJFp(G) = O. 

Proof. As EBG is simply-connected, we pass to its p-localization (EBG)(p), which 
is also simply-connected. By definition, it is IF q-acyclic whenever q =I p, while its ho
mology with other prime field coefficients is that of EBG. Hence thdJFp((EBG)(p)) 
is finite. On the other hand, since G is locally finite it is the direct limit of its 
finite subgroups. So its homology is the direct limit of the homology of those fi
nite subgroups; thus H((EBG)(p); Q) = O. Therefore, by universal coefficients, 
thdz((EBG)(p)) is finite, and the lemma thus implies that (EBG)(p) has the ho
motopy type of a finite-dimensional complex. It follows from Miller's Theorem that 
[EBG, (EBG)(p)] = 0, whence by its universal property (EBG)(p) is contractible. 
This makes zero the reduced homology of EBG, hence of G, with coefficients in 
the local ring Z(p). Since IFp is a Z(p)-module, it follows by universal coefficients 

that H(G; IFp) = 0 too. 0 

3. Relevant groups, and notation 

For any group G, let r(G) denote the unique largest normal locally finite subgroup 
(for example, see [6] p. 418). We consider the class of groups having a series of finite 
length whose factors are either infinite cyclic or locally finite. Then the number of 
infinite cyclic factors in such a series is an invariant of the group, known as the 
torsion-free rank or Hirsch length h(G) (d. [6] p. 407). Recall also that the Fitting 
subgroup, or nilpotent radical, of a group is defined to be the product of all its 
nilpotent normal subgroups. We shall use the following folklore characterization 
of this class. 

Proposition 3.1. Suppose that G admits a finite series 

1 = Go <I G1 <I' .. <I Gn = G 

in which the factors Gi/Gi - 1 are either infinite cyclic or locally finite. 
Let H denote the subgroup containing r( G) such that H / r( G) is the Fitting 

subgroup of G / r( G). Let K denote the subgroup containing H such that K / H = 
r(G/H). Then 

1. there is a finite dimensional C.-linear representation of G with kernel equal 
to r(G), 

2. H/r(G) is torsion-free nilpotent and of finite Hirsch length, 
3. K / H is finite, and 
4. G / K is a Euclidean crystallographic group. 
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Thus, schematically, G has the following decomposition. 

G k maximal abelian, by finite ) 

I finite nilpotent 
H 
I torsion-free nilpotent 

r(G) 
I locally finite 
1 

linear 

Proof. (Outline) Professor Wehrfritz has kindly indicated some steps in the argu
ment here. Such a group is locally finite, by soluble with a finite series with abelian 
torsion-free factors of finite rank, by finite. The proof is by induction on the Hirsch 
length, noting that such G with no normal torsion are linear over the rationals 
[ll], and such a G lying in GLn(Q) must be soluble by finite [9]. Now by a theo
rem of Mal'cev [6] p. 436, soluble groups linear over Q are torsion-free nilpotent 
by abelian by finite, while by Gruenberg [10] p. 102 their Fitting subgroups are 
nilpotent. Finally, the deduction that G / K is actually maximal abelian by finite, 
in other words crystallographic, may be seen from an argument of Zassenhaus [6] 
p. 435. 0 

Observe that this particular class of groups is closed under passage to sub
groups, quotients and extensions. 

For G in this class, an easy spectral sequence argument shows that the 
rational homology groups Hn(G; Q) are all finite-dimensional over Q, and that 
thdQ(G) ~ h(G) < 00 (cf. [8]). We shall use the notation X(G) for the naive Euler 
characteristic, 

00 

x(G) = ~)-1)ndimQ Hn(G ;Q). 
n=O 

This definition suits our purpose although it is not always easily or closely con
nected with the classical Euler characteristic. For example, the infinite dihedral 
group Doo has Euler characteristic zero whereas X(Doo) = 1. We refer the reader to 
Brown's book [4] for a detailed account of Euler characteristics and cohomological 
methods. 

4. Proof of the main theorem 

Our strategy is to use the naive Euler characteristic to set up contradictions that 
reduce to consideration of locally finite groups. Throughout we assume that G 
satisfies the hypotheses of Proposition 3.1. 
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Lemma 4.1. If G is nontrivial and torsion-free, then x( G) = 0 . 

Proof. Let Hand K be the subgroups defined using Proposition 3.1. Since G 
is nontrivial and torsion-free, we know that T(G) is trivial and H is infinite. Let 
L be any subgroup containing H as a normal subgroup of finite index. Now L 
is torsion-free and nilpotent-by-finite, of finite Hirsch length equal to the Hirsch 
length h(H) of H. Let Lo be a finitely generated subgroup of L that contains a 
transversal to H in L and which has full rank, that is h(Lo) = h(H). Let Ho 
denote H n Lo. Then the inclusion of Ho into H induces isomorphisms in rational 
homology. Moreover the short exact sequence 

Ho >--+ Lo ---» H / L 

embeds naturally into 

H>--+L---»H/L 

and comparison of the associated Lyndon-Hochschild- Serre spectral sequences 
shows that the inclusion of Lo into L induces isomorphisms in rational homology. 
Hence X(Lo) = X(L). Since Lo is torsion-free, virtually nilpotent and finitely gen
erated, it is a Poincare duality group of type F P and our naive Euler characteristic 
coincides with the genuine classical Euler characteristic which is zero in this case 
(see [4] pp. 201, 213, 224, [7]). Thus X(L) is zero. 

Since G / K is a crystallographic group it admits a proper cocompact action on 
a Euclidean space X which we may suppose to be endowed with a CW-structure. 
In this way we have a contractible co compact G-CW-complex X in which each 
stabilizer is a finite extension of K (see [12] (3.1.2), (3.1.3)). Consider the Leray 
spectral sequence ([4] VII.7.1O) 

E~,q= EB Hq(Ga;Q) 
dima=p 

where a runs through a set of orbit representatives of cells in X. Reading Euler 
characteristics, we have 

x(G) = "'( -1)p+q dimE l 
~ p,q 
p,q 

~ :s:( _I)"ma (~( -I)' dimH,(G.; Q)) 
= L(_1)dima X(Ga ). 

The stabilizers Ga are all groups of the form L considered above and so their 
naive Euler characteristics are always zero. Hence X( G) is zero too. 0 
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Lemma 4.2. If H(G) is torsion then X(G/T(G)) = 1. 

Proof. The universal coefficient theorem shows that 

Hn(G; Q) = Hn(G; Z) 0 Q = 0 

for all n 2:: 1, and hence X(G) = 1. The subgroup T(G) makes no impact on the 
rational homology with trivial coefficients and therefore X( G / T( G)) = 1 also. 0 

Lemma 4.3. If thdJFp(G) < 00 for all primes p occurring as orders of elements 
ofG, then G/T(G) is torsion-free. 

Proof. Using Proposition 3.1 (1), there is a finite dimensional ((::-linear represen
tation p of G having kernel T(G). Theorem 2.2 shows that every element of finite 
order in G belongs to the kernel of p, and hence G /T( G) is torsion-free. 0 

To prove the main theorem, suppose now that H (G) is torsion, yet for all 
primes p occurring as orders of elements of G only finitely many Hn (G; Z) contain 
p-torsion. Then by universal coefficients, for all such p, thdJFp (G) < 00 . Bringing 
Lemmas 4.2 and 4.3 into play, we see that G/T(G) is torsion-free and has naive 
Euler characteristic equal to 1. Applying Lemma 4.1 to this quotient shows that 
it is trivial, and so G = T( G) is locally finite. Therefore, as in the proof of Theo
rem 2.3, its reduced rational homology is zero. By Theorem 2.3 and the universal 
coefficient theorem, we conclude that G is acyclic. 
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Unstable splittings 
related to Brown-Peterson cohomology 

J. Michael Boardman and W. Stephen Wilson 

Abstract. We give a new and relatively easy proof of the splitting theorem 
of the second author for the spaces in the Omega spectrum for BP. We then 
give the first published proofs of our similar theorems for the spectra P(n). 

1. Introduction 

In [WiI75], unstable splittings were constructed for the spaces in the Omega spec
trum for Brown-Peterson cohomology, a cohomology theory with coefficient ring 
BP* ~ Z(p)[Vl, V2, .. . , Vn, .. . ]. This was done using the Postnikov decomposition 
and a multiple induction. The proof, from [WiI73] (again using Postnikov sys
terns), that these spaces had no torsion was essential in this proof. In [RW77], the 
calculation of the homology of those spaces for BP was done as a Hopf ring, a 
great improvement, and this was used in [BJW95] to construct an unstable idem
potent to get the splittings. Some of the splittings are not as H-spaces and so the 
full power of non-additive unstable operations was required. The splittings were 
generalized in [BW] to the spaces in the Omega spectrum for P(n), n> 0, a the
ory with coefficient ring P(n)* ~ BP*/In where In = (P ,Vl,V2, ... ,Vn-l), after 
the calculation of the Hopf ring for these spaces in [RW96]. This calculation was 
done with the intent of getting an analogous splitting. The technique is again to 
construct an unstable idempotent to get the splittings. 

Although the technique of constructing unstable idempotents is clearly the 
proper way to prove these results, it requires an immense amount of technical 
machinery which cannot be accused of being easily accessible. In fact , this difficulty 
has led to the present paper being published well before the paper with the first 
proof in it . 

We wish to present a much more direct proof of these splittings which re
quires none of the machinery of unstable operations. In fact, the proofs could be 
done quite easily if one could just insert a few short paragraphs into the papers 
[RW77] and [RW96]. Unfortunately that option is not open to us. If we essentially 
reproduce those papers to insert what little extra is needed, then the proofs cease 
to be "easy." On the other hand, if we just create those paragraphs to be inserted, 
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then the result remains obscure. We will try to walk a fine line between these two 
approaches. Our goal will be to write the necessary insertions in such a way that 
a rigorous proof has been accomplished when combined with the previous two pa
pers but at the same time discuss the results in enough depth so the reader should 
be convinced of the result without having to consult the other papers. 

First we need to establish some notation and state our results. We let P(O) 
represent BP so BP is not an exceptional case. In fact it is both easier and quite 
different from the n > 0 case. There are also theories BP(m) with homotopy 
Z(p) [v!, ... , vm] and P(n, m) with homotopy BP(m)*/ In (Io = (0), so BP(m) = 
P(O, m)) which are associative ring spectra by [SY76]. If E is a spectrum we 
denote the spaces in the Omega spectrum by {E k}. Define g( n, m), for n ::; m to 
be 2(pn + pn+l + ... + pm). We will show that for k ::; g(n, m), P(n, m) k splits off 
of P(n) k. Precisely: 

Theorem 1.1 ([Wil75], and later [BJW95], for n=O and also [BW] for n>O). 
For k ::; g( n, m) there is an unstable splitting 

P(n) k::: P(n,m) k II P(n,j) k+2(pi-l)" 
j>m 

Remark 1.2. Once the bottom piece has been split off the rest of the splitting 
follows easily. If k < g(n, m) then it follows that this is a splitting of H-spaces. 

Remark 1.3. We do not recover the result of [BW] for n > 0 and k = g( n, m) 
that this is still a splitting as H-spaces (only for odd primes) . The fact that 
the homology splits off as Hopf algebras tells us nothing. If k > g(n, m) then 
it is easy to see from our approach that the homology of the smaller piece no 
longer splits off and so there is no such homotopy splitting as well. One of the 
major attractions about our approach is that we don't have to worry in any way 
about the additivity of our splittings. For the n = 0, k = g(O, m) case where the 
splittings are not additive, this is a major complication in the proof using unstable 
idempotents. Our approach is indifferent to such matters although it does show the 
non-additivity of this splitting because we see that the homology splitting cannot 
be as Hopf algebras. 

Remark 1.4. Note that when n = m the small bottom piece of the splitting is 
just a space in the spectrum for connective Morava K-theory. Furthermore, when 
k < 2pn - 2, this is a space in the spectrum for periodic Morava K-theory. 

Remark 1.5. Another major complication in [BW] for the n > 0 case is the prime 
2. The theories involved are not homotopy commutative ring spectra and so the 
machinery for unstable idempotents must be extended and contorted to deal with 
this special case. These complications have led to significant delays in the publica
tion of this work. One of the benefits of our approach is once again that we do not 
need to worry about such things. The p = 2 proof is identical to the odd prime 
proof and we need not be concerned whether any of the spectra are commutative 
ring spectra or not. The p = 2 version of the theorem is very important. 
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A major motivation for the theorem, and even for a second or third proof, is 
its important applications. First, it is easy to prove a generalization of Quillen's 
theorem from the splitting. 

Theorem 1.6 (For n = 0, [Qui71], and, for n>O, also [BW] .). For X a finite com
plex, P(n)* (X) is generated by non-negative degree elements. 

Proofs for the n = 0 case using the splitting appear in [WiI75] and [BJW95]. 
In this last case a more general, purely algebraic, version about unstable modules 
is proven. Strickland has shown that Quillen's proof cannot be generalized to the 
n > 0 case. 

Second, all of the results of [RWY98] are unstable, and the only unstable 
input is this generalized Quillen theorem. Everything depends on it. Thus, we feel 
it is important to have a relatively simple and accessible proof, especially one with 
no complications associated with the prime two or the non-additive splittings. 

The authors are particularly indebted to the organizers of the 1998 Barcelona 
Conference on Algebraic Topology and the Centre de Recerca Matematica for the 
conference and terrific work environment during the extended stay of the second 
author. Thanks are also due to our previous coauthors, David Johnson and Douglas 
Ravenel, for the work with them which led us to this paper. 

2. Approach and simple parts of the proofs 

In [RW77] and [RW96] the homology of the spaces in the Omega spectra were 
calculated by induction on degree using the bar spectral sequence 

TorH.(P(n) J(Zj(p), Zj(p)) => H*+1(P(n) ). 
--*+1 

The Hn+1 is there to indicate that we gain a degree in this inductive calculation. 
What was not noticed in those two papers was that we could easily have 

simultaneously calculated the homology of the bottom piece which splits off. We 
would just use the spectral sequence 

TorH.(P(n,m) J(Zj(p), Zj(p)) => H*+l (P(n, m) ). 
----'----'- * + 1 

There is a map of spectra P(n) -> P(n, m) which induces a map on the spectral 
sequences. The proof of the calculation of this spectral sequence is identical up to 
k = g(n, m) with the exception of one slightly modified definition. It is easy to see 
that the calculation cannot go one step higher. 

Once the homology is calculated it is easy to see that the Atiyah-Hirzebruch 
spectral sequence for the P(n) and P(n, m) homology of these spaces collapses 
and so they are free over the coefficient rings. 

Corollary 2.1. For k ::::; g(n, m) the Atiyah-Hirzebruch spectral sequences 

H*(P(n, m) k; P(n)*) and H*(P(n, m) k; P(n, m)*) 

collapse and P(n)*(P(n,m) k) is P(n)* free and P(n,m)*(P(n,m) k) is P(n,m)* 
free. 
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This in turn allows us to calculate the cohomology theories as the dual and 
get: 

Corollary 2.2. For k :S g( n, m) , the map 

P(n)*(P(n, m) k) -t P(n, m)*(P(n, m) k) 

is surjective. 

Proof of Theorem 1.1. To get our splitting we just note that the identity map of 
P(n, m) k' an element of P(n, m)k(P(n, m) k)' has a lift to a map of P(n, m) k 
to P(n) k' an element of P(n)k(P(n, m) ). That splits off the bottom piece. The 

--- k 
other pieces are handled by taking the maps 

P(n J.) -t P(n) -t P(n) 
--' -k+2(p.i-I) ---k+2(pj-l) ---k 

where the first map is just the bottom piece splitting and the second map comes 
from the stable map of Vj. Using the H-space structure to add all of these maps 
up we see we have a homotopy equivalence due to the obvious isomorphism on 
homotopy groups. 

This concludes the proof of the splitting from the calculation of the homology 
and the collapsing of the Atiyah-Hirzebruch spectral sequence. 0 

The summary given above constitutes a "proof" that if the splittings exist, 
then there must be an "easy" proof along the lines just outlined. 

We now want to give a proof of the Quillen theorem. 

Proof of Theorem 1.6. This proof is exactly the same as the proof of the original 
Quillen theorem given in [Wil75], but because it is of such major importance, and 
it is short, we reproduce it here. There are stable cofibrations 

~2(pm-l) P(n, m) ~ P(n, m) ---> P(n, m - 1) (2.1) 

where P(n,n -1) is the mod p Eilenberg- MacLane spectrum. These cofibrations 
give rise to long exact sequences in cohomology theories. Given a negative degree 
element x E P(n)*(X) where X is a finite complex, we see that there is some 
q ~ n for which x maps to zero in P(n,q - 1)*(X) because mod p cohomology is 
zero in negative degrees. Using the above exact sequence there is an element Yq E 
P(n, q)*(X) such that VqYq is the image of x in P(n, q)*(X). Because x has negative 
degree, the element Yq, which is a map of X into the space P(n, q)1 I ( )' is 

---x +2 pq-l 

in the range of the splitting Theorem 1.1 and so the element Yq can be lifted to 
P(n)*(X). We now look at the element x - vqYq. It will go to zero in P(n, q)*(X) 
and we can iterate this process. It is a finite process since the splitting Theorem 
1.1, combined with the finiteness of X, tells us that for some large m, P(n)k(X) is 
the same as P(n, m)k(X) for a fixed k = Ixl. At that point we have x = I: ViYi, a 
finite sum. Thus any negative degree element is decomposable in this way and we 
have proven the generalized Quillen theorem. (For the n = 0 case we let P(O, 0) 
be the Z(p) cohomology and we do not need the mod p cohomology.) 0 
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3. The Homology 

Let H* (-) be the standard mod p homology where p is the prime associated with 
the spectrum P(n, m). Because P(n, m) is a ring spectrum there are maps 

P(n,m) " x P(n,m) " -+ P(n,m) "+ " 
--'--'---'-l J l J 

corresponding to cup product, in addition to the loop space product 

P(n,m) " x P(n,m) " -+ P(n,m). 
--'--'---'- l l l 

These induce pairings 

and 

Since H* (-) has a Kunneth isomorphism these pairings satisfy certain iden
tities making H*(P(n,m) ) into a Hopf ring, [RW77], i.e., a ring object in the 
category of coalgebras. * 

There are special elements 

e E P(nh(P(n,m) 1)' 

a(i) E P(nhpi(P(n,m) 1) for 0 ::; i < n, 

[Vi] E P(n)o(P(n, m) 2(pi-1)) for m ~ i ~ n, i > 0, and 

b(i) E P(nhpi (P(n, m) 2) for i ~ 0, 

which have already been defined in [RW96] in P(n)*(P(n) ) and we get these by 
--* 

just pushing them down using the map from P(n) to P(n, m) to get them first 
in P(n)*(P(n, m) ) and then into P(n, m)*(P(n, m) ). They then push down 

--'--'---'-* * 
non-trivially to H* (P(n, m) ). 

---'----,--'- * 
A basic property which we need and which comes out of the construction of 

these elements, (this goes clear back to [Wil84]), is: 

Proposition 3.1. The elements e, a(i), [Vi], and b(i) are permanent cycles in the 
Atiyah-Hirzebruch spectral sequence for P(n)*( -) and P(n, m)*( -). 

Other facts proven about these elements are in [WiI84, Proposition 1.1] and 
were repeated again in [RW96, Proposition 2.1, p. 1048] and are not repeated again 
here. 

Let 

eCaI[vK]bJ = eC 0 aOio 0 ..• 0 aOin- l 0 [vknvkn+l . .. ] 0 bOjo 0 bOjl ... 
(0) (n-1) n n+1 (0) (1) 

where c = 0 or 1, iq = 0 or 1, kq ~ 0, and jq ~ 0, (K and J finite), and if n = 0, 
ko = O. 
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Definition 3.2. For n > ° we say ecaI[vKJbJ is nm-allowable if 

J = pn t:l.dn + pn+1t:l.dn +l + ... + pq t:l.dq + J' 

where t:l.d has a 1 in the cfh place and zeros elsewhere, dn ::; dn+1 ::; .. . ::; dq and 
J' is non-negative implies kq = 0. In other words, 

[vqJ 0 lin Dodn +pn+l Dodn+l + .. +pqDodq 

does not divide ecaI[vKJbJ when dn ::; dn+I ::; .. . ::; dq, q < m. We will denote 
the set of such (K, J) by Anm. If we eliminate the reference to m then we have the 
n-allowable of [RW96J. Because we do not want to use [voJ in the n = ° case we 
set Aom = AIm. There is still a difference between the allowable elements because 
I is empty for n = ° but not for n = 1. 

We say ecaI[vKJbJ is nm-plus allowable if ecaI[vKJbJ+Doo is nm-allowable. 
We will denote the set of such (K, J) by A;tm. Note that A;tm C Anm. 

Define the shift operator s on J by 

bstJ) - bO]O 0 bO]l 0 . . . (3.2) 
- (1) (2) . 

Theorem 3.3. Let H. (-) be the standard mod p homology with p the prime asso
ciated with P(n, m). 

For n > ° and * ::; g(n, m). H.(P(n, m) ) is the same as H.(P(n) ) stated 
in [RW96, Theorem 1.3, p. 1045J except we ~eplace the nand n-plus ~llowable 
with nm and nm-plus allowable. For p = 2 there is one more minor modification 
described in the appendix to this paper. 

For n = ° and * < g(O, m), 

H.(P(O, m) ) ~ 
--'--'---'-. 

(K,J)EAon> (K ,J)EAon> 

Forn = ° and k = g(O, m) , as a coalgebra, H.(P(O, m) k) is the divided power 
coalgebra 

Q9 r([vKJbJ+DoO ). 
(K,J)EAon> 

The elements "(pi ([vKJbJ+Doo) represent [VKjbBi(J+DoO). 

Remark 3.4. Of course we insist that one only uses the elements which actually 
lie in the appropriate spaces. The element ecaI[vKJbJ is in Hs(P(n, m) k) where 

s = € + 2:2piq + 2:2p1q and k = € + 2:iq + 22:jq - 2:2(pq -1)kq. 

Remark 3.5. For n = ° and * < g(O, m), this is the same as in [RW77], replacing 
allowable with Om-allowable. 

Proof of Corollary 2.1 . The Atiyah-Hirzebruch spectral sequence respects the two 
products, 0 and *, and all elements in the P(n).(P(n, m) ) we are considering are 

--'--'---'-. 
constructed using these two products from the basic elements e, a(i) ' [Vi], and b(i) 
which are all permanent cycles by Proposition 3.1. Thus the spectral sequence 
collapses. 0 
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Primitives are calculated simultaneously as in [RW96 , Theorem 1.4, p. 1046] 
and [RW77] . 

The p = 2 case deserves some discussion. The spectra P(n) and P(n, m) are 
not commutative ring spectra. However, the standard homology is still a commuta
tive Hopf ring, see the explanation in [WiI84, pages 1030-31]. There are no concerns 
raised by this lack of commutativity in the collapse of the Atiyah-Hirzebruch spec
tral sequence, the use of duality to compute the cohomologies or their application 
to get the splittings. The lack of commutativity could make things very bad for 
some applications but it doesn't interfere in the slightest with what we are doing. 
It does make the proof of the splitting in [BW] much harder. 

The proof of our theorem relies on being able to identify elements in the bar 
spectral sequence, compute differentials and solve multiplicative extension prob
lems, all using Hopf ring techniques. The n = 0 case has no differentials but does 
have extension problems. 

Let Q stand for the indecomposables. 

Theorem 3.6. In QH*(P(n, m) k)' k :::; g(n, m) , any eE:aI[vK]bJ can be written in 
terms of nm-allowable elements. 

Proof. The construction and proof of an algorithm for the reduction of non
allowable elements is done on pages 273- 275 of [RW77]. The proof applies with 
only notational modification to the case of nm-allowable when I = o. We can then 
circle multiply by aI to get our result . 0 

The homology and primitives are calculated simultaneously by induction on 
degree in the bar spectral sequence. Recall that for a loop space X with classifying 
space BX the bar spectral sequence converges to H*(BX), and its E 2-term is 

Tor~;(X) (Zj(p), Zj(p)) . 

When BX is also a loop space, we have a spectral sequence of Hopf algebras. 
The E2 term of the bar spectral sequence for n > 0 is calculated inductively 

from Theorem 3.3 just as in [RW96, Lemma 3.6, p. 1056]. For n = 0 the calculation 
is trivial as in [RW77]. Both cases must use the modified definition of allowable. 

The complete behavior of the bar spectral sequence, using the modified def
inition of allowable, is given in [RW96 , Theorem 3.7, p. 1057] for n > 0 and in 
[RW77] for n = o. For n > 0 it is a gruesome description of all differentials and 
identification of elements in terms of the Hopf ring. There are no differentials for 
n = 0 and the identifications are much easier as well. 

This does not complete the calculation of the homology but only the Eoo 
term of the spectral sequence. Extension problems must be solved. However, first, 
since we claim that the proofs of all parts of the calculation are exactly the same as 
for the spaces in the Omega spectra for P(n) and BP as in [RW96] and [RW77], 
some explanation is clearly needed in order to explain the differences between 
the two cases and to see why we cannot proceed up the Omega spectrum with 
P(n, m) . That difference comes about in the calculation of the differentials. For 
n = 0 there are no differentials so we do not see any difference at this step. For 
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n > 0 the differentials are not really calculated but inferred. Certain elements are 
shown to disappear and it is proven that they must be targets of differentials. 
They are counted and shown to be in one-to-one correspondence with possible 
sources of differentials. Thus, all possible sources must kill all necessary targets. 
The difference comes in the counting process. We use the following lemma and the 
difference is found in the proof, which we include. 

Lemma 3.7. Let n > O. In H*P(n, m) , there is a one-to-one correspon----'---"-----'- *<g(n,m) 
dence between the set 

{[vK+~n]bJ+(pn-1)~o: (K, J) E Anm , jo = O} 

and the set 
{ [ K' .J'. , , + v ]b . (K ,J ) E Anm - Anm}' 

Remark 3.8. Recall that for n = 0 we have Om and 1m give the same thing. 

Proof. To see this, write 

J = pn fl. dn + pn+ 1 fl.dn+ 1 + ... + pq fl.dq + J" 

where q is maximal (this can be vacuous, i.e. J = JII, in which case we set q = n-1) 
and dn ~ dn+1 ~ ... ~ dq and J" is non-negative. Now let 

J' = J" + (pn - l)fl.o + pn+l fl. dn -1 + pn+2 fl. dn+1 - 1 + ... + pq+1 fl. dq - 1 

and K' = K + fl.q+l' 0 

If we are not observant, we can find ourselves letting q get too large in this 
proof and creating a [Vm +1], which does not exist. Looking closely, we find that 
the smallest space this could happen in is k = g(n, m) . However, the counting for 
the n > 0 case that matters here, is done for differentials and the targets all have 
an e with them which throws this problem up to the k = g(n, m) + 1 space. We are 
not working in this range so this doesn't affect us. It does tell us that the splitting 
cannot be delooped though since it does say we cannot have as many differentials 
on our smaller space as we would need to get the size of the homology down to 
where it splits off. That is, all of our necessary targets are not there in the next 
space so some possible sources will survive. They do not survive in the space for 
P(n) though, so the homology cannot split off. 

The final problem which arises is the solving of the extension problems to 
give us the proper homology. Again, the proofs are the same for the P( n, m) 
and P(n) cases. The counting argument of the previous proof is used again in 
this proof. Here we need to solve various extension problems. First, we show that 
certain elements cannot be generators and then we show that the only thing that 
can prevent them from being generators is if they are p-th powers. We then show 
that they are in one-to-one correspondence with the only elements which could 
possibly have non-trivial p-th powers. We use the same counting Lemma as in the 
previous proof. This time, in the n > 0 case, we must always have an a(i) involved 
in the p-th powers which again throws it up to the g(n, m) + 1 space before we 
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see the creation of an unwanted [vm+1]' However, in the n = 0 case, we see our 
p-th power extensions can, and do, actually occur in the g(O, m) space. Our result, 
in this case, is only correct as coalgebras and in the small space the homology 
is not a polynomial algebra and so cannot split off of the homology of the larger 
space as Hopf algebras, thus preventing the splitting from being as H -spaces. This 
completes the proof. 

4. Appendix: p = 2 

This paper requires the results of [RW96]. However, in that paper the results were 
not stated explicitly for p = 2. Because p = 2 is such an important part of the 
contribution of this paper, we must rectify that enough to do the p = 2 case here. 
The lack of precision with p = 2 in [RW96] originates in a similar vagueness in 
[Wil84]. First, we will straighten out the situation in [WiI84] and then we will do 
the same for [RW96]. 

The key to the solution is mentioned in the p = 2 comments in [Wil84, page 
1030], namely, the element e must be included in the coproduct of the elements 
ai. In particular, the Verschiebung is evaluated as V(a(O») = e. Using the mod 2 

homology formula, a(~_l) = a(O) 0 [vn] 0 b~;)-l, we can compute 

( )*2 ()*2 [ ] b2n-1 eo a(n-l) = a(O) 0 a(n-l) = a(O) 0 a(O) 0 Vn 0 (0) . 

We note that 

V(a(O) 0 a(O») = V(a(O») 0 V(a(O») = eo e = b1 = b(o)· 

Since V(b(l») = b(o) also and b(l) is the only element in degree 4 of this space, we 

must have a(O) 0 a(O) = b(l)' Thus, we have (e 0 a(n_1})*2 = [vn ] 0 b~;)-l 0 b(l)' For 
p odd, all elements with e in them were exterior. However, for p = 2, we need to 
look at all elements containing eo a(n-l) in both the cases we are considering. 

For odd primes, we recall the result of [WiI84, Theorem 1] as 

H.K(n).:::: Q9 E(a1bJ 0 ed Q9 TPp(I)(a1bJ ) Q9 P(a1bJ ) 

jo<pn - 1 1#1(1) 1=1(1) 
if io = 1 , )0 < pn - 1 

the n jo < pn - 1 

where H is the mod p standard homology, /(1) denotes the sequence of all ones 
and all jk < pn. The number p(I) > 0 is the smallest k with in-k = O. 

For p = 2 we must modify this to take into account the additional nontrivial 
squares which we have already identified. In this case our description is precise. 
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Theorem 4.1. For p = 2, with the above constraints, H*K(n) ::::: 
--* 

® 
io < 2 n - 1 
in-l = 0 

® 
/ '" /(1) 
if io = 1 , 

then io < 2n - 1 
if io = 0 and io = 2n - 1 

then it = 0 

® 
io < 2n - 1 

in - l = 1 

® 
/ = /(1) 

io < 2n - 1 

The essentials of the proof remain unchanged. We have taken the exterior 
generators which should be truncated polynomial generators and we have taken 
away the generators which are their squares. The size remains the same in either 
description. This is significantly easier than our next case because here we can 
solve our extension problems precisely. 

It is tedious to reproduce the results of [RW96J here and then modify them 
slightly. We will keep the flavor of the rest of the paper and only produce the 
modifications. 

Theorem 4.2. For p = 2, the standard mod 2 homology, H*(P(n) ), fits in a short 
--* 

exact sequence oj Hopj algebras with the associated graded algebra being given 
by [RW96, Theorem 1.3J (the odd prime answer). The quotient Hopj algebra is 
just the exterior algebra on generators eal[vKJbJ as in [RW96, Theorem 1.3J with 
in-l = 1. These elements, in the actual algebra, all have nontrivial squares which 
are contained in the set oj generators oj the subalgebra given by al[vKJbJ with 
io = 0 and (K, J) E An - A;t. 

Proof. In the Morava K-theory case we could evaluate the necessary squares di
rectly. Here we cannot. It is essential that we know the squares are all nontrivial 
and linearly independent but it is not obvious how to do that directly. However, 
the proof in [RW96J need only be modified slightly. In particular, we can still work 
in the same bar spectral sequence with the same elements. We must consider the 
elements al [vKJbJ with io = 0 and (K, J) E An - A;t. After double suspension 
to al[vKJbJ+Ao we know this is zero mod * since (K, J) 'I- A;t. However, it can
not be a square because it has no a(O) in it and its degree is a multiple of 4. (If 
it was the square of an elements with e in it, thus making the a(O) unnecessary, 
then it would have to have degree 2 mod 4). All differential targets must be odd 
degree so our double suspended element must be zero which implies something 
happened to it in the previous spectral sequence as eal [vKJbJ . Since it is odd 
degree it cannot be a square so it either is the target of a differential or it was 
already zero. Both happen. The counting argument of [RW96 , page 1061-2J pairs 
these up with the potential source of differentials. For p = 2, the count, as given, 
uses '2(aeal [v K JbJ ) when i n - 1 = 1 and (K, J) E A;t. However, at p = 2, this 
would have to be a d1 differential which does not exist. We know that the ele
ments which should be targets must be zero so the ones associated with these 
/2 must have already been zero. These are in 1-1 correspondence with our /2, or 
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our eaI[vK]bJ when in-l = 1 and (K, J) E A;t. These are precisely the elements 
we wish to have non-trivial squares! Thus, the only solution to our problem is 
that they have non-trivial squares, linearly independent, among the aI [vK]bJ with 
io = 0 and (K, J) E An - A;t. Because they are squares, they never show up as 
O"aI[vK]bJ in the next spectral sequence so they do not have to be killed there. 
Likewise, because eaI[vK]bJ is not exterior, the "/2 we worried about in the spec
tral sequence does not exist so those unwanted elements go away as well. This 
concludes the discussion of the differences for p = 2. 0 
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Stripping and splitting decorated 
mapping class groups 

Carl-Friedrich B6digheimer and Ulrike Tillmann * 

Abstract. We study decorated mapping class groups, i.e., mapping class 
groups of surfaces with marked points and boundary components, and their 
behaviour under stabilization maps with respect to the genus, the number 
of punctures and boundary components. Decorated mapping class groups are 
non-trivial extensions of the undecorated mapping class group, and the first 
result states that the extension is homologically trivial when one stabilizes 
with respect to the genus. The second result implies that one also gets split
tings of homology groups when stabilizing with respect to the number of 
punctures and boundary components. 

1. Introduction and statement of results 

Let F;,n+l be an oriented smooth surface of genus 9 with k marked points and 
n + 1 boundary components. The mapping class group r~ ,n+l is the group of 
components of the space of diffeomorphisms of F;'n+l which fix the marked points 
and the boundary pointwise. If k and n are zero, they will be dropped from the 
notation. Gluing a torus with two boundary components to one of the boundary 
components of F;,n+l' one gets a surface F;+l,n+l. Extending diffeomorphisms by 
the identity induces a map of mapping class groups 

a: r~,n+l ----.r~+1,n+1' 
and we may define the associated stable mapping class group 

r~ n = lim rgk n+ 1 . 
, g~oo ' 

The n boundary components not used in this stabilization process will be called 
free. Consider now diffeomorphisms that may permute the punctures and free 
boundary components. To be precise, the boundary components should be thought 
of as having a parametrization and diffeomorphisms have to be compatible with 
these. The associated mapping class groups will be denoted by r(k() ) 1 and r(k)( ) . 

g, n , CXJ , n 
They are normal extensions 

k (k) r g,n+l '---> r g,(n) ,1 -+> Ek X En, k r(k) "" r oo ,n+1 '---> oo,(n),1 -+> L..Jk X L..Jn 

*Supported by an Advanced Fellowship of the EPSRC. 
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with quotients the product of the symmetric groups on k and n letters. Similarly, 

let r~~~+l and r~, (n),1 denote the mapping class groups associated to the diffeo
morphism groups that may permute the punctures respectively the free boundary 
components only. These extensions are important for the understanding of surface 
operads (see for example [G] and [GK]). 

Theorem 1.1. 
(1) B(r~,n)+ ~ Brt x (Cpoo)k; 

(2) B(r~;(n))+ ~ Brt x BL,~ x B(L,k I SI)+. 

These are two special cases of Theorem 3.1. Here Cpoo denotes infinite di
mensional complex projective space, L,k is the symmetric group on k letters, L,kISJ 
is the wreath product of the symmetric group L,k with the circle group, and X+ 
denotes the Quillen plus construction of the space X with respect to the maxi
mal perfect subgroup of its fundamental group. The most important ingredient for 
the proof of Theorem 1.1 is Harer's homology stability theorem for mapping class 
groups [H]. It allows one also to deduce results for the mapping class groups of 
closed surfaces and finite genus g. Theorem 1.1 has the following reinterpretation 
in homology, the first part of which has also been proved by Looijenga [L] and 
Morita [M]. 

Corollary 1.2. 
(1) H*(r~,m) = H*(rg,l) 0 Z[xJ,"" xkl in dimensions * :::; g/2 when 

k + m ~ 1; here each Xi has degree 2; 

(2) H*(r(k()) ;IF) = H*(rg1 ;IF) 0 H*(L,n;IF) 0 H*(L,k;IF[XI, ... ,Xk]) in di-g , n ,m ' 

mensions * :::; g/2 when k + n + m ~ 1; IF is any field. 

Remark The difficult question of determining the homotopy type of Brt is not 
addressed in this paper. Some progress has recently been made. In particular, Brt 
has been shown to be an infinite loop space [Tl. Hence, by the above splitting, also 
B(r~)+ has an infinite loop space structure. It is curious to note that the methods 
of [Tl however do not generalize to the case k > O. 

Instead of stabilizing with respect to the genus g, one can also consider stabili
zations with respect to the number of boundary components or punctures: 

"'. rk _rk 
L<. g,n+l g,n+2, 

- r(k) (k) 
a: g,n+l - r g,n+2' 

J. r k _ r k 
. g,(n),1 g,(n+l) ,J' 

(3 . rk _ r k+ 1 
. g ,n+l g,n+l' 

- (k) _ r(k+l) 
{3: rg,n+l g,n+l' 

,8: rgk ,(n),l _ r k+1 g,(n),l' 

For a, a and J glue a pairs of pants surface to the non-free boundary component 

of F;,n+l' Similarly, for {3, ,8 and ~ glue a cylinder with one puncture to F;'n+l ' 
a and a have retractions on the group level induced by gluing a disk to one of the 
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boundary components of the pairs of pants surface. (3 and /3 have retractions on 
the group level induced by forgetting the (k + l)-st puncture. Such splittings on 
the level of groups cannot be found for 6: and /3. However, using techniques from 
configuration spaces we show 

Th 'Ph :: k k (3- (k) Bf(k+l) eorem 1.3 . . J., e maps 0::: Bf g,(n) ,1 --> Bf g,(n+l),1 and : Bf g,n+l --> g,n+l 
admit stable retractions. 

In particular, 6: and /3 have splittings in homology. We note here that for infi
nite genus Theorem 1.3 follows from Theorem 1.1 and well-known stable splitting 
of the inclusion of Borel constructions 

EEn X En Xn ---- EEn+l XEn+ l Xn+l 

for connected X and any n (compare [BaM]). 

2. Preliminaries on perfect subgroups and the plus construction 

A group P is called perfect if every element can be written as a commutator, that 
is P = [P, Pl. Any group G has a unique maximal perfect subgroup which we will 
denote by P(G). As the homomorphic image of a perfect group is again perfect, 
P( G) is a characteristic subgroup of G. 

Let X be a connected space and let P be a perfect normal subgroup of 
its fundamental group 11"1 (X). By attaching 2-cells and 3-cells, one can form a 
space xt with the properties that the natural inclusion qp: X --> xt induces 
(i) an epimorphism 11"1 (X) --> 11"1 (xt) with kernel P and (ii) an isomorphism 
H*(Xi A) --> H*(Xti A) for any abelian group A with a 11"1 (Xt)-action. This 
construction is due to Quillen. We will always consider the plus-construction X+ 
with respect to the maximal perfect subgroup of 11"1 (X) and drop the subscript P 
from the notation. We recall a few functorial properties of the plus construction 
which will be needed later on [Bi Sections 5 and 6]. 

(2.1) Given a map f: X --> Y between two spaces there is a unique homotopy 
class of maps f+ : X+ --> y+ making the following diagram commute 

X ~ Y 

X+ ~y+. 
In particular, X+ is well-defined up to homotopy relative to X. 

(2.2) As P11"1 (X X Y) = P11"1 (X) X P11"1 (Y), we have 

(X x Y)+ = X+ x y+. 
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(2.3) If F ----> E ~ B is a fibre sequence of connected spaces, then so is also 
F+ ----> E+ ----> B+ provided either (i) P7fl (B) = lor (ii) p is quasi-nilpotent 
and F+ is nilpotent. 

A space X is nilpotent if its fundamental group acts nilpotently on its ho
motopy groups. A fibration p is quasi-nilpotent if the fundamental group 7fl (B) of 
the base acts nilpotently on the homology H*F of the fiber. 

3. Stripping decorations: The proof of Theorem 1.1 

Let Hk and Hn be any subgroups of the symmetric groups Ek and En on k and n 
letters. Let r:'k,l be the subgroup of r~~{n) , l that fits into the exact sequence 

Extending diffeomorphisms by the identity on an attached disk with an appropriate 
number of punctures and disks removed, or an attached torus with one boundary 
component defines the inclusion map 

and the stabilization map 

These maps are illustrated in Figure 1 where the non-free boundary component 
of the surfaces is drawn as a rectangle, and gluing is defined by connected sum on 
this boundary component. (Note that this gluing is homotopy equivalent to the 
pairs of pants construction but strictly associative.) We may now also fill in the 
k punctures and n disks, and once again extend diffeomorphisms by the identity. 
This defines the forgetful map 

<p: r:'k,l --+ rg,l. 

Clearly <p 0 incl is the identity homomorphism. As stabilization commutes with 
both incl and <p, these homomorphisms extend to the stable mapping class groups. 

1 2 

8+ 1 

Figure 1: Stabilization and inclusion maps. 
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Proof. Gluing n punctured disks onto the n free boundary components of Fg,n+l 

commutes with stabilization, and hence defines a central extension 

7l,n ---4 r oo,n ---4 r~. 

This central extension gives rise to a map e: r~ ---> B7l,n = (SI)n. Recall that 
the connected components of the group of orientation preserving diffeomorphisms 
of a surface Fg ,1 are contractible when g ~ 2 [ES]. Hence, identify r;,1 up to 
homotopy with the group of diffeomorphisms of Fg ,1 which fix the boundary as 
well as n marked points. Then the components ei of e assign to a diffeomorphism 
¢ the angle between t,P(i) and D¢(ti) where the ti's are fixed tangent vectors at 
the marked points and D¢ is the derivative of ¢. e is a group homomorphism and 
can be extended in an obvious way to a homomorphism pie: r~) ---> En I SI. We 
have the following (up to homotopy) commutative diagram of fibrations. 

Br oo,n Br~ 
() (BS1 )n ------.. ------.. 

II 1 1 
Br oo ,n Br~) p/(} 

B(En lSI) ------.. ------.. 

1 1 1 
* ------.. BEn BEn· 

More generally, there is a fibration 

Br oo,k+n ---4 Br!~Hn .E3! B(Hk I SI) x BHn. (3.2) 

Br oo,n has perfect fundamental group for any n , and therefore its plus con
struction is nilpotent. Furthermore, the fundamental group of the base space acts 
trivially on the homology of the fiber by Lemma 3.3 below. Hence, (3.2) is a quasi
nilpotent fibration . By (2.3) we conclude that therefore also its plus construction 
is a homotopy fibration: 

Br~,k+n ---4 (Br!~HJ+ .E3! (B(Hk I SI) x BHn)+. 

The forgetful map ¢ induces a map of fibrations from this into the trivial fibration 

The map of base spaces is the identity. By Harer's stability theorem [H], the 
homology of the stable mapping class group is independent of the number of free 
boundary components. Therefore the map of fibers is a homotopy equivalence, and 
hence so is the map of total spaces. An application of (2.2) finishes the proof. 0 
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Lemma 3.3. ~n acts trivially on H.Br g,n for * ~ g/2. 

Proof. This is trivially true for n = 0 and we may assume n ::::: 1. By the stability 
theorem [H], [I], the ~n-equivariant map H.r g,n+l --+ H.r g,n induced by gluing 
a disk to the non-free boundary component induces an isomorphism in degrees 
* ~ g/2. Hence it is enough to show that ~n acts trivially on H.r g,n+l for * ~ g/2 . 

Let x be an element in the k-th homology of rg,n+l with k ~ g/2. As the 
inclusion incl: r g,l --+ r g,n+1 induces an isomorphism on the k-th homology [H], [I], 
x can be represented by a closed chain z in the bar complex of r g,l. 

The action of ~n on the homology of r g,n+1 is induced by conjugation. Let J1 
be an element of ~n' Then J1 has a lift {L to r g,(n),l such that it may be represented 
by a diffeomorphism which is entirely supported on the surface FO,n+1 (with k = 0) 
of Figure 1. The mapping classes appearing in the closed chain z, on the other 
hand, are represented by diffeomorphisms of the surface Fg ,l. Diffeomorphisms 
with disjoint support commute, and hence {L-1 z{L = z. It follows that J1 acts 
trivially on x. 0 

The lemma implies the following generalization of the stability theorem. 
Corollary 1.2 can be deduced immediately from this and the fact that by a the
orem of Nakaoka [N], the Leray-Serre spectral sequence for the wreath product 
collapses at the E2-term. 

Proposition 3.4. H*r:'~n ,m C::' H*r:~l,Hn ,m for * ~ g/2 and k + n + m ::::: 1. 

Proof. The two groups are related by group homomorphisms 

r~ r~ r~ r~ g,Hn ,m f--- g,Hn,m+1 -----> g+1 ,Hn,m+1 -----> g+l ,Hn,m' 

Consider the induced maps of Serre spectral sequences for the fibration of type (3.2) 
associated to each of these groups. By the above lemma and the stability theorem 
[H], [I], the induced maps on the second term of the spectral sequences E;,q are 
isomorphisms for q ~ 9 /2. The result thus follows by the Zeeman comparison 
theorem. 0 

We finish this section by identifying the maximal perfect subgroup of the 
decorated mapping class groups. 

Proposition 3.5. p(r:'~n , l) = p-1(P(Hk X Hn)) for 9 > 2, and in particular 
contains r g,l. 

Proof. Let 9 > 2. Recall that for all n, r g,n is perfect [Pl. There is a natural 
surjection r g,n+k --+ r~,n' Hence, as the image of a perfect group is perfect, r~,n 
is perfect for all k and n. Now consider the general case. The kernel of p is r~ ,n' 
As an extension of perfect groups is again perfect, we see p-1(P(Hk X Hn)) is 
perfect. It must be maximal as otherwise its image under p would be larger then 
P(Hk X Hn) and not perfect. But that is impossible. 0 
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4. Stable retractions: The proof of Theorem 1.3 

The purpose of this section is to prove Theorem 1.3. We will give details in the 
case of /3. We will use a configuration space model for Br~~~+l and construct a 
map 

(4.1) 

such that R 0 flco r,co j3 ::::' Id. At the end of the proof, we will indicate the necessary 
changes to be made in the case of <i. 

Fix a surface F = Fg ,n+l with a distinguished, non-free boundary curve, 
and let Ck(F) denote the space of configurations X = {Xl, . .. ,xd of k distinct , 
unordered points Xi on the (interior of the) surface F . The group D = Diff+(F;o) 
of orientation preserving diffeomorphisms of F which fix the boundary pointwise 
acts on Ck(F). 

Lemma 4.2. E;,n+l = ED XD Ck(F) is a classifying space for the group r~~~+l' 
Proof. This follows from the fibration Ck(F) ---7 E;,n+l ---7 BD ::::' Br g,n+l and 
from the fact that Ck(F) is a classifying space for the group 7rlCk(F), the group of 
braids with k strands in F x [0,1]. The last assertion is proved using the covering 
space (5k(F) of Ck(F), i.e., the space of ordered configurations of k points on F , 
which admits an inductive sequence of fibrations 

(5k(F ) C-2 (Fk- 2 ) (5l(Fk-l) Fk- l g,n+l <----- . . . <----- g,n+l <----- g,n+l = g,n+l' 

F F k - 2 g,n+l g,n+l 
Here Pi forgets the last point of a configuration; the total space of Pi is the fibre 
of ~ -1. Since all the base spaces are surfaces with at least one boundary curve, 
an inductive argument shows that (5k(Fg,n+l) and thus Ck(Fg,n+d has no higher 
homotopy. 0 

The fibration Ck(F) ---7 E;,n+l ---7 Brg,n+l now gives the group extension 

7rl C k (F) ---7 r~~~+l ---7 rg,n+l ' The inclusion jj is given by the inclusion of fibres 

Ck(F) b Ck+l(F) -----> 

1 1 
E;,n+l 

jj Ek+l -----> g,n+l 

1 1 
Br~,n+l = Br~,n+l' 

which adds to a configuration X E C k (F) a new point in the following way. Let 
Sl x [-1, 1] be a collar along the distinguished boundary curve. Define b': F --+ F 
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as b'(y, t) = (y, ~ t2 ) for y E 81, 0 ~ t ~ 1, and extend b' smoothly to 8 1 x [-1 ,0] 
and identically outside the collar. Set ~ = (Yo, ~) for some fixed Yo E 81, and then 
define b(X) = {b'(X1), . .. ,b'(Xk), 0 for X = {Xl, ... ,Xk, } E Ck(F). 

C k (F) is via b a closed subspace of Ck+ 1 (F); thus the same is true for 
E k . Ek+l d h . b E-k+l E k+1 jEk . d b g,n+1 III g,n+1; we enote t e quotIent y g,n+1 = g,n+1 g,n+1, an y 

k 1 -k 1 qk: Eg,~+l ---+ E9 ,~+1 the natural map. By Vk we denote the bouquet of these 
filtration quotients: 

k 

Vk = V jf;~,n+1' 
i=l 

Theorem 4.3. There is a homotopy equivalence ek: noo~oo E;,n+l ---+ noo~ooVk. 

Proof. We replace (a la Kahn- Priddy, Quillen) noo~ooy for a connected space 
Y with base point * by the labelled configuration space C(lRoo; Y) of unordered 
configurations Zl,"" Zk of distinct points Zi E lRoo with (not necessarily distinct) 
labels Y1, ... ,Yk E Y; a point in C(lRoo; Y) is thus a set {(Zl' yd, ... , (Zk ' Yk)}, 
where a pair (Zi' Yi) is deleted if Yi = *. A point in E;,n+l is given as aD-orbit 
of e = (e, X), where e E ED and X = {Xl, .. " xd a configuration on F. Set 
Xc> = {Xi E X l iE a} for any (non-empty) subset a C {I, . . . , k}. Regard Xc> as 
a point in lROO by choosing an embedding IL;:::o Ct(F) '---> lRoo . Then define 

e' k: E;,n+l --> C(lRoo; Vk) 

by e'k(e,X) = {(Xc>,qt(e,Xc») I 0 -=f. a C {l, ... ,k}, l = #a}. This e'k is a 
continuous map which extends to a map e k on C (lRoo; E;,n+1) since the latter is 
a free object in the category of infinite loop spaces generated by E;,n+l ' To prove 
that ek is a homotopy equivalence, note first that e 1 is homotopic to the identity; 
then consider the diagram 

C (lRoo; E;,n+l) 13 C (lRoo . Ek+l ) qk+l C(lRoo . jf;k+1 ) ~ ~ , g,n+1 , g,n+1 

8 k 1 8 k + 1 l II 
C (lROO ; Vk) L 

C (lROO ; Vk+d 
Pk+l C(lRoo. jf;k+1 ) ~ ~ , g,n+1 . 

Here L is induced by the inclusion Vk '---> Vk+ 1, and Pk+ 1 is induced by the pro
jection onto the last leaf. It is commutative (up to homotopy): for the left-hand 
square, all (Xc>,qt(e,Xc») are deleted: if k + 1 tJ. a and l = #a, then qt(e, Xc» is 
contained in Vk; if k + 1 E a and X = b(X'), then qt(e, Xc» is the basepoint in 
Vk+l for alll = 1, ... , k + 1. For the right-hand square only (Xc>, qk+l (e, Xc>)) for 
a = {I, ... , k + I} survives the projection qk+1. Because the horizontal sequences 
are quasi-fibrations and all spaces are of the homotopy type of a CW-complex, it 
follows by induction that ek is a homotopy equivalence. 0 
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Under these homotopy equivalences 8 k 's, the retraction R of (4.1) corre
sponds to the projection onto the first k - 1 leaves of the bouquet Vk . This proves 
Theorem 1.3 for the case iJ. 

In the case of ii, we first note that on the level of mapping class groups, keep
ing a boundary component fixed is the same as fixing a point and the direction of 
a tangent vector at that point. Since we always have at least one boundary compo
nent the tangent bundle of F is trivial. Thus a tangent direction is nothing else but 
a label in 8 1 , and we need to consider the configuration space Cn(F; 8 1) of con
figurations of n points with labels in 8 1 of the k-punctured surface F = F;,I' The 
group D is now the group of orientation preserving diffeomorphisms Diff+(F; 8) 
which fix the (non-free) boundary component and the k punctures. The analogous 
statements of Lemma 4.2 and Theorem 4.3 can now be proved in a similar way. 

We remark that the proof relies on the same idea used to stably split loop 
spaces of suspensions. For details see [Bo] or [CMT]. To reduce the essence of the 
proof even more: the main idea is that the classifying space of the k-th braid group 
of a surface (with labels) is a stable retract of the (k + l)-st braid group of the 
surface. 

5. Appendix: Group pairs, H-action, and a general splitting result 

The splitting of Theorem 3.1 can also be seen in a somewhat different context. 
The idea is that the retraction induced by the group homomorphisms incl and ¢ 
on the plus construction of the classifying spaces is multiplicative, and hence gives 
rise to a splitting of spaces. This uses the H-space structure of Bft which will be 
made explicit below. 

Adopting arguments of [W] we consider the general situation: Two groups G 
and H form a direct sum pair if H is a subgroup of G and there is a group homo
morphism EEl: H x G -> G. Furthermore, we will assume that for any 91 , ... , 98 E G 
and hI"'" h8 E H there exist elements c E P(G) and dE P(H) such that for all 
i = 1, ... ,s 

1 EEl 9i = C . 9i . C -1 and hi EEl 1 = d . hi . d- l . (5.1) 

Proposition 5.2. BG+ admits a left H-action by BH+. 

This means there is a map W BH+ x BG+ -> BG+ such that the restriction 
to the left factor is homotopic to the map induced by the inclusion incl: H -> G 
and the restriction to the right factor is homotopic to the identity. When H is 
equal to G, then BG+ is an H-space. 

Proof. Note that, by (2.2), (BH x BG)+ = BH+ X BG+. Thus the direct sum 
homomorphism EEl induces a map 

m: BH+ x BG+ ----+ BG+. 

Let * denote the basepoint of BG+ and BH+. The map m(_ , *): BH+ -> BG+ 
is induced by the group homomorphism _ EEl 1. By property (5.1) , _ EEl 1 factors 
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through H. We want to prove that the induced map f: BH+ --+ BH+ is a ho
motopy equivalence. BP(H) is a regular cover of BH, and hence BP(H)+ is the 
universal cover of BH+. By property (5.1), as d E P(H), the map BP(H)+ --+ 

BP(H)+ induced by f is the identity on homology (compare Lemma 1.3 fWD· 
Hence, by the Whitehead theorem it is a homotopy equivalence. But then the 
map f: BH+ --+ BH+ is a homotopy equivalence as well. Similarly, m( *, _) is a 
homotopy equivalence of BG+. Now choose homotopy inverses rand l for these 
two maps. Then f1 = m 0 (r x l): BH+ X BG+ --+ BG+ defines an H-action. 0 

Corollary 5.3. Assume G and H are as above, and that there is a splitting homo
morphism ¢: G --+ H. Then there is a splitting of spaces BG+ ~ BH+ X F. 

Proof. Let F be the homotopy fiber of the map ¢: BG+ --+ BH+, and let 
s: F --+ BG+ denote the inclusion of the fiber. Define BH+ x F --+ BG+ by 
mapping (x , y) to f1(x, s(y)). Because f1 defines an H-action, this induces an iso
morphism on homotopy groups and hence is a homotopy equivalence. 0 

r!~Hn and roo form a direct sum pair with EEl: roo x r!~Hn --+ r!~Hn defined 

by letting roo act on the odd handles and r!~Hn act on the even handles. The 
map of the underlying surfaces is illustrated in Figure 2. To check property (5.1), 
let hI, .. . ,hs E roo. Then they are in the image of r g,l for some large g. Now 
choose an appropriate diffeomorphism of the surface F 2g ,1 C F~g,n+1 which moves 
the even handles over the odd handles to the last g handles. Let d E roo be its 
homotopy class. Similarly, define an element c E roo. By Proposition 3.5, c and 
d are in the maximal perfect subgroups of r!kH and roo respectively. Hence, by 
the corollary, there exists a space F such that' n 

(BrHk )+ ~ Br+ x F. CXJ ,Hn <Xl 

\ 2 

•• • 
~ _____ ~_~ ___ o~ 

Figure 2: The direct sum homomorphism. 
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Loop spaces of configuration spaces, 
braid-like groups, and knots 

F. R. Cohen* and S. Gitler* 

Abstract. The purpose of this note is to describe some relationships between 
the following topics: (1) higher dimensional variations of braids, (2) loop space 
homology, (3) Hopf algebras given by loop space homology, (4) natural groups 
attached to connected Hopf algebras, (5) analogues of Artin's (pure) braid 
group, (6) Alexander's construction of knots arising from loop spaces, and 
(7) Vassiliev's invariants of braids. 

1. Introduction 

The purpose of this article is to give higher dimensional analogues of braids as well 
as an analogue of "braiding" certain "pieces" of a manifold such as hyperplanes 
in Euclidean space or projective spaces in certain Lie groups. The main direction 
here is that one obtains a Hopf algebra via the homology of the loop space of a 
configuration space. These Hopf algebras then give groups which have properties 
that are analogous to Artin's (pure) braid group, and arise from classical algebraic 
topology. This article is a survey of how some of these results fit [7, 9, 11, 12, 
13, 24]. A smattering of new results are included. 

These Hopf algebras are special cases of a version of "braiding" which occur 
in a broader context. In addition to the "infinitesimal braid relations" to be defined 
below, there are additional relations depending on the underlying geometry of the 
manifold. The Lie algebras obtained in this way depend on certain naive features 
of the underlying manifold. Some examples are given below. One natural family of 
manifolds arises from the Lie groups SU (n). The structures of the Hopf algebras, 
Lie algebras, and groups encountered here differ drastically in case of SU(3) than 
those for SU(n) with n not 3. 

One of the Hopf algebras that occurs here is the universal enveloping algebra 
of the "universal Yang- Baxter Lie algebra" which satisfies relations that are some
times called the "infinitesimal braid relations", or the "horizontal4T relation" and 
"framing independence" to knot theorists. This Hopf algebra is the universal en
veloping algebra of a graded Lie algebra which also occurs in the study of the 

1991 Mathematics Subject Classification. Primary: 55P35, Secondary: 14D99. 
*Partially supported by the NSF. 



60 F. R. Cohen and S. Gitler 

Vassiliev invariants of braids [3, 18, 19, 20, 26J. In particular, these algebras "ac
count" for all of the Vassiliev invariants of braids as described below in Sections 4, 
5 and 9. 

The Hopf algebras encountered here give rise to natural groups. Namely, at
tached to any Hopf algebra with conjugation (or antipode) is the group of coalgebra 
maps from a fixed coalgebra to the Hopf algebra. With a natural fixed choice of 
coalgebra given below, this group is filtered, and the underlying set of the associ
ated graded is the product of the underlying set of primitive elements in the Hopf 
algebra. In the special case for which the Hopf algebra is the homology of the loop 
space of the configuration space for ]R2n, the associated graded is a Lie algebra 
that is isomorphic to the Lie algebra associated to the descending central series 
for the pure braid group (where these Lie algebras are tensored with the rational 
numbers) . There are further Lie algebras which take into account the underlying 
geometry of the manifold. 

With a particular choice of coalgebra, the groups alluded to above are ob
tained by assembling the images of the Hurewicz homomorphism into a natural 
group which, as a set, is the product of the primitive elements in a Hopf algebra. 
One example of these groups of coalgebra maps is given by the Mal'cev comple
tion of a free group [24, 16J. These completions assemble themselves in various 
"twisted" ways in the case where the Hopf algebra is the homology of the loop 
space of the configuration space for ]Rn . 

Namely, the associated Lie algebras are isomorphic (in characteristic zero) to 
the "universal Yang-Baxter Lie algebra", but the groups themselves have different 
structures. The point of this is that the Hopf algebras attached to these construc
tions "see" the same quadratic commutator relations as do the pure braid groups. 
The precise relations in the group of coalgebra maps also agrees with those of the 
pure braid group through "quadratic terms". However, the groups of coalgebra 
maps are filtered and are isomorphic on the level of associated graded modules, 
but there are terms of higher filtration which appear in the precise relations for 
groups of coalgebra maps, and the groups themselves are not actually isomorphic 
to the braid groups [24J. 

Regarding braids as equivalence classes of motions of distinct particles in 
the plane through time, there is an extension given by replacing points by other 
"pieces" of a manifold. There are natural "braid-like" groups which are defined 
for any manifold which reflect these motions, and arise as a target of the classical 
Hurewicz homomorphism. These "braid-like" groups satisfy relations given in the 
braid group up to "quadratic terms" as well as "extended Yang-Baxter relations" 
as described in Section 3 provided that the underlying manifold enjoys additional 
naive geometric properties. These structures are developed in Sections 5 and 6. 

Constructions involving loop spaces of configuration spaces in turn inform 
on spaces of embeddings. For example, a classical result of J. W. Alexander gives 
that every "knot type" is given by "closing-up" a choice of braid [IJ. Alexander's 
construction arises as a map from the loop space of a configuration space to the 
space of embeddings of 8 1 in ]R3, and fits in a wider context. That is, there is a 
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map out of the loop space of a configuration space to a space of embeddings of a 
circle in a manifold M which when M = 1R3 specializes to Alexander's map after 
applying 11"0. One immediate observation in this context is that any component of 
the double loop space of smooth embeddings of 8 1 in 1R3 splits as a product of the 
double loop space of the 3-sphere and some other (possibly contractible) space. 
(This result gives a possibly bizarre connection between the braid groups and knots 
as 0 28 3 is homotopy equivalent to the Quillen plus construction applied to the 
classifying space of the stabilized braid group.) A second related observation is 
a splitting for loop spaces of spaces of embeddings of circles in the product of a 
manifold M x 1R3 as given in Section 7 here. 

The calculations here fit naturally into a context of "quasi-embedding spaces" 
which are defined formally below. These "quasi-embedding spaces" are given by a 
subspace of the continuous functions from a circle to a manifold M which satisfy 
the property that the functions restricted to certain subspaces of the circle are 
embeddings of the subspaces, but not necessarily embeddings. The subspaces on 
which the functions are required to be embeddings are given by all cosets of the 
circle determined by the subgroup of all 2r -th roots of unity for all r > O. This is 
in contrast to the Vassiliev conditions for smooth maps which require embeddings 
except possibly at a finite number of double points. 

In the case that the underlying manifold is IRn , these "quasi-embedding 
spaces" are the inverse limit of spaces whose homology is given in terms of Hoch
schild homology of the universal enveloping algebras for the "universal Yang
Baxter Lie algebras". These spaces are the subject of Section 8. 

Based on work of T . Kohno, there is a comparison of the Hopf algebras 
encountered here to those that give the Vassiliev invariants. This is carried out in 
Section 9. 

The authors of this article would like to thank the referee of this article for 
pointing out other recent, and interesting work on pure braids, and their general
izations. Among these are work of Manin- Schechtman where the authors consider 
higher dimensional braids related to the KZ-equations by braiding 2-planes in 
4-space. In addition, there is interesting work of Stefan Papadima, Simon Willer
ton, and Jacob Mostovoy that connect the Lie algebra relations that occur in the 
Lie algebra attached to the descending central series for the pure braid group, to 
the Vassiliev invariants as well as work of Kohno. Time constraints do not permit 
the opportunity to compare these interesting constructions with those considered 
here. 

The first author would like to thank the CRM for providing a stimulating 
mathematical environment, and for their generous support. Part of the work here 
was done at the CRM. 
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2. Braids and their generalizations to higher dimensions 

Recall Artin's braid group [2, 4, 22] . The so-called "pure braids" are those braids 
which leave the end-points unpermuted. A braid can be thought of as a path in 
the configuration space of k points in the plane ]R2. A loop in this configuration 
space specifies a pure braid. There is a naive construction of such a path given by 
a smooth function from a circle to the configuration space which represents these 
braids and which is described explicitly below. Higher dimensional analogues are 
given by "thickening" each strand, while explicit formulae are also given below. 

Regard these thickenings as higher dimensional braids. These thickenings are 
partitioned into homotopy classes below, and naturally give rise to a group which 
is very much like Artin's braid group, but is not actually isomorphic to it. More 
precisely, this group is filtered with the property that the associated graded is a 
Lie algebra. Furthermore, this Lie algebra in characteristic zero, and apart from a 
formal shift in grading, is isomorphic to the "universal Yang- Baxter Lie algebra" 
to be defined below. By results in [14, 18], that Lie algebra is precisely the Lie 
algebra attached to the descending central series of the pure braid group. 

In addition, the idea of higher dimensional braiding extends to braidings of 
other geometric objects in a manifold. Namely, a braid may be thought of as the 
locus obtained by k distinct points in the plane that move through time. One 
might replace points by other subs paces of a manifold, and then consider the 
object obtained by motions of distinct subspaces through time. Specific examples 
of these subspaces are given below by choices of hyperplanes in Euclidean space 
or projective spaces in Lie groups. 

There is a resulting Hopf algebra, Lie algebra, and group. Furthermore, these 
constructions are in a naive way extensions of classical constructions with addi
tional universal relations. These constructions are addressed below and give rise 
to the notion of the "extended Yang- Baxter Lie algebra relations" , or "extended 
infinitesimal braid relations" [7]. 
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Recall that the classical configuration space of ordered k-tuples of distinct 
points in a manifold M is given by 

F(M, k) = {(ml, m2 , ·· · , mk) I mi =I- mjfor i =I- j}; 

see [12]. The higher dimensional analogues of representations for generators of the 
pure braid groups are induced by maps given in [6, 7,10,11,12] with k ~ i > j ~ 1: 

Ai,j: sn-l ---+ F(JRn, k). 

In the case of n = 2, these elements represent generators of 71"1 (F(JR2 , k)), the 
pure k-stranded braid group. Adjoints of these maps are 

Bi,j: sn-2 ---+ f2F(JRn, k). 

A graded Lie algebra arises from these maps via the Samelson product in 
homotopy, the so-called homotopy Lie algebra which is discussed below. One fea
ture of these graded Lie algebras is that, apart from gradings, they are isomorphic 
when n is even. The case when n is odd provides related, but slightly different 
stuctures. These Lie algebras will also be elucidated below. 

The maps Ai,j arise roughly by linking the diagonal in the i and j coordinates. 
Here fix points qi in JRn given by qi = 4i(v) where v is the canonical unit vector 
(1,0, ... ,0). Regard Z as a point of unit norm in JRn , and define 

Ai,j(Z) = (XI,X2, . . . ,xn) 

where Xt = qt if t is not i, and Xi = qj + v. 
In addition, J. W. Alexander gave a well-known construction of knots and 

links from braids [1, 4]. Let Emb(SI, M) denote the space of continuous embed
dings of a circle in a fixed manifold M. In Section 7 of this note, there is a map 

e: f2F(M x [0,1]2, k) ---+ Emb(SI, M x JR3) 

which specializes to Alexander's map on the level of 71"0 when M = point. This map 
then provides information about the space of embeddings Emb(SI, M x JR3). There 
is an analogous version where one restricts to smooth embeddings and smooth 
loops. Some crude information concerning these spaces is given in Sections 6 and 7. 

3. "Universal extended Yang-Baxter Lie algebras" 

The "universal Yang- Baxter Lie algebras" are defined next [7, 11]. Fix a graded 
abelian group Vk(n) with basis given by elements of degree n labelled by Bi,j for 
k ~ i > j ~ 1. Next, consider the free graded Lie algebra L[Vk(n)] generated 
by Vk(n). Let .ck(n) denote the quotient Lie algebra obtained from the "graded 
infinitesimal braid relations": 

1. [Bi,j,Bs ,d = 0 if {i,j} n {s,t} = </>, 
2. [Bi,j,Bi,t + (-I)nBt ,j] = 0 for 1:S; j < t < i:S; k, and 
3. [Bt ,j, Bi,j + Bi,t] = 0 for 1 :s; j < t < i :s; k. 
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In the case that the Bi,j are of even degree, the relations above are both 
redundant, and equivalent to the relations given by Kohno in [18, 19] . There are 
further related relations in Lie algebras which are extensions of the L[Vk(n)] where 
Xi for 1 :::; i :::; k are elements in a fixed choice of extension of the Lie algebra 
L[Vk(n)]. 

The "extended infinitesimal braid relations" are defined as follows: 

1. [Bi ,j,xs ] = 0 if {i,j} n {s} = <p, 
2. [Bi,j, Xi + Xj] = O. 

A specific example is given next of a Lie algebra for which the "extended 
infinitesimal braid relations" are satisfied. Fix a graded Lie algebra 9 which is 
a free module over a commutative ring R together with the k-fold direct sum 
of 9 given by gfBk. Assume that (1) .L:k(n) is an R-module (replacing .L:k(n) by 
.L:k(n)0zR), and (2) 9 is R-free. Consider the coproduct in the category of graded 
Lie algebras (over R) .L:k(n) 11 gfBk. Let 

.L:k(n) I 9 

denote the quotient of .L:k(n) 11 gfBk modulo the "extended infinitesimal braid rela
tions" in which the elements Xi denote the element a EB x EB b with X in g, a = OfBi-l, 

and b = OfBn-i. This construction is reminiscent of the classical wreath product 
construction on the level of groups. 

It was pointed out in [7] that .L:k(n) is a torsion free Lie algebra which 
is finitely generated in each degree as a module over the integers. Thus by the 
Poincare-Birkhoff- Witt theorem, .L:k(n) embeds in its universal enveloping algebra. 

4. Loop space homology of configuration spaces 

In this section, consider the homology of the loop space of the configuration space 
D.F(M, k). It is sometimes the case that these homology groups are torsion free. 
If not, restrict to field coefficients, IF. In addition, let Prim H.(D.M; IF) denote the 
Lie algebra of primitive elements in the Hopf algebra H. (D.M; IF). The following 
theorem was proven in [11] and [7]. 

Theorem 4.1. [11, 7] If M = ~n for n > 2, then the homology of the loop space 
D.F(M, k) is isomorphic to the universal enveloping algebra of .L:k(n - 2) as a Hopf 
algebra. Furthermore, the elements Bi,j are given by the Hurewicz image of the 
fundamental cycle for a sphere via the maps Bi ,j defined in Section 1. 

With some additional hypotheses on the underlying manifold M, there is an 
analogous theorem with field coefficients IF. A further naive idea of "braiding of a 
subspace A" of M is required. Namely, a manifold M is said to be A-dominated 
provided the following hold: 

1. There exist embeddings ei : A -> M, i = 1,2, with disjoint images. 
2. The map el is isotopic to e2. 
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3. The induced maps O(ei): O(A) -t O(M) (with respect to different base
points) induce surjections in homology (with IF-coefficients). 

Notice that the subspace A plays a role analogous to points in ]R2 as follows. 
Braids correspond to motions of points in the plane through time. Analogously, 
one might consider subspaces A of a manifold and motions of disjoint copies of A 
through time. The homological property that the induced map O(A) -t O(M) 
gives an epimorphism in homology provides a way to measure motions of disjoint 
copies of A through time. Furthermore, there is a "braid-like" group attached to 
these homological measures; these are given in Section 5. 

Proposition 4.2. Let n > 3 and A = ~x:pn-l. The manifolds SU(n) are A-domin
ated. Furthermore, the manifolds SU(3) and Sp(2) are not A-dominated for any A. 

Proof. Notice that Dcpn-l embeds in SU(n) [17]. Since n > 3, there are disjoint 
and isotopic copies of Ecpn-l embedded in SU (n) by general position [17]. Fur
thermore, the homology of the loop space of Ecpn-l surjects to that of the loop 
space of SU(n). 

The analogous result fails for SU(3) and Sp(2). Here notice that if there were 
two disjoint embeddings of ECp2 in SU(3), then the cup product of the three class 
with the five class is zero in the cohomology of SU(3) by duality. This contradicts 
that the product of the three dimensional generator with the five dimensional 
generator gives the top class. A similar argument applies to Sp(2). 0 

The next theorem illustrates homological consequences of "braiding" of 
spheres and subspaces of certain choices of manifolds. 

Theorem 4.3. [7] Let M be a simply-connected m-dimensional manifold, m > 2, 
which satisfies 

1. M = N \ {point} for a manifold N, 
2. wm-l(r(M)) = 0 where r(M) is the tangent bundle of M if F = Z/2Z, 
3. the Euler class of r(M) is zero if char(IF) f 2, 
4. the homology Hopf algebra H*(OM;IF) is a primitively generated Hopf al

gebra which is isomorphic to the universal enveloping algebra of the Lie 
algebra of primitive elements Prim H*(OM; IF), and 

5. M is A-dominated for some A. 

Then H*(OF(M, k); IF) is isomorphic to the universal enveloping algebra of 
Ck(n) 10, where 0 is the Lie algebra of primitive elements, PrimH*(OM;IF). 

The proof of the conclusion in the theorem above uses the hypothesis that 
M is A-dominated for some A. Furthermore, this conclusion is independent of 
the choice of A. In case the underlying manifold has a Euclidean factor, a similar 
conclusion follows next. 

Theorem 4.4. [7] Let M be a simply-connected m-dimensional manifold, where 
m > 1, and assume that the Hopf algebra H*(OM; IF) is primitively generated. 
Then H*(OF(]R x M, k); IF) is isomorphic to the universal enveloping algebra of 
Ck(m -1) 1 Prim H*(OM; IF). 
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In case M = SU(n + k)jSU(n) and IF is given by the rational numbers, then 
the homology algebra H*(nF(M,k);lF) is also described in [3]. The extensions 
with M = SU(3) are the most interesting. 

There are analogous features of the above constructions given in work of 
Xicotencatl [27] who considers configurations of orbits in a manifold with a free 
action of a group. Specific calculations apply to complex n-space minus the origin. 
He then obtains Lie algebras that support actions of cyclic groups, and which are 
analogous to the "universal Yang-Baxter Lie algebras" with additional symme
tries. 

5. Natural groups attached to connected Hopf algebras 

Let Homcoalg(T[v], H) denote the set of coalgebra morphisms with source given 
by the tensor algebra over the integers with a single primitive algebra generator 
v in degree 1. Furthermore, the target H is a Hopf algebra with conjugation (an
tipode). Recall that this set is naturally a group with multiplication induced by 
the coproduct for the source and product for the target with inverses induced 
by the conjugation in H [23]. 

Throughout this section, assume that X is simply-connected. If H*(nX) is 
torsion free, then it is naturally a coalgebra by the Kiinneth theorem. If homology is 
taken with field coefficients IF, then H*(O,X; IF) is a Hopf algebra with conjugation. 
Thus if IF is a field or if H*(nX; Z) is torsion free, then for R = Z or R = IF, 

Homcoalg(T[v], H* (nX; R)) 

is always a group. Of course, this is a special case of the hom-sets in a category 
where the target is a group object in the category. It is unclear whether it is 
informative to look at this construction within the context here. Thus this note 
will be limited to the remarks below. 

Next specialize to the group of pointed homotopy classes of maps [nS2 , nX]. 
As a set, this group is isomorphic to the direct product of all of the homotopy 
groups of nx in case X is simply-connected. This last assertion follows at once 
from the well-known fact that the single suspension of ns2 is homotopy equivalent 
to the bouquet V n?2sn. 

Thus the group [nS2 , nX] may be regarded as reassembling all of the ho
motopy groups of nx into a single group. It will be seen below that the group 
[nS2 , nX] has additional structure that is not "seen" by the additive structure 
of all the homotopy groups of X. Indeed one of the groups that appears in this 
context is very close to Artin's braid group as will be seen in Section 6. In addition, 
the fact that the group [nS2 , nX] gives the product of all of the homotopy groups 
for nx suggests that the choice of source has special features. 

The groups [nS2 ,nx], and HomCOalg(H*(OS2),H*(nX)) are filtered groups 
via a decreasing filtration: 
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1. filtration j of [OS2, OX] is given by those maps which are null-homotopic 
when restricted to the (j - 1 )-skeleton; 

2. filtration j of Homcoalg(H*(OS2), H*(OX)) is given by those maps which 
are trivial in homology in dimensions less than j. 

Denote the associated graded groups by 

Eb = Fj /FJ+l. 

Let G denote the group [OS2, OX] or Homcoalg(H*(OS2), H*(OX)). Consider 
the commutator map [-, -]: GxG --> G. Further, let ¢ denote the morphism which 
sends a map to the induced map on homology: 

Theorem 5.1. [9] Assume that H*(OX) is torsion free. 

1. The function 

¢: [OS2,OX]--> Homcoalg(H*(OS2),H*(OX)) 

is a morphism of filtered groups. 

2. In case G = [OS2, OX], the associated graded E~ is isomorphic to 1Tj (OX). 

3. In case G = Homcoalg(H*(OS2), H*(OX)), the associated graded E~ is 
isomorphic to the module of primitives concentrated in degree j, 

4. On the level of associated graded groups, the map 

Eb(¢): 1Tj(OX) --> Prim Hj(OX) 

is the Hurewicz homomorphism. 

5. The Hurewicz homomorphism 1T*(OX) --> PrimH*(OX) surjects to the 
module of primitives in H*(OX) if and only if ¢ is a surjection. 

6. The commutator map [-, -]: G x G --> G induces a homomorphism on 
the level of associated groups 

E j KA Ek --> Ej+k 
0 '0' 0 0 

which endows the associated graded groups ffij?lEb = Fj / FJ+l with the 
structure of graded Lie algebra (with the usual exceptions for the primes 
2 and 3 where it will be assumed for convenience that the primes 2 and 3 
are units); this structure on the source is induced by the Samelson product 
(-, -). Namely the Lie bracket [0:,.8] is given by etk) (0:,,8). 

7. The morphism E~(¢) is a morphism of graded Lie algebras. 
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8. The associated graded module for the group Homcoalg(H.(OS2), H.(OX)) 
is given by 

EBj2:1 Eg = EBj2:1 PrimHj(OX). 

As a Lie algebra the Lie bracket [a, b] is given by etk )(a0b- (-1) jkb0a) 
for primitive elements a of degree j, and b of degree k. 

Remarks 

1. The above theorem reflects features of Samelson products in homotopy 
theory as well as those of the Hurewicz map with the additional point that 
the classical Hurewicz map is the associated graded of a natural map. The 
result is a small modification of earlier classical results. The motivation for 
including these results is that they "explain" how the Lie algebras arising 
in the loop space homology of configuration spaces are associated gradeds 
for natural groups. 

2. The graded module EBj2:1Eg = Fj / Fj+! is not, without additional as
sumptions, a graded Lie algebra, as [x, x] and [[x, xIx] may be non-zero. 
In case x is of even degree, and [x, x] is non-zero, it is of order 2. In case 
x is of odd degree, and [[x, x], x] is non-zero, it is of order 3. Furthermore, 
the binomial coefficients in part (8) above arise from the structure of the 
coproduct for T[v]. 

In addition, a theorem of [23] concerning the structure of rational homotopy 
groups of OX gives information at once about the group [OS2, OX]. The theo
rem in [23) which states that the rational homology of a loop space of a simply
connected space X is isomorphic to the universal enveloping algebra of the rational 
homotopy Lie algebra of OX is the associated graded version of the next theorem 
concerning filtered groups. 

Theorem 5.2. [9) Let X denote the rationalization of a simply-connected space of 
finite type. Then 

¢: [OS2, OX)-> Homcoalg(H.(OS2), H.(OX)) 

is an isomorphism of filtered groups. 

The structure of the group Homcoalg(H.(OS2),H.(OX)) is frequently non
trivial as all of the homotopy groups assembles into a single group with non-trivial 
extensions. It is not yet clear what precisely determines these extensions as well as 
what the characteristic classes of the group extensions actually are. The following 
example gives one case where they are non-trivial and where the constructions in 
the above paragraph are useful. 

Theorem 5.3. [23) If X is a bouquet of q copies of the 3-sphere, S is a set of 
cardinality q, and F[S]M is the Mal'cev completion of F[S), then there is an iso
morphism of groups 

F[S]M -> Homcoalg(H.(OS2), H.(OXj Q)). 
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It is the purpose of the next section to describe some explicit examples which 
use the above theorem as a further connection between the braid groups and the 
"Yang-Baxter Lie algebras". Namely, the subject of the next section uses the 
previous theorem as well as the next theorem where the ring R is assumed to be 
a PID. 

Theorem 5.4. [9] Let 

(t) : 1 ---- A ---- B ---- C ---- 1 
be a short exact sequence of Hopf algebras with conjugation (antipode) that are free 
over R, and which is split as coalgebras. Then for any fixed choice of coalgebra, 
there is a short exact sequence of groups 

(t) : 1 ----.. Homcoalg(K, A) ----.. Homcoalg(K, B) ----.. Homcoalg(K, C) ----.. l. 

Furthermore, if the short exact sequence (t) is also multiplicatively split, then the 
extension m is multiplicatively split and the group Homcoalg(K, B) is a semi-direct 
product of the groups Homcoalg(K, A), and Homcoalg(K, C) . 

The next proposition is a remark which follows from the work in [8, 23] . 

Proposition 5.5. Let X denote the localization at p of the (2n+ I)-connected cover 
of the (2n + I)-sphere. Then the group [nS2, nX] has exponent 

1. pn if p is odd, and 
2. bounded above by 2(3n/2)+€ for f = 0 or 1. 

Proof. The odd primary case follows at once from 

1. the fact that s2n+l localized at an odd prime is an H-space. This gives 
that [nS2,ns2n+l] splits as a group [Vt >2st,nX], and 

2. the exponents given in [8]. 

The 2q-th power map on ns2n+l is homotopic to the looping of the degree 2q 

map if q > 1 after localization at 2. Thus if q > 1, the effect of the 2q-th power 
map on [nS2, ns2n+l] is induced by the self-map of [EnS2, S2n+l] given by the 
degree 2q map on the target which is then given by the induced map 

[V t~2St , nX] ---- [V t~2St , nX] 

given by multiplication by degree 2q on each homotopy group. 
These bounds on exponents of homotopy groups are given by results in [25]. 

The proposition follows. 0 

6. Braid-like groups: analogues of Artin's (pure) braid group 

The main point of this section is that the group of coalgebra maps in the previous 
section provide groups which have features that are analogous to Artin's (pure) 
braid group. Some of these "braid-like" properties are described below. The main 
theme is that these groups of coalgebra maps are filtered as above. The Lie algebras 
attached to these filtrations via Theorems 5.1 and 5.4 are isomorphic to the Lie 
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algebra obtained from the descending central series for the pure braid group in the 
cases where the underlying manifolds are given by ]R2n for n > 1 (and thus give 
the Vassiliev invariants of braids by work of Kohno [18, 19] as is pointed out in 
Section 8). There are generalizations of these "braid-like" groups for other choices 
of manifolds. 

Consider the groups and maps defined in the last section where X is the 
configuration space of ordered k-tuples of distinct points in a manifold. The first 
result in this direction is to consider the group Hom coalg (H * (OS2), H * (OX)) as 
well as the filtration described above. 

Theorem 6.1. If X = F(]Rn , k) for n > 2, and homology is taken with coefficients 
in the rational numbers, then the associated graded Lie algebra for the group of 
coalgebra morphisms Homcoalg(H*(OS2), H*(OX)) is isomorphic to the "universal 
Yang- Baxter Lie algebra" .ck(n - 2) Q9z Q. 

The proof of this theorem follows at once from Theorems 5.3, and 5.4 above. 
Namely, the fibrations in [13] imply that the homology of OF(]Rn, k) is given by 
an iterated split extension as in Theorem 5.3 where the Hopf algebra kernels at 
each stage are given by primitively generated tensor algebras [7, 11]. The group 
extensions follow by direct calculation. 

Notice that apart from a grading, the Lie algebras that occur in Theorem 6.1 
when n is even are isomorphic to the Lie algebra obtained from the descending 
central series for Artin's braid group on k strands [14, 18]. This raises the ques
tion of whether the groups themselves are isomorphic at least after forming the 
nilpotent completion. 

This turns out to not hold. These groups of coalgebra morphisms do not have 
the same relations. Namely, the relations in the pure braid group can be given in 
terms of commutators of weight 2 and weight 3. The relations in the group of 
coalgebra maps satisfy these through quadratic terms, and the groups on the level 
of associated graded modules agree. The actual relations in the group of coalgebra 
maps appear to be given by an infinite product of commutators of arbitrarily large 
length and is work in progress [24] . 

Since the relations for the pure braid group are not usually listed in terms of 
commutators, this presentation is recorded next. This formulation follows at once 
from the presentation listed in [22, p. 174], where the element [g, h] in a group G 
is given by the commutator ghg- 1h-1 : 

I. Generators for the k-stranded pure braid group PBrk are given by Bj,i for 
1 ::; j < i ::; k, and 

II. A complete set of relations is given by 

1. [Br,s, Bi,k] = 1 for s < i or k < r, 
2. [Bk ,s , Bi,k] = [Bi,s -1, Bi,k] for i < k < s , and 
3. [Br,s, Bi ,k] = [[Bi ,s -1, Bi,r -1], Bi,k] for 1 < r < k < s. 
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By construction, the map 

¢: [OS2,OF(JR.n,k)]-> Homcoalg(H*(OS2),H*(OF(JR.n,k))) 

is a surjection. The reason for this statement is that the Hurewicz homomorphism 
surjects to the module of primitives in H*(OF(JR.n, k)). 

Theorem 6.2. The group [OS2, OF(JR.n , k)] is the semi-direct product of 

Homcoalg(H* (OS2), H* (OF(JR.n, k))) 

and the kernel of ¢ . 

That the infinitesimal braid relations are satisfied in the associated graded for 
the group of coalgebra maps Homcoalg(H*(OS2),H*(OF(JR.n,k))) suggests calling 
these groups "braid-like groups" . If M is a manifold, there are similar "braid-like 
groups" given by 

Theorem 6.3. If M is a simply-connected m-dimensional manifold for m > 2, then 
the Lie algebra given by the associated graded for the group 

Homcoalg(H*(OS2), H*(OF(M x JR. , k); Q)) 

is isomorphic to Ck(m -1) /PrimH*(OM;Q). 

In case M is SU(n), SO(n) or Sp(n), or certain associated homogeneous 
spaces, then similar results apply. The rank two cases of SU(3) and Sp(2) are 
more complicated than the cases of larger rank. Specific answers are given in [7]. 

7. On Alexander's construction of knots arising from loop spaces 

By "closing up" pure braids, Alexander gave a procedure for constructing isotopy 
classes of smooth knots and links [1 , 4]. This construction "fits" with the natural 
maps considered here, and there are similar constructions which apply to links 
by using paths. There is an explicit map given below, which for M = point cor
responds to "cyclic closure" of pure braids and is induced by applying 11'0 to a 
geometric map between function spaces given as 

Ak : OF(M x [0,1]2,k) -> Emb(Sl,M x JR3) . 

Namely, an element in the loop space of the configuration space is a k-tuple of 
functions that do not simultaneously coincide. By (i) dividing the interval into 2k 
subintervals, (ii) "stringing out" these k functions over k alternating intervals via 
a time parameter, and (iii) "connecting" these strings in a compatible way on the 
complementary k alternating intervals, one gets an embedding of a circle. A formal 
description is as follows. Consider an element in the space OF( M x [0, IF, k). That 
is a map from the circle to F (M x [0, 1]2 , k) which consists of 

1. a k-tuple of continuous functions (11,12,···, fk)' 
2. fi: [0, 1] -> M x [0, IF, 
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3. (h)(O) = (Ji)(I) = Xi for fixed and distinct Xi, and 
4. (Ji)(t) -I- (fJ)(t) when i -I- j. 

Next fix paths Pi: [0,1] ---+ M X JR2 X JR such that 

1. (Pi)(O) = (Xi, 1), 
2. (Pi)(1) = (Xi+l,O) for i < k, 
3. (Pk)(I) = (Xl,O), 
4. the image of Pi((O, 1)) is contained in the complement of M x [0,1]2 in 

M x JR3, and 
5. the images Pi([O, 1]) satisfy Pi([O, 1]) npj([O, 1]) = (/) for i -I- j. 

The construction of the map Ak follows directly: Consider the intervals 

[i/2k, (i + 1)/2k]' 

and define Ak in a piecewise manner as follows (which admits a "smooth ana
logue"): 

1. Ak(t) = (Ji(2k[t - 2i/2k]), 2k[t - 2i/2k]) if 2i/2k ~ t ~ (2i + 1)/2k. 
2. Ak(t) = (Pi (2k[t - (2i + 2)/2k]) if (2i + 1)/2k ~ t ~ (2i + 2)/2k. 

A result of Alexander [1] then admits a function space analogue which follows 
from his results together with the definition of the maps A k . 

Proposition 7.1. In case M = point, the smooth analogue 

Ih>2{7roAk}: Ih>2 {7rO osmoothp(JR2, k)} ---+ 7rO Embsmooth(Sl, JR3) 
- -

induces a surjection of sets. 

Proof. Notice that the definition of the maps Ak induce the map on the level of 
pure braids that is given by cyclic closure of pure braids. By Alexander's results [1], 
cyclic closure of pure braids gives all isotopy classes of knots for some choice of 
pure braid. The result follows. 0 

Consider the natural inclusion of Emb(Sl, M) in the free loop space AM. 

Proposition 7.2. If M is simply-connected, the composite 

O(M x [0,1]2) ---+ Emb(Sl, M x JR3) ---+ A(M X JR3) 

is homotopic to the natural inclusion of O(M) in A(M). Thus the loop space of 
Emb(Sl, M x JR3) is homotopy equivalent to 0 2 M X XM for some choice of a 
space X M , and 7r* (Emb(Sl , M x JR3)) contains 7r*(O(M)) as a direct summand. 

Proof. The composite O(M x [0,1]2) ---+ Emb(Sl, M x JR3) ---+ A(M X JR3) is 
homotopic to the map which sends a loop to that loop plus the loop sum with 
a fixed loop. Since M is simply-connected, this map is homotopic to the natural 
inclusion of O(M) in A(M). The result follows from the fact that the inclusion 
O(M) ---+ A(M) is split after looping once. 0 
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Let Emb,a(81, ]R3) denote the path-component of an embedding f3. An analo
gous standard observation is that the group 80(3) acts on the space of embeddings 
Emb( 8 1, ]R3). Thus if f3 is a fixed embedding, there are maps 

{f3} x 80(3) --+ Emb,a(81,]R3) --+ 8 2. 

Proposition 7.3. There is a homotopy equivalence 

02Emb,a(81,]R3) --+ 0 28 3 x X,a 

for some choice of a (possibly contractible) space X,a. Thus, the homotopy groups 
of the component of f3, Emb,a(81, ]R3), are non-zero in arbitrarily large degrees. An 
analogous result holds in the case of smooth embeddings Emb~mooth(81, ]R3). 

Proof Consider the composite of the maps 

{f3} x 80(3) --+ Emb,a(81,]R3) --+ 8 2. 

If a is an element of 80(3), this composite sends a to a(q)/lla(q)11 where 
q = f3(1) - f3(-1). A choice of rotation sending q to (1,0,0) in ]R3 gives that 
the above composite is homotopic to the standard map of 80(3) to 8 2. Consider 
double looping the map 80(3) --+ 8 2. Each connected component is homotopy 
equivalent to 0 28 3 , and the induced map is an equivalence on the component 
of the base-point. Notice that if f3 is smooth, then the map g takes values in 
Emb~mooth(81, ]R3). The proposition follows. 0 

One is led to wonder whether the spaces X,a have homotopy types that are 
independent of f3. One consequence of a preprint due to A. Hatcher gives that 
the spaces X,a are contractible. A second question is whether there are function 
space interpretations of Markov moves for the maps given in Proposition 7.l. 
Proposition 7.3 gives yet another (weird?) connection between knots and the braid 
groups as the Quillen plus construction for the classifying space of the stable braid 
group gives 0 28 3 . 

8. Crude approximations to embedding spaces 

The space of continuous embeddings of a circle in a manifold admits a natural 
embedding as a closed subspace of the space AM of all (free) continuous maps of 
8 1 to M. There is a natural tower of spaces that factors this natural inclusion and 
is described in more detail below. 

Consider the subspace of continuous maps of a circle to the manifold which 
restrict to simultaneous embed dings on all cosets of the group G generated by all 
2k-th roots of unity in a circle for k > 0. Call this subspace Embc(81, M). 

This subspace is the main object of study in this section. In particular, it 
is pointed out below that Embc (81, M) is the inverse limit of identifiable spaces 
which arose in the previous sections. One consequence is that when the manifold M 
is Euclidean n-space for n > 2, the rational homology of each space in this inverse 
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limit is isomorphic to the Hochschild homology of the universal enveloping algebra 
for the "universal Yang-Baxter Lie algebra" as defined above and in [7, 11J. 

Let r k denote the subgroup of the circle generated by the k-th root of unity 
Pk given by ehi/ k. The inclusion of r 2j in r 21+1 which sends P2j to (P2j+1 f induces 
a tower of spaces 

X1+1 _____ F(M, 21+2) 

1 "2j+1 

Xj ~ F(M, 21+1) 

1"2j 
F(M, 2j ) 

where 

1. 7r2j: F(M, 2)+1) ____ F(M, 2j ) is the projection induced by the inclusion of 
r 2j in r21+1, and 

2. the fibre of 7r2j is Xj, the space F(M \ Q(2j), 2j +l - 2j ) where Q(2j ) is a 
subset of M having cardinality 2j . 

Consider the inverse limit ll!!! F( M , 2j ) of the spaces F( M, 2j ) . Notice that 
there is a map e: Emb(SI, M) ---- All!!! F(M, 2j ) which is defined by the projec
tion to AF(M, k) given by 

8(f)(z) = (f(z), J(Pk(Z)), J(Pk 2(Z)), . .. , J(Pk k-1(z))). 

Furthermore, each map F(M, 2)+1) ---- F(M,2j ) is the projection map in a 
fibre bundle and, if M = ]Rn x N, then this fibration has a cross-section [13J. Thus 
in the cases for which M = ]Rn x N the homotopy groups of ll!!!F(M, 2j ) are 
given by the inverse limit of the homotopy groups of F(M, 2j ) [5J. In addition, 
these maps have more structure some of which is described next. 

Consider the subspace of AF(M, k) given by the Z/kZ-equivariant maps 
from Sl to F(M,k) where Z/kZ acts on Sl by multiplication by Pk = e27ri/ k . 

Write AZ/kZF(M,k) for the space of continuous Z/kZ-equivariant maps from Sl 
to F(M, k) . The next remark is stated as a proposition. 

Proposition 8.1. The map e takes values in the subspace given by the inverse limit 
oj the AZ/kZ F(M, k) Jor k = 2j , ll!!! AZ/kZ F(M, k), a subspace oj A ll!!! F(M, 2j ). 

The rest of this section consists of some information concerning the inverse 
limit ll!!!Az/2jZF(M,2j ) of the AZ/2J zF(M, 2j ). This inverse limit will be written 

AZj2°O F(M, Z/2°O). 

Notice that restriction to the subspace of maps which are embeddings on 
cosets of the group G defined above, Embc(Sl, M) , is far from the space of em
beddings. Namely, there are maps which have multiple points at irrational points 
of the circle. 
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Proposition 8.2. 
1. There is a commutative diagram 

Emb(Sl, M) ~ A71Wo F(M, Z/2°O) 

11 1 
Emb(Sl, M) inclusion ~ AM. 

2. The space A71/2°O F(M, Z/2°O) is homeomorphic to the subspace of AM 
given by the continuous maps of Sl to M which are embeddings when 
restricted to cosets of G in Sl, Embc(Sl, M). 

3. If M is a simply-connected manifold of dimension at least 3, then the 
rational homology of Embc(Sl, M) is not of finite type. 

Proof. Statement 1 is clear. Consider the space Embc(S\ M). Notice that the 
map e extends to give a map e': Embc (Sl, M) -t ~A71/2jZ F(M, 2j). Further

more, the projection map 7r: ~A71/2j71F(M, 2j ) -t AM takes values in the space 
Embc(Sl, M). Both natural composites 7r 0 e' and e' 0 7r give the identity. Thus 
statement 2 follows. 

To prove statement 3, notice that if M is ]Rn for n > 2, then the first non
vanishing homology group of ~ A71/ 2j71 F(M, 2j ) is torsion free and not finitely 
generated. In case M is simply-connected, the first dimension where the homotopy 
is non-trivial gives that the first non-vanishing homotopy group of Embc (Sl, M) is 
not finitely generated. 0 

Let X be a space with a free Z/kZ-action, and A71/k71 X the space of contin
uous Z/kZ-equivariant maps. The following proposition is well known. 

Proposition 8.3. If X is simply-connected, the natural inclusion of A71/k71 X in AX 
is a rational homotopy equivalence. 

Proposition 8.4. The space A71/2j71 F(M, 2j ) is rationally homotopy equivalent to 
AF(M,2j ) if M is a simply-connected manifold of dimension at least 3. 

There is a further interpretation of the above remarks. Define the space of 
almost embedded curves to be the homotopy orbit space 

ESO(2) xSO(2) Embc(Sl, M). 

Consider reduced simplicial sets X. Let OX denote the simplicial (Kan) loop 
group of X, and k[OX] the simplicial group algebra over a field k as in [15] or 
[21, Corollary 7.3.14], and recall the following results. 

1. The Hochschild homology of k[OX] is isomorphic to H*(AIXI; k) , and 
2. the cyclic homology of k[OX] is isomorphic to H*(ESO(2) xSO(2) AIXI; k). 
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Corollary 8.5. 1. The rational homology of A Z/ kZ F( M, 2j ) is isomorphic to 
the Hochschild homology of the singular chain complex for nF(M,2 j ). 

If M = JRn for n ~ 3, the rational homology of AZ/ kZ F(M, k) is isomor
phic to the Hochschild homology of the universal enveloping algebra of the 
"universal Yang-Baxter Lie algebra" Ck(n - 2). 

2. The space E80(2) XSO(2) Embc(Sl, M) is homeomorphic to 

lli!! E80(2) XSO(2) AZ/ kZ F(M, k). 

The rational homology of E80(2) x SO(2) A Z/ kZ F(JRn , k) is given in terms of 
the cyclic homology of the universal enveloping algebra for the "universal 
Yang-Baxter Lie algebra" Lk(n - 2). 

Loop spaces of configuration spaces also fit in a different context one of which 
is discussed in the next section. 

9. Vassiliev invariants and the loop space homology of 
configuration spaces 

The purpose of this section is to describe how the homology of the loop space of 
a configuration space "accounts" for all of the Vassiliev invariants of pure braids. 
The main additional input is given in work of T. Kohno [18, 19J. The information 
here is a direct comparison of those results with the results described above. 

Let Vt be the vector space of Vassiliev invariants of order k for pure braids 
with n strands (as in [19, p. 130 J). Let Ar be the complex vector space spanned 
by horizontal chord diagrams with n vertical strands modulo the "horizontal 4T 
relation" and the "framing independence relation"; these last two relations are 
precisely the "infinitesimal braid relations" of 8ection 3, and given by Kohno 
[19, Proposition 4.3J who proves that there is an isomorphism of complex vector 
spaces 

vt jVt-l -> Homd Ar, IC). 

Consider the graded algebra A~ which in degree k is given by the complex 
vector space Ar, and is C in degree zero. Thus the Euler-Poincare series for A~ is 
given by I:k2:0 dimdAr) t k in [19, Proposition 1.3.11J. 

Proposition 9.1. Assume that q ~ 1. 

1. If q ~ 1, then H*(nF(JRq+2, n); Z) is torsion free of finite type. Moreover, 

XH*(nF(JRq+2,n);Z) = [(1- tq)(I- 2tq)··· (1- (n -1)tq)tl,and 

XH*(F(JRQ+l, n); Z) = (1 + tQ)(1 + 2tQ)··· (1 + (n - l)tQ). 

2. There is an equality of Euler- Poincare series 

XH*(nF(JR3,n);1C) = I:k2:0 dimdAr)tk. 
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Proof. If q 2: 1, the space OF(lRq+2, n) is homotopy equivalent to a product 
IIl~i~n-l O(Visq+l) [7J. The formula in part 1 follows from the Euler-Poincare 
series for a tensor algebra and the calculation of H.(F(lRq+1 , n); Z) made in [6J: 

XH.(OF(lRq+2 , n); Z) = [(1 - tq)(1 - 2tq)··· (1 - (n - I)tq)t1, and 

XH*(F(lRq+l, n); Z) = (1 + tq)(1 + 2tq)··· (1 + (n - I)tq) . 

Notice that the Euler-Poincare series 

L:k 2:0 dimc(Ak) tk 

is given by [(1 - t)(1 - 2t)··· (1 - (n - I)t)t 1 by [I9J. This is precisely the 
Euler- Poincare series for H*(OF(IR3, n) ; q, and the proposition follows. 0 

Remark A straightforward geometric interpretation of Proposition 9.1 is given 
by considering the ordered pairs of distinct pure braids 0:: and (3, and using the 
classical theory of Samelson products in H*(OF(1R3 , n) ; Z) to "measure" 0::(3-1. 
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On the homotopy type 
of infinite stunted projective spaces 

Frederick R. Cohen * and Ran Levi 

1. Introduction 

Consider the space Xn = IRpoo /lRpn-l together with the boundary map in the 
Barratt-Puppe sequence 

Xn __ ElRpn-l. 

Francis Sergeraert and Vladimir Smirnov [6] have considered the low dimensional 
homotopy groups of Xn as well as their loop space homology. Their results are quite 
interesting, and their questions fit with several results that appeared previously in 
the literature [3, 8]. 

It is the purpose of this note to elaborate on a few of these remarks, as well 
as pointing out some natural associated questions and their connection to a recent 
result of Jie Wu [8], where he shows that the 2-torsion in the homotopy of the 
3-sphere is a summand of the homotopy of ElRp2. That result is a consequence of 
the structure considered here. Moreover, it will be shown here that the homotopy 
type of the spaces Xn is closely related to that of certain finite complexes described 
below, where all spaces are tacitly assumed to be localized at the prime 2. 

Here are some concrete results, the first of which is an observation that was 
also pointed out by Broto [2] . 

Theorem 1.1. There is a fibration 

83 - X 2 - K(Z,2), 

which is split after looping. 

Notice that the calculation of loop space homology for X 2 follows trivially 
from this splitting result and the known loop space homology for 8 3 . 

Let A3 denote the 6-skeleton of the Lie group G2 . Notice that the homotopy 
type of A3 is given by a 3-cell complex with cells in dimension 3, 5, and 6, which is 
determined by its cohomology. The identification of the relationship between A3 , 

and G2 is not specifically used in the theorem below, but is pointed out as G2 

appears in several interesting contexts. 

* Partially supported by the NSF. 
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Theorem 1.2. There is a 2-10cal fibration 

A3 -- X3 -- BS3, 

where A3 is the 6-skeleton of the Lie group G2. Furthermore, there is a splitting 

0~X3 ~ OgS3 x 0~A3, 

where 0 0 denotes the component of the constant map in an iterated loop space. 

The calculation of loop space homology for X3 is a bit more involved. A work 
of David Anick [1] gives the homology of OA3 . Let V denote the 5-skeleton of 
the Lie group G2 . Then A3 is obtained from V by attaching a single 6-cell. It 
is easy to see that H = H*(OV,lF2 ) (in fact with any coefficients) is a tensor 
algebra on two generators a and b of dimensions 2 and 4 respectively. The obvious 
inclusion induces an H-module structure on H*(OA3, lF2). Let H{t) denote the free 
associative H-algebra on one generator t in dimension 5. Thus H{t) is isomorphic 
to a tensor algebra on a,b and t. Define a differential don H(t) by d(t) = a2 and 
d(a) = d(b) = o. This turns H{t) into a differential graded algebra and Anick's 
theorem now gives 

Theorem 1.3. The mod-2 loop space homology of A3 is isomorphic as an H -module 
to the homology of the differential graded algebra (H{t), d) defined above. Moreover 
the Poincare series for H*(OA3,lF2 ) is given by the formula 

The fibration 

1 - t4 

PnA3 (t) = 1 _ t2 _ t4 - t7 

OA3 __ OX3 __ S3 

is not split because the connecting map S3 - A3 is essential. However, it is 
degree 2 on the bottom cell and hence trivial on mod-2 homology. Since the fibra
tion is multiplicative, the mod-2 Serre spectral sequence collapses at the E2-page 
and one obtains 

Corollary 1.4. There is an isomorphism of H* (OA3, lF2 )-modules 

H*(OX3,lF2 ) ~ H*(OA3,lF2 ) 0 E[X3]. 

Remark 1.5. The low dimensional homotopy of A3 is quite easy to compute, as 
the natural map A3 - K(Z,3) induces a homology isomorphism through di
mension 6, and the homotopy fibre is easy to handle through low dimensions, as 
demonstrated below. 

Let pn(q) denote the n-dimensional mod-q Moore space, namely, the cofibre 
of the degree q map on the (n - I)-sphere. Recall the following theorem of J. Wu, 
where pn(k) denotes the cofibre of a degree k map on the (n - I)-sphere. 

Theorem 1.6 (Wu). Let"{: P3(2) -- BSO(3) denote the map given by inclusion 
to the bottom skeleton. Let Y denote its homotopy fibre . Then 

1. Y is homotopy equivalent to E(lRp4 /lRp 1) V p6(2) and 
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2. after looping 4 times and restricting to components of the constant map 
0 4')' has a right homotopy inverse. 

The boundary map in the Barratt- Puppe sequence 

Xn - ElRpn-l 

together with Theorem 1.2 and naturality gives a new proof of part 2 of Wu's 
theorem. This theorem gives a way of computing the homotopy of p3(2) through 
a considerable range, as it is given terms of the homotopy groups of the 3-sphere 
and Y. 

Again, consider the map 

together with the natural map 

which induces an isomorphism on homology in dimension four. The composite of 
these two maps gives a map 

X 4 - BS3 

with homotopy theoretic fibre A4 . 

Theorem 1. 7. There is a fibration 

S7 V p6(2) _ X 4 _ BS3 , 

and so A4 is homotopy equivalent to S7 V p6(2). Furthermore, this fibration splits 
after looping. 

There are infinitely many elements of order 8 in the homotopy groups of 
p6(2), and thus in the homotopy groups of X4 [3] . It seems reasonable to conjecture 
that there does not exist an element of order 16. 

The maps described above fit in a more systematic context. Namely, consider 
the natural maps gn: IRpn-l --- SO(n), which induce surjections in cohomology. 
Using these maps one gets the following 

Theorem 1.8. There are maps 

an: Xn - BSpin(n) , 

such that the fibre Fn of an is a finite complex. 

One might be tempted to conjecture that the spaces Xn have homotopy 
exponents. In addition, one might wonder how the splittings of the loop space of 
the suspension of Xn impinge on features of the degree 2 map on spheres. 

Indeed, the maps 
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yield factorisations of several useful maps related to the degree 2 map. In particular 
when n is even, the degree 2 map on sn factors through Xn and ElRpn-l, and when 
n is odd the map 

pn+l (2) _ sn, 

given by collapsing onto the top cell followed by", factors through Xn and ElRpn- l . 
A discussion on how to obtain these factorisations and a speculation on their 
possible utility is in the last section of the paper. 

The work described in this note started when the authors were both visiting 
the CRM during the emphasis semester in spring 1998. Both authors take the plea
sure of expressing their thanks to the CRM for its kind and generous hospitality. 

2. The spaces Xn 

Consider the natural map from lRPOO to K(Z, 2), given by the first non-vanishing 
integral cohomology class. Since K(Z,2) is simply-connected this map factors 
through X 2 . Thus there is a fibration 

F - X 2 - K(Z,2). 

Pulling this fibration back once, one obtains a principal fibration with fibre SI and 
base space X 2 . Inspection of the integral cohomology Serre spectral sequence for 
this fibration gives that the cohomology of the fibre is isomorphic to the cohomol
ogy of the 3-sphere. Since F is obviously simply-connected, the first statement of 
Theorem 1.1 follows. 

To see that the fibration in the theorem splits after looping, observe that the 
connecting map 

nK(Z,2) = SI _ F = S3 

is null-homotopic for the obvious reason. Thus the projection from nX2 to SI has 
a section and the fibration splits. 

Corollary 2.1. The torsion in the homotopy of X 2 has an exponent at any prime p. 

Next analyse X3 and X 4 . Consider the inclusion i of Z/2Z as the centre of 
the Lie group S3. This homomorphism induces a map 

Bi : lRpoo = BZ/2Z _ BS3. 

In cohomology this map takes the generator U4 E H*(BS3,lF2) to Z4, where Z E 
H*(BZ/2Z,lF2) is the generator. Since BS3 is 3-connected, Bi factors through 
both X3 and X 4 • Thus there are fibrations for i = 3, 4 

(1) 

The cohomology of Ai in both cases is easy to compute using the Serre 
spectral sequence for the pulled back fibrations 

(2) 
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This can be done either with mod-2 coefficients or integrally. In either case the 
integral homology of the spaces Ai have only 2-torsion and their mod-2 cohomology 
is given by the proposition below. 

Proposition 2.2. The mod-2 cohomology of A3 is generated additively by classes 
a3, b5 and a5, with Sq2a = band Sq1b = a2 . 

The mod-2 cohomology of A4 is generated additively by classes X5, Y6 and Z7 , 
with Sqlx = y. 

The explicit calculation is straight-forward, and the non-trivial reduced inte
gral homology groups are as follows: 

The analysis of A4 follows directly: It is clear by the cohomological calculation 
that its 6-skeleton is given by the Moore space p6(2). The fibre of the obvious map 
p6(2) __ K(71/271,5) gives the 5-connected cover of p6(2) and makes it visible 
that 1I"6(p6(2)) is isomorphic to 7l/271 and is generated by 'fJ on the bottom cell. 
Attaching a 7-cell to p6(2) by this unique non-trivial element would have resulted 
in a Sq2 connecting the 5 and 7 cells in the mod-2 cohomology of cofibre. The 
cohomological structure of A4 thus implies the structure claimed in Theorem 1.7. 
That the fibration in the theorem splits after looping follows by pulling it back 
once and observing the connecting map from S3 to the fibre A4 is null-homotopic 
for connectivity reasons. 

Next analyse the homotopy type of A3 . The 5-skeleton of this space is seen 
to be given by Y = S3 U1J e5 by inspection of cohomology. The natural map 
Y -- K(71 ,3) induces an isomorphism on mod-2 cohomology up to dimension 5 
and its fibre is the 4-connected cover of Y. By inspection of the associated Serre 
spectral sequence, 11"5 (Y) = 7l and the cohomological structure implies that the 
attaching map is given by a multiple of the generator by an integer divisible by 2 
exactly once. One can in fact verify by doing an integral Serre sequence calculation 
that the attaching map is exactly twice the generator and so the structure of 
A3 is thus determined. Notice that it has been shown here that the homotopy 
type of a simply-connected space with the mod-2 and integral cohomology of A3 
is determined uniquely. Thus it follows that A3 is homotopy equivalent to the 
6-skeleton of the Lie group G2 as claimed. 

An old theorem of J. Harper [4] shows that the 2-local homotopy type of the 
Lie group G2 is determined by its mod-2 cohomology. The result here by contrast 
is obtained by very elementary methods and does not overlap with Harper's cal
culation, namely in his work the main issue is analysing the attaching map for the 
top cell (14-dimensional) in G2 . 

The splitting result claimed in Theorem 1.7 follows immediately from the 
fact that the connecting map S3 -- A4 = p6(2) V S7 is null-homotopic for 
connectivity reasons. 

For the splitting result claimed in Theorem 1.2 one needs the following 
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Lemma 2.3. Let Z be a 2-connected space and let g: S3 ----- Z be any map. If 
1r4(g) is trivial then 02(2g) is null-homotopic when restricted to 02S3(3) at the 
prime 2. 

Proof. Let f denote 2g. Thus f is given by the composite 

Recall that the loops on the second Hilton- Hopf invariant Oh2: 02S3 __ 02S5 
has order 2 in the group [02S3, 02S5]. Thus the composition 

is null-homotopic. 

This remains true if all spaces are replaced by their I-connected covers and 
so the composition 

is null and 2 on 02(S3(3)) lifts to the fibre of Oh2, which is given by OS3. Thus 
after passing to I-connected covers 0 2 f is homotopic to a composition 

But notice that j takes the fundamental class in 1r3(S3) to TJ E 1r3(0(S3(3))), 
which under Og is taken, by hypothesis, to O. Hence 02g0j is null-homotopic and 
so 0 2 f is null-homotopic, restricted to I-connected covers. 0 

Notice that in the fibration 

the fibre inclusion 8 is degree 2 on the bottom cell. Also the map A3 -- K(71, 3) 
corresponding to the bottom cohomology class induces an isomorphism on coho
mology up to dimension 5. Hence 1r4(A3) = 0 and the conditions of Lemma 2.3 
are satisfied. Thus looping twice and passing to universal covers, the map 

is null-homotopic, implying the splitting result of Theorem 1.2. 

Finally analyse Xn for higher values of n. Let gn: ~pn-l ----- SO(n) be 
a map which induces the inclusion of generators in homology. Then there is an 
induced diagram where the left column is a cofibration and the right column is a 
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fibration, 

Consider the fibration 

IRPOO _ BSpin(n) - BSO(n). 

Using either the well known calculation of the cohomology of BSpin(n) [5] or 
inspection of the Serre spectral sequence of this fibration, one observes that for 
some minimal positive integer r depending on n the class z2r E H 2r (RpOO , IF 2) is 
an infinite cycle. Let U2r E H 2r (B Spin ( n), IF 2) be any class restricting to z2r. 

Lemma 2.4. Let Fn denote the fibre of an . Then there is an isomorphism 

H' (Fn' 1F2 ) ~ H* (Xn' 1F2 )/ (z2r) ® Tor H. (BSpin(n),1F2)j(U2r) (IF 2 , 1F2 ) 

of H*(Xn, 1F2)-modules. In particular Fn has the homotopy type of a finite complex. 

Proof. Observe that a~ takes any choice of U2r to the cohomology class in 
H*(Xn ,1F2) which maps to Z2r and that any class in H 2r (BSpin(n),JF'2) which 
is in the image of the map from H*(BSO(n),1F2) is sent to 0 by a~. The calcula
tion now becomes direct by using the Eilenberg-Moore spectral sequence for the 
fibration 

Fn - Xn - BSpin(n) 

and Smith's "big collapse theorem" [7] . 

3. Some applications and sample calculations 

o 

Proposition 3.1. For any positive integer n the degree 2 map on s2n factors through 
X 2n . Also if n is odd then the map 

p2n(2) _ s2n-l, 

given by collapsing onto the top cell followed by 7], factors through X 2n+1. 
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Proof. Let i: s2n - X2n denote the inclusion of the bottom cell and let 
8: X2n -----+ ElRp2n-l denote the connecting map in the Barratt-Puppe sequence. 
Then by projecting to the top cell, one gets a map q: X2n -----+ s2n. It is immediate 
that 8 is of degree 2 in dimension 2n. Thus the first part of the proposition follows. 

For any n the 2n-skeleton of X 2n- 1 is given by p2n(2). By composing with 
8 and collapsing to the top cell, one gets a map p2n(2) -- s2n-l. Restricted 
to the bottom cell, this map is immediately seen to be of degree 0 and is hence 
null-homotopic. Thus it factors through the top cell via a map Q:: s2n -----+ s2n-l. 
The map Q: can be either", or the null map. 

Consider the commutative diagram of cofibrations 

p2n(2) _ X 2n- 1 - X 2n+l 

~ j j f j 
p2n(2) __ ElRp2n-2 _ C 

I hI 
* • ElRpoo _ ElRpoo . 

Notice that C is (2n + I)-dimensional whereas X 2n+l is 2n-connected. Since 
ElRp2n-2 is (2n - I)-dimensional, f induces the zero map on mod-2 cohomology. 
Thus h* surjects in all dimensions. Notice that additively, H*(C,lF2 ) is isomorphic 
to that of H*(ElRp2n,lF2). Thus h* is in fact an isomorphism through dimension 
2n+ 1. Now, let CJX2n- 2 E H 2n-l(ElRpoo,lF2) denote the generator. Then 

Sq2(CJx2n-2) = CJSq2(x2n-2) = CJ(Sql(Xn-1f). 

Thus Sq2(CJx2n-2) = 0 if n is even and is equal to CJx2n if n is odd. The claim now 
follows by commutativity of the diagram 

p2n(2) __ ElRp2n-2 _ C 

I j 
a • s2n-l ___ • K 

using the fact that '" is detected by S q2 . o 
A remark related to the last proposition is the following. By suspending the 

factorisation of the degree 2 map on an even sphere one obtains a factorisation for 
the same map on an odd sphere, 

s2n+l _ EX2n _ E2Rp2n-l _ s2n+l. 
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Barratt's distributivity formula for the degree 2 map on an odd sphere states that 

where the second summand is the second Hilton- Hopf invariant composed with 
the loops on the Whitehead square 

The identity above holds in the non-abelian group [nS2n+1 , nS2n+1]. One may 
wonder if this last map is null-homotopic after looping 2n times more. 

The splittings here do not seem to inform on the problem, but factoring the 
degree 2 map through the double suspension of the projective space might be 
useful. 

Next consider the space A3 obtained as the fibre of the map X3 -- BS3, 
constructed above. The calculation of loop space homology becomes easy using 
Anick's technique described in [1]. Specifically, A3 is obtained from V = S3 U1) e5 

by attaching a 6-cell. The cohomology of A3 determines the attaching map 
f: S5 - v. One observes easily that on mod-2 homology the adjoint 
ad(f): S4 -- nv takes the generator to the element a2 E H4(nV, 1F2). In this 
situation Anick's theorem [1,3.7] applies and the first claim of Theorem 1.3 follows. 
One also obtains the formula 

1 _~ __ t __ t5 
PnA3 (t) - PN(t) Pnv(t) , 

where N is defined to be the quotient of the algebra H*(nV, 1F2 ) by the two sided 
ideal generated by a2 . The calculation of the Poincare series for nA3 thus follows 
from knowing the series for the algebra N. 

Notice that there is a short exact sequence of graded vector spaces 

0- I;4T[a,b]_ T[a,b]- N - O. 

From this exact sequence one obtains that 

Plugging this into the formula above and simplifying, the proof of Theorem 1.3 is 
complete. 

Wu's splitting theorem is also implied by the observations made here. We 
recall the relevant part of the theorem. 

Theorem 3.2 (Wu). Let T p 3 (2) -- BSO(3) denote the map given by inclusion 
to the bottom skeleton. Let Y denote its homotopy fibre. Then after looping four 
times and restricting to components of the constant map ng, has a right homotopy 
inverse. 
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Proof. Consider the following commutative diagram of fibrations: 

where the vertical map in the centre is the connecting map in the Barratt-Puppe 
sequence in the cofibration defining X3 and the right vertical map is the obvi
ous one. Looping this diagram twice and taking connected components the right 
vertical map becomes an equivalence. 

Thus looping four times and taking connected components there is a diagram 

By Theorem 1.2 the top right horizontal map is null-homotopic. Hence the same 
applies to the bottom right horizontal map. Thus the map nh admits a cross
section up to homotopy. Since a multiplicative fibration with a cross-section is 
trivial, the result follows. 0 

Finally, the following low dimensional homotopy calculations are obvious from 
the splitting results presented here and well known facts on the homotopy groups of 
the spaces involved. These calculations are motivated by some computer oriented 
questions of Sergeraert. The program developed by Sergeraert and his coauthors 
however can certainly handle spaces much more general than the specific idiosyn
cratic cases here. The remarks here give a corroboration of those calculations. 

Proposition 3.3. The 2-primary low dimensional homotopy of X3 is given as fol
lows: 

o 
'lL./2'lL. 

o 
'lL./2'lL. 

'lL. / 4'lL. E9 'lL. / 2 'lL. 

i~2 

i=3 

i=4 

i = 5,6 

i = 7. 



On the homotopy type of infinite stunted projective spaces 89 

The 2-primary low dimensional homotopy of X 4 is given as follows: 

0 i:-::;3 

Z i=4 

7ri(X4) = 
7ri-l (83) E8 Z/2Z i = 5,6 

7r6(83) E8 Z E8 Z/4Z i=7 

7ri_l(83) E8 (Z/2Z)3 i = 8,9 

7rg(83) E8 (Z/8Z)2 i = 10. 

Proof. That the space X3 is 2-connected and 7r3(X3) ~ Z/2Z follows at once by 
looking at the cohomology of X 3 . By Theorem 1.2, there is a splitting 

06X3 :::= 0 38 3 x 06A3, 

where 0 0 denotes the zero component and A3 is the 6-skeleton of the Lie group 
G2 . Thus it suffices to compute the homotopy of A3 through the specified range. 
Notice that A3 is also the 6-skeleton of K(Z, 3). Hence the inclusion induces an 
isomorphism on integral homology though dimension 5 and so 7ri(A3) = 0 for 
i = 4,5. The fibre of this inclusion is the 3-connected cover of A3 , which is seen 
by inspection of the Serre spectral sequence to be 6-connected with 7r7 given by 
Z/2Z. It follows that 7r4(X3) = 0 and 7ri(X3) are given by 7ri_l(83) for i = 5,6. 
Finally for i = 7 there is an exact sequence 

7r7(A3) - 7r7(X3) - 7r6(83), 

which is split because of Theorem 1.2. The result for X3 follows. 
The calculation for X 4 uses the splitting of Theorem 1.7 

OX4 :::= 8 3 x 0(87 V p 6 (2)). 

Thus 

7ri (X4 ) ~ 7ri-l (83) E8 7ri (87 V p6 (2)) ~ 7riH (83) E8 7ri (87) E8 7ri (P6(2)) 

through dimension 10. The right hand side equality follows from looking at the 
fibre ofthe inclusion 8 7v p6(2) __ 8 7 X p6(2), given by E(087 AOP6(2)) which 
is lO-connected. The result for X 4 follows from the known homotopy of 8 7 and 
p6(2) in this range. 0 

The homotopy of the 3-sphere is of course known through a larger range than 
is dealt with here. With some extra effort one can work out a few more homotopy 
groups for A3 as well as the cross terms that occur in bigger dimensions arising 
from the homotopy groups of the wedge 8 7 V p6(2) . 

Corollary 3.4. There are infinitely many summands of Z/8Z in the homotopy 
of X 4 · 

This follows from a calculation by J. Wu and the first author [3J for the 
homotopy of mod-2 Moore spaces. Explicit dimensions of an infinite family of 
Z/8Z summands are listed in this article. 
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Conjecture 3.5. There do not exist any elements of order 16 in the homotopy 
of X 4 • 

The conjecture fits with the Barratt conjecture for the Moore space. The 
2-primary component of the homotopy of S3 has exponent 4. The best known 
exponent for the 2-primary homotopy of S7 is 32, but a conjecture of Barratt and 
Mahowald gives 8 as an upper bound. 
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Stable splittings of nSU(n) 

M.C. Crabb and J.R. Hubbuck 

1. Introduction 

In his Northwestern PhD thesis [5], M. Hopkins considered the stable decompos
ability of the space of based loops nSU(n) and proved a splitting theorem when 
a generator of 7r2 is inverted, thereby providing evidence in support of a conjec
ture of M. Mahowald. Later W. Richter proved that nSU(n) splits stably as an 
infinite wedge of spaces which have the homotopy types of finite complexes, ex
tending work of S. Mitchell (and confirming Mahowald's conjecture). We consider 
the stable indecomposability of some of these finite complexes. 

Our model for nc is the space of based maps Map*(SI, C) with SI c C the 
unit circle. Let L E P(Cn ) be a line in cn, and 7rL : Cn --+ Cn be orthogonal 
projection onto L. H. Hopf noticed that for each ,\ E SI 

lies in U(n) and therefore PL E nU(n). We use these elements to define subspaces 
of nu (n) by setting 

n{k}U(n) = {J E nU(n) : f = PL • . PL2 ••••• PLk for some Li E P(Cnn 

where the product is taken in U(n). Taking the standard subgroup U(l) C U(n) 
and projecting n{k}U(n) from U(n) to SU(n) = U(n)/U(l), we obtain a "Mitchell 
filtration" of nSU(n), 

More extensive accounts of filtrations on U(n) and nSU(n) can be found in [2, 
11]. 

Let Wk(n) = Rk SU(n)/ Rk- l SU(n). The stable splitting theorem of Richter 
referred to above [10, 3] establishes that there is a stable equivalence of spectra 

nSU(n) ~ V Wk(n). 
k~1 
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In the notation of [11], Fn,k = RkSU(n). It is shown there in Theorem A 
that there is a homotopy commutative diagram 

RkSU(n) -> BU(k) 

1 1 
nSU(n) -> nsu ~ BU. 

The vertical maps and the top map are inclusions. 
Our homology theories will be unreduced; except where the notation denotes 

otherwise. Let bi denote both the generator of H 2i (P(COO), Z) dual to the i-th 
power of the Euler class of the Hopf line bundle, and its inclusion in H 2i (BU, Z); 
we use the same notation for these standard homology generators whether the 
coefficients be Z, Zj2QZ or Z(2)' 

The homotopy commutative diagram induces a commutative diagram:-

-t Z({bi,i2:1,::;k}) 

1 
-> Z[bibl 

where S({bi , r, l}) denotes the free S-module with generators bi for i in the range 
r, oflength l. 

The projection of the tensor to the symmetric power on generators bo (= 1), 
b1 , ... ,bn - 1 induces a surjection 

k o H*(P(Cn),Z) -t H*(RkSU(n),Z), 

whereas the projection from the tensor power to the symmetric power on genera
tors b1 , ... ,bn - 1 induces a surjection 

0 k it(p(Cn),Z) -t .it(Wk(n),Z). 

So we identify it(Wk(n),Z) with Z({bi , 1::; i::; n -1, k}). 
When n = 2, the splitting echoes the classical splitting of ns3 and Wk (2) = 

S2k. 

Proposition 1.1. The space W k (3) is stably indecomposable for all k 2: 1 (at the 
prime 2). 

The proof is a routine argument using mod 2 homology, the relation S q2 (b2 ) = 
b1 and the Cartan formula. 

The first interesting case occurs when n = 4. 

Theorem 1.2. The space W k (4) is stably indecomposable for all k 2: 1 (at the prime 
2). 

The theorem is established in Section 2. 

We now fix k and seek results for all n. It is well known that W1(n) = P(Cn) 
is stably indecomposable at the prime 2 for all n. 
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Theorem 1.3. The space W2 (n) is stably indecomposable for all finite n (at the 
prime 2). 

The strategy of proof is similar to that used in [4, 6, 7] . We replace the anti
symmetric algebras used in [4] with symmetric algebras. Also, as in Theorem 1.1 
of [4], finite dimensionality is quite crucial for Theorem 1.3. 

When n becomes infinite, RkSU(oo) = BU(k) and the Richter splitting re
trieves a well known theorem of V. Snaith [16], BU(k) ~ Vl<i<k MU(i), where 
MU(i) = Wi(oo). - -

Theorem 1.4. The spectrum MU(2) splits stably as a wedge of two indecomposable 
spectra, provided one inverts the prime 3. 

This is established in Section 5 of the paper. A proof of the existence of a 
2-complete splitting can be found in Theorem D of [12]. 

2. Notations and the proof of Theorem 1.2 

Let k.(X) denote 2-local connective complex K-theory of the complex X with 
coefficients Z(2)[V]. So 

k.(nSU(n)) =Z(2)[vWh,,82, ... ,,8n-l] 

where the ,8i E k2i (P(COO)), i ~ 0, form a basis dual to the j-th powers of the Bott
Euler class of the canonical line bundle over P(COO); these also lie in k2i(nSU(n)) 
under the inclusion. The descriptions of k.(RkSU(n)) and k.(Wk(n)) are com
pletely analogous with those in homology, replacing the ground ring Z by Z(2) [v] 
and the generators bi by ,8i. 

In the Pontrjagin ring k.(P(COO)) ® 1Ql, let (3i = ,8Uil =,8i + ... + vi- 1,8l/il, 
where 

,8i = ,81 (,81 - v) ... (,81 - (i - 1) v ) / i!. 

We will soon need the explicit expressions (32 = ,82 + v,8l/2 and (33 = ,83 + v,82 + 
v2,8l/6. The Thorn map 

Th: k2q(nSU(n)) ---> H2q (nSU(n), Z(2») 

satisfies Th(,8i) = bi and Th(v) = o. 
We will use also the integral Chern character of Adams 

X: k2q(X) --+ EB H2(q-i) (X, Z(2»), 
i~O 

extending the Thorn map. 

Proposition 2.1. Let Y be a (2t - I)-connected pointed complex. Then 

X(k2q (Y)) J 2q- t EB H2q- 2i (Y, Z(2»). 
i~O 
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The proposition is known but does not appear to be recorded explicitly in 
the literature; it is closely connected with work of L. Smith in [15]. We outline the 
proof in Section 6. 

When X = P(coo)'xUh) = bl . As bi = bi/i! in H*(P(COO),Q), rationally 
x(fis) = bs. 

We begin the proof of Theorem 1.2. The group it(Wk (4),Z) is spanned 
by monomials of length k in bl , b2 and b3 . We prove Theorem 1.2 by assuming 
that W k (4) splits stably as a non-trivial wedge Xl V X 2 where the lowest positive 
dimensional class in H.(XI,Z) is b~ and so X 2 is (2k+ I)-connected and obtain a 
contradiction. 

Lemma 2.2. A lowest positive dimensional non-zero class in H.(X2,Z/2Z) must 
be of the form b'{b'3 where T > O. 

This lemma is an elementary consequence of the relation Sq2(b2) = bl and 
the Cartan formula. 

Proof of Theorem 1.2. We consider b2b'3 E H40'+6r(Wk (4),Z/2Z) as in 
Lemma 2.2. Then 

Sq2a (b~b3) = bfb3 E H20'+6r(X2, Z/2Z). 

Therefore there exists iii E H40'+6r(X2, Z/2Z) with Sq2a (iii) = b'{b'3. As Sq2i(b3 ) = 
o for all i > 0, we must have iii = b2 b'3 + distinct monomials. So there is a repre
sentative class w E H40'+6r(X2, Z(2)) with 

W = b~b3 + alblb~-2b3+I + ... + albi b~-2Ib3+1 

where ai E Z(2)' As X 2 is (2a+6T-I)-connected, we set t = a+3T in Proposition 
2.1. So there exists u E k40'+6r(X2) with x(u) = 20'(0, ... , w). In k40'+6r(X2) ®Q, 

u = 20' {fi2fi~au + alfilfi2-2fi~+I + ... + alfiifi2-2Ifi~+I}. 

As u E Z(2)[V,,BI,,B2,,B3j, the coefficient of vO'+2r,Bf+r E Z(2)' But this coefficient 
has the form 

20' {2-0'6-r + aI2-0'+26- r- 1 + ... + aI2-0'+216-r-l} 

= {2-r3-r + aI2-r+I3-r- 1 + ... + aI2-r+13-r- I}. 

This is only possible if T = 0 and therefore a = k. This contradicts the assumption 
that X 2 is (2k + I)-connected and completes the proof of Theorem 1.2. 

3. Symmetrisation 

A homogeneous polynomial of degree M in k-variables p(~) is called a numerical 
M-form over Z(2) if p(l!) E Z(2) whenever it is evaluated -at!!:. E Zt2)' Any such 
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form can be written as 

(C) _ ~ .. . Cil Ci2 Cik I· , ., . , p ~ - L.. at1 ,t2, .. . ,tk'>l ·'>2 ... '>k t1·· t 2···· tk· 

where I>j = M,{ = (6,6, . .. '~k) and the coefficients ai1h, .. . ik lie in Z(2). It 
is shown in [7] that there exists a smallest integer K2(k, 28 ) such that whenever 
M > K 2 (k, 28 )' all the coefficients of a numerical M-form are divisible by 28 • The 
values of K 2 (k, 28 ) are known for k = 2, at least implicitly, by work of L. Schwartz 
[13, 1]. In particular K 2(2, 2) = 4 and we will show that K2(2, 4) = 10. The upper 
bound for K 2 (k, 28 ) obtained in [7] is too large to be useful in computations. 

In k.(P(COO)) ® Q = Q[v][~], let ~ = /31 and so 

/3i = ~(~ - v) ... (~ - v(i - 1))/i!. 

The fixed points of the Adams operator 1/J3 in k.(P(COO)) ®Q are scalar multiples 
of ~i . 

Let BTk = P(COO) X P(COO) x ... x P(COO), k-factors, and k.(BTk) ® Q = 

Q[v][6,6,··· '~k], where ~i = 1 ® ... ® 1 ® ~ ® 1 . . . ® 1 with ~ in the i-th posi-
tion. Basic properties of the Adams operator imply that the fixed points of 1/J3 in 
k2q(BTk) coincide with the numerical q-forms p(~) which lie in k2q(BTk), or more 
precisely lie in k2q(BTk) n Q[6,6, ... ~k] c k2qCBTk) ® Q . In homology one has 
in a similar manner, H.(P(COO), Q) = Q[x] and we set x = b1 and so bi = Xi Ii!. 
Then H.(BTk, Q) = Q[x}, X2,· .. , Xk] and Th(p(~)) = P(;f). 

All homology groups in this note are free of integral torsion, but at times we 
need different coefficients. When coefficients change, any missing homomorphism 
will be the standard coefficient reduction from Z or Z(2). We state part of the 
discussion above as a lemma. 

Lemma 3.1. The natural transformation 

Th: k28(BTk) ----> H28(BTk, Z/2qZ) 

maps fixed points of 1/J3 to zero, when s > K2(k, 2q). 

Let 

and 

- k tk : k.(Wk(n)) ----> k.(BT ) 

be the symmetrisation maps determined by 

t( Cil .Ci2 ... Cik) = L CiU(l) ® Ciu(2) ® . . . ® Ciu(k)' 
C7E S k 

where Ci = bi or fk 
Under the natural inclusions of modules, 

H.(Wk(n),Z(2») C H.(Wk(OO),Z(2») C H.(BU(k),Z(2») 
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and ,t(Wk(n)) c k.(Wk(OO),Z) c k.(BU(k)), the above are restrictions of the 
symmetrisation maps in the commutative square. 

-+ k.(BTk) 

1 Th 

-+ H.(BTk ,Z). 

In Section 5 we will use the fact that tH and tk are induced by the transfer of the 
inclusion BTk ~ BU(k). 

Theorem 3.2. The natural transformation 

Th: k2s(BU(k)) -+ H2s(BU(k),Z/2Z) 

maps the fixed points of 1/J3 to zero if s > K2(k, 2Q ), where q = 1 + v2(k!). 

This follows from Lemma 3.1 and the diagram immediately above with Z/2QZ 
coefficients in homology. One adds the facts that under the symmetrisation map, 
tH(bi1 bi2 .. . biJ is non zero in H.(BTk,Z/2QZ) for r :::; k (where v2(k!) denotes 
the exponent of the highest power of 2 which divides k!) and that tk commutes 
with 1/J3 ' 

We remark that it is shown in [14] that the subspace of k2s(BU(k)) fixed by 
1/J3 corresponds to the numerical s-forms p(~) which are invariant under Sk such 
that p(!!) is divisible by the order of the stabiliser of!!:. E Zt2)' 

Corollary 3.3. Let Wk(n) be stably homotopic to a non-trivial wedge Xl V X 2 where 
X 2 is (2s - I)-connected, s > k. Then s :::; K 2(k, 2Q), where q = 1 + v2(k!). 

Proof. Let S2s ~ X 2 be the inclusion of a cell of smallest positive dimension 
which we compose with the inclusion into Wk(n) Let k2s (S2s) = Z(2)[V)(U). The 
image of U in H2s(BU(k) , Z/2Z) under the homomorphism 

k2s (S2s) ~ H2s(S2s,Z/2Z) ~ H2s(Wk(n),Z/2Z) ~ H2s(BU(k),Z/2Z) 

is non zero. This coincides with its image under the composition 

k2s(S2S) ~ k2s(Wk(n)) c k2s(BU(k)) ~ H2s(BU(k),Z/2Z). 

As 1/J3(U) = U, by Theorem 3.2, s :::; K 2(k, 2Q). 

4. The proof of Theorem 1.3 

In this section we consider only k = 2 for n :::; 00. We determine the classes in 
H.(BU(2), Z/2Z), and therefore H.(W2(n), Z/2Z), which can be lowest dimen
sional classes of a wedge summand; we call these "splitting classes" . 

We recall the work of Schwartz referred to earlier in [13] in more detail. 
The Pontrjagin ring H.(BT2,Z(2)) is a divided polynomial algebra on two 2-
dimensional generators x and y say, where tH(bibj ) = (Xi /i!)(yj / j!)+(xj / j!)(yi Ii!). 
The subring of numerical forms is generated by x , y and classes qi , i ~ 1, defined 
inductively by ql = x.y2/2! - x2/2!.y and qk = (q~ - h2k- 1 qk)/2 , k ~ 1, where h = 
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X3 _X2.y+y3, [13, 11. We will write Xi, Yi for Xi ji!, yi ji!, i 2: 1. Direct computation 
shows that the image of the space of numerical forms in H. (BT2 , Zj 4Z) is spanned 
by:-

Degree Generators 
o 1. 
2 Xl, YI . 
4 2X2, XIYI, 2Y2. 
6 2X3, ql = XI ·Y2 - X2 ·YI, 2X2 'Y!' 2Y3' 
8 2XY3, Xql = 2X2Y2 + X3YI, yql = 2X2Y2 - XIY3· 
10 x2ql = 2X3Y2, y2ql = 2X2Y3. 
12 qr = 2X3Y3, q2 = 2{XIY5 + X2Y4 + X4Y2 + x5yd· 
14 xq2 = 2{X3Y4 + X5Y2}, yq2 = 2{X2Y5 + X4Y3}. 
16 Xyq2 = 2{X3Y5 + X5Y2}. 
18 qlq2 = 2{X3Y6 + X6Y3}' 
20 Xql q2 = 2X7Y3, yql q2 = 2X3Y7. 

We deduce that K2(2, 4) = 10. 

Proposition 4.1. The image of the fixed subspace of 1/;3 under the Thom map Th : 
k.(BU(2)) --+ H.(BU(2), Zj2Z) has basis {b5, bobl , br, blb3, bn . 

Proof. Theorem 3.2 and the computation of K2(2, 4) above imply that the 
classes in the image lie in H2s(BU(2), Zj2Z), 0 S; s S; 10. The fixed points of 1/;3 
in k.(BU(2)) are mapped by tk to fixed points of 1/;3 in k.(BT2). These in turn 
are mapped by Th to numerical forms in H.(BT2,Z(2))' Those fixed points in 
k.(BU(2)) whose images are non-zero in H.(BU(2), Zj2Z) give rise to symmetric 
numerical forms with non-zero images in H.(BT2, Zj4Z). By inspection of the 
table above, the only possible classes in H.(BU(2), Zj2Z) are b5, corresponding to 
1, bob!, corresponding to Xl + YI, bi, corresponding to 2XIYI, blb2, corresponding 
to XIY2 + X2YI, blb3, corresponding to XIY3 + X3YI and b~, corresponding to 2X3Y3' 

Of these, the class blb2 is exceptional; tH(blb2) E H6(BT2, Zj2Z) corresponds 
to a fixed point of 1/;3 in k6(BT2), but not to a fixed point in k6(BU(2)). Rationally 
the class in k6(BU(2)) 0 Q would have to be a aillil2 = a!31 (/32 + v!3d2), where 
a is a unit in Z(2), This does not lie in k6(BU(2)). One can check directly that b~ 
does arise from a fixed point of 1/;3' This establishes the proposition. 

Corollary 4.2. Only bi and blb3 can be splitting classes in H.(W2(n), Zj2Z), for 
n S; 00. 

Proof. We need to show that b~ is not a splitting class. 
If n = 4, the result follows from Theorem 1.2 and the approach in general is 

similar to the proof of that result. For n > 4, we use the relations 

Sq2(b4) = b3, Sq4(b4) = b2, Sq2(b3) = 0, Sq2(b2) = bl , 

and assuming the generators exist, 

Sq4(b5) = b3, Sq2(b5) = 0, Sq4(b6) = 0 and Sq2(b6) = b5. 



98 M.C. Crabb and J.R. Hubbuck 

So in HI4 (W2(n), Z/2Z), Sq2(b4b3) = b~. If Y is a stable summand of W2(n) with 
splitting class b~, there exists a class 

C = Qb4b3 + {3b5b2 + "(b6bl E HI4 (Y, Z/2Z) 

with Sq2(C) = b~ and Sq4(C) = o. Thus Qb~+{3b5bl +"(b5bl = b~ and Qb2b3+{3b3b2 = 
O. This implies that Q = {3 = "( = 1 and that n ~ 6. Therefore if b~ is a splitting 
class, there exists an element 

w = (lb4b3 + mb5b2 + nb6bl ) E HI4 (Y, Z(2)) 

where l,m and n are units in Z(2) . We apply Proposition 2.1 with q = 7 and t = 6 
and deduce that 2w = X(u) for some u E kI4(Y) . By a similar argument to that 
used in Theorem 1.2, in kI4 (Y) ® Q, 

u = 2( lil4il3 + mil5il2 + nil6ill) 

where as before ili = {3i + ... + Vi - l (3diL But as u E kI4 (Y), the coefficient of 
v5{3i in Q[v,{3I, ... ,(3n-d must lie in Z(2) . As this coefficient is 2{l/(4!)(3!) + 
m/(5!)(2!) + n/(6!)}, we have a contradiction. Thus b~ is not a splitting class. 

Proof of Theorem 1.3. When n = 2 or 3, the result is routine and the case 
n = 4 follows from Theorem 1.2. So we can assume that n > 4. 

We have 

k4(W2(n)) = Z(2) ({3;) , k6(W2(n)) = Z(2) ({31{32) EB Z(2)(v{3;), 
- 2 2 2 k8 (W2(n) = Z(2) ({31{33)EBZ(2) ({32) EB Z(2) (V{3I{32) EB Z(2) (v (31)· 

If W2 (n) splits non-trivially as Xl V X 2 , we can assume by Corollary 4.2 that 

H4(XI,Z(2)) = Z(2)(bi), H8(XI, Z(2)) = Z(2)(b~ + lblb3), 

H4 (X2 , Z(2)) = 0, H6 (X2 , Z(2)) = 0 

and 

where l,m E Z(2). So 
- 2 2 2 k8(Xt} = Z(2)({32 + l{3I(33) EB Z(2) (v{3I{32) EB Z(2) (v (31) 

and 
- - - -2 
k8(X2) = Z(2) ({31{33 + 2m(32), 

where the rationally defined class 
- - -2 2 I 2 2 

{31{33 + 2m{32 = {31{33 + 2m{32 + (1 + 2m)v{3I{32 + 6- (1 + 3m)v {31 

(and so m E Z(2) is a unit) . 

Now H4n- 6(W2(n), Z(2)) = Z(2)(bn- 2bn- I). The subspace of k4n- 6(W2(n)) 
fixed by 'l/J3 is Z(2)((), where ( is a rational multiple of iln-2iln-l. A routine 
computation verifies that 

t!ilt = Vt - I{31 +vt- 22{32 +vt- 3(1_ (-1)t){33 mod 4 
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and so ( = v2n- 4f3? + 2vn- 6f31f33 mod 4. Reducing mod 2, ( = v2n- 4f3? and so 
( E k*(X1). But this implies that vn-6f3d33 mod 2 lies in k*(X1), which is false. 

We deduce that W2(n) is indecomposable at the prime 2. 

5. Splitting BU(2) 

Theorem 5.1. There is an equivalence of spectra 

if the prime 3 is inverted, where the summands on the right hand side are inde
composable and have splitting classes b5, bobl, b~ , b1 b3 respectively. 

Theorem 1.3 is an immediate corollary. 

We construct idempotents using the inclusion i : T2 -+ U(2). It induces both 
i* H*(BT'i, Z) -+ H*(BU(2)+, Z), corresponding to the projection from the 
tensor to the symmetric square on the generators bi, i 2: 0, and also the (stable) 
transfer i' : BU(2)+ -+ BT'i inducing i~ : H*(BU(2)+, Z) -+ H*(BT'i, Z) (which 
also realises the symmetrisation maps tH and tk of Section 3). The composition 
i*i~ is multiplication by X(U(2)jT2) = 2 in homology. The composition i~.i* is 
1 + T*, where T is induced from the involution of the torus which interchanges the 
factors and so corresponds to the matrix [~ AJ. 

Let a : BT2 -+ BT2 denote the map induced by [= t ~]. Then a 3 = 1 and 
TaT = a-1 . 

Lemma 5.2. The stable map e = 3-1(1 + iai') : BU(2)+ -+ BU(2)+ acts as an 

idempotent on H* (BU(2)+, Z(1/3)) ' 

Proof. As i~i* = 1 + T, we have 

(1 + i*a*i~)2 = 1 + 2(i*a*i~) + i*a*(1 + T*)a*i~. 

But i*T* = i* and T*i~ = i~, as T is given by an inner automorphism of U(2) and 
so induces a map homotopic to the identity on BU(2). So i*a;i~ = i*T*a;i~ 
i*a*T*i~ = i*a*i~ and i*a*T*a*i~ = i*T*i~ = i*i~ = 2. Therefore (1 + i*a*i~)2 = 
3(1 + i*a*i~) and e; = e*. 

Using a well known technique, written in detail in Section 4 of [4], e decom
poses the spectrum BU(2)+ into a wedge of two spectra. 

To identify the image, Y say, of the idempotent we compute its Poincare 
series. Let C be the subgroup of CL(2, Z) generated by a and T, which has order 
6. The rational homology of Y can be identified with the invariants H * (BT2 , Q)G. 
that is, with Q[x, y]G, in the notation of the section above. Using a superscript to 
denote homogeneous polynomials of a given degree, we give the Poincare series in 
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terms of an indeterminate q of dimension 2 as :-

#~ L L tr(g* : (Q[x, y])(j) -; (Q[x, y])(j))q1 
gEG j?O 

1 
= #G L(det(1 - qg))-l (Molien's theorem) 

gEG 

1 
=6((1- q)-2 + 2(1 + q + q2)-l + 3(1- q2)-l) 

=(1 - q2)-l (1 _ q3)-l. 

So we can split Y = SO V Xl, where the splitting class of Xl is bi in dimension 4. 
As the Poincare series of BU(2)+ is (1- q)-l(l_ q2)-l, the Poincare series of the 
summand complementary to Y is q(l- q)-l(l- q3)-l. But MU(I) with Poincare 
series q(l- q)-l and splitting class bobl cannot lie in Y and so the complementary 
summand must split as MU(I) V X 2. This completes the proof of the theorem. 

In the proof above we have quoted Snaith's result that MU(1) is a stable 
summand of BU(2). A strategy similar to that above can be used to establish this 
(without inverting 3). One must take care with base points. Let P = [b 8] induce 
7r : BT2 -; BT2 and the zero matrix induce () : BT2 -; BT2. Then i*(7r* - ()*)i~ 
is a suitable idempotent. 

6. Appendix 

We describe the proof of Proposition 2.1, which we restate for the case t = 0 as 

Proposition 6.1. Suppose Y is a finite pointed complex. Then the cokernel of the 
2-local Chern character in degree 2q 

is annihilated by 2q. 

X: k2q(Y) -; EBH2(q-i)(Y,Z(2)) 
i?O 

The general case is established by replacing Y by the (stable) desuspension 
E-2t y. 

We shall need a number of properties of the Chern character X, for which the 
basic references are the papers of Mahowald and Milgram [9] and Smith [15]. 

First we give an easy proof under the assumption (satisfied in our application) 
that each Thorn map k2(q-i)(Y) -; H2(q-i)(y,Z(2))' i 2:: 0, is surjective. Consider 
the long exact sequence 

- V· - Th -
... -; k2(q-l) (Y)---'k2q(Y)---.H2q(Y, Z(2)) -; ... 

relating connective k-theory and homology. The proof follows by induction on q, 
using the facts that X( v) = 2 and X is multiplicative. 
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In general the proof runs as follows. We use the notation p(ll~nH for the 
Thorn space of the Hopf line bundle H over the real projective space p(JRr) . The 
Chern character X fits into a long exact sequence 

... --+ k2q(Y)~ EB H2(q-i)(Y) --+ k2q- 1 (Y /\ p(JRoo)H) --+ ... 

i2° 

By connectivity, the inclusion map induces an isomorphism k2q- 1 (Y /\P(JR2q)H) --+ 

k2q- 1 (Y /\ p(JRoo)H). In stable homotopy, the identity map on p(JR2q)H has order 
2q or 2q+l (depending upon q mod 4); in k-theory its order is exactly 2q. (To be 
precise, let us write kO{X; Y} for the k-theory maps between pointed complexes 
X and Y, that is, [X; Y /\ k], where X and Yare the suspension spectra of X and 
Y and k is the k-theory spectrum. Then 1 E kO{p(JR2q)H; p(JR2q)H} has order 2q. 
This can be seen by induction, using the cofibre sequence 

p(JR2(q-l»)H --+ p(JR2q)H --+ p(JR2)(2q-l)H = I;2(q-l) p(JR2)H , 

to reduce to the case of p(JR2)H .) The conclusion of Proposition 6.1 thus follows 
from the exact sequence. 

Finally, we isolate the corollary which appeared as the essential step in the 
proofs of Theorem 1.2 and Corollary 4.2. 

Corollary 6.2. Suppose further that X is injective on k2q (Y), and let y be an ele
ment of H2q(Y, Z(2»). Then there exists a lift x E k2q(Y) of 2qy which is fixed by 
1/J3· 

We lift (0, ... ,0,2qy) E EBi>oH2(q-i)(Y,Z(2») to a class x E k2q (Y). The 

Adams operation 1/J3 (= 1/Jl/3) corr~sponds, under X, to 1 on H2q(Y, Z(2») and 3- i 

on H2(q-i)(Y, Z(2»). 
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Structure of mod pH-spaces with 
finiteness conditions 

Juan A. Crespo 

Abstract. The aim ofthis paper is to prove in full generality that a I-connected 
mod pH-space with noetherian mod p cohomology is, up to p-completion, the 
total space of a principal fibration with base a mod p finite H-space and fibre 
a product of a finite number of copies of ICpoo . The case p = 2 was considered 
in [5]. 

1. Introduction 

A finite H-space is an H-space whose underlying space is homotopy equivalent to 
a CW-complex with a finite number of cells. In the localized version, a mod p finite 
H -space stands for an H -space which is finite up to p-completion or equivalently 
for an H-space which mod p cohomology ring is finite dimensional, where by 
p-completion we understand Bousfield-Kan p-completion [4]. An H-space, being 
simple, is p-good in the sense of Bousfield-Kan, so we will assume without loss of 
generality that our mod pH-spaces are p-complete. 

The three connected cover of a finite H -space is not homotopy equivalent to 
a finite CW-complex. In fact the mod p cohomology ring is no longer finite. For 
example the three connected cover of the three dimensional sphere S3, obtained as 
the fibre of the fibration S3(3) ~ S3 ~ K(Zp, 3), has not a finite cohomology 
ring. It is however a noetherian ring, H*(S3(3);lFp) ~ IFp[x2p] ® E[,BX2p]. 

In order to construct the 3-connected cover of a mod p finite H -space X, we 
firstly consider its universal cover, X, which is again mod p finite. Following [8] 
it is 2-connected and 7r3(X) is torsion free. Choose a map X -> K(Zp m, 3) that 
induces an isomorphism between the three dimensional homotopy groups. The 3-
connected cover X (3) is defined as the homotopy fibre of that map, thus it fits in 
a principal fibration 

((cpoo);)m -> X(3) -> X . 
A spectral sequence argument shows now that the mod p cohomology ring of X (3) 
is not finite but finitely generated; that is, noetherian. Other known examples of 
H-spaces with noetherian mod p cohomology ring are (CpOO); and BZ/pT for any 
positive integer r. 

The author is partially supported by DGES grant PB97-0203. 
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Lin [14, Question 2.4] asks whether a simply connected H-space with finitely 
generated mod p cohomology algebra has the same mod p cohomology as a product 
of K(Z, 2)'s with 3-connective covers of finite H-spaces and finite H-spaces. 

In this paper we obtain 

Theorem 1.1. If X is a i-connected mod pH-space with noetherian mod p coho
mologyalgebra, then there exists a mod p finite H -space F = F(X) and a principal 
H -fibration 

(1) 

It is important to remark that the basis and the fiber in the fibration (1) 
can be obtained in a functorial way from X. In [9] , Dror Farjoun gives a nice 
construction of localization functors with respect to maps. In particular the nulli
fication functor for BZ/p, L B7l / p was investigated by Neisendorfer [16] who defined 
F as the composition of the functor L B7l/p and the Bousfield-Kan p-completion 
and gave the relationship F(X (n)) '::= X; for I-connected finite complexes X with 
finite 1f2(X) and for any positive integer n. F(X) in the principal fibration coin
cides with the functor introduced by Neisendorfer. On the other hand, the map 
((cpoo);)n ~ X coincides with CWB7l/poo(X) ~ X where CWA is the 
colocalization functor introduced by Dror Farjoun in [9]. 

Corollary 1.2. A mod pH-space is the three connected cover of a mod p finite H
space if and only if its mod p cohomology ring is three connected and noetherian. 

These results answer positively the question of Lin. In fact we show that not 
only such an H -space has the same cohomology but it fits in a sort of central 
extension of those. Namely, the H-fibration (1). 

Here we present the odd prime version of the Theorem 1.1. In [5] was exposed 
the even prime version. From now p will thus always denote an odd prime. 

In fact we will work under more general conditions that those mentionned in 
Theorem 1.1. We will consider H-spaces satisfying the finiteness conditions 

(FI) H*(X;JFp ) is of finite type. 
(F2) H*(X;JFp ) has a finite number of polynomial generators. 
(F3) The module of the indecomposables QH*(X; JFp ) is locally finite as module 

over the Steenrod algebra. 

Recall that a module over the Steenrod algebra is called locally finite provided 
any submodule generated by a single element is finite (cf. [17]). 

It is clear that if an H -space has finitely generated cohomology then it satisfies 
conditions (FI), (F2) and (F3). Under these less restrictive conditions one has a 
more general version of Theorem 1.1. 

Theorem 1.3. Let X be a i-connected mod pH-space satisfying conditions (FI), 
(F2) and (F3). Then there exists a principal H-fibration 

((cpoo);)n x BZ/pkl X ... X BZ/pks ---. X ---. F(X) . 

where F(X) is an H -space such that H* (F(X); JFp ) is locally finite. 
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The typical examples of H-spaces with locally finite cohomology are provided 
by loop spaces of finite H -spaces. For example 

Example 1.4. Consider OS3, the loop space of S3. Its mod p cohomology is lo
cally finite but not finite. In fact H*(OS3;lFp) ~ r[1'2], that is, it is an infinitely 
generated Hopf algebra. Classify the 2-dimensional class of H*(OS3;lFp) by a map 
OS3 ~ K(Z/p,2). The homotopy fibre of this map, Y, is again an H -space that 
fits in a fibration 

BZ / p ---.:;, Y ---.:;, OS3. 

An easy computation with the SSS gives us that H*(Y;lFp) ~ lFp[X2J ® r(Y2p) ® 
E[Z2p-!l. The space Y satisfies conditions (Fl), (F2) and (F3) but its cohomology 
is not noetherian. 

We will denote by A, the mod p Steenrod algebra. It is generated by the 
Steenrod powers pi, i ~ 0 and the Bockstein operator 13, subject to the Adem 
relations. The Bockstein 13 and the powers ppn form a system of algebra generators. 
We will use the notation 

pAn = ppn ppn-l ... pp pI 

for n ~ 0 and formally pA_ 1 = po = id. With this notation we can express the 
mod p cohomology of B 2Z/p as the algebra 

H* (B2Z/p; lFp) ~ lFp[L, f3pl f3L, . .. , f3pA n {3L, . .. J ® E[f3L, pIf3L, ... , pAn f3L, ... J 

where L E H2(B2Z/p; lFp) is the fundamental class. 

Theorem 1.5. For any mod pH-space X satisfying the conditions (Fl), (F2) and 
(F3) and any polynomial generator x E H*(X; lFp) of degree degx > 1, there exists 
a finite subquotient of H* (B2Z/p; lFp) of the form, either 

M~ = ((f3pl f3L )pTnn , ... , (f3pAn- 1 f3L )pTnl , pAn {3L, f3pAn f3L) IFp 

with n ~ 0, mo = 0 and mk-I :::; mk :::; mk-I + 1 or 

M!.r = (f3pl f3L )pTnn , ... , (f3pAn- 1 f3L )pml , pAn f3L, f3pA n f3L, LPTn ) IFp 

with n ~ 0, mo = 0, mk-I :::; mk :::; mk-I + 1, m ~ 0, and an epimorphism of 
unstable A-modules: 

i: EQH*X ~> M~ 

with i(x) = pAnf3L, where M~ denotes either M~ or M~I. 
In case that H*(X; lFp) is noetherian and 1-connected only M~ can occur. 

This shows that a polynomial generator cannot live in a large dimension 
unless linked by Steenrod operations to other nilpotent generators in a way codified 
by the unstable A-modules M~. In particular if the generator has dimension bigger 
than 2, then the module is M~ with n ~ 0 an hence this class will have non-trivial 
Bockstein. Hence polynomial rational classes can only happen in dimension 2. 

We can give examples of H-spaces whose cohomology realize the information 
codified by M~. 
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Example 1.6. 

n = 0: MJ = {pI f3~, f3pl f3~} . This implies that the space realizing it, has to 
have a polynomial class in dimension 2p and an exterior class in dimension 
2p + 1, related by a Bockstein. This is the cohomology of 8 3 (3). 

n = 1: There are two different possibilities for the module MI, these are 
given in Example (3.10). For the case Mf = {pt:;.1 f3~, f3pt:;.1 f3~, (f3pl f3~)P} 
that we can represent as 

{3 pI 
0---'----;;> • ---'----;;>. 

we have that an H -space candidate to realize the information codified by 
this MI will have a polynomial class in dimension 2p2 linked by the above 
operations. This corresponds to the cohomology of the three connected cover 
of the Harper H -space, Kp: 

H* (Kp(3)j IFp ) ~ IFp[x2p2] 0 E[Y2p2+1, Z2p2+2p-l] 

with the relations f3x = y and ply = z. 

The paper is organized as follows. In Section 2 we compute the Nil-localization 
of Hopf algebras. Using the coaugmentation of this functor we construct a sequence 
of H-fibrations BZjp ---'----;;> X ---'----;;> E ---'----;;> B 2Zjp for a given H-space X whose 
cohomology is noetherian. The map BZjp ~ X detects a prescribed polynomial 
generator. Section 3 contains information about the structure of H* (B2Zjpj IFp ) 

and Section 4 about differential Hopf algebras. In Section 5 we compute the SSS 
for the H-fibrations constructed in Section 2, and in Section 6 the convergence of 
this SSS. Finally in Section 7 we show Theorems 1.1 and 1.3. 

We will denote by U and K the categories of unstable modules and algebras 
over the Steenrod algebra respectively. For an element x E M, M an object either 
of U or K, we will use the notation 

R {pl;l = xP if Ixl == 0(2) 
OX = f3P(lx l-I)/2x if Ixl == 1(2) 

I would like to thank Carles Broto for his help and observations. I also would 
like to thank Jerome Scherer the accurate reading of the original version and a 
lot of useful comments. Finally I would like to express my gratitude to the Centre 
de Recerca Matematica for its kind and generous hospitality during the Topology 
Semester in 1998. 

2. Nil-localization of Hopf algebras 

In this section we use techniques of Nil-localization [6, 17], to construct A-maps 
between H*(Xj IFp ) and the cohomology of elementary abelianp-groups V , compat
ible with the Hopf algebra structure of the spaces involved. Using Lannes' results 
[12] these maps can be realized by geometric maps, that is, maps BV ---'----;;> X. 
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An (F)-isomorphism in the category U is a morphism f such that its kernel 
and cokernel are nilpotent in the following sense: an unstable A-module M is said 
nilpotent, in the category U, if for any x EM, Po nx x = 0 for nx big enough. That 
is, if M E K, it is said to be nilpotent if xP'x = 0 for any element of M even. 

Nil-localization is a functor that associates to every unstable A-module M a 
nil-closed A-moduleN(M) together with an (F)-isomorphism M --t N(M). These 
properties characterize the Nil-localization of M up to isomorphism. It will not 
be necessary to remember here the definition of a nil-closed A-module, but just 
recall that the mod p cohomology of elementary abelian p groups are the most 
important examples. In [6] it is shown that if M is an A-algebra then N(M) is 
also an object of K and M -----;. N(M) is a morphism in K. Similar arguments 
show that if M is an A-Hopf algebra then so is N(M) and M ~ N(M) is an 
A-Hopf algebra map. 

We will consider A, an A-Hopf algebra satisfying conditions (Fl) and (F2), 
that is A is of finite type and A has a finite number of polynomial generators. 
We can write A 2:! P 0 N where P is a polynomial algebra concentrated in even 

A 
degrees and N is nilpotent. Then, if we consider JO the radical of A, JO coincides 

with P. Obviously P satisfies the conditions of the Adams and Wilkerson theorem 
in [1], hence we have an inclusion of P in the cohomology of BTn, the classifying 
space of an n-dimensional torus where n is the transcendence degree of A. 

Proposition 2.1 ([2]). Let A be a connected A-Hopf algebra satisfying conditions 
(Fl) and (F2). Then the inclusion 

j : ~ C-..;> H*(BTn; Fp) 

A 
given by the Adams- Wilkerson embedding identifies JO with a sub-A-Hopf algebra 

of H*(BTn; Fp). In particular it is an (F)-isomorphism. 

Proof. By the Borel decomposition theorem of Hopf algebras we know that ~ is 
a polynomial algebra on n generators. Remember that in [2] it is shown that the 
inclusion j is an A-Hopf algebra map and hence Imj is a sub-A-Hopf algebra of 

( ) 
prl r n 

H* BTn; Fp of maximal degree. These are of the form Fp[u1 , ... , u~ ] where 
ri ~ 1. 

Now to prove the result we have to show that ker j and coker j are nilpotent. 
Obviously, ker j is trivial, and 

k · rv Fp[Ul, . . . ,Un ] 
co er J = prl p r n 

Fp[u1 , ... , Un ] 

Take a class y E coker j, represented by y E Fp[Ul' ... ,Un]. As coker j is concen
trated in even degree, to check that this element is nilpotent, in the sense of the 
Steenrod algebra, we have to check that ypS = 0 E coker j for s big enough. But 
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taking s ;::: max{Tl"" ,Tn} one has that yP' E IFp[u(l , . . . ,uC'] so that ffP' is 
trivial in coker j as we wanted to prove. 0 

Now we are going to compute the Nil-localization [6] of Jo and H*(BTn; IFp). 

Let A be an unstable algebra over A. Consider the forgetful functor 0 : 
K' ----;> K where K' consists of the unstable A-algebras concentrated in even 
degrees. Its left adjoint is described in [13] as 

o A = {x E A even ; Ox = 0 V 0 E ,BA}. 

There is an obvious inclusion OOA ~ A which is an A-algebra map. 

Lemma 2.2. The inclusion i : OOA ~ A is an (F)-isomorphism, that is 

N(A) 2:! N(OOA). 

Proof. One has just to check that ~ is nilpotent in U, that is, p;xx = 0 for 
OOA 

nx big enough and for any element x in cokeri. Remember that for any x E M, 
ME K, one has by instability that ,BPox = O. Thus, using Adem relations one has 

- A 
that Pox E OOA for any element x E A. This shows that -_- is nilpotent and 

OOA 
hence the lemma follows. 

In particular if one has A a nil-closed algebra then N(A) 2:! A, and hence 

N(H*(BT;lFp)) 2:! H*(BV;lFp), 

where V is an elementary abelian group of rank n. 

o 

Now consider the map A ~ Jo, this is not, in general, an A-map be-

cause the action of the Bockstein is not internal in JO. However, the composite 
- 7roi A. 

OOA ~ JO IS an A-map. 

Lemma 2.3. The morphism 01 unstable A-algebras 1 = '!roi is an (F)-isomorphism. 

Proof. On the one hand ker 1 = {x E OOA ; xn = 0 for n big enough}. In 
particular we have xp' = 0 for some s. As OOA is concentrated in even degrees 
this implies Pox = 0 for all x E OOA. That is, every element in ker 1 is nilpotent. 

On the other hand, take an element x E coker 1 and x a representant of 
this class in A. We have to check that Pox = 0 in coker 1 for n big enough, or 
equivalently Pox E OOA, that is OPox = 0 for all 0 E ,BA. In fact, this is true for 
n = 1, because ,BPox = 0 V x and 

pi Pox = {Opop~x i/i=.O(p) 0 
otherwise. 

The two lemmas above prove, 
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Proposition 2.4. Let A be a connected A-algebra. Then we have a diagram 

A 
A 4<--- OOA --~> -

1 1 _ 1 
N(A) ~ N(OOA) ~ N( $0) 

where the bottom horizontal arrows are isomorphisms. 

Lemma 2.5. The sub-Hopf algebras of maximal transcendence degree in 

H*(BVjlFp)~lFp[VI " " ,vn]®E[UI, ... ,un] 

with IUil = 1 and (3Ui = Vi, are of the form 

IF [ pmk+l pm,,] E[ ] 
p VI, · ·· ,Vk,Vk+1 , ... ,Vn ® UI,··. ,Uj 

where 0 ::; j ::; k. 
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(2) 

Theorem 2.6. Let A be a connected A-Hopf algebra, satisfying conditions (Fl) and 
(F2). Then the Nil-localization of A is an A-Hopf algebra map 

l : A ----> H*(BVj lFp) 

where V is an elementary abelian group of rank n, the transcendence degree of A. 

Proof. Notice that Nil-localization applied to the map 

j: Jo ----> H*(BTnjlFp) 

of Proposition 2.1 provides the diagram 

~ ----L H* (BTn . IF ) JO ' p 

1 _ 1 
N($o) ~ H*(BVjlFp). 

This together with Proposition 2.4 provides the map l. Nil-localization preserves 
the structure of Hopf algebra, so N(A) is a Hopf algebra isomorphic as an A- alge
bra to H*(BVj lFp). The uniqueness of the A-Hopf algebra structure of H*(BVj lFp) 
gives us the fact that l is an A-Hopf algebra map. 0 

Corollary 2.7. Let A be a connected A-Hopf algebra satisfying conditions (Fl) and 
(F2). Then there is a system of generators for A as an algebra such that we can 
write 

rv [ ] [ ] lFp[ZI,' " ,Zt, ... ] 
A=EyI, ... ,Ys,' " ®lFp (3YI, . . · ,(3Yk,Xk+I'" ,Xn ® pml pm" 

(Zl , ... ,Zt , ... ) 



110 J. A. Crespo 

and such that, up to ordering, 

l:::;j:::;r 

i> k 

Proof. We have constructed the map l as the coaugmentation of the Nil-localization 
of A. Then leA) is a sub-Hopf algebra of H*(BV; IFp) of maximal transcendence 
degree that is of the form (2). As leA) is of maximal transcendence degree in 
H* (BV; IF p) the condition for the image of the polynomial generators is clear for a 
determined basis. Finally, the condition on the generators Yj, (Jys = Xs if l(ys) = Us 
is necessary because the map l is an A-map. 0 

What makes this result interesting is the case when A = H* (X; IF p) for X a 
connected H-space. Using the results of Lannes [12], we can realize the algebraic 
map l by a geometric map 

f:BV~X 

with f* = l. Moreover, since l is a map of Hopf algebras, it commutes with the 
diagonal and geometrically this means that f is an H -map. 

In particular this map determines the degrees where a polynomial generator 
could appear in the mod p cohomology of such an H -space. 

Proposition 2.8. Let X be a connected mod pH-space whose cohomology satisfies 
conditions (F1) and (F2) . Then the polynomial generators in H*(X; IFp) appear 
in degrees 2pi . 

Notice that we cannot find other restrictions about the value of i, because 
Aguade and Smith gave in [3J examples of spaces realizing the cohomologies E 0 
IFp[X2pi], for all i, E being an exterior algebra. These are the cohomologies of 
Sp(k)(3), the 3-dimensional cover of the Lie group Sp(k) with k = (pi-l + 1)/2. 

Assume now that V' is an arbitrary elementary abelian p-group and I' : 
BV' -----.;> X any map. By universality of the coaugmentation, l, of the Nil
localization, the induced map 1'* : H*(X; IFp) ----'?> H*(BV'; IFp) factors as a 
composition 

H*(X;IFp) ~ H*(BV;IFp) ~ H*(BV';IFp) 

and then I' itself factors as BV' ~ BV ~ X for a certain homomorphism 
of groups V' ~ V. Finally I' is also an H-map. 

Remark 2.9. Notice that if 1'* maps trivially all the polynomial generators of 
H* (X; IF p) then it is trivial, because I' factors through l. 
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The same arguments as in [5, section 2] apply and we obtain 

Theorem 2.10. Let X be a connected mod pH-space satisfying conditions (F1), 
(F2), and (F3), and let x be a polynomial generator of H*(X;IFp). Then, there 
exists an H -map 

f:BZ/p~X 

with J*(x) = vpn , where v is a 2-dimensional generator of H*(BZ/p; IFp), and a 
sequence of H -jibrations 

BZ/p ~ X ~ E ~ B 2Z/p. 

The motivation for this section is the study of certain ideals in the mod p cohomol
ogy of B 2Z/p. Among those we will find the possible kernels in mod p cohomology 

of the projection map p of an H-fibration F ~ E ~ B2Z/p. 

Definition 3.1. Let R be an A-Hopf algebra. An ideal of R is called a Primitively 
Generated A-ideal (PGA-ideal for short) if it is an A-ideal generated by a sequence 
of primitive elements. 

Recall that 

H* (B2Z/p; IFp) ~ IFpk, {3pi {3L, . .. , {3pl:l.n {3L, ... ]0 E[{3L, pi {3L, . .. , pl:l.n {3L, ... ] 

is a primitively generated Hopf algebra. Thus the primitives are the elements LP' 

of degree 2ps, pl:l.n {3L of degree 2pn+1 + 1 and ({3pl:l.n {3L )p' of degree 2ps (pn + 1), 
for all s ~ 0 and n ~ -1. Observe that in each degree P(H*(B2Z/p;IFp)) is at 
most one dimensional. 

Lemma 3.2. The following equalities hold in H* (B2Z/ p; IF p) 

pt pl:l.r {3L = 0 forO < t < pr+1 

prJ {3pl:l.j-l {3L = {3pl:l.j {3L . 

(3) 

(4) 

Using this lemma we know how acts an element of type ppn over a polynomial 
generator {3pl:l.j {3L. 

Lemma 3.3. For n ~ 0 and j ~ 0 

n=O 

0< n ~j 

n=j+1 
otherwise. 
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Proof. We start with the case n = O. Applying Adem relations 

ppo ({3pl:1j (3~) = pI ({3pl:1j (3~) = Ao{3p1+vi pl:1j_1 {3~ + /-Lop1+V {3pl:1j-l {3L. 

Observe that the first term of this sum is zero because pl:1j- 1 (3~ has degree 2~ + 1 < 
2(~ + 1). Now the second term, {3pl:1 j- 1 (3~, has degree 2(~ + 1) so if we apply the 
operation p1+pj we obtain ({3pl:1 j- 1 (3~)p . Observe that 

/-LO=(~)=l. 
Let us see what happens if 0 < n < j + 1. Applying again Adem relations 

n-l 
n-l ~ 

p p 

ppn{3ppj = L Ak{3ppn+pj-kpk + L /-LkPpn+pj-k{3pk 

k=O k=O 

where Ak ,/-Lk E IFp. Then evaluating on pl:1j-l{3~ and by the previous lemma one 
obtains 

Ak{3ppn+pj-k(pkpl:1j-l{3~) = 0 

/-LkPpn+pj-k{3(pkpl:1j-l{3~) = 0 

when 0 < k < ~+1. So we have only to look at the case k = 0: 

Ao{3ppn+vi pO pl:1j_1 {3~ = Ao{3ppn+v pl:1j_1 {3~ = 0 

because IPl:1 j- 1 (3~1 = 2~ + 1 < 2(pn+~) the degree of the operation that we apply. 
On the other hand, /-Lo ppn+vi {3pl:1 j- 1 {3~ = 0 because l{3pl:1 j- 1 (3~1 = 2(~ + 1) < 
2(~ + pn) in case that n > O. Then we have shown the lemma for 0 S n < j + 1. 
The case n = j + 1 is the second result of the previous lemma. Finally, if n > j + 1, 
the result is obvious by instability. 0 

It is also easy to check 

Lemma 3.4. Let x be any element of an unstable algebra over the Steenrod algebra. 
Then 

s 8-1 
pp xP = (PP x)p. 

By gluing these two lemmas together we have 

Lemma 3.5. 

{ 
({3pl:1j-l {3~)p8+1 i = S 

ppi ({3pl:1j {3~ )pS = 0({3pl:1i+1 (3~ )p8 i = s + j + 1 

otherwise. 

With this information we can deduce what the PGA-ideals of H*(B2Zjp; IFp) 
are. First we have, 
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Lemma 3.6. The minimal PGA-ideal of H*(B271jPiIFp) containing pb.nf3~ is 

Jminimal(pb.n f3~) = ((f3p l f3~)pn , ... ,(f3pb.n- l f3~)P, 

pb.n f3~, f3pb.n f3~, .. . ,pb.n+k f3~, f3pb.n+k f3~, ... ) . 

In the same way, 

113 

Lemma 3.7. The minimal PGA-ideal of H*(B271jPi IFp) containing (f3pb.n f3~)ps, 
with n ~ 0, s ~ 0, is 

Jminimal((f3P nf3~) ) = (f3P lf3~) , ... ,(f3P n-lf3~) , b. ps ( b. ps+n b. pS+l 

(f3pb.n f3~)ps, ... ,(f3pb.n+r f3~)ps, ... ) . 

l.From these two descriptions its easy to obtain a description of all PGA-ideals 
of H*(B271jPiIFp). 

Lemma 3.S. The PGA-ideals of H* (B271jPi IFp) are either 0, (~pm), H*(B271jPi IFp) 
or one of the following types were n ~ -1 and 8 ~ 0, 

Type Is: 

In+l(s) = ((f3Plf3~)pmn , ... ,(f3pb.n-lf3~)pml, 

f3pb. n f3~, ... ,f3Pb.n+s f3~, ... ,f3pb.n+S+k f3~, ... 

pb.n+s f3~, ... ,pb.n+S+k f3~, ... ) , 

were s ~ 0, ml = 1 and mk = mk-l + f, f = 0,1. Here s just determines 
the subindex n + s where pb.n+s f3~ and its Bockstein f3Pb. n+s f3~ appear. 

Type IIs: 

( ) _ (pm (f3 1 )p"'n (f3 b.n- l f3 )pml I n +l S - ~ , p f3~ , ... , P ~ , 

f3pb. n f3~, ... ,f3Pb.n+s f3~, ... ,f3pb.n+s+k f3~, ... 

pb.n+s f3~, . " ,pb.n+s+k f3~, . .. ) , 

where m > 1, s ~ 0, ml = 1 and mk = mk-l + f, f = 0,1. 
Type lIIs: 

() (( b.l )p"'n (b.n- l f3 )pml In+l 8 = f3P f3~ , ... , f3P ~ , 

(f3pb.n f3~)ps, ... ,(f3pb.n+r f3~)ps, ... ) , 

where mo = 8, ml = 8 + 1 and mk = mk-l + f, f = 0,1 and 8 ~ 0. 
Type IVs: 

In+l 8 = ~ ,f3P f3~ , ... , p ~ , () ( p'" ( b. l )pmn (f3 b.n- l f3 )pml 

(f3pb.nf3~)Ps, ... ,(f3pb.n+rf3~)ps, ... ) , 

where mo = 8,ml = 8 + 1 and mk = mk-l + f, f = 0,1, m ~ 1 and 8 ~ 0. 
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Proof. Suppose that the ideal J is non trivial, so it has to contain some primitive of 
H*(B2Zjp; IFp), namely pt::..n{3L or ({3pt::..n{3L)Ps. If it contains any of this elements 
it has to contain one of the ideals that we have described in 3.6 and 3.7. Obviously 
that ideals could be bigger, that is, it could contain other primitives such as, 
for example, roots of the elements there described. Suppose first that it contains 
one of the ideals Jminimal(pt::..n{3L) described in 3.6, that is, it contains pt::..n{3L 
but not pt::..n-l {3t. If one of the generators of the ideal is ({3pt::..n-k {3L)pmk then, 
just applying the operation ppmk the element ({3pt::.. n- k- 1 {3L)pmk+l has also to be 
contained in the A-ideal. Now, without contradiction, we can have the root of 
this element ({3pt::.. n- k- 1 {3L)P=k. On the other hand, it is not possible that our 
ideal has ({3pt::.. n- k- 1 {3L)pm k- l as a generator because in this case we will not have 
({3pt::..n-k{3L)p=k as a generator but ({3Pt::.. n- k{3L)pmk-l, which could be obtained 
from ({3pt::.. n- k- 1 (3L)pm k- l applying ppmk-l. This is the reason for the choice of 
the exponents mi in the cases Is and lIs. Obviously our ideal can have Lpm as a 
generator for m 2: 1; in case m = 0 the ideal coincides with fl*(B2Zjp; IFp). In case 
that the ideal contains a minimal ideal of type Jminimal(({3Pt::..n{3L)pS), this being 
the biggest ideal included, that is, ({3pt::..n {3L )ps appears but not pt::..n (3L, then the 
argument is the same as the previous one. We have to impose ml = ps+1 because 
if not Jminimal(({3pt::..n-l{3L)Ps) would be contained in our ideal, which is bigger 
than Jminimal(({3pt::..n{3L)Ps), contradicting the assumption made above. 0 

For an ideal J of type IS, lIS, IIIo or IVo as described in 3.8 we define the sub 
A-module EL as 
EL = (pt::..n+ s+l {3L, {3pt::..n+s+1 {3L, ... ,pt::..n+s+k {3L, {3pt::..n+s+k {3L , ... )lFp if J is either 
of type Is or lIS, and 

EL = ({3pt::..n+l {3L, . . . {3pt::..n+k (3L, . . . )lFp if the ideal J is either of type IIIo or IVo· 

In case that J = H*(B2Zjp; IFp) we define 

For a better understanding of these ideals we recommend to look at the graph
ics given in Appendix 8. The corresponding quotients in H*(B2Zjp;IFp) are of 
relevance in the argument of this work. 

Definition 3.9. We define the unstable A-modules M~ JjEL, where J is a 
primitively generated A -ideal of H*(B2Zjp;IFp) of one of the types IS, lIS, 1110 

or IVo. Alternatively we can describe the A-modules M~ as the sub quotients of 
H*(B2Zjp;IFp) described as vector spaces by 

M~~s =( ({3pl {3L)pmn , .. . ,({3pt::..n- 1 {3L)pml , 

{3pt::..n {3L, . . . ,pt::..n+s {3L, {3pt::..n+ s (3L) , 
IFp 
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where mo = 0, ml = 1, mk = mk-l + f, f = 0,1, s :::: 0. 

M~~s =( ((3pl (3~)prnn , ... ,((3pt:J.n- l (3~)pml , 

(3pt:J.n (3~, ... ,pt:J.n+s (3~, (3Pt:J.n+s (3~, ~prn) , 
IFp 

where m > O,mo = 0, ml = 1, mk = mk-l + f, f = 0, 1, s :::: 0. 

being mo = 0, ml = 1, mk = mk-l + f, f = 0,1. 

with m > 0, mo = 0, ml = 1, mk = mk-l + f, f = 0, 1. 

These ideals are better understood graphically. We are going to give some 
examples of them for the case M!. that will be the case of interest for us. 

Example 3.10. 

n = -1: M~l = {(3~} 
n = 0: MJ = {pl(3~,(3pl(3~}. 

n = 1: There are two possibilities 

M{ = {pt:J. l (3~, (3pt:J. l (3~, ((3pl (3~ )P} 

o~.~. 

o~.L. 

n = 2: Now we have four possibilities 

MJ = {pt:J.2(3~,(3pt:J.2(3~, ((3pt:J.l(3~)P, ((3pl(3~)P2}. 
(3 pl pp 

o --;. • --;. • --;.. 
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MJ = {pLl2 f3L, f3pLl 2 f3L, f3pLl l f3L, f3pl f3L}. 

f3 pp2 pp 
o ~ • <;;....-- • <;;....--. 

4. Differential Hopf algebras over IF p 

Here we study the structure of some differential Hopf algebras related to the Serre 
spectral sequence of an H-fibration F ~ X ~ B 2Z/p. The general model 
for the SSS of an H-fibration is a bigraded differential Hopf algebra, (E, d), where 
the differential d is of bidegree (n, 1 - n). 

Definition 4.1. We will say that a bigraded differential Hopf algebra E satisfies the 
Kudo condition if for all x E EO,2n with d(x) = a t= 0 E E 2n+1,O then the element 
a ® x p - l is a non trivial class in H(E). 

We will define the following differential Hopf algebras that there will be rel
evant in following sections. 

Definition 4.2. A bigraded differential Hopf algebra is of 

Type N: if E ~ A ® B, with ES'o ~ AS and EO,t ~ Bt and if it satisfies the 
Kudo condition, and of 

Type K: if E ~ A ® B ® E[c], with ES'o ~ AS, EO,t ~ B t , and E[c], an 
exterior algebra primitively generated by a single generator in bidegree (s, t) 
with s, t t= 0, and if it satisfies the Kudo condition. 

Definition 4.3. The transgression for E is the restriction of the differential 

T . EO ,n-l ~ En,o IEO,n-l . , 

that is, T: Bn-l ~ An . 

These algebras are classified in the following types according to the possible 
transgression 

Type No: E of type Nand d == 0 
Type N l : E of type N with transgression T : B 2m ~ A2m+1 non-trivial. 
Type N2: E of type Nand d(x) = a with transgression T: B 2m- l ---';> A2m 

non-trivial. 
Type K o: E of type K and d == 0 
Type K l : E of type K and d(c) = 0 with non-trivial transgression. 
Type K 2 : E of type K and d(c) t= o. 

We will assume that B is of finite type. According to the Borel's theorem we can 
write 

BC>!. lFp [Xl,X2,oo. ,xs,.oo] E[ ] 
- (P"'l p"'2 P"'S) ® Yl,oo. ,Yr. oo . 

Xl , x 2 , ... , xr , ... 

where ai can be infinite. 
We will assume in this section that A does not contain zero divisors in even 

degrees and also that pn(A) is at most I-dimensional for every n. 
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Lemma 4.4. ([5, lemma 4.1])Let {E,d} be a differential Hopf algebra of type N . 
Then 

1. d(Bm) c pn(A) ® Bm-n+l. 
2. If the transgression T : Bn-l ~ pn(A) is trivial then d == o. 

Lemma 4.5. Let (E, d) be a bigraded differential Hopf algebra of type Ni , i =f. o. 
That is E ~ A ® B, and 

B '" IF'p[ZI,Z2, ... ,zs, ... ] [ ] 
= p"l p"2 p"s ®EYI, · ·· ,Yr,··· . 

(Zl , Z2 , ... , Zs , ... ) 

Denote for simplicity by Xi the generators of B whether they are of the form Zi 
or Yi. Let d(XI) = a E pn(A), Xl with minimal height in d-l(a). Then there is a 
system of generators {XI, X2, ... , XT) ... } of B as an algebra such that 

1. For j > 1, Xj = Xj - bXI and d(xj) = 0 where b is a polynomial in the 
generators Xk in degrees less than m = deg(xj). 

2 p"j 0 _p" j 0 2 0 -2 0 h . Xj = ==> Xj =, Xk = ==> Xk = , ence 

'" IF'p[ZI,Z2, ... ,Zs] [_ - ] 
B = p"l _p"2 _P"s ® E YI, ... , yT) ... 

(Zl , Z2 , . . . , Zr , ... ) 

if Xl = Zl that is, is in even degree, or 

'" IF'p[ZI,Z2, ... ,Zs] [ _] 
B = p"l _p"2 _p"s ® E YI ,· ·· ,yT) ... 

(Zl ,Z2 , .. . ,Zr , ... ) 

in case that Xl = YI . 

Proof. Let us consider Xj the first generator different from Xl in minimal degree 
such that d(xj) =f. O. According to Lemma 4.4, and because pn(A) is I-dimensional, 
we have that d(xj) = ba where b is a polynomial in the generators Xk in degrees 
less than the degree of Xj . We are going to distinguish the cases in which the 
dimension of the transgressive element IXII is even or odd. 

Suppose first that IXII is odd, then lal is even and thus is not a zero divisor. 
We have 

0= d(ba) = d(a)b ± ad(b) = ad(b) = 0 

and then d(b) = O. 
If we consider Xj = Xj - xlb, applying the differential one obtains d(xj) = 

ab - (ab + xld(b)) = ab - ab = o. Moreover, in this case to prove (2) one only 
has to observe that xi"j = 0 because Xl is exterior and then the same holds for 
(xlb)P"j = O. 

Let us consider now the case IXII even. Then d(xj) = ab where b = L: bkxt 
with the possibility k = 0 for some k and with bk polynomials in generators in 
degree less than IXjl. If we take Xj = Xj - L: 1/(k+ l)bkx~+1 we will have d(xj) = 0 
when k + 1 ¢. O(p), because d(L: 1/(k + l)bkX~+1) = a L: bkxt if k + 1 ¢. O(p). 

Then 

d(xj) = d(xj - L 1/(k + l)bkx~+1) = a L bkxt - d(L l/(k + l)bkX7+1) = 0 . 
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We are going to see that the exponent k with k + 1 == O(p) is not possible. 
Let us consider first 

~(d(Xj)) = ~(a)~(L bkX~) 

= L ~(a)~(bk)~(X~p-I) EB L ~(a)~(bk)~(Xn . 

Observe that in particular we have summands of type ax~p-I ® bpk-l + bpk- l ® 
ax~P-I. On the other hand we have 

d(~(Xj)) = d(xj ® 1 + 1 ® Xj ± Lxj ® x'j). 

Then applying the differential 

d(~(xj)) = d(xj) ® 1 + 1 ® d(xj) + L(d(xj) ® x'j ± xj ® d(x'j)) , 

that is, any term in this expression is of the form either d( a) ® b or b ® d( a) where 
a is an element of B. Observe, that any element of B can not have differential 
a ® xrp- l because these elements are product of the type a ® xp- l ® xtp , and by 
the Kudo condition these elements are non trivial classes in H(E). So, any of these 
expressions cannot have these elements and then we can write d(xj) = a I: bkX~, 
where the sum is taken over k ¢. p - l(p). 

To prove (2) in case that dimension of Xl is even consider 

~(Xj) = Xj ® 1 + 1 ® Xj + Xl ® Y + L Z ® y' + terms in different degrees 

where Z is a polynomial in the same degree as Xl that does not contain Xl. Hence, 

d(~(Xj)) = ab ® 1 + 1 ® ab + a ® y + terms in different degrees 

On the other hand, 

~(d(Xj)) = ~(a)~(b) = (a ® 1 + 1 ® a)(b ® 1 + 1 ® b + L b~ ® b%) = 
ab ® 1 + 1 ® ab + a ® b + terms in different degrees (5) 

comparing both expressions we see that b = y. Then ~(Xj) = X ® 1 + 1 ® X + Xl ® 
b + terms in different degrees . 

As xrj = 0 also ~(xrj) = (~(Xj))P"'j = O. This equality implies that the 

term (Xl ® b)P"' j = (Xl ® I: X~bk)P"'j = o. As we have shown k ¢. p - l(p) then 

this implies either xfj = 0 or (I: X~bk )P"'j = O. Observe that both possibilities 
give (Xj)P"' j = (Xj - I: l/(k + l)bkX~+I)p"'j = 0 and the lemma follows. 0 

This result asserts that, under the above conditions if an algebra is of type 
N i , i = 1,2 then we can choose a system of algebra generators such that just 
one generator has non trivial transgression. From here it is easy to compute the 
homology of differential Hopf algebras of type NI or N 2 . 
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Corollary 4.6. Let (E, d) of type N, that is Es,t S:! AS 0 B t , and let B be of finite 
type. Suppose d t=. 0. Then there exists a system of transgressive generators of B 
as an algebra such that, 

rv IFp[XI, ... ,Xr , ... ] [ ] 
B = p<>l p<>r 0 E YI,· ., , YTl . • • 

(xl , ... , Xr , ... ) 

and then 

• If E is of type N I , d(XI) = a 

( ) _ A IFp[xf,··· ,xr , ... ] [ ] [ p-l] 
-HE-(a)0 p<>l p<>r 0EYI,· .. ,Yr, ... 0Ea0x . 

(Xl , ... , Xr ... ) 
• If E is of type N2 , d(YI) = a 

A B 
- H(E) = (a) 0 (YI) . 

We deal now with the case of Hopf algebras of type K. 

Lemma 4.7. Let (E, d) be a differential H opf algebra of type K I, that is, E = 
A 0 B 0 E[c] where E*'o S:! A, EO,* S:! B, and d(c) = 0. Then d is internal on 
A0B. 

Proof. Let Xl be the generator in minimal degree of B with non trivial differential. 
We can assume that Xl E B because d is a derivation and c has trivial differential. 
Applying the DHA lemma d(XI) has to be primitive in E. Remember that P(E) = 
P(A) + P(B) + IFpc. As we are assuming the Kudo condition, c rt. Imd. So that 
d(XI) E P(A). 

Let us consider now b E B the next generator in minimal degree such that 
d(b) # 0. Suppose that the differential of this element has any factor on c. We can 
write, in these conditions, d( b) = '\c + /1, where ,\ and /1 are polynomials in A 0 B. 

On the one hand one has d(~(b)) = d(b)01+10d(b)+ L d(bU0b~+b~0d(b~). 
As b has been chosen in minimal degree with d(b) # 0, then d(bU and d(b~) are 
zero unless for the case in which b~ or b~ have any factor in Xl, that is, are of the 
form x~kbk' Then d(X~kbk) = nkx~k-labk that does not contain any factor on c. 
Then d(~(b)) could contains factors on c just in d(b) 0 1 + 10 d(b). 

On the other hand, 

~(d(b)) = ~('\c + /1) = ~('\)~(c) + ~(/1) = 

('\01+10'\+ L'\~0'\~)(C01+10c)+~(/1). (6) 

Then this expression cannot contains factors in c except in E*'o 0 EO,* but in 
particular in the expression (6) we have A 0 c. Then A = 0. Applying now this 
argument inductively over the degree of the following generators, one obtains that 
their differential cannot have any factor on c. D 

Corollary 4.8. Let (E S:! A 0 B 0 E[c], d) be a differential H opf algebra of type K 1· 

Then there is a system {Xl, ... , XTl ..• } of generators of B as an algebra, such 
that d(Xl) = a E pn(A) and d(xr) = 0, for r > 1. 
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Proof. Lemma 4.7 asserts that d is internal on A 0 B, thus the same argument 
used in 4.4 and 4.5 applies here. 0 

Now combining the above results 

Corollary 4.9. Let (E ~ A 0 B 0 E[e], dn ) be a differential Hopf algebra of type 
Ki with i = 0,1 and dn(e) = o. Assume that there are no primitive elements in 
pn(A), then d == O. 

The conditions of this lemma will hold for the differential algebras of type 
(E ~ A 0 B 0 E[e], d2n+d that will appear in the next sections. Thus the differ
ential will always be trivial. Hence we are going to concentrate our calculations on 
differential algebras of type K where d = d2n . 

Corollary 4.10. Let (E ~ A 0 B 0 E[c], d2n ) be a differential Hopf algebra of type 
K 1 , with B of finite type and e a primitive element. Suppose that the differential 
is non trivial on this page and that p2n(A) is 1-dimensional and does not contain 
zero divisors. Then there is a system of generators of B as an algebra such that 
we can write 

and such that d(Yl) = a and 

H( d) rv A lFp[xl, ... ,xr, · ··l [ 1 E[l 
E, = -( ) 0 "1 Or 0 E Y2, . .. , Yr, . .. 0 e. 

a (xf, ... , x~ , ... ) 

Finally we are going to compute the homology of differential Hopf algebras 
of type K 2 . We are going to assume that in this case there are no transgressive 
elements. This will be so if we assume that there are no primitives in certain 
dimensions. The reason for this assumption is that in the cases that we will study 
in the next section there will be no primitive elements in the dimensions of those 
pages of the SSS in which we kill the exterior generator produced by the Kudo 
transgression theorem. 

Proposition 4.11. Let (E ~ A 0 B 0 E[e], d) be a differential Hopf algebra of type 
K 2, with B of finite type and such that d(e) = a E ps+n(A). Suppose that ps+n(A) 
is 1-dimensional and a is not a zero divisor. Then if pn(A) = 0 we have 

1. d(B) = 0 
A 

2. H(E) ~ (a) 0 B . 

Proof. To prove (1) we consider an element of B with non trivial differential and 
show that its differential lies in A 0 B . Let b be the generator in minimal degree 
such that d(b) =I- o. We can write d(b) = jj +).e were). and jj belong to A 0 Band 
are polynomials in generators in degrees less than that of b. Then 

0= d2(b) = d(jj) + d()' 0 c) = ). 0 d(e) = ). 0 a 
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because the election of b as the generator of B in minimal degree with non trivial 
differential implies d(A) = d(J.L) = O. As a is not a zero divisor the expression 
a 0 A = 0 implies A = 0 and then d(b) E A 0 B. 

Now we will see that the differential of this element has to be a primitive 
element. The proof is the same as that of the DHA lemma in [10]. We write 
d(b) = Lakbk, then tl(d(b)) = d(tl(b)) = d(b01 + 10b+ Lb~ 0b%). As b is the 
generator in minimal degree of B with non trivial differential, d(bU and d(b%) are 
zero for all k and then we see that d(b) is primitive. 

Therefore d(b) E P(A 0 B) = P(A) + P(B), so d(b) E pn(A) = O. That is 
d(b) = O. 

The second part of the result is trivial once one knows (1). 0 

5. Serre spectral sequence for H-fibrations over B 2Z/p 

We are interested now in the behaviour of the Serre spectral sequence of an H
fibration F ----;> X ----;> B 2Z/p: 

E;'* ~ H* (B2Z/p; IFp) 0 H* (F; IFp) :=::} H* (X; IFp) (7) 

We will use in this section the Kudo transgression theorem that will assert 
that Kudo condition in the previous section is satisfied by our fibrations. We recall 
here the theorem: 

Theorem 5.1 ([11, 15]). Let 

F~E~B 
be a fibration with B a connected CW -complex. Let p be a prime. If p is odd, 
assume that B is simply connected. Consider the SSS 

E;,t = Hn(B; IFp) 0 Ht(F; IFp) ==} H*(E; IFp). 

Suppose that x E Ht(F; IFp) survives to E~:l and 

dt+l(x) = y E Eit: ,o = Ht+l(B;lFp). 

(a)Ifp = 2 and 0 ::; n::; t then Sqn(x) E Ht+n(F;1F2) survives to E~:';';l 
and 

dt+n+1 (Sqn(x)) = Sqn(y) E Eit:t:,o = Ht+n+l(B; 1F2 ) . 

(b) Ifp is odd and 0::; n::; t then pn(x) E H t+2n(p-l)(F;lFp) survives to 
E O,t+2n(p-l) d 

t+2n(p-l)+l an 

d (pn(x)) = pn(y) E E t+2n(p-l)+l,O = H t+2n(p-l)+1 (B' IF ) 
t+2n(p-l)+1 t+2n(p-l)+l ' p' 

1'0 < n < t then f3pn(x) E Ht+2n(p-l)+l(B'1F ) survives to EO,t+2n(p-l)+l 
J - - , P t+2n(p-l)+2 

and 
d (f3pn(x)) - f3pn(y) E E t+2n(p-l)+2,O - H t+2n(p-l)+2(B'1F ) t+2n(p-l)+2 - t+2n(p-l)+2 - , p' 
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If deg (x) = 2k is even then the class y ® xp- 1 E E~k+1 ,2k(p-l) survives to 
E 2k+1 ,2k(p-l) d 

2k(p-l)+1 an 

d2k(p-l)+1 (y ® xp- 1 ) = -/3pk(y) E E~Z(:':l~+1 = H 2kp+2(B; Fp) . 

We will call the last differential in the Theorem a Kudo differential or Kudo 
transgression. 

Our first step will be determine which are the possible differentials for the 
generators of the finite part of the fibre . By the results of Section 4 we can assume 
all the generators are transgressive. 

Lemma 5.2. Let X ~ Y ~ B 271jp be an H-fibration with H*(X; Fp) of finite 
type. Let x be a nilpotent generator of Heven(x; Fp). Then the transgression of x 
is trivial. 

Proof. We have a commutative diagram 

X > Y ---'» B271jp 

If r 
B71jp > * --..;» B 271jp 

By naturality of the SSS this diagram induces a map, denoted again by f, between 
the SSS of our fibration and that of the universal fibration, such that r(x) = 
r(f(x)) using r for both transgressions. As f factors via the Nil-localization of 
H*(X;Fp), we have that it is trivial over the finite part of H*(X;Fp) . Hence 
f(x) = 0 and then x has to transgress to an odd dimensional element representing 
the zero class in the corresponding page of the SSS of the universal fibration, 
that is, it is either a decomposable in H*(B271jp; Fp) or just zero (recall that the 
image of a Kudo differential lies in even dimension). Notice that by DHA lemma, 
the transgression of any element in H*(X;Fp) has to be a primitive element in 
the basis, that is in H*(B271jp; Fp), but there are no decomposable primitives in 
HOdd(B271jp;Fp). Hence the transgression r(x) of x has to be trivial. 0 

In the same way we obtain the transgressions of the generators of H* (X; F p) 
in odd degrees. 

Lemma 5.3. Let x be a generator of HOdd(X;Fp) in dimension bigger than 1 with 
non trivial transgression. Then its transgression r(x) is either 

{ 
(/3 pt:.n /3L )ps where s 2: 0 

or 
(L)pm where m > 0 . 

Proof. The same argument as in 5.2 shows that x restricts trivially to the cohomol
ogy of B71jp and therefore the transgression of x has to be an element representing 
the zero class in the corresponding page of the SSS associated to the universal fi
bration. Since the transgression of any element in H* (X; Fp) has to be a primitive 
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element by DHA lemma T(X) has to be either a decomposable primitive in even 
dimension or (3ptln (3£ because these elements are images of previous Kudo differ
entials in the SSS for the universal fibration . Remember that the decomposable 
primitives in even degrees H*(B2Zjp; IFp) are of one of the types described in the 
lemma. 0 

Theorem 5.4. Let X -.;> Y -.;> B 2Zjp be an H -fibration with X satisfying 
conditions (Fl), (F2) and (F3) . Then there is a system of transgressive generators 
for H*(X;IFp) 

*( . )rv [ ] IFp[zl,""zr, .. . ] [ ] H X,IFp =IFpxl"" , Xt ® p"'l p"'r ® EYl,' " ,Ym, ' " 
(Zl , .. . ,Zr ... ) 

such that the pages of the SSS are of one of the types No, N l , N2, Ko, Kl or K2 of 
the previous section. 

Proof. We will proceed by induction on s, the number of the page we are working. 
For s = 2, it is clear that E2 is of the type No or N2, the subindex being determined 
if d is trivial or not. Let Es be the first page of the SSS that the differential is 
non trivial, that is dk = 0 for k < s and then Ek is of type No for k < s . It could 
be E2 . Suppose first that s is even. That is, the page is of type N2 . Applying the 
results of 4.6, there is a system of generators for H* (X; IF p) such that Es+1 is once 
again of type N. 

Suppose now that there is a differential in an odd page such that there exists 
x with d(x) i- O. Using lemma 5.2, x, that lies in even degree in H*(X;lFp) , 
has to be a polynomial generator of H* (X; IF p). Then following 2.8, x has degree 
2pn+1 for some n and the page in which we are working is of type E2pn+l+1' The 
transgression of x has to be a primitive in this dimension, that is d( x) = ptln (3L. 

The Kudo transgression theorem implies that Kudo's condition holds: this 
means that the page is of type N l , and then we are under the hypothesis of 4.6. 
We can thus choose a system of transgressive generators for EO,* such that any 
generator different from x has trivial differential and then H(E) is of type K with 
c = ptln (3£ ® xP- l , the generator of the exterior algebra in the description. 

Claim 5.5. Let a = pl:l.n (3£. The class of a ® xp- l is primitive in the following 
pages of the SSS. 

Proof. Denote c = a®xp- l . ~(c) = ~(xf-l)~(a) = (xf- l ® 1 + 1 ® xf- l + L:X~ ® 
xnp - l (a ® 1 + 1 ® a) . The element a is a trivial class in Es+1 and this page just 
contains factors in a if they are of the form a ® Xf-l . Then those terms in the 
expression of ~(c) that do not contain a ® xf-l are zero in Es+1 so that 

~ (c) = ~ (a ® Xf-l) = (axf-l ® 1 + 1 ® axf-l) . 0 

Suppose then that we have obtained a page of type K via an odd transgression 
d2pn+l+1' Kudo's theorem implies that the class c = pl:l.n(3£ ® xp- l survives until 
E2(pn+2 _pn+l)+1 and in this page one has d2(pn+2 _pn+l)+ 1 ( C) = (3pl:l.n+l (3£. 

It is very important to remark the following facts: 
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1. H*(B271jp;lFp) does no contain primitive elements in odd dimension in 
the degrees between 2pn+1 + 2 and 2(pn+2 _ pn+1). 

2. There are no non trivial primitive elements in degree 2(pn+2 - pn+l) + 1 
in H*(B271jp;lFp) . 

By the first observation we can apply the corollaries 4.9 and 4.10 to ensure that 
all the pages with d(c) = 0 are again of type K, moreover it will be of type Ko for 
odd pages by the first observation. Notice that in those pages it is not possible to 
obtain a new exterior generator with bidegree (i,j), i,j -=f 0, because they appear 
when a generator applies over a primitive generator in odd degree. 

Finally the page E2(pn+Lpn+l)+1 is of type K2 and the hypothesis of 4.11 
hold, basically we need that there are no primitives in degree 2(pn+2 - pn+1 ) + 1. 
Then the following page, applying Lemma 4.11, is of type N, as it was at the 
beginning, and we start the process again. 0 

Remark 5.6. This theorem asserts that the exterior generators of pages in the SSS 
that are not on the axis, are not permanent cycles. They always disappear in a 
posterior page of the SSS. 

Notice that the transgression is determined by the primitive elements of 
H*(B271jp;lFp) and the whole SSS. 

More precisely, we can give, at this moment, the analogous result to [5, 6.3]. 

Proposition 5.7. For any mod pH-space X satisfying the conditions F1, F2 and 
F3 and any polynomial generator x E H* (X; IF p) , there exists a finite subquotient 
of H*(B271jp; IFp), M;, and an epimorphism of unstable A-modules: 

r : L,Q H* X ---,» M~ 

with r(x) = pAn (3t, where M; denotes either M!. or M!.I. Moreover, x could be 
completed to a system of generators where r(y) = 0 for any polynomial generators 
y -=f x. 

Proof. Given x E Heven(X;lFp) a polynomial generator of H*(X;lFp), we can 
construct, following Section 2, H-fibrations B71jp ---,> X ---,> E ---,> B 271jp 
such that the map B71jp ~ X detects x in cohomology. We are going to compute 
the SSS for the fibration X ---';> E ---';> B 271jp. 

By naturality of the SSS one has that x is transgressive with transgression 
pAn {3t (look at the proof of 5.4) . Then the p-powers of this element, x ps , have 
transgression pAn+s {3t, for all s, which are odd primitives in bigger dimensions. 
Up to a change of basis for H* (X; IF p), those are the only elements in Heven (X; IF p) 
with non trivial transgression. On the other hand, Kudo's transgression theorem 
determines that the transgressions, (that are all non trivial!) of the elements of 
type pAn+s {3t®Xps - 1 are {3pAn+s+1 (3t. Moreover the action of the Steenrod algebra 
determines other possible different transgressions codified by one of the ideals I n (s) 
of the section 3. 

Only elements in Hodd(X; IFp) could have non trivial transgression to a de
composable primitive of H*(B271jp;lFp), as we said in Lemma 5.3, but always 
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in a compatible way with the transgression of Kudo. That is, if an element y is 
transgressive, then for any Steenrod operation (), ()y transgresses to ()(TY). This 
determines an ideal of primitive elements of H*(B 27L./Pi'Fp) that are transgres
sions of elements in H*(Xi I8'p). This ideal has to be compatible with the fact that 
pAn+s{Jt and (JpAn+s+1 {Jt, for s 2: 0 are transgressions determined by T(X). 

This compatibility was studied in section 3 and is codified by the modules 
M~, • = I, II. The cases. = III, IV cannot occur since the primitive element pAn (Jt 
does not appear. 0 

Lemma 5.S. Let X ~ Y ~ B 27L./p be an H-fibration where X satisfies con
ditions (Fl), (F2) and (F3). Then either the fibration is trivial or the PGA-ideal 
1= kerp* is of type Is, lIs or H*(B27L./Pi I8'p). 

Proof. According to Proposition 3.8, the PGA-ideals of H*(B27L./Pi I8'p) are either 
0, (t )pm , H* (B27L./ Pi 'F p) or of one of the types I, II, III or IV. Assume that I = ker p* 
is a PGA-ideal of type III or IV , (L)pm or just zero. These ideals do not contain 
primitive generators in odd dimensions so polynomial generators have to transgress 

trivially. This implies that they map trivially along B7L./p ~ F. Then, by 2.9 
this map is trivial in cohomology and therefore null-homotopic [12]. Now we can 
show applying Zabrodsky's lemma that E ~ F x B7L./p (see [5, lemma 6.1]). 0 

Once again the result obtained suggests the analogous definition to that in
troduced in [5, def 6.2] 

Definition 5.9. A non trivial H -fibration is said to be of type I (resp. II) if the 
transgression maps, in an epimorphic way, to a module of type I (resp. II). 

6. Convergence of the SSS 

Now we study the convergence of SSS of fibrations either of type I or II. The 
results obtained are the p analogous to those obtained in [5]. Most of them were 
valid by just changing 2 by p in the proofs. Notice that when one has described the 
transgression map and the different pages of the SSS the convergence is determined 
by results independent on the prime in where we are working. 

Consider a non trivial H-fibration of type I 

X ~ Y ~ B 27L./p 

where X is I-connected and H*(Xi I8'p) of finite type. 
There is a system of transgressive generators such that 

H *(X.1G' ) ~ 'Fp[Xl, ... ,XT)Xr+l,··· ,xs , •.. ] E[ ] 
, ll.'p - pm, pms ® Yo, ... , Ym, ... 

(Xr +1 , ... , Xs , ... ) 

and transgression 
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where 

M~ ~ (pt::.n (3i, (3pt::.n (3i, ((3pt::.n-l (3i )pml , ... , ((3p1 (3i )pmn )lFp • 

We can suppose 

i(Xl) = pt::.n(3i, i(yo) = (3pt::.n(3i, 

i(yt) = ((3pt::.n-l (3i)pml , ... J(Yn) = ((3Pt::.o (3i )pmn 

and i trivial otherwise. These formulas determine the transgression and then the 
SSS. Eoo in our SSS is Eoo ~ Aoo ® Boo where 

Aoo ~ IFp[i]® N ' , 

N' ~ IFp[(3Pt::.o (3i, . . . , (3pt::.n-l (3i] ® A[Pt::.-l (3i, . .. , pt::.n - l (3i] 
(((3Pt::.O(3i)pmn, ... , ((3Pt::. n- l(3i)pml ) 

and 

Boo ~ IFp[x2"" ,xr]® N", 

N,,~lFp[xr+l""'Xs, .. . ] A[ ] 
- ( pml pmn) ® Yn+l,··· ,Yrn,'" . 

x r +1 ,··· , Xn , ... 

With this notation we have: 

Proposition 6.1. For a fibration of type I and i-connected fiber 
1. H*(Y; IFp) ~ IFp[x~, x~, ... , x~]® N where x~ = h*(i) and g*(xD = Xi if 

i 2: 2. 
2. N is a nilpotent Hopf algebra of finite type that fits in a exact sequence of 

Hopf algebras 
h* * 

1 -----;> N ' -----;> N ~ N" -----;> 1. 

For type II fibrations one obtains the correspondent version. Consider namely 
an H-fibration of type II. We can write 

H*(X'1F ) ~ IFp[Xl,'" ,XnXr+l,'" ,xs, . . . ] E[ ] , p - pml pms ® Yo,··· ,Yrn,'" , 
(Xr+1 ,··· ,Xs , ... ) 

where the generators form a good system of transgressive generators and the trans
gression is determined by 

i: EQH*(X;IFp) ~> M~I 

where 

M~I ~ (pt::.n (3i, (3pt::.n (3i, ((3pt::.n-l (3i )pml , ... , ((3pl (3i)pmn , ipm )lFp 

in such a way that for this system of generators 

i(yo) = (3pt::.n (3i, i(Yl) = ((3pt::.n - l (3i )pml , ... , 

i(Yn) = ((3Pt::.o (3i )pmn, i(Yn+l) = ipm , 

i being trivial over all other generators. 
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and 

N il", IFp[Xr+I,'" ,xs , .. ·] E[ ] 
= pm} pmn ® Yn+l,···, Ym,' " 

(Xr +l ,··· ,Xn , ... ) 

We obtain now 

Proposition 6.2. For a fibration of type II with 1-connected fiber 

1. H*(Y;lFp)~lFp[x~, ... ,x~]®N whereg*(xD=Xi ifi?2. 
2. N is a nilpotent Hopf algebra that fits in an exact sequence of Hopf algebras 

h' • 
1 ---;> N ' ---;> N ~ N" ---;> 1 . 

In this case N has a new 2-dimensional nilpotent class. 

7. The results 
Now we apply the iterative process of [5, section 8], obtaining the following result. 

Theorem 7.1. Let X be a 1-connected mod pH-space that satisfies conditions (FI), 
(F2) and (F3) . Then 

1. There is a sequence of mod pH-spaces 

X = Xo ---;> Xl ---;> ... ---;> Xn = F(X) 

where all Xi satisfy also conditions (FI), (F2) and (F3), the depth of Xi 
is the depth of X i- l minus one and Xn = F(X) is LB'l,/p-local. 

2. The maps 
Xi ---;> Xi+l 

are principal H -fibrations with fibre either (CpOO); or B71/pk for some 
k? 1. 

3. The composition X ---;> F(X) is also a principal fibration with fibre the 
product of the fibres of the maps Xi ---;> Xi+!' 

Assume furthermore that H*(X;lFp) is noetherian, then 

4. As algebras, H*(X; IFp) ~ P ® N, where P is a polynomial algebra and N 
is a 2-connected finite Hopf algebra. 

5. In the above sequence of mod pH-spaces 

X = Xo ---;> Xl ---;> ... ---;> Xn = F(X) 

all Xi have noetherian mod p cohomology. 
6. Xn = F(X) is a mod p finite H -space. 
7. For all 0 ~ i ~ n the fibrations involved in the construction of 

Xi ---;> Xi+! 

are of type I and Xi ~ Xi+! are principal H -fibrations with fibre 
(CpOO); . 
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8. The composition X ~ F(X) is also a principal fibration: 

((CpOO);r ~ X ~ F(X). 

Proof. [Sketch proof] The idea of the proof given in [5] is the following. Given a 
I-connected H-space satisfying the finiteness conditions one can detect one of the 
polynomial generators with a map B7L./p ~ X . We construct the H-space E I , 

Borel construction of this map, and using the results of the previous sections we 
compute its cohomology. It will depend just on the module M~ that classifies the 
fibration. If the module is of type M~l one obtains that EI is an H-space with one 
polynomial generator less than the original X but with a new nilpotent class in 
dimension 2. If the fibration is of type I, one obtains a new H-space with the same 
number of generators as X but with the original polynomial generator detected 
replaced by one in dimension 2. We iterate this process with the new H-space 
stopping if the fibration obtained is of type II in any step. If the process is either 
finite or infinite one obtains at the end, that the limit space, hocolim E k , is an 
H-space ([5, proposition 8.3]) satisfying again the finiteness conditions but with 
one polynomial generator less. We call this space X I and repeat this process now 
with Xl' The fibre of the map X ~ Xl will be (CpOO); if the process has 
been infinite and B7L./pk if we were done in k steps. When we do that n-times, the 
number of polynomial generators of the original H -space X, we will have obtained 
an H-space Xn that satisfies again the finiteness conditions but without polynomial 
generators. That is Xn is a I -connected mod pH-space with H*(Xn; IFp) nilpotent 
and QH*(Xn; IFp) locally finite as A-module, hence map(B7L./p, Xn) ~ X n. In 
other words, Xn satisfies the Sullivan conjecture or equivalently Xn is Lm:/p-Iocal, 
that is F(Xn) ~ Xn where F is the functor defined in the introduction. 

In case one assumes H*(X; IFp) noetherian, the final H-space F(X) is a finite 
simply connected H-space. If any of the fibrations involved in the construction was 
of type II we have added a nilpotent class in dimension 2, which survives during 
all the process. So F(X) is I-connected but not 2-connected. This is impossible 
[8, Theorem 6.11]. Thus all fibrations have to be of type I and the the fibres of 
Xi ~ Xi+! are always (Cpoo);. 0 

Proof. [Proof of Theorem 1.1] It follows from Theorem 7.1(7) for the case in which 
H* (X; IF p) is noetherian. 0 

Proof. [Proof of Theorem 1.3] In case that the H-space satisfies conditions (Fl), 
(F2) and (F3) but the cohomology is not necessary noetherian the fibrations of 
the construction of the spaces Xi could be of type II . This is possible because if the 
cohomology of our H-space X is not finitely generated the final H-space F(X) in 
theorem 7.1 will be nilpotent but not finite and then F(X) will be not finite. Then 
[8, Theorem 6.11] does not applies and we cannot conclude that the fibration is of 
type I (see [5]). If any of the fibrations involved in the construction of Xi are of 
type II, the process is finite and the fibre is not (CpOO); but B7L./pk. The theorem 
follows applying 7.1(2) and (3). 0 
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8. Appendix 

We are going to give here a graphic with the relations between the primitive 
generators of H*(B27L,jPiJFp ) that is very useful to understand the ideals described 
in section 3. 

Firstly for a primitive generator of type pt:.n /3t one has 

I p~nfJL I fJ pi 
:> fJP~n fJL --->- (fJP~n-l fJL Y 

pp7/ pp7/ lpp 

p~n+l fJL fJ :> fJP~n+l fJL (fJP~n-2 fJL y2 

p,'+' 1 F"" 1 lpp2 

p~n+2fJL fJ :> fJP~n+2 fJL 

ppn+31 ppn+31 k" 
(fJpi fJL )pn 

p,'+' j 
fJ 

F"+'j 
p~n+k fJL :> fJP~n+k fJL 

ppn+k+l 1 ppn+k+ 1 l 

while for a primitive generator of type (/3Pt:.n /3t )pS we will have 

pn+s+k 
p :> (fJP~n+k fJL)pS . .. 
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Composition methods 
in the homotopy groups of ring spectra 

Brayton Gray 

1. 

Progress in calculating the homotopy groups of spheres has seen two major break
throughs. The first was Toda's work, culminating in his book [11 J in which the EHP 
sequences of James and Whitehead were used inductively; "composition methods" 
were used to construct elements and evaluate homomorphisms. The second was the 
Adams spectral sequence. Each method has advantages and disadvantages. Toda's 
method has the advantage that unstable homotopy groups are calculated along 
with stable groups. It has the disadvantage that it applies only to spheres and in 
particular, naturality under maps between spaces cannot be applied. The Adams 
method has the advantage that much of the bookkeeping work is accomplished in 
advance during the calculation of the Ext groups. The disadvantage that it does 
not calculate unstable groups has been eliminated, for certain nice spaces, by the 
work of [3J. This work implies that for certain spaces, the unstable homotopy is as 
accessible as the stable homotopy. It is the purpose of this work to examine how, 
in certain cases, the methods of Toda can be used for spaces other than spheres. 
We will begin by summarizing the methods used by Toda. We will discuss the 
possibility of using these methods for other spectra and work out the example of 
the Moore space spectrum Sa Upr e1 for p > 3. 

2. 

The main tool Toda used was the EHP sequence. Localized at 2, this is a long 
exact sequence for each n ~ 1 

_ 7rr+2(s2n+l) -!'-

7rr(sn) ~ 7rr+1(sn+l) --.!!...... 7rr+1(s2n+l) -!'- 7rr_l(sn) -

By induction first on the stem a = r - n and then on n, the determination of 
7rr +l (sn+l) above is done when the other 4 groups are known. Compositions are 
used, and formulas for P and H on compositions allow one to calculate the groups 
involved. As an example, we cite the following formulas: 
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Proposition 2.1. 

a) H(a 0 E(3) = H(a) 0 E(3 . 
b) H(Ea 0 (3) = E(a 1\ a) 0 H((3). 
c) P(a 0 E2(3) = P(a) 0 (3. 

Proposition 2.2 (Barratt-Hilton formula). If a E 7l"r(sn) and (3 E 1I"s(sm) then 
Ema 0 Er(3 = (_l)(r-n)(s-m)En(3 0 ESa. (In other words, on sn+m, 
a(3 = (_l)(r-n)(s-m) (3a.) 

We will demonstrate how to calculate the 4 stem with these methods. We 
first need knowledge of previous stems. 

Proposition 2.3. 

group 

Z/2 

Z/2, n = 2 

Z/4, n=3 

generators relations 

'f} 

'f} 

W 

2'f} 

ZEBZ/4, n=4 v,w 

Z/8, n ~ 5 v 2v=w. 

Now the Hopf map 'f}: S3 - S2 induces an isomorphism in homotopy: 

1I"r(S3) --=-.. 1I"r(S2) 

when r > 2, so 1I"6(S2) ~ Z/4 generated by the composition 'f}W. The map 
p 

1I"5(S5) - 1I"3(S2) generates the kernel of E so P(i) = 2'f}. We wish to eval-
uate 

1I"8(S5) ~ 1I"6(S2) 

1I"8(S5) is generated by v which is not a double suspension. However 2v = w is a 
double suspension so we apply 2.1 c) 

P(2v) = P(w) = P(i) 0 W = 2'f} 0 w = 'f} 0 2i 0 W = 'f} 0 w 0 2i = 2('f}w) 

since 2i ow = W 0 2i stably by 2.2 and hence on S3 since 1I"6(S3) - 1I"6+n(S3+n) 
is a monomorphism. But P(2v) = 2('f}w) implies that P(v) = ±'f}w since P is a 
homomorphism. It follows that E('f}w) = 0 and 0 - 1I"7(S3) - 1I"7(S5) is 
exact. We can define two compositions in 1I"7(S3): W'f} and 'f}V. We apply 2.1 (a) 
in the first case to get H(w'f}) = H(w) O'f} = 'f}2 and 2.1 (b) in the second case 
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to get H (1] 0 v) = 1]2 0 H (v) = 1]2. Thus W1] = 1]V generates 71"7 (S3) and has 
order 2. Since v has Hopf invariant 1, the EHP sequence splits when n = 3 and 
7I"n+1(S4) ~ 7I"n(S3) EEl 7I"n+1(S7); in particular 7I"8(S4) ~ Z/2 EEl Z/2 generated by 
W1] = 1]V and V1]. By 2.2, on S5, W1] = 1]W = 0, so in the sequence 

7I"1O(S9) ~ 7I"8(S4) ~ 7I"9(S5) ~ 7I"9(S9) 

P(1]) = w1]. Since 7I"9(S5) is finite, H = 0 and 7I"9(S5) = Z/2 generated by V1]. By 
2.2, on S6 V1] = 1]V = W1] = 0, so E(7I"9(S5)) = O. Furthermore, 7I"lO(Sl1) = 0 so 
7I"1O(S6) = 0 and 7I"n+4(sn) = 0 for n ~ 6. The interested reader will find that the 
calculation of the 5 stem is just as easy. There is one other useful result which we 
did not need here. 

Proposition 2.4 (Barratt-Toda formula). If a E 7I"r(sn) and f3 E 7I"s(sm), the dif
ference 

[a, f3] = E m- 1a 0 Er - 1 f3 - (_I)(r-n)(s-m) E n- 1 f3 0 E s- 1a: sr+s-1 __ sm+n-1 

is equal to P(EH(a) /\H(f3)). 

Using this one can see, for example, that 

V1] = 1]V + V1] = P(L) on S5 

W1] = W1] + 1]W = P(1]) on S4(since H(w) = 1]). 

This method would continue very successfully if the homotopy groups of 
spheres were finitely generated. They clearly are not and one soon runs out of 
compositions. As a partial remedy to this Toda defined "secondary compositions" , 
or what are commonly called Toda brackets and proved formulas similar to 2.1 for 
these operations. 

When localized at p > 2, there are two types of EHP sequences. Define Sn 
by the formula 

{
S2k+1 ifn=2k+l 

Sn = S2k = Jp- 1 (S2k) if n = 2k 

where Jm is the mth stage of the James construction. 
Then the EHP sequences are defined by fibrations: 

S2n ~ nS2n+1 ~ nS2np+1 
E H 

S2n-1 -- nS2n -- nS2np- 1 
where Hp is the pth James Hopf invariant and H is the Toda-Hopf invariant ([7], 
[11]). Note that in case p = 2, these both degenerate into a single fibration 

H2 
Sn -- nSn+1 -- nS2n+1 

and Sn = sn. Composition methods have been applied for p > 2 [6] with similar 
success. Proposition 2.1 generalizes directly while 2.2 requires some consideration. 
We define a modified suspension a as follows: if f: sr -- Sn let us write aU) 
for the adjoint of Eo f: sr -- nSn+1. We will write SX = X /\ Sl for the 
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classical suspension of X and if f: X - Y, we write Sf: SX - SY for the 
suspension of f. 

Corresponding to Proposition 2.2 (at p = 2) we have 

Theorem 2.5 (p local Barratt-Hilton Theorem). Suppose that a E 7rr (Sn) and f3 E 

7rs (Sm). Then 

in 7r*(Sn+m). 

Proof. We consider 3 cases: 

a) if n = 2k+ 1 and m = 2f+ 1, the formula holds on S2k+2l+2; since the sus
pension E: 7rr+s (S2k+2l+1) -- 7rr +s H (S2k+2f+2) is a monomorphism, 
this formula holds on S2k+2l+1 = Sm+n-l and hence on Sm+n 

b) if n = 2k and m = 2f + 1, apply case a) to eTa and f3 to demonstrate the 
formula on S2k+2l+1 = Sm+n 

c) if n = 2k and m = 2f, new arguments are needed. 

Let L: s2n - s2n be the inclusion. To discuss case c) we rely on 

Lemma 2.6. Suppose g: sr -- S2n. Then the diagram: 

srH ~ s§2n 

~ ISL 
s2nH 

commutes up to homotopy. 

Proof. Let Kn = s2n-l UWn e2np- 2 be the 2np- 2 skeleton of 02s2nH. According 
to [7], [10], there is a map T SKn -- S2n such that Or has a right homotopy 
inverse. In particular, there is a lifting of 9 to a map g': sr - SKn 

sr g. s2n 

~l~ 
SKn · 

Write cr(r): S2Kn -- s2nH for the adjoint of EOT SKn -- os2nH. We 
now show that 

S2Kn ~ s§2n 

~ ISL 
s2n+l 

commutes up to homotopy. The Lemma then follows by combining these two dia
grams. 0 
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Now S S2n ~ s2n+1 V s4n+ 1 V· .. V S2(p-l )n+1; let Hi: S2n ___ S:,;: ___ S:,;:i 

be the restriction for the ith James-Hopf invariant for 1 ::::; i ::::; p - 1. Combining, 
we get a map: 

p-l 

(): §2n _ II S;;;i ~ n(s2n+1 x ... X s2n(p-l)+1) _ n(s§2n), 

i=l 

where the last map is the splitting map from the loops on a product to the loops 
on a wedge. Since nHi has order prime to p for 1 < i ::::; p - 1, 

is null homotopic if 1 < i ::::; p - 1. Therefore () 0 'Y factors through ns2n+l. Since 
the adjoint of () is an equivalence, S'Y factors through s2n+l. This factorization 
can be identified as (Tb) by applying the inclusion S2n _ ns2n+1 and taking 
adjoints. 

To finish the proof of 2.5, choose a map J1,: S2k /\ S2l -- S2k+2f which is 
degree 1 in dimension 2k + 2£. Then consider the diagram: 

where the lemma is applied in 4 of the 6 triangular regions. If we identify (Tt (f) 
with 1/\ /, we introduce signs (_I)(s-1)(r-2k) and (_I)(r-2k)(21-1) which combine 
to give (-Its. 0 
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3. 

The utility of the EHP method applies when what you are studying is not a single 
space, but a sequence of spaces {Xn} together with a suspension homomorphism 

7rr (Xn) ~ 7rr+l(Xn+1).1f (J is induced by a map Xn ~ nXn+l, what we are 
in fact dealing with is a spectrum X = {Xn,en }. The utility of an EHP approach 
depends on the extent to which one has control over the fiber of en: 

From this point of view, it is clear that one can form two stably equivalent spectra 
{Xn, Xn} ~ {Yn , Yn} with the spaces Xn and Yn vastly different. We think of the 
sequence of spaces {Xn} as an unstable development of the spectrum X. We seek 
a favorable unstable development of X. Ideally, one might seek an unstable devel
opment in which Fn = nk(n) Xi(n) for some functions k(n), £(n). This is explored 
in [9] and it appears formally that the spectra V(m) of Smith and Toda are good 
candidates for this. In particular, V(-1) = SO and V(O) = SO Up e1 for p > 2. 
Considerable attention to this spectrum and the related spectra SO Upr e1 will be 
deferred to section 4. 

To apply "composition methods," unstable classes need to be composed. This 
suggests a ring structure in 7r~(X) which is associative (composition is associative) 
and commutative (if we wish to have a Barratt-Hilton formula). Thus one might 
begin by considering a homotopy associative homotopy commutative ring spectrum 
X. For Toda brackets we may need to consider higher homotopies of associativity 
and commutativity. However, in order to have a successful unstable composition 
theory it is first necessary to develop a stable composition theory. To do this we 
will find certain self maps of a ring spectrum X which correspond to elements in 
the stable homotopy of X in such a way that the product in 7r*X corresponds to 
composition. 

Suppose now that X is a ring spectrum. Using the multiplication 

X 1\ X -.!!:.... X we can think of X as an "X-module spectrum". 

Definition 3.1. Call a map ¢>: sr X -- X right modular if there is a commutative 
diagram: 

srx I\X ~ X I\X 

srp 1 lp 
srx <I> .X . 

Note that the composition of modular maps is modular. Write Modr(X) 
for the group of homotopy classes of right modular maps p : sr X-X. Then 
{Modr(X)} is a graded ring with unit under composition. 

Theorem 3.2. If X is homotopy associative, 7r~(X) ~ Mo~(X) as graded rings. 
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Proof. Define F: 7f~(X) - Modr(X) by F(o:) = a where (} is the composition: 

srX~XI\X~X 

to check modularity, consider the diagram: 

srx I\X ~ X I\X I\X ~ X I\X 

sr~l lA~l l~ 
sr X aAl. X 1\ X ~ • X. 

Now define G: Modr(X) -- 7f~(X) by G(¢) = ¢ 0 sr~ 

Clearly G 0 F = I d. To see that FoG = I d, consider the diagram: 

sr = sr 1\ SO I\X ~ sr I\X I\X ~ X I\X 

~ );" · .f 
where (F 0 G)(¢) is the upper right hand composite. Furthermore, F is a ring 
homomorphism. To see this consider the following diagram where 0: E 7f~ (X) and 
(3 E 7f~(X). The top right hand composition represents F(o: 0 (3) while the lower 
left hand composition represents F(o:) 0 F((3) 

aA{3Al 
sr 1\ SS 1\ X ----__+. X 1\ X 1\ X 

~ 71~Al 
XI\X XI\X 

7 _ ~1~ 
srX _____ a ____ •• X. 

This completes the proof. o 

Now suppose in addition that X is homotopy commutative. Then by 3.2, 
composition is graded commutative, i.e.; 

aoSrjjrv (-lrsjjoSsa. 

4. 

In this section we will develop the special case of the Moore space spectrum 
SOUpr e1 , p > 2. By the results of [9], this spectrum can be represented as {T m, an}, 
where T2n = S2n+l{pr}, the fiber of the degree pr map on S2n+l and T2n- 1 is a 
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space constructed by Anick [1] and developed further in [2] and [12] . T2n- 1 is the 
total space in a fibration 

s2n-l _ T2n- 1 _ ns2n+ 1 

where the connecting map n2s2n+1 --+- s2n-l has degree pro We will write 
Tn(pr) when we wish to keep the exponent in mind. There are EHP fibrations:* 

E H 
T2n- 1 - nT2n - BWn 

E H 
T2n - nT2n+1 - BWn+1 · 

The spaces T m are a homotopically simple unstable representation of the Moore 
space spectrum and we seek an unstable version of modularity. To do this we 

need to find a functorial extension of a map sm ~ Tn to a "modular map" 
a 

Tm-Tn· 
This is accomplished in 2 steps: 

a) extend 0: to a map Pm = sm Upr em +1 ~ Tn so that it is "modular" in 
the appropriate sense, 

b) extend 0:' to (} so that it is an H map. 

The idea behind point a) is to use the fact that pr 7r * (Tn) = 0 to define an extension. 
This has some technical complexity. Part b) is easily obtained from 

Theorem 4.1 ([9, 2, 12]). a) Tn is a Homotopy commutative and homotopy 
associative H space and pr 0 7r*(Tn) = O. 

b) Let 0:' : Pm -- X where X is a homotopy commutative and homotopy 
associative H space and pr7rr(X) = O. Then there is a unique H map 
(}: T m - X extending 0:'. 

Proof. The case n even was worked out in [9] and the existence but not the 
uniqueness when n is odd appear in [2]. The uniqueness and H property in case n 
is odd appears in [12]. 0 

Proposition 4.2. Given an H map </>: Tm - Tn, there is a unique H map 
a</>: Tm+l - Tn+1 such that the diagram: 

is homotopy commutative . 

• Note that it is an open conjecture [8] that BW n = DT2np-l (p) making these sequences formally 
similar to those in section 2. 
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Proof. There is a unique H extension of the composite: 

'2:.</> 

SPm -- STm -- STn -- Tn+l 

to an H map a(¢»: Tm+l -- Tn+l' It then follows that the diagram in question 
commutes when restricted to Pro Since all maps are H maps, it commutes to 
homotopy by 4.1 b). 0 

Definition 4.3. Suppose X, Y, Z are H spaces, and f: X 1\ Y -- Z. We will call 
f an H map in two variables (or an H map for short) if the adjoints of f: 

x--zY 
Y __ ZX 

are H maps with the induced H space structure on the function space. 

Proposition 4.4. There is a unique H map in two variables 

extending the composition Pr 1\ Ps ~ Pr+s ---':....... Tr+s where 7r.(1 ® 1) = 1 in 
homology. 

Proof. The adjoint map Pr -- Tt'ts has a unique extension to an H map by 

4.1. This gives a map Tr -- Tt'ts and hence Tr 1\ Ps -- Tr+s. The extension 
to a map Tr 1\ Ts -- Tr+s is similar. 

Clearly we have commutative diagrams: 

Tr 1\ Ts 

~ 
T (-IrS Tr+s 

/ 
Ts 1\ Tr 

and a similar associativity diagram if p > 3 or r > 1. o 

Given spaces A, B, we will often encounter the map A 1\ rw ~ O(A 1\ B) 
which is adjoint to the evaluation map. e is an H map in the second variable. In 
particular we can then extend 
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so that e' is an H map in two variables, and 
e' 

Tr /\ OTs -- OTr+s 

lAE 1 1 E 

fL 
Tr /\ Ts- l -- Tr+s- l 

commutes up to homotopy, and similarly in the other variable. 
In order to define modularity, we require the following. 

Lemma 4.5. There is a map /':: PI /\ OTn -- Tn so that the diagram: 

ev 

commutes up to homotopy. 

Proof. Since the identity map of Tn has order p, there is a lifting Tn -- Tn {p} 
where Tn{P} is the fiber of the pth power map: 

. . . -- Tn{P} -- Tn 2.... Tn. 

However OTn{P} is homotopy equivalent to the fiber of the map OTn - OTn 
induced by the degree p map on Sl; Le., OTn{P} ~ Ttl as H spaces. It follows 
that there is an H map /':': OTn -- Ttl with the composite 

OT ...i.... TPl __ T Sl ,..., OT n n n - n 

homotopic to the identity. Furthermore, the restriction 

T E 0T " TPl n-l ~ .lG n ---+-- n 

is an H map and hence is the adjoint to W PI /\ Tn- l - Tn. Taking adjoints 
yields the lemma. 0 

Our next step is to define, for each homotopy class 0: E 11"r{Tn) an H map 

Tr ~ Tn extending 0:. It suffices to construct a map Pr -- Tn and this is 
accomplished as the composition: 

n P sr-l lAd' P °T ' T 
Tr = 1/\ -- 1/\ l' n -- n 

a is then the unique H extension. Consequently we have defined a homomorphism 

F,: ·n"r{Tn) -- [Tn TnlH 

by F,(o:) = a. 
Clearly we have a left inverse 

G: [Tr,TnlH -- 1Tr(Tn) 
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by restriction. We wish to determine the image of F, as the maps which are in 
some sense "modular." We will call a map ¢ k-modular if the diagram: 

1/\¢ 
TkATr - TkATn 

ILl a k (¢) llL 
Tk+r • Tk+n 

commutes. Clearly ¢ is k-modular iff the composition dk (¢): 

Y' 1/\¢ IL 
Pk+r+1 - Pk APr - Pk ATr - Pk ATn - Tk+n 

is null homotopic. Now a(dk (¢)) = dk +1 (¢), so if ¢ is k-modular, it is (k + 1)
modular. 

Strong Conjecture 4.6. There is a choice of E so that the diagram: 
1/\, 

PI A PI A nTn ------..... PI A Tn 

lL/\ll llL 
ev IL 

P2 AnTn - P1ATn - Tn+1 

commutes up to homotopy. 

Proposition 4.7. The strong conjecture implies that 0; is k-modular for each k 2: l. 

Proof. We prove that 0; is I-modular by factoring d1 (0;) 

Y' 1M. IL 
Pr+2 • PI APr • PI A Tn • Tn+1 

1 ! 1 
P3 A sr-l -+ PI A PI A sr-1 ~ PI A PI A nTn 

~ llL/\l 1/\0* llL/\l 
P2 A sr-1 • P2 A nTn - PI A Tn . 0 

By including Sl A PI A nTn into PI A PI A OTn, we see that the strong 
conjecture implies the 

Weak Conjecture 4.8. There is a choice of E so that the diagram: 

commutes up to homotopy. 

Proposition 4.9. The weak conjecture implies that 0; is modular for each k 2: 2. 



142 B. Gray 

Proof. We factor d2(Q): 

V' 11\& I'" 
Pr+3 - P2 /\ Pr ----. P2 /\ Tn ---------'-------...... Tn+2 

I 
11\ E" 

P1 /\ STn • P1 /\ Tn+1 11\< 

)lI\S< r 1'"1\1 

p. S r 1 11\,," '" S ro ev P P ,.,., 2/\ P1 /\ - -- P2 /\ P1 /\ OTn -- P1/\ P1 /\ .. Tn -- 1/\ 1/\ 'n 

I'"~ 
o 

We call cp O-modular if the composition do(cp) : 

is null homotopic. It is easy to see that the weak conjecture implies that if cp is 
O-modular, it is I-modular and that if cp is O-modular and G(cp) = * then cp rv *. If 
E can be chosen so that Q is O-modular, there is then an isomorphism between the 
O-modular H maps Tr -- Tn and 11"r{Tn). An even more complicated conjecture 
about E will imply that Q is always O-modular. We will not pursue this line. 

Proposition 4.10. The weak conjecture holds when n is even. 

Proof. In this case we have an H-fibration sequence: 

we will prove that such an E exists by showing that the composition 

is null homotopic. We begin by considering the diagram: 

PI A T2n _____ 1'" _______ • T2n+I 

1 1 

since both compositions are H maps of the second variable, they are homotopic 
iff they are homotopic when restricted to PI A P2n . This is clear. We now form a 
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diagram which contains the loops on this diagram: 

PI /\ nT2n - n(PI /\ T2n ) • nT2n+l 

~ 

PI /\ s2n+2 P2 _ PI /\ s2n+3 P3 ~ n 2s2n+3 

~ / 
n 2s2n+2. 

However the composition ns2n+2 _ n 2s 2n+3 - BWn+l is null homotopic 
since ns2n+2 _ n 2s 2n+3 _ BWn+1 x s4n+3 is a fibration sequence [8]. This 
completes the proof. 0 

Theorem 4.11 (Barratt-Hilton Theorem). Suppose that a: Tr --_. Tn and 
(3: Ts - T mare k modular where n, m ~ k. Then 

am(a) 0 ar ((3) = (_l)(n-r)(m-s)an ((3)a S (a): Tr+s - Tm+n. 

Proof. Exactly as in the case of spheres, we have (a /\ 1) 0 (1 /\ (3) = a /\ (3 = 
(1/\ (3) 0 (a /\ 1). 

Now we also have: 

for each k, while: 

It follows that the indicated equation holds when preceded by 
p,: Tr /\ Ts --+ Tr+s. However, the inclusion of Pr+s into Tr+s factors through p" 

so the equation holds when restricted to Pr +s ' Since both composites are H maps, 
they are homotopic by the universal property. 0 
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Appendix A. 

So far we have discussed composition behavior which mimics the behavior of the 
sphere spectrum localized at 2. Here we will discuss compositions in the sphere 
spectrum localized at a prime p > 2. Recall that we have: 

{ 
S2k+1 if e = 2k + 1 

Se = §2k = 'Jp - 1 (S2k) , if e = 2k. 

The fact that half of the spaces in this spectrum are not spheres presents a difficulty 
in forming compositions. The question we deal with first is this: is there a sensible 
way of forming a "composite" of maps f: sr - §2n and g: s2n - Se to 
obtain a map 9 * f: sr - Se? If we allow ourselves to suspend once this can be 
done: 

S r+1 af s2n+1 ag S 
- - e+1· 

It is remarkable that the case p = 3 is easier than that of larger primes. 

Proposition A.I. Suppose p = 3 and X is a space such that OX is homotopy 
commutative in the loop space structure. Then: 

a) OSe is homotopy commutative in the loop space structure. 
b) Each map g: s2n - X extends to a map 

g: §2n _ X. 

c) Ifg,[}: §2n - X are any two extensions of g, Og""' O[}. 
d) The diagram: 

Oy O§2k • OX 

! ! 
0 2 s2k+1 ~ 02~x 

commutes up to homotopy. 

Corollary A.2. Suppose p = 3. If f: sr - §2k and g: S2k - Se we can 
define a composition 

g*f: sr - Se 

by 9 * f = go f. This is well defined and 

(J(g * f) = (J(g) 0 (J(f): sr+1 - Se+1. 

Proof. a) is well known if e is odd and is proven in [7] in case e is even. b) is 
due to Hua Feng [5]. It follows since when p = 3, §2k = S2k U e4k where the 
attaching map is the Whitehead product. The obstruction to defining 9 is thus 
the composition S4k-1 - S2k _ X. The adjoint of this is the composition 
S4k-2 _ OS2k _ OX where the first map is a commutator. To prove c), note 
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that two extensions 9 and [} agree on s2n. Let 6: S4k - X be the difference 
element so that 9 is homotopic to the composition: 

§2n ~ §2nvs4n ~ X. 

Consider the diagram of fibrations: 

nSK * ns4n ~ ns2n * ns4n 

1 1 
SKn V s4n ~ §2n V s4n gVo , X 

1 1 
SKn x s4n ~ §2n X s4n 

where Kn = s2n-l U e2np- 2 is the 2np - 2 skeleton of ns2n and T SKn _ s2n 
is the adjoint of the inclusion. Since nx is homotopy commutative, ([} V 6)(-y VI) 
extends over SKn x S4n, as this space is the mapping cone of a Whitehead product. 
It follows that the composite along the top is null-homotopic. But since 0., has a 
right homotopy inverse, the composite: 

n§2n * ns4n _ s2n V s4n _ X 

is null-homotopic. Since the right hand sequence is a fibration, we get an extension: 

n(§2n V s4n) n(gvo), nx 

1/r 
n(§2n x s4n) 

and r must be n[} x 0.6. Fitting these diagrams together, we get 

n(§2n V s4n) 

7 ~O) 
n§2n nx 

l~ ~+no 
n§2n x ns4n. 

Hence 0.9 = n[}+n(6) On7r. But by [8, Proposition 7J n7r '" * so 0.9'" n[}. Finally, 
to prove d) observe both composites: 

§2n ~ X -=- nEX 

§2n _ ns2n+1 ~ nEX 

extend s2n _ X - nEX, so we may apply c) replacing X by nEX. 0 
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Theorem A.3. For any p and any map g: s2m - Se. There is an extension 
g: 82m - Se such that the diagram: 

commutes up to homotopy. 

Note A.4. We make no statement about the uniqueness of ng in the general case. 

Proof. In case e is odd, Se is an H space and 9 can then be extended to a map 
goo: s~m - Se . The diagram clearly commutes in this case. Suppose now that 
e = 2n. We first lift 9 to a map g': s2m - SKn so that g' .-v g. Then consider 
the diagram: 

s2m ___ ---=g_' _ __+_" S Kn __ ,-'----_ 82n 

111 
§2m = Jp _ 1(s2m) _Jp,--_d_g ... '~ Jp - 1(SKn ) ~ §2n 

111 
Joo (s2m) -----+-. Joo(SKn) - s;;; . 

The proof of A3 is complete when we construct ¢ so that the two diagrams on the 
right homotopy commute. First we must prove 

Proposition A.5. Suppose f: SX - SY and the composite: 

X J:..... nSy -.!!..!:.. nSyk 

is null homotopic for each k > 1. Then there is a commutative diagram: 

nsx 
Of 

" nSy 

Hkl lHk 
nsx(k) nsy(k) 

1 1 
nkskx(k) ou /\ ... /\f) nksky(k) . 

" 
Proof. Of course, if f = Sf', this is clear by naturality of the Hopf invariant. We 
will prove this using the results of Boardman-Steer [4J. They describe Hopf invari
ants An: [SA, SBJ - [sn A, sn B(n)J for each n 2:: 1. Let ev: snsx - SX be 
the evaluation map. Then [4, 3.15J An(ev): sn(nSX) - snx(n) is the adjoint 



Composition methods in the homotopy groups of ring spectra 147 

of the composite OSX ~ osx(n) _ onsn x(n). Consequently, the diagram 
in question is equivalent to the diagram: 

SkOSX ~ SkOSY 

Adev) 1 1 Ak(ev) 

Sk X(k) ! /\ ... /\~ Sky(k). 

To establish this, we apply the composition formula [4, 3.16] to the composites in 
the square: 

sosx~sx 

SO! 1 l! 
SOSY~SY. 

Since Aq(J) rv * for each q > 1, Ak(J 0 ev) = (J 1\ ... 1\ n 0 Ak(ev). However 
Aq(SOf) rv * for each q > 1, so Ak(ev 0 SOn = Ak(ev) 0 SkOf. This establishes 
the result. 0 

We now apply this to the map aT S2Kn _ S2n+l: 

O(O'g) • os2m+l 

1 Ap 

OPS2PKY:) _ oPS(2m+l)p. 

OS2 Km ~ (SKm)oo and Jp- 1 (SKm) maps trivially under Hp and hence under Ap. 
Thus the composition: 

Jp-1(SKm) - (SKm)oo __ s~m ~ s~mp __ OPs(2m+l)p 

is null-homotopic. Since dim(Jp_1(SK)) = (2mp - l)(p - 1) < 2(mp + l)p - 3, 
the composite of the first three maps: 

Jp- 1 (SKm) - (SKm)oo -- s~m ~ s~mp 
is null-homotopic. We have proven the first part of 

Corollary A.6. There is a map ¢: Jp-1(SKm) -- 82m such that the diagram: 

q, ~2 Jp-1(SKm) _ S m 

1 ! 
homotopy commutes. 

Furthermore, ¢ISK", rv T' 
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Proof. For the second part, we observe that the composites: 

SKrn - Jp-1(SKrn ) ~ §2rn ~ s!:,rn 

S Krn -2... §2rn ~ s!:,rn 

are homotopic, so the difference ¢iSK", -, factors through the fiber of E. We will 
alter ¢ so that this difference vanishes. To do this, note that the choice of ¢ can 
be modified by any element of [Jp_l(SKrn) , n2s2rnp+lj. But the restriction: 

[Jp- 1 (SKrn)' n2s2rnp+lj _ [SKrn , n2s2rnp+lj 

is onto since SJp-1(SKrn ) splits. Therefore an appropriate choice of ¢ yields 
¢iSK", rv ,. 0 

o 
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The purpose of the present note is to show how the axiomatic approach to Tate 
cohomology of [18, Appendix B] can be implemented in the axiomatic stable ho
motopy theory of Hovey-Palmieri-Strickland [32]. Much of the work consists of 
collecting known results in a single language and a single framework. The very 
effortlessness of the process is an effective advertisement for the language, and a 
call for further investigation of other instances. The main point is to recognize and 
compare incarnations of the same phenomenon in different contexts: the splitting 
and duality phenomena described in Sections 9 and 13 are particularly notable. 
More practically, Theorem 11.1 is new, and Theorem 12.1 extends results of [19]. 

A stable homotopy category [32, 1.1.4] is a triangulated category e with arbi
trary coproducts, and so that all cohomology theories are representable. It is also 
required to have a compatible symmetric monoidal structure with unit S and a set 
9 of strongly dualizable objects generating all of e using triangles, coproducts and 
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retracts. If in addition the objects of 9 are small, the stable homotopy category is 
said to be algebraic. 

We shall illustrate our constructions in several contexts specified in greater 
detail later. The following list gives the context followed by an associated stable 
homotopy category. Each of these admits a number of variations. 

• Equivariant topology: the homotopy category of G-spectra (Section 4). 
• Commutative algebra: the derived category of a commutative ring R 

(Section 5) . 
• Brave new commutative algebra: the homotopy category of modules over 

a highly structured commutative ring spectrum R (Section 6) . 
• Representation theory: the derived category of the group ring kG of a 

finite group G (Section 7). 
• The bordism approach to stable homotopy theory: various chromatic cat

egories (Section 8). 

The paper is in three parts. 

Part I: General formalities (Sections 2 and 3). In Section 2 we summarize necessary 
definitions and give the Tate construction in a stable homotopy category associated 
to a smashing localization. We establish the fundamental formal properties that 
make it reasonable to call this a Tate construction. In Section 3 we recall from [39] 
that finite localizations are smashing and hence give rise to Tate theories: the 
minor novelty is to emphasize the view that this is an Adams projective resolution 
in the sense of [1]. 

Part II: Examples (Sections 4 to 8). We describe the above contexts in more detail, 
and consider the construction in each one, identifying it in more familiar terms. 

Part III: Special properties (Sections 9 to 13). The final sections give some more 
subtle results about the construction which require additional hypotheses. In Sec
tion 9, we discuss dichotomy results stating that the Tate construction is either 
periodic or split. We then turn to methods of calculation. The first is the familiar 
calculation using associative algebra, generalizing the use of group cohomology in 
descent spectral sequences (one uses homological algebra over the endomorphism 
ring of the basic building block) . We describe this in Section 11, and give a new 
example in the case of equivariant topology with a compact Lie group of equivari
ance. This method applies fairly generally, provided the stable homotopy category 
arises from an underlying Quillen model category. Less familiar is the calculation in 
terms of commutative algebra. This arises when the (commutative) endomorphism 
ring of the unit object has a certain duality property (it is 'homotopically Goren
stein'). This is quite exceptional, but it applies in a surprisingly large number of 
familiar examples: in the cohomology of groups [19, 9, 8]' in equivariant cohomol
ogy theories [17, 25], and in chromatic stable homotopy theory (Gross- Hopkins 
duality). Its occurrence in commutative algebra is investigated in [21], and shown 
to be very special. 
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2. Axiomatic Tate cohomology in a stable homotopy category 

In this section we describe the Tate construction. Since it depends on a suitable 
Bousfield localization, we briefly recall the terminology in a suitable form (see 
[32, Section 3] for more detail). We consider a functor L: e --; e on the stable 
homotopy category e. The acyclics of L are the objects X so that LX c::o *. 
The functor L is a Bousfield localization if it is exact, equipped with a natural 
tranformation X --; LX, idempotent, and its class of acyclics is an ideal. 

A Bousfield localization L is determined by its class 1) of acyclics as follows: 
Y is L-local if and only if [D, Y]* = 0 for all D in 1), and a map X --; Y is 
the Bousfield localization if and only if Y is local and the fibre lies in 1). The 
usual notation for the localization triangle is ex --; X --; LX. Furthermore, 
any such class of acyclics is a localizing ideal (i.e., it is closed under completing 
triangles, sums and smashing with an arbitrary object). A localization is said to 
be smashing if the natural map X /\ LS --; LX is an equivalence for all X. It 
is equivalent to require either that L commutes with arbitrary sums, or that the 
class Le of L-Iocal objects is a localizing ideal [32, 3.3.2]. 

We shall define a Tate construction associated to any smashing localization. 

Notation 2.1. (General context) 

• e: a stable homotopy category 
• 9: a set of generators for e 
• 1): the localizing ideal of acyclics for a smashing Bousfield localization 

(.)[1)-1] 
• e[1)-I]: the localizing ideal of [1)-l]-local objects. 

The notation L'J) is often used for (.)[1)-1]; the present notation better reflects 
the character of a smashing localization, and corresponds to that in [24]. The idea 
is that we should think of X[1)-I] as a localization away from 1). More precisely 
the archetype is localization away from a closed subset in algebraic geometry. The 
notation comes from the case when the closed subset is defined by the vanishing of 
a single function f. In this very special case, the localization is realized by inverting 
the multiplicatively closed set {I, f, P, ... } in the sense of commutative algebra. 
We therefore use the corresponding 'sections with support' notation for the fibre 
of this localization: 

r'J)(X) --; X --; X[1)-I]. 

We can use this to define an associated completion. 

Lemma 2.2. The natural transformation X --; F(r'J) (S), X) is Bousfield comple
tion whose class of acyclics is the class of [1)-I]-local objects. 

Proof. First we must show that if E is [1)-I]-local, then [E, F(r'J) (S), X)]* = o. 
By [32,3.1.8], S[1)-IJ is a ring object in e and E = E[1)-I] is a S[1)-I]-module. 
Hence E /\ r'J)(S) is a retract of E /\ S[1)-l] /\ r'J)(S) ; since [1)-1] is idempotent 
and smashing, S[1)-lJ /\ r'J)(S) c::o *. 
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Secondly we must show that the fibre F(S['D-I], X) is ['D-I]-local. However 
if D lies in 'D then D /\ S['D-1] ~ D['D- 1] ~ *. 0 

We write X~ = F(r"D(S),X) for this Bousfield completion, and also intro
duce the following notation for its fibre: 

~"D(X) ---> X ---> X~. 

We now define the 'D-Tate construction by 

t"D(X) = X~['D-I] . 

This gives the diagram 

r"D(X) ----+ X ----+ X['D- 1] 

1 1 1 
r"D(X~) ----+ X!\ "D ----+ X~['D-I] = t"D(X). 

Lemma 2.3. The map r"D(X) ---> r"D(X~) is an equivalence. 

Proof. We need only remark that r"D(~"D(X)) ~ *j however by definition ~"D(X) 
lies in the class of ['D-I]-local objects. 0 

Corollary 2.4. (Hasse Principle) The diagram 

X ----+ X['D- 1] 

1 1 
X~ ----+ t"D(X) 

is a homotopy pullback square. 

Corollary 2.5. (Warwick Duality [18]) There is an equivalence 

t"D(X) = X~['D-I] ~ ~"D(Er"D(X)). 

Proof. This is a composite of three equivalences, 

X~['D-I] +- ~"D(X~['D-I]) ---> ~"D(Er"D(X~)) ---> ~"D(Er"D(X)). 

o 

The first is an equivalence since (.)['D-I]:i, ~ * (the class £ of acyclics for (.)Jt 
consists of ['D-I]-local objects) so that X~['D-I]:i, ~ *. The second is an equiv
alence since ~"D(X~) ~ * (defining property of ~"D((.)) together with idempo
tence of (.):i,) . The third is an equivalence since r"D(~"D((·))) ~ * by 2.3 so that 
~"D(Er"D(~"D(X))) ~ *. 0 

This shows that the cohomology as well as the homology only depends on 
the localization away from 'D. More precisely, the definition 

t"D(X) = F(r"D(S), X)['D- 1] 
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shows that T /\ t1) (X) only depends on the localization T[1)-IJ. The second avatar 
t1)(X) ~ F(8[1)-I], Er1)(X)) gives 

[T, t1)(X)J* = [T /\ 8[1)-1], Er1)(X)J* = [T[1)-IJ, Er1)(X)J*, 

which again only depends on T[1)-IJ. 

Remark 2.6. The definition of the Tate construction we have given is at a natural 
level of generality. One might be tempted to consider L1)LeX for arbitrary 1) 

and G. However, if one wants Warwick duality, one requires (i) LeL1)X ~ *, so 
that G 2 L1)e and (ii) C1)CeX ~ *, so that CeX is L1)-local, and G ~ L1)e. 
Thus we require G = L1)e, and this must be a localizing ideal. Thus L1) must be 
smashing, and determines G. 

3. Finite localizations 

In this section we describe one very fruitful source of smashing localizations. This 
is explicit in Section 3.3 of [32J, and especially Theorem 3.3.5. It generalizes the 
finite localization of Mahowald- Sadofsky and Miller [36, 39J. We recall the con
struction for future reference, and emphasize the connection with Adams projective 
resolutions. 

Recall that a full subcategory is thick if it is closed under completing triangles 
and taking retracts. The piece of data we need is a 9-ideal A of small objects (i.e., a 
thick subcategory of small objects, closed under smashing with elements of 9). If e 
is not algebraic, we must suppose in addition that A is essentially small, consists of 
strongly dualizable objects and is closed under Spanier- Whitehead duality; if e is 
algebraic these conditions are automatic. In practice we will specify A by giving a 
set 'J of small generators: A = 9-ideal('J). We then need to form the localizing ideal 
1) = locid(A) generated by A: this is the smallest thick subcategory containing A 
which is closed under arbitrary sums and smashing with arbitrary elements of e. 

Context 3.1. (For a finite localization) 

• e: a stable homotopy category 
• 9: a set of generators for e 
• 'J: a set of small objects of e 
• A = 9-ideal('J) 
• 1) = locid('J) = locid(A). 

In these circumstances, we write write A or 'J in place of 1) in the notation, 
so that tA (X) = h(X) = t1) (X) and so forth. 

Miller has shown that there is a smashing localization functor (.) [A -1 J whose 
acyclics are precisely 1), and whose small acyclics are precisely A; this is known 
as a finite localization and the notation L~ is used in [32J. The construction is 
described in 3.3 below. The associated functor ( . )~ whose acyclics are the objects 
X[A-IJ is denoted by LA in [32J. 
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There is a convenient lemma for showing a set of elements in a localizing 
subcategory is a generating set. It would be more traditional to view it as a con
vergence theorem for a projective resolution in the sense of Adams [1]. 

Proposition 3.2. If 'J ~ 1> is a set of objects then 1> = locid('J) provided one of 
the two following conditions holds. 

(i) 'J is a set of small objects and detects triviality in 1>, in the sense that if 
X is in 1> then [T, X]* = 0 for all T in'J implies X c::: *. 

(ii) The objects of9 are small, and for any X E 1>, S' E 9 and any x E [S', X]* 
there is a map t: "L,nT ---- X with x E im(t*: [S', "L,nT] * ---- [S', X]*) and 
Tin 'J. 

Proof. We need to prove that if X is an arbitrary object of 1>, we may form X 
from copies of elements of 'J using sums and completion of triangles. We give the 
proof assuming that Condition (ii) holds; the proof when Condition (i) holds is 
similar except that [S',·] * for S' E 9 is replaced by [T, .] * for T E 'J. 

By hypothesis we may form a projective resolution in the sense of Adams: 

X X io X il X i2 = 0 ------> 1 ------> 2------> 

To 
Thus each Ti is a sum of suspensions of elements of 'J, each ti is surjective in 
[S', .]* for all S' E 9 and Xi+l is formed as the cofibre of ti: Ti ---- Xi. Note 
that Xoo = TelnXn has trivial [S', .]* for all S' E 9 since is is zero in [S', .]* by 
construction; thus Xoo c::: * since 9 gives a set of generators. Defining Xi as the 
fibre of X ---- Xi we find that Xi is constructed from sums of suspensions of 
elements of'J by a finite number of cofibre sequences. Passing to direct limits, we 
obtain a cofibre sequence XOO ____ X ____ X oo , so that XOO c::: X. 0 

Remark 3.3. Note that the argument essentially gives the construction of a finite 
localization. Take a set 'J of small generators of the 9-ideal A and the localizing 
ideal 1> , and ensure it is closed under duality. We now form a projective resolution 
as in the proof of 3.2, but without assuming that X lies in 1>. Ensure ti is surjective 
in [T, .]* for each i. Then the triangle XOO ---- X ____ Xoo has XOO in 1> by 
construction, and [T, XOO]* = 0 for all T in 'J. 

This completes the discussion of formalities. In the rest of the paper we want 
to discuss a number of examples from this point of view, and show how comparisons 
between the examples give rise to means of calculation. 

4. The category of G-spectra 

In this section we consider the category e = G-spectra of G-spectra for a compact 
Lie group G, and localizations associated to a family 3" of subgroups. We recover 
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the constructions of [23]; indeed these constructions motivated investigation of its 
other manifestations. 

Thus we suppose 9" is closed under conjugation and passage to subgroups, 
and we let 'J' = {G / H + I H E 9"}. Thus A is the class of retracts of finite 9"-spectra, 
and 'D is the class of all 9"-spectra. We recall that in the homotopy category of 
G-spectra, the class of 9"-spectra can be described in three ways, as is implicit 
in [34]. 

Lemma 4.1. The following three classes of G-spectra are equal, and they are called 
9" -spectra. 

(i) G-spectra formed from spheres G / H+ 1\ sn with H E 9", 
(ii) G-spectra X so that the natural map E9" + 1\ X --+ X is an equivalence, 

and 
(iii) G-spectra X so that the geometric fixed point spectra q,H X are non-equiv

ariantly contractible for H E 9". 

Proof. The equality of Classes (i) and (ii) is straightforward. 
Since q,H commutes with smash products [34, 11.9.12], and it agrees with 

H -fixed point spaces on suspension spectra [34, 11.9.9]' it follows that E9" + 1\ X 
lies in the third class, so Class (ii) is contained in Class (iii). Suppose then that X 
is in Class (iii); we must show it is also in Class (ii). By hypothesis, the map 
E9" + 1\ X --+ X has the property that applying q,H gives a non-equivariant 
equivalence for all H. It remains to observe that geometric fixed points detect weak 
equivalences. This is well known, but I do not know a good reference: it follows from 
the fact that Lewis- May fixed points tautologically detect weak equivalences, by 
an induction on isotropy groups. The basis is the relation between geometric and 
Lewis- May fixed points [34,11.9.8]: for any H-spectrum X, q,H X ~ (£'Y 1\ X)H 
where 'Y is the family of proper subgroups of H. 0 

From the equality of Classes (i) and (ii) E9" + 1\ X lies in 'D , and from the fact 
that £9" is 9"-contractible we see that X --+ £9" 1\ X is localization away from 'D. 
Hence r3'S = E9"+ and S[9"-1] = £9". Now the equality of Classes (i) and (ii) can 
be recognized as the statement that localization away from the class of 9"-spectra 
is smashing. It follows that in this case Diagram 2 is the diagram 

X --> E9" I\X 

1 1 
F(E9"+,E9"+I\X) --> F(E9"+,X) --> t3'(X), 

which is Diagram C of [23]. 
The skeletal filtration gives rise to spectral sequences for calculating the ho

motopy groups of these spectra based on group cohomology [23], and we discuss 
this in more abstract terms in Section 11. More interesting is that for well behaved 
cohomology theories (such as those which are Noetherian, complex orientable and 
highly structured), one may prove a local cohomology theorem in which case the 
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homotopy groups may be calculated by commutative algebra [18]. We discuss this 
in more abstract terms in Section 12. The formal framework for such spectral 
sequences is described in Section 10. 

5. The derived category of a commutative ring 

In this section we consider the category e = D(R) for a commutative ring R, 
and localizations associated to an ideal I of R. In particular, we obtain a new 
approach to the results of [18] and an improved perspective on the role of finiteness 
conditions. 

We wish to consider the class of acyclics for a localization, and there are 
several candidates for this . The most natural is the class 

'D = {M I supp(H.(M)) ~ V(IH, 

but we should also consider 

'D' = {M I every element of H.(M) is I-power torsion}. 

It is straightforward to check they are both candidates. 

Lemma 5.1. The classes 'D and 'D' are localizing ideals. 

It is also easy to see that 'D' ~ 'D. 

o 

Lemma 5.2. If I is finitely generated then 'D' = 'D, but this is not true in general. 

Proof. Suppose M is a module with support in V(I), and x EM has annihilator J. 
Since R/J has support V(J) , we see that V(J) ~ V(I) so that J] 2 Vi 2 I. If I 
is finitely generated, some power of I lies in J . 

To give an example where equality fails we need only display an ideal J so 
that no power of J] lies in J, since then we may take I = J] and M = R/ J. 
For instance if R is polynomial on a countably infinite number of generators, 
XI,X2,X3, ... over a field and J = (XI'X~,X~, ... ) we find that J] is the maximal 
ideal (XI,X2,X3, ... ) no power of which lies in J. 0 

It is useful to have a specific generator for 'D as a localizing ideal. Perhaps 
the most natural candidate for a generator of 'D is R/ I, but this can only gen
erate 'D'. For the rest of the section we assume that I is finitely generated, say 
I = (Xl, ... , xn ), and thus 'D = 'D'. We show that R/ I does give a generator, but 
there are other candidates which are usually convenient. 

Warning 5.3. If R/ I does not have a finite resolution by finitely generated projec
tives, it need not be small. 

We may define the unstable Koszul complex for the sequence xt, x~, ... ,x~ by 
d d 

U K;(x) = (R ~ R) 0 ... 0 (R ~ R) . 

We also write U K-(x) = U Kr(x) . The unstable Koszul complexes have the ad
vantage of being small, and explicitly constructed from free modules. 
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We may also define the stable Koszul complex 

K-(1) = (R -> R[l/xd) 0 · ·· 0 (R -> R[l/xnD 
and define C-(1) by the existence of a fibre sequence K-(I) -> R -> C-(1). 
It is not hard to check [17] that both K- (1) and C- (1) are independent of the 
generators of the ideal, up to quasi-isomorphism. Since K-(1) and C-(1) are only 
complexes of fiat modules and not projective modules, it is necessary to replace 
them by complexes P K- (1) and PC- (1) of projectives when calculating maps out 
of them in the derived category. 

We start by showing what can be constructed from U K-(x) . 

Lemma 5.4. (i) Provided d1, d2 , . • . ,dn 2: 1, the unstable Koszul complex 
UK- (xt 1 , xg2 , .. . , x~n) lies in the thick subcategory generated by UK- (x). 

(ii) The stable Koszul complex K-(I) lies in the localizing subcategory gener
ated by the unstable K oszul complex UK- (x). 

Proof. (i) First we deal with the case n = 1. We proceed by induction on d using 
the square 

d-l 

R~R 

x d 
R~R 

to construct a cofibre sequence U K d_1 (x) -> U Kd (x) -> UK- (x). The general 
case follows since the argument remains valid after tensoring with any free object. 

d 

(ii) The map R -> R[l/x] is the direct limit of the maps R ~ R, and hence 
K-(x) is equivalent to the homotopy direct limit of the terms UK-(xd ). Tensoring 
these together and using the fact that holimd commutes with tensor products, we 

--+ 

find 

o 
We also need a related result in the other direction. 

Lemma 5.5. The unstable Koszul complex U K-(x) lies in the thick subcategory 
generated by the stable K oszul complex K- (1) . 

Proof. Consider the self-map of the cofibre sequence K-(x) -> R -> R[l/x] 
given by multiplication by x. Since x is an equivalence of R[l/x]' the octahedral 
axiom shows there is a fibre sequence UK-(x) -> K-(x) ~ K-(x). We may 
tensor this argument with any object X, so that we find a fibre sequence 

K-(Xl,'" ,Xn-l) 0 UK-(xn ) -> K-(1) ~ K-(I). 

Repeating this, we see that UK- (x) lies in the thick subcategory generated 
by K-(I). 0 
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Proposition 5.6. If 1= (XI,X2,'" ,xn ) is finitely generated, the class'D is gener
ated as a localizing ideal by R/ I, by K· (I) and by UK· (x). 

Proof. We start by showing that'D is generated by UK·(x). Since UK· (x) is 
small, we may apply Proposition 3.2 (i). It suffices to check that U K·(x) detects 
triviality of objects D of 'D. Suppose then that H.(X) is I-power torsion and 
t E H.(X). It suffices by 5.4 to show that the corresponding map t: R ---+ X 
extends over R ---+ U K·(xt1 , X~2, ... , x~n) for some db d2 , •.. , dn ~ l. 

Suppose by induction on m that t has been extended to 

t' · UK·( d 1 d2 d",) X . Xl ,x2 , ... , Xm ---+ . 

This is clear for m = 0, so the induction starts, and we suppose 0 < m < n. 
Now note that t' is I-power torsion, since [T, Xl is I-power torsion for any finite 

d complex T of free modules. Choose dm+l so that Xm"'':l't' = O. Construct a cofibre 
sequence by tensoring 

d 17l +1 

R x~ R ---+ UK·(x~"'++n 

with U K·(xt', X~2, ... , x~"'). Exactness of [" Xl shows that t' extends along 

UK.( dl d2 d",) UK.( d, d2 d", d"'+l) Xl 'X2 , ... 'Xm ---+ Xl ,X2 , . . . ,Xm ,Xm + l , 

completing the inductive step. This completes the proof that U K·(x) generates 'D. 
By 5.5 it follows that K· (I) also generates 'D, and the fact that R/ I generates 

'D follows if we can show UK· (x) lies in the localizing ideal generated by R/ I. 

Lemma 5.7. The localizing ideal containing R/ I contains any complex X so that 
H. (X) is bounded in both directions and J -power torsion. 

Proof. First, we prove by induction on k that a module M (regarded as an object of 
the derived category in degree 0 with zero differential) lies in locid(R/1) provided 
Ik M = O. If k = 0 this means M = 0, so we suppose k ~ 1. First, the short exact 
sequence Jk / Jk+l ---+ R/Ik+l ---+ R/ Jk gives a triangle, with the first and third 
term already known to be in the ideal, so R/Ik+l lies in the ideal. Now suppose 
Jk+l M = O. There is a surjective map To ---+ Mo = M of modules where To is 
a sum of copies of R/ Jk+l , and the kernel Ko also satisfies Jk+l Ko = O. We may 
thus iterate the construction and apply 3.2 (ii) to deduce M lies in the localizing 
ideal generated by R/Ik + l . 

The modules Mare Eilenberg- Mac Lane objects, and we show that if X 
is bounded, it has a finite Postnikov tower. After suspension we may suppose 
Hi(X) = 0 for i < O. Since X is equivalent to the sub complex X' zero in negative 
degrees, with X6 the O-cycles, and agreeing with X in positive degrees, we may sup
pose X is zero in negative degrees. There is then a canonical map X = X O ---+ Mo 
which is an isomorphism in degree 0 where Mo = Ho(X). The fibre Xl then has 
Hi(XI) = 0 for i < 1, and Hi (XI) ~ Hi(X) for i ~ 1, and we may iterate the 
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construction. Defining X k by the triangle Xk ----4 X ----4 X k we see that Xo c::: 0, 
and by the octahedral axiom there is a cofibre seqence 

Ek Mk ----4 X k+1 ----4 X k. 

Since Mk lies in the localizing ideal generated by R/ I, so does X k for all k. By the 
boundedness hypothesis, X N c::: 0 for N sufficiently large, and so X N c::: X. 0 

Since UK- (x) satisfies the conditions of the lemma, this completes the proof 
of 5.6. 0 

It is not hard to construct the relevant localizations and completions. 

Lemma 5.8. If I is finitely generated, 

(i) M['D- 1] = M rz;('j-(1), 
(ii) r1>(M) = M 0 K-(1)' 

(iii) M~ = Hom(PK-(1),M). 

Proof. (i) To see that M 0 (:-(1) is local, we need only check it admits no mor
phism from UK- (x) except zero. However (:- (1) admits a finite filtration with 
subquotients R[I/x] for x E I so it suffices to show [UK-(x),R[I/xll* = O. This 
follows since x is nilpotent on UK-(x) and an isomorphism on R[I/x]. To see that 
M ----4 M 0 (:-(1) is a 'D-equivalence we need only verify that the M 0 K-(1) can 
be built from UK-(x). However M can be built from R, and we saw in 5.4 that 
K-(1) can be built from UK-(x). 

Part (ii) follows from the defining fibre sequence of (:-(1), and Part (iii) 
follows from 2.2. 0 

We write 

Hj(M) = H*(K-(1) 0 M) = H*(r1>(M)); 

this is the local cohomology of M, and if R is Noetherian it calculates the right 
derived functors of 

rI(M) = {x EM I Inx = 0 for n » O} 

for modules M [29]. We write 

H; (M) = H*(Hom(PK-(1), M)) = H*(M~); 
this is the local homology of M [22]. If, in addition, R is Noetherian or good 
in the sense of [22], then this local homology gives the left derived functors of 
completion. In particular, if M is of finite type, M~ = M['. Furthermore, the Tate 
cohomology coincides with that of [18]. As pointed out in [18], Warwick duality is 
a generalization of the isomorphism Z;[I/p] = l~(Z/poo,p). 

Remark 5.9. If I is finitely generated, we have described both a construction and 
a method of calculation for useful localizations. It would be interesting to have 
analogues when I is not finitely generated. 
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6. The category of modules over a highly structured ring 

In this section we suppose that R is a commutative S-algebra in the sense of [14], 
and we allow the equivariant case. Such objects are essentially equivalent to Eoo 
ring spectra, so there is a good supply: in particular, any commutative ring R gives 
rise to the Eilenberg- Mac Lane S-algebra H R. We then let e denote the homotopy 
category of highly structured module spectra over R and consider localizations and 
completions associated to a finitely generated ideal I of the coefficient ring R*. 

Much of the discussion of the previous section applies in the present case, 
and was presented in [24], so we shall be brief. Thus we may form the stable and 
unstable Koszul modules by using cofibre sequences and smash products. Thus for 
example, U Ke(x) is the fibre of R ~ R; we avoid the common notation E- I R/x 
for fear of confusion. Now U Ke(x) = U Ke(XI) /\R U K e(X2) /\R ... /\R U Ke(xn); 
similarly Ke(x) is the fibre of R --+ R[l/x]' and 

Ke(I) = Ke(XI) /\R K e(X2) /\R·· · /\R Ke(xn) 

where I = (Xl, X2, . .. , xn). We take A to be the class of retracts of finite R-modules 
M so that M* is I-power torsion This is generated by 'J = {U K e (x)}, and gener
ates the localizing ideal of all M so that each element of M* is I-power torsion (Le., 
M* is in the class 1)(R*,!) in the sense of Section 5) . We write rI(M) = r'J)(M) , 
M[I- I ] = M[1)-I] and tI(M) = t'J)(M). 

The statement and proof of Lemma 5.8 apply without change. Because the 
construction comes with an evident filtration we may obtain spectral sequences 
by taking homotopy, and the El-term is a chain complex representing the corre
sponding constructions of Section 5. This gives spectral sequences 

Hj(R*; M*) ===} M[I- I ]* 

Hj(R*; M*) ===} tI(M)* 

Hj(R*; M*) ===} rI(M)* 

H!(R*;M*) ===} (M~)* 
for calculating their homotopy. 

7. The derived category of kG 

For a finite group G and a field k we consider the derived category e = D(kG), 
and take A to be the category of finite complexes of projectives. This is generated 
by 'J = {kG} , and the generation is so systematic algebraically that it leads to 
the usual method for calculating Tate cohomology using projective resolutions 
and their duals. The relationship of the derived category D(kG) to the category 
of G-spectra is analogous to the relationship of D(R*) to the category of highly 
structured modules over R. 

It is proved in [32, 9.6] that the localization M --+ M[A- I ] is obtained 
by tensoring with a Tate resolution. Since any Tate resolution admits a finite 
filtration with subquotients R[l/x] as in [19], it follows that every object of e with 
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bounded cohomology is already complete. Thus we find that if M has bounded 
cohomology, tA (M) = M[A -1] = M 0 tA (k) and so the Tate construction defined 
by localization agrees with Tate homology in the classical sense. 

There are at least three other examples to consider here, but some work is 
needed to give them substance. Recall that an indecomposable module M has 
vertex H if it is a summand in a module induced from H but not from any proper 
subgroup of H. 

Variation 7.1. Consider a family 1" of subgroups, and the category A:r of finite 
complexes of modules with vertex in 1". The case 1" = {I} is that given above. 
The 9-ideal A:r is generated by 'J':r = {k[G / H] I H E 1"}. It is then appropriate 
to use Amitsur-Dress 1"-cohomology [13]. Perhaps there is again a local cohomol
ogy theorem in the sense of Section 12 below, using the ideal of positive degree 
elements, but the appropriate theory of varieties has not been developed. It would 
also be interesting to know the relationship to ordinary group cohomology and the 
ideal I:r of cohomology elements restricting to zero in the cohomology of H for 
all H E 1". 

Variation 7.2. We choose a block {3 of kG and take Ai3 to be the category of finite 
complexes of projectives in (3. 

Variation 7.3. We may consider the stable module category e = StMod(kG) , 
which is proved in [32, 9.6.4] to be a localization of D(kG). It would then be 
interesting to investigate complexity quotients in the sense of Carlson- Donovan
Wheeler [10, 11, 5, 6] from the present point of view. 

8. Chromatic categories 

Another important class of examples arises in the approach to stable homotopy 
theory through bordism. For background and further information see [40]. Thus 
we work in the stable homotopy category of spectra in the sense of algebraic 
topology, and we choose a prime p > o. For 0 ~ n ~ 00 we shall need the spectrum 
E(n) representing Johnson- Wilson cohomology theory and the Morava K-theory 
spectrum K (n). For 0 < n < 00 these have coefficient rings 

E(n)* = Z(p) [VI, V2, . . . ,Vn -l, Vn , v;:;-l], 

and K(n)* = Z/p[vn ,v;;-I]. The cases n = 0,00 are somewhat exceptional: by 
convention, for n = 0 we have E(O) = K(O) = HQ and for n = 00 we have 
E(oo) = BP and K(oo) = HZ/p. Recall that a spectrum is said to be of type n if 
K(i)*(X) = 0 for i < nand K(n)*(X) =j: o. 

Bousfield localization Ln with respect to E(n) is the localization whose 
acyclics are the spectra X with E(n) 1\ X,:::, *. A well known theorem of Hopkins
Ravenel states that Ln is smashing. The usual notation is CnX --+ X --+ LnX. 
The completion X~ = F( CnS, X) is more mysterious, but when n = 0 it is profi
nite completion F(S- IQ/Z, X). 
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n E(n) K(n) F(n) L n - 1 LK(n) 

0 HQ HQ S~p) * rationalization 

1 K(p) Kip SOlpk invert p L K (l) 

2 Ell Ell/(p, vI) SO l(pk , vD L1 = "(-)[(p,vI)-l]" L K (2) 

00 BP HFp * p-localization p-adic completion 

Following [33], let us consider a slightly simpler example. Let e be the 
E(n)-local category, and A the thick subcategory generated by LnF(n) for a finite 
type n spectrum F(n). In this case X[A- 1] = Ln-1X [33,6.10] and X~ = LK(n)X 
[33, 7.10]. The fibre of X ----> Ln-1X is usually known as the nth monochromatic 
piece when X is E(n)-local, so we have r A(X) = MnX. The fibre of K(n) com
pletion is sometimes known as CK(n), but we simply write ~A(X) = ~K(n)(X). 

Corollary 8.1. (Warwick Duality) If X is E(n)-local then 

Ln-1LK(n)X ~ E~K(n)(MnX). 

We note that if n = 0 this states MoX is rational, and if n = 1 it states that 
the cofibre of MIX ----> LK(1)MIX is the rationalization of LK(I)X. 

If we take e to be the entire category of p-Iocal spectra there are two related 
examples. Indeed, we may still consider the smashing localization Ln- l = LE(n-I), 
but it does not seem so easy to describe the associated completion. In particular 
it is not equal to LK(n) (indeed, although Ln_ISo is K(n)-acyclic, there are many 
spectra, such as F(n+ 1), which are K(n)-acyclic but not E(n-1)-local) . We may 
also consider spectra Tel(n) = F(n)[1/vn], and the smashing localization L~-l 
which is Bousfield localization with respect to Tel(O) VTel(1) V ... V Tel(n -1); this 
is finite localization with respect to F(n) [39] and it is therefore smashing, and 
we may again consider the associated completion, which is again different from 
LK(n) for similar reasons. There is a natural transformation L! ----> Ln, which is 
believed not to be an isomorphism for n 2: 2 [35]. 

9. Splittings of the Tate construction 

We describe two different classes of splittings of the Tate construction. Each re
quires special properties of the localization. 

First, continuing with the notation of the previous section, note that tA (X) = 
Ln-1LK(n)X is the subject of Hopkins's chromatic splitting conjecture [31, 4.2] . 
When X = SO (albeit not in the E(n)-local category e) this is conjectured to split 
into 2n pieces. More precisely there is a cofibre sequence 

Ln- IS~ ----> Ln_1LK(n)So ----> EF(Ln_ISO,LnS~), 

which is conjectured to split, and furthermore, F(Ln _ISO, LnS2) is also conjec
tured to split as a wedge of 2n - 1 suitable localizations of spheres. To obtain the 
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cofibre sequence, apply F(·,X)['D-1] to the cofibre sequence 

I;-lS['D- 1]-+ r~(S) -+ S 

to obtain 
X['D-l]-+ t1)(X) -+ I;F(S['D-1],X) 

since F(S['D-l], X) is already ['D-l]-local. 
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Secondly, there is a dichotomy between the periodic and split behaviour of 
the Tate construction, typified by the cohomology of finite groups. Although Tate 
cohomology is often associated with periodic behaviour, it is the split case that is 
generic. On the one hand, when G has periodic cohomology there is a 'periodicity 
element' x in H*(G) and the Tate cohomology H*(G) = H*(G)[I/x] is periodic 
under multiplication by x. By contrast, when group cohomology H* (G) has a 
regular sequence of length 2, Benson- Carlson [4] and Benson- Greenlees [7] have 
shown that the mod p Tate cohomology H* (G) of a finite group splits 

H·(G) = H*(G) EB I;l H.(G) 

(where the suspension is homological) both as a module over H·(G) and as a 
module over the Steenrod algebra. Even this context does not provide a true 
dichotomy, since there are groups with depth 1 which are not periodic, but this 
mixed behaviour is exceptional. 

The analogous statement concerns the standard cofibre sequence 

X~ -+ t1)(X) -+ I;r~(X) 

when X = S. The dichotomy principle would suggest that in most cases, either 
t~(S) is obtained from S~ by inverting some multiplicatively closed subset of 
7r. (S~) , or else the cofibre sequence splits, and that the split case is generic. 
The hypotheses for a splitting must include the requirement that the norm map 
I;- l r1)(X) -+ X~ is zero in homotopy, and probably also that 7r.(X~) is of 
depth at least 2. However the proofs from the case of group cohomology do not 
extend in any simple way since they use the fact that homology and cohomology 
are identified in the Tate cohomology by their occurrence in positive and negative 
degrees. 

A second case where the dichotomy holds is in commutative algebra [18]. 
When the ring is Noetherian and of Krull dimension 1, the rationality theorem 
[18, 7.1] holds: Hj(R) = S-l(Rn where S is the set of regular elements of R. 
This is the periodic case. It is immediate that if the ring is of I -depth two or more 
the Tate cohomology splits since the local homology is in degree 0 whilst the local 
cohomology is only non-zero at or above the depth. 

10. Calculation by comparison 

We discuss two quite different methods of calculation. To introduce the discussion, 
we explain the two methods as they apply to calculating the homology H.(G; M) 
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of a finite group with coefficients in a chain complex M of kG-modules. The first 
is quite familiar, and states there is a spectral sequence 

The second method is the local cohomology theorem, stating that there is a spectral 
sequence 

H[(H*(G;M)) =} H*(G;M) 

where I is the ideal of positive codegree elements of H* (G) [19], and Hj (.) denotes 
local cohomology in the sense of Grothendieck [29] (the definition was recalled in 
Section 5). 

The generalization we have in mind concerns finite localizations in the case 
that A is generated by a single object A. We require that A is a commuta
tive comonoid in the sense that it has a commutative and associative coproduct 
A ---+ A 1\ A and a counit A ---+ S. We require in addition that A is strongly du
alizable and self-dual up to an invertible element, in the sense that D A ~ A 1\ S-T 
for some object S-T admitting a smash inverse S-T 1\ ST ~ S. 

Example 10.1. (i) The motivating example has e = 'D(kG) for a finite group G 
and A = kG. Note that we have an augmentation kG ---+ k, and a diagonal map 
kG ---+ kG 0 kG. Furthermore kG is self-dual. 

(ii) Alternatively, for a compact Lie group G, we may take e to be a category 
of G-spectra (or of module G-spectra over a ring G-spectrum R) and A = G+ 
(or R 1\ G +). Again we have an augmentation G + ---+ So, and a diagonal map 
G+ ---+ G+ 1\ G+ . We also have the duality statement DG+ ~ E-dG+ where 
d = dim( G). This helps explain the notation S-T, which is chosen since, in the 
geometric context, Atiyah duality shows T corresponds to the tangent bundle. 

(iii) Rather differently, we may take e to be the category of p-Iocal spectra, 
(or of p-Iocal R-module spectra over a ring spectrum R) and A = E-dP(n) 
(or A = R 1\ E-dP(n)) where 

P( ) _ So/( io i 1 i2 i n - 1 ) n - p, VI , V2 , ... , Vn - l 

for suitable io, i l , ... , in - l and d = dim(P(n)). Collapse onto the top cell gives 
an augmentation E-d P( n) ---+ So. In favourable cases we have the duality state
ment DP(n) ~ E-dP(n), and P(n) may be taken to be a commutative ring 
spectrum [12], and the dual to the product gives a coproduct map 

E-dP(n) ---+ E-dP(n) 1\ E-dP(n). 

We need to consider the graded commutative ring k* = [S, S]*, where S is 
the unit in e, and two k*-algebras. Firstly, since A is a commutative comonoid, 
l* = [A, S]* is a commutative k*-algebra, and [A, Z]* is a module over l* for 
any Z. Secondly, we consider the k*-algebra c* = End(A)*, which need not be 
commutative. 
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Context 10.2. (For calculation) 

• A a commutative comonoid object 
• A generated by A 
• DA ~ S-T 1\ A 
• k. = [S,Sl. 
• l. = [A,Sl. 
• I = ker( k. -----+ l.) 
• G. = [A,Al •. 

In our examples these are as follows . 

Example 10.3. (i) When A = kG we have k. = l. = k and End(kG). = kG. 

(ii) When A = RI\G+ we have k. = R;>, l. = R. and End(RI\G+). = R.(G+) . 

(iii) When A = E-dF(n) we have k. = R., l. = R.(F(n)) and 

End(R 1\ E-d F(n)). = R.(F(F(n), F(n))). 

Given these data, there are two functors we can apply: 

[A, ,1.: e -----+ End(A).-mod 

(corresponding to non-equivariant homotopy in Example (ii)), and 

IS, ,1. : e -----+ k.-mod 

(corresponding to equivariant homotopy in Example (ii)). 

10.4. 

It is then natural to seek spectral sequences reversing these two functors. 
In the first case we may hope they take the form 

H.(End(A).; [A, ST 1\ Xl.) ===> (r A (X)). 

H·(End(A).; [A, Xl.) ===> (X~). 
and H·(End(A).; [A, Xl.) ===> tA (X) •. 

A construction in some cases is given in Section 11, and the twisting ST in the 
first spectral sequence will be explained. 

In the second case we let 

be the augmentation ideal, and apply local cohomology, local homology and local 
Tate cohomology as appropriate and hope the spectral sequences take the form 

10.5. 
Hj(X.) ===> (f A(X)). 

H! (X.) ===> (X~). 
and H!(X.) ===> tA(X)., 
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A construction in some cases is given in Section 12. When the first spectral se
quence exists we say that the local cohomology theorem holds. Provided this hap
pens for good enough reasons, the other two spectral sequences exist as a conse
quence. 

The content should be clearer when we give some examples. It is not surpris
ing that to prove the existence of either set of spectral sequences we have to assume 
the existence of additional structure beyond that present in the stable homotopy 
category. 

11. Calculations by associative algebra 

The point of this section is to generalize the Atiyah- Hirzebruch Tate spectral 
sequence of [16]: 

H*(G; E*(X)) ===> t(E)c(X) 

for finite groups G, or in other words to prove the expectations suggested in 10.4 
hold under suitable circumstances. The construction does not work entirely in a 
stable homotopy category, but rather relies on the existence of a suitable Quillen 
model category from which the stable homotopy category is formed by inverting 
weak equivalences. 

We thus suppose given a stable homotopy category, and consider the 9-ideal 
A generated by a single object A. The aim is to find ways to calculate r A(X)*, 
(Xj()* and tA(X)* in terms of the [A, A]*-module [A, Xk In view of the no
tational conflict we remind the reader that in the context of G-spectra, where 
A = G+ the group [S, .]* is equivariant homotopy and [A, .]* is non-equivariant 
homotopy. The present discussion covers a number of new examples: the general
ization is cruder than that of [23], but more general. The discussion of convergence 
in [23, Appendix B] applies without change. 

To avoid the appearance of empty generalization, we state an unequivocal 
theorem in the equivariant homotopy context of Section 4 (with A generated 
by R 1\ G+). 

Theorem 11.1. Suppose G is a compact Lie group of dimension d, R is an equi
variant S -algebra, and M an R-module. Provided we have the K iinneth theorem 

(KT1) 

and the universal coefficient theorem 

(UCT) 

when T = G~s for s ~ 0, there are spectral sequences 

H*(R*(G+); M*(Sd 1\ Y)) ===> M?(EG+ 1\ Y), 

H*(R*(G+);M*(Y)) ===> Mc(EG+ 1\ Y), 

and H*(R*(G+),M*(Y)) ===> t(M)?(Y), 
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where the homology and cohomology on the left is that of the Frobenius alge
bra R.(G+). 

We return to this particular case at the end of the section. The rest of the 
discussion is conducted in general terms. 

We want to view the construction of r AS as a "resolution" for X = S using 
sums of objects of A. More precisely, we use the method of 3.2 (i) without assuming 
X is in 'D. The dual resolution is thus 

* = (S)O ~ (S)1 ~ (S)2 ~ 

1 1% 1~ 
* To 

where each Ti is a sum of suspensions of objects of A. This is associated with the 
sequence 

We want to apply simplicial methods, so we suppose there is an underlying 
model category, from which the stable homotopy category is formed by passage to 
homotopy. Furthermore, we require a compatible symmetric monoidal structure 
and that A is a strict comonoid object. 

Example 11.2. The example relevant to the theorem is the homotopy category 
of modules over the equivariant S-algebra R for a compact Lie group G, and 
A = R 1\ G +. This is the homotopy category of the model category of equivariant 
R-modules [14]. However, in this case it is more elementary to make the construc
tion described below at the space level, apply the suspension spectrum functor and 
take the extended R-module: this strategy will give parts of the theorem under 
weaker hypotheses. 

We form the homogeneous bar construction [38] as a simplicial object, and 
take its geometric realization 

r AS = SOO = B(A, A, S). 

This ensures Ti = EiA"(i+1). By smashing with X we obtain a resolution for 
arbitrary X. Thus we may define 

tA(X) = F(B(A, A, S), X) 1\ B(A, A, S), 

where B(A, A, S) is the mapping cone of B(A, A, S) ----> B(S, S, S) = S. 
To relate the resolution to an algebraic one, we apply a homology theory to 

obtain 

[A ] (oIl. [A -1 ] (02). [ -2] (03). [ - 3 ] ,To. f-- , E T1 • f-- A,E T2 • f-- A,E T3 • f-- .... 

In the equivariant context we have [A, E-iTi]. = R.(G~i+l). To ensure it is a 
resolution, we assume there is a Kiinneth theorem 

(KT1) [A, A 1\ Z] = [A , A]. 0[A ,S]. [A, Z]. 
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for relevant Z (namely Z = Al\i). In the equivariant context this is a Kiinneth 
theorem for the (non-equivariant) homology theory R*(·). This ensures that the 
simplicial contraction in geometry is converted to one in algebra and the bar 
filtration spectral sequence for calculating [A, B(A, A, S)J* has its El-term given 
by the algebraic bar construction B([A, AJ*, [A, AJ*, [A, XJ*). To calculate r A(X)*, 
we need the second Kiinneth theorem 

(KT2) 

for relevant Z (namely Z = AI\(i+l) /\ X). In the equivariant context, this states 
that the change of groups isomorphisms [S, G+ /\ TJ? = [S, Sd /\ TJ* = [G+, TJ? 
are reflected in algebra. 

Lemma 11.3. The Kiinneth theorem (KT2) for Z = A/\T follows from the Kiinneth 
theorem (KT1) for Z = S'T /\ T. 

Proof. Assuming (KT1) for Z = S'T /\ T, we calculate 

[A, SJ* 0[A,Aj. [A, A /\ S'T /\ TJ* [A, SJ* 0[A,Aj. [A, AJ* 0[A,Sj. [A, S'T /\ TJ* 
= [A, SJ* 0[A,Sj. [A, S'T /\ TJ* 
= [A, S'T /\ TJ* 

[S, S'T /\ DA /\ TJ* 
[S,A /\ TJ* 

as required. 0 

This is enough to give a spectral sequence with 

El = [A, SJ* 0[A,Aj. B([A, AJ*, [A, AJ*, [A, S'T /\ XJ*); 

it therefore takes the form 

E;,* = H*(End(A)*; [A, ST /\ XJ*) =} r A(Xk 

It is easy to see this spectral sequence is conditionally convergent in the sense 
of Boardman [2J. The homology in the E 2-term is defined to be the homology of 
the bar construction, but in favourable cases it can be calculated in various other 
ways. For example in the case of G-spectra this spectral sequence takes the form 

H*(R*(G+); (Sd /\ X)*) =} X:(EG+). 

Note that we have two possible definitions of the R*(G+)-module structure on X*. 
A diagram chase verifies they agree. 

Lemma 11.4. The action of R*(G+) on X* = [G+, XJ? = [R /\ G+, XJ~,G im
plied by the Kiinneth theorem and the action of G on X agrees with the action of 
[R /\ G+, R /\ G+J~,G by composition. 0 

For cohomology we want to have the universal coefficient theorem (UCT) 

[A /\ z, XJ* = Hom[A,Aj. ([A, A /\ ZJ*, [A, XJ*) = Hom[A,sj. ([A, ZJ*, [A, XJ*), 
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where the second equality is (KT1) and a change of rings isomorphism. This is 
enough to get a spectral sequence with 

El = HOm[A,A].(B([A,AJ., [A,AJ., [A,SJ.), [A,XJ.); 

it therefore takes the form 

E; '· = H·(End(A).; [A, XJ.) ====:> [f A(S), XJ. = (X~).. 
Convergence is again conditional in the sense of Boardman. In the equivariant case 
this spectral sequence becomes 

H·(R.(G+); X.) ====:> Xc(EG+). 

When it comes to Tate cohomology we need to ask about splicing, both in 
topology and algebra. In topology we have 

... +-- DA2 +-- DA +-- A +-- A2 +-- ... 

where the splicing is via 

DA~DS=S~A. 
To obtain a spectral sequence we may either apply [A, · /\ XJ. and use the first 
avatar tA (X) = F(B(A, A, S), X) /\ B(A, A, S), or apply [A /\ " XJ. and use the 
second avatar tA(X) = F(B(A, A, S), EX /\ B(A, A, S)). The first will make the 
relation to homology clearer and the second will make the relation to cohomology 
clearer, but since the resolution is self-dual, the two are essentially equivalent, and 
we only discuss the first. Convergence is again covered by the relevant argument 
(10.8) from [23J. 

In view of the equality [A/\ A, SJ. = [A, DAJ., we conclude that the E2-term 
agrees with the homological one in positive filtration degrees, and with the coho
mologicalone (shifted by one degree) in filtration degrees::; -2. More precisely, if 
c. = End(A). = [A, AJ., and £. = [A /\ A, SJ· = [A, DAJ., we have the algebraic 
resolution 

- 0 2 - 0 2 
... +-- c. +-- c. +-- c. +-- c. +-- .... 

Using this particular resolution to define the E2-term we have a spectral sequence 

H.([A, AJ., [A, XJ.) ====:> tA(X)., 

This is again conditionally convergent in the sense of Boardman. In the equivariant 
case this spectral sequence becomes 

A R G H.(R.(G+), X.) ====:> t (X) • . 

For a more satisfactory account of the algebra, we assume c. is projective as 
an l.-module. Next, we express this in terms of a single type of resolution. Thus, 
by (KTl), 

£. = [A, DAJ. = [A, A /\ S-TJ. = [A, AJ. Q9 [A,S]. [A, S-TJ. = c. Q91. A. 

where A. = [A, S-TJ • . On the other hand, by (UCT), 

£. = [A /\ A, SJ. = Hom([A, AJ., [A, S].) = Hom(c., l.), 
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so we conclude 

Hom(c*, l*) = c* 0 A*. 
Next, we assume that the first Kiinneth theorem (KT1) applies also to S7 /\ S-7, 
so that A* is invertible and hence projective. Then we can specify a projective 
complete resolution by taking a resolution of l*, dualizing and splicing. This is 
essentially the Tate cohomology of a Frobenius algebra, but with the twisting 
module inserted. 

Proof of 11.1 . We work in the category of R-modules and take X = M /\ Y in the 
first and third case, and X = F(Y, M) in the second. 0 

12. Calculations by commutative algebra 

In this section we discuss the more subtle question of when the local cohomology 
theorem holds for A so that there is a calculation by commutative algebra in the 
sense of 10.5. This requires better behaviour of the cohomology theory concerned, 
and considerably more substance to the proof. We discuss two somewhat different 
methods for proving a local cohomology theorem. In a sense, the second method 
is a partial unravelling of the first: cellular constructions are replaced by multiple 
complexes. Both methods apply to the local cohomology theorem for finite groups, 
but beyond this they have different domains of relevance. 

We discuss the more sophisticated example first [17, 24], because the for
mal machinery highlights the structure of the proof whilst hiding the technical 
difficulties. 

Indeed if R is a highly structured commutative ring G-spectrum we have 
seen in Section 6 that, by construction, for any finitely generated ideal I in R? 
we have spectral sequences 

iIj(R?; M?) ==} tI(M)? 

Hj(R?; M?) ==} fI(M)? 

H;(R?;M?) ==} (Mn? 
What we really want is to obtain similar spectral sequences for calculating tA (M)?, 
f A(M)? and (M~)? for the class A generated by G+ using the ideal 

1= ker(Rc ----7 R*). 

We assume here that Rc is Noetherian, so that I is finitely generated, but see [25] 
for an example where this is not true. To obtain the desired spectral sequences 
we need to check that each of the constructions with A is equivalent to the corre
sponding construction on R-modules for the ideal I. In fact, we need only check 
that 

fI(R) ':::' fI(R /\ EG+) ':::' f{G+}R = R /\ EG+. 
The second equivalence is a formal consequence of the fact that I restricts to zero 
non-equivariantly. The first equivalence contains the real work: it is equivalent to 
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the statement that rI(RABG) ~ *, where BG is the unreduced suspension of EG. 
If G acts freely on a product of spheres (for example if it is a p-group) this follows 
from the existence of Euler classes (obviously elements of I) and the construction 
of BG in terms of representation spheres [17] . To extend this to other groups some 
sort of transfer argument is necessary (see [20, 27] for examples). 

This construction will give means of calculation whenever we have two suit
ably related smashing localizations. For example we may consider the localization 
(.)[1)-1] with acyclics 1) and the localization (. )[1-1 ] for an ideal I in the coefficient 
ring S*. The requirements are then 

• rI(S) A S[1)-I] ~ * and 
• S[I- 1] A r:r>(S) ~ *. 

Together, these give the equivalence 

rI(S) ~ r:r>(S), 

and hence the corresponding equivalences of other localization and colocalization 
functors. If we suppose 1) is generated by the single augmented object A as before, 
and define I = ker([S, S]* ----. [A, S]*), then the second requirement is again a 
formal consequence of the fact that elements of I restrict to zero. One expects the 
first requirement to use special properties of the context, as it did in the equivariant 
case. 

We now turn to the second method for proving a local cohomology theorem, 
and work with the group cohomology of a finite group in the derived category 
D(kG) as in Section 7. We are considering the relationship with the derived cat
egory of the graded ring R = H* (G; k) and the ideal I of positive dimensional 
elements as in [19]. We may view these results as relating various completions and 
Tate cohomologies in the two categories by spectral sequences. We take this op
portunity to extend the results of [19] to unbounded complexes. Since H*(G; M) 
is already I-complete if M is bounded below, the second spectral sequence is only 
of interest in the unbounded case. 

Theorem 12.1. Suppose G is a finite group, and M is a complex of kG-modules, 
and let I denote the ideal of positive codegree elements of the graded ring H* (G). 
There are spectral sequences 

Hj(H*(G; M)) =} H*(G; M), 

H; (H*(G); H*(G; M)) =} H*(G; M{kG}) 

and fI; (H*(G); H*(G; M)) =} H*(G; t{kG}(M)). 

We explain the changes that need to be made to the arguments of [19] to cover 
the unbounded case. The idea is to use the algebraic spheres of Benson- Carlson [3] 
to construct algebraic analogues of tori B on which G acts freely. Suppose first 
that G has periodic cohomology with periodicity element ( E HT(G). We may then 
form the algebraic sphere B as a complex of projectives representing ( viewed as 
an r-extension of k by k. The complex B is concentrated in degrees between 0 
and r - 1, and we may form a projective resolution of k by concatenating copies 
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of B to fill all degrees 2:: O. Now, return to the general case. If k is of characteristic 
p > 0 and G is of p-rank r, then B may be formed as the tensor product of r 
algebraic spheres representing cohomology classes of a system of parameters. This 
is a complex graded over zr concentrated in a box with the lowest corner at the 
origin, and it is a complex of projectives by the theory of varieties. From B we 
may construct a multigraded projective resolution T of k by stacking boxes in the 
region with all coordinates 2:: o. More generally, if a ~ {I, 2, ... ,r} we may form 
T[a] by stacking boxes to fill the region defined by requiring ni 2:: 0 if i -=I a. Thus 
T[0] = T, and T[{l, 2, ... , r}] fills all of zr. We then form a dual Koszul complex 
L. of multigraded chain complexes: 

L. ~ (!, T[uJ ~ I'~_' T[uJ ~ ... ~ I!O T[UJ) . 

The idea of the proof is to consider the double complex 

Hom(L., M)c. 

If one takes homology in the Koszul direction first one obtains Hom(T!, M)C , 
where T! is the complex concentrated in negative multidegrees; provided M is 
bounded below this is isomorphic to the rth suspension of T @c M, and this has 
homology H*(G; M) by definition. If M is not bounded below, the first complex 
has infinite products where the second has infinite sums. 

Now 
Hom(T[a], M) = Hom(limk E- k l C1 IT, M) --

and, provided M is bounded below, this is equal to limk Hom(E- k l C1 IT, M) because 
-+ 

the limit is achieved in each total degree. Thus, if one takes homology in the 
kG-resolution direction first, one obtains the stable Koszul complex of H*(G; M). 
To avoid the requirement of boundedness we simply use the double complex 

l~s Hom(L[2:: s], M) 

from the start, where L[2:: s] is the quotient of L by the subcomplex of boxes which 
are at least s boxes below zero in some coordinate. 

As is familiar from the case of commutative algebra, to construct the second 
spectral sequence we should consider the double complex 

holims L[2:: s] @c M. --
If we take homology in the Koszul direction first we obtain 

holims T![2:: s] @c M holims Hom((T![2:: s])*, M)C -- --Hom(hoEms(T! [2:: s])*, M)C 

Hom(ErT, M)c. 

On the other hand, if we take homology in the kG-resolution degree we obtain 
a homotopy inverse limit of complexes, each term of which is a suspension of 
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H*(G; M), and so that the differentials are products of the chosen generators 
of I. By definition this is holimsUKs(x) 0 H'(C) H*(G;M), and by definition, its 

<-

homology is the local homology in the statement. 
For the Tate spectral sequence we combine these methods to form the double 

complex 

holimt Hom( L[::; t], holims T' [2: sJ 0 c M). 
-+ <-

13. Gorenstein localizations 

In this final section we point out that a local cohomology theorem in the sense of 
Section 12 implies a strong duality theorem in certain cases. The idea is that the 
local cohomology theorem gives a covariant equivalence of two objects that are 
quite generally contravariantly equivalent using a universal coefficient theorem. 
The composite contravariant self-equivalence is the duality. 

To motivate the name, we recall that under mild hypotheses, a commutative 
complete local k-algebra (R,I, k) of dimension d is Gorenstein if Hj(R) = H1(R) 
(i.e., R is Cohen- Macaulay) and in addition 

R = HomR(H1(R), RV) = HomR/ I(H1(R), R/1) 

where M V = HomR/ I (M, R/1). We want to consider a homotopy level version of 
the Gorenstein condition on the unit object S in a stable homotopy category e. 
To make sense of this we need (i) a second stable homotopy category e with unit 
object S, (ii) a 'restriction' functor r: e ---> e, thought of as a forgetful map, and 
required to be lax monoidal, and (iii) an 'inflation' functor i: e ---> e, splitting 
the forgetful map, and also required to be lax monoidal. This gives sense to the 
statement that S is an S-algebra. Now take I = ker(S* ---> S*), and say that Sis 
homotopically I -Gorenstein if it is complete and there is an equivalence 

S ~ F(rI(S) , SV) = FS(rI(S), S) 

where XV = Fs(X, S), and where the S-function object is an additional piece of 
structure. 

To see that the homotopical Gorenstein statement has force, suppose S* is 
a field. We then remark that if S is homotopically Gorenstein and S* is Cohen
Macaulay then S* is Gorenstein. Indeed, if S* is Cohen- Macaulay of dimension d, 
then 71"*(r I (S)) = H1(s*) from the spectral sequence of Section 6, and in the 
presence of a universal coefficient theorem we find a spectral sequence 

*,* d -Exts. (HI (S*), S*) => S*. 

If in addition S* is a field, this states that S* is the dual of H1(s*) and so S* is 
Gorenstein. See [21J for further investigation. 

The principal example of the present formal setup is when e is the category 
of equivariant R-modules for a highly structured split ring spectrum Rand e 
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is the category of non-equivariant R-modules. The relevant functors have been 
constructed by Elmendorf and May [15, 37]. 

In this case the augmentation is right adjoint to product with A = G +, 
and there is additional structure since the completion Xjl = F(EG+ , X) and the 
torsion r A(X) = EG+I\X both have homotopy described in nonequivariant terms. 
It is pointed out in the appendix to [21] that when there is a local cohomology 
theorem, R~ = F(EG+,R) is homotopically Gorenstein. Recalling that S = R 
in the equivariant category and S = R in the non-equivariant category, we may 
summarize the proof as follows 

The first equivalence is the local cohomology theorem, the second is 2.3 and the 
third is the split condition. 

We remark that one expects a twisting in the application of the universal 
coefficient theorem when G is not a finite group. For example with a compact Lie 
group G, the twisting is given by the adjoint bundle in the Adams isomorphism. 
Similarly the twisting is given by the dualizing module for a virtual Poincare 
duality group as in [8]. The twisting is built from the invertible object ST in the 
sense that it is essentially ST on each copy of A used to build r A(S), Thus, when G 
is a compact Lie group of dimension d, the adjoint bundle is a trivial d-dimensional 
bundle over any cell sn 1\ G +. 

The existence and implications of the homotopy Gorentstein duality state
ment has been investigated for the cohomology of groups [19, 9, 8, 21], and for 
coefficients of equivariant cohomology theories in [17, 25, 26, 27] . We remark here 
that there is a precise formal similarity with Gross- Hopkins duality [28, 30, 41], 
which states that the Brown- Comenetz dual I MnX of the monochromatic section 
MnX is a twisted suspension of LK(n)DX for suitable finite spectra X, where MnX 
is the fibre of LnX -t Ln-1X. Hopkins and Ravenel have proved there are spec
tral sequences for calculating the homotopy of MnX and LK(n)X whose E 2-terms 
are the cohomology of the profinite group r = Sn ><l Gal(1F pn /IF p) with suitable 
coefficients, where Sn is the Morava stabilizer group. Furthermore, r is a p-adic 
Lie group; if it is p-torsion free it is a Poincare duality group, and in general its 
cohomology has a local cohomology theorem as in [8] (the proof in the discrete 
case carries over to the profinite case in the category of Symonds- Weigel [42]). 
The local cohomology theorem at the E2 level is the precise counterpart of the 
Gross- Hopkins duality between the spectra. 
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Serre's theorem and the Nilz filtration 
of Lionel Schwartz 

J esper G rodal 

Abstract. We give three different cohomological characterizations of classify
ing spaces of p-compact toral groups amongst finite Postnikov systems sat
isfying mild conditions. This leads to a unifying generalization of previous 
versions of Serre's theorem on the homotopy groups of a finite complex. 

1. Introduction 

In the heart of all generalizations of Serre's theorem on the homotopy groups of a 
finite complex (d. e.g. [17, 12, lO, 11,4,6]) there have implicitly or explicitly been 
statements about the 'non-finiteness' of the mod p cohomology of a finite Postnikov 
system. The negations of these statements say that a space with 'finite' mod p co
homology has infinitely many nontrivial mod p homotopy groups (that is, infinitely 
many homotopy groups are not uniquely p-divisible). Such statements can then in 
some cases (but not all, d. Remark 4.5) afterwards be improved to showing that 
the space has infinitely many homotopy groups containing p-torsion, by employing 
a method of McGibbon and Neisendorfer [12]. We put these generalizations into 
a common framework by offering the following cohomological characterizations of 
classifying spaces of p-compact toral groups amongst finite Postnikov systems. 

Theorem 1.1. Let X be a connected finite Postnikov system with 7rI X a finite 
p-group and H*(X; F p) of finite type. The following conditions are equivalent. 

1. QH*(X;Fp) E JlJZi2 . 

2. H*(X;Fp) is of finite transcendence degree. 
3. H*(X;Fp) is noetherian. 
4. X is F p-equivalent to the classifying space of a p-compact toral group. 

Here Q denotes the indecomposables, and JlJZi2 refers to the Nil filtration 
of the category U of unstable modules over the Steenrod algebra of Schwartz [15]. 
(Note that locally finite modules over the Steenrod algebra lie in JlJZi2 .) Recall that 
two spaces are said to be F p-equivalent if they become homotopy equivalent after 
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Key words and phrases. Postnikov system, unstable module, Nil filtration, Serre's theorem, 
p-toral group, p-compact group. 
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Bousfield H * ( -; F p) localization [1]. Furthermore, recall that a classifying space 
of a p-compact toral group is a space which fits as the total space in a fibration 
sequence over K(P, 1) with fiber K(Z~, 2) for some n < 00, where Zp denotes the 
p-adic integers and P is a finite p-group (cf. [5]). 

The theorem extends results in [6], and also the generalization of Serre's 
theorem of [4] can be easily recovered and generalized (Theorem 4.4). 

To prove the results we study the N ill filtration and its relation to the 
Eilenberg-Moore spectral sequence, using the methods of Schwartz [15], and use 
this to reduce the theorem to results of [6]. 

I am grateful to W. Dwyer and B. Shipley for helpful discussions and sug
gestions, and to B. Shipley for making an early thesis proposal [18] on a similar 
topic available to me. 

2. Notation and preliminaries 

By a space we mean, for simplicity, an object in the homotopy category of finite 
pointed CW-complexes. A connected finite Postnikov system is a connected space 
such that 7riX = 0 for i large. Throughout we abbreviate H* (X; F p) to H* X 
where p is a fixed but arbitrary prime. 

We now state some basic facts about the Eilenberg- Moore spectral sequence 
and the Nill filtration. 

2.1. The Ellenberg-Moore spectral sequence 

The cohomological Eilenberg- Moore spectral sequence of a fibration D ~ E ~ B 
over a connected space B is a second quadrant spectral sequence with E2-term 
given by E~' * = TorN> B(F p, H* E) as an unstable module over the Steenrod alge
bra A [14]. The columns E:'*, s :::; 0, r ~ 2 are likewise unstable A-modules, and 
the differentials dr : E:'* ~ E:+r,* are A-linear of degree -(r - 1). The spectral 
sequence converges strongly to H* D when H* E and H* B are of finite type and 
7rlB acts nilpotently on H* D [3]. Specifically, there is a cocomplete filtration of 
A-modules of H* D, 

H* D=> · . . Fs => Fs+1 => ... => Fo => Fl = 0 

such that 'E,-S Fs/ Fs+1 ~ E'!:,o* . 

2.2. The Nill filtration 

An unstable module M is said to be l-nilpotent if it is the coli mit of unstable 
modules each having a finite filtration whose filtration quotients are l-suspensions. 
(For some equivalent definitions of l-nilpotency see for example [16], which is also 
a general reference for other facts concerning unstable modules over the Steenrod 
algebra.) Let N ill denote the full subcategory of U of l-nilpotent modules. We 
hence get a decreasing filtration 

... cNil2 C Nill = Nil cNilo =U 
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of U with the property that N ill equals the usual subcategory of nilpotent modules 
Nil and nlNill = o. It is often more convenient to work with the slightly larger 
subcategory ;:;ntl which is the smallest Serre class in U that contains N ill and 13, 
the category of locally finite modules, and is closed under colimits. A more concrete 
description Of;:;ntl is given by observing that M E ;:;ntl if and only if M?l E N ill. 

3. Relations between Q H* X and H*o'X 

In this section, we study the relation between the N ill filtration and the Eilenberg
Moore spectral sequence using the methods of Schwartz [15]. Our Theorem 3.1 can 
fairly easily be derived directly from [15, 16], but since we need the results under 
slightly weaker assumptions than the ones used in [15, 16], and think that insight 
is gained from a direct proof, we give one. 

Define the nil potency degree of an unstable module M as the largest l, such 
that M E ;:;ntl. If M is locally finite we say that the nilpotency degree of M is 
infinite. We start by giving a proof of the key result about the nil potency degree. 

Theorem 3.1. Let X be a connected space with ?f1X a finite p-group and H* X of 
finite type. For any l ~ 0, QH* X E ;:;nt1+1 if and only if H*OX E ;:;ntl. 

Proof. Since we assume that ?f1X is a finite p-group, it acts nilpotently on the 
F p-vector space H*OX, since the group-ring F p?f1X has nilpotent augmentation 
ideal. Hence the Eilenberg- Moore spectral sequence for the path-loop fibration 
over X converges strongly to H* OX. 

For an unstable algebra K we have by [16, Lemma 8.7.6] that 

QKE;:;ntn implies that TorK(Fp,Fp)E;:;ntn-s-1. (3.1) 

Assume that QH*X E ;:;nt1+1. This implies that Tor~'x(Fp,Fp) E ;:;ntl-s, so 
E-s Fs/ Fs+1 E ;:;ntl-s. Thus, Fs/ Fs+1 E;:;ntl for all s which gives H*OX E ;:;ntl. 

To prove the other direction assume that H* OX E ;:;ntl so EfI* OX E ;:;ntl+ 1· 
If QH* X E 13 we are done; else let n be the nilpotency degree of QH* X. Consider 
the canonical map 

QH* X = E:;l ,* -> E~l , * '---+ Efrox. 

We claim that this map has kernel in ;:;ntn+1. To see this, first note that since 
QH* X E ;:;ntn we have that E;r-1 E ;:;ntn+r by (3.1). Therefore the image 
of dr : E;r-1,* -> E;l ,* is in ;:;ntn+1 by the fact that dr is A-linear of degree 
- (r - 1), and this establishes the claim. Since ;:;ntl is a Serre class we get that 
n ~ min{n+ l,l + I}, so n ~ l + 1 as wanted. 0 

Corollary 3.2. Let X be a connected space with ?f1 X a finite p-group and H* X 
of finite type. We have that QH* X is locally finite if and only if H*OX is locally 
finite . 0 
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Remark 3.3. Note that one of the main results in [5J can be formulated as saying 
that if H*o'X is finite over F p then QH* X is finite over F p - here the converse 
is however far from being true. 

Theorem 3.1 makes it desirable to understand the relationship between the 
nilpotency degree of K and QK for an unstable algebra K . In general the nilpo
tency degree can differ radically if K is not in 1Til1 , for example for any finite 
group G whose order is divisible by p, QH* BG E B but H* BG rt.1Til1 . However 
the next proposition shows that this is the only thing that can go wrong. 

Proposition 3.4. Let K be a connected unstable algebra and assume that K E 1Til1 . 

Then K E 1Til1 if and only if QK E 1Til1. 

Proof. It is clear that QK E 1Till if K E 1Till . To see the converse suppose that 
QK E 1Till . The statement is trivially true for l = 0,1 , so suppose that l :::: 2 and 
assume by induction that the statement is true for l - 1. 

It is straight forward to see that kO = 0 and k E Nill-1 ensures that 
k ® k E 1Till (cf. [15, Cor. 1.9]). (Here k denotes the augmentation ideal of K .) 
Hence both Q K and k ® k lie in 1Till , so k E 1Till as well, by the defining 
sequence of QK and the fact that 1Till is a Serre class. This shows that K E 1Till 
as wanted. 0 

4. Generalizations of Serre's theorem 

In this section we use the results of the preceding section to prove the promised 
generalizations of Serre's theorem on the homotopy groups of a finite complex. 

Before doing this, however, we prove a general result which says that the 
transcendence degree of the cohomology ring decreases when passing to covers. To 
get the result in its best form we use the Sullivan p-adic completion (see [13]), which 
coincides with the Bousfield- Kan F p-completion on spaces with mod p cohomology 
of finite type [13, 3.4J. (We will actually only need the result for spaces with mod p 
cohomology of finite type, where references to [13J can be replaced by references 
to [9J .) 

Theorem 4.1. Let X be a Sullivan p-adically complete space. Then the transcen
dence degree of H* X (1) is less than or equal to the transcendence degree of H* x. 
Proof. First note that we may assume that X is connected. Recall that, by the 
work of Morel [13J, for any Sullivan p-adically complete space X and any elemen
tary abelian p-group V, [BV, XJ = Homx:(H* X, H* BV), where [-, -J denotes free 
homotopy classes of maps and Homx:: denotes Hom in the category of unstable al
gebras over the Steenrod algebra. By [8J the transcendence degree of H* X is equal 
to the transcendence degree of the functor [B-, XJ = Homx:(H* X, H* B-) from 
elementary abelian p-groups to profinite sets. One definition of the transcendence 
degree of the functor [B -, XJ is the rank of the largest elementary abelian p-group 
V such that there exists 8 E [BV, XJ which cannot be written as s = 8' 0 Br.p, 
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where <p E End V is singular (see [8], [6, Prop. 5.8]). Since [BV, X] is obtained 
from [BV, X]Pt by taking the quotient under the action of 7fI X we especially see 
that [B-, X] and [B-, X]Pt have the same transcendence degree. 

The principal fibration 7fI X -t X (1) -t X shows that the map 

[BV,X(I)]pt -t [BV,X]pt 

is injective, so the transcendence degree of [B -, X (1)] is less than or equal to that 
of [B-, X]. Since X (1) is again Sullivan p-adically complete (see [13, 1.3, 1.4]) we 
conclude that the transcendence degree of H* X (1) is less than or equal to that 
of H*X. 0 

Theorem 4.2. Assume that X is a connected finite Postnikov system, with 7fI X a 
finite p-group and H* X of finite type. Then QH* X E JJ7i2 if and only if X is 
F p-equivalent to the classifying space of a p-compact toral group. 

Proof. If X is F p-equivalent to the classifying space of a p-compact toral group, 
then OX is F p-equivalent to a disjoint union of circles, so especially H*OX E JJ7iI , 

so Q H* X E JJ7i2 by Theorem 3.1. 
To see the converse, assume that QH* X E JJ7i2 . Since 7fI X is a finite 

p-group the Bousfield-Kan F p-completion of X is F p-complete and is again a 
finite Postnikov system by [2, II.5.1], so we may assume that X is F p-complete. 
Hence OX is also Fp-complete [2] [5,11.9]. By for example the Eilenberg-Moore 
spectral sequence, H*OX is also of finite type so both X and OX are Sullivan 
p-adically complete. By Theorem 3.1 H*(OX) E JJ7iI , so Theorem 4.1 implies 
that also H*((OX)(I)) E JJ7i1 . Likewise, as above, H*((OX)(I)) is of finite type. 

We therefore have that (OX)(I) is a one-connected finite Postnikov system 
with cohomology in JJ7i1 and of finite type, which by [6, Thm. 1.1] implies that 
H*((OX)(I)) = O. So X is homotopy equivalent to its second Postnikov stage P2 X, 
since both spaces are Fp-complete. Since H*OP2 X E JJ7iI , the abelian group 7f2X 
cannot have p-torsion, as this would imply the existence of an element of infinite 
height in the mod p reduced cohomology ring of 0oP2X = K(7f2X, 1) by standard 
group cohomology (or [9]). (00 denotes the zero component of the loop space.) 
Hence X is an F p-complete space with homotopy only in dimensions 1 and 2, 
and 7f2X p-torsion free. But this means that 7f2X is a torsion free Ext-p-complete 
abelian group and hence isomorphic to Z; for some n (cf. [2, p. 181]' [7]). Since 
H* X is of finite type we have n < 00. This completes the proof. 0 

Combining Theorem 4.2 with the results in [6] now enables us to give a proof 
of the main Theorem 1.1. 

Proof of Theorem 1.1. By [5, Prop. 6.9, 12.1], 4 implies 3. Condition 3 obviously 
implies 1 and 2, and the implication 1 implies 4 follows from Theorem 4.2. The 
remaining 2 implies 4 follows easily from [6]. Namely, assume that the trans
cendence degree of H* X is finite. We can assume that X is F p-complete. By 
Theorem 4.1, H* X(I) likewise has finite transcendence degree. Now, X(I) is an 
F p-complete one-connected finite Postnikov system with H* X (1) of finite type, 
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which by [6, Thm. 1.2] means that X (1) is homotopy equivalent to K(Z;, 2) for 
some n < 00. Hence X is F p-equivalent to the classifying space of a p-compact 
toral group. 0 

Remark 4.3. Note how 1 and 2 are complementary, in the sense that 2 is a state
ment about the ring structure of H* X, whereas 1 is a statement about the Steenrod 
algebra action on what is left when you kill all products. 

Using the 'McGibbon- Neisendorfer trick', which basically says that an arbi
trary space cannot have locally finite cohomology and have infinitely many non
trivial homotopy groups which are all p-torsion free , we can now easily strengthen 
the result of Dwyer and Wilkerson [4] . We show that the 2-connected assumption 
on their result was only necessary to exclude classifying spaces of p-compact toral 
groups. 

Theorem 4.4. Assume that X is a connected space, with 7l" l X a finite p-group and 
H* X of finite type. If Q H* X is locally finite as a module over the Steenrod algebra 
then X is either F p-equivalent to the classifying space of a p-compact toral group, 
or it contains p-torsion in infinitely many of its homotopy groups. 

Proof. Assume that X is not F p-equivalent to the classifying space of a p-compact 
toral group. By Theorem 4.2, X cannot be F p-equivalent to a finite Postnikov 
system, in other words 7l"i(X; Zip) i- 0 for infinitely many i. But H*nX is also 
locally finite by Corollary 3.2 which by [12, p. 255] implies that 7l"iX actually has 
p-torsion for infinitely many i. 0 

Remark 4.5. The above theorem is not a true generalization of Theorem 4.2 for a 
good reason. The assumptions in Theorem 4.4 cannot be weakened to the assump
tion QH* X E J\Til2 , as is demonstrated by setting X = BSU, the classifying space 
of the infinite special unitary group. Indeed, H* SU E J\Till , so Q H* B SU E J\Til2 
by Theorem 3.1. But BSU is obviously neither the classifying space of a p-compact 
toral group nor does it contain any p-torsion in its homotopy groups by Bott pe
riodicity. (See also [11].) 
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New relationships among loopspaces, 
symmetric products, and Eilenberg 
MacLane spaces 

Nicholas J. Kuhn 

Abstract. Let T(j) be the dual of the lh stable summand of n2 S3 (at the 
prime 2) with top class in dimension j. Then it is known that T(j) is a retract 
of a suspension spectrum, and that the homotopy colimit of a certain sequence 
T(j) -+ T(2j) -+ .. . is an infinite wedge of stable summands of K(V, 1)'s, 
where V denotes an elementary abelian 2 group. In particular, when one starts 
with T(I), one gets K(Z/2, 1) = Rpoo as one of the summands. 

I discuss a generalization of this picture using higher iterated loopspaces 
and Eilenberg MacLane spaces. I consider certain finite spectra T(n,j) for 
n, j ~ 0 (with T(I,j) = T(j)), dual to summands of nn+lsN, conjecture 
generalizations of the above, and prove that these conjectures are correct 
in cohomology. So, for example, T(n,j) has unstable cohomology, and the 
cohomology of the hocolimit of a certain sequence T( n , j) -+ T( n, 2j) -+ ... 

agrees with the cohomology of the wedge of stable summands of K(V, n)'s 
corresponding to the wedge occurring in the n = 1 case above. 

One can also map the T(n,j) to each other as n varies, and here the 
cohomological calculations imply a homotopical conclusion: the hocolimits 
that are nonzero, T(oo,2 k ), for k ~ 0, map to each other, giving rise to 
a fitration of HZ/2 which is equivalent to the mod 2 symmetric powers of 
spheres filtration. 

Our homotopical constructions use Hopf invariant methods and loop
space technology. These are quite general and should be of independent in
terest. To study the action of the Steenrod operations on the cohomology of 
our spectra, we derive a Nishida formula for how X(Sqi) acts on Dyer- Lashof 
operations. This should be of use in other settings. In an appendix, we ex
plain connections with recent work by Greg Arone and Mark Mahowald on 
the Goodwillie tower of the identity. 

1. Introduction 

With all spaces and spectra localized at 2, let T(j) be the (2j)th dual of the ph 
stable summand of n2 S3. These finite complexes were explored in the 1970's and 

Partially supported by the N.S.F. and the C.N.R.S .. 
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1980's in work by M. Mahowald, E. Brown, S. Gitler, F. Peterson, R. Cohen, 
G. Carlsson, H. Miller, J. Lannes, and P. Goerss, among others. (Entries into the 
extensive literature include [33, 5, 8, 37, 28, 12, 15J.) They played an essential 
role in a number of the major achievements in homotopy theory during this time: 
Mahowald's construction [33J of an infinite family of 2-primary elements in 7r~ (SO) 
having Adams filtration 2; Goerss, Lannes, and F. Morel's work [12J on representing 
mod 2 homology by maps from (desuspensions of) the T(j) 's; and Miller's proof 
of the Sullivan conjecture [37J. 

All of this work is a reflection of unexpected "unstable" properties of the 
T(j) 'so [33J is based on two facts: that as modules over the Steenrod algebra, the 
cohomology of the T(j) are dual Brown- Gitler modules, and that one can construct 
maps T(j) --> T(2j) realizing on cohomology certain canonical maps between these. 
[8, 37J are then based on the connection, just on the level of cohomology, between 
the classifying spaces BV of elementary abelian 2 groups V, and the homotopy 
colimits of the sequences 

T(j) --> T(2j) --> T( 4j) --> . ... 

It is not hard to show that this cohomological connection can be realized homo
topically: these hocolimits are always infinite wedges of stable wedge summands 
of BV's. In particular, if one starts with T(l), one gets B(Zj2) as a summand. 
Finally, that T(j) has unstable cohomology is explained by the fact that T(j) is 
homotopic to a dual Brown- Gitler spectrum, which can be shown to be a wedge 
summand of suspension spectrum [27, 11 , 15J. ([12J shows much more.) 

In this paper, we first show that , at least on the level of cohomology, certain 
finite complexes T( n, j) arising from nn+! SN appear to be unstable, and to be 
related to the Eilenberg-MacLane spaces K(V, n) in the same way that the T(j) 
are related to the spaces BV. Second, we let "n go to 00", and obtain homotopical 
connections between these finite complexes and symmetric powers of spheres. 

What I prove involves, first of all, some new observations about loopspace 
machinery and the Nishida relations which should be of independent interest. For 
Theorem 1.6 (which describes T(n,j) as n goes to 00) , the author's old work on 
the Whitehead conjecture [19, 20J is needed. The proof of Theorem 1.9 (which 
describes how the T(n,j) are cohomologically related to K(V, n)'s) uses much of 
what the author knows about the relationship between the category of unstable 
modules over the Steenrod algebra and the "generic representation" category of 
[23, 24, 25J . 

What I can't yet prove, but only conjecture, seems to suggest that there is 
a remarkable "naturally occurring" infinite loopspace (or perhaps Eoo- ring spec
trum) waiting to be discovered. 

To explain our main results, we need to introduce our cast of characters. 
Recall that [34], if X is path connected, there is a stable decomposition 

~oonn~n X ~ V ~oo Dn,jX, 
j~l 
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where Dn,jX = C(n, j)+ AE j xlj]. Here C(n,j) is the configuration space of j tuples 
of distinct 'little cubes' in In, a space acted on freely by the ih symmetric group 
~j, and Xlj] denotes the j-fold smash product of X with itself. 

For a given nand j, there is a natural number d and a natural equivalence 

Dn,j(~d X) c::= ~dj Dn,jX, 

thus allowing Dn,jX to be defined for a finite spectruml. 

Definition 1.1. For n ~ O,j ~ 0, let T(n,j) be the S-dual of Dn+l ,j(s-n). 

T(n,j) is a finite spectrum with top cell in dimension nj, and with bot
tom mod 2 homology in dimension na(j), where a(j) denotes the number of 
I's in the 2-adic expansion of j. As examples, we note that , for all j and n , 
T(O,j) = Sa = T(n,O), T(n,I) = sn, T(I,j) = T(j) as above, and T(n,2) = 
cofiber {~nRP~-l -+ sn}. 

This bigraded family of finite spectra has some extra structure we will need. 
The H-space structure on loopspaces induces copairings 

iII : T(n, k) -+ V T(n, i) A T(n , j). 
i+j=k 

Evaluation on loopspaces induces maps 

{y : T(n,j) -+ ~-lT(n + I , j). 

Finally, looping Hopf invariants, together with the above periodicity, induces "Fro
benious" maps 

cI> : T(n,j) -+ T(n, 2j). 
These three families of maps will be shown to be compatible in the expected ways. 
In particular, {y and cI> commute up to homotopy. 

Our first result is a description of H*(T(n,j); Z/2) as a module over the mod 
2 Steenrod algebra A. Following the lead of others in the n = 1 case [8, 37, 30], we 
describe the bigraded object H*(T(n, *); Z/2), with the extra structure afforded 
by iII* and cI>*. We need first to define variants on the category U of unstable A 
modules, and the category K of unstable A algebras. 

Let Up be the category whose objects are pairs (M, p): M = M*,* is an 
N x N[~l graded Z/2 vector space2 whose columns M*,j are unstable A modules, 
and p : M -+ M is a collection of A linear maps p : M*,2j -+ M*,j. Morphisms in 
Up are just maps f : M -+ N preserving all structure. 

Let Kp be the category of "restricted algebras in Up" , i.e. commutative, unital 
algebras K in Up (a category with a tensor product) satisfying the "restriction 
axiom": Sqlxlx = (p(X))2 for all x E K. 

Let Up : Up -+ Kp be the free functor, left adjoint to the forgetful functor. 
Explicitly, Up(M, p) = S*(M)/(Sqlxlx - (p(X))2). 

IThere are more sophisticated ways to do this. See §2. 
20ften N x N graded vector spaces will be considered N x N[!J graded by setting M.,j = {O} 

for j (j N. 
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If I = (i l , ... , il), we set SqI = Sqi 1 ... Sqil, l(I) = l, and e(I) = (i l -
2i2) + ... + (il- l - 2il) + il' I is called admissible if is 2: 2is+l for all s. Define 
E(n), L(k) C A by 

E(n) = (SqI I I is admissible and e(I) > n) 

L(k) = (Sll I is admissible and l(I) > k). 

Both of these are known to be left A modules [40, Prop. 1.6.2], [36J . Now let F(n, k) 
be the unstable A module 1:n(A/(E(n) + L(k))), and then let Fp(n) E Up be the 
pair (EBk>O F(n, k), p), where F(n, k) has second grading 2k, and p: F(n, k+ 1) ---> 

F( n, k ) is-the projection. 

Theorem 1.2. Let n 2: 1. With multiplication and restriction given by \lI* and <I>* , 

H*(T(n, *)j Z/2) ~ Up(Fp(n)) 

as objects in Kp. In particular, H*(T(n,j)j Z/2) is an unstable A module. 

This theorem suggests 

Conjecture 1.3. T(n,j) is a stable wedge summand of a suspension spectrum. 

This is known to be true when n = 1 [27, 11, 15J. 
To discuss stablizing T(n,j) with respect to 8, we make the following defini

tion. 

Definition 1.4. T(oo,j) = hocolim { T(O,j) ~ ... ~ 1:-nT(n,j) ~ ... }. 

Theorem 1.5. 
(1) T( 00, j) ~ * unless j is a power of 2. 
(2) H*«T(oo, 2k)j Z/2) ~ AI L(k) as A modules. 

The A module A/ L( k) is already known to arise as the cohomology of a 
spectrum: it is the cohomology of spt (SO), the cofiber of the diagonal map 6. : 
Sp2k- 1 (SO) ---> Sp2k (SO) between symmetric products of the sphere spectrum SO 
[38J. 

Theorem 1.6. The sequence T( 00,1) ---> T( 00,2) ---> T( 00,4) ---> •.. 

is equivalent to the sequence S p}:. (So) ---> S pX (So) ---> S 11 (SO) ---> • • •• 

In particular, T(oo, 2k) ~ spt (SO). 

Thus the maps T(00,2k) ---> T(oo, 2k+l) have the striking properties proved 
in [19], e.g. they induce the zero map in homotopy groups in positive degrees. 

Corollary 1.7. hocolim 1:-nT(n, 2k) ~ HZ/2. 
n,k~oo 

We now turn our discussion to how T( n, j) stablizes with respect to <I>. 

Definition 1.8. <I>-IT(n,j) = hocolim {T(n,j) ~ T(n,2j) ~ T(n,4j) ~ . . . } 
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Our last theorem identifies H*(q,-lT(n,j); Z/2) as the cohomology of an in
finite wedge of certain stable summands of the Eilenberg MacLane spaces K(V, n), 
in a manner that is independent of n. In particular, just as H*(K(Z/2 , 1); Z/2) 
was shown in [8] to be an A module direct summand of H*(q,-lT(l, 1); Z/2) , so 
is H*(K(Z/2, n); Z/2) an A module summand of H*(q,-lT(n, 1); Z/2). 

To be more precise, we need yet more notation. As in [23, 24, 25], let :F be 
the category with objects the functors 

F : finite dimensional Z/2 vector spaces -+ Z/2 vector spaces, 

and with morphisms the natural transformations. For example, sj and Sj, defined 
by Sj(V) = V0j /Ej and Sj(V) = (V0j)E j , are objects in:F. 

Let A be an indexing set for the simple objects in this abelian category: 
algebraic group considerations suggest a number of A's, e.g. the set of 2-regular 
partitions [24, Sections 5 and 6]. Given A E A, let F>. E :F be the correspond
ing simple object, V>. a vector space large enough so that F>.(V>.) #- 0, e>. E 
Z2[End(V>.)] an idempotent chosen so that Z/2[End(V>.)]e>. is the projective cover 
of the Z/2[End(V>.)] module F>.(V>.), and K(A, n) = e>.Eoo K(V>., n) the corre
sponding stable summand of K(V>., n). Finally, given A E A and j = 0, 1, ... , 
define a(A,j) EN by 

2k . 
a(A,j) = dimz/2Hom:F(F>.,S J), for k» O. 

Theorem 1.9. H*(q,-lT(n,j);Z/2)::: H*(V a(A,j)K(A,n);Z/2) asA modules. 
>'EA 

(Here Vi biYi means that each Yi occurs in the wedge sum with multiplicity 

We remark that these large A modules are nevertheless of finite type. 

Conjecture 1.10. q,-lT(n,j) ::: V a(A,j)K(A, n) . 
>'EA 

Some form of the following has been known to the experts3 since the late 
1980's. 

Proposition 1.11. This conjecture is true when n = 1. In particular, q,-lT(l,l) 
has B(Z/2) as a stable summand. 

The organization of the rest of the paper is as follows. 
§2, §3, and §4 are devoted to the geometric constructions used to define 

the three families of maps 'It,q, , 8 on the T(n,j). In hopes that these will be 
useful in other settings, we develop this material with perhaps more care than is 
traditional (at one point, proving a lemma using ideas from "Good willie calculus"). 
Theorem 2.4 summarizes our main geometric results. In §5, properties of these 
constructions are combined with standard formula [9] for the homology of iterated 
loopspaces to give descriptions of H*(T(n , j); Z/2), 'It*, q,*, and 8* in terms of 

3By "experts" here I mean at least the authors of [29], as well as myself. 
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Dyer-Lashof-like operations. The standard Nishida relations then yield recursive 
formulae for how X(Sqi) acts on H*(T(n,j); Z/2); we deduce more useful formulae 
for how Sqi acts in §6. These should be of some independent interest. Theorem 1.2 
and Theorem 1.5 are then deduced in §7. Using the author's proof of the Whitehead 
conjecture, Theorem 1.6 is quickly deduced from Theorem 1.5 in §8. 

The proof of Theorem 1.9 is rather different. Recall [23] that there are adjoint 
functors 

U~F, 
where r(F) = HomF(S*, F), with the Steenrod operations acting on the right of 
the Sj in the obvious way. Let h E F be the injective envelope of the simple 
functor FA' and let <I>-lsj E F be defined by 

<I>-lsj = colim {Sj ~ S2j ~ S4j ~ S8j .. . }, 

where <I> : sj --+ S2j is the squaring map. 
The "Vanishing Theorem" of [24] says that <I>-lsj is an injective object in 

the category Fw C F of locally finite functors. It follows formally that there is a 
decomposition in F 

<I>-lsj ~ EB a(A,j)h. 
AEA 

Precomposing this with the functor Sn , and then applying the functor r, yields a 
decomposition in U 

<I>-lr(sj 0 Sn) ~ EBa(A,j)r(IA 0 Sn). 
AEA 

The classical description of H*(K(V, n); Z/2) reveals that 

r(h 0 Sn) = H*(K(A, n); Z/2), 

so the righthand side of this last decomposition agrees with the right hand side of 
the the isomorphism in Theorem 1.9. Meanwhile, the lefthand side of the isomor
phism of Theorem 1.9 is known by Theorem 1.2; this is then shown to agree with 
<I>-lr(Sj 0 Sn) by using a new result of ours [26] that calculates r(Sj 0 F) as a 
functor of r(F). 

§9 contains the details of this outline of the proof of Theorem 1.9. Finally in 
§1O, we prove Proposition 1.11, as well as discussing approaches to the conjectures. 
In the appendix, we relate our spectra T( 00, 2k) to work of Arone and Mahowald 
[3]. Theorem 1.6 thus gives new information about their constructions. 

We wish to give hearty thanks to Doug Ravenel. This project had its origins 
in a question that he was asking in late 1994: our Conjecture 1.10 amounts to a 
refinement and extension of this. Most of our results were presented in Gargnano, 
Italy in 1995 and Toronto, Canada in 1996. An earlier version of this preprint was 
circulated in the summer of 1996. In the two years that have followed, we have 
noticed that Theorem 1.6 follows from Theorem 1.5, and managed to connect our 
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constructions to those of Arone and Mahowald. We hope the reader familiar with 
our older version will appreciate these improvements. 

2. Geometric Constructions 

We begin by being a bit more specific about some notation introduced in the 
introduction. A point c E C (n, j) is a j tuple c = (Cl, .. . Cj) in which each Ci : 

In -+ In is a product of n linear embeddings from the unit interval I to itself, and 
the interiors of the images of the Ci are disjoint. Then the book of Gaunce Lewis, 
et. al. [32] shows that the functor 

Dn,jX = C(n,j)+ I\Ej xlj] 

is well defined in the category of spectra. 
Standard properties of equivariant homotopy then allow us to write 

T(n , j) = F(Dn+l,js-n, So) 

= F(C(n+ l , j)+ I\Ej s-nj , So) 

= F(C(n+ l , j)+,snj )Ej . 

This gives an interesting alternative (and technically simpler) definition of the 
spectra T(n , j) , reminiscent of some ofthe constructions recently occurring in the 
"Goodwillie Calculus" literature [3]. (See the Appendix.) 

Definition 2.1. Let Dn,jX = F(C(n,j)+,Xlj])Ej. 

With this definition, we have T(n,j) = Dn+l,jsn, and, more generally, if X 
is a finite spectrum, then Dn,jX = S-dual (Dn,j(S-dual (X))). 

In the usual way, the little cubes operad structure on the spaces C(n,j) 
induces natural maps 

and dually, natural maps 

III : Dn,i+jX -+ Dn,iX 1\ Dn,jX, 

and 
r: Dn,ijX -+ Dn,iDn,jX. 

In particular, we obtain maps 

Ill: T(n,i + j) -+ T(n, i) 1\ T(n,j) , 

and 
r : T(n , 2j) -+ Dn+l ,2T(n,j). 

These two families of maps provide sufficient structure for the purposes of com
puting the mod 2 cohomology of the T(n,j). 
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We turn our attention to constructing the maps 

<5 : T(n,j) ~ ~-1T(n + l,j) . 

In [18J we noted that the evaluation map 

f : ~nn+1 ~n+1 X ~ nn~n+1 X 

induces maps 

f : ~Dn+1,jX ~ Dn,j~X. 

We note that the same geometric construction also yields natural maps 
- -1 -

<5 : Dn,jX ~ ~ Dn+1,j~X. 

Both of these families are induced by explicit ~j equivariant maps 

(3: C(n + l,j)+ 1\ S1 ~ C(n,j)+ 1\ sj, 

defined as follows. 
Given a linear embedding e: I ~ I, let e* : I ~ I be the associated "Thom

Pontryagin collapse" map. Explicitly, 

{
o if t ::; Im(e) 

e*(t) = s if e(s) = t 
1 if t 2: Im(e). 

Note that (e 0 d)* = d* 0 e*. 
Given a little n + 1 cube e : In+1 ~ I n+1, we write e = e' x c", where 

e': In ~ In, and e": I ~ I. Regarding S1 as 1/01, and sj as (I/oI)[jJ, we have 
the following definition. 

Definition 2.2. (Compare with [34, page 47J.) 

(3( Cl, ... , Cj, t) = (c~, ... , cj, c~* (t), ... , e'j* (t)). 

A straightforward check of definitions yields the next proposition, which 
shows how <5 is related to the maps wand r. 

Proposition 2.3 . 
. - /j- 111- -

(1) The composzte ~Dn,i+jX ~ Dn+1,i+j~X ~ Dn+1,i~X 1\ Dn+1,j~X is 
null if i > ° and j > 0. 

(2) There are commutative diagrams: 

--------=-/j --------+-. iJ +1 X n ,1,J 

/j D- "D- X Dn+1,i/j. D- D- "X • n+1,iLJ n,j n+1,i n+1,j LJ 
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Our last and most delicate construction is of the family 

~: T(n,j) ~ T(n,2j). 

The next theorem summarizes the properties we need to know. 

Theorem 2.4. There exist maps ~n,j : T(n,j) ~ T(n,2j) such that the following 
five properties hold. 

(1) ~O,j : T(O,j) = SO ~ T(O, 2j) = SO is multiplication by (2j)!fj!2j. 
(2) There are commutative diagrams: 

ET(n,j) ~4>n , j 
ET(n,2j) 

T(n + l,j) __ 4>_n...;,+--'l • .:....j _.... T( n + 1, 2j) 

(3) For n ;::: 1, there are commutative diagrams: 

T(n,i+j) 4»n,i+j T(n, 2(i + j)) 

T(n, i) /\ T(n,j) T(n,2i) /\ T(n, 2j) 

(4) If n ;::: 1, i and j are odd, and i + j = 2k, the composite 

T(n, k) 4>,4k T(n, 2k) ~ T(n, i) /\ T(n,j) 

is null. 
(5) For n ;::: 1, there are commutative diagrams: 

T(n,2j) 4>n.2j T(n , 4j) 

jr jr 

Dn ,2T (n, j) Dn ,24>n ,j • Dn,2T (n,2j) 

Proof. Fix N ;::: 0, J ;::: O. Let S(N, J) be the collection of sets of maps S = 
{ ~n ,j InS; N,j S; J } such that properties (1)- (5) are true whenever the maps 
~n,j appearing in those statements are chosen from S. (In other words, S E S(N, J) 
makes true a finite number of the infinite lists of statements in (1)- (5).) 
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There are restriction maps S(N, J) -+ S(N -1, J) and S(N, J) -+ S(N, J -1). 
The theorem amounts to saying that the inverse limit, limS(N, J), taken over all 
Nand J, is nonempty. 

Since (1) and (2) determine <I>o,j and <I>n,o, S(N, J) can be regarded as a sub
N J 

set of II II {T(n,j), T(n, 2j)}, which is finite, as each T(n,j) is a finite complex, 
n=lj=l 

and each T(n,j) with n ~ 1,j ~ 2 is torsion. Since the inverse limit of nonempty 
finite sets is nonempty4, the next theorem completes the proof of the theorem. 0 

Theorem 2.5. S(N, J) is nonempty. 

There are two ingredients in our construction of a set {<I>n ,j} E S(N, J). The 
first is the use of vector bundle trivializations to construct natural equivalences 

Wn,j : Dn,j(Ed X) ~ Edj Dn,jX, 

for nand j in any finite range, compatible with the structure maps (E, /1, 8) . The 
second is the use of Hopf invariants to construct maps, for d > n, 

hd D sd-n D s2d-n n,j: n+l,2j -+ n+l,j 

with appropriate properties. 
The next two theorems, whose proofs occupy the next two sections, more 

precisely describe what we need. 

Theorem 2.6. Fix Nand J. Then there exists d > 0, and natural equivalences 

wn,j : Dn,j(Ed X) ~ Edj Dn,jX, 

defined for 1 S; n S; N,1 S; j S; J, such that the following diagrams commute: 
(1) for all 1 S; n S; N - 1,1 S; j S; J, 

D ·(Ed+1X) n ,] 
Wn,j 

(2) for all 1 S; n S; N, i + j S; J, 

j~ 
Wn ,i+i 

4 A standard application of the Tychonoff Theorem. 

E1+dj Dn+1 ,j (X) 

j (_l)dU-l), 

EdjD '(EX) n ,] 

j~ 
Ed(i+j) D .+ ·(X) n ,1. J 
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(3) for all 1 S n S N, ij S J, 

_______ ....::8'--_________ • Dn+l ,ijX 

Theorem 2.7. For all 0 S n < d and for all j, there exist maps 

hd D sd-n D s2d-n 
n,j: n+l,2j ----+ n+l,j 

with the following properties. 
(1) If d is even, hL : D 1,2j Sd = S2jd ----+ D 1,jS2d = S2jd is multiplication by 

(2j)!fj!2j. 
(2) There are commutative diagrams: 

Eh~,j "'D s2d-n ---=----+-. L.J n+ l,j 

Ii I E 

h~_l,j D ·s2d-n+l 
n ,) . 

(3) There are commutative diagrams: 

D S d-n 1\ D sd-n h~,i/\h~,j D s2d-n 1\ D s2d-n 
n+l,2i n+l ,2j ----'----'-'--+-. n+l,i n+l ,j 

I ~ I~ 
D sd-n 

n+l,2(i+j) 
h~,i+j 

(4) If i and j are odd, and i + j = 2k, the composite 

hd 

D S d-n 1\ D sd-n ~ D sd-n n ,k D s2d- n 
n+l,i n+l ,j -----+ n+l,2k -----+ n+l ,k 

is null. 
(5) There are commutative diagrams: 
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D Sd-n 
n+l,4j 

N. Kuhn 

Dn .2h~.j D D s2d-n ___ .c:-. __ • n ,2 n+l,j 

h~.2j D S 2d-n 
n+l,2j . 

Assuming these two theorems, we note that Theorem 2.5 follows easily. First 
choose d as in Theorem 2.6 (but with J replaced by 2J). We can also assume d is 
even. Then, with h~,j as in Theorem 2.7, we define <Pn,j : T(n,j) ~ T(n,2j) to 
be the S-dual of the composite 

W;;,~j ~-2djD .sd-n h~ .j ~-2djD .s2d-n w~.j D .S-n 
D n + 1,2j s-n ----+ L..J n+l ,2} ----+ L..J n+l ,} ----+ n+l,} . 

Courtesy of Theorem 2.6, each statement in Theorem 2.7 translates immedi
ately into the corresponding statement in Theorem 2.4, proving Theorem 2.5. 

3. Quasiperiodicity of the Sphere Spectrum 

In this section we prove Theorem 2.6, which asserts that given Nand J, there 
exists d > 0 and natural equivalences 

Wn,j : Dn,j (~d X) ~ ~dj Dn,j X, 

defined for 1 ::; n ::; N, 1 ::; j ::; J which are appropriately compatible with the 
three families of structure maps 

f : ~Dn+l ,jX ~ Dn,j~X, 

e: Dn,iDn,jX ~ Dn,ijX. 

To put this theorem in context, recall that as an aid to constructing power 
operations and studying Thorn isomorphisms, the authors of [6] defined the notion 
of an H! - ring spectrum. For the sphere spectrum SO to admit an H! structure 
would be roughly equivalent to natural equivalences Wn,j as in the theorem for all 
n < 00, j < 00. Though it is easy to see that this cannot be done, our theorem says 
that it partially can be. If one defines the notion of an H~ structure in the obvious 
way, we know of no reason why the following conjecture might not be true. 

Conjecture 3.1. Localized at a prime p , for each n, SO admits the structure of an 
H~-ring spectrum for some d > O. 
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The origin of the natural equivalences is as follows. 
Suppose ~ and ( are two r dimensional vector bundle over a space B, respec

tively classified by maps if. , fe; : B -> BO. Then a homotopy H : B x I -> BO be
tween if. and!c; induces an bundle isomorphism WH : ~ -> ( and thus a homeomor
phism WH : M(~) -> M(() of Thorn spaces. In particular, given a map i : B -> C 
to a contractible space C, and an extension F : C -> BO of if., there is an induced 
homeomorphism of spaces 

Furthermore, given a second extension F' : C' -> BO, WF and WF' will be homo
topic if the map 

FUf{ F': CUB C' -> BO 

is null. This last map can be regarded an obstruction o(F, F') : EB -> BO. 
We apply these general remarks to the case of interest. Let ~n ,j be the vector 

bundle 

C(n,j) XEj Rj -> B(n,j) = C(n,j)/Ej , 

with classifying map fn ,j : B(n, j) -> BO. This is easily seen to be a bundle of 
finite order, and an extension F : CB(n,j) -> BO of dfn ,j to the cone on B(n,j) 
induces a homeomorphism 

WF : C(n,j)+ I\Ej Sdj -> Eds(B(n,j)+), 

and thus a Ej-equivariant homeomorphism 

WF : C(n,j)+ 1\ Sdj -> Eds(C(n,j)+), 

and finally a natural equivalence 

W F : Dn,j (Ed X) ~ Edj Dn,j X. 

A straightforward check of definitions shows 

Lemma 3.2. In this situation, if F : CB(n,j) -> BO is the restriction of a map 
F' : CB(n + l,j) -> BO extending dfn+l ,j then the following diagram commutes: 

j € 
D ·(Ed+l X) n ,J 

Now fix Nand J as in Theorem 2.6. Let d > 0 and let F = {Fj : CB(N,j) -> 

BO I j = 1, ... , J} be a collection of extensions of the maps dfN,j. We define the 
obstruction set o(F) to be the following set of maps: 

otj(F): E(B(N,i) x B(N,j)) -> BO, 
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for i + j = J, and 

o~j (F) : r.(C(N, i) XEi B(N,j)i) --t BO, 

for ij = J, where these maps are defined as follows. 
For or,j(F), we regard r.(B(N, i) x B(N,j)) as 

C(B(N, i) x B(N,j)) UB(N,i)XB(N,j) CB(N, i) x CB(N, j) , 

and we let 

oiL .(F) = {Fi+ j 0 J..L on C(B(N, i) x B(N,j)), 
' ,J J..LBO 0 (Fi X Fj ) on CB(N, i) x CB(N, j). 

Here J..LBO : BO x BO --t BO is the H-space structure map. 
For o~j (F) , we regard r.(C(N, i) XEi B(N,j)i) as 

C(C(N, i) XEi B(N,jt) UC(N,i)XEiB(N,ili C(N, i) XEi CB(N, j)i, 

and we let 

0 8 (F) = {Fij 0 e on C(C(N, i) XEi B(N,j)i), 
',J eBo 0 (Id XEi (Fj)i) on C(N, i) XEi CB(N, j)i. 

Here eBO : C(n,i) XE i BOi --t BO is the infinite loopspace structure map. 
Theorem 2.6 will follow if we can show that there is a choice of d and F for 

which o(F) is a set of null maps. Firstly, we note that there do exist collections 
F as above: we just need to choose d equal to a common multiple of the orders of 
the bundles ~N, l "" ,~N,J. By making d possibly bigger, we can even ensure that 
F is the restriction of a similar family F defined for the pair (N + 1, J), and the 
obstruction set o(F) is the restriction of o(F). 

Given a family F, let rF be the family with yth function equal to rFj . Note 
that if Fj extends dfN,j, then rFj extends (rd)fN,j' It is easy to check 
Lemma 3.3. 

(1) or,j(rF) = ror,j(F) E Kl(B(N,i) x B(N,j)). 
(2) o~j(rF) = rO~j(F) E Kl(C(N, i) XEi B(N, j)i). 

Proposition 3.4. Let X(N) be one of the spaces B(N,j), B(N,i) x B(N,j), or 
C(n,i) XE i B(N,j)i. If x E K*(X(N)) is in the image of the restriction from 
K*(X(N + 1)) , then x is torsion. 

Postponing the proof of this proposition for the moment, we show that there 
is a choice of d and F for which o(F) is a set of null maps. Start with any family 
F (and associated d) as above. Let r be a common multiple of the orders of the 
obstructions or,j(F) and o~j(F). (Proposition 3.4 tells us that these elements do 
have finite order.) Then the family r F has an obstruction set consisting only of 
null maps, as needed. 

It remains to prove Proposition 3.4. This will follow from three lemmas. 
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Lemma 3.5. Let f : X ---- Y be a map between finite complexes. If H*(f; Q) = 
0, then Im{E*(f) : E*(Y) ---- E*(X)} is torsion for all generalized cohomology 
theories E* . 

Proof. For finite complexes Z, E*(ZQ) ::: E*(Z) 0 Q. H.(f; Q) = 0 implies that 
fQ ::: *, and thus that E'(f) 0 Q = O. 0 

Lemma 3.6. If X(N) is as in Proposition 3.4, X(N) has the homotopy type of a 
finite complex. 

Proof. There are many ways to see this. The author's favorite is to note that the 
explicit cell decomposition for B(2,j) given by Fox and Neuwirth in [10] generalizes 
to B(n, j): B(n,j) has the homotopy type of an (n - 1)(j - 1) dimensional cell 
complex with exactly n j - 1 cells. 0 

Lemma 3.7. With X(N) as in Proposition 3.4, 

H*(X(N) ; Q) ---- H.(X(N + 1); Q) 

is O. 

Proof. This follows from standard homology calculations [9]. 

4. Hopf Invariants 

In this section we use Hopf invariants to define maps 

hd D sd-n D s2d-n n,j: n+l,2j ---- n+l,j , 

o 

for 0 ~ n < d, and then show that they have the properties listed in Theorem 2.7. 
The maps are not hard to define. Let 

H y : OEY ---- OE(Y 1\ Y) 

be the classic Hopf invariant. Replacing Y by En X, and looping n times, defines 
an unstable natural map 

OnHEnX: on+1En+1X ____ on+1En+l(Enx 1\ X) . 

00 

Now let DnX denote V Dn,jX, and, for connected X, let 
j=1 

Sn : DnX ::: onEn X 

be the natural stable Snaith equivalence as studied in [32, Chapter VII]. 
Finally, 

Hn(X) : Dn+1X ---- Dn+1(En X 1\ X) 

will be the stable map given by the composite S~~1 0 (on HEn x) 0 Sn+1. 

Definition 4.1. For all 0 ~ n < d, and for all j, 

hd D sd-n D s2d-n n,j: n+l,2j ---- n+l,j 

is defined to be the (2j,j)th component of Hn(sd-n). 



200 N. Kuhn 

The first of the properties in Theorem 2.7 is easily checked. If d is even, 
hg,j : S2jd -+ S2jd is multiplication by (2j)!fj!2j, as cup product considerations 
easily show that H : OSd+l -+ S2d+l induces multiplication by this number in 
cohomology in dimension 2dj [16, p.294] . 

Property (2) of Theorem 2.7, the compatibility of h~,j with the maps €, 

follows from the main result of [18]: under the Snaith equivalence, the evaluation 

€ : Eon+lEn+l X -+ onEn+l X 

is carried to 
00 00 00 

V E: V EDn+l,jX -+ V Dn,jEX. 
j=l j=l j=l 

The remaining three properties follow from the next two propositions. 

Proposition 4.2. There is a commutative diagram: 

Here e : DnDn+lX -+ Dn+lX is the restriction of the structure map e 
Dn+1Dn+1X -+ Dn+1X. 

Proposition 4.3. The (i,j)th component of Hn(X) is null unless i ::; 2j. 

This tells us that Hn(X) can be regarded as an "upper triangular matrix" of 
maps. With this information fed into Proposition 4.2, the three last properties of 
Theorem 2.7 can be read off immediately. 

Proof of Proposition 4.3. The (i,j)th component of Hn(X) is a natural transfor
mation 

Dn+l,iX -+ Dn+l,j(EnX 1\ X) . 

In the terminology of [13], the domain is a homogeneous functor of degree i, while 
the range is a functor of degree 2j. Thus there are no nontrivial natural transfor
mations from the former to the latter if i > 2j. 0 

Remark 4.4 . This proposition presumably has a direct proof, along the lines of 
the proofs of similar results in [22]. 

Proof of Proposition 4.2. This is a consequence of the fact that Hn(X) corre
sponds to an n fold loop map. Let CnX denote the usual approximation to on En X, 
with monad structure map e : Cn Cn -+ Cn , and let Y denote En X 1\ X. 

With this notation, we assert that there is a commutative diagram: 
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The lower central square commutes since on H is a en- map. The upper 
square commutes by naturality. Finally the argument in [21, §4] shows that the 
two side trapezoids commute. 0 

5. Cohomology Calculations 

We use the following notational conventions in the next three sections. H*(X) and 
H*(X) will denote homology and cohomology with Z/2 coefficients. The binomial 
coefficient (!) is defined, for all integers a and b, as the ath Taylor coefficient of 
(x + 1)b if a 2: 0, and 0 otherwise. We will use, without further comment, that 
(!) = (a-!-l) . 

In this section we describe H* (T( n, *)), and the maps \l1* , 1>*, and J* , in 
terms of "dual" Dyer-Lashof operations. We begin by remarking that since T(n,j) 
is the S- dual of Dn+1,js-n, and H*(Dn+1,js-n) embeds in H*(Doo ,js-n) , we will 
not need to confront the Browder operations, and the "top" Dyer-Lashof operation 
will be additive (as are the others). 

As part of the general theory [9], the product maps JL induce a bigraded 
product on H*(Dn+l,*s-n), and associated to the structure maps 8, there are 
Dyer-Lashof operations 

QS : Hq(Dn+l,js-n) --+ Hq+s(Dn+l,2js-n). 

These are defined for s S q + n, and are 0 for s < q. Furthermore, these 
satisfy the Cartan formula, Adem relations, and restriction axiom: Qlxlx = x 2 . 

H*(Dn+l ,*s-n) is the free object with all this structure, generated by a class in 
degree -no 

There is a canonical isomorphism Hq(T(n,j)) = H_q(Dn+l ,js-n). Under 
this isomorphism, \l1* will correspond to {l*, and will induce a bigraded product 
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(occasionally denoted " * ") on H* (T( n, *)). We define operations 

to correspond to 

Q-S : H_q(Dn+l,js-n) ____ H_q_s(Dn+l,2js-n). 

These are defined for s 2 q - n, and are 0 for s > q. These satisfy the Cartan 
formula, 

[/(X * y) = L Crx * Cry, 
r+s=t 

Adem relations, 

and restriction axiom, 

Qixix = x 2. 

(We note that in the Adem relations, whenever the iterated operation on the left 
is defined, so are those appearing with nonzero coefficient on the right, though not 
conversely5. ) 

Theorem 5.1. H* (T( n, * )) is the free object with all this structure, generated by a 
class Xn in degree n. Explicitly, if 

Rn = (Q1xn I I is admissible )/(Q1xn I I is admissible and e(I) > n), 

H*(T(n, *)) = S*(Rn)/(Qixi x - x 2). 

Thus, as a bigraded algebra, H* (T( n , * )) is a polynomial algebra on the set 
{QI Xn I I is admissible and e(I) < n}, with QI Xn E H* (T( n, 2l(I))). 

Here, if I = (i1,,,.,il), QI = Qil".Qil, and e(I), l(I) ,and admissible 
mean what they did in §l. There is a little wrinkle here however: as QO is not the 
identity, an admissible sequence can end with D's. 

The geometric results of §2 allow us to quickly deduce the behavior of J* and 
<1>* . 

Proposition 5.2. J* : H*+l(T(n + l , j)) ---- H*(T(n, *)) is determined by 
* - I - I (1) J (Q Xn+l) = Q Xn, and 

(2) J* is 0 on decomposables. 

Proof. This follows from Proposition 2.3, and the fact that Dyer- Lashof operations 
commute with the evaluation [9, p.6, p.218j. 0 

5The relation QIQ2 = Q3QO illustrates this. 
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Proposition 5.3. <1>* : H*(T(n, *)) ---+ H*(T(n, *)) is determined by 
2 · . 

(1) When n = 0, <1>*(xoJ) = xb' 
(2) <1>*(Qsx) = QS(<1>*x) if s > Ixl - n. 
(3) Whenever the iterated operation Q1xn is defined, <1>*(Q1Xn) = Q1'xn if 

I = (I', 0), and is 0 otherwise. 
( 4) When n ~ 1, <1>* is an algebra map (with the second grading in the domain 

of <1>* doubled). 

Proof. This follows from Theorem 2.4 and the last proposition. As (2j)!jj!2j is 
always odd, statement (1) of Theorem 2.4 implies that statement (1) here is true. 
Statement (2) here is implied by statement (5) of Theorem 2.4. To see that state
ment (3) is true, we first prove this in the special case when I consists only of O's. 
Note that (1) includes the n = 0 sub case of this special case, and then the state
ment for general n follows by combining the last proposition with statement (2) of 
Theorem 2.4 (which implies that <1>* and 5* commute). Now use (2) to deduce (3) 
for general I from the special case already established. Finally, (4) follows from 
statements (3) and (4) of Theorem 2.4. 0 

Note that as a corollary of Proposition 5.2, we have partially proved Theo
rem 1.5. 

Corollary 5.4. 
(1) T(oo,j) ~ * unless j is a power of 2. 
(2) H*((T(oo ,2k)) = R[k], where R[k] 

l(I) = k). 

6. New Nishida Relations 

(Q1 Xo I I is admissible and 

In the last section, we determined H*(T(n, *)) in terms of dual Dyer- Lashof op
erations. Here we describe the Steenrod algebra action. 

The standard Nishida relations [9, p.6, p.214] tell us how (SqT)* commutes 
with QS in H*(Dn+l ,*s-n). Since X(SqT)6 acting on H*(T(n , *)) corresponds to 
(SqT)* acting on H_*(Dn+l ,*s-n), we immediately have the following formula . 

Lemma 6.1. 

Though this does completely specify the A module structure on H* (T( n, *)), 
it is in a form completely unsuitable for proving theorems like those in the intro
duction. The point of this section is to prove 

Theorem 6.2. 

6 X is the antiautomorphism of the connect ed Hopf algebra A. 
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The reader may find it amusing to compare this formula to the Adem relation 
of the last section, 

the Adem relations in A, 

SqT SqSx = '" (s - i -.1) SqT+s-i Sqix, 
~ r-2z 

i 

and the formula defining the "Singer construction" [41J 

SqT W- 1 0 x) = '" (s - i -.1) tT+s- i- 1 0 Sqix. 
~ r-2z 

i 

Proof of Theorem 6.2. With Sq denoting the total square 1 + Sql + Sq2 + ... , 
to verify the formula, it suffices to check that it is consistent with the identity 
Sq(X(Sq)) = 1 and Lemma 6.1 above. Fixing nand s, we compute 

L Sqn-TX(SqT)QSx 
T 

~ Sqn-T [~ (~~~:) QT+S-iX(Sqi)X] 

L [L (r + s - i - j .- 1) (-r -~)] Qn+s-i- j SqjX(Sqi)X 
. . n - r - 2) r - 2z 
t , j r 

= '" ['" (i + s ~ j - .1 + p) (-2i - s - P)] Qn+s-i- j SqjX(Sqi)X 
~ ~ n - 2z - 2) - P P 
',) P 

(letting p = r - 2i) 

= '" ( -(i ~ j) . )Qn+s-(i+j)SqjX(Sqi)X 
~ n-2(z+)) 
',) 

(using J. Adem's formula [1, (25.3)J: L e:~) (a;p) == (a+~+l) mod 2) 
p 

ifn = 0 

otherwise. 

o 
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Remark 6.3. Our method of proof also shows that the analogues of the formula in 
Lemma 6.1, 

and 

respectively hold in the Steenrod algebra and Singer construction. The formula in 
A already appears in the literature as [4, (4.4)], where it is given a proof in the 
style of Bullett and MacDonald [7]. 

7. The Proofs of Theorem 1.2 and Theorem 1.5 

To prove Theorem 1.2, first recall the description of H* (T( n, *)) given in Theo
rem 5.1: 

where 

Rn = ({/xn I I is admissible )/(iYxn I I is admissible and e(1) > n). 

Note that Rn is closed under both the action of A and <1>*, thanks to our Nishida 
relations and Proposition 5.3, i.e. (Rn, <1>*) is an object in Up . Thus Theorem 1.2 
will follow from the next two proposition. 

Proposition 7.1. (Rn, <1>*) ~ Fp(n) as objects in Up. 

Proposition 7.2. Let n ~ 1. In S*(Rn), the ideal generated by elements of the form 
Qlxlx - X2 equals the ideal generated by elements of the form SqlYly _ (<I>*y)2. 

Both propositions will follow from the next result. 

Theorem 7.3. slQJxn = (<I>*)I(I) (Q1QJ xn ), whenever the iterated operation 
Q1 QJ Xn is defined. 

Proposition 7.1 then follows from 

if l(I) :::; k, 

if 1(1) > k. 

This same corollary, together with Corollary 5.4 proves Theorem 1.5. 

Proof of Proposition 7.2. Let F(x) = Qlxlx - x2 and G(x) = Sqlxlx - (<I>*X)2. 
Using the fact that Rn is unstable, it is easy to deduce that the two ideals in 
question are generated by elements of the form F(x) and G(x) respectively, where 
x E Rn. We claim that the sets of such elements are the same; more precisely, 
F(Q1 xn) = G(Q1QOxn) and G(Q1 xn) = F(<I>*(Q1 xn)). 
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To see that these hold, we let d = III + n and compute: 

F(CjI xn) = {i{i Xn - «.jI xn)2 

= Sqd{i{lxn - (<I>*(CjIQOxn))2, 

using Theorem 7.3 and Proposition 5.3, 

Similarly, 

G(Q1Xn) = SqdQ1xn - (<I>*(Q1Xn))2 

= <I> * (QdQ1xn) - (<I>*(Q1QOXn))2, 

using Theorem 7.3 and Proposition 5.3, 

using part (2) of Proposition 5.3 (since n ~ 1), 

D 

It remains to prove Theorem 7.3. This will follow from a couple of lemmas. 

Lemma 7.5. SqTQJQOxn = QTQJXn , whenever the iterated operation QTQJXn is 
defined. 

Proof. This is proved by induction on l(J). The induction is started by using the 
Nishida relations to verify that SqTQOxn = QTxn . 

For the inductive step, suppose J = (j, J'). Then 

SqTQJQOxn = SqTQjQl'QOXn 

= " (r - j -.1) QT+j-i SqiQl' QOxn (using the Nishida relations) 
~ r-22 

i 

= " (r - j -.l)QT+j-iQiQl' Xn (by induction) 
~ r-22 

i 

= QTQjQl'Xn 

= QTQJxn . 

(using the Adem relations) 

D 

Lemma 7.6. sl QJ (QO)I(I)xn =Q1 QJ Xn, whenever the iterated operation Q1QJ Xn 
is defined. 
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Proof. This is proved by induction on l(I), and the last lemma is the case l(I) = 1. 
Let I = (I', i) . Then 

SqI (JJ (C;D)I(l) Xn = SqI' Sqi{JJ ({J0)l(l) Xn 

= SqI' {Ji{JJ ({J0)I(1)-lxn (by the case l(I) = 1) 

(by induction) 

o 

Proof of Theorem 7.3. Applying (<I>*)I(1) to the formula in the previous lemma 
yields 

(<I> * )l(l) (SqI {JJ ((J0)l(l) xn) = (<I> * )l(l) ({JI (JJ xn). 

As it has a topological origin, (<I>*)l(l) commutes with Steenrod operations. By 
Proposition 5.3, (<I>*)I(l)({JJ({J0)I(1)Xn) = (JJ xn . The theorem follows. 0 

8. The Whitehead Conjecture Resolution and Theorem 1.6 

In this section, we note that the homotopical equivalence of Theorem 1.6 can be 
deduced from the homological isomorphism of Theorem 1.5, using work of Lannes 
and Zarati [31] to improve previous work of the author [19, 20]. 

Letting Zk = T(oo , 2k) in the next theorem, Theorem 1.6 follows from The
orem 1.5. 

Theorem 8.1. Any sequence of 2 complete, connective spectra 

<I> <I> <I> 
Zo ----. Z 1 ----. Z2 ----. ... 

that realizes the length filtration of A in cohomology is equivalent to the sequence 

spl(sO) ~ sp1(so) ~ sP,i(SO) ~ .... 

This is proved in [19, 20]' assuming the extra geometric condition: 

r,-k(Zk/Zk_l) is a wedge summand of a suspension spectrum. 

We note that this geometric condition is automatically satisfied! Under our 
cohomological hypothesis, H*(r,-k(Zk/Zk_l)) is isomorphic to H*(M(k)), where 
M(k) is the stable wedge summand of B(Z/2)k associated to the Steinberg module. 

Now consider the Adams spectral sequence for computing maps from M(k) to 
r,-k(Zk/Zk_l)' An A-module isomorphism H*(r,-k(Zk/Zk_l)) ~ H*(M(k)) can 
be regarded as an element in Eg,o. The following proposition implies that such an 
element is a permanent cycle, i.e. one can topologically realize this isomorphism. 

Proposition 8.2. [31, Proposition 5.4.7.1] If M is an unstable A - module, and N 
is a summand of H*(B(Z/2)k), then Ex(,((M, N) = 0 for all t - s < O. 
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Lannes and Zarati prove this using ideas of W.Singer. As explained in [15] , 
this proposition can also be deduced from [5, Lemma 2.3(i)] (slightly modified) in 
the spirit of Carlsson's work [8]. 

9. The Proof of Theorem 1.9 

This sections contains the details of the proof of Theorem 1.9, which was outlined 
at the end of § 1. 

As in [23], F E F is said to be finite if it has a finite length composition series 
with simple subquotients, and is said to be locally finite (written F E Fw) if it is 
the union of its finite subfunctors. Recall that I;.. E F is the injective envelope of 
the simple functor F).,. The I;.. are locally finite [23]. Then the general theory of 
locally Noetherian abelian categories [40, p.92] [39, Theorem 5.8.11] implies that, 
if J E Fw is any injective, then there is a decomposition in F 

J ~ EB a(A, J)I;.., 
).,EA 

where a(A, J) = dimzj2 HomF(F)." J). 
Applying this to the case J = cJ>-1 Sj, and noting [17] that 

1 . 2k . 
dimzj2HomF(F)."cJ>- SJ) = dimzj2 HomF(F)."S J) , for k» 0, 

we deduce that 
cJ>-lsj ~ EBa(A,j)l;.., 

).,EA 

with a(A, j) as in the introduction. 
Recall that r : F -t U is defined by letting r(F)j = HomF(Sj, F) . The 

fact that Sj is finite implies that r will commute with filtered direct limits. In 
particular, we can deduce the decomposition in U 

cJ>-lr(sj 0 Sn) ~ EB a(A , j)r(1;.. 0 Sn). 
).,EA 

Proposition 9.1. r(1;.. 0 Sn) ~ H*(K(A, n); Z/2) as A modules. 

Momentarily postponing the proof of this, to prove Theorem 1.9, we need to 
show 

H*(cJ>-lT(n,j); Z/2) ~ cJ>-lr(Sj 0 Sn) as A modules. 

Note that this asserts that a certain inverse limit of finite dimensional modules 
is isomorphic to a certain direct limit of nilclosed modules (i.e. modules of the form 
r(F)). 

To show this, observe that cJ>-lr(S* 0 Sn) is N x N[~] graded. It is even an 
object in Kp , using cJ>-1 : cJ>- l r(S2j 0 Sn) -t cJ>-lr(Sj 0 Sn) as the restriction. 

Theorem 9.2. H*(cJ>-lT(n, *); Z/2) ~ cJ>-lr(S* 0 Sn) as objects in Kp. 
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Returning to the proof of Proposition 9.1, we first note that H* (K(A, n); Zj2) 
= H*(K(V).., n); Zj2)e).. and r(I).. 0 Sn) = r(Iv). 0 Sn)e).., where Iw E F is the 
injective defined by Iw(V) = (Zj2)Hom(V,W). Thus we need just show that 

r(Iw 0 Sn) = H*(K(W, n); Zj2). 

Now one has the classic calculation [40, p. 184] 

H*(K(Zj2, n); Zj2) = U(F(n)), 

where F(n) = AjE(n) is the free unstable module on an n dimensional class, and 
where U : U -'> K is the free functor, left adjoint to the forgetful functor. Explicitly, 
U(M) = S*(M)j(Sqlxlx - x2). Similarly, H*(K(W, n); Zj2) = Uw(F(n)) where 
Uw : U -'> K is given by Uw(M) = U(M @ W*). 

A simple calculation reveals that F(n) = r(Snf (see e.g. [25, Prop.8.1]), so 
the proof of Proposition 9.1 is completed with 

Lemma 9.3. [26] There are natural isomorphisms Uw(r(F)) ~ r(Iw 0 F), for all 
FEFw' 

Sketch proof. It is easy to reduce to the case when W = Zj2. Let I = Iz /2. By 
filtering U(M) one then verifies that if Mis nilclosed, so is U(M). Thus to identify 
U(r(F)) with r(IoF), it suffices to check that l(U(r(F))) = I of, where l : U -'> F 
is left adjoint to r. The functor l is exact, preserves tensor products, and can be 
regarded as localization away from nilpotent modules [14, 23]. Thus it carries 

S*(r(F))j(Sqlxlx - x2) 

to the functor that sends V to 

S*(l(r(F))(V))j(x - x2). 

Since l(r(F)) = F, and I(V) = S*(V)j(x - x2) [23], this functor is just 10 F. 0 

To prove Theorem 9.2, we need to use the main result of [26]. 
As in [25], let U 2 be the category of N x N graded modules over the bigraded 

algebra A @ A, unstable in each grading. For M E U2 , there are natural maps 
<1>1 : Mm,* -'> M2m,* and <1>2 : M*,n -'> M*,2n 8, and we let K2 denote the category 
of commutative algebras M in U 2 satisfying the "restriction" axiom: for all x E 
M, (<1>1 @ <1>2) (X) = x2. 

Let U2 : U2 -'> K2 be left adjoint to the forgetful functor: explicitly, U2(M) = 
S*(M)j((<I>l @ <l>2)(X) - x2). 

Given M E U, M @ F(l) is an object in U2. F(l) can be regarded as the 

module (Xl"'" X2k , ... ), with X2k having bidegree (1, 2k). Now define 

HomF(S*, F) @ F(l) -'> HomF(S*, S* 0 F) 

7This is false at odd primes: F(n) is not nilclosed in the odd prime case. 
8These are the Steenrod squares in the right degree 
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by sending (Si ~ F) 0 X2k to the composite Si ~ F ----> S2k 0 F. Since 
HomF(S*,S* 0 F) is easily checked to be in K2, this map extends to a natural 
map in K2: 

eF : U2(HomF(S*, F) 0 F(I)) ----> HomF(S*, S* 0 F). 

Theorem 9.4. [26] For all F E F w , e F is an isomorphism. 

This is proved in a manner similar to the way Lemma 9.3 is proved. 

Corollary 9.5. r(S* 0 Sn) ::::' U2(F(n) 0 F(I)), as objects in K2. 

Corollary 9.6. <J)-lr(S* 0 Sn) ::::' Up(F(n) 0 <J)-l F(I)), as objects in Kp . 

Here <J)-l F(I) = (x2k IkE Z), with the restriction map (part of the Kp 
2k 2k- 1 

structure), taking x to x . 
By Theorem 1.2, H*(<J)-lT(n, *); Z/2) ::::' Up(Fp(n),j,,) as objects in Kp, where 

Fp(n),j" denotes the inverse limit 

Fp(n) ? Fp(n) ? Fp(n) ? .... 
The following observation completes the proof of Theorem 9.2, and thus the proof 
of Theorem 1.9. 

Lemma 9.7. Fp(n),j" = F(n) 0 <J)-l F(1), as objects in Up. 

10. Towards the Conjectures 

In this section we outline some possible approaches to the conjectures of the in
troduction. 

We start with a rigorous proof of Proposition 1.11. 

Proof of Proposition 1.11. Let X(j) = V a(>-.,j)K(>-', 1), and recall that we wish 
AEA 

to topologically realize an A module isomorphism: 

H*(<J)-lT(I,j); Z/2) ::::' H*(X(j); Z/2). 

But Proposition 8.2 tells us that any such A-module map can be realized: in the 
Adams spectral sequence for computing maps from X(j) to <J)-lT(I,j), E~,t = 0 
for t - s < O. 0 

Thus far, we have been unable to find any way in which this proof, or the 
related proofs of Conjecture 1.3 [27, 11, 15] in the n = 1 case, generalize to prove 
the n > 1 cases of the conjectures. These Adams spectral sequence based proofs 
rely on magical properties of the spectra T(j) and K(V, 1), which, in turn, are 
(partly) due to the fact that H*(T(j); Z/2) and H*(K(V, 1)) are injective in U. A 
search for similar proofs of the conjectures leads to the following questions. 

Question 10.1. For n > 1, do H*(T(n,j); Z/2) and H*(K(Z/2, n); Z/2) have any 
sort of injectivity properties in some well chosen subcategory of U? 
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Question 10.2. Is Ext~l(H*(K(W,n)),H*(K(V,n))) = 0 ift - s < O? 

Question 10.3. Is Z/2[Hom(V, W)] ----> HomA(H*(K(W, n)), H*(K(V, n))) an iso
morphism? 

Note that an affirmative answer to the second question would allow us to 
prove Conjecture 1.10 along the lines of the above proof of Proposition 1.11. It 
is not hard to show that, if the last question has an affirmative answer, then 
Conjecture 1.10 would follow if one could just construct a family of stable maps 

(10.1 ) T(n,2k) ----> K(Z/2, n) 

nonzero in cohomology in dimension n. 
Related to the [15] proof of Conjecture 1.3 in the n = 1 case, we note that, 

by [15, Proposition 1.6], if Conjecture 1.10 were true, then one could conclude that 
E : 'L,000,ooT(n,j) ----> T(n,j) is onto in mod 2 homology, which is a weak form of 
Conjecture 1.3. 

Now we discuss a rather intriguing "conceptual" approach to Conjectures 1.3 
and 1.10. The idea would be to start with the n = 0 case (!) of the conjectures, 
using the concept of S-algebras (a.k.a. E oo-ring spectra). 

Question 10.4. Let A denote a divided power algebra over Z2. Does there exist an 
N-graded commutative augmented S- algebra structure on 

T = V T(O, j) = V SO 
j'20 j'20 

such that 
(1) 7ro(T) = A, 
(2) <I> : T ----> T is a map of S- algebras, and 
(3) T admits a nonzero S-algebra map to 'L,00(Z/2h? 

An affirmative answer to parts (1) and (3) would presumably yield a con
struction of maps as in (10.1) upon applying the "bar construction" n times to 
map (3). 

We can refine this question, motivated by work in [25]. 
The key is to rearrange the untidy right side of the isomorphism 

H*(<I>-IT(n,j); Z/2) ~ H*( V a(A, j)K(A, n); Z/2). 
AEA 

We know that this module corresponds to the functor (<I>- I S j )oSn E F. The 
proof in [25] that <I>-1 sj is injective in Fw reveals that 

<I>- l sj ~ lim I(F 2s).[j], 
8-+00 

where (F28)* is the F2 linear dual of the finite field F2 s , and I(F 2 s )' [j] is the 
lh eigenspace of I(F2 s )' under the action of F~<'. Furthermore, if we extend the 
scalars to the algebraic closure F2 , this isomorphism is well behaved with respect 
to pairings (between various j's). 



212 N. Kuhn 

It follows that 
* -1 - * - -H (<Jl T(n, *); F 2 ) ~ Hcont (K(F2 , n); F 2)H 

as N[~] graded algebras in U , where we write 

H;ont(K(F2, n); F 2) = lim H*(K(F2s, n) ; F2)' 
8-+00 

Just as one can discuss S- algebras, one can discuss SW(F2)- algebras, where 
W(F2 ) are the Witt vectors of F 2. 

Question 10.5. With T the S-algebra as in Question 10.4 above, does there exist 
an equivalence of N[~] graded SW(F2)-algebras 

<Jl- 1T I\s SW(F2) ~ ~00((F2)*)+ I\s SW(F2)? 

As before, an affirmative answer to this formidable question would presum
ably yield a proof of Conjecture 1.10 upon applying the bar construction to the 
equivalence n times. 

We end with a question about the most straightforward way to try to get at 
these sorts of things. 

Question 10.6. Does there exist a "naturally occurring" spectrum E, with a group 
action, such that the group action can be used to establish a splitting 

~En ~ VT1(n, j), 
j 

where En is the nth infinite loop space of the spectrum E, and T1(n,j) is a desus
pension of ~T(n,j)? 

When n = 1, this would be consistent with [12]. However, anyone searching 
for such a spectrum should make sure their search is compatible with results in 
[35]. 

Appendix A. Connections with Work of Arone and Mahowald 

In this appendix, we explain how our constructions are related to those appearing 
in [3] in their work on the Goodwillie tower of the identity. (Our arguments are a 
bit sketchy as we plan to elaborate on these ideas elsewhere.) 

Recall our definition: Dn,j(X) = F(C(n,j)+,X(j])Ej . We begin by rewriting 
this in a useful way. 

Let Ll(n,j) C snj be the singular part of the ~j-space snj. Then C(n,j) 
is equivariantly homotopy equivalent to snj - Ll(n, j) (the configuration space). 
Thus, by equivariant Alexander duality [32, Theorem 111.4.1], 

F(C(n,j)+, (~n X)[j]) ~ snj /Ll(n,j) 1\ X[j] 

as ~j spectra. Now note that this latter spectrum is clearly ~j-free, as snj / Ll( n, j) 
is, thus its fixed point spectrum is naturally equivalent to its orbit spectrum [32, 
Theorem 11.7.1]. We have proved 
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Proposition A.I. Dn,j(,En X) is naturally equivalent to ((snj / D..(n,j)) A X[j])Ej' 

Checking definitions reveals 

Lemma A.2. j3: C(n + 1,j)+ A Sl --> C(n,j)+ A sj is equivariantly S-dual to the 
evident diagonal map Sl A (snj / D..(n,j)) --> s(n+1)j / D..(n + 1,j). 

Definition A.3. Let Dj (X) = hocolim E-n Dn j(En X), with the coli mit induced 
n ' 

by either of the maps in the last lemma. 

Note that, with this notation, T( 00, j) = 'EDj (S-l). 
Now let K j be the 'Ej- space introduced in [3]: K j is the unreduced sus

pension of Kj , the classifying space of the poset of the nontrivial partitions of a 
set with cardinality j. (By nontrivial, we mean to exclude the partitions (j) and 
(1,1, ... ,1).) 

Proposition A.4. [3, early versions] and [2, §6] There is a 'Ej equivariant map 

hocolim 'E-n(snj /D..(n,j)) --> 'EKj 
n 

that is a nonequivariant equivalence. 

Corollary A.5. Dj(X) = ('EKj AXU])hEj' 

Combining this corollary with Theorem 1.6 yields 

Theorem A.6. (K2k A S-2k)hE2k ~ 'E-2spt (SO). 

In work in progress, we have established the following. 

Proposition A.7. Localized at 2, there are cofibration sequences 

'ED2k_l(s2n-1) --> 'ED2k(sn-1) --> D2k(sn) 

which are short exact in cohomology. 

The first map here is constructed with Hopf invariant techniques, and is the 
generalization of q> : T(oo, 2k- 1 ) --> T( 00, 2k). 

Using these sequences when n = 0 and n = 1, one can deduce 

Corollary A.S. Localized at 2, there are equivalences 
(1) (K2k)hE2k ~ 'E- 1spt(SO)/Spt- ' (SO), 

(2) (K2k A S2k)hE2k ~ Sp2k (SO)/SP2 k- 1 (SO). 

Part (2) of this corollary is due to Arone and Mahowald who sketch the 
following elegant and direct short proof in their early versions of [3]. (See also [2].) 

Lemma A.9. The space snj /'E j is homeomorphic to spj(sn)/spj-1(sn). 

Lemma A.1O. (D..(n,j) A Sj)E j is contractible. 

Sketch proof. The partition filtration of D..(n,j) induces a filtration of (D..(n,j) A 
sj )E j in which each subquotient has the form S pi (Sl ) / S pi-1 (Sl ), and so is 
contractible. 0 
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Corollary A.H. There are homotopy equivalences of spaces 

spj (sn+l)j Spj-1 (sn+1) ':::' (snj j /:).(n, j) 1\ Sj)Ej" 

Proof. spj(sn+1)jspj-1(sn+l) ':::' (snj 1\ Sj)Ej ':::' (snj j /:).(n,j) 1\ Sj)Ej. 0 

Now Corollary A.8(2) follows by letting n go to infinity, and using Proposi
tion A.4. 

We finish with one last observation. Let 'Dj(X) = F(~Kj , X[jl)hEj. Arone 
and Mahowald [3] show that floo'Dj(X) is the lh fiber of the Goodwillie tower of 
the identity applied to a space X. Arone and Dwyer [2] show that, if X is an odd 
dimensional sphere, then ~2k'D2k (X) ':::' (~K2k 1\ X[2 k1 )hE2k . Thus we have 

Corollary A.12. If X is an odd dimensional sphere, then 'D2k (X) ':::' ~-2k D2k (X). 

Corollary A.13. 'D2k (S - 1) ':::' ~-(2k+l) spt (SO). 
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Chern characters for the equivariant 
K-theory of proper G-CW-complexes 

Wolfgang Luck and Bob Oliver 

Abstract. We first construct a classifying space for defining equivariant K
theory for proper actions of discrete groups. This is then applied to construct 
equivariant Chern characters with values in Bredon cohomology with coeffi
cients in the representation ring functor R( -) (tensored by the rationals). And 
this in turn is applied to prove some versions of the Atiyah-Segal completion 
theorem for real and complex K-theory in this setting. 

In an earlier paper [8], we showed that for any discrete group G, equivari
ant K-theory for finite proper G-CW-complexes can be defined using equivariant 
vector bundles. This was then used to prove a version of the Atiyah-Segal com
pletion theorem in this situation. In this paper, we continue to restrict attention 
to actions of discrete groups, and begin by constructing an appropriate classifying 
space which allows us to define Kc(X) for an arbitrary proper G-complex X. We 
then construct rational-valued equivariant Chern characters for such spaces, and 
use them to prove some more general versions of completion theorems. 

In fact, we construct two different types of equivariant Chern character, both 
of which involve Bredon cohomology with coefficients in the system (G j H t---> 

R(H)). The first, 

ch~: Kc(X) ----->, Hc(X;Q0R(-)), 

is defined for arbitrary proper G-complexes. The second, a refinement of the first, 
is a homomorphism 

-* 
chx: Kc(X) ----->, Q0Hc(X;R(-)), 

but defined only for finite dimensional proper G-complexes for which the isotropy 
subgroups on X have bounded order. When X is a finite proper G-complex (i.e., 
XjG is a finite CW-complex), then Hc(X; R( -)) is finitely generated, and these 
two target groups are isomorphic. The second Chern character is important when 
proving the completion theorems. The idea for defining equivariant Chern charac
ters with values in Bredon cohomology Hc(X; Q0R( -)) was first due to Slominska 
[121. A complex-valued Chern character was constructed earlier by Baum and 
Connes [4], using very different methods. 

The second author is partly supported by UMR 7539 of the CNRS. 
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The completion theorem of [8] is generalized in two ways. First, we prove 
it for real as well as complex K-theory. In addition, we prove it for families of 
subgroups in the sense of Jackowski [7]. This means that for each finite proper 
G-complex X and each family F of subgroups of G, Kc(EF(G) x X) is shown to 
be isomorphic to a certain completion of Kc(X). In particular, when F = {I}, 
then EF(G) = EG, and this becomes the usual completion theorem. 

The classifying spaces for equivariant K-theory are constructed here using 
Segal's r-spaces. This seems to be the most convenient form of topological group 
completion in our situation. However, although r-spaces do produce spectra, as 
described in [10], the spectra they produce are connective, and hence not what 
is needed to define equivariant K -theory directly. So instead, we define Ken ( - ) 
and KOen( -) for all n ~ 0 using classifying spaces constructed from a r-space, 
then prove Bott periodicity, and use that to define the groups in positive degrees. 
One could, of course, construct an equivariant spectrum (or an OT( G)-spectrum 
in the sense of [6]) by combining our classifying space KG with the Bott map 
E2 KG --+ KG; but the approach we use here seems the simplest way to do it. 

By comparison, in [6], equivariant K -homology groups K;;(X) were defined 
by using certain covariant functors Ktop from the orbit category OT( G) to spectra. 
This construction played an important role in [6] in reformulating the Baum
Connes conjecture. In general, one expects an equivariant homology theory to be 
classified by a covariant functor from the orbit category to spaces or spectra, and 
an equivariant cohomology theory to be classified by a contravariant functor. But 
in fact, when defining equivariant K-theory here, it turned out to be simplest to 
do so via a classifying G-space, rather than a classifying functor from OT( G) to 
spaces. 

We would like in particular to thank Chuck Weibel for suggesting Segal 's 
paper and the use of r-spaces, as a way to avoid certain problems we encountered 
when first trying to define the multiplicative structure on KG(X). 

The paper is organized as follows. The classifying spaces for Ken ( -) and 
KOen( -) are constructed in Section 1; and the connection with G-vector bundles 
is described. Products are then constructed in Section 2, and are used to define 
Bott homomorphisms and ring structures on Kc(X); and thus to complete the 
construction of equivariant K -theory as a multiplicative equivariant cohomology 
theory. Homomorphisms in equivariant K-theory involving changes of groups are 
then constructed in Section 3. Finally, the equivariant Chern characters are con
structed in Section 5, and the completion theorems are formulated and proved in 
Section 6. Section 4 contains some technical results about rational characters. 

1. A classifying space for equivariant K-theory 

Our classifying space for equivariant K-theory for proper actions of an infinite 
discrete group is constructed using r -spaces in the sense of Segal. So we begin by 
summarizing the basic definitions in [10] . 



Equivariant K-theory of proper G-CW-complexes 219 

Let r be the category whose objects are finite sets, and where a morphism 
() : S ---> T sends each element s E S to a subset ()(s) ~ T such that s i:- s' implies 
()(s) n ()(s') = 0. Equivalently, if P(S) denotes the set of subsets of S, one can 
regard a morphism in r as a map P(S) ---> P(T) which sends disjoint unions to 
disjoint unions. For all n 2 0, n denotes the object {I, ... ,n}. (In particular, 0 is 
the empty set.) There is an obvious functor from the simplicial category ~ to r, 
which sends each object [nJ = {O, I, ... ,n} in ~ to n, and where a morphism in ~ 
- an order preserving map <p : [mJ ---> [nJ - is sent to the morphism ()<p : m ---> n 
in r which sends i to {j I <p(i-1) < j :::; <p(i)}. 

A r-space is a functor A : rop ---> Spaces which satisfies the following two 
conditions: 

(i) £1.(0) is a point; and 
(ii) for each n > I, the map A(n) ----t n~1 £1.(1), induced by the inclusions 

"'i : 1 ---> n ("'i(l) = {i}), is a homotopy equivalence. 
(In fact, Segal only requires that £1.(0) be contractible; but for our purposes it 
is simpler to assume it is always a point.) Note that each A(S) has a basepoint: 
the image of A(O) induced by the unique morphism S ---> O. We write A = £1.(1), 
thought of as the "underlying space" of the r -space A. A r -space A : rop ---> 

Spaces can be regarded as a simplicial space via restriction to ~, and 1£1.1 denotes 
its topological realization (nerve) as a simplicial space. 

If A is a r-space, then BA denotes the r-space BA(S) = IA(S x -)1; and 
this is iterated to define Bn A for all n. Thus, B n A = Bn A(I) is the realization 
of the n-simplicial space which sends (SI, ... ,Sn) to A(SI X ... X Sn). Since £1.(0) 
is a point, we can identify EA (= E(A(I))) as a subspace of BA ~ 1£1.1; and 
this induces by adjointness a map A ---> flBA. Upon iterating this, we get maps 
E(Bn A) ---> Bn+! A for all n; and these make the sequence A, BA, B2 A, . . . into a 
spectrum. This is "almost" an fl-spectrum, in that Bn A ~ flBn+! A for all n 2 1 
[10, Proposition l.4J. 

Note that for any r-space A, the underlying space A = £1.(1) is an H-space: 
multiplication is defined to be the composite of a homotopy inverse of the equiva
lence £1.(2) --=--. £1.(1) x £1.(1) with the map £1.(2) ---> £1.(1) induced by m2 : 1 ---> 2 
(m2(1) = {I, 2}). Then A ~ flBA if 7ro(A) is a group; and flBA is the topological 
group completion of A otherwise. All of this is shown in [10, §lJ. 

We work here with equivariant r-spaces; i.e., with functors 

A: rop ---> G-Spaces 

for which £1.(0) is a point, and for which (A(n))H ---> n~1 (A(I))H is a homotopy 
equivalence for all H ~ G. In other words, restriction to fixed point sets of any 
H ~ G defines a r -space A H; and the properties of equivariant r -spaces follow im
mediately from those of nonequivariant ones. For example, Segal's [10, Proposition 
l.4J implies immediately that for any equivariant r -space A, Bn A ---> flBn+! A is 
a weak equivalence for all n 2 1 in the sense that it restricts to an equivalence 
(Bn A)H ~ (flBn+! A)H for all H ~ G. This motivates the following definitions. 
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If F is any family of subgroups of G, then a weak F-equivalence of G-spaces 
is a G-map whose restriction to fixed point sets of any subgroup in F is a weak 
homotopy equivalence in the usual sense. The following lemma about maps to 
weak equivalences is well known; we note it here for later reference. 
Lemma 1.1. Fix a family F of subgroups of G, and let f : Y -7 Y' be any weak 
F-equivalence. Then for any G-complex X all of whose isotropy subgroups are in 
F, the map 

f. : [X, Y]c ---=-. [X, Y']c 
is a bijection. More generally, if A ~ X is any G-invariant subcomplex, and all 
isotropy subgroups of X "A are in F, then for any commutative diagram 

A~Y 

X~Y' 

of G-maps, there is an extension of ao to a G-map a : X -7 Y such that foa ~ a 
(equivariantly homotopic), and a is unique up to equivariant homotopy. 

Proof. The idea is the following. Fix a G-orbit of cells (G j H x Dn -7 X) in X 
whose boundary is in A . Then, since Y H -7 (y')H is a weak homotopy equivalence, 
the map eH x Dn -7 XH -7 (y')H can be lifted to yH (up to homotopy), and 
this extends equivariantiy to a G-map G j H x Dn -7 Y. Upon continuing this 
procedure, we obtain a lifting of a to a G-map a : X -7 Y which extends no. This 
proves the existence of a lifting in the above square (and the surjectivity of f. in 
the special case); and the uniqueness of the lifting follows upon applying the same 
procedure to the pair XxI 2 (Xx{O, I}) U (Ax!). 0 

Now fix a discrete group G. Let £(G) be the category whose objects are the 
elements of G, and with exactly one morphism between each pair of objects. Let 
B( G) be the category with one object, and one morphism for each element of G. 
(Note that I£(G)I = EG and IB(G)I = BG; hence the notation.) When necessary 
to be precise, ga will denote the morphism a -7 ga in £(G) . We let G act on 
£(G) via right multiplication: x E G acts on objects by sending a to ax and on 
morphisms by sending ga to gax. Thus, for any H ~ G, the orbit category £ (G) j H 
is the groupoid whose objects are the cosets in Gj H, and with one morphism 
gaH : aH -7 gaH for each g E G: a category which is equivalent to B(H). Note in 
particular that B(G) ~ £(G)jG. 

In order to deal simultaneously with real and complex K -theory, we let F de
note one of the fields C or R Set F OO = U:'= 1 Fn: the space of all infinite sequences 
in F with finitely many nonzero terms. Let F-mod be the category whose objects 
are the finite dimensional vector subspaces of Foo, and whose morphisms are F
linear isomorphisms. The set of objects of F-mod is given the discrete topology, 
and the space of morphisms between any two objects has the usual topology. 

For any finite set S, an S-partitioned vector space is an object V of F-mod, 
together with a direct sum decomposition V = ffisES Vs. Let F(S)-mod denote 
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the category of S-partitioned vector spaces in F-mod, where morphisms are iso
morphisms which respect the decomposition. In particular, F(O)-mod has just one 
object 0 ~ FOO and one morphism. A morphism 8: S -+ T induces a functor F(8) 
from F(T)-mod to F(S)-mod, by sending V = EBtET Vi to W = EBsEs Ws where 
Ws = EBtE9(s) Vi. 

Let Vec~ be the r-space defined by setting 

Vec~(S) ~f Ifunc(£(G), F(S)-mod) I 

for each finite set S. Here, func(C, D) denotes the category of functors from C to 
D . We give this the G-action induced by the action on £(G) described above. This 
is made into a functor on r via composition with the functors F(8) . 

By definition, Vec~(O) is a point. To see that Vec~ is an equivariant r-space, 
it remains to show for each nand H that the map (Vec~(n))H -+ n~l (Vec~(l))H 
is a homotopy equivalence. The target is the nerve of the category of functors from 
£(G)/H to n-tuples of objects in F-mod, while the source can be thought of as 
the nerve of the full subcategory of functors from £( G) / H to n-tuples of vector 
subspaces which are independant in Foo. And these two categories are equivalent, 
since every object in the larger one is isomorphic to an object in the smaller (and 
the set of objects is discrete). 

For all finite H ~ G, (Vec~)H is the disjoint union, taken over isomorphism 
classes of finite dimensional H-representations, of the classifying spaces of their 
automorphism groups. We will see later that Vect; classifies G-vector bundles over 
proper G-complexes. So it is natural to define equivariant K -theory using the its 

group completion K Fe ~f OBVect;, regarded as a pointed G-space. 
In the following definition, [-, -le and [-, -lc denote sets of homotopy 

classes of G-maps, and of pointed G-maps, respectively. 

Definition 1.2. For each proper G-complex X, set 

Ke(X) = [X, KCele and KOe(X) = [X, KlRele. 

For each proper G-CW-pair (X, A) and each n 2: 0, set 

Kan(X,A) = [En(X/A),KCelc and KOGn(X,A) = [En(X/A),KlRelc. 

The usual cohomological properties of the K Fan ( -) follow directly from 
the definition. Homotopy invariance and excision are immediate; and the exact 
sequence of a pair and the Mayer-Vietoris sequence of a pushout square are shown 
using Puppe sequences to hold in degrees :sO. Note in particular the relations 

KFan(X) ~ Ker[KFe(Sn x X) ----+ KFe(X)] 

KFan(X,A) ~ Ker[KFan(X UA X) ----+ KFan(X)], 

for any proper G-CW-pair (X, A) and any n 2: o. 

(1.3) 

The following lemma will be needed in the next section. It is a special case 
of the fact that Vec~ and K Fe (at least up to homotopy) are independent of our 
choice of category of F-vector spaces. 
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Lemma 1.4. For any monomorphism a : FCC! --+ F oo , the induced map a* : 

Vec~ --+ Vec~, defined by composition with F-mod ti F-mod, is G-homotopic 
to the identity. In particular, a* induces the identity on Kc(X). 

Proof. The functor (V f-+ a(V)) is naturally isomorphic to the identity. 0 
In [8], we defined IKc(X), for any proper G-complex X , to be the Grothen

dieck group of the monoid of vector bundles over X. We next construct natural 
homomorphisms IKc(X) --+ Kc(X), for all proper G-complexes X, which are 
isomorphisms if X/G is a finite complex (this is the situation where the IKc(X) 
form an equivariant cohomology theory). 

For each n 2: 0, let Fn-mod ~ F-mod be the full subcategory of n-dimen
sional vector subspaces in FCC! . Let Fn-frame denote the category whose objects 
are the pairs (V, b), where V is an object of Fn-mod and b is an ordered basis 
of V; and whose morphisms are the isomorphisms which send ordered basis to 
ordered basis. The set of objects is given the topology of a disjoint union of copies 
of GLn(F) (one for each V in Fn-mod). Note that there is a unique morphism 
between any pair of objects in Fn-frame. Set 

Vec~,n = Ifunc(£(G),Fn-mod)1 and Vec~,n = Ifunc(£(G), Fn-frame)l, 

with the action of G x GLn(F) on Vec~,n induced by the G-action on £(G) and 
the GLn(F)-action on the set of ordered bases of each n-dimensional V. Let Tn : 
Vec~,n --+ Vec~,n be the G-map induced by the forgetful functor Fn-frame --+ 

Fn-mod. Then GLn(F) acts freely and properly on Vec~,n. And Tn induces a G

homeomorphism Vec~,n /GLn(F) ~ Vec~,n, since for any cp : V --+ V' in F-mod, 
a lifting of V or V'to Fn-frame determines a unique lifting of the morphism. 

Let H ~ G x GLn(F) be any subgroup. If H n (1 x GLn(F)) =f. 1, then 
(Vec~,n)H = 0, since GLn(F) acts freely on Vec~,n. So assume Hn(1 x GLn(F)) = 
1. Then H is the graph of some homomorphism cp : H' --+ GLn(F) (H' ~ G), 

and (Vec~,n)H is the nerve of the (nonempty) category of cp-equivariant functors 
£(G) --+ Fn-frame, with a unique morphism between any pair of objects (since 
there is a unique morphism between any pair of objects in Fn-frame). In partic
ular, this shows that (Vec~,n)H is contractible. 

Thus, Vec~,n is a universal space for those (G x GLn(F))-complexes upon 
which GLn(F) acts freely (d. [8, §2]). The frame bundle of any n-dimensional G
F-vector bundle over a G-complex X is such a complex, and hence n-dimensional 
G-F-vector bundles over X are classified by maps to Vec~,n = Vec~,n/GLn(F). It 
follows that 

E" F,n v F,n Fn " F,n vecc = vecc XCLn(F) ) vecc 

is a universal n-dimensional G-F-vector bundle. And [X, Vec~,nJc ~ Vect~,n(X): 
the set of isomorphism classes of n-dimensional G-F-vector bundles over X. 

If E is any G-F-vector bundle over X, we let [E~ E KFc(X) = [X , KFcJc be 
the composite of the classifying map X --+ Vecb for E with the group completion 
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map Vec~ --+ nBVec~ = K Fe. Any pair E, E' of vector bundles over X is induced 
by a G-map 

X ----- Vec~xVec~ = I func(£(G), F-modx F-mod) I ~ Ifunc(£(G),F(2}-mod)l; 

and upon composing with the forgetful functor F{2}-mod --+ F-mod we get the 
classifying map for EffiE'. The direct sum operation on Vect~(X) is thus induced 
by the H-space structure on Vec~, and [E ffi E'] = [E] + [E'] for all E, E'. 

Proposition 1.5. The assignment ([E] t---+ [E]) defines a homomorphism 

"Ix : OCFc(X) ---> K Fc(X), 

for any proper G-complex X. This extends to natural homomorphisms "Ix~ 
OCFcn(X, A) --+ KFcn(X, A), for all proper G-CW-pairs (X, A) and all n ~ 0; 
which are isomorphisms when restricted to the category of finite proper G-CW
pazrs. 

Proof. By the above remarks, ([E] t---+ [E]) defines a homomorphism of monoids 
from Vect~(X) to KFc(X), and hence a homomorphism of groups 

"Ix : OCFc(X) l K Fc(X). 

Homomorphisms "IxnA (for all proper G-CW-pairs (X, A)) are then constructed 
via the definitions ' 

OCFcn(X) ~f Ker[OCFc(Sn x X) --+ OCFc(X)] 

and OCFcn(X, A) ~f Ker[OCFcn(XUAX) --+ lKFcn(X)] used in [8], together with 
the analogous relations (1.3) for Kc( -). These homomorphisms clearly commute 
with boundary maps. 

It remains to check that "Ixn is an isomorphism whenever X is a finite proper 
G-complex. Since OCFc( -) and K Fc( -) are both cohomology theories in this 
situation, it suffices, using the Mayer-Vietoris sequences for pushout squares 

G/H x sm-l ----+ G/H x Dm 

1 
X ----+ (G/H x Dm) Ucp x, 

to do this when X = G / H x sm for finite H S;; G and any m ~ O. Using (1.3) 
again, it suffices to show that "Ix = "1& is an isomorphism whenever X = G / H x Y 
for any finite complex Y with trivial G-action. By definition, 

KFc(G/H x Y) = [G/H X Y,KFc]c ~ [Y,(KFc)H]; 

while OCFc(G/ H x Y) is the Grothendieck group of the monoid 

Vect~(G/H x Y) ~ [G/H x y,Vec~]c ~ [y,(Vec~)H]. 

Since 7ro((Vec~)H) is a free abelian monoid (the monoid of isomorphism classes 
of H-representations) , [10, Proposition 4.1] applies to show that [-, (KFc)H] is 
universal among representable functors from compact spaces to abelian groups 
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which extend Vect~(GjHx-) ~ Vect~(-). And since lKH is representable as 
a functor on compact spaces with trivial action (H is finite), it is the universal 
functor, and so [Y, (KFc)H] ~ lKH(Y) ~ lKc(GjH x Y). 0 

2. Products and Bott periodicity 

We now want to construct Bott periodicity isomorphisms, and define the 
multiplicative structures on Ka(X) and KOa(X). Both of these require defining 
pairings of classifying spaces; thus pairings of f-spaces. A general procedure for 
doing this was described by Segal [10, §5], but a simpler construction is possible 
in our situation. 

Fix an isomorphism J.L : Foo ® F oo ----+ F oo (F = C or lR), induced by some 
bijection between the canonical bases. This induces a functor 

J.L* : F(S)-mod x F(T)-mod ----4 F(SxT)-mod, 

and hence (for any discrete groups H and G) 

J.L* : Vec~(S) 1\ Vec~(T) ----4 Vec~xdSxT). (2.1) 

This is an (HxG)-equivariant map of bi-f-spaces, and after taking their nerves 
(and loop spaces) we get maps 

nBVec~ 1\ nBVec~ ---> n2 (BVec~ 1\ BVec~) ~ n 2 B2Vec~ x c 
= KFH 1\ KFc c:::' nBVec~xc = KFHxC 

(2.2) 

By Lemma 1.4, these maps are all independent (up to homotopy) of the choice of 
J.L : F oo ® F oo ----+ Foo. 
Lemma 2.3. For any discrete groups Hand G, any H-space X, and any G-space 
Y, the following square commutes: 

lKFHxC(X x Y) 
')'XxY 

KFHXc(X x Y) 

where J.L* is the homomorphism induced by {2.2}. 

Proof. The pullback of the universal bundle EVec~xc, via the pairing Vec~ 1\ 

Vec~ ----+ Vec~xc of (2.1), is isomorphic to the tensor product of the universal bun
dles EVec~ and EVec~. This is clear if we identify EVec~ ~ Ifunc(£(G), F-Bdl)1 
(and similarly for the other two bundles), where F-Bdl is the category of pairs 
(V, x) for V in F-mod and x E V. 0 
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We now consider case where H = 1, and hence where K FH = Z x BU or 
Z x BO. The product map (2.2), after composition with the Bott elements in 
7r2(BU) or 7rB(BO), induces Bott maps 

and 

Proposition 2.5. For any proper CW-pair (X, A), the Bott homomorphisms 

b~,A : Kan(X, A) ---+ Ka n- 2(X, A) 

b~,A : KOc/(X, A) ---+ KOan-B(X, A) 

are isomorphisms; and commute with the homomorphisms 

IXA : OCFcn(X, A) ~ K Fcn(X, A) . 

Proof. The last statement follows immediately from Lemma 2.3. 
By Lemma 1.1, it suffices to prove that the adjoint maps 

Ka --> n2Ka and KOa --> nBKOa 

(2.4) 

to the pairings in (2.4) are weak homotopy equivalences after restricting to fixed 
point sets of finite subgroups of G. In other words, it suffices to prove that b~ : 
Ka(X) ~ Ka2(X) and b~ : KOa(X) ~ KOaB(X) are isomorphisms when 
X = G / H x sn for any n 2 0 and any finite H ~ G. And this follows since the 
Bott maps for OCa and OCOa are isomorphisms [8, Theorems 3.12 & 3.15], since 
OCFcn(X) ~ KFcn(X) (Proposition 1.5), and since these isomorphisms commute 
with the Bott maps. 0 

The Kan(X) and KOan(X) can now be extended to (additive) equivariant 
cohomology theories in the usual way. But before stating this explicitly, we first 
consider the ring structure on Ka(X). This is defined to be the composite 

Do· 
[X,KFa!a x [X, KFa!a ---+ [X,KFaxa!a ---+ [X , KFa!a, 

where the first map is induced by the pairing in (2.2), and the second by restriction 
to the diagonal subcategory £(G) ~ £(GxG). 

Before we can prove the ring properties of this multiplication, we must 
look more closely at the homotopy equivalence nBVecb ....::.... 0,2 B2Vecb which 
appears in the definition of the product. In fact, there is more than one nat
ural map from nnBnVeCb to nn+!Bn+!Vecb' For each n 2 0 and each k = 
0, ... , n, let /,~ : nn BnVecb ~ nn+! Bn+! Vecb denote the map induced as nn(f), 
where f is adjoint to the map EBnVecb ~ Bn+l Vecb, induced by identifying 
BnVecb(Sl,"" Sn) with Bn+!Vecb(.· . , Sk-l, 1, Sk"")' 

By a weak G-equivalence f : X ~ Y is meant a map of G-spaces which 
restricts to a weak equivalence fH : X H ~ yH for all H ~ G; i.e., a weak 
F-equivalence in the notation of Lemma 1.1 when F is the family of all sub
groups of G. Since we are interested equivariant r-spaces only as targets of maps 
from G-complexes, it suffices by Lemma 1.1 to work in a category where weak 
G-equivalences are inverted. 
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Lemma 2.6. Let £1 be any G-equivariant r -space. Then for any n 2: 1, the maps 
~~ : on Bn A ---+ on+! B n+! A (for 0 ::; k ::; n) are all equal in the homotopy category 
of G-spaces where weak G-equivalences are inverted. 

Proof. For any (7 E ~n , let (7* : onBnA ---+ onBnA be the map induced by per
muting the coordinates of Bn A as an n-simplicial set, and by switching the order 
of looping. Then any two of the ~~-I differ by composition with some appropriate 
(7*, and so it suffices to show that the (7* are all homotopic to the identity. 

Consider the following commutative diagram 

(1 xO').l 
n 

OBA ~ on+! Bn+! A ~ on B n A, 

for any (7 E ~n <;: ~n+I' where cp = ~~o ... O~~ is induced by identifying £1(S) with 
£1(S, 1, ... ,1). The diagram commutes, and all maps in it are weak G-equivalences 
by [10, Proposition 1.4]. So (1 x (7)* and (7* are both homotopic to the identity 
after inverting weak G-equivalences. 0 

We are now ready to show: 

Theorem 2.7. For any discrete group and any proper G-complex X, the pairings 
J.Lx define a structure of graded ring on Kc(X) and on KOc(X), which make 
Kc( -) and KOc ( -) into multiplicative cohomology theories. The Bott isomor
phisms 

b~ : Ken (X) ---+ Ken- 2 (X) and b~ : KOct(X) ---+ KOe n- 8 (X) 

are Kc(X)- or KOc(X)-linear. And the canonical homomorphisms 

'Y~ : Il{c(X) ---+ Kc(X) and 'Y~ : Il{Oc(X) ---+ KOc(X) 

are homomorphisms of rings. 

Proof. As usual, set F = C or R We first check that J.Lx makes KFc(X) into a 
commutative ring - i.e., that it is associative and commutative and has a unit. 

To see that there is a unit, let [FI] E Vec~ denote the vertex for the constant 
functor £(G) f-t FI E F{I}-mod, and set [FI]n = ~g([FI]) E OBVec~. The 
following diagram commutes: 

[F1J /\ -
Vec~ A OBVec~ 

J.I. 

OBVec~ 

and the composite in the top row is homotopic to the identity by Lemma 1.4. So 
the element 1 E KFc(X), represented by the constant map X f-t [FIb E KFc , 
is an identity for multiplication in K Fc(X). 
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The commutativity of K FG(X) follows from Lemma 2.6 (the uniqueness of 
the map nBA ---t n2 B2 A after inverting weak G-equivalences); together with the 
fact that the pairing 

I-L* : BVecb A BVecb ------> B2Vecb 

commutes up to homotopy using Lemma 1.4. And associativity follows since the 
triple products are induced by maps 

1\3 f!3 1/L.o(/L.I\Id)1 ~ 
(nBVecb) ------> n3((BVecbt3) : n3B3Vecb +---=- nBVecb; 

f!3 1/L.o(Id I\/L.)I 

where the two maps in the middle are homotopic by Lemma 1.4, and the last could 
be any of the three possible maps by Lemma 2.6. 

The extension of the product to negative gradings is straightforward, via the 
identifications of (1.3). For any n, m ~ 0, the composite 

KFG(snxX)0KFG(smxX) ~ KFG(snxsmxX)0KFG(snxsmxX) 

~ KFG(sn X sm x X) 

restricts to a product map K Fen (X) 0 K Fem(X) ---t K Fen-m(x). To see that 
the product has image in KFen-m(x), just note that 

KFen-m(x) ~ Ker[KFG(Sn+m x X) ----t KFa(X)] 

= Ker[KFG(Sn x sm x X) ----t KFG(sn x X) EEl KFG(sm X X)]. 

This product is clearly associative, and graded commutative (where the change in 
sign comes from the degree of the switching map sn+m ---t sm+n). 

We next check that this product commutes with the Bott maps in the obvious 
way, so that it can be extended to Kb(X) for all i. This means showing that the 
two maps 

KF(sn) 0 KFG(X) 0 KFG(X) =====t: K FG(sn X X) 

induced by the products constructed above are equal. And this follows from the 
same argument as that used to prove associativity of the internal product on 
KFG(X). 

Finally, , : lKFc(X) ---t K Fc(X) is a ring homomorphism by Lemma 2.3. 0 

3. Induction, restriction, and inflation 

In this section we explain how the natural maps defined on lKG(X) and 
lKOG(X) by induction and restriction carryover to KG(X) and KOG(X). Namely, 
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we want to construct for any pair H ~ G of discrete groups, any F = C or JR, any 
G-complex X, and any H-complex Y, natural induction and restriction maps 

Ind~: KFH(Y) ~ KFc(GxHY) 

and 

Res~: KFc(X) ~ KFH(XIH). 

Furthermore, when H <J G is a normal subgroup, we construct an inflation homo
morphism 

which is an isomorphism whenever H acts freely on X . These maps correspond 
under the natural homomorphism lKFc(X) --> K Fc(X) to the obvious homomor
phisms induced by induction, restriction, and pullback of vector bundles. They 
are all induced using the following maps between classifying spaces for equivariant 
K-theory. 
Lemma 3.1. Let f : G' --> G be any homomorphism of discrete groups. Then com
position with the induced functor £(f) : £(G') --> £(G) induces an G' -equivariant 
map f* : Vec~ --> Vec~, ofr-spaces, and hence a G'-equivariant map f* : KFG--> 
KFG' of classifying spaces. And for any subgroup L ~ G' such that LnKer(f) = 1, 
f* restricts to a homotopy equivalence (KFG)f(L) ~ (KFG,)L. 

Proof. This is immediate, except for the last statement. And if L ~ G' is such 
that L n Ker(f) = 1, then L ~ f(L), the categories £(G')j Land £(G)j f(L) are 
both equivalent to the category 8(L) with one object and endomorphism group L; 
and thus (Vec~)f(L)(S) = I func(£(G)j f(L), F(S)-mod)1 is homotopy equivalent 
to (Vec~, )L(S) = I func(£(G')j L , F(S)-mod)1 for each S in r. 0 

We first consider the restriction and induction homomorphisms. 

Proposition 3.2. Fix F = C or JR, and let H ~ G be any pair of discrete groups. 
Let i* : KFG --> KFH be the map of Lemma 3.1. 

(a) For any proper G-CW-pair (X, A), i* induces a homomorphism of rings 

Res~ : KFc(X,A) I KFH(X, A). 

(b) For any proper H -CW-pair (Y, B), i* induces an isomorphism 

which is natural in (Y, B) , and also natural with respect to inclusions of 
subgroups. 

The restriction and induction maps both commute with the maps between lKF G ( - ) 

and lKFH( -) induced by induction and restriction of equivariant vector bundles. 

Proof. It suffices to prove this when A = 0 = Band * = O. The fact that i* : 
KFG --> KFH commutes with the Bott homomorphisms and the products follows 
directly from the definitions. So part (a) is clear. 
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The inverse of the homomorphism in (b) is defined to be the composite 

[G XH Y , KFcJc ~ [Y, KFcJH i·o- I [Y,KFHJH' 
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And since i* restricts to a homotopy equivalence (KFc)L -+ (KFH)L for each 
finite L ~ H (Lemma 3.1) , this map is an isomorphism by Lemma 1.1. 

The last statement is clear from the construction and the definition of 'Y : 
IKFc(-) -+ KFc(-). 0 

We next consider the inflation homomorphism. 

Proposition 3.3. Fix F = C or JR . Let G be any discrete group, and let N <J G be 
a normal subgroup. Then for each proper G-CW-pair (X, A), there is an inflation 
map 

Inflg/N : KFc/N(XIN, AIN) -----.1 KFc(X,A), 

which is natural in (X,A), which is a homomorphism of rings (if A = 0), and 
which commutes with the homomorphism IKFc/N(XIN, AIN) -+ IKFc(X, A) in
duced considering GIN-vector bundles as G-vector bundles. And if N acts freely 
on X , then Inflg/N is an isomorphism. 

Proof. Let f : G -+ GIN denote the natural homomorphism, and let f* : K F c / N -+ 

KFc be the induced map of Lemma 3.1. Define Inflg/N to be the composite 

f· o-
[XIN, KFc/NJC/N ~ [X,KFc/NJC ------; [X,KFcJc. 

If N acts freely on X, then for each isotropy subgroup L of X , L n N = 1, so 
(f*)L : (KFc/N)L -+ (KFc)L is a homotopy equivalence by Lemma 3.1, and 
the inflation map is an isomorphism by Lemma 1.1. The other statements are 
~M. 0 

Another type of natural map will be needed when constructing the equi
variant Chern character. Fix a discrete group G and a finite normal subgroup 
N <J G, and let Irr(N) be the set of isomorphism classes of irreducible complex N
representations. Let X be any proper GIN-complex. For any V E Irr(N) and any 
G-vector bundle E -+ X, let HomN(V, E) denote the vector bundle over X whose 
fiber over x E X is HomN(V, Ex) (each fiber of E is an N-representation). If H ~ G 
is any subgroup which centralizes N, then we can regard HomN(V, E) as an H
vector bundle by setting (hf)(x) = h·f(x) for any hE H and any f E HomN(V, E). 
We thus get a homomorphism 

where W([EJ) = LVElrr(N) [HomN(V, E)J .:>9 [VJ. We need a similar homomorphism 
defined on Kc(X). 

Proposition 3.4. Let G be a discrete group, let N <J G be any finite normal sub
group, and let H ~ G be any subgroup such that [H, NJ = 1. Then for any proper 
GIN -complex X, there is a homomorphism of rings 

W = W&;N,H : Kc(X) I K~(X) .:>9 R(N), 
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which is natural in X and is natural with respect to the degree-shifting maps 
Ka(X) ----; K;;+n(snxX), and which has the following properties: 

(a) For any (complex) G-vector bundle E ----; X, 

1lI([EI) = L [HomN(V, EH 0 [V]. 
VEIrr(N) 

(b) For any G' s:;; G, N' s:;; NnG', and H' s:;; HnG', the following diagram 
commutes: 

Ka(X) 
W~; N , H 

K'H(X) 0 R(N) ) 

Resg,l ResZ, 10 Res~, 
Ka,(X) 

'I!&I;N1 ,HI 
) K'H,(X) 0 R(N'). 

Proof. Fix G, H, and N. For any irreducible N-representation V and any surjective 
homomorphism p: qN] -# V, composition with p defines a monomorphism 

HomN(V, W) ~ HomN(qN], W) = W 

for any N-representation W; and thus allows us to identify HomN(V, W) as a 
subspace of W. In particular, there is a functor 

p* : func(Or(G)/N, C(S)-mod) ---------- func(Or(H), C(S)-mod) 

which sends any a to the functor h 1----+ HomN(V, a(hN)) s:;; a(hN). If p' : qN] ---;; 
V' is another surjection of N -representations, where V ~ V', then any isomor-

phism V ~ V' defines a natural isomorphism between p* and (p')*. We thus get 
a map of r -spaces 

1/Jp : Vecg ) Vec~ 

which is unique (independant of the projection p) up to H-equivariant homotopy. 
So this induces homomorphisms 1/Jv : Kcn(X) ----; Kiin(x), for all proper G/N
complex X (and all n 2 0), which depend only on V and not on p. The 1/Jv 
clearly commute with the Bott maps, and thus extend to homomorphisms 1/Jv : 
Ka(X) ----; K'H(X). So we can define III by setting llI(x) = :EVElrr(N) 1/Jv(x) 0 [V]. 
Point (a) is immediate; as is naturality in X and naturality for restriction to 
G' s:;; G or H' s:;; H . Naturality with respect to the degree-shifting maps holds by 
construction. 

We next show that III is natural in N; i.e., that point (b) holds when G' = G 
and H' = H. Let 1/Jv be the homomorphisms defined above, for each irreducible 
N-representation V; and let 1/J~ : Ka(X) ----; K'H(X) be the corresponding ho
momorphism for each irreducible N'-representation W. For each V E Irr(N) and 
each W E Irr(N'), set 

n~ = dimc(HomN'(W, V)) = dimc(HomN(Ind~,(W), V)). 
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Thus, n~ is the multiplicity of W in the decomposition of VIN', as well as the 
multiplicity of V in the decomposition ofInd~,(W). So for any x E Kc(X) , 

(Id®Res~,)(Wc;N,H(x)) L 1Pv(x) ® [VIN'] 
VElrr(N) 

L ( L n~.1Pv(x)) ® [W]; 
WElrr(N') VElrr(N) 

and we will be done upon showing that 1P~ = Lv n~·1Pv for each W E Irr(N'). 
Fix a surjection Po : qN'] ---+> W, and a decomposition Ind~,(W) = L7=1 Vi 
(where the Vi are irreducible and k = Lv n~). For each 1 :::; i :::; k, let Pi 
qN] ---+> Vi be the composite of Ind~, (Po) followed by projection to Vi. Then 

k 

1Ppo = EB 1PPi : (Vecg) N ---.. Vec~ 
i=l 

as maps of f-spaces, and so 1PW ~ L7=11Pvi as maps Kc(X) ---; K1(X). 
It remains to show that W is a homomorphism of rings. Since it is natural in 

N, and since R( N) is detected by characters, it suffices to prove this when N is 
cyclic. For any x, y E Kc(X), 

W(x)·W(y) = 
V ,WElrr(N) 

and 
W(xy) = L 1Pu(xy) ® [U]. 

UElrr(N) 

And thus w(x)·w(y) = w(xy) since 

1PU0J.L* = EB J.L*o(1Pv l\1Pw): (Vecgt 1\ (Vecg)N ---.. Vec~, 
V ,WElrr(C) 

V0WS!!U 

as maps of f-spaces, for each U E Irr(N). 

4. Characters and class functions 

D 

Throughout this section, G will be a finite group. We prove here some results 
showing that certain class functions are characters; results which will be needed 
in the next two sections. 

For any field K of characteristic zero, a K -character of G means a class 
function G ---; K which is the character of some (virtual) K-representation of G. 
Two elements g, h E G are called K -conjugate if 9 is conjugate to ha for some a 
prime to n = Igi = Ihl such that (( 1-+ (a) E Gal(K(/ K), where ( = exp(27ri/n). 
For example, 9 and hare Q-conjugate if (g) and (h) are conjugate as subgroups, 
and are lR-conjugate if 9 is conjugate to h or h- 1 . 
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Proposition 4.1. Fix a finite extension K of Q, and let A <;;: K be its ring of 
integers. Let f : G ---> A be any function which is constant on K -conjugacy classes. 
Then IGI·f is an A-linear combination of K -characters of G. 

Proof. Set n = IGI, for short. Let VI"'" Vk be the distinct irreducible K[GJ
representations, let Xi be the character of Vi, set Di = EndK[G] (Vi) (a division 
algebra over K), and set di = dimK(Di ). Then by [11, Theorem 25, Cor. 2], 

k 

IGI·f = L riXi where 
i=1 

and we must show that ri E A for all i. This means showing, for each i = 1, ... , k, 
and each 9 E G with K-conjugacy class conjK(g), that IconjK(g)I'xi(g) E diA. 

Fix i and g; and set G = (g), m = Igl = IGI, and ( = exp(27ri/m). Then 
Gal(K(()/ K) acts freely on the set conjK(g): the element (( 1-+ (a) acts by sending 
h to ha . So [K(():KJ I IconjK(g)l· 

Let Vile = wt' EEl··· EEl wtt be the decomposition as a sum of irreducible 

K[GJ-modules. For each j, K j ~f EndK[C] (Wj) is the field generated by K and 
the r-th roots of unity for some rim (m = IGI), and dimKj(Wj ) = 1. So 

dimK(Wj)1 [K(():KJ. 

Also, dil dimK(Wj
aj ), since Wjaj is a Di-module; and thus dilaj"lconjK(g)l. So if 

we set ~j = XWj (g) E A, then 

t 

IconjK(g)I'xi(g) = IconjK(g)l· L aj~j E diA, 
j=1 

and this finishes the proof. 0 
For each prime p and each element 9 E G, there are unique elements gr of 

order prime to p and gu of p-power order, such that 9 = grgu = gugr' As in 
[11, §1O.1]' we refer to gr as the p'-component of g. We say that a class function 
f : G ---> C is p-constant if f(g) = f(gr) for each 9 E G. Equivalently, f is p
constant if and only if f(g) = f(g') for all g,g' E G such that [g,g'J = 1 and g-lg' 
has p-power order. 

Lemma 4.2. Fix a finite group G, a prime p, and a field K of characteristic zero. 
Then a p-constant class function cp : G ---> K is a K -character of G if and only if 
cplH is a K-character of H for all subgroups H <;;: G of order prime to p. 

Proof. Recall first that G is called K-elementary if for some prime q, G = Gm)<l Q, 
where Gm is cyclic of order m, qtm, Q is a q-group, and the conjugation action 
of Q on K[GmJ leaves invariant each of its field components. By [11, §12.6, Prop. 
36], a K-valued class function of G is a K-character if and only if its restriction to 
any K-elementary subgroup of G is a K-character. Thus, it suffices to prove the 
lemma when G is K -elementary. 
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Assume first that Gis q-K-elementary for some prime q i' p. Fix a subgroup 
H ~ G of p-power index and order prime to p, and let 0: : G ...... H be the surjection 
with o:lH = Id. Set pa = I Ker(o:)l. Then 

Aut(Ker(o:)) ~ (Zjpa)* ~ (1 + pZjpa) x (Zjp)*, 

where the first factor is a p-group. Hence for any g E H and x E Ker(o:) , either 
[g,xl = 1 and hence g = (gX)r; or gxg- 1 = Xi for some i:f= 1 (mod p) and hence 
g is conjugate to gx. In either case, tp(gx) = tp(g) . Thus, tp = (tpIH)OO:, and this is 
a K-character of G since tplH is by assumption a K-character of H . 

Now assume G is p-K-elementary. Write G = Cm ><I P, where ptm and P 
is a p-group. Let S be the set of primes which divide m. For each I ~ S, let 
CI ~ Cm be the product of the Sylow p-subgroups for pEl, set GI = CI><lP, and 
let 0:1 : G ...... GIbe the homomorphism which is the identity on G I. 

For each I ~ S, we can consider K[CIl as a G-representation via the con
jugation action of P; and each Cl-irreducible summand of K[CIl is P-invariant 
and hence G-invariant. Thus, each irreducible K[Cll-representation can be ex
tended to a K[Gll-representation upon which P n CG(CI ) acts trivially. Hence, 
since tpici is a K-character of CI; there is a K -character XI of GI such that 
XI(gX) = XI(X) = tp(x) for all x E CI and g E P such that [g, CIl = 1. 

Now set 

X= L (-l)lhJI(XIOO:J) , 
Jt;It;S 

a K-character of G. We claim that tp = X. Since both are class functions, it suffices 
to show that tp(gx) = X(gx) for all commuting g E P and x E Cm = Cs. Fix such 
g and x, and let X ~ S be the set of all primes pllxl. Then [g ,Cxl = 1, and so 

X(gx) = L (-l)lhJI XI (O:J(gx)) = L (-l)lhJI XI (g 'O:J(x)) 
Jt;It;S Jt;It;S 

= L (-l)lhJltp(O:J(x)) + L (-l)lhJI XI (g'O:J(x)) 
Jt;It;X Jt;Ifl,X 

= tp(x) = tp(gx) . 

Note, in the second line, that all terms in the second sum cancel since O:J(x) = 
O:J'(x) if J = J' n X, and all terms in the first sum cancel except that where 
J=I=X. 0 

When A = Z and K = Q, Proposition 4.1 and Lemma 4.2 combine to give: 

Corollary 4.3. Fix a finite group G and a prime p. Let f : G ---. Z be any function 
which is p-constant, and constant on Q-conjugacy classes in G. Set IGI = m·pr 
where ptm. Then m-f is a Q-character of G. 
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5. The equivariant Chern character 

We construct here two different equivariant Chern characters, both defined on 
the equivariant complex K-theory of proper G-complexes. The first is defined for 
arbitrary X (with proper G-action), and sends Kc(X) to the Bredon cohomology 
group Hc(X; Q®zR( - )). The second is defined only when X is finite dimensional 
and has bounded isotropy, and takes values in Q®zHc(X;R(-)). 

We first fix our notation for dealing with Bredon cohomology [5]. Let Or(G) 
denote the orbit category: the category whose objects are the orbits G j H for 
H ~ G, and where Moror(G)(Gj H , Gj K) is the set of G-maps. A coefficient system 
for Bredon cohomology is a functor F : Or(G)OP -> Ab. For any such functor F 
and any G-complex X , the Bredon cohomology Hc(X; F) is the cohomology of 
a certain cochain complex Cc(X; F), where Cc(X; F) is the direct product over 
all orbits of n-cells of type G j H of the groups F( G j H) . This can be expressed 
functorially as a group of morphisms of functors on Or( G): 

Cc(X,F) = Homor(G)(Qn(X),F) , 

where Qn(X) : Or(G)OP -> Ab is the functor Qn(X)(Gj H) = Cn(XH). 
Clearly, the coefficient system F need only be defined on the subcategory of 

orbit types which occur in the G-complex X. In particular, since we work here only 
with proper actions, we restrict attention to the full subcategory Or f (G) of orbits 
GjH for finite H ~ G. Let R(-) denote the functor on Orf(G) which sends GjH 
to R( H): a functor on the orbit category via the identification R( H) ~ Kg (G j H). 
More precisely, a morphism G j H -> G j K in Or f (G), where gH f-> gaK for some 
a E G with a-I Ha ~ K, is sent to the homomorphism R(K) -> R(H) induced by 
restriction and conjugation by a. 

Since R( -) is a functor from the orbit category to rings, there is a pairing 

Cc(X; R( -)) ® Cc(X; R( -)) -----+l Cc(X x X ; R( -)) 

for any proper X, and hence a similar pairing in cohomology. Via restriction to 
the diagonal subspace X ~ X x X this defines a ring structure on Hc(X; R( - )). 

The equivariant Chern character will be constructed here by first reinter
preting Hc(X; Q®R( -)) as a certain group of homomorphisms of functors , and 
then directly constructing a map from Ka(X) to such homomorphisms. This will 
be done with the help of another category, Sub f (G), which is closely related to 
Orf(G). The objects of SUbf(G) are the finite subgroups of G, and 

Morsubf(G)(H,K) ~ Hom(H, K)jInn(K) 

is the subset consisting of those monomorphisms induced by conjugation and in
clusion in G. There is a functor Orf(G) -> SUbf(G) which sends an orbit GjH 
to the subgroup H , and which sends a morphism (xH f-> xaK) in Orf(G) to the 
homomorphism (x f-> a-I xa) from H to K. Via this functor, we can think of 
Sub f (G) as a quotient category of Or f ( G). 
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and H~t(X)(H) = H*(XH /Cc(H)). 
(5.1) 

For any functor F : SUbf(G)OP --> Ab, regarded also as a functor on Orf(G)OP, 

Homor/(C)CQ*(X), F) ~ HomsUb/(C)(Q~t(X), F) , (5.2) 

since 

HomCG(H) (C*(XH), F(H)) ~ Hom(C*(XH /Cc(H)), F(H)) 

for each H (and Cc(H) is the group of automorphisms of G/H in Orf(G) sent 
to the identity in Subf(G)). In particular, (5.2) will be applied when F = R(-), 
regarded as a functor on Sub f (G) as well as on Or f (G). 

As noted above, for any coefficient system F, the cochain complex Co (X; F) 
can be identified as a group of homomorphisms of functors on Or( G). The following 
lemma says that the Bredon cohomology groups Ho(X; Q 0 R( -)) have a similar 
description, but using functors on Sub f (G)Op. 
Lemma 5.3. Fix a discrete group G and a proper G-complex X. Then {5.2} induces 
an isomorphism of rings 

<I>x: Ho(X;Q 0 R(-)) ---=----. HomSub/(C) (Et (X),Q0 R(-)). 

Proof. Since 

Co (X;Q0 R(-)) ~ Homo r /(c)(Q*(X),Q0 R(-)) 

~ HomsUb/(C)(Q~t(X), Q0R( - )), 

this will follow immediately once we show that Q0 R( -) is injective as a functor 
SUbf(G)OP --> Ab. It suffices to prove this after tensoring with IC; i.e., it suffices 
to prove that CI( -) (complex valued class functions) is injective. And this holds 
since for any F: SUbf(G)OP --> Ab, 

Homsub/(c)(F,CI(-)) ~ IIHomsub/ (c)(F,Clg (-)) ~ II Hom(F((g)), iC); 
9 9 

where both products are taken over any set of conjugacy class representatives for 
elements of finite order in G, and where Cig (H) denotes the space of class functions 
on H which vanish on all elements not G-conjugate to g. 0 

We are now ready to define the Chern character 

ch~ : Ko(X) ----.) Ho(X;Q0 R(-)) 

for any proper G-complex X. Here and in the following theorem, we regard Ko( -) 
as being Z/2-graded; so that ch~ sends Kg(X) to HeV(X; Q 0 R( -)) and sends 
Kb(X) to HCdd(X; Q0 R( - )). By Lemma 5.3, it suffices to define homomorphisms 

ch~ : Ko(X) ) Hom(H*(X H /Cc(H)), Q0 R(H)), 
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for each finite subgroup H ~ G, which are natural in H in the obvious way. We 
define ch~ to be the following composite: 

Kc(X) ~ KNG(H) (XH) ~ KCG(H)(X H) ® R(H) 

(proj)" * ( H) () infl- 1 *( XH) R(H) ----+ KCG(H) EGxX ® R H ~ K EGxCG(H) ® 

~ H* (EGxCG(H)XH; Q) ® R(H) ,(pr:W H*(XH jGc(H);Q) ® R(H) 

~ Hom(H*(XH jGc(H)),Q ® R(H)). (5.4) 

Here, \II is the homomorphism defined in Proposition 3.4, ch denotes the ordinary 
Chern character, and (proj)* in the bottom line is an isomorphism since all fibers 
of the projection from EG xCG(H) XH to X H jGc(H) are Q-acyclic (classifying 
spaces of finite groups). By the naturality properties of \II shown in Proposition 3.4, 
I1Hch~ takes values in Homsubf(c)(H~t(X),Q®R(-)), and hence (via Lemma 
5.3) defines an equivariant Chern character 

ch~: Kc(X) I Hc(X;Q®R(-)) ~ Homsubf(c)(H~t(X),Q®R(-)). 

All of the maps in (5.4) are homomorphisms of rings, and hence ch~ is also 
a homomorphism of rings. Also, the ch ~ commute with degree-changing maps 
Kc(X) --t K*+m(smxX) (i.e., product with the fundamental class of sm) and 
similarly in cohomology, since all maps in (5.4) do so. They are thus natural with 
respect to boundary maps in Mayer-Vietoris sequences. 

Theorem 5.5. For any finite proper G-complex X, the Chern character ch~ ex
tends to an isomorphism of rings 

S!! 
Q®ch~: Q®Kc(X) -----+1 Hc(X;Q®R(-)). 

Proof. For any finite subgroup H ~ G, 

Kg(GjH) ~ R(H) ~ Hg(GjH;R(-)), 

and 
Kb(GjH) = 0 = H,,&o(GjH;R(-)). 

From the definition in (5.4) (and since the non-equivariant Chern charac
ter K(pt) --t HO(pt) is the identity map), we see that Q ® chc/H is the identity 
map under the above identifications. The Chern characters for G j H x Dn and 
G j H x sn-l) are thus isomorphisms for all n. The theorem now follows by in
duction on the number of orbits of cells in X, together with the Mayer-Vietoris 
sequences for pushouts X = X' U", (GjHxDn) (and the 5-lemma). 0 

Theorem 5.5 means that the Q-Iocalization of the classifying space Kc splits 
as a product of equivariant Eilenberg-Maclane spaces. Hence for any proper G-

complex X, there is an isomorphism Kc(X; Q) ~ Hc(X; Q®R( -)), where the 
first group is defined via the localized spectrum (and is not in general isomorphic 
to Q ® Kc(X, A)). 
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The coefficient system Q®R( -), and hence its cohomology, splits in a natural 
way as a product indexed over cyclic subgroups of G of finite order. For any cyclic 
group 8 of order n < 00, we let Z[(s] ~ Q(s) denote the cyclotomic ring and field 
generated by the n-th roots of unity; but regarded as quotient rings of the group 
rings Z[8*] ~ Q[8*] (8* = Hom(8, C*)). In other words, we fix an identification of 
the n-th roots of unity in Q( (s) with the irreducible characters of 8. The kernel of 
the homomorphism R(8) ~ Z[8*] --# Z[(s] is precisely the ideal of elements whose 
characters vanish on all generators of 8. 

Lemma 5.6. Fix a discrete group G, and let S(G) be a set of conjugacy class rep
resentatives for the cyclic subgroups 8 ~ G of finite order. Then for any proper 
G-complex X, there is an isomorphism of rings 

Hc(X; Q ® R( -)) ~ II (H*(Xs jGc(8); Q(s))t(S), 
SES(C) 

where N(8) acts via the conjugation action on Q(s) and via translation on 
X S jGc(8). If, furthermore, the isotropy subgroups on X have bounded order, then 
the homomorphism of rings 

Hc(X;R(-)) -----+ II H((G*(X S jGc (8);Z[(s])t(S)) 
SES(C) 

-----+ II (H*(XS jGc(8); Z[(s])t(S), (1) 
SES(C) 

induced by restriction to cyclic subgroups and by the projections R(8) --+> Z[(S], 
has kernel and cokernel of finite exponent. 

Proof. By (5.2), 

Gc(X; R( -)) ~ Homorf(C)(Q*(X), R( -)) ~ HOmSubf(C) (Q;t(X), R( - )). 

For each 8 E S(G), let xs E CI(G) be the idempotent class function: Xs(g) = 
1 if (g) is conjugate to 8, and Xs(g) = 0 otherwise. By Proposition 4.1, for each 
finite subgroup H ~ G, (xs) I H is the character of an idempotent eff E Q ® R( H). 
Set QRs(H) = eff·(Q®R(H)), and let Rs(H) ~ QRs(H) be the image of R(H) 
under the projection. This defines a splitting Q ® R( -) = TIsES(C) QRs ( -) of the 
coefficient system. For each 8 and H, 

QRs(8) = Q(s) and so QRs(H) ~ maPN(S) (Morsubf(C) (8, H), Q((s)). 

It follows that 

Gc(X; QRs( -)) ~ HomSubf(C) (Q;t (X), QRs( -)) 

~ HomQ[N(S)] (G*(X s jGc (8)),Q(s)); 

and hence Hc(X; QRs( -)) ~ (H*(XS jGc(8)); Q(s)t(S). 
Now assume there is a bound on the orders of isotropy subgroups on X, 

and let m be the least common multiple of the IGxl. By Proposition 4.1 again, 
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me:! E R(H) for each S E S(G) and each isotropy subgroup H. So there are 
homomorphisms of functors 

j 
II Rs(-), 

SES(C) 

R(-) 

where i is induced by the projections R(H) ---» Rs(H) and j by the homomor-
m e H . 

phisms Rs(H) ~ R(H) (regarding Rs(H) as a quotient of R(H)); and ioj and 
joi are both multiplication by m. For each S, the monomorphism 

Ce(X; Rs( -)) ~ Homz[N(S)] (C*(Xs jCc(S)), Z[(s]) ----+ C*(Xs jCc(S); Z[(s]) 

is split by the norm map for the action of N(S)jCc(S), and hence the kernel and 
cokernel of the induced homomorphism 

He(X; Rs( -)) ----+ (H*(XS jCc(S); Z[(s])t(S) 

have exponent dividing 4?(m) (since IN(S)jCc(S)111 Aut(S)II4?(m)). The compos
ite in (1) thus has kernel and cokernel of exponent m·4?(m). 0 

By the first part of Proposition 5.6, the equivariant Chern character can be 
regarded as a homomorphism 

ch:X : Ke(X) ----> II (H*(Xs jCc(S); Q((S)))N(S), 
SES(C) 

where S( G) is as above. This is by construction a product of ring homomorphisms. 
We now apply the splitting of Lemma 5.6 to construct a second version of the 

equivariant rational Chern character: one which takes values in Q ~ He (X; R( - )) 
rather than in He (X ; Q~R( -)). The following lemma handles the nonequivariant 
case. 

Lemma 5.1. There is a homomorphism n!ch : K*(X) -; H~2n(x; Z), natural 
on the category of CW-complexes, whose composite to H*(X; Q) is n! times the 
usual Chern character truncated in degrees greater than 2n. Furthermore, n!ch 
is natural with respect to suspension isomorphisms K*(X) ~ K*+m(Em(x+)), 
and is multiplicative in the sense that (n!ch(x)).(n!ch(y)) = n!·(n!ch(xy)) for all 
x, y E K(X) (in both cases after restricting to the appropriate degrees). 

Proof. Define n!ch : KO(X) -; H ev,9 n(x; Z) to be the following polynomial in 
the Chern classes: 

n 2 n 
~( x· x.) E n!·L.,.. l+Xi+ 2; +oo.+---t EZ[Cl,oo.,Cn ]=Z[Xl,X2,oo.,Xn ] n. 

i=l . n. 

Here, as usual, Ck is the k-th elementary symmetric polynomial in the Xi. This 
is extended to K-1(X) ~ K(E(X+)) in the obvious way. The relations all follow 
from the usual relations between Chern classes in the rings H*(BU(m)). 0 

We are now ready to construct the integral Chern character. What this really 
means is that under certain restrictions on X, some multiple of the rational Chern 
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character ch:;'; of Theorem 5.5 can be lifted to the integral Bredon cohomology 
group He(X; R( - )). 

Proposition 5.8. Let G be a discrete group, and let X be a finite dimensional proper 
G-complex whose isotropy subgroups have bounded order. Then there is a homo
morphism 

cltx : Ke(X) -----+ Q (9 He(X; R( - )) , 

natural in such X, whose composite to He(X; Q (9 R( -)) is the map ch:;'; of The

orem 5.5. Furthermore, cltx induces an isomorphism of rings Q (9 Ke(X) ~ 
Q (9 He (X; R( - )) . A nd for any finite subgroup K ~ G, ch~ / K is the identity map 
under the identifications Kc(GjK) ~ R(GjK) ~ Hg(GjK;R(-)). 

Proof. Fix X, and choose any integer n 2: dim(X)j2. Set m = lcm{IGxll x E X} 

and N = n! ·m4n. For each S E G of finite order, let ch~ be the following composite: 

Ke(X) ~ KNG(s)(X S) ~ KcG(s) (Xs) (9 R(S) 

(proj)* K* (G s) () infl- 1 *( G s) (S) 
-----+ CG(S) E x X (9 R S ~ K E xCG(S)X (9 R 

~ HS,2n(EGxcG(s)X S) (9 R(S) m
4n

(pron -\ H*(XS jCc(S)) (9 R(S) 

-----+ H*(Xs jCc(S); Z[(s]) . 

Here, III is the homomorphism of Lemma 3.4, and Infl is the inflation isomor
phism of Proposition 3.3. The first map in the bottom row is well defined since 

H*(XS jC(S); Z[(s]) ~ H*(EG xC(S) X s ; Z[(s]) has kernel and cokernel of 
exponent m2n (this follows from the spectral sequence for the projection, all of 
whose fibers are of the form BGx for x E X). The last map is induced by the 
projection R(S) --- Z[(s]. All of these maps are homomorphisms of rings (up to 
the obvious integer multiples). 

Now let S( G) be any set of conjugacy class representatives for cyclic sub
groups S ~ G of finite order. Define cltx to be the composite 

k n cl;~ 
chx : Ke(X) --'------+1 Q (9 ( II (H*(Xs jCc(S); Z[(S]))N(S)) 

SES(C) 

~Q (9 He(X;R(-)), 

where the isomorphism is that of Lemma 5.6. The naturality of chx , its in
dependence of the choi~ of n, and its relation with ch:;';, are immediate from 
the construction. Also, chx is natural with respect to the degree-changing maps 
K*(X) ---+ K*+m(smxX) (and similarly in cohomology). In particular, this means 
that it commutes with all maps in Mayer-Vietoris sequences. 

It remains to prove that cltx induces an isomorphism on Q (9 Ke(X). This is 
done by induction on dim(X), using the obvious Mayer-Vietoris sequences. So it 
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suffices to show it for (possibly infinite) disjoint unions UiE] G / Hi of orbits. Both 
groups are zero in odd degrees. And in even degrees, 

is the identity map under these identifications. o 

6. Completion theorems 

Throughout this section, G is a discrete group. We want to prove completion 
theorems for finite proper G-complexes: theorems which show that Kc(E x X), 
when E is a "universal space" of a certain type, is isomorphic to a certain com
pletion of Kc(X). The key step will be to construct elements of Kc(X) whose 
restrictions to orbits in X are sufficiently "interesting". And this requires a better 
understanding of the "edge homomorphism" for Kc(X). 

For any finite dimensional proper G-complex X, the skeletal filtration of 
Kc(X) induces a spectral sequence 

E~,2* ~ H[;(Xj R( -)) =} Kc(X). 

If X also has bounded isotropy, the Chern character chx of Proposition 5.8 is an 
isomorphism (after tensoring with Q) from the limit of this spectral sequence to 
its E2-term. It follows that the spectral sequence collapses rationally; i.e., that the 
images of all differentials in the spectral sequence consist of torsion elements. 

Of particular interest is the edge homomorphism of the spectral sequence. 
This is a homomorphism 

EX: Kc(X) --t) Hg(X;R(-)), 

which is induced by restriction to the O-skeleton of X under the identification 

Hg(X;R(-)) = Ker[Kc(X(O») -----; Kb(X(l},X(O»)] 

= Im[Kc(X(1») -----; Kc(X(O»)]. 

Alternatively, Hg(X;R(-)) can be thought of as the inverse limit, taken over all 
isotropy subgroups H of X and all connected components of X H, of the repre
sentation rings R(H); and the edge homomorphism sends an element of Kc(X) 
to the collection of its restrictions to elements of Kc(Gx) ~ R(Gx ) at all points 
xEX. 

As an application of the integral Chern character of Proposition 5.8, we get: 
Proposition 6.1. Let X be any finite dimensional proper G-complex whose isotropy 
subgroups have bounded order. Then for any ~ E Hg (X j R( - )), there is k > 0 such 
that k·~ and ~k lie in the image of the edge homomorphism 

EX: Kc(X) ) Hg(XjR(-)). 
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Similarly, for any ~ E Hg(X; RO( - )) , there is k > 0 such that k·~ and ~k lie in 
the image of the edge homomorphism 

EX : KOG(X) -------;) Hg(X; RO( -)). 

Proof. The usual homomorphisms between R( -) and RO( -), and between Kc( -) 
and KOc( -), induced by (CQ9IR) and by forgetting the complex structure, show 
that up to 2-torsion, KOc(X) and Hg(X; RO( -)) are the fixed point sets under 
complex conjugation of the groups Kc(X) and Hg(X; R( - )), respectively. So the 
edge homomorphism in the orthogonal case is also surjective modulo torsion. The 
rest of the argument is identical in the real and complex cases; we restrict to the 
complex case for simplicity. 

By Proposition 5.8, the integral Chern character for XCO) is the identity under 
the usual identifications KG (G / K) ~ R( K) ~ Hg (G / K; R( - )) for an orbit G / K 

(K finite). So by the naturality of chx, the composite 

Q Q9 KG(X) :~) Q Q9 Hg(X; R( -)) -# Q Q9 Hg(X; R( -)) ~ Q Q9 KG(XCO)) (1) 

is just the map induced by restriction to XCO). So rationally, the edge homomor
phism is just the projection of the integral Chern character ~ onto Hg(X; R(- )), 
and is in particular surjective. And hence, for any ~ E Hg(X; R( - )), there is some 
k > 0 such that k·~ E Ex(KG(X)). 

It remains to show that ~k E Im(Ex) for some k. If we knew that the Atiyah
Hirzebruch spectral sequence 

E~,2* ~ Hb(X; R( -)) => Kc(X) 

were multiplicative (i .e., that the differentials were derivations), then the result 
would follow directly. As we have seen, all differentials in the spectral sequence 
have finite order. Hence, for each r ~ 2 and each 'T} E E~,2*, there is some k > 0 
such that 

and hence 

Upon iteration, this shows that for any ~ E Hg(X; R( -)) = Eg,o, there exists 
k > 0 such that k·~ and ~k both survive to E~o; and hence lie in the image of the 
edge homomorphism. 

Rather than prove the muitiplicativity of the spectral sequence, we give the 
following more direct argument. Identify 

~ E Hg(X; R( -)) = Im[KG(XC1)) ------; KG(XCO))] . 

Assume, for some r ~ 2, that ~ lies in the image of KG(xCr-l)); we prove that 
some power of ~ lies in the image of KG(xCr)). 

Fix f E KG(xCr-l)) such that resX(O) (f) = ~. Since r ~ 2, 

Im[Hg(XCr-l}; R(-)) ------; Hg(XCO) ; R( - ))] 

= Im[Hg(XCr);R(-)) ------; Hg(XCO);R(-))]. 
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Hence, since the Chern character is rationally an isomorphism, there exists k such 
that k·~ lies in the image of KG(x(r)), or equivalently such that 

k .'[ E Ker[KG(X(r-l)) ~ KG(X(O)) ~ Kb(x(r),x(o))] 

= Ker[Kc(X(r-l)) ~ Kb(x(r),x(r-l)) ~ Kb(x(r),x(o))]. (1) 

In Lemma 6.2 below, we will show that there is a KG(X(r-l))-module struc
ture on the relative group Kb(x(r) , x(r-l)) which makes the boundary map 
d: KG(x(r-l)) --+ Kb(x(r) , x(r-l)) into a derivation. Then d('[k) = k .'[k-l.d('[), 

so '[k lies in the kernel in (1), and hence ~k = res X (0) ('[k) lies in the image of 
KG(x(r)). 0 

It remains to prove: 

Lemma 6.2. Let X be any proper G-complex. Then, for any r 2": 2, one can put 
a KG(X(r-l))-module structure on Kb(x(r) , x(r-l)) in such a way that for any 
a, (3 E KG(x(r-l)), 

d(a(3) = a·d(3 + (3·da E Kb(x(r), x(r-l)). 

Proof. We can assume X = x(r). Write Y = x(r-l), for short. Fix a map 6 : 

X --+ Z d~f X X Y u Y x X which is homotopic to the diagonal, and such that 
61y is equal to the diagonal map. Since Z contains the r + I-skeleton of X x X, 
6 is unique up to homotopy (reI Y). In particular, if T : Z --+ Z is the map which 
switches coordinates, then To6 ::= 6 (reI Y). 

Now, for a E KG(Y) and x E Kb(X, Y), let a·x E Kb(X, Y) be the image 
of a x x under the following composite 

axx E Kb(YxX, YxY) ~ Kb(Z,XxY) ~ Kb(Z, YxY) ~ Kb(X, Y). 

Here, the external product a x x is induced by the pairing KG 1\ KG --+ K GxG --+ 

KG of (2.2); or equivalently is defined to be the internal product of proji(a) E 
KG(Y x X) and proj;(x) E Kb(Y x X, Y x Y). We can thus consider KG(X, Y) 
as a KG(Y)-module. In particular, the relation (af3) ·x = a·((3·x) follows since the 
two composites (6 x Idx )o6 and (Idx x6)o6 are homotopic as maps from X to 

(XxYxY) U (YxXxY) U (YxYxX). 

Now consider the following commutative diagram: 

Kc(Y x Y) 
d 

Kb(Z, Y x Y) 
e; 

Kb((X, Y) x Y) EB Kb(Y x (X, Y)) ----> ----> 

~'l ~'l e;1 
KG(Y) 

d 
Kb(X,Y) Kb(Z, Y x X) EB Kb(Z, X x Y) ----> <--

where the isomorphisms hold by excision. For any a, (3 E KG(Y), the external 
product a x (3 E KG(Y x Y) is sent, by the maps in the top row, to the pair 
(da x (3, a x d(3). This follows from the linearity of the differential (which holds in 
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any multiplicative cohomology theory) . And since To~ :::::' ~, as noted above, we 
have 

d( a(3) = ~ * (d( a x (3)) = (3·da + a ·d{3 . 0 

As an immediate consequence of Proposition 6.1, we now get: 

CoroUary 6.3. Assume that G is discrete. Fix any family F of finite subgroups of 
G of bounded order, and let 

V = (VH) E ~ R(H) or V' = (ViI) E ~ RO(H) 
HE::F HE::F 

be any system of compatible (virtual) representations. Then for any finite dimen
sional proper G-complex X all of whose isotropy subgroups lie in F, there is an 
integer k > 0, and elements a, (3 E Kc(X) {or a', (3' E KOc(X)), such that 
al x = k·Vcx and {3lx = (Vcx)k {or a'ix = k-Vcx and (3'l x = (VcJ k) for all x E X. 

Proof. Let ~ be the image of V under the ring homomorphism 

~ R(H) --> Hg(X;R(-)) 
HE::F 

(or similarly in the orthogonal case); and apply Proposition 6.1. 0 
Corollary 6.3 can be thought of as a generalization of [8, Theorem 2.7]. It 

was that result which was the key to proving the completion theorem in [8], and 
Corollary 6.3 plays a similar role in proving the more general completion theorems 
here. 

In what follows, a family of subgroups of a discrete group G will always mean 
a set of subgroups closed under conjugation and closed under taking subgroups. 

Lemma 6.4. Let X be a proper n-dimensional G-complex. Set 

1= Ker[Kc(X) ~ Kc(X(O))]. 

Then In+! = O. 

Proof. Fix any elements x E In and y E I. By induction, we can assume that x 
vanishes in Kc(xn-l), and hence that it lifts to an element x' E Kc(X,x(n-l)). 
Recall that Kc(X, x(n-l)) is a Kc(X)-module, and the map Kc(X, x(n-l)) -
Kc(X) is Kc(X)-linear. But I·Kc(X, x(n- l)) = 0, since I vanishes on orbits; so 
yx' = 0, and hence yx = 0 in Kc(X). 0 

As in earlier sections, in order to handle the complex and real cases simulta
neously, we set F = C or JR, and write K Fc( -) and RF( -) for the equivariant 
K-theory and representation rings over F. 

Fix any finite proper G-complex X, and let f : X - L be any map to a finite 
dimensional proper G-complex L whose isotropy subgroups have bounded order. 
Let F be any family of finite subgroups of G . Regard K Fc(X) as a module over 
the ring KFc(L). Set 

1= I::F ,L = Ker[KFc(L) ~ II KFH(L(O))]. 
HE::F 
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For any n ~ 0, the composite 

In·KFe(X) ~ KFe(X) ~ KFe(EF(G) xX) ~ KFe((EF(G)Xx)(n-l)) 

is zero, since the image is contained in IKFe((EF(G)XaX)(n-l))n = 0 which 
vanishes by Lemma 6.4. This thus defines a homomorphism of pro-groups 

Theorem 6.5. Fix F = C or R Let G be a discrete group, and let F be a family of 
subgroups of G closed under conjugation and under subgroups. Fix a finite proper 
G -complex X, a finite dimensional proper G -complex Z whose isotropy subgroups 
have bounded order, and a G -map f : X -> Z. Regard K Fe (X) as a module over 
KFa(Z), and set 

1= IJ.,z = Ker[KFa(Z) ~ II KFH(Z(O))]. 
HEF 

Then 

is an isomorphism of pro-groups. Also, the inverse system 

satisfies the Mittag-Leffler condition. In particular, 

~l KFe((EF(G) x x)(n)) = 0; 

and >..;,J induces an isomorphism 

KFe(X)I -~-----t) KFe(EF(G) x X) ~ ~KFe((EF(G) x x)(n)). 

Proof. Assume that >..;,J is an isomorphism. Then the system 

satisfies the Mittag-LefHer condition because {K Fe(X)/ In} does. In particular, 
~lKFe((EF(G)Xx)(n)) = 0, and so (cf. [3, Proposition 4.1]) 

KFe(EF(G) xX) ~ ~KFe((EF(G)xx)(n)). 

It remains to show that >..;.t is an isomorphism. 
Step 1 Assume first that X = G/H, for some finite subgroup H ~ G. Let 

FIH be the family of subgroups of H contained in F, and consider the following 
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commutative diagram: 

KFc(Z) ~ KFa(G/H) ~ KFa(EF(G)xG/H) 

eVeH 1"" q 1 "" 
RF(H) --> KFfi(pt) ~ KFfi(EFIH(H)). 

"" 
Here, pr2 induces an isomorphism of pro-groups 

{KFH(*)/h(H)n.KFH(*)}n~l ----+ {KF*(BH)(n-l»)}n~l 

by the theorem of Jackowski [7, Theorem 5.1], where 

IF(H) = Ker[RF(H) --t II RF(L)]:2 I' d~f eVf(eH) (I). 
LEFIH 
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(The theorem in [7] is stated only for complex K -theory, but as noted afterwards, 
the proof applies equally well to the real case.) We want to show that prl induces 
an isomorphism of pro-groups 

{KFa(G/H)/r.KFa(G/H)}n~l ----+ {KFa(EF(G) x G/H)<n-l»)}n~l' 

So we must show that for some k, IF(H)k S;;; I'. 
This means showing that the ideal h(H)/ I' is nilpotent; or equivalently 

(since R(H) is noetherian) that it is contained in all prime ideals of R(H)/I' (cf. 
[2, Proposition 1.8]). In other words, we must show that every prime ideal of R(H) 
which contains I' also contains h(H). Fix any prime ideal ~ S;;; R(H) which does 
not contain h(H). Set ( = exp(27ri/IH\) and A = Z[(]. By a theorem of Atiyah 
[1, Lemma 6.2], there is a prime ideal p S;;; A and an element s E H such that 

~ = {v E R( G) I X v (s) E p}. 

(This is stated in [1] only in the complex case, but the same arguement applies 
to prime ideals in the real representation ring.) Also, s is not an element of any 
LET, since ~ 7l. IF(H). Set p = char(A/p) (possibly p = 0). 

For any g E G of finite order, we let gr represent its p-regular component: 
the unique gr E (g) such that pj'lgrl and I(gr)-lgl is a power of p (gr = g if p = 0). 
By [1, Lemma 6.3], we can replace s by Sr without changing the ideal ~; and can 
thus assume that pj'lsI-

Let m' be the least common multiple of the orders of isotropy subgroups in 
Z, and let m be the largest divisor of m' prime to p (m = m' if p = 0). Define 
cp : tors( G) ---> Z by setting cp(g) = 0 if gr E L for some LET, and cp(g) = m 
otherwise. By Corollary 4.3, cplL is a rational character of L for each L E Isotr(Z). 
So by Corollary 6.3, there is k > 0 and an element ~ E Kc(Z) whose restriction to 
any orbit has character the restriction of cpk. In other words, ~ E 1= Ij. z, and so 
cpkl H is the character of an element v E I'. But then Xv(s) = cp(s)k ~ p, 'so v ~~, 
and thus ~ 7l. I'. 
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Step 2 By Step 1, the theorem holds when dim(X) = O. So we now assume that 
dim(X) = m > O. Assume X = Y Ucp (G/HxDm), for some attaching map 
cp: G/HxSm- 1 ---+ Y. We can assume inductively that the theorem holds for Y, 
G/HxSm- 1, and G/HxDm ~ G/H. 

All terms in the Mayer-Vietor is sequence 

---+ KF(j(X) ---+ KF(j(Y) EB KF(j(G/HxDm) ---+ KF(j(G/Hxsm- l) ---+ 

are KFG(X)-modules, all homomorphisms are KFG(X)-linear and the KFG(Z)
module structure on each term is induced from the K FG(X)-module structure. So 
if we let I' ~ K FG(X) be the ideal generated by the image of I; then dividing out 
by (I')n is the same as dividing out by In for all terms. In addition, K FG(X) is 
noetherian (in fact, a finitely generated abelian group), and so this Mayer-Vietoris 
sequence induces an exact sequence of pro-groups 

------ {KF(j(X)/In} n2:1 ------ {KF(j(Y)/ In EB KF(j(G/ HxDm)/r} n2:1 

------ {KF(j(G/HxSm- 1)/In}n2:1 ------

by [8, Lemma 4.1J. There is a similar Mayer-Vietoris exact sequence of the pro-
groups 

{KF(j((EF(G) x _)(n-l))}n2:1; 

and the theorem now follows from the 5-lemma for pro-groups together with the 
induction assumptions. 0 
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The Thomified Eilenberg-Moore 
spectral sequence 

Mark Mahowald, Douglas C. Ravenel and Paul Shick 

1. Introduction 

In this paper we will construct a generalization of the Eilenberg- Moore spectral 
sequence, which in some interesting cases turns out to be a form of the Adams 
spectral sequence. We recall the construction of both of these in general terms. 
Suppose we have a diagram of spectra of the form 

x 0 +--- Xl+--- X 2 +------

'" j ',j ~ j (1.1 ) 

Ko 

where Xs+l is the fiber of 9s. We get an exact couple of homotopy groups and a 
spectral sequence with 

E:,t = 'Trt-s(Ks) and dr : E; ,t -+ E;+r,t+r-l. 

This spectral sequence converges to 'Tr*(X) (where X = Xo) if the homotopy inverse 
limit lim+- Xs is contractible and certain liml groups vanish. When X is connec
tive, it is a first quadrant spectral sequence. For more background, see [Rav86]. 

In the case of the classical Adams spectral sequence, we have some additional 
conditions on (1.1), namely: 

• Each spectrum Ks is a generalized mod p Eilenberg- MacLane spectrum, 
and 

• each map 9s induces a monomorphism in mod p homology. 

These conditions enable us to identify the E2-term as an Ext group over the 
Steenrod algebra, and to prove convergence when X is connective and p-adically 
complete. 

For the Eilenberg-Moore spectral sequence, let 

(1.2) 

The second author acknowledges support from NSF grant DMS-9802516 and the Centre de 
Recerca Matematica in Barcelona. 
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be a fiber sequence with simply connected base space B . Then one uses this (in a 
manner to be described below) to produce a diagram of the form (1.1) where Xo 
is the suspension spectrum of X. This will yield a spectral sequence converging 
to the stable homotopy of X, but in practice it is not very useful. However if we 
smash everything in sight with the mod p Eilenberg- MacLane spectrum Hlp, we 
get the Eilenberg-Moore spectral sequence converging to H* (X), where E2 is a 
certain Cotor group over H*(B). 

In this paper we will explain a way to twist this construction using a p-Iocal 
spherical fibration over the total space E. The entire construction can be Thomified 
to yield a spectral sequence converging to the homotopy of the Thorn spectrum 
for the induced bundle over X. In §2 we recall a geometric construction of the 
Eilenberg- Moore spectral sequence, and in §3 we explain how it can be Thomified. 
In §4 we identify the E2-term under certain circumstances as an Ext group over 
the Massey- Peterson algebra of the base space of the fibration in question, and 
in §5 we show that in some other cases we get a BP-theoretic analog of this 
result. In §6, we show that a special case of the Z/(p)-equivariant Adams spectral 
sequence of Greenlees can be constructed using the Thomified Eilenberg-Moore 
spectral sequence. 

The authors wish to thank Bill Dwyer, John Greenlees and Brooke Shipley 
for helpful conversations and correspondence. 

2. A geometric construction of the Ellenberg-Moore 
spectral sequence 

We begin by recalling the stable cosimplicial construction associated with the 
Eilenberg- Moore spectral sequence, due to Larry Smith [Smi69] and Rector 
[Rec70]. Given the fibration (1.2), for s ~ 0 let 

s factors ....-----.. 
Gs = E X B X ... X B. 

Define maps ht : Gs- I ----> Gs for 0 ::; t ::; s by 

Let Eo = E, Xo = X, Xl = E/Imi, and for s ~ 1 we define spectra 

Gs/lm ho U ... U 1m h s - l 

Gs/lmho U··· U Imhs 
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i.e., the spectra X s and Es are desuspensions of suspension spectra of the indicated 
spaces. Then for s ;::: 0, hs induces a map X s ---. Es giving a cofiber sequence 

as 
Xs --------» Es --------» ~Xs+l' (2.1) 

where as is projection from the topological quotient of Gs by one subspace to the 
quotient by a bigger subspace. 

For s ;::: 0 there is a homology isomorphism 

where fI denotes reduced homology. Since B is simply connected, the connectivity 
of Es increases without bound with s. Note also that 

for s > 0, so the homotopy inverse limit of the Xs is contractible. The homology 
exact couple associated with the cofiber sequences (2.1) leads to the Eilenberg
Moore spectral sequence for the fibration (1.2). The Eilenberg- Moore spectral 
sequence also converges for non-simply-connected B. Dwyer has proved ([D74]) 
that the Eilenberg- Moore spectral sequence for the fibration 

X---.E---.B 

converges strongly to H*(X) if and only if 1rl(B) acts nilpotently on Hi(E) for 
all i ;::: o. 

3. The Thomified Eilenberg-Moore spectral sequence 

Now suppose that in addition to the fibration (1.2) we also have a p-Iocal stable 
spherical fibration ~ over E which is oriented with respect to mod p homology. 
Projection onto the first coordinate gives compatible maps of the Gs to E, and 
hence a stable spherical fibration over each of them. This means that we can 
Thomify the entire construction. To each of the quotients Xs and Es we associate 
a reduced Thorn spectrum, which is defined as follows. Given a space A with a 
spherical fibration and a subspace B c A, the reduced Thorn space for AlB is the 
space DAI(SA U DB) where Dx and Sx denote disk and sphere bundles over the 
space X . Thus we can associate reduced Thorn spectra to the topological quotients 
Es and Xs+l of Gs. 

Let Y, K, Ys and Ks be the Thomifications of X, E, Xs and Es. Then the 
cofiber sequence of (2.1) Thomifies to 

(3.1) 

and we have 
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The exact couple of homotopy groups for (3.1) leads to a spectral sequence con
verging to 7r * (Y) . There is an associated diagram 

Y = Yo +----- Yl +----- Y2 +----- ... 

901 911 921 (3.2) 

Ko 

where Ys+l is the fiber of gs. This is similar to the Adams diagram of (1.1), but 
H*(gs) need not be a monomorphism in general. We will call this the Thomified 
Eilenberg-Moore spectral sequence. We will use the indexing conventions of Adams 
rather than Eilenberg-Moore, namely 

with E s,t ..:!::... E s+ r ,t+r-l 
r r . 

This puts our spectral sequence in the first rather than the second quadrant. 
We will see below (Theorem 4.4(ii) and Corollary 4.5) that under suitable 

hypotheses (including that the map i of (1.2) induces a monomorphism in homol
ogy), the Thomified Eilenberg-Moore spectral sequence coincides with the usual 
Adams spectral sequence for 7r * (Y). 

The following lemma will be useful. 

Lemma 3.3. For each prime p there is a p-local spherical fibration over n2 8 3 whose 
Thom spectrum is the mod p Eilenberg- Mac Lane spectrum Hlp. 

Proof. For p = 2 we can use an ordinary vector bundle. We extend the nontrivial 
map 8 1 -+ BO to n28 3 using the double loop space structure on BO. It was 
shown in [Mah79] that the resulting Thorn spectrum is H12. 

The following argument for odd primes is due to Mike Hopkins. Let BF(n)(p) 
denote the classifying space for the monoid of homotopy equivalences of the p-Iocal 
n-sphere. Its fundamental group is Z~)' A p-Iocal n-dimensional spherical fibration 
of a space X, i.e., a fibration with fiber 8(p) , is classified by a map X -+ BF(n)(p) . 
Its Thorn space is the cofiber of the projection map to X. Such fibrations and 
Thorn spectra can be stabilized in the usual way. We denote the direct limit of the 
BF(n)(p) by BF(p). 

Now consider a p-Iocal spherical fibration over 8 1 corresponding to an element 
u E Z~)' It Thomifies to the Moore spectrum 8oUl_uel. If we set u = I-p (which 
is a p-Iocal unit) we get the mod p Moore spectrum V(O). 

As in the case p = 2, we can extend this map 8 1 -+ BF(p) to n28 3 using the 
double loop space structure on BF(p), and similar arguments to those of [Mah79] 
identify the resulting Thorn spectrum as Hlp. 0 
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4. Identifying the E2-term 

Observe that H.(K) is simultaneously a comodule over A. and (via the Thorn 
isomorphism and the map h.) over H.(B), which is itself a comodule over A* . Fol
lowing Massey-Peterson [MP67], we combine these two structures by defining the 
Massey- Peterson coalgebra (they called the dual object the semitensor product) 

R* = H.(B) ® A. 

in which the coproduct is the composite 

H.(B) ®A. 

Ll.B®Ll.Al 

H.(B) ® H.(B) ® A. ® A. 

H.(B)®1/IB®A.®A·l 

H.(B) ® A. ® H.(B) ® A. ® A. 

H.(B)®A.®T®A·l 

H.(B) ® A. ® A* ® H*(B) ® A* 

H.(B)®m A®H.(B)®A·l 

(H.(B) ® A*) ® (H*(B) ® A.), 

( 4.1) 

(4.2) 

where ~A and ~B are the coproducts on A* and H*(B), T is the switching 
map, 'ljJB: H*(B) -+ A* ® H*(B) is the comodule structure map, and rnA is the 
multiplication in A •. 

Massey- Peterson gave this definition in cohomological terms. They denoted 
the semitensor algebra R by H*(B) 0 A, which is additively isomorphic to 
H*(B) ® A with multiplication given by 

(Xl ® al )(X2 ® a2) = Xl a~ (X2) ® a~ a2, 

where Xi E H*(B), ai E A, and a~ ® a~ denotes the coproduct expansion of al 
given by the Cartan formula. Our definition is the homological reformulation of 
theirs. 

Note that given a map f: V -+ B and a subspace U c V, fI*(v/U) = 
H*(V, U) is an R-module since it is an H*(V)-module via relative cup products, 
even if the map f does not extend to the quotient V /U. In our case we have maps 
Gs -+ B for all s ~ 0 given by 

(e,b l , ... ,bs ) ~ he. 

These are compatible with all of the maps ht , so H*(Ys) and H.(Ks) are 
R*-comodules, and the maps between them respect this structure. 
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We will see in the next theorem that under suitable hypotheses, the E2-

term of the Thomified Eilenberg- Moore spectral sequence is ExtR. (Z/(p), H*(K)) . 
When B is an H-space we have a Hopf algebra extension (see [Rav86 , Al.l.15] for 
a definition) 

This gives us a Cartan-Eilenberg spectral sequence ([CE56, page 349] or [Rav86, 
A1.3.14]) converging to this Ext group with 

(4.3) 

Note that the inner Ext group above is the same as ExtH.(B)(Z/(p),H*(E)), the 
E2-term of the classical Eilenberg- Moore spectral sequence converging to H*(X). 
If the latter collapses from E2 , then the Ext group of (4.3) can be thought of as 

where H*(Y) is equipped with the Eilenberg- Moore bigrading. This is the usual 
Adams E2-term for Y when H* (Y) is concentrated in Eilenberg- Moore degree 0, 
but the Ext group of (4.3) is graded differently in general. 

Theorem 4.4. (i) Suppose that B is simply connected. Then the Thomified 
Eilenberg-Moore spectral sequence associated with the homotopy of (3.2) 
converges to 7r * (Y). If, in addition, H* (K) is a free A -module, then 

E2 = ExtR. (Z/(p), H*(K)), 

where R* is the Massey- Peterson coalgebra of (4.1). 

(ii) If, in addition, the map i: X -+ E induces a monomorphism in mod p 
homology, then the Thomified Eilenberg- Moore spectral sequence coincides 
with the classical Adams spectral sequence for Y. 

The hypotheses on H*(K) may be unnecessary, but they are adequate for our 
purposes. The result may not be new, but we know of no published proof. Before 
proving the theorem we give a corollary that indicates that the hypotheses are not 
as restrictive as they may appear. 

Corollary 4.5. Given a fibration 

X---+E---+B 

with X p-adically complete, a p-local spherical fibration over E, and B simply con
nected, there is a spectral sequence converging to 7r*(Y) (where Y is the Thomifi
cation of X) with 

where K as usual is the Thomification of E. 



The Thomified Eilenberg- Moore spectral sequence 255 

Proof. We can apply 4.4 to the product of the given fibration with 

pt ---. 0 28 3 ---. 0 28 3 , 

where 0 28 3 is equipped with the p-Iocal spherical fibration of Lemma 3.3. Then 
the Thomified total space is K 1\ Hjp, so its cohomology is a free A-module. Thus 
the E 2- term is 

ExtH.(BAH/p) ®A. (Zj(p), H.(K 1\ Hjp)) = ExtH.(B)®A. (Zj(p), H.(K)). 

o 
Proof of Theorem 4.4 (i) The freeness of H.(K) over A. does not make (3.2) an 
Adams resolution because H.(9s) need not be a monomorphism and the cofiber 
sequence 

ESYs ~ ES Ks -----> Es+1 Ys+l 

need not induce a short exact sequence in homology. 
We will finesse this problem by producing a commutative diagram 

ESYs 
9. ) ESKs ----+ Es+1Ys+1 

[9. [ 1 h.+l for s ~ o. 

ESKs ) ESWs ----+ Es+1 Ks+1 

(4.6) 

in which the cofiber sequence in the bottom row does induce a short exact sequence 
in homology with 

(4.7) 

By the change-of-rings isomorphism of Milnor- Moore [MM65], this implies that 

(4.8) 

Splicing the short exact sequences in homology from the bottom row of (4.6) gives 
a long exact sequence 

0-----> H.(K) -----> H.(Wo) -----> H.(EW1 ) -----> ... , 

which gives an algebraic spectral sequence (see [Rav86, A1.3.2]) converging to 
ExtR. (Zj(p), H.(K)) with 

E1 = ExtR. (Zj(p), H.(Ws)), 

suitably indexed. 
The freeness hypothesis on H.(K) implies (via (4.7)) that H.(Ws) is free 

over R •. From this fact it follows that the algebraic spectral sequence collapses 
from E2 , i.e., ExtR. (Zj(p), H.(K)) is the cohomology of the cochain complex 

Ext~. (Zj(p) , H.(Wo)) -----> Ext~. (Zj(p), H.(EW1)) -----> .... 

By (4.8) this is the same as 

Ext~. (Zj(p), H.(Ko)) -----> Ext~. (Zj(p), H.(EKd) -----> ... 
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and our freeness hypothesis along with (4.6) allows us to identify this cochain 
complex with the E1-term of the Thomified Eilenberg-Moore spectral sequence. 

Thus the Thomified Eilenberg-Moore spectral sequence has the desired 
E2-term if we can produce the diagram (4.6) satisfying (4.7). We shall do this 
now by geometric construction. 

We define the following subspaces of Gs for s ~ 1: 

Imho U Imh2 U··· U Imhs- 1 , 

As U Imh1 

BsUlmhs· 

Then it follows that hs sends Cs - 1 to Bs and B s- 1 to As, Bs/ As = Gs-d B s- 1 and 
Cs/Bs = Gs-dCs- l . Thus for s ~ 0 we get the following pointwise commutative 
diagram in which each row is a cofiber sequence: 

X IE 
ao 

I E/i(X) 

I' 
In, In, for s = 0 

hI 
I GdAl a1 / E ~Gl Bl 

Gs-dCs- 1 
hs 

I Gs/Bs 
as 

I Gs/Cs 

and j n. j n.+, j n.+, for s ~ l. 

hs+l as+1 

Gs/Bs I Gs+dAs+l ~ Gs+dBs+l 

We define Es-l Ws - 1 to be the Thomification of G s / As, and we have previously 
defined ES Ks and Es+1 X s+1 to be the Thomifications of Gs/ Bs and Gs/Cs, so 
Thomification converts the diagrams above to (4.6). 

Let Ps: GS+l -+ Gs x B be the homeomorphism given by 

ps(e, b1 , ... , bs+l) = ((e, b2, ... , bs+t), bt}. 

Then we have 

Psho (ho x B)Ps-l 

and (ht - 1 x B)Ps-l for 2 :::; t :::; s. 

It follows that 

GS+l/As+l = (Gs x B)/(Bs x B) = (Gs/ Bs) x B 

and (4.7) follows. 
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(ii) If the H*(i) is monomorphic and H*(Ks) is a free A-module, then the 
diagram (3.2) is an Adams resolution for Y. Thus, the identity map on the reso
lution provides a comparison map from the Thomified Eilenberg- Moore spectral 
sequence to the Adams spectral sequence. We can identify the inner Ext group 
of (4.3) with H*(Y) concentrated in degree 0, the Cartan- Eilenberg spectral se
quence collapses and our E 2-term is the usual 

ExtA. (Zj(p), H*(Y)). 

So the comparison map induces an isomorphism on the E 2-term of the spectral 
sequences, completing the proof of the theorem. 0 

5. An Adams-Novikov analog 

We now describe a case of the Thomified Eilenberg- Moore spectral sequence lead
ing to variants of the Adams- Novikov spectral sequence. Suppose that in the 
fibration of (l.2), the spherical fibration over E is a complex vector bundle and 
that MU*(K) is free as a comodule over MU*(MU). If in addition MU*(i) is a 
monomorphism, then we get the usual Adams- Novikov spectral sequence converg
ing to 71'* (Y). 

We want an analog of 4.4 in the p-local case identifying the E 2-term for more 
general i. For this we need a BP-theoretic analog of the Massey-Peterson algebra 
R* of (4.1), additively isomorphic to 

r(B) = BP*(B) 0BP. r, (5.1) 

where r = BP*(BP). In order to define a coproduct on this as in (4.2), we need a 
coalgebra structure on BP*(B). This does not exist in general, but it does when 
H*(B) is torsion free and BP*(B) is therefore a free BP*-module. If B is also 
an H-space, then BP*(B) is a Hopf algebra over BP* and (BP*, r(B)) is a Hopf 
algbebroid (defined in [Rav86, Al.l.1]) 

(BP*,r) ~ (BP*,r(B)) ~ (BP*,BP*(B)) 

is a Hopf algebroid extension as defined in [Rav86, Al.l.15]. This means there is 
a Cartan-Eilenberg spectral sequence (see [CE56, page 349] or [Rav86, Al.3.14]) 
converging to Extr(B) (BP*, BP*(K)) with 

E2 = Extr(BP*, ExtBP.(B) (BP*, BP*(K))). (5.2) 

Then we get the following analog of Theorem 4.4, which is proved in the same way. 

Theorem 5.3. (i) Suppose that BP*(K) is free as a BP*(BP)-comodule and 
B is simply connected with torsion free homology. Then the Thomified 
Eilenberg- Moore spectml sequence associated with the homotopy of (3.2) 
converges to 71'* (Y) with 

E2 = ExtqB) (BP*, BP*(K)), 

where r(B) is the Massey- Peterson coalgebm of (5.1) . 
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(ii) If in addition the map i: X ----; E induces a monomorphism in BP-homol
ogy, then the Thomified Eilenberg-Moore spectral sequence coincides with 
the Adams-Novikov spectral sequence for Y . 

There is an analog of Corollary 4.5 in which we retain the hypothesis on B 
while dropping the one on K. 

Corollary 5.4. Given a fibration 

X--->E--->B 

with X p-local, a complex vector bundle over E, and B simply connected with 
torsion free homology, there is a spectral sequence converging to 7r*(Y) (where Y 
is the Thomification of X) with 

E2 = ExtrcB) (BP*, BP*(K)), 

where K as usual is the Thomification of E. 

This can be proved by applying 5.3 to the product of the given fibration with 

pt ---> BU ---> BU 

with the universal complex vector bundle over BU. 

6. A construction of the equivariant Adams spectral sequence 

In this section we provide an alternative construction of a special case of the 
equivariant Adams spectral sequence, due to Greenlees ([G88] and [G90]). We first 
recall Greenlees' approach. 

Let G be a finite p-group. (Later, we will restrict our attention to the case 
where G is elementary abelian.) We work in the equivariant stable homotopy 
category of [LMS86], with all spaces pointed and all homology groups reduced. In 
this setting, G-free means that the action of G is free away from the base point. 
Greenlees' version of the equivariant Adams spectral sequence is based on mod p 
Borel cohomology, defined for a based G-spectrum X as 

be(X) = H*(EG+ Ae X; Z/(p)), 

where, as above, the Z/(p) coefficient groups will hereafter be suppressed. This 
is an RO( G)-graded cohomology theory, defined as follows for a any virtual real 
representation of G: 

bc(X) = Hlod(EG+ Ae X). 

Since G is a p-group, all representations are orientable, and the suspension iso
morphisms in be are given by the Thorn maps, so the theory is really Z-graded 
in this case. This cohomology theory be is representable in the equivariant stable 
category. Adams and Greenlees identify the algebra be (be) of natural cohomology 
operations as 
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where 0 denotes the Massey- Peterson semitensor product. Greenlees actually de
fines the spectral sequence in terms of a variant of Borel cohomology, namely f - or 
coBorel-cohomology, represented by 

Ce = be 1\ EG+. 

Greenlees shows in [G88] that ce(ce) ~ be(be). 
Greenlees' main result is the following cohomology version of the spectral 

sequence. 

Theorem 6.1. ([G88]) For G a finite p-group, X and Y any G-spectra, with Y 
p-complete, bounded below, G-free and homologically locally finite, there is a con
vergent Adams spectral sequence 

E~ , t = Ext~~(cG )(ceY, ceX) =? [X, Y]:, 

natural in both variables. 

One can define a similar spectral sequence based on be( -), but this requires 
the additional hypothesis that X is G-free to guarantee proper convergence. A ho
mology version of the spectral sequence can be written using the homology theory 
represented by the G-spectrum be ([G90]), which does calculate [X, Y]: when X 
or Y is not G-free, provided we take G to be elementary abelian. The hypothe
ses on Y can just be checked nonequivariantly, if Y is G-free, by looking at the 
non-equivariant spectrum EG + I\e y. 

Greenlees' construction involves building a resolution of beY by free be(be)
modules, 

O+--b*Y ....!...-PO.!!!-P1 ~Pl +-- . . . 

and realizing this resolution geometrically. Apply the functor [X, _]e to this geo
metric resolution, obtaining a spectral sequence with 

El = [L: t- s X, Qs]e =? [L: t- s X, Yj holim Ysf, 
s 

where Qs is a locally finite wedge of copies of the spectrum representing be made 
free (i.e., a wedge of copies of Ce = be 1\ EG+), with Ps = beL:sQs. One iden
tifies the E 2-term in the usual manner, and proves convergence by comparing 
ce-(or be-) connectivity with H* -connectivity to show that holims Ys ~ *. 

We now show how to identify this equivariant Adams spectral sequence as a 
case of the Thomified Eilenberg- Moore spectral sequence, with certain restrictive 
hypotheses. From here onward we take G to be Zj(p) , and we will work with 
the spectrum X G-fixed (so that we will use the ce(ce)-based spectral sequence, 
rather than its be(be )-based analog). Let Z be a p-complete free G-spectrum with 
a spherical G-fibration 

F -> E(~)~Z. 

Consider the Borel fibration 

Z -> EG+ I\e Z -> BG. 
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The spherical G-fibration over Z induces a G-fibration 

EG+ fiG F ~ EG+ fiG E(~) ~ EG+ fiG Z, 

so we have the desired fibration over the total space of the Borel fibration. 
We smash the Borel fibration with pt ~ 02S3 ~ 02S3 (with the trivial 

G-action) and apply the Thomified Eilenberg-Moore spectral sequence construc
tion to the resulting fibration. The resulting resolution is EG+ fiG HZj(p)-free. 
Now for a G-fixed spectrum W (like HZj(p) here), the Borel construction is very 
simple: EG+ fiG W ~ BG+ fI W, so the Thomified Eilenberg-Moore spectral se
quence resolution is free over BG+ flHZj(p). Let T(Z) denote the Thom spectrum 
of the bundle over Z. Then the resulting Thomified Eilenberg- Moore spectral se
quence has 

E2 ExtH.(BG+)®A. (H.BG+, H.(T(EG+ fiG Z))) 

ExtH.(BG+)®A. (H.BG+, H.(EG+ fiG T(Z))) 

Extba(bG) (bc(T(Z)), bc(SO)), 

by F p-duality, so that the Thomified Eilenberg-Moore spectral sequence E2-term 
agrees with the equivariant Adams spectral sequence E2-term. 

The Thomified Eilenberg-Moore spectral sequence E 1-term here is given by 
applying the (nonequivariant) functor 11".(-) to the Thomified Eilenberg-Moore 
spectral sequence diagram 

y YO-Y1- Y2-··· 

gO 1 gll g21 

K o 

where Y is the Thom spectrum of EG+ fiG Z fI 02S3. The equivariant bc(bG)
Adams spectral sequence E 1-term arises from applying [SO, -]~ to the geometric 
resolution 

where W is the Thom spectrum of Z and Q s is a wedge of copies of the coBorel 
spectrum eG. But the Adams isomorphism ([Ad84], 5.3) shows that 

[SO, Qs]G = [SO,KsjI, 

so that the isomorphism of E2-terms above is induced by one on the E1 level. This 
proves the following. 
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Theorem 6.2. Let Z be a p-complete based free Z/(p)-spectrum, with a spherical 
Z/(p)-fibration over Z. The Thomified Eilenberg- Moore spectral sequence for the 
smash product of the fibrations pt ---+ 0 2 S3 ---+ 0 2 S3 and 

Z ---+ EZ/(p)+ Az/(p) Z ---+ BZ/(p) 

agrees with the bc(bc )-based equivariant Adams spectral sequence converging to 
1f*(T(Z))z/(p) from E2 onward. 

Unfortunately, the Thomified Eilenberg-Moore spectral sequence is known 
to converge only in the case where the base space in the fibration is simply con
nected, from Theorem 4.4, which is not the case for the Borel fibration. Note 
that we would hope that the case of the Thomified Eilenberg-Moore spectral se
quence above would converge to [EG+, T(Z)]?, rather than [SO, T(Z)]?, the target 
of the Z/p-equivariant Adams spectral sequence. Thus, despite the lack of simple
connectivity for the base space, this special case of the Thomified Eilenberg- Moore 
spectral sequence does converge if [SO, T(Z)]? is isomorphic to [EG+, T(Z)]? = 
[SO, F(EG+, T(Z))]? via the comparison map T(Z) ---+ F(EG+ , T(Z)), which is 
indeed an equivalence when T(Z) is finite , by the (confirmed) Segal Conjecture 
([Car84]). Thus, when Z is finite and G-free, the Thomified Eilenberg- Moore spec
tral sequence converges to 

1f*(T(EG+ Ac Z)) ~ 1f*(EG+ Ac T(Z)) ~ 1f*(T(Z)/G) ~ 1f*(T(Z)c), 

as we wish, where we think of 1f*(T(Z))C as [SO, T(Z)]C with the sphere G-fixed. 
If Z is not finite, then the Thomified Eilenberg- Moore spectral sequence need not 
converge. For example, if T(Z) = EG+ A HZ/p, then 1f*(T(Z)) = H*(G), which is 
bounded below, while F(EG+, EG+ AHG) = F(EG+, HG), which has homotopy 
H*(G), which is unbounded. This example was pointed out by the referee. 
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On the classifying space for proper actions 

Guido Mislin 

Abstract. We discuss conditions under which the universal proper G-CW
complex E.G can be chosen to be finite dimensional. The methods we use stem 
from a general construction introduced in [9], involving spaces parameterized 
by a partially ordered set. In particular we present a construction, which turns 
a G-CW-complex X in a canonical way into a proper G-CW-complex Pr{X) 
of the same homotopy type, with control on the dimension of the new space. 

1. Introduction 

Let C be an arbitrary discrete group. There exists up to C-homotopy a unique 
C-CW-complex EC such that the fixed point space ECH is contractible for every 
finite H < C, and empty for infinite H. A C-CW-complex is called proper if all 
point stabilizers are finite (equivalently, if all its C-cells are of the form C / H x a 
with H finite in C). The space EC is an example of a proper C-CW-complexj 
it is sometimes referred to as the classifying space for proper actions, because it 
enjoys the following universal property: 

• For any proper C-CW-complex X there is a unique C-homotopy class of 
C-maps X -+ EC. 

The following is an explicit description of a standard model for EC. Let F( C) 
denote the C-poset of finite non-empty subsets of C, the partial order being the 
obvious one and the Coaction given by left translation. It follows that the geometric 
realization IF(C) \ of F(C) is a C-CW-complex of type EC. Of course \F(C)\ is 
infinite dimensional for C an infinite group. As we are only interested in EC up 
to C-homotopy, the following definition is useful. 

Definition 1.1. We write dimG EC for the smallest dimension in N U {oo} of a 
model for EC. 

Clearly dimG EC = 0 if and only if C is finite. In case C is torsion-free, 
EC = K(C,l) , the universal cover of a K(C, l). It follows that for a torsion
free group, dimG EC < 00 is equivalent to cd C < 00. Since for a general C the 
space EC may be considered as an EH for H < C, the condition dimG EC < 00 

implies that all torsion-free subgroups of C have finite cohomological dimension, 
universally bounded by dimG EC, because the cellular chain complex of EC yields 
a free Z[H]-resolution of Z for each torsion-free subgroup H of C. 
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A well-known theorem states that a group of finite vcd (virtual cohomo
logical dimension) admits a finite dimensional EG. The precise relationship be
tween vcd G and dime EG is unknown. The following is a standard conjecture 
(cf. K. S. Brown [4]). 

Conjecture 1.2. If 2 < vcd G < 00 then vcd G = dime EG. 

The conjecture holds in the torsion-free case, as is well-known. We excluded 
the case of vcd G = 2 because there is an example of a group G with vcd G = 2 
and dime EG = 3 (cf. [2]). It is obvious that for a group of finite vcd one has 
vcd G :::; dime EG, since for a torsion-free subgroup H < G of finite index, 
cd H = vcd G, and dime EG is an upper bound for cd H as we remarked earlier. 

A case for which the minimal dimension of EG is well understood is when 
dime EG = 1, that is an infinite group acting properly on a tree. Indeed the 
following theorem holds (cf. [7]). 

Theorem 1.3. For an arbitrary group G the following two conditions are equivalent: 

• dimeEG=l; 
• cdQG = l. 

It is always true that cdQG :::; dime EG because, upon tensoring with Q, the 
cellular chain complex of EG yields a Q[G]-projective resolution of Q of length 
dime EG. However, the inequality can in general not be replaced by an equality, 
because according to Bestvina and Mess there exist a torsion-free negatively curved 
group G with cdQG < cdG (cf. [1]). 

A basic unsolved problem, which served as the main motivation for this note, 
is the following one. 

Problem 1.4. Let K --> G --> Q be a short exact sequence of groups. If dimQ EQ 
and dimK EK are both finite, is dime EG finite too? 

In the sequel we will give a partial positive answer to this question. Some 
of the results presented here have also been obtained by Luck [10] with other 
techniques. 

We thank Jonathan Cornick for his useful comments and the referee for his 
suggestions. 

2. Spaces parameterized by a poset 

We briefly recall a construction introduced in [9]. Let A be a G-poset (i.e., a 
partially ordered set on which the group G acts in an order preserving way). Let X 
be a G-CW-complex and f: X --> A a (continuous) G-map, with A considered as 
a discrete topological space. Write X(A) C X for the preimage of A E A, and for 

~ = Ao < Al < ... < An 
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a chain of length n in A, put 
n 

XC~) = II X(Ai) . 
i=O 

The geometric realization If I of f is a G-CW-complex of the form 

If I = (II ( II an X X(~))) / rv 

nEN llEA(n) 

with A (n) the set of chains of length n in A and an the standard n-simplex (for 
details see [9]). The assignment f t--t If I defines a functor from the category of 
G-CW-complexes over A to the category of G-CW-complexes. It maps the ter
minal object IdA: A ---+ A to the usual geometric realization, I IdA 1= IAI, of the 
poset A. Also, the morphism f ---+ IdA gives rise to a canonical G-map If I ---+ IAI, 
which is a homotopy equivalence in case all spaces X(A) are contractible. In [9] 
the poset A( G) of non-trivial finite subgroups of G was used to construct a model 
for EG. This poset is closely related to the singular part (EG)sing of EG, consist
ing of all points with non-trivial isotropy. This can be seen in the framework of our 
spaces parameterized by posets as follows. If one takes X to be the disjoint union 
of G-CW-complexes of the form G XN EGH with N the normalizer of H < G, 
the union being taken over a set of orbit representatives of points H in A( G), then 
there is an obvious G-map 

f: X = II G XN EGH ---t A(G) 

for which each point-preimage is contractible. Thus the natural map 

If I ---+ IA( G) I 

is a G-map and a homotopy equivalence. We claim that If I is G-homotopy equi
valent to (EG)sing so that the following holds. 

Lemma 2.1. For an arbitrary group G the space (EG)sing is homotopy equivalent 
to IA(G)I and G-homotopy equivalent to EG x IA(G)I, with diagonal G-action. 

Proof. We use the well-known fact that a G-map between G-CW-complexes is 
a G-homotopy equivalence if it induces for every H < G an ordinary homotopy 
equivalence between H -fixed point spaces. Consider the map a: If I ---+ IA( G) I 
constructed above. It is a homotopy equivalence on the fixed point spaces for any 
finite subgroup H < G (see [9, Section 9]) . Because the G-action on If I is proper, 
there is a .::anonical classifying G-map {3: If I ---+ EG, and it follows that 

{a,{3}: If I ---+ IA(G)I x EG 

is a G-homotopy equivalence. Moreover the G-map If I ---+ EG maps into (EG)sing 
by a G-homotopy equivalence 

If I --=-. (EG)sing, 
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because for each H < G the map IflH -+ EGH is a homotopy equivalence (the 
spaces in question are both either contractible or empty). 0 

Remark 2.2. A different proof of Lemma 2.1 , in the special case when there is a 
bound on the orders of the finite subgroups of G, can be found in [5, Lemma 2.4]. 

Note also that Lemma 2.1 has the following obvious consequences, which are useful 
in studying EG: 

• Hi(IA(G)I; Z) = 0 for i > dimc EG; 

• Hc(IA(G)I; M) ~ Hc((EGt ing ; M) for any G-module M. (The Borel co
homology Hc(X; M) of a G-space X with coefficients in the G-module M 
is the cohomology of the cochain complex Homc(C*(K(G, 1) x X), M).) 

In [9] the poset A( G) of non-trivial finite subgroups of G was used as the starting 
point for the construction of EG. One of the problems encountered in using A(G) 
was caused by the fact that IA(G)I is in general not contractible. In the next section 
we will show how to construct EG out of suitable contractible posets. 

3. Turning G-actions into proper G-actions 

A G-CW-complex is called simplicial if it is a simplicial complex with G acting 
simplicially, such that if g E G maps a simplex to itself, it fixes it pointwise. 
The standard model for EG described in Section 1 is an example of a simplicial 
G-CW -complex. 

It is an elementary fact that a general G-CW-complex is G-homotopy equiv
alent to a simplicial one of the same dimension. For technical reasons, it is often 
more convenient to work with simplicial G-CW-complexes rather than with gen
eral G-CW-complexes. The following example shall illustrate our point. Let X be 
a G-CW-complex of dimension d and suppose G is a subgroup of finite index in a 
larger group L. The L-space maPc(L, X) has a standard CW-structure with cellu
lar L-action (see the discussion of Serre 's Theorem in Brown's book [3]). Although 
this space mapc(L, X) is homeomorphic in the compactly generated topology to 
a product of [L : G] copies of X , it is not an L-CW-complex. However, it is 
L-homotopy equivalent to an L-CW-complex of dimension d· [L : G]. To prove 
this, we replace X by a simplicial G-CW-complex Y of the same dimension and 
same G-homotopy type, and observe that it is easy to define a simplicial structure 
on maPc(L, Y) such that it is a simplicial L-CW-complex, of the L-homotopy type 
of mapa(L, X). One also checks that if Y is an EG, then mapc(L, Y) is an EL. 

Definition 3.1. Let X be a simplicial G-CW-complex. We write Po(X) for the 
associated G-poset, whose elements are the simplices of X and whose partial order 
is given by the inclusion relation between simplices. 

The geometric realization IPo(X)1 of Po(X) is a simplicial G-CW-complex 
G-homeomorphic to X, with simplicial structure corresponding to the barycentric 
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subdivision of X. We will use the poset Po(X) to turn X into a proper G-CW
complex, by replacing each G-orbit of a simplex a C X by the proper G-space 
GXC(a)EG(a), with G(a) the stabilizer of a. The precise construction is as follows. 

Definition 3.2. Let X be a simplicial G-CW-complex and write G(a) for the sta
bilizer of a cell a. Then Pr(X) denotes the proper G-CW-complex obtained as the 
geometric realization If I of the following map f: Y -+ Po(X). Choose a model 
EG(a) for each a E Eo, where Eo denotes a set of representatives of the G-orbits 
of simplices in X, and put Y to be the disjoint union 

II G xC(a) EG(a). 
aEEo 

The map f: Y -+ Po(X) is now given by f(g x x) = g. a, where x lies in EG(a). 

Corollary 3.3. Let X be a simplicial G-CW -complex. Then 

• the natural G-map Pr(X) -+ X induces a homotopy equivalence of fixed 
point spaces Pr(X)H -+ XH for any finite subgroup H < G; 

• Pr(X) = EG if X H is contractible for each finite subgroup H < G. 

Proof. The first assertion follows from [9, Lemma 8.7], using the fact that IPo(X)HI 
is homeomorphic to X H. The second one follows then from the first, since Pr( X) 
is a proper G-CW -complex. 0 

As a result, we obtain the following general theorem. 

Theorem 3.4. Let X be a finite dimensional G-CW -complex such that for each 
finite H < G the fixed point space X H is contractible. Suppose there is a universal 
bound bEN on dimc(x) EG(x), where x runs over the vertices of X. Then 

dimcEG < 00. 

Proof. We may assume that X is a simplicial G-CW-complex. The space Pr(X) is 
then a G-CW -complex of the G-homotopy type of EG and of dimension bounded 
by (b + 1) (dim X + 1) - 1. 0 

4. Applications 

We now turn to Problem 1.4 concerning group extensions. Recall that HIF stands 
for the class of groups which admit a finite dimensional contractible G-CW
complex with finite cell stabilizers. For example if G admits a finite dimensional 
EG, it certainly belongs to HIF; the converse is an open question! The class of 
groups HF of hierarchically decomposable groups is defined to be the smallest 
class containing HIF such that a group G belongs to HF if G admits a finite 
dimensional contractible G-CW-complex with cell stabilizers in HF (for a general 
account of hierarchically decomposable groups the reader is referred to [8]). 
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Theorem 4.1. Let K -+ G -+ Q be a group extension with 1r: G -+ Q the projec
tion. Then the following holds: 

• if EQ is finite dimensional and if there is a universal bound on the dimen
sion of E1r- 11r(H) where H ranges over all finite subgroups of G, then G 
admits a finite dimensional EG; 

• if Q E HIF and if for each finite subgroup H < G there is a finite di
mensional contractible 1r- 11r(H)-CW-complex of dimension bounded by a 
number independent of H, then G E HIF. 

Proof. Take X = EQ and consider it as a G-space via 1r: G -+ Q. Then for each 
finite H < G the space XH = X1r(H) is contractible and the result follows from 3.4. 
The second case is proved similarly, using for X a finite dimensional contractible 
Q-CW -complex instead of EQ. 0 

Corollary 4.2. Let K -+ G -+ Q be a short exact sequence of groups and assume 
that Q E HIF with Q admitting a bound on the order of its torsion subgroups. 
Then the following holds: 

• if K E H1F, then G E HIF; 
• if dimK EK < 00 then dime EG < 00. 

Proof. Take a finite subgroup H < G and write 1r: G -+ Q for the projection. Put 
L = 1r-11r(H) and consider the short exact sequence 

K -+ L -+ 1r(H). 

If K E HIF then so is L, with associated contractible L-CW-complex of the form 
mapK(L, Y), where Y is some finite dimensional contractible K-CW-complex. It 
follows that mapK(L, Y) is of universally bounded dimension, because there is a 
bound on the index [L : K] which is independent of H. Thus G E HIF by 4.1. 
The proof of the second case is analogous; one uses that Q E HIF together with 
the bound on the order of the torsion subgroups of Q implies that dimQ EQ < 00 

(Corollary B of [9]). 0 

Using a recent result of W. Dicks and P. Kropholler [6] one obtains examples 
of large torsion groups in HIF. 

Lemma 4.3. (Dicks-Kropholler) Let G be a locally finite group of cardinality less 
than ~w. Then G admits a finite dimensional EG. 

Combining 4.2 with 4.3 leads us to 

Theorem 4.4. Let K -+ G -+ Q be a short exact sequence of groups. Assume that 
there is a bound on the order of the torsion subgroups of Q and assume that K is 
a locally finite group of cardinality < ~w. Then the following holds: 

• if Q E HIF, then G E HIF; 
• if dimQ EQ < 00 then dime EG < 00. 

As an example, the theorem can be applied to soluble groups as follows. 
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Corollary 4.5. Let G be a soluble group of cardinality < ~w. Then the following 
conditions on G are equivalent: 

(1) G has finite torsion-free rank (Hirsch number); 
(2) dime EG < 00; 

(3) cdQP < 00. 

Proof. It follows from the well-known structure for soluble groups of finite torsion
free rank that there is a short exact sequence K -> G -> Q with K locally finite 
and Q of finite vcd. Thus dimQ EQ < 00 and the previous theorem shows that 
(1)=?(2). Clearly (2)::::}(3), since one always has cdQG ~ dime EG. Finally, by 
a theorem of Stammbach [11] the torsion-free rank of a soluble group equals its 
(weak) homological dimension over Q and is therefore bounded by cdQG, whence 
(3)::::}(1) . [] 
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Toric morphisms between p-compact groups 

Jesper M. M011er 

Abstract. It is well-known that any morphism between two p-compact groups 
will lift, non-uniquely, to an admissible morphism between the maximal tori. 
We identify here a class of p-compact group morphisms, the p-toric mor
phisms, which can be perceived as generalized rational isomorphisms, en
joying the stronger property of lifting uniquely to a morphism between the 
maximal torus normalizers. We investigate the class of p-toric morphisms and 
apply our observations to determine the mapping spaces map(BSU(3), BF 4), 
map(BG2 , BF4) , and map(BSU(3), BG2 ) where the classifying spaces have 
been completed at the prime p = 3. 

1. Introduction 

The classification up to homotopy of maps between classifying spaces of com
pact Lie groups is a traditional project of algebraic topology [18, 26]. One line 
of development started with the investigations 25 years ago by Hubbuck [15, 16] 
and Adams-Mahmud [1]. They noted the close relationship between maps be
tween classifying spaces and admissible homomorphisms between maximal tori. 
The regular admissible homomorphisms, in particular, turned out to have espe
cially nice properties. It is the purpose of this paper to study regular admissible 
morphisms, here called toric admissible morphisms, in light of the more recent 
theory by Dwyer-Wilkerson [9] of p-compact groups. As case studies, we classify 
homotopy homomorphisms SU(3) ---7 F 4, G2 ---7 F 4, and SU(3) ---7 G2 at the prime 
p= 3. 

In order to describe the content in more detail, let Xl and X2 be p-compact 
groups, for the sake of this introduction assumed to be connected, with maximal 
tori T(Xd ---7 Xl and T(X2 ) ---7 X 2 , respectively. For any morphism f: Xl ---7 X2 

there is a lift T(f): T(XI ) ---7 T(X2 ), unique up the action of the Weyl group of 
X 2, such that the diagram 

T(XI ) ~ T(X2 ) 

i1! ! i2 
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commutes up to conjugacy. As a consequence of uniqueness, the morphism T(J) is 
admissible in the sense that for any element WI of the Weyl group of X I there exists 
and element W2 of the Weyl group of X 2 such that T(J)WI = w2T(J). In general, 
W2 is not uniquely determined by WI, but if it is, we say that f is p-toric (2.1). (As 
we shall see (2.4), f is p-toric, if and only if the centralizer CX2 (Ji I T(XI )) of the 
maximal torus of Xl in X 2 is a maximal torus of X 2 • This explains the name.) In 
that case, the correspondence WI ---7 W2 is a homomorphism of Weyl groups and, 
by Theorem 3.5, there is a unique lift N(J): N(Xd ---7 N(X2 ) to a map between 
the maximal torus normalizers such that the diagram 

commutes up to conjugacy, i.e. a p-toric morphism lifts uniquely to a morphism 
between the maximal torus normalizers. 

In many concrete cases the generic morphism is p-toric. As a first example, 
we consider the case where the domain Xl = SU(3), the codomain X 2 = F4 , 

and the prime p = 3. The compact Lie group F 4 contains a unique copy of 
SU(3,3) = SU(3) XZ(SU(3» SU(3) as a subgroup of maximal rank (4.10). Any 
morphism SU(3) ---7 SU(3, 3) is of the form 

'ljJ(u,v) : SU(3) ~ SU(3) x SU(3) ,pu x,pv ) SU(3) x SU(3) ---7 SU(3, 3) 

where u and v are 3-adic units or zero (2.17) . Composing with the inclusion 
e : SU(3,3) ---7 F 4 we obtain the morphism e'ljJ(u ,v) : SU(3) ---7 F 4. Observe that we 
have e'ljJ(u,v) = e'ljJ( -u,-v) since the inclusion e is invariant under the action of 
the Weyl group WF4 (SU(3, 3)) [11, 4.3] [24, 8.4] which is of order two gener
ated by the self-map 'ljJ-I XZ(SU(3» 'ljJ-I of SU(3,3) (4.15). These maps e'ljJ(u ,v), 

u, v E Z; U {O}, with the relation e'ljJ(u ,v) = e'ljJ( -u,-v), turn out to describe 
Rep(SU(3), F4 ) = [BSU(3)~, (BF4)~] completely. 

Theorem 1.1. The map 

eo -: WF4 (SU(3, 3))\ Rep(SU(3), SU(3, 3)) ---7 Rep(SU(3), F 4) 

is a bijection when p = 3. 

See (4.16, 5.7, 6.7) for information about the centralizers [9, 3.5] of these 
maps. The proof of Theorem 1.1 is divided into three cases: Monomorphisms 
SU(3) ---7 F4 (4.13), p-toric monomorphisms PU(3) ---7 F4 (5.4), and, the tech
nically most demanding case, non-p-toric monomorphisms PU(3) ---7 F4 (6.1) . 

As a second example, we consider the case where Xl = G2 and X 2 = F4 
and p = 3 and reprove a result from Jackowski-McClure-Oliver [19]. To state the 
theorem, we recall that the compact Lie group G2 contains a unique copy of SU(3) 
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as a subgroup of maximal rank (8.5). Thus we may restrict morphisms defined on 
G2 to this subgroup SU(3) C G2. 

Theorem 1.2. [19, 3.4] The restriction map 

Rep(G2, F 4) --- Rep(SU(3), F 4) 

is a bijection when p = 3. 

See (7.2) for information about the centralizers of the homotopy morphisms 
from G2 to F 4 at the prime p = 3. 

When working with this paper, I made use of a MAGMA program written 
by K. Andersen for computing admissible homomorphisms. I also wish to thank 
C. McGibbon for a clarifying remark. 

2. Toric morphisms 

In this section I introduce the concept of a p-toric morphism, relate it to other, more 
familiar, types of morphisms between p-compact groups, and provide examples of 
morphisms that are p-toric and others that are not. 

Let Xl and X2 be p-compact groups (or extended p-compact tori [10,3.12]) 
with maximal tori TI = T(XI ) --- Xl, T2 = T(X2) --- X2 and Weyl groups 
WI = W(XI ) and W2 = W(X2) [9], respectively. Write Rep(XI,X2) for the set 
[BXI' BX2] of conjugacy classes of loop space morphisms [9, §3]. 

Definition 2.1. 1. A loop space morphism TI --- X2 is p-toric (or regular [1, 
2.22], [19, 1. 3]) if its centralizer C x 2 (TI ) is a p-compact toral group [9, 
6.3]. 

2. A loop space morphism Xl --- X2 is p-toric if its composition with TI --
X I is p-toric. 

Note that the centralizer CX2 (TI ) in (2.1.1) is known to be a p-compact group 
[9, §6] [10, 2.5]. 

We shall now consider some alternative criteria for a morphism to be p
toric. For any loop space morphism f: Xl --- X2 between p-compact groups or 
extended p-compact tori there exists [9, 8.11] [10, 2.14] a loop space morphism 
T(f): TI --- T2 between the maximal tori such that 

(2.2) 

XI~X2 

commutes. Moreover, the conjugacy class of T(f) in Rep(TI' T2) is unique up to 
the action by the Weyl group W2 of the target [22,3.5]. The Adams-Mahmud map 

Rep(XI' X 2) --- W2 \ Rep(TI' T2), 
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taking f E Rep(Xl, X 2) to the W2-orbit of T(f) E Rep(TI' T2), is instrumental 
in the proofs of 1.1 and 1.2. Note that, by uniqueness of T(f), the image of the 
Adams-Mahmud map is contained in W2\ Adm(TI, T2) where 

(2.3) 

is the set of admissible homomorphisms. For each element WI of the Weyl group 
WI of the domain there are in general several solutions for W2 E W2 in the equa
tion T(f)WI = w2T(f). As we shall shortly see (2.4), the p-toric morphisms are 
characterized (for connected X 2) as the ones for which W2 is uniquely determined 
by WI. 

Let 

W[<f) = {W2 E W2 I W2 . T(f) = T(f)} 

denote the stabilizer subgroup at T(f) for the action of W2 on Rep(TI' T2). The 
conjugacy class of this subgroup does not depend of the choice of T(f) but only 
on f. 

In case Xl and X 2 are extended p-compact tori, there is a short exact se
quence of loop spaces 

from which we see that 

f: Xl -+ X 2 is p-toric {:} W[(f) = 1i"o(Cx2 (Td) is a finite p-group. 

In case Xl and X 2 are p-compact groups, Cx2 (TI ) -+ X 2 is a monomorphism 
of maximal rank [10, §4], so 

f: Xl -+ X 2 is p-toric {:} Cx2 (TI )o -+ X 2 is a maximal torus for X 2 

where subscript 0 indicates identity component. If X 2 is assumed to be connected, 
a stronger statement is possible. 

Proposition 2.4. Assume that X 2 is a connected p-compact group. The following 
are equivalent 

1. f is p-toric. 
2. Cx2 (Td -+ X 2 is a maximal torus for X 2 . 

3. W[(f) is trivial. 

for any p-compact group morphism f: Xl -+ X 2 . 

Proof. For general reasons, the centralizer Cx2 (Td is a connected [21,3.11] [10, 
7.8] p-compact group [10, 2.5] and the evaluation morphism CX2 (Td -+ X 2 a 
monomorphism of maximal rank [10, 4.3]. Also, any p-compact group with trivial 
Weyl group is [9, 9.7] [21, 3.7, 3.8] a p-compact torus. These general facts, in 
combination with [9, 8.11] [21,3.6], easily imply the proposition. 0 
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Consequently, for any p-toric morphism f: Xl ---. X 2 with connected tar
get, there is for each element w of the Weyl group of the domain a unique ele
ment X(J)(w) of the Weyl group of the target so that T(J)w = X(J)(w)T(J) E 
Rep(TI' T2 ), and x(J): WI ---. W2 is a group homomorphism. 

In general, for a possible non-connected target X 2 , we consider an enlarged 
version of diagram (2.2) in the form of the diagram 

(2.5) 

XI~X2 

where ]2: N2 ---. X 2 is the normalizer [9, 9.8] of the maximal torus. Using that 
CN2 (TI ) ---. Cx2 (TI ) is a maximal torus normalizer [22, 3.4.3], we get 

f is p-toric {::} TI ~ Xl L X 2 is p-toric 

{::} CN2 (TI ) ---. Cx2 (TI ) is an isomorphism 

T T(f) i; N . . => I -- T2 ---> 2 IS p-tonc 

{::}WJ'Cf) is a finite p-group. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

When p > 2, also the converse of the third implication holds because, for odd p, 
a p-compact group is a p-compact toral group if and only if its Weyl group is a 
finite p-group [23, 7.9]. 

In some cases, see e.g. [22, 5.1] or (3.5) below, it is possible to lift f to a loop 
space morphism N (J) between the maximal torus normalizers such that 

XI~X2 

commutes up to conjugacy. In this situation 

f is p-toric => N(J) is p-toric 

and for p > 2 also the converse holds. (Use (2.7, 2.8) to see this.) 
In the following examples and elsewhere 

(2.10) 

(2.11) 

• TRep(XI,X2) C Rep(XI,X2) denotes the set of conjugacy classes of p
toric morphisms 

• Mono(Xl' X 2 ) C Rep(Xl' X 2 ) denotes the set of conjugacy classes of 
monomorphisms 
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• TMono(XI,X2) = Mono(XI,X2) nTRep(XI , X2) 
• €Q(X I , X 2 ) c Rep(XI, X 2 ) is the set of rational isomorphisms [22,2.1] 
• €Q(X I) = €Q(XI,X I) is the monoid of rational automorphisms of Xl 
• Out(Xd is the group of conjugacy classes of automorphisms of Xl (the 

invertible elements of the monoid Rep ( X I, X I))' 
Above, a loop space morphism between extended p-compact tori is a monomor
phism if its discrete approximation [10,3.12] is a group monomorphism. 

Example 2.12. If Xl and X2 have the same rank [9, 5.11], 

Mono(XI,X2) C TRep(XI, X2) :J €Q(X I,X2) 

because any monomorphism [9, 3.2] (rational isomorphism [22, 2.1]) restricts to an 
isomorphism (epimorphism) between maximal tori [21, 3.6] [22,3.6]. 

If Xl and X2 are locally isomorphic, simple p-compact groups [22, 2.7, 5.4] 

TRep(XI, X 2) = Rep(XI, X 2) - {o} = €Q(XI, X 2) 

because f is p-toric or a rational isomorphism if and only if T(f) is non-trivial if 
and only if f is non-trivial [22, 6.7]. 

Example 2.13. For any p-compact group X and any integer m > 0, 

TRep(X,Xm) = (TRep(X, X))m. 

If X is simple, 

TRep(X,Xm) = (Rep(X, X) - {O})m = €Q(x)m pl~1 Out(x)m, 

where the last identity holds under the assumption that p divides the order of the 
Weyl group [22, 5.5, 5.6]. 

Proposition 2.14. Assume that X I is connected and that z: Zl --+ X I is a central 
monomorphism [9, 3.5]. Then there are bijections 

• Rep(XI/ZI,X2) --+ {f E Rep(XI,X2) I foz is trivial} 
• TRep(XI/ZI,X2) --+ {f E TRep(XI,X2) I foz is trivial} 

induced by the epimorphism Xl --+ XI/ZI [9,3.2,8.3] . In fact, the mapping space 
map(B(XI/ZI), BX2) is homotopy equivalent to a union of connected components 
ofmap(BXI,BX2). 

Proof. The epimorphism of Xl to XI/ZI induces a homotopy equivalence be
tween map(B(XI/ZI)' BX2) and a collection of components of map(BXI, BX2) 
[22, 2.10]. This shows the injection of sets of representations, and, when applied 
with Xl replaced by T I , it shows that a morphism Xl --+ X2 is p-toric if and only 
if its composition with the epimorphism Xl --+ XI/ZI is p-toric. 0 

Proposition 2.15. Assume that Xl is simply connected, X2 is connected, and that 
z: Z2 --+ X 2 is a central monomorphism. Then there are bijections 

• Rep(XI,X2) --+ Rep(XI,XdZ2) 
• TRep(XI, X 2) --+ TRep(XI, X 2/Z2) 

induced by the epimorphism X 2 --+ XdZ2. 
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Proof. Obstruction theory (remember that BX1 is 3-connected [6]) shows that 
Rep(Xl, X 2) = Rep(Xl, X2/Z2) and the existence of a short exact sequence of 
p-compact groups [9, 3.2] 

K ...... Gx2(X1) ...... GX2/Z2(Xl) 

where BK is one component of the homotopy fixed point set BZ;Xl; in particular 
K is a p-compact toral group. It follows that GX2 (X 1) is a p-compact toral group 
if and only if GX2/Z2(Xl) is. 0 

Example 2.16. For any simply connected, simple p-compact group X and any cen
tral monomorphism Z ...... X m , 

TRep(X,Xm/Z) = TRep(X,Xm) = cQ(x)m pl~1 Out(x)m 

where the last identity holds if p divides the order of the Weyl group [22, 5.5, 5.6] . 

Example 2.17. Let p be an odd prime and let SU(p, p) denote the quotient of 
SU (p) x su (p) be the central subgroup generated by (( E, (-1 E) where ( =f. 1 is 
a pth root of unity. Then {2.15} 

Rep(SU(p), SU(p,p)) = Rep(SU(p) , SU(p)) x Rep(SU(p), SU(p)) 

TRep(SU(p),SU(p,p)) = Out(SU(p)) x Out(SU(p)) 

where [20, 2.5, 3.5] [24, 4.8] Rep(SU(p), SU(p)) - {O} = Out(SU(p)) = Z;, the 
group of units in the ring of p-adic integers. Relative to this identification 

Mono(SU(p), SU(p,p)) = {(u, v) E (Z; U {0})2 I u + v E Z;} (2.18) 

for [24, 5.2] the morphism 7jJ(u ,v) defined as the composition 

A 'ljJux 'IjJv 
SU(p) ---. SU(p) x SU(p) I SU(p) X SU(p) ...... SU(p,p) 

is a monomorphism if and only if u+v E Z;. The monoid Rep(SU(p,p), SU(p,p)) 
is {2.14, 2.15} isomorphic to a submonoid of Rep(SU(p) x SU(p) , SU(p) x SU(p)) 
and, in particular, 

Out(SU(p,p)) = {(u, v) E Z; x Z; I u == v mod p} ><I (7) 

where 7 is the automorphism that swaps the two SU(p)-factors. 
The set of monomorphisms {2.18} consists of two orbits, represented by 7jJ(I ,I) 

and 7jJ(I,O), under the action of the automorphism group Out(SU(p,p)). It follows 
that the centralizers of the monomorphisms 7jJ(u,v) are 

Gsu (7jJ(u ,v)SU(p)) ~ {Z(SU(P)) if u =f. 0 and v =f. 0 (2.19) 
(p,p) SU(p) ifu=O orv=O 

i.e. that 7jJ(u,v) is centric [7] precisely when it is p-toric. (To prove that 7jJ(I ,I) is 

centric one uses the fact that Z(SU(p)) ~ Z(SU(p) x SU(p)) ...... Z(SU(p, p)) 
is an isomorphism of centers.) In the non-toric case, observe that the projection 
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morphism SU(p) x SU(p) -+ SU(p,p) restricts to 'ljJ(I ,O) on the first factor and to 
'ljJ(O,I) on the second factor. This gives a factorization 

SU(p) -+ CSU(p,p) ('ljJ(I,O)SU(p)) -+ SU(p,p) 

of'ljJ(O,I) through the centralizer of'ljJ(1,O) where the first map is an isomorphism. We 
conclude that if f: SU (p) -+ su (p, p) is a non-toric monomorphism, so is the eval
uation monomorphism SU(p) = CSU(p,p)(fSU(p)) -+ SU(p,p). The Weyl group, 
WSU(p,p)('ljJ(u,v)SU(p)), of any monomorphism 'ljJ(u ,v) is trivial [24, 8.5J. 

Finally, we note that by (2.14), 

so that 

and 

Rep(PU(p), SU(p,p)) = {(u, v) E (Z; U {O} flu + v E pZp} 

TRep(PU(p) , SU(p,p)) = {(u, v) E (Z;)2 I u + v E pZp} 

Rep(PU(p), SU(p,p)) = {O} U Mono(PU(p), SU(p,p)) 

Mono(PU(p), SU(p,p)) = TRep(PU(p), SU(p,p)). 

Lemma 2.20. Let f: X -+ YI be any morphism and g: YI -+ Y2 a monomorphism 
between p-compact groups. Then 

g 0 f: X -+ Y2 is p-toric ~ f: X -+ YI is p-toric. 

Proof. Let T be a maximal torus of Xl. Since composition with Bg, CY1 (fiT) -+ 

CY2 (gfiT), is a monomorphism, CY2 (gfiT) is a p-compact toral group if CY1 (fiT) 
is a p-compact toral group [21, 3.5.(1)J. 0 

The converse of (2.20) is not true in general; take for instance YI to be the 
maximal torus of Y2 . 

3. Lifting p-toric morphisms 

In this section I show that all p-toric morphisms between two p-compact groups 
lift uniquely to p-toric morphisms between the maximal torus normalizers. 

Recall that Xl and X2 are p-compact groups or extended p-compact tori and 
that jl: NI -+ Xl and j2: N2 -+ X2 are normalizers of the respective maximal 
tori, i l : TI -+ Xl and i2: T2 -+ X 2 · 

By the very definition of a p-toric morphism, the maps jl and j2 induce maps 

(3.1) 

of sets of p-toric representations. Our first objective is to prove that the arrow to 
the right is a bijection. This will enable us to define a map from TRep(XI , X2) 
to TRep(NI , N2)' Note the favorable input provided by the information [22, 3.2J 
that 

(3.2) 
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is a bijection and 

(3.3) 

an isomorphism for any p-toric morphism TI -4 N 2 . 

For any set S c Rep(XI ,X2), write map(BXI ,BX2 )s for the space of all 
maps BXI -4 BX2 homotopic to a member of S. 

Lemma 3.4. The map, induced by j2, 

map(BNI , BX2hRep(N1 ,X2 ) f-- map(BN1 , BN2hRep(N1 ,N2 ) 

is a homotopy equivalence. 

Proof. The map of the lemma is the map on homotopy fixed point spaces 

map(BNI , BY2hRep(N1 ,Y2) = (map(BTI' BY2 hRep(T1 'y2»)hW1
, Y2 = N 2, X 2, 

induced by the map 

map(BTI, BX2hRep(T1 ,X2) f-- map(BT1 , BN2hRep(T1 ,N2) 

which is known to be a homotopy equivalence (3.2, 3.3). o 
This lemma immediately leads to the main result of this section. 

Theorem 3.5. (Cf. [1,2.22]) Let Xl and X 2 be p-compact groups and f: Xl -4 X 2 

a p-toric morphism. Then there exists a morphism N(f): NI -4 N2 between ex
tended p-compact tori such that 

commutes up to conjugacy. Moreover, 

• N(f) is unique up to conjugacy 
• N(f) is p-toric 
• CX2 (fjlNd f-- CN2 (N(f)Nd is an isomorphism of loop spaces 

Proof. The map 

(3.6) 

is defined as the composition of the map TRep(X1 , X 2 ) -4 TRep(X1 , N 2 ) with the 
inverse of the bijection TRep(NI ,X2 ) f-- TRep(N1 ,N2) from (3.1). That N(f) is 
p-toric is (2.11) and the isomorphism of centralizers is (3.4). 0 

Example 3.7. If X is simple and N -4 X the normalizer of the maximal torus, 
the map TRep(X,Xm) -4 TRep(N,Nm) is injective if cQ(X) -4 Rep(N,N) is 
injective {2.13}; e.g. if X = PU(p), X = G2 and p = 3, or X = DI2 and p = 3 
[24]. 
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The above theorem is intended as a tool to facilitate the computation of 
TRep(XI' X 2 ) in concrete cases. We now address injectivity of (3.6). 

Remark 3.8. According to the homology decomposition theorem of Jackowski-Mc
Clure [17J and Dwyer- Wilkerson [8J, the exists an F p-equivalence 

hocolimAoP BCx 1 (v) -+ BXI 

where the homotopy colimit is taken over some full subcategory A of the Quillen 
category A(XI). Let us assume that 

• Any object v : V -+ Xl of A admits a factorization p,: V -+ TI through 
the maximal torus and 

• N: TRep( CX1 (v), X 2 ) -+ TRep(CNl (p,), N2 ) is injective for all objects v : 
V -+ Xl of A 

and let now f and f' be two p-toric morphisms with N(f) = c.p = N(f') for some 
c.p E TRep(CN1 (p,), N2 ) . Then the two possible compositions 

are again p-toric morphisms for Cx2 (fe(v)CTl (p,)) = CX2 (fi ITt} is a p-compact 
torus and similarly for the other morphism f'. Since also, 

N(f 0 e(v)) = c.p 0 e(p,) = N(f' 0 e(v)) 

we have f 0 e(v) :::: f' 0 e(v) for all objects v of A by hypothesis. (Here, e(v) : 
Cx(v) -+ X stands for the evaluation monomorphism.) The obstructions to con
structing a homotopy between B f and B f' lie in 

limA1l"i(map(BCx1 (v), BX2 )B(Joe(v))), i ~ 1 

which is an abelian group for i > 1 but just a set if i = 1 and the fundamental 
groups are non-abelian. 

It is possible that (3.8) can be generalized to a more general situation using 
the preferred lifts of [25]. 

While (3.8) applies to the case where Xl is center-free, the following lemma 
can be helpful if Xl has a non-trivial center [10] [21]. 

Consider the following situation 

·r~ 
X YI~Y2 

of p-compact groups and loop space morphisms. Let Rep(X, Ylk-'Zl = {J E 
Rep(X, YI) I f 0 z = zd denote the set of conjugacy classes of morphisms under 
Z and map(BX, BY)Z->Zl the corresponding mapping space. 
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Lemma 3.9. (Cf. [9,8.4].) Assume that z: Z ---+ X is a central monomorphism into 
the connected p-compact group X and that composition with Bg is an isomorphism 
fl.: CYl (ZIZ) --> C Y2 (Z2Z) of centralizers. Then composition with Bg, 

Bg 0 -: map(BX, BYdz--+Zl ---+ map(BX, BY2)z--+Z2 

is a homotopy equivalence. 

Proof. The fibration [9, 8.3] [21, 4.1] BZ --> BX ---+ B(X/Z) allows us to view 
BX = BZh(x/z) as a homotopy orbit space [9, 9.10] and 

map(BX, Bli) = map(BZh(x/z) , BYd = map(BZ, Bli)h(X/Z) , i = 1,2, 

as homotopy fixed point spaces. Composition with Bg: BYI ---+ BY2, 

map(BX, BYI)z--+Zl = map(BZ, BYI)~~~/Z) ---+ map(BZ, BY2)~~/Z) 
= map(BX, BY2)z--+Z2 

is a homotopy equivalence because [9, 10.2] it is induced by the map 

map(BZ, BYdBzl = BCYl (Zl) ---+ BCy2 (Z2) = map(BZ, BY2)Bz2 

which by assumption is a homotopy equivalence. 

Here is a typical application of (3.9). In the diagram 

"r~ Xl CX2 (V) ~ X2 
e(V) 

o 

V is an elementary abelian p-group, Zl a central monomorphism, Z2 a monomor
phism , and Z2 the canonical factorization of Z2 through its centralizer [9, 8.2]. 
Since the evaluation monomorphism e(V): CX2 (V) ---+ X2 clearly [9, 8.2] satisfies 
the hypothesis of (3.9) we see that 

map(BXI , BCX2 (V))Zl--+Z2 ---+ map(BXI , BX2)Zl--+Z2 (3.10) 

is a homotopy equivalence. 

Definition 3.11. Let R be a subset of Rep(XI , X 2). We say that R is T-determined 
if the implication 

flT(Xd = gIT(XI ) :::} f = 9 

holds for all fER and all 9 E Rep(XI,X2). 

Example 3.12. lfthe order ofW(XI) is prime to p, then 

Rep(XI , X 2) = W(X2)\ Adm(T(Xd, T(X2)) (3.13) 

where Adm(T(XI ), T(X2)) consists of the admissible homomorphisms (2.3) . Thus 
Rep(XI,X2 ) is T-determined in this case. The bijection (3.13) follows by exploit
ing the H*Fp-equivalence BN(Xd --> BXI [23,3.12]. 
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Remark 3.14. Let 8 1 ---+ Gl ---+ 1l'o(Gt) and 82 ---+ G2 ---+ 1l'o(G2) be two exten
sions of finite groups, 1l'o(Gl ) and 1l'o(G2), by p-compact tori, 8 1 and 82 , Let 
Hom(Gl ,G2) = [BGl ,*jBG2] denote the set of based and 

Rep( GI, G2) = [BGl , BG2] = 1l'o( G2) \ Hom( Gl , G2) 

the set offree homotopy classes of maps of BG I into BG2. 
The two functors 1l'1 and 1l'2 define a map 

Hom(Gl , G2) ---+ Hom(7ro(G.),7ro(G2»(81, 82) (3.15) 

into the set Hom(7ro(G.),7rO(G2»(81, 82) of pairs (X, </» E Hom(1l'o(Gt),1l'o(G2)) x 
Hom(8l ,82) such that </> is x-equivariant. The fibre over (X, </» is either empty or 
in bijection with the set 

1l'o(map(B8l , B82)~ot.)) = H2(1l'O(Gl ); 1l'2(B82)) = H~(1l'O(Gl)j 82) (3.16) 

where 1l'o(Gl ) acts on 82 , the discrete approximation to 82 , through X. 
If we put W2 . (X, </» = (W2XW;-1, W2</» for all W2 E 1l'O(G2) and all (X, </» E 

Hom(7ro(G.),7rO(G2»(81, 82) then {3.15} becomes 1l'o(G2)-equivariant, so it descends 
to a map 

Rep(Gl ,G2) ---+ 1l'o(G2)\Hom(7ro(G.),7ro(G2»(8l,82) (3.17) 

of 1l'o(G2)-orbit sets. The fibre over the orbit 1l'o(G2) (x, </» is either empty or in 
bijection with the orbit set 

1l'o( G2)(X'<!»\H~( 1l'o( Gl ), 82) 

for the action of the stabilizer group 1l'o(G2)(x,<!» , consisting of all W2 E 1l'O(G2) 
such that W2X = XW2 and W2</> = </>, on the fibre {3.16}. 

Proposition 3.18. Let (X, </» be an element of Hom(7rO(G.), 7rO(G2» (81 , 82 ) and sup
pose that the stabilizer subgroup 1l'o( G2)<x,<!» acts transitively on the cohomology 
group H~(1l'O(Gl)' 82). Then at most one element of Rep(Gl , G2) is mapped to the 
orbit 1l'o(G2)(X,</» under the map {3.17}. 

For later reference, I record here a non-realizability result. 

Lemma 3.19. {ef. [19, 1.8]} Let f: Xl ---+ X2 be a p-compact group morphism where 
p is odd and Xl is connected. Assume that 

• 1l'1 (T(f)) is injective, and 
• p divides the order of the Weyl group WI. 

Then p does not divide 1l'1 (T(f)) in Hom( 1l'1 (Tt), 1l'1 (T2))' 

Proof. By fixed point theory [10, 2.10, 2.14], f lifts to a morphism Np(f) 
Sylp(Nl ) ---+ Sylp(N2) of the p-normalizers. The assumption that 1l'l(T(f)) be in
jective implies, since WI is faithfully represented in 1l'l(Tl ) [9,9.7], that 1l'o(Np(f)) 
embeds the Sylow p-subgroup of WI into W2 . 

Choose a monomorphism f.L : Zip ---+ Sylp(Nt) such that also 1l'o(f.L) : Zip ---+ 

Sylp(Wl ) is injective. This is possible since the epimorphism Sylp(Nt) ---+ Sylp(Wl ) 
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admits a section when p is odd [2]. Note that the composition Np(f)J.l is a monomor
phism since it induces a monomorphism on component groups. Consider now the 
commutative diagram 

where J.l' is a lift of jpJ.l [9,4.7, 5.6]. Since Np(f)J.l is monomorphic, so is i2T(f)J.l' by 
commutativity of the diagram. However, this map would be trivial were 7l"1 (T(f)) 
divisible by p. 0 

The rest of the paper consists of an analysis of the special case where XI = 
SU(3) or G2, X 2 = F4 , and the prime p = 3. 

4. Embeddings of SU(3) in F4 

In this section we apply the concepts of the previous sections to investigate mono
morphisms from SU(3) to F4 at the prime p = 3. First , a few facts about the 
Quillen category A(F4) of F4. (See [28] for more details.) 

Lemma 4.1. [14, 7.4] [28, 8.2.2] Let El be an elementary abelian group of order 
31 . The set Mono(El, F 4) of conjugacy classes of monomorphisms of El into F 4 
has three elements e}, d, d. The centralizers of these three elements are connected 
3-compact groups with Weyl groups of order 36, 48, and 48, respectively. The cen
tralizer CF4 (eD of d is isomorphic to SU(3, 3). The automorphism group Aut(E1 ) 

acts trivially on Mono( E\ F 4). 

Lemma 4.2. [14, 7.4][28, 8.2.4], [27, 7.5] Let E2 be an elementary abelian group 
of order 32. The set Mono(E2, F 4)/ Aut(E2) of isomorphism classes of conjugacy 
classes of monomorphisms of E2 into F 4 has 5 elements, ei, e~, e~, d, eg, with 
Quillen automorphism groups of order 8, 4, 12, 12, 48, and with centralizer Weyl 
groups of order 4, 6, 6, 8, 3, respectively. The centralizer, CF4 (eg), of eg is a 3-
compact toral group of maximal rank with component group 7l"o(CF4 (eg)) of order 
3. There are no maps in the Quillen category from e~ or d to eg. 

Proofs of (4.1) and (4.2). With computer assistance it is easy to determine, using 
[24, 2.6] and [22, 3.2], that Mono(E 1, F 4) is a trivial Aut(EI )-set containing three 
elements whose centralizers are connected 3-compact groups with Weyl groups 
of order 36,48,48, respectively. See [19,3.3] for the precise structure of CF4 (a). 
Since each centralizer of El is connected, any monomorphism E2 ~ F 4 will factor 
through the maximal torus. 0 
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The Quillen automorphism group referred to in (4.2) consists of all automor
phism of E2 that leaves e; E Mono(E2, F 4) invariant. 

We now show that for any monomorphism of SU(3) or SU(3,3) to F 4 the 
triangles 

(4.3) 

SU(3,3))>-----~) F4 

where z: EI -+ SU(3) and z: EI -+ SU(3,3) are centers, will commute up to con
jugacy. This observation is the key to the classification of monomorphisms of 
SU(3) >-> F4. 

Lemma 4.4. 1. Mono(SU(3),F4)z-+e1 = Mono(SU(3),F4)' 
1 

2. Mono(SU(3,3),F4)z-+el = Mono(SU(3,3),F4) ' 

The proof of this lemma uses admissible homomorphisms (2.3) which we now 
discuss. 

Let Z3 denote the ring of 3-adic integers. The Weyl group WI = W(SU(3)) of 
SU(3) is [24, 3.8, 3.I3J (a, T) ~ Aut(~o(Z~)) where ~o(Z~) is the free Z3-module 
with basis (1, -1,0), (0, 1, -1) E Z~ and a and T have matrices 

( ° -1) (0 -1) 
a = 1 -1 ' T = -1 ° 

with respect to this basis. The Weyl group W(F4) = W(F4) < GL(4,Z3) of F4 is 
[3J [24, 3.I3J the group (of order 1152 = 384·3) 

W(F4) = W(B4)E U W(B4)HI U W(B4)H2 (4.5) 

where W(B4) is the reflection group (of order 384 = 24.4!) of all signed permutation 
matrices, and HI and H2 are the matrices 

( 
-1 1 1 1) ( 1 1 1 -1 1 1 1 1 

HI = 2 1 1 -1 1 ' H2 = 2 1 
1 1 1 -1 1 

1 1 1) 1 -1 -1 
-1 1-1 
-1 -1 1 

satisfying Hr = E = Hi.,H2HI = -H2,HIH2 = diag(-I, 1, 1, I)H1 . 

We say that a linear map A: ~o(ZD -+ Z~ is admissible if AW(SU(3)) ~ 
W(F4)A. The linear map A(u,v): ~o(Z~) -+ Z~ , u,v E Z 3, for instance, with 
matrix 

A(u, v) = ( -~ 
-2v 

(4.6) 
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with respect to the chosen basis for Eo(Z~) and the canonical basis for Z~, is 
admissible. Indeed, A(u,v) is X-equivariant where x: W(SU(3)) ---. W(F4) is the 
group homomorphism given by 

( 
-1 -1 1 _1) 

1 1 -1 -1 -1 
x(a) = 2 -1 1 -1 -1 ' 

1 1 1-1 

( 
-1 -1 1 1) 

1 -1 1 -1 1 
x(r) = 2 1 -1 -1 1 

1 1 1 1 

(4.7) 

The next lemma classifies the admissible homomorphisms. Note that A( u, v) and 
-A(u,v) lie in the same orbit under the action of W(F4) as -E E W(F4)' 

Lemma 4.8. 1. Let A: Eo(Z~) ---. Z~ be a linear map. Then A is admissible 
with respect to W(SU(3)) and W(F4) if and only if A E W(F4)A(u,v) for 
some 3-adic integers u, v E Z3' 

2. A( u, v) is split injective if and only if u + v is a 3-adic unit. 
3. The map 

(( -1, -1)) \(Z3)2 ---. W(F 4)\ Homz3 (Eo(Z~), Z~) 

±(u,v) ---. W(F4)A(u,v) 

is injective. 

Proof. 1. Using a computer, it is possible to show that up to inner automorphisms, 
any admissible homomorphism Eo(Z~) ---. Z~ must be x-equivariant. Given this, 
one simply solves the system of linear equations Aw = X( w)A for A where w runs 
through a generating set for W(SU(3)). 
2. The matrix A( u, v) is equivalent to the matrix 

( 
u - 2v 0 ) o 2v-u 

3u 0 
-u v 

which is split injective if and only if u - 2v or, equivalently, (u - 2v) + 3v = u + v 
is a 3-adic unit. 
3. The claim is that for any w in W(F4) the set of solutions to the homogeneous 
system of linear equations 

WA(UI,VI) - A(U2,V2) = 0 

in the four unknowns (u I , VI , U2, V2) is contained in the diagonal (u I , VI) = (U2' V2) 
or in the anti-diagonal (UI' vd = -(U2' V2). This is easily verified on a computer. 

o 
Our interest in the admissible homomorphisms lies in the fact that the in

duced homomorphism 7r1 (T(f)) is admissible for any lift T(f): T(SU(3)) ---. T(F 4) 
to the maximal tori of any morphism f: SU (3) ---. F 4. Thus we must have 

7r1(T(f)) E W(F4)A(u, v) 
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for some 3-adic integers u and v. However, as we shall shortly see, not all the 
homomorphisms A(u, v) are induced in this way from morphisms SU(3) ---t F 4. 

The proof of (4.4) follows immediately from (4.8.1) . 

Prool 01 Lemma 4.4. 1. Let I: SU(3) ---t F 4 be any monomorphism. Then 7TI (T(f)) 
is admissible, so we may assume that 7TI (T(f)) = A( u, v) for some 3-adic integers 
u, v E Z3' The restriction I z: EI ---t F 4 of I to the center z: EI ---t SU (3) of SU (3) 
is given by 

( 
u+v ) 

A(u v) ( -1 ) = u + v 
, 1 u+v 

o 
(4.9) 

where we have reduced modulo 3. Since I z is a monomorphism, u + v =t- 0 mod 3 
and then the stabilizer in W(F 4) of (u + v, u + v, u + v, 0) E (Zj3)4 has order 36. 
Thus Iz c::: et E Mono(EI,F4)' 
2. Let I: SU(3,3) ---t F 4 be any monomorphism and choose some monomorphism 
g: SU(3) ---t SU(3,3) such that gz = z, e.g. 9 = 1jJ(1,o). Then Iz = Igz = et. 0 

Let e: SU(3,3) = CF4 (eD ---t F4 denote the inclusion of the centralizer of d 
into F 4; this map is described in detail in [19, 3.3] . 

Corollary 4.10. The maps 

Mono(SU(3) , SU(3,3))z--+z ~ Mono(SU(3),F4) 

Out(SU(3, 3))z--+z ~ Mono(SU(3, 3), F 4) 

are bijections. 

Proof. By (3.9) and (4.4), 

Mono(SU(3), SU(3, 3)z--+z = Mono(SU(3), F 4)z--+e1 = Mono(SU(3), F 4) 
1 

and similarly for morphisms from SU(3,3). o 

Lemma 4.11. Let 1jJ(u,v): SU(3) ---t SU(3,3) be the morphism {2.17} indexed by 
u,v E Z; U {O}. Then W(F4)7TI(T(e1jJ(u ,v»)) = W(F4)A(u,v). 

Proof. The monomorphism e: SU(3,3) ---t F 4 is [19, 3.3] realizable on the level 
of compact Lie groups as an inclusion SU(3,3) '--+ F 4 such that the restriction 
~O(Z3) x ~o(Z3 ) ---t ~2(Z4) to the integral lattices of the composite morphism 
SU(3) x SU(3) -» SU(3,3) '--+ F4 takes (XI,X2,X3;YI,Y2 ,Y3) to (Xl + Y3 , X2 + 
Y3, X3 + Y3, YI - Y2). Thus 

( -~ ~ ~ =~) (~ ~) = ( o -1 0 -1 v 0 
o 0 2 -1 0 v 

u -v ) -u u-v 
O = -A(u, v) 

-u-v 
2v -v 

represents 7TI(T(e1jJ(u,v»)). o 
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Lemma 4.12. Let u and v be 3-adic integers and A(u, v) the corresponding admis
sible homomorphism. 

1. There exists a morphism f: SU(3) ---- F 4 such that 

W(F4)7I'1(T(f)) = W(F4)A(u,v) 

if and only if both u and v are in the set Z3 U {O}. 
2. There exists a monomorphismf: SU(3) ---- F4 such that W(F4)7I'1 (T(f)) = 

W(F4)A(u, v) if and only if u, v E Z3 U {O} and u + v E Z3' 
Proof. We have already seen (4.11) that A( u , v) is realizable for all u, v E Z3 U {O}. 

Suppose, conversely, that 71'1 (T(f)) = A( u , v) for some 3-adic integers, u and 
v, and some morphism f: SU(3) ---- F4. If f is a monomorphism, then f = e'l/;(u,v) 
for some u, v E Z3 U {O} with u + v E Z3 by (4.10) . If f is not a monomorphism, 
A(u, v) is not split injective [24, 5.2] [21,3.6.1], so u+v is not a 3-adic unit (4.8.2) . 

D 

Theorem 4.13. 1. Mono(SU(3),F4) is T-determined. 
2. The map 

(( -1, -1)) \{(u, v) E (Zj U {O} )21u + v E Zj} ---- Mono(SU(3), F 4) 

±(u, v) ____ e'l/;(u ,v) 

is a bijection. 

Proof. 1. The restriction map Mono(SU(3), F 4) ---- Mono(T(SU(3)), F 4) can be 
identified to the map 

{(u,v) E (Zj U {O})21 u+v == 1 mod3} ---- W(F4)\Hom(Eo(Z~),Z~) 

(u,v) ---- W(F4)A(u, v) 

which is injective by (4.8.3). 
2. This is immediate from (2.18) and (4.10). D 

Here is an alternative formulation of (4.10): Consider the commutative dia
grams 

Mono(SU(3),SU(3,3))z-'z - ('1/;-1 X '1/;-1) \ Mono(SU(3) , SU(3,3)) 

--------------~ ! eo-eo~ 
Mono(SU(3), F 4) 

Out(SU(3,3))z-.z ) ('1/;-1 x '1/;-1) \ Out(SU(3, 3) 

--------------~ ! eo-eo~ 
Mono(SU(3, 3), F 4) 
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where the slanted arrows are bijections. The vertical arrows exist because e('lj!-l x 
'lj!-l) = e by [19, 3.3]. Noting (2.17) that 

Mono(SU(3), SU(3, 3))z-+z = {(u, v) E (Z; U {0})2 I u + v == 1 mod 3} 

Out(SU(3,3))z-+z = {(u,v) E (Z;f I u == 1 == v mod 3})<I (7) 

we see that the vertical arrow in each of the diagrams is a bijection, too, and 
hence that the vertical arrow of the upper (lower) diagram is a bijection of right 
Out(SU(3))- (Out(SU(3,3))-) sets. Thus the action 

Mono(SU(3,3),F4) x Out(SU(3,3)) ~ Mono(SU(3,3),F4) (4.14) 

is transitive and the stabilizer subgroup at the centric monomorphism e, i.e. the 
Weyl group [11, 4.3] [24, 8.4] 

WF4 (eSU(3,3)) = ('lj!-l x'lj!-l) (4.15) 

is cyclic of order two. 
The next lemma lists the centralizers of all monomorphisms SU (3) >--> F 4. We 

let 'lj!-l denote the automorphism 'lj!-l xZ(SU(3» 'lj!-l of T(SU(3) xZ(SU(3)) SU(3) 
[22,4.3] . 

Lemma 4.16. Let (u, v) E (Z3 U {0})2 and u + v E Z3' If uv i- 0, then 

CF4 (e'lj!(u,v)SU(3)) = Z(SU(3)) 

CF4(e'lj!(u,v)T(SU(3))) = T(F4) 

If uv = 0, then 

CF4(e'lj!(u,v)SU(3)) = Z(SU(3)) XZ(SU(3» SU(3) 

CF4(e'lj!(u,v)T(SU(3))) = T(SU(3)) xZ(SU(3» SU(3) 

In all cases, CF4 ('lj!-l) = 'lj!-l. 

Proof. It only remains to determine the map CF4 ('lj!-1) induced by 'lj!-l since 
the centralizers themselves are given by (2.19, 3.9). Let us, for example, consider 
the case where (u, v) = (0,1). Consider the morphism J.L: (SU(3) x T(SU(3))) x 
T(SU(3)) ~ SU(3) x T(SU(3)) ~ SU(3, 3) constructed from the multiplication on 
the maximal torus and the projection map. Since 

eJ.L((1 x 1) x 'lj!-l) = e('lj!-l x 'lj!-1)J.L((1 x 1) x 'lj!-l) = eJ.L(('lj!-1 x 'lj!-l) x 1) 

it follows from (4.17) that CF4 C¢-1) = 'lj!-l on CF4(e'lj!(O,1)T(SU(3))). The other 
cases are similar. 0 

Lemma 4.17. If the diagram of p-compact groups 

Y ---------~) Y' 
h 
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commutes up to conjugacy, so does the induced diagram 

ad(/,) 
Xl ----..,..) Cy(X2) 

h 1 ! C,,(h) 
ad(/,') 

x~ -----) CY ' (X~) 

where the horizontal arrows are ad joints of J.L and J.L' . 
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Corollary 4.18. Let N be a (topological) group with subgroups gl: Gl -+ Nand 
g2: G2 -+ N. Suppose that n E N is an element such that conjugation with n, 
c(n)(m) = nmn-l , mEN, takes G l into G2. Then conjugation with n- l takes 
the centralizer C N(G2) into CN(Gl ) and the diagram 

BCN(Gt} - map(BG l , BN)Bg, 

Be(n- I ) I I Be(n) 

BCN(G2) - map(BG2 , BN)Bg2 

commutes up to homotopy. 

Proof. We have J.L(c(n) x 1) = c(n)J.L(1 x c(n- l )) where J.L is group multiplication 
and where the induced map Bc(n): BN -+ BN is homotopic to the identity. 0 

5. Toric representations of PU(3) in F4 

In this section I classify the p-toric morphisms from PU(3) to F4 viewed as 3-
compact groups. The first step is the determination of the admissible homomor
phisms. 

Let X be a connected p-compact group with maximal torus i: T -+ X. We 
want to describe the integral lattice of the central quotients of X. Suppose that 
Z is a subgroup of the discrete approximation t = (7fl(T) 0 Q)/7fl(T) such that 
the composition Z -+ t -+ X is a central monomorphism. Then we may form the 
p-compact group X/Z [9,8.3] with induced maximal torus i/Z: T/Z -+ X/Z [21, 
4.6] that fits into the commutative diagram 

O_II:-l(O)-_~) lI:-l(Z)-__ ~)o Z~O 

II ! ! 
o ~ 7fl (T) )0 7fl (T) 0 Q K,)o t ~ 0 

1 1 ~ 1 
o -7fl(T/Z) -7fl(T/Z) 0 Q - t/Z - 0 
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with exact rows. From this we get an isomorphism 

0- 11"1 (T) - 11"1 (T /Z) -- Z -- 0 

II ! ! 
0-- K- 1(0) - K- 1(Z) ----+ Z -- 0 

of extensions of WT(X) = WTjz(X/Z)-modules. 
In particular, let Eo(Z~) <;;; Eo(Q~) be the free Z3-submodule with basis 

el = (1,-1,0) and e2 = (0,1,-1); this is the integral lattice for SU(3). Put 
f = !(el - e2) and let PEo(Z~) be the free Z3-submodule of Q~ with basis 
{el, J}. Then there is an exact sequence 

o --.. Eo(Z~) ...:... PEo(Z~) --.. Z/3 --.. 0 

of Z3[E31-modules and PEo(Z~) corresponds to the maximal torus for PU(3). 
Note that there is an extension, B(u, v), of A(u, v), 

Eo(ZD ~ PEo(Z~) 

A(U'V)! ~) 
L4 

if and only if u + v is divisible by 3 and in that case the extension is unique and 
given by 

B(u, v) = A(u, v) ( ~ ( 
-u -.! (u + v) ) 

1 1 3 
1 - u -(2u - v) -3) = 0 ~!(u + v) 

-2v -v 

where u and v are 3-adic integers and u + v E 3Z3' Moreover, the inclusion L is 
W(SU(3)) = W(PU(3))-equivariant and B(u, v) is X-equivariant where X is the 
group homomorphism from (4.7). 

Lemma 5.1. 1. A Z3-linear map B: PEo(Z~) --.. Z~ is admissible with respect 
to W(PU(3)) and W(F4) is and only if BE W(F 4)B(u, v) where u and v 
are 3-adic integers whose sum is divisible by 3. 

2. B(u, v) is split-injective when u and v are 3-adic units. 
3. The map 

(( -1, -1)) \{ (u, v) E (Z3)2Iu + v E 3Z3} --.. W(F 4)\ Homz3 (PEo(Z~), Z~) 
±(u, v) --.. W(F 4)B(u, v) 

is injective. 

Proof. 1. B is admissible if and only if B 0 L is, i.e. if and only if B is an extension 
of A(u, v) (4.8.1) for some 3-adic integers, u and v. 
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2. If u and v are units then 

_~-l ) 

is a left inverse of B (u, v). 
3. If B(Ul,Vl) E W(F4)B(U2,V2) then also A(Ul,Vt) E W(F4)A(U2,V2) and 

then (4.8.3) (Ul,Vt) and (U2,V2) are equal up to sign. 0 

When u, v E Zii U {O} with sum U + v E 3Z3 there is a unique conjugacy class, 
;Y,(u,v) h k h d' 
'f/ ,t at rna es t e lagram 

'Ij;(v.,v) 

SU(3) ~ SU(3, 3) ~ F 4 

!~ 
PU(3) 

commutes up to conjugation. By construction, 

W(F4)7rI(T(eo:;P(u,v))) = W(F4)B(u,v) 

in W(F4 )\ Homz3(PEo(Z~), Z~). 

Lemma 5.2. Let U and v be 3-adic integers with sum u + v E 3Z3 and let B(u, v) : 
PEo(Z~) --+ Z~ be the corresponding admissible homomorphism. 

1. There exists a morphism f: PU(3) --+ F4 such that W(F4)7rl(T(f)) = 
W(F 4)B(u, v) if and only if u = 0 = v or u, v E Zii. 

2. There exists a monomorphism f: PU(3) --+ F4 such that W(F4)7rl(T(f)) = 
W(F4)B(u,v) if and only ifu,v E Zii· 

Proof. We have already seen that W(F4)B(u,v) is realizable by a morphism 
f: PU(3) --+ F4 if u = 0 = v or u,v E Zii; if both u and v are non-zero then 
f is a monomorphism by (5.1.2). Conversely, if W(F4)B(u,v) is realizable, so is 
W(F4)A(u, v) and then (4.12) u, v E Zii U {O}, u + v f. zii. 0 

Alternatively, (5.2) says that any non-trivial morphism PU(3) --+ F 4 is a 
monomorphism. 

Proposition 5.3. (ef. [1, 2.27.(ii)]) Suppose that u and v are 3-adic units with 
u + v E 3Z3 . Then 

T(PU(3)) ~ T(F4) ~ F4 

is tonc if and only if (u, v) f. Z3(2, 1) U Z3(I , -1). 

Proof. Explicit (computer aided) computations of W(F4)B(u,v) = W(F4)A(u,v). 
o 
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The two generic non-3-toric morphisms 

( -2 -1) 
B(2, 1) = ~_~ 

-2 -1 

( 

-1 

and B(I, -1) ~ ~ 

are related by the equation c:B(2, 1) = 2B(1, -1) where 

( 0 0 -1 1) 
c: = 0 0 -1 -1 

-1 -1 0 0 
-1 1 0 0 

is the admissible automorphism of Z~ corresponding to the exotic automorphism 
ofF4. (In general, W(F4)(c:A(u,v)) = W(F4)(A(2v,-u)), cf. [1,2.11].) 

Theorem 5.4. 1. TRep(PU(3),F4) is T-determined. 
2. The map 

(( -1, -1)) \( {(u, v) E (Zj)2 I u + v E 3Z3}) \ (Zj(2, 1) U Zj(l, -1))) 

~ TRep(PU(3), F 4) 

t k · ±( ) t :J;(u,v) . b·· t· a zng u, v 0 e 0 Ij/ , zs a zJec zan. 

Consider the set Rep(N(PU(3)),N(F4)) of conjugacy classes of maps from 
the maximal torus normalizer N(PU(3)) ofPU(3) to the maximal torus normalizer 
N(F 4) of F 4. As we have seen (3.17), there is a map 

Rep(N(PU(3)), N(F4)) ~ W(F4)\ Hom(W(PU(3)),W(F4)) (T(PU(3)), T(F4)) 

induced by the functors 7fl and 7f2. It is easy to calculate directly that the coho
mology group H2((x(a)) ;7fl(T(F4))) is trivial. Then also 

H~(W(PU(3)); 7fl (T(F 4))) = 0 (5.5) 

for (a) is a Sylow 3-subgroup of the Weyl group of PU(3) and we get 

Lemma 5.6. There is at most one element of Rep(N(PU(3)),N(F4)) correspond
ing to the orbit W(F 4)(X, B(u, v)), (u, v) E (Z3)2, U + v E 3Z3 . 

Proof of Theorem 5.4. Let h,12 E TRep(PU(3),F4) be two toric representations 
and suppose that their restrictions to the maximal torus of PU(3) agree. Under 
the map 

TRep(PU(3), F4) ~ TRep(N(PU(3)), N(F4)) 

~ W(F 4)\ Hom(W(PU(3)) ,W(F4))(T(PU(3)), T(F4)) 

hand 12 go to the same element of the target and it follows (5.6) that the lifts 
(3.5) N(h) and N(12) are conjugate, i.e. that hand 12 have conjugate restrictions 
to the maximal torus normalizer N(PU(3)). In fact, NUd = B(u, v) >l X = N(12) 
for some (u,v) E (Z3)2\(Z3(2,1)UZ3(1,-1)). 
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We may approximate BPU(3) by a homotopy colimit over a category I = 
I(SL(2, F 3), S3) (a full subcategory of the Quillen category that may be described 
as formed from the inclusion of a Sylow 3-subgroup S3 into the special linear group 
SL(2,F3)) with just two objects, A: E1 ____ PU(3) and v: E2 ____ PU(3), where E1 
and E2 are elementary abelian groups of order 3 and 32, respectively [17, 6.8, 7,7]; 
see [24, §4] for the notation used here. Since II and h agree on the centralizers, 
CPU (3) (AE1 ) = N3(PU(3)) and CPU(3) (vE2) = E2, it only remains to compute the 
relevant Wojtkowiak obstruction groups [29]. For this we need information about 
the centralizer CF4 (/iE2) and CF4 (/iN3(PU(3))). 

We must have IIIE2 = e~ = hlE2 for only e~ E Mono(E2,F4) can contain 
in its automorphism group the automorphism group SL(2, F 3) of (E2, v). Thus 
CF4 (/iE2) is a p-compact toral group of maximal rank with E1 as its component 
group (4.2). 

The centralizer CF4 (/iN3(PU(3))) is (3.4) the p-compact toral group 

Ci'(F4)>4W(F4)(T(PU(3)) )<J (0-)) = T(F4)<x(a» = t(F4)<x(a» = E2 

where t(F4) C T(F4) denotes the maximal elementary abelian subgroup of the 
discrete approximation T(F 4) to T(F 4) and 

The obstructions to a homotopy between the two maps B II, B h : BPU (3) ---
BF 4 lie in the abelian groups limb:1 and limb:2 where 1[1 and 1[2 are the abelian 
I-groups 

C SL(2,F3)/S3 4 J 
Z/2 0 ) Z3 SL(2,F3) 

given by the homotopy groups of the above centralizers. The group SL(2, F 3) has 
no normal subgroups of index two, so it necessarily acts trivially on E1. It now 
follows from [24, 10.7.5] that both obstruction groups are trivial and we conclude 
that II and h are conjugate. This shows that TRep(PU(3), F 4) is T-determined. 

Let now f: PU(3) ---- F4 be any toric monomorphism. Then there is (5.1.3, 
5.3) a unique, up to sign, pair of units (u, v) E (Z3)2, u+v E 3Z3, (u, v) ~ Zj(2, l)U 

Zj(l,-l), such that W(F4)7r1(T(f)) = W(F4)B(u,v) and then f = 1j;(u,v) since 
the p-toric monomorphisms are T-determined. 0 

Lemma 5.7. Let (u,v) E (Z3)2, U + v E 3Z3, (u,v) ~ Zj(2, 1) U Zj(l, -1). Then 

CF4 (e'lji(u,v)SU(3)) = T(F4)X(W(SU(3») 

CF4 (e'lji(u,v)T(SU(3))) = T(F4) 

and CF4 ('Iji-1) = 'Iji-1 in both cases. 

Proof. Since e'lji(u ,v) is toric, the centralizer in F4 of e'lji(u,v)T(SU(3)) equals the 
maximal torus of F 4. Proceed as in (4.16) to show that CF4 ('Iji-1) = 'Iji-1 . 



294 J. M. M011er 

The centralizer BCF4 (e1l!(u ,v)PU(3)) is the homotopy colimit of the I-space 

C SL(2,F3)/S3 ~ 
Z/2 B(O) )B(I)J SL(2,F3) 

where B(O) = BT(F4 )(x(a)) and B(O) = BCF4(e~). We need to be more specific 
about the group actions that occur here. 

The 3-normalizer N3(PU(3)) = CN (PU(3))(T(PU(3))(a)) is the centralizer 
in N(PU(3)) of T(PU(3))(a) = El. Since the conjugation by (0, T) restricts to 
the non-trivial automorphism of T(PU(3))(a) we see that the induced action on 
N3(PU(3)) = T(PU(3)) )<I (17) is given by conjugation with (0, T) E N(PU(3)) = 
T(PU(3)) )<I W(PU(3)). 

Since B(u, v) )<I x: N3(PU(3)) -t N(F4) is X-equivariant with the Weyl gro
ups acting by conjugation, we see (4.17) that Z/2-acts on 

T(F4)(x(a)) = CiV (F4) (N3(PU(3))) 

as conjugation with (O,X(T)). With this information it is now easy to see, using 
[24, 10.7.5], that 

lim~7rl = (T(F4 )(x(a)))(X(T)) = T(F4 )x(W(SU(3))) 

is the only non-trivial contribution from the I-groups 1[1 and 1[2 to the Bousfield
Kan spectral sequence. This means that the morphisms 

CF4 (e1l!(u,v)PU(3)) -t CF4 (N(e1l!(u,v))(N(PU(3)))) 

+- CN (F 4 ) (N(e1l!(u ,v))(N(PU(3)))) 

are isomorphisms. Consider the corresponding group homomorphism 

fL : T(F4 )x(W(SU(3))) x N(SU(3))rightarrowN(F4) 

which is the inclusion on the first factor and equals N(e1jJ(u,v)) on the second 
factor. Since 1jJ-l )<11 is inner on N(F4), we have fL(1 x (1jJ-l )<11)) = (1jJ-l )<Il)fL(1 x 
(1jJ-l )<I 1)) = fL( 1jJ-l X (1 )<I 1)) up to inner automorphism. This shows (4.17) that 
CF4 (1jJ-l) = 1jJ-l is the non-trivial automorphism of CF4 (e1jJ(u ,v)SU(3)) = El. D 

6. Non-toric morphisms of PU(3) to F4 

The non-toric morphisms of PU(3) to F 4 require special treatment. It is the object 
of this section to show that also the non-toric morphisms are T-determined, i.e. 
to complete the proof of the following theorem. 

Theorem 6.1. 1. Mono(PU (3), F 4) is T -determined. 
2. The map 

(( -1, -1)) \{(u,v) E (Zj)2Iu + v E 3Z3} -t Mono(PU(3), F4 ) 

±( ) ;;T,(u,v) 
u, v -t e<p 
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is a bijection. 

Since the toric morphisms were dealt with in (5.4) only the non-toric ones 
need be considered in order to finish the proof of (6.1). 

The first lemma, which is of a general nature, assures the existence of a kind 
of preferred lifts in certain situations. 

Let G be a p-compact toral group sitting in short exact sequence S ~ G -+ 

7fo( G) where S is a p-compact torus and 7fo( G) cyclic p-group. Let j: N -+ X be 
the maximal torus normalizer of a p-compact group, X, and let i 2 : T -+ N be the 
inclusion of the identity component. Suppose that we are given a morphisms, B 
and f, such that the diagram 

commutes up to conjugacy and B is admissible in the sense that for any ~ E 7fo( G) 
there exists some w in the Weyl group for X such that B~ = wB. 

Lemma 6.2. Assuming that the component group 7fo(G) is cyclic there is a unique 
representation ¢ E Rep( G, N) such that the diagram 

commutes up to conjugacy and such that the morphism 

induced by j, is a maximal torus normalizer for the centralizer Cx(fG) of G in 
X. 

Proof. The 7fo(G)-map induced by j 

BCN(i2BS)h7ro(G) ------~~ BCx(ji2BS)h7ro(G) 

~~ 
B7fo(G) 
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between the 7ro(G)-spaces BCN(i2BS) = map(BS,BN)i2 B and BCx(ji2BS) = 
map(BS, BX)ji2B is a maximal torus normalizer. There is an induced map 

map(BG, BN)il-+i2 B = BCN(i2BS)h7ro(G) -> BCx(ji2BS)h7ro(G) 

= map(BG, BX)il-tj i 2B (6.3) 

of homotopy fixed point spaces. 
According to [25, 4.6], the section Bf E BCx(ji2BS)h7ro(G) admits, since 

7ro(G) is assumed to be cyclic, a unique lift B¢ E BCN(i2BS)h7ro(G) such that the 
restriction of (6.3) to the corresponding components, 

BCN(¢G) = map(BG,BN)Bq, -> map(BG,BX)Bf = BCx(fG) 

is a maximal torus normalizer for the p-compact group Cx(fG). D 

After these general and preparatory remarks, we now return to the discussion 
of non-toric morphisms from PU(3) to F 4. 

Let f: PU(3) -> F4 be a morphism of 3-compact groups such that 

fIT(PU(3)) = W(F 4)B(2, 1) E [BT(PU(3)), BF 4]. 

By (6.2), there is a unique ¢(2, 1) E Rep(N3 (PU(3)), N(F 4))' extending B(2, 1), 
such that CN(F 4 ) (¢(2, 1)N3(PU(3))) is a maximal torus normalizer for the central
izer CF4 (fN3(PU(3))). We shall now determine this map ¢(2, 1). 

Let N3 = 1'1 )<l (a) and N2 = 1'2 )<l W2 be the discrete approximations to 
the the 3-normalizer N3(PU(3)) and the maximal torus normalizer N(F 4)' re
spectively. Also, let B(2, 1): 1'1 -> 1'2 be a discrete approximation to B(2, 1). The 
stabilizer subgroup W(F 4)8(2,1) at B(2, 1) for the action of W(F 4) on Hom(1'1, 1'2) 
is isomorphic to the permutation group ~3 and generated by the two Weyl group 
elements 

w, ~ ( -~ j ! n and W2 = 

of order 3 and 2, respectively. 

( -~ -~ 
o 0 
o 0 

o 0) o 0 
1 0 
o 1 

Lemma 6.4. The discrete approximation ¢( 2, 1) : 1'1 )<l (a) -> 1'2 )<l W (F 4) to ¢( 2, 1) 
is conjugate to B(2, 1) )<l X. 

Proof. For general reasons, the discrete approximation ¢(2, 1) to ¢(2, 1) has the 
form ¢(2, l)(t, 1) = (B(2, l)(t), 1) and ¢(2, 1)(0, a) = (a, '\(a)) where ,\ : (a) -> 

W(F4) is a group homomorphism, B(2, 1) is '\-equivariant, and a is a 1-cocycle in 
Z1((,\(a)) ;1'(F4)) . 

Since the homomorphism B(2,1) is X-equivariant we know that '\(a) is an 

element of order 3 in the coset x(a)W28 (2,1). This leaves the three possibilities 
x(a),x(a)w1' and x(a)wr for '\(a). Since W2 conjugates x(a) into x(a)wr we can 
ignore the third possibility. We now rule out the second possibility. 
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Assume for the moment that >.(cr) = X(cr)Wl' Explicit computation shows 
that HO ((X( cr )Wl) ; T(F 4)) is a 3-discrete torus of rank 2 and that the group 
HO((X(cr)Wl) ;T(F4)) is cyclic of order 3 generated by the cohomology class of 
the I-co cycle 

a ~ ( ! ) E t(F,) cT(F,) 

which is fixed by W(F 4)8(2,1). It follows that the centralizer 

Gi'(F4) ~ W(F 4) (¢(2,1 )N3) 

= Ci'(F4)~W(F4)(B(2, 1)T(PU(3))) n Ci'(F4)~W(F4)(a,x(cr)Wl) 
- 8(2 1) = (T(F4) ~ W(F4) ,) nCi'(F4)~W(F4)(a,x(cr)wd 

= Ci'(F4)~W(F4)B(2'1)(a,x(cr)Wl) 
= T(F4)(X(<T)w1) ~ W(F4)8(2,1) 

is the (discrete) maximal torus normalizer for SU(3) and hence (6.2) that the 
centralizer CF4 (JN3(PU(3))) is isomorphic to the N-determined 3-compact group 
SU(3) [24, 1.2]. Thus ¢(2, 1): N3(PU(3)) ---- F 4 extends to a morphism 

N3(PU(3)) x SU(3) ---- F4 

which is a non-toric monomorphism on the second factor and we get a factorization 

N3(PU(3)) ---- CF4 (SU(3)) = SU(3) ---- F 4 

of ¢(2, 1) through another non-toric monomorphism of SU(3) to F 4. The restriction 
of this map to the maximal tori 

T(PU(3)) ---- T(SU(3)) ---- T(F 4) 

provides a factorization, up to left action by W(F4 ), of B(2, 1) as the composition 
of an isomorphism followed by A(u, 0) or A(O, u), u E Zj, and hence we have that 
the set 

W(F 4) . A(2, 1) . GL(~o(Q~)) C HomQ3 (~o(Q~), Q~) 

contains A(l, 0) or A(O, 1). It is easy to verify, using a computer, that this is not 
the case, so we have arrived at a contradiction. 

Thus >.(cr) = X(cr)Wl can not occur and we are left with >.(cr) = X(cr) as 
the only possibility. As Hl((X(cr)) ;T(F4)) = 0 (5.5), ¢(2, 1) = B(2, 1) ~ X is, up 
to conjugation, the only extension of the pair (B(2, l),X) to a homomorphism 
Tl ~ (cr) ---- T(F 4) ~ W(F 4). D 

A similar statement holds for the non-toric morphism B(1, -1) which differs 
from B(2, 1) by an automorphism of F4 . 
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Proof of Theorem 6.1. It suffices to show that h ~ h whenever h,h : PU(3)----> 
F4 are monomorphisms such that hIT(PU(3)) = W(F4)B(2, 1) = hIT(PU(3)). 
We already know (6.4) that the two morphisms become conjugate when restricted 
to N3(PU(3)). Therefore, the situation is now exactly as in the proof of Theo
rem 5.4: In order to compute the relevant Wojtkowiak obstruction groups [29] we 
need information about the centralizer C F4 (/iE2) and CF4 (/iN3(PU(3))). 

Again, we must have hlE2 = e~ = hlE2 and CF4 (/iE2) is ap-compact toral 
group of maximal rank with Z/3 as its component group (4.2). 

Also, we know (6.2, 6.4) that the centralizer in t(F 4) XI W(F 4) of ¢(2, 1) is 
the (discrete) maximal torus normalizer for CF4 (fi N3(PU(3))). Since 

Ct(F4)~W(F4)(¢(2, 1)N3) = CT(F4)~W(F4lB(2, 1)t1) n CT(F4)~W(F4)(x(a)) 
= (t(F4) XI W(F4)B(2,1)) n (t(F4)x(11) XI CW (F 4 )(x(a))) 

= t(F 4)X(11) XI CW(F 4)B(2,l) (X( a)) 

=t(F4 )X(11) XI (WI) 

is a finite group (of order 27 and with center of order 3) it follows that also 
CF4 (/iN3 (PU(3))) is this finite, but non-abelian, 3-group. 

The obstructions to a homotopy between the two maps Bh, Bh : BPU(3) ----> 
BF 4 lie in the set limb:l and in the abelian group limb:2 where 1[1 and 1[2 are the 
I-groups 

C SL(2 ,Fa) / Sa 4 J 
Z/2 0 ) Z3 SL(2,Fa) 

given by the homotopy groups of the above centralizers, e.g. 7r = t(F4 )X(11) XI (WI)' 

The group limh2 is trivial for general reasons [24, 10.7.5]. That also limj1[1 = * 
follows from (6.5) below since both the central I-subgroup 

Z / 2 C 0 ------t Z/3 ) SL(2 ,Fa) 

as well as the quotient I-group 

Z / 2 C 7r ------t 0 :J SL(2,Fa) 

where SL(2,F3 ) necessarily acts trivially, have vanishing lim1 by [24, 10.7] and 
(6.6). 0 

The following observations were used to compute the non-abelian lim i . 

Let I be a small category. Define an I-group to be a functor from the category 
I to the category of groups. Let A ----> E ----> G be a central extension of I-groups 
meaning that A, E, and G are I-groups, the arrows are natural transformations, 
and that the evaluation at each object of I yields a central extension of groups. 
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Lemma 6.5. Any central extension of I-groups A -+ E -+ e induces an exact 
sequence 

* -+ lim~A -+ lim~E -+ lim~e -+ limiA -+ limiE -+ limie -+ limiA 

of sets. Moreover, the fibres of the map limiE -+ limie are precisely the orbits for 
an induced action of the abelian group limiA on the set limiE. 

Corollary 6.6. Let I be a finite group acting on a finite group 7r. If the 7r is a 
p-group and p does not divide the order of I, then limi7r = *. 

Proof. This follows, using the preceding lemma, by induction over the order of 7r 
since any non-trivial p-group has a non-trivial center. 0 

Proof of Theorem 1.1. Modulo the action of the Weyl group WF4 (SU(3, 3)) of 
order two (4.15), the sets 

Rep(SU(3), SU(3, 3)) = {o} U Mono(SU(3), SU(3, 3)) U Mono(PU(3), SU(3, 3)) 

and 

Rep(SU(3), F 4) = {o} U Mono(SU(3), F 4) U Mono(PU(3), F 4) 

are (4.13, 6.1) in correspondence. 

Lemma 6.7. Let (u, v) E Z3(2, 1) U Z3(l, -1). Then 

CF4 (e1/1(u,v)SU(3)) = T(F4 )X(W(SU(3))) 

CF4 (e1/1(u ,v)T(SU(3))) = T(SU(3)) xZ(SU(3)) SU(3) 

and CF4 (1/1-1) = 1/1-1 in both cases. 

o 

Proof. We shall apply the Bousfield-Kan spectral sequence [4] to the mapping 
space map(BPU(3),BF4 ) elli(u ,V) where BPU(3) is viewed as the homotopy colimit 
of the I-space 

C SL(2 ,F3)/S3 , 
Z/2 B(O) )B(1)r0 SL(2,F 3) (6.8) 

where B(O) = BCF4(e1jj(u,v) N3(PU(3))) and B(l) = BCF4 (eg). It represents no 
loss of generality to assume that (u, v) = (2, 1). 

As we saw in the proof of (5.7), Z/2-acts on N3(PU(3)) = T(PU(3)) )<l (a-) as 
conjugation with (0, T) E N(PU(3)) = T(PU(3)) )<l W(PU(3)). But this is again 
the restriction to 

<j>(2, 1)(N3(PU(3))) C T(F4) )<l W(F4) 

of conjugation by (0, X(T)). Thus (4.18) the Z/2-action on 

-(2 1) v v ( ) 

CF4 (e1/1 ' N3(PU(3))) = Ct'(F4)AW(F4) (<j>(2, 1)N3) = T(F4) (1 )<l (WI) 

is through conjugation with (O,X(T)). 
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Note also that the multiplication map 

/-L: CT (F4)>4W(F4) (cp(2, 1)N3) x N3 -+ t(F4) )<I W(F4) 

satisfies 

/-L(1j;-1 X 1) = 1j;-1/-L(1j;-1 xl) = /-L(1 x N3(1j;-1)) 

up to inner automorphism. This means that the induced action on the centralizer 
CF4 (e1fj(2 ,1) N3(PU(3))) is CF4 (N3(1j;-1)) = 1j;-1 )<I l. 

Recall from [5] that there is an essentially unique monomorphism t: DI2 -+ F 4 
inducing a monomorphism t(t): t(DI2) -+ t(F4) and a group monomorphism X : 
GL(2, F 3 ) = W(DI2) -+ W(F4) extending (4.7). Now, t(t) is isomorphic to e~ and 
from the commutative diagram 

we see (4.18) that W E GL(2, F 3 ) acts on C 1>\''(F4) (t(DI2)) = t(F 4) )<I W(F 4)t(Dh) as 
conjugation with the element (0, X(w)) of the semi-direct product. The restriction 
to SL(2,F3 ) of this action gives the action on CN (F4)(t(DI2)) = CF4 (t(DI2)) in 
(6.8). 

The conclusion of this is that 

limh1 = (t(F4)(x(a» )<I (W1))(X(T)) = t(F4)X(W(SU(3») 

is the only non-trivial contribution from the groups limxi1[j' i + j ~ 0, of the 
Bousfield-Kan spectral sequence. Consequently, CF4 (e1j;(2,1)SU(3)) is isomorphic 
to this group of order 3. The action of CF4 (1j;-1), which is the restriction of the 
action of CF4 (N3( 1j;-1)), is given by 1j;-1. 

The centralizer 

CT(F4) >4 W(F 4) (e1j;(2,1)t(SU(3))) = t(F 4) )<I W(F 4)A(2,1) 

is the (discrete) maximal torus normalizer for 

CF 4 (e1j;(2,1)t(SU(3))) 

and the centralizer 

CT(F4)>4W(F4)(e1j;(O,1)t(SU(3))) = t(F4) )<I W(F4)A(O,1) 

is the (discrete) maximal torus normalizer for 

CF4 (e1j;(O,1)t(SU(3))) = SU(3) XZ(SU(3» T(SU(3)) 

[22, 3.4.3]. Since the two stabilizer subgroups W(F4)A(2 ,1) and W(F4)A(O,1) are 
conjugate in W(F4), the two maximal torus normalizers are isomorphic and hence 
the two centralizers are isomorphic, too, by N-determinism [23] [24]. 
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The group homomorphism J.L: (T(F 4) )4 W(F 4)A(2,1) -> T(F 4) )4 W(F 4) which 
is the inclusion on the first factor and equals A(2, 1) on the second factor satisfies 

J.L((1 )4 1) x 1jJ-1) = (1jJ-1 )4 1)J.L((1 )4 1) x 1jJ-1) = J.L((1jJ-1 )4 1) x 1 

up to inner automorphisms. This shows (4.17) that CF4 (1jJ-1) = 1jJ-1. 0 

7. Morphisms from G2 to F 4 at the prime p = 3 

Using the Jackowski-McClure decomposition of B G2 and the Bousfield-Kan spec
tral sequence we classify morphisms G2 -> F 4 viewed as 3-compact groups and 
compute their centralizers. 

The Weyl group of G2, W(G2 ) < GL(Eo(Z~)) is the product of the Weyl 
group W(SU(3)) = (a,T) ofSU(3) and the central group (-1) of order 2. The group 
morphism X from (4.7) extends to a group homomorphism X: W(G2) -> W(F4) 
simply by putting X(-1) = -1. Let I = I(W(G2 ), W(SU(3))) denote the category 

C W(G2)/W(SU(3)) ~ 
(-1) 0 ) 1 r-J W(G2) 

of the central inclusion of W(SU(3)) into W(G2 ). Then B G2 is [24, §7] H*F3-

equivalent to the homotopy coli mit of an lOP-space 

C W(SU(3))OP\W(G2) OP \ 
(1/1 - 1 ) B(O)( B(1)r:-...J W(G2t P (7.1) 

where B(O) = BSU(3) and B(1) = BT(SU(3)). 

Theorem 7.2. The restriction map 

Rep(G2,F4) -> Rep(SU(3),F4) 

is bijective. The centralizer CF4 (e1jJ(U 'V )G2), U, v E ZjU{O}, is isomorphic to SU(2) 
if uv = 0 and trivial otherwise. 

Proof. We must show that any morphism SU(3) -> F 4 extends uniquely to G2· 
Since this is true for the trivial morphism by [22, 6.7], we only need here to consider 
non-trivial morphisms. 

Let (u,v) E (Zj U {0})2, (u,v) i:- (0,0). Since e1jJ(u,v): SU(3) -> F4 is invari
ant under 1jJ-1, this map e1jJ(u,v) and its restriction to the maximal torus form a 
homotopy coherent set of maps out of the lOP-space (7.1). Thus it suffices to show 
that limIi1[j (u, v) = 0 for i + j ~ -1 where 1[j (u, v) is the I-group 

Z/2 C 7rj(O) W(G2)/W(SU(3)\7rj(1):J W(G2) 

where the group 7rj(O) = 7rj(u,v)(O) = 7rj(BCF.(e1jJ(u,v)SU(3))) and the group 
7rj(1) = 7rj(u,v)(1) = 7rj(BCF4 (e1jJ(u,v)T(SU(3)))). Since the abelian I-groups 
1[j(u, v) are in fact Z3[1]-modules and W(SU(3)) is normal in W(G2), it follows 
from [24,10.7.5] that lim~1[j(u,v) = 7rj(u,v)(0)Z/2 = 7rj(BCF.(e1jJ(u,v)SU(3)))Z/2 
is the subgroup that is invariant under the action of 1jJ-1 and that the higher limits 
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are automatically trivial. By (4.16, 5.7, 6.7), 7rj(u, v)(0)Z/2 is trivial except when 

either u = 0 or v = 0 when it equals the invariants 7rj(BSU(3))(B,p-l). 
We now examine the case (u, v) = (0,1) more closely. According to Dynkin 

[12, 13] the Lie group F 4 contains a copy of (a central quotient of) SU(2) x G2 . The 
restriction to G2 of this inclusion SU(2) x G2 -+ F 4 equals, up to an automorphism 
of F 4, the map e'ljJ(O,l) for otherwise the restriction to the other factor, the inclusion 
ofSU(2) into F4, would factor through the trivial3-compact group. The homotopy 
class of the restriction 

BSU(2) x BSU(3) -+ BSU(2) x BG2 -+ BF4 

to SU(2) x SU(3) is determined by its adjoint in 

7ro(map(BSU(2), map(BSU(3), BF 4)B(e,p(O,1»)) = 
7ro(map(BSU(2), BSU(3))) = Rep(SU(2), SU(3)) 

so. Since SU(3) contains (7.3) an essentially unique copy of SU(2), we conclude 
that the diagram of 3-compact groups 

8.(2,3) x 1 
SU(2) x SU(3) ---~) SU(3) x SU(3) 

! 1 
SU(2) X G2 ------~) F4 

commutes up to conjugacy. After taking adjoint maps we end up with 

BSU(2) ~ map(BG2 ,BF4)B(e1/i(O,1») 

B8.(2,3) ! ! 
BSU(3) ~ map(BSU(3), BF 4)B(e,p(O,1») 

which commutes up to homotopy and where the lower horizontal arrow represents 
(4.16) a homotopy equivalence homotopy equivariant under the action (B'ljJ-l). 
By the above computations with the Bousfield-Kan spectral sequence, 

7r*(map(BG2 , BF 4), B(e'ljJ(O,l))) = 7r *(map(BSU(3), BF 4)' B(e'ljJ(O,l)))(B,p-l) , 

and linked with (7.4) this shows that the upper horizontal map is a homotopy 
equivalence as well. 0 

The morphism e'ljJ(u,v) : G2 -+ F 4 where u, v E Z3 with sum u + v E 3Z3, is 
an example a non-trivial non-monomorphism defined on a center-free 3-compact 
group. 

The following two results were needed for the proof of Theorem 7.2. 

Lemma 7.3. Let S~(2, 3): SU(2) -+ SU(3) be the canonical inclusion. The map 

Rep(SU(2), SU(2)) -+ Rep(SU(2), SU(3)) 

'ljJu -+ &(2,3)'ljJu 
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is a bijection that identifies Out(SU(2)) = Zj/ (-1) and Mono(SU(2),SU(3)). 

Proof. This follows from (3.13) that allows to identify both Rep(SU(2), SU(2)) 
and Rep(SU(2), SU(3)) to Z3/ (-1). 0 

Since 1jJ- 15t(2,3) = 5t(2,3)1jJ-I = 5t(2,3), the image of 7r*(BSU(2)) in 
7r*(BSU(3)) is invariant under the action of the group (B1jJ-I) . 

Lemma 7.4. There is an isomorphism, induced by 5t(2 , 3) , 

7r*(BSU(2)) -t 7r*(BSU(3))(B,P- ') 

between the homotopy of BSU(2) and the (B1jJ-I )-invariant subgroup of the ho
motopy of BSU (3). 

Proof. There is a short exact sequence of homotopy groups 

o -t 7r*(SU(2)) -t 7r*(SU(3)) -t 7r*(55) -t 0 

of F 3-complete spaces induced by the fibration of SU(3) onto 55 with fibre SU(2). 
This fibration splits since 7r4(SU(2)) 0 Z3 = O. The homomorphism 1jJ-I, complex 
conjugation of matrices, restricts to the identity on the fibre and induces the degree 
-I-map on the base. Using that the 3-completion of 55 is an H-space we see that 
the degree -1 self-map induces multiplication by -Ion the homotopy groups 
7r*(55) 0 Z3 and the claim follows. 0 

8. Morphisms from SU(3) to G2 at the prime p = 3 

The classification of morphisms SU(3) -t G2 of 3-compact groups proceeds very 
much like the classification of morphisms SU(3) -t F 4. 

Lemma 8.1. The set Mono(EI, G2) contains two elements, eL e~, with central
izer Weyl groups of order 2, 6, and Quillen automorphism groups of order 2, 2, 
respectively. The centralizer CC2 (e~) is isomorphic to SU (3) . 

The set Mono(E2, G2)/ Aut(E2) contains a unique element, e~ = t(G2), with 
Quillen automorphism group W(G2) of order 12. 

Let Xl: W(SU(3)) -t W(G2) be the inclusion and X2 : W(SU(3)) -t W(G2) 
the injection given by X2(a) = a and X2(T) = -T. Then the identity map 
AI: Eo(Z~) -t Eo(Z~) is Xl-equivariant and the Z3-linear map A2 : Eo(Z~) -t 

Eo(Z~) with matrix 

is X2-equivariant. 

Lemma 8.2. A Z3-linear map Eo(Z~) -t Eo(Z~) is admissible with respect to 
W(SU(3)) and W(G2) is and only it belongs to W(G2)(uAd or W(G2)(uA2) 
for some scalar u E Z3 . 
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Proof. Computerized calculations show that any admissible homomorphism must, 
up to inner automorphisms, be either XI- or X2-equivariant. Next, one solves the 
two systems of linear equations Aw = Xi(w)A, w E W(SU(3)), i = 1,2. 0 

Proposition 8.3. Any non-trivial morphism I: SU(3) ....... G2 is a monomorphism. 

Proof. Let I: SU(3) --+ G2 be any non-trivial morphism and T(f) : T(SU(3)) --+ 

T(G2) a lift of I to the maximal tori. Then W(G2)1TI(T(f)) equals W(G2)(uAd 
or W(G2)(uA2) for some 3-adic integer, u. In fact, since the order of W(SU(3)) 
is divisible by 3, u must be a unit (3.19). In the first case, W(G2)1TI(T(f)) = 
W(G2)(uAd, I is a monomorphism. And if W(G2)1TI(T(f)) = W(G2)(uA2), the 
kernel of t(f) equals the center of SU(3) and I factors through a monomorphism 
7: PU(3) ....... G2· However, such a monomorphism can not exist since the Quillen 
category of PU(3) contains an object E2 ,....... PU(3) with Quillen automorphism 
group SL(2, F 3 ) of order 24 exceeding the order of the Quillen automorphism group 
of e~ E Mono(E2 ,G2 ) . 0 

Consider now the diagram 

l~ 
SU(3) SU(3) ---e-- G2 

where the SU(3) to the right stands for CC2(e~) and z stands for center. Here, 
e'lj;-l = e since CC2 ('Ij;-l) = 'Ij;-l. 

Lemma 8.4. For any monomorphism I: SU(3) ....... G2, Iz = e~. 

Proof. Since 1TI(T(f)) = uA1, u E Z3' the reduction mod 3, t(f) : t(SU(3)) ....... 
t(G2), takes the center, (1, -1), of SU(3) to the element u(l, -1) E t(G2) whose 
stabilizer subgroup is W(SU(3)). 0 

It follows (3.9) that 

Mono(SU(3), SU(3))z--+z = Mono(SU(3), G2)z--+e~ = Mono(SU(3), G2) 

or, alternatively, that the map 

(-1) \Z; --+ Mono(SU(3), G2) 

±u ....... e'lj;u 

is a bijection. Also, any monomorphism I : SU(3) ....... G2 is centric [7] in the sense 
that the map given by composition with BI, 

map(BSU(3), BSU(3))Bl --+ map(BSU(3), B G2)B/ 

is a homotopy equivalence. Clearly, I is toric as well (2.12). 

Theorem 8.S. 1. Rep(SU(3), G2) = {O} U Mono(SU(3), G2) is T -determined. 
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2. The action 

Mono(SU(3), G2 ) x Out(SU(3)) --; Mono(SU(3), G2 ) 

is transitive and the stabilizer at f E Mono(SU(3), G2) is equal to ('Ij;-l) = 
WG2 (fSU(3)). 

Proof This is clear from the explicit description of the set Rep(SU(3), G2). For 
instance, the restriction map 

Mono(SU(3), G2 ) --; Mono(T(SU(3)), G2 ) 

can be identified to the map 

{u E Za I u == 1 mod 3} --; W(G2)(uAl) 

which clearly is injective. 
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On the vanishing of certain K -theory Nil-groups 

Hans J0rgen Munkholm1 and Stratos Prassidis1,2,3 

Abstract. Let r i , i = 0,1, be two groups containing Cp , the cyclic group of 
prime order p, as a subgroup of index 2. Let r = ro *cp r i . We show that 
the Nil-groups appearing in Waldhausen's splitting theorem for computing 
Kj(Zr) (j ~ 1) vanish. Thus, in low degrees, the K-theory of zr can be 
computed by a Mayer- Vietoris type exact sequence involving the K-theory 
of the integral group rings of the groups ro, r l and Cpo 

1. Introduction 

We prove the vanishing of Waldhausen's Nil-groups, in degrees less than or equal 
to 0, associated to certain amalgamated free products of groups ([12], [13]). 

In more detail, let Cp denote the cyclic group of prime order p, and let r o, r 1 
be two groups, each containing Cp as a subgroup of index 2. Our main result 
concerns Waldhausen's Nil-groups associated to the amalgamated free product of 
groups r = rO*c"r1. We write Bi = Z[ri -Cp ], i = 0,1, for the ZCp-sub-bimodule 
generated by r i - Cpo 

Main Theorem. With the above notation 

Nilj(ZCp ; Bo, Bd = 0, j ~ O. 

Remark. For j ~ -1, this is a special case of results obtained in [10]. The extension 
to the case j = 0 was prompted by a question put to the second author (by Jim 
Davis) in connection with the results appearing in [3]. 

Using the Main Theorem and Waldhausen's splitting theorem, we can get 
information about the (lower) K-theory of r. 

Corollary. There are exact sequences 

K1(ZCp ) -> K1(Zro)EBK1(Zr1) -> K1(Zr) -> Ko(ZCp ) -> 

and 

I Supported in part by the SNF (Denmark) under grant number 9502188. 
2 Supported in part by a Vanderbilt University Summer Research Fellowship. 
3 Supported in part by National Science Foundation Grant DMS-9504479. 
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Remark. For each prime P, this covers precisely three different groups r . In fact, 
each r i is cyclic of order 2p or dihedral of order 2p. 

The proof involves an extension of the methods developed in [10]. There, 
the Nil-groups in question were shown to be related to the Nil-groups of certain 
additive categories given in [8]. And this fact was used to establish naturality 
properties and certain Mayer- Vietoris properties. 

For the present proof, we recall the classical Rim square associated to Cp , 

i.e., the cartesian square of rings 

ZCp ~ Z[(p] 

1 1 
z ~ IFp 

where (p is a primitive pth root of unity and IFp is the finite field of p elements. The 
methods of [10] can be extended to provide a long exact sequence of Nil-groups 
coming from this square. The three smaller rings in the diagram are Noetherian and 
have finite cohomological dimension (called regular in [1]). Hence, by Waldhausen's 
vanishing result , the Nil-groups associated to those rings vanish. Using the exact 
sequence, we can then derive vanishing results for the Nil-groups associated to the 
triple (ZCp; Bo, Bt). 

The second author would like to thank IMADA at Odense Universitet for its 
hospitality during his Spring 1997 sabbatical. 

2. Preliminaries 

We assume that all rings considered have a unit which is preserved by all ring 
homomorphisms, and that finitely generated free modules have well-defined rank. 
For any ring R, MR denotes the category of right R-modules, PR the subcategory 
of finitely generated projective right R-modules, and F R the subcategory of finitely 
generated right free R-modules. For A = M, P, or F, An denotes the category 
ARXARX· · ·xAR (n times). 

We will use the notation established in [10], and write R = (R; Bo , Bt) for a 
triple where R is a ring and B i , i = 0,1, are two R-bimodules. Moreover, IF A(R) 
denotes the twisted polynomial extension category defined in [8] and [10] , for 
A = P,:F. To recall its definition, from [8], we first note that the triple R gives 
rise to a functor aR : Mh -> Mh defined by 

aR(Mo, M1) = (M1 0 RBO, M00 RB 1), aR(fo, II) = (1I0 1, 1001). 

Now, the objects of IF A(R) are simply those of Ah, and 

IFA(R)(u,v) = EB:oMh(u,ak(v)) = {Z=:OPiti : Pi E Mh(u,ak(v))} 

where we write Pi: u -> ak(v) for the ith component of the morphism. Thus the 
morphism sets are graded abelian groups, and the powers of the formal variable t 
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are there simply to keep track of degrees. In order to give a different description 
of these morphism sets, we set Bi = Bo for all even i ~ 0, Bi = BI for all odd 
i > 0, and put 

() 
B/ = Bi®RBi+I®R··· ®RBi+j - 1 

for all i,j ~ O. In particular, BiO) = R, Bi l ) = Bi. Similarly, if (Qo, QI) is an 
object in IF A(R), we put Qi = Qo for all even i ~ 0, and Qi = QI for all odd i > O. 
With this notation 

i (Q Q) _ (Q B(i) Q B(i)) aR 0, I - i®R HI' i+I®R i . 

and there is a forgetful functor ("evaluation at t = 0") 

TJA: IFA(R) ----> A1, A = P,F. 

In [10], it was shown that IF A is a functor on a category T of triples R = (Rj Bo, Bd 
as above with suitable, rather obvious, morphisms. In particular, if h: R ----> S is 
a ring homomorphism, there is a functor 

h.: IF A(R) ----> IF A(S) 

where S = (Sj Bo, BI) with Bi = S®RBi®RS (i = 0,1) given by two-sided 
reduction of scalars along h. 

Triples of the form R arise naturally from certain co-cartesian diagrams 
([12], [13]). To wit, let 

R ~Ao 

l{3o 

AI~ A 

be a co-cartesian diagram of rings and assume further that the maps ai, i = 0,1, 
are pure inclusions, i.e., they are inclusions and they induce R-bimodule splittings 

Ai = R(fJBi , i = 0,1 

where we have identified R with its image under ai. There result a triple 

a splitting of A as an R-bimodule 
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and an induced filtration of A as a ring 

FoA=R, 

FIA = REBBo EB B1, 

F2A = REBBo EB Bl EB (BO @RBI) EB (B1 @RBO), 

F3A = R EBBoEBBl EB (BO @RBI) EB (B1 @RBo) EB (BO @RB1 @RBo) EB (B1 @RBo@RB1), 

Moreover, by [13], there is an exact sequence (for j E N) 
- w 

••. --4 Kj(Ao) EBKj(AI) --4 Kj(A) --4 Kj-1(R) EBNil j _I (R; Bo, Bd --4 •..• (*) 

In other words, the Nil-groups measure the failure of exactness of a K-theory 
Mayer-Vietoris sequence associated to a co-cartesian diagram of rings with the 
extra purity assumption. 

For any amalgamated free product of groups, r = r 0 *G r I , the integral group 
ring zr fits into such a co-cartesian diagram of rings 

R = ZG --. Ao = zr 0 

1 1 
Al = zr I --. A = zr 

with Bi = Z[ri - G], i = 0, l. 
In this case, each Bi is free both as a left and a right R-module, but we shall 

start more generally by considering a triple R which is associated to a co-cartesian 
diagram of rings for which the bimodules Bi are only assumed to be fiat as left 
R-modules. We set 

NKj(R) = Ker((7]F)j: Kj(IFF(R)) --4 Kj(Fk)) 

(for j :S 0, the Krgroup of an additive category is understood as the Kj-group of 
its idempotent completion). Then, for j :S 1, there is a natural isomorphism 

- w 
NKj(R) --4 Nilj _I(R;Bo,BI ) 

([8], Theorem 2.11, for j = 1; [10], Proposition 13, for the lower K-groups) identi
fying the kernel of the "augmentation" induced map for IF F(R) with Waldhausen's 
Nil-groups of one degree less. Since IFF(R) is cofinal in IFp(R) , and Fk is cofinal 
in pk, one also has the identification 

NKj(R) = ker((7]p)j). 

The main purpose of the comparison between the kernel of (7]p)j and Waldhausen's 
Nil-groups is that we can use vanishing results for the former to derive similar 
results for the latter. Thus, the next result follows immediately from [12], [13]. 



On the vanishing of certain K -theory Nil-groups 311 

Lemma 2.1. Let R be a regular Noetherian ring and R = (R; Bo, Bd be a triple 
associated to a co-cartesian diagram of rings such that Bi is flat as a left R-module 
for i = 0, 1. Then 

-w 
Proof. In fact, by Theorem 4, p. 138, of [13], Nil j_ 1 (R; Bo, Bd is zero for j < 1. 

o 

Remark. The assumption of the Lemma can be weakened to coherent regular rings 
but we will not use the stronger version in this paper. 

The main result of the present section is Proposition 2.4, which extends the 
vanishing result of Lemma 2.1 to j 2: 2 in case Bo ~ Bl ~ R. The case j = 2 is 
the one we actually need (in the proof of Theorem 3.15). 

We start by establishing the appropriate terminology. Let R = (R; Bo, Bd 
be a triple in T. Then p = (R, R) is a basic object in JFp(R) , in the sense of 
Bass ([2], p. 197), i.e., each object u of JFp(R) is isomorphic to a direct sum
mand of pn = (Rn, Rn) for some integer n. We write Rp = EndlFp(R)(P) for the 
endomorphism ring of p. There is a split inclusion of rings L: R x R -; Rp by con
sidering pairs of elements of R as endomorphisms of degree zero of p. The splitting 
(j is given by the forgetful map to the zero degree component of any endomor
phism. A morphism of degree i, ¢> = (¢>o , ¢>dti : p -; Ckk(p), can be identified with 

the element (¢>O(l),¢>l(l)) E B~21 EBB~i). Multiplication in R p, i.e., composition of 
endomorphisms, is then given by concatenation with the added convention that 
BiBi = 0, i = 0, 1. Considering the degree mod 2 of components one obtains a 
natural splitting of Rp as an Rx R-bimodule 

Rp = R evenEB R odd' 

The component Reven is a subring of R p, and Rodd is an R even-bimodule. 
The ring Rp is also N-graded. The abelian group of degree i is Rp,i 

B~21 EBB~i), which also has a natural diagonal Rx R-bimodule structure. In case 
the triple R is associated to a co-cartesian diagram of rings, then Rp is the as
sociated grading of the filtration ofAxR. Another grading of the ring A is given 
in [11]. 

Lemma 2.2. With the above notation, there is an isomorphism Fj : Kj(Rp) -; 
Kj(JFp(R)) making the diagram 

Kj(Rp) 
Fj 

Kj(JFp(R)) ---'> 

Kj(a) 1 1 ('1p)j 

Kj(RxR) ---'> Kj(pk) 

commute for j 2: 1. The horizontal map at the bottom is the natural isomorphism. 
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Proof. Since p is a basic object in IFp(R), the functor 

F : FRp -> IFp(R) , F(R;) = pn 

is a full, faithful and cofinal functor. Thus, it induces an isomorphism on Krgroups 
for j ~ 1 ([7], Theorem 1.1; also [5], Proposition 1.1; [6] , p. 225). 

The bottom arrow is an isomorphism, in degrees j ~ 1, because R x R can 
be thought of as the endomorphism ring of the basic object (R, R) in the category 
fk which is cofinal in Ph. 

Commutativity of the diagram is clear. 0 

We now restrict our attention to the case where Bi ~ R, i = 0,1, as 
R-bimodules. In this case, the ring Rp has a description as a matrix ring. In 
fact, let S be the subring of M2(R[x]) given by 

S = (R[X2] XR[X2]) 
xR[X2] R[X2] 

and let E: S -> RxR be the natural augmentation map 

( 
a(x2) Xb(X2)) 
xc(x2) d(x2) ~ (a(O),d(O)). 

Proposition 2.3. Let Bo ~ B1 ~ R as R-bimodules. Then there is a ring isomor
phism 

"': Rp -> S 
which commutes with the augmentation maps, i . e., EO'" = (J. 

Proof. Because of the assumption on Bi , the degree i component Rp,i , is isomor
phic to RxR as an RxR-bimodule with the degree i endomorphism (idR, idR)ti 
corresponding to the element (1 , 1). We define RxR-bimodule maps 

",iRp,2i: Rp,2i -> ( Rx2i 0.) (X2i o Rx2,' (1,1) 1-+ 0 

Rx2i+l) 
o ' (1 , 1) 1-+ 

The resulting map '" is the required ring isomorphism. By construction, it com
mutes with the augmentation homomorphisms. 0 

The above result reduces the problem of computing the NK-groups to a 
problem in the K -theory of certain matrix rings. 

Proposition 2.4. Let R be a regular Noetherian ring and assume that Bo ~ B1 ~ R 
as R-bimodules. Then for all j E Z, N K j (R) = O. 

Proof. For j :::; 0 the result follows from [10]. Let j ~ 1. By Lemma 2.2, it is enough 
to prove the vanishing of the kernel of the map induced on the K-groups by the 
augmentation (J. If R is regular Noetherian, then R[x] is regular Noetherian by 
Hilbert's Basis and Syzygy Theorems. Then M 2 (R[x]) is Noetherian (because it is 
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finitely generated as an R[x]-module) and it has finite cohomological dimension. 
Also, M 2 (R[x]) is a free S-module with basis 

Then S is a regular Noetherian ring ([9], p. 96, Proposition 2.30) and the same is 
true for Rp . Since Rp is a graded ring with zero grading RxR, the augmentation 
induced map 

OJ: Kj(Rp) -+ Kj(RxR) 

is an isomorphism ([9], Theorem 2.37, p. 98). Therefore NKj(R), being the kernel 
of OJ, vanishes. 0 

Corollary 2.5. Let F 
prime. Then 

(lFp;lFp,lFp) where lFp is the field of p elements with p 

NKj(F) = 0, j E N. 

In particular, (ryp)j: Kj(lFp(R)) -+ Kj(P'k)) is an isomorphism. 

3. Mayer-Viet oris Sequences 

Let h: R -+ S be a ring homomorphism. Then h induces a functor 

h*: Ms -+ MR 

which maps an S-module M to the R-module with underlying abelian group M 
and R-structure induced by h. We are interested in the image of the functor h*. 

Definition 3.1. Let h: R -+ S be a ring epimorphism. A right R-module M is 
called h-extended if there is a right S-module structure on M with mr = mh(r) 
for all m EM, r E R. In other words, M is h-extended if M is in the image of h* . 

The main technical property of such extended modules is expressed in the 
following Lemma. 

Lemma 3.2. Let h: R -+ S be a ring epimorphism and M an h-extended right 
R-module. Then there is a natural right S -module isomorphism 

Proof. It is easy to check that there is a well defined homomorphism given by 
k(m0s) = ms, and that f(m) = m01s defines an inverse. 0 

For an R-bimodule B we write B = S ®RB for the S-R-bimodule obtained by 
left-sided reduction of scalars. Also, recall that B = S 0 R B0R S. We immediately 
get the following result. 
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Corollary 3.3. Let B i , i = 0,1, be R-bimodules. If the S-R-bimodules Bo and BI 
are h-extended as right R-modules, then 

Bo®sBI = (S®RBO®RS)®S(S®RBI ®RS) ~ S ®RBO®RBI = BO®RBI 

as S -bimodules. In particular, 

as S -bimodules. 

We will study the extension properties of a pull-back diagram of rings. We 
start with a cartesian diagram of rings 

RI ~Ro 
where we assume that hI and h2 are epimorphisms. The diagram induces a pull
back diagram of categories ([1], Ch. IX, Theorem 5.1) 

PR ------- PR2 

1 1 
PRi ------- PRo· 

Notice that the diagram induces an exact sequence of R-bimodules 

° ---+ R (hi h 2 ) ~ RI tfJR2lli Ro ---+ ° (E) 

where the action of R on Rj , j = 0, 1,2, is induced by the maps in the cartesian 
square. 

First we recall a routine algebraic lemma which uses the following notation. 
Let h: R ---+ S be a ring homomorphism, Q and P right R-modules, and B an 
R-bimodule. Then there is a right R-module homomorphism 

Q®RB ---+ Q®RS®RB, q®b 1-+ q®l s®b 

and an induced abelian group homomorphism 

h: HomR(P, Q®RB) ---+ HomR(P, Q®RS®RB). 

Lemma 3.4. If P and Q are projective, and B is left fiat, then the sequence 

o --> HomR(P, Q@RB) (hI hi.),HomR(P, Q@RR1@RB)(f) HomR(P, Q@RR2@RB) 

C~D H (P Q Ro B) 0 ---+ omR , @R @R --> 

is exact. 
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Proof. The assumptions on Q and B show that the induced sequence 

is exact. The result follows because P is projective. o 

Corollary 3.5. Let P and Q be projective right R-modules and B an R-bimodule 
which is fiat as a left R-module. Assume further that R/Z) RB is hj-extended as a 
right R-module (j = 1,2), and that R(/ZIR B is fIh1-extended (= hh2-extended) 
as a right R-module. Then the exact sequence (E) induces an exact sequence of 
abelian groups 

° H (P QIO. B) (h, h2) ---. omR , 'OR ~ 

HomR, (P®RR1, Q ®RR1®RB)(f)HomR2(P®RR2, Q®RR2®RB) (-~) ~ 

Proof. This follows from Lemma 3.4 using the adjointness isomorphisms 

(i=0, 1,2). o 

We now consider a triple R = (R; Bo, B 1) such that Rj®RBi is hrextended 
as a right R-module (j = 1,2 and i = 0,1) and Ro®RBi is fIh1-extended as 
a right R-module (i = 0,1). It follows that Rj ®RB i is fJ-extended as a right 
Rrmodule (i = 0,1, j = 1,2). We further assume that the modules Bi are fiat as 
left R-modules (i = 0, 1). Then we get corresponding objects in T, 

R j = (Rj; Rj®RBo, Rj ®RBd, j = 0, 1,2; 

a pull-back of additive categories (defining 1P') 

h' 
1P' 2 Wp (R2 ) ------t 

h~ 1 f~ 1 
Wp(Rd 

f; 
Wp(Ro) ------t 

where fi is induced by fJ (j = 1,2); and a functor 

</>: Wp(R) ---. 1P' 

induced by the universal properties of the pull-back. 
In [IOJ, it has been shown that if a ring homomorphism is surjective, then 

the map induced in the twisted polynomial extension categories is E-surjective in 



316 H. J. Munkholm and S. Prassidis 

the sense of [11 (Definition 2.4, p. 356). Thus by [2], A.13, p. 151, the above square 
induces a commutative diagram of exact sequences in K -theory 

K2(lF'p(RI))EJ7K2(lF'p(R2)) -+ K2(lF'p(Ro)) -+ Kl(lP') -+ Kl(lF'p(RI))EJ7K l(lF'p(R2)) 

1 
The vertical maps are induced by the obvious functors between two pull-back 

diagrams. 

Lemma 3.6. The functor ¢ is full and faithful. 

Proof. Let u = (Po, Pd, v = (Qo, Ql) be two objects in IFp(R). We must show 
that the map induced by ¢ 

¢': IFp(R)(u, v) -+ JP>(¢(u) , ¢(v)) 

is a group isomorphism, and start by setting the notation. For k = 0,1, and i 2: 0, 

(if. (i) (i) 
hj,k' PR(Pk, Qi+k0RBi+k+1) -+ PR(Pk0RRj , QHk0RRj0 RBHk+1) 

and 
W. ( i ) (i) 
fj,k' PR(Pk0RR j , Qi+k0RRj0RBi+k+l) ...... PR(Pk0RRo, Qi+k0RRo0RBi+k+l) 

are the maps induced by hj, /j, j = 1,2. 

¢' is a monomorphism. An element f3 in the morphism set IFp(R)(u, v) can be 
written 

f3 = L i2:o(P(O,i)EElP(1,i)W 

and its image under ¢' has the form 

¢'(f3) = Li2:0((h~:&(P(0,i») EEl h~~&(P(O,i»)) EEl ((h~:i(p(l,i») EEl h~:i(p(l,i»))ti. 

If ¢' (f3) = 0, then for all k = 0, 1 and i 2: 0, 

(if (if _ 
h1,k(P(k,i») EEl h2 ,k(P(k,i») - 0. 

Using Corollary 3.5, we see that each P(k,i) = 0. Thus f3 = 0. 

¢' is an epimorphism. Let I E JP>( ¢( u), ¢( v)) . Then I = 11 EEl
'

2 where 

Ij E IFp(Rj)((hj).(u), (hj).(v)), j = 1,2. 

Since I is a morphism in the pull-back category 

As before, each Ij can be written as a direct sum of homomorphisms 

Ij = L i 2:o (P(O,i)jEElp(l,i)j )ti 
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and condition (1) implies that, for k = 0, 1, i ~ 0, 

(if (if 
f1,k(P(k,ill) = f 2,k(p(k ,ij2), 

Then <P' ((3) = ,. o 
We recall the definition of an elementary morphism in an additive category. 

Let A be an additive category, U an object of A. An automorphism a of u is called 
elementary if there is a decomposition u = uOEBul such that a takes the form 

a=G n 
for some b: Ul -+ Uo. Also, K1(A) can be defined as the group generated by all 
pairs (u, a), where u is an object of A and a an automorphism of u, divided by 
the subgroup generated by pairs (v,e) with e elementary. 

We will prove the analogue of E-surjectivity for functors induced by ring 
epimorphism on the twisted polynomial extension category of finitely generated 
projective modules ([1], p. 449). Let R = (R; Bo, B1) be a triple. We start with 
an observation on the morphism sets of objects in IF .1" (R). Let u = (Fo, Fd and 
v = (Go, G1) be two objects in IF.1''(R) ofranks (mo, ml) and (no, nl). As before, 
we write Gi = Go for all even i ~ 0, Gi = G1 for all odd i > 0 and we write ni for 
the rank of Gi . For any R-bimodule B, we write Mmxn(B) for the abelian group 
of mxn matrices with entries in B. 

Lemma 3.7. With the above notation, a choice of bases of the free modules involved 
induces an isomorphism of abelian groups 

IF.1''(R)(u, v) ~ EBi~O [Mmoxn. (B;21) EB Mml xnHI (B;il)]. 

Proof. This is standard matrix calculation. 

Let h: R -+ S be a ring epimorphism and R 
(S; Bo, Bl ). The map h induces a functor 

h.: IF .1"(R) -+ IF .1"(8). 

o 

Let Uj, j = 1,2, be objects in IF.1''(8). Then there are objects Uj in IF.1''(R) such 
that h. (Uj) ~ Uj, j = 1,2. A choice of isomorphisms induces an abelian group 
homomorphism 

h.: IF.1''(R)(ul,U2) -+ IF.1''(8)(Ul,U2). 
The next result is an easy corollary of Lemma 3.7. 

Corollary 3.8. With the above notation, h. is an epimorphism. 
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Proof. Let B be any R-bimodule. Since h is a ring epimorphism, the map 

h':B-+B, b t-+ Is0b01s 

is an abelian group epimorphism. Thus for any m, n > 0, the induced map on the 
matrix group 

h'mxn: Mmxn(B) -+ Mmxn ( B ) 

is an epimorphism. The result follows from the identifications proved in Lemma 3.7. 
o 

The next Lemma is on the E-surjectivity of the functor h*. 

Lemma 3.9. Let u be an object oflFp(S) and 9 an elementary automorphism ofu. 
Then there is an object v in IFp(S), an object w in IFp(R) and an elementary 
automorphism f of w such that h* (w) 9'! u61v and under the isomorphism h* (j) 
is conjugate to g611v . 

Proof. Since 9 is elementary, there is a splitting u = UI61u2 such that 

g= G i) 
where",( E IFp(S)(UI,U2). Choose objects Vj , j = 1,2, in IFp(S) such that Uj61Vj 
is in IFF(S) . Set v = VI61v2. Then u61v is an object in IFF(S) and under the 
isomorphism 

g611v corresponds to 

( 1 "'(') 
g61l" = ° 1 

where 

, -ffi- (6 g) -(T\-

"'( : Ull:I7Vl -----. U2 1:I7V2· 
Since Uj61Vj, j = 1,2, are objects in IF F(S) , the result follows from Corollary 3.8. 

o 
Using the above basic results, we will show that the functor ¢ is cofinal. 

Lemma 3.10. The functor ¢: IFp(R) -+ IP' is cofinal. 

Proof. Let U = (Ul,u2,g) be an object in IP'. We can add an object v = (VI,V2 , g'), 
with g' an isomorphism of degree zero, to U such that Uj 61Vj is an object of 
IF F(Rj ), j = 1,2. Thus we can assume that U has the property that Uj is an 
object in IFF(Rj ), j = 1,2. Then 9 is an isomorphism between f{(ut} and f~(U2) 
in IFF(Ro). By choosing bases for the free modules involved, we can assume that 9 
is an automorphism. First we will show that (Ul, U2, g) is in the image of ¢ (up to 
equivalence) if 9 is an elementary automorphism in IFp(Ro). In this case, after more 
stabilization, 9 = f{ (gl) for some automorphism gl of Ul (Lemma 3.9) because 
II is onto. Then the pair (gl, 1) induces an isomorphism between (Ul, U2, 1) and 
(Ul, U2, g). But (Ul, U2, 1) is in the image of ¢. The general case follows because the 
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morphism in the object (UIEBUI,U2EBu2,gEBg-I) can be written as a composition 
of elementary matrices. 0 

The following theorem is the main technical result of this paper. From it, the truly 
main result, Theorem 3.15, follows essentially by manipulation of definitions. 

Theorem 3.11. The functor ¢ induces an isomorphism 

¢j: Kj(W1'(R)) ~ Kj(lP'), j ~ 1. 

Proof. The functor ¢ is full and faithful and cofinal. Thus lF1'(R) can be identified 
with a full cofinal subcategory of lP'. The result follows from [7], Theorem 1.1. 0 

Corollary 3.12. Let NKI(Rj ) = 0 for j = 1,2 and NK2(Ro) = O. Then 
NKI(R) = O. 

Proof. The N K I-group associated to R is given as the kernel of the composition 

K I (lF1'(R)) ~ KI(lP') ~ KI(P~). 
If we use ¢I from Theorem 3.11 to identify K I (IF l' (R)) with K I (lP'), then N K I (R) 
is identified as the kernel of K, in the diagram preceding Lemma 3.6. The vanish
ing assumptions guarantee that the immediate neighbors of K, are monomorphims 
(actually isomorphisms). Also, the leftmost vertical map is a split epimorphism 
(in fact, an obvious splitting exists at the level of categories). Thus, by the five 
lemma, K, is a monomorphism. 0 

We finally specialize to the case of interest. Let r = ro *a r l where G is a 
finite normal subgroup of r i, i = 0,1. Let Bi = Z[ri - G], i = 0,1, be the two ZG
bimodules which appear in the definition of Waldhausen's Nil-groups in this case. 
Let N be the norm element in ZG, i.e., N is the sum of all the group elements, 
and (N) the ideal generated by N. Let n = IGI. Notice that Z is isomorphic to the 
quotient of ZG by the ideal generated by the elements of the form 9 - 1, 9 E G 
and Z/nZ is the quotient of ZG by the ideal generated by the elements Nand 
9 - 1, 9 E G. Then we have a cartesian square 

ZG ~ ZG/(N) 

lp2 1 q1 

Z ~ Z/nZ. 

Lemma 3.13. With the above notation, the right module ZG/(N)®WBi (respec
tively Z®WBi) is PI (respectively P2) extendable, i = 0,1. That implies that Bi is 
qlPI -extendable. 

Proof. Notice that if'Y E r i then 'YN = N'Y because G is normal in rio That implies 
that the ideal generated by N acts trivially, from the right, on ZG / (N)®zaBi. 
For the other ring, notice that all the elements of ZG of the form 9 - g', g, g' E G 
act trivially on the right on Z®za B i . 0 



320 H. J. Munkholm and S. Prassidis 

In the special case that n = p is a prime then ZG / (N) ~ Z[(p], Z with a 
primitive p-th root of unity attached. This ring is regular Noetherian. The rings 
Z and Z/pZ are also regular Noetherian rings and therefore the corresponding 
NKj - groups vanish for j ::; 1, cf. Lemma 2.1. 

Let Cp have index 2 in a group G. We will describe the IFp-bimodule structure 
of IFpQ9zcpZ[G - Cpl. The action of ZCp on IFp is given via the epimorphism 

ZCp ~ ZCp/(N,g - 1,g E Cp) ~ IFp. 

Lemma 3.14. With the above notation, there is an IFp-bimodule isomorphism 

a: IFpQ9zcpZ[G - Cp ] ~ IFp . 

Proof. The ZCp-bimodule Z[G - Cp ] has a decomposition 

Z[G - Cp] = ffi Zh 
WhEG-Cp 

as an abelian group. The action of Cp is given by permuting the summands ac
cording to the action of Cp on G - Cp- Let h, h' be two elements in G - Cp- Then 
there is 9 E Cp such that gh = h'. Therefore, in IFpQ9zcpZ[G - Cp], 

XQ9h' = XQ9(gh) = XQ9h, for all x E IFp-

Define a on Zh by setting a(xQ9h) = x and extending linearly. Then a is the 
required isomorphism. 0 

The next theorem is a combination of the above observations and Theorem 3.11. 

Theorem 3.15. In the above notation, if n = p is a prime, then 

-w 
Nilo (ZCp;Bo,Bt) = NK1(ZCp ;Bo,Bt} = o. 

Proof. In this case the pull-back diagram above becomes 

ZCp -----. Z[(p] 

1 1 
Z -----. IF p. 

The rings Z, Z[(p], and IFp are regular. By Lemma 2.1 the NK1-groups of the 
induced triples vanish for the three rings above. The bimodules B i , i = 0,1, are 
extendable over IFp (Lemma 3.13). Thus Lemma 3.14 applies and Corollary 2.5 
implies that 

NK2(IFp; IFpQ9ZCpBo, IFpQ9ZCpBd = o. 
Then the result follows from Corollary 3.12. o 

Combining with the results in [10] and Waldhausen's exact sequence (*) of 
Section 2, we have 
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Corollary 3.16. With the above assumptions, there are exact sequences 

K1(ZCp ) -+ K1(Zro)EBK1(Zr1) -+ K1(Zr) -+ Ko(ZCp ) -+ ... , 

and 
Wh(Cp ) -+ Wh(ro)EBWh(r 1) -+ Wh(r) -+ Ko(ZCp ) -+ .... 

321 

As a particular application we have the following result which was used in 
the calculations in [3]. 

Corollary 3.17. Wh(83 *1/.3Z 83) = 0 where 83 is the symmetric group on 3 letters. 

Proof. From Theorem 3.15, we know that Waldhausen's Nil group vanish. We also 
know that the lower K -theory of 83 and Z/3Z vanish. The result follows from 
Corollary 3.16. 0 
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Lusternik-Schnirelmann cocategory: 
A Whitehead dual approach 

Aniceto Murillo and Antonio Viruel 

Abstract. In this paper a new approach to the Lusternik-Schnirelmann co
category of a space is presented. This approach is based on a dual of the 
Whitehead definition of category. Using this new definition we are able to 
prove all the classical properties satisfied by the original Ganea's concept of 
cocategory. 

1. Introduction 

Since the very first moment the notion of category was introduced by Lusternik 
and Schnirelmann in 1934 [14], there have been several successful attempts to 
describe this homotopy invariant in a more functorial, and therefore manageable, 
form. The story can be simplified like this: For reasonable classes of spaces X (for 
instance, having the homotopy type of CW -complexes) the following notions of 
the Lusternik- Schnirelmann category of X, cat X, are all the same: 

- The original one, i.e., the least integer n (or infinite) for which there exists 
an open covering of n + 1 subspaces contractible in X. 

- The Whitehead approach [19]: A space X has category less or equal than 
n if the diagonal map D.: X - lIn+! X can be deformed into the fat wedge of 
order n, Tn X. 

-The inductive category [7]: cat X ::; n + 1 if there exists a cofibration 
A -- Y -- Z such that cat Y ::; nand Z dominates X. 

- The Ganea's characterization of category: cat X ::; n if the n-th Ganea's 
fibration admits a homotopy section [8]. 

The understanding of these different approaches to the notion of category is 
one of the reasons why this subject has had such an enormous development in the 
past years. 

Unlike this, the situation in the Eckmann-Hilton dual of this concept is not 
at all as satisfactory. On one hand this duality applies (when it does!) to the based 
homotopy category so it is difficult to present a dual of the original definition 
of category. On the other, it is not clear what the dual of a categorical covering 
would be. However, M. Hopkins [11] defined several notions of cocategory which 
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are a sort of dual of the initial one. Unfortunately, they do not seem to be too 
manageable to apply to daily situations. 

For inductive category and Ganea's approach there are precise definitions of 
their dual notions, namely: 

Definition 1.1. [7J We say that the inductive cocategory of X is zero, indcocat X = 
0, if X is contractible. Then, indcocat X ~ n + 1 if there exists a fibration 
F -- E -- B such that indcocat E ~ nand F dominates X . 

Definition 1.2. [8J The n-th Ganea cofibration of X, X .....!h... GnX -- CnX, is 
defined inductively as follows: qo is the cofibration X ~ CX - EX. Next 
consider F the fibre of Gn-IX - Cn-IX and factor qn-I through F to get a 
map X-F. The associated cofibration to this map X .....!h... GnX - CnX 
is by definition the n-th Ganea cofibration of X. This can be better viewed in the 
following diagram: 

X 

A-·~ 
GnX - Gn-IX .. ........ GIX - CX 

I I I I 
EX 

Then, indcocat X is the least integer n for which qn has a homotopy retraction. 

Indeed, these two definitions are equivalent for reasonable spaces [8J. However, 
with respect to the Whitehead approach, the only reference we are aware of is the 
work of M. Hovey [12J where he presents a notion of cocategory based in a dual 
concept of the fat wedge of a space, defined as the component of the base point of 
an inverse homotopy limit. The author proves some of the properties satisfied by 
the inductive cocategory. 

The purpose of this paper is to present a Whitehead approach to the notion 
of cocategory which is easy enough to handle so that it enables us to deduce the 
dual of all the classical homotopy properties satisfied by the category. We should 
remark that the list of these properties are known to be true for the inductive 
cocategory but up to now we do not know whether it coincides with our notion 
of co category (we call it cocat in the sequel) . In fact the most we can say is 
(see theorem 3.12) cocat X ~ indcocat X. With respect to Hovey's notion we 
also point out (see remark 3.16) that our invariant is smaller than his and both 
coincide in the rational category. We now present how the paper is organized and 
summarize very briefly its content. 

In the second section we collect all the basic results we shall make use of, 
particularly we focus our attention on the study of the cojoin of two maps. 
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Our definition of cocategory is based in a map in: Vn+l X --- WnX which 
mimics the dual of the inclusion Tn X '----t IIn+lX of the fat wedge into the product 
(this is the analogous of the map Pn of [12]) . This definition together with basic 
properties and a few examples form the third section. Also in §3, the definition of 
wcocat, the weak cocategory of a space, can be found. 

In §4 we present, as a key point of this paper, a deep study of the map in 
and extract important information. 

As a consequence of this one immediately has: 

nil OX ::::; wcocat X ::::; cocat X. 

In section §5 we prove that the last inequality may be strict. It is important 
to remark that this, together with the fact that cocat X ::::; indcocat X, makes 
the weak cocategory into a sharper upper bound for nil OX or the Whitehead 
product-length of X. We end up investigating how localization affects our notion 
of cocategory for simply connected spaces. 

We would like to thank to Prof. Daniel Tame for helpful conversations. 

2. Basic results 

Throughout the paper all considered spaces are based, and have the homotopy type 
of CW-complexes. Also, since we work in the homotopy category, we shall often 
not distinguish, unless necessary or explicitly stated, between homotopy classes 
and the maps which represent them. Hence, equality will often mean "homotopic 
to" or "have the same homotopy type as" . 

Homotopy theory is plenty of surprising facts. One of those is that honest 
limits do not exist in the homotopy category as these universal objects do not 
respect homotopy type. Homotopy limits were defined in order to solve partially 
this problem while still having nice universal properties [2]. We shall mostly deal 
with very simple homotopy limits, namely, homotopy pullbacks and pushouts. 
Briefly, we recall here the definition and some general facts about them. The 
homotopy pullback 

p----. y 

l~ 
X ---=,-..... Z 

of any diagram X ---.!..... z ..!!- Y is defined as the honest pull back 

p ---------+-. Y 

j p.b. 

c/>x j X -------, X --~---. Z 
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in which the bottom row is just the decomposition of f into a homotopy equivalence 
<Px and a fibration j. Homotopy pushout can be defined in a similar fashion. These 
definitions do not depend on the homotopy type of the consider maps. Moreover, 
the same object is obtained by decomposing g instead of f, or both. 

With such a definition we cannot expect the universal property of pullbacks 
(resp. pushouts) to hold. Nevertheless there is a weak version of it; 

Theorem 2.1. [15] A homotopy commutative diagram 
j, P --'---+. Y 

" j ,j 
X f • Z 

is a homotopy pullback iff for any homotopy commutative diagram 

the following hold: 

h D----+. Y 

"j 
f X----+. Z 

(1) There exists D ~ P, called a whisker map, such that K : h '::::'. JIw, 
L : g1 W '::::'. g2 and gK + H w + f L '::::'. G. That is, the following diagram is 
homotopy commutative 

D 

~ 
P .y 

92 I j, I 
91 9 

X f. Z 

(2) If there exists another map D ~ P with the same properties as that 
of w in {lJ , then there exists M : W '::::'. w' such that K + JIM'::::'. K' and 
g1M + L' '::::'. L. 

We call this the weak universal property of homotopy pullbacks (WUPHPBJ. 

A similar weak universal property of homotopy pushout (WUPHPO) can be 
stated. 

The first and classical examples of homotopy pullbacks and pushouts are ho
motopy fibrations and cofibrations respectively. The reader could find very prof
itable the reading of the papers of J.P. Doeraene [4] and M. Mather [15]. 
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Recall that the join of two maps can be defined in these terms. 

Definition 2.2. The join of a diagram X -.!...... z ....!- Y, denoted by X * z Y if the 
maps f and 9 are known, is defined as the homotopy pushout of X +-- E - Y, 
where E is the homotopy pullback of the original diagram. The whisker map pro-

vided by the WUPHPO is denoted X *z Y ~ z. 

If Z ~ *, and therefore f and 9 are null homotopic maps, the join is simply 
denoted by X * Y, and it is easily calculated; 

Lemma 2.3. X*Y ~ E(X/\Y), where X/\Y means the cofibre of XvY - XxY. 

Now, as the Eckmann-Hilton duality suggests, a new concept can be defined 
interchanging homotopy pushouts and pullbacks; 

Definition 2.4. The cojoin of a diagram X ..!- z ---.!!- Y, denoted by XUz Y if the 
maps f and 9 are known, is defined as the homotopy pullback of X - E +-- Y, 
where E is the homotopy pushout of the original diagram. The whisker map pro-

vided by the WUPHPB is denoted Z ~ XUzY. 

Again, if Z ~ *, the cojoin is simply denoted by XUY. We can prove a formula 
dual to that of lemma 2.3. First recall the following result due to O. Cornea, 

Proposition 2.5. [3J Given F - E - Band F' - E' - B' (homotopy) 
fibrations, the following is a homotopy pullback 

F x F' x O(BDB') --+ E V * 

I j 
*VE'-----+. BVB' 

Therefore the formula is 

Lemma 2.6. XUY ~ O(XDY), where XDY is the hotomopy fibre of the standard 
inclusion X V Y - X x Y. 

Proof. The pushout of the diagram X+--* - Y is X V Y. Hence the formula 
is obtained applying proposition 2.5 to the trivial fibrations * -- X -- X 
and*-Y-Y. 0 

Another interesting property we shall use intensively in the sequel is 

Lemma 2.7. Given a homotopy commutative diagram: 

X. f Z 9 .y 

.j 
h 

.j ,j 
A. C .B 
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there exists a natural map an,B1' such that the following diagram is homotopy com
mutative 

z f~zg. XnzY 

,1 .,,, j 
hUc\ Anc B c 

Proof. Let El and E2 be the homotopy pushouts of the diagrams X ..!.- z ......!!..... Y 

and A ...!:- c ~ B respectively. Then the desired map appears as the (dotted) 
whisker map w = an,Bl', in the following commutative diagram: 

A -----------------. E2 i 1 

Indeed, in view of the WUPHPB, the commutativity of this follows from the 
fact that 

i2(hnc i ),6 = i,6 

= I'g 

= I'g2(fnZg) 

= i2w(fnzg) 

and in the same way h2(hnci),6 = h,6h2w(fUzg) 

3. Cocategory of a space 

o 

We begin with the definition of the map in dual to the inclusion kn : Tn X ~ 
IIn+1X of the fat wedge into the product. 

Definition 3.1. Define recursively WnX and in: Vn+1 X ---> WnX as follows: let 
WoX be a point and io is the constant map. Then 

Wn = VnXUvn+1X(Wn-lX V X) 
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. h X (1,*) X i n - l Vl W X X d . X W X ma t e maps Vn - Vn+l - n-l V ,an Zn: Vn+l ---- n 
defined in view of the diagram: 

VnX --------. Wn- 1X 
i n - 1 

That is, in = (1,*)Uv x (in-l VI). n+l 

(1) 

Remark 3.2. (1) WI X = X x X and i 1 : X V X ---- X x X is just the inclusion. 
(2) Observe that WnX is in fact the Eckmann-Hilton dual of Tnx , the fat 

wedge of X: Indeed, write Tn-l X as the homotopy pullback 

T n- 1 X J2.d. T n- 1 X x X 

'0_' 1..J 1('0_. ,.j 

and note that Tn X is the pushout (homotopy or strict since kn- 1 is a 
co fibration) 

T n- 1 X J2.d. Tn-Ix x X 

'0_' I j 
That is to say, 

Tn X = IInX *nn+l X (Tn- 1 X X X) 

(3) Note that since in is a whisker (and therefore not unique!) map, to define 
it without ambiguity and at the same time exhibit Wn as a functor one has 
to be more precise and fix representatives of the different objects chosen in 
the process. 

Another functorial property of Wn is given in the following 
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Proposition 3.3. Given maps Ii: X - Y, for i = 1,... ,n + 1, there exists a 
map an : WnX - WnY making commutative the diagram, 

Vf 
Vn+lX ~ Vn+IY 

If Ii = f for all i we call an = Wn(f). 

Proof. The map an is defined inductively by lemma 2.7 as follows: al = II x h 
and an = (Vnfi)H v f (an-l V fn+d. 0 

n+l 'l 

Our notion of Lusternik-Schnirelmann cocategory is: 

Definition 3.4. Given a space X, cocat X :S n if the folding map (J: V n+ 1 X ---+ X 
has a homotopy extension to WnX, i.e., there exists ip: WnX ---+ X so that the 
following commutes: 

In fact one has 

Proposition 3.5. If cocat X :S n then cocat X :S n + 1. 

Proof. Let ip: WnX ---+ X so that ipin = (J and consider the diagram as in (1) 

N h h . . X in VI W X X (cp,l) X" held' ote t at t e compositIOn V n+2 - n V - IS Just t e 10 mg map 
and therefore (ip, Ix) a is the extension we need. 0 

Proposition 3.6. If Y dominates X then cocat X :S cocat Y. 
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Proof. Let rp : WnY ---4 Y be a map for which rpin = (7 and assume X --L Y, 

Y ---..!!....... X are such that gf = Ix. Then, in view of the functorial property of in 
above described, the following diagram is commutative: 

WnX 
Wnf 

• WnY 
'P .y g .X 

'" 1 ,·1/ 1" 
Vn+lX - Vn+lY 

Vn+lf Vn+lg 
• Vn+lX 

But the bottom row is just 1vn+1 x and therefore g rp Wnf in = (7, that is to 
say, cocat X ::; n. D 

Corollary 3.7. The cocategory of a space is a homotopy invariant. 

We obviously have our first 

Example 3.8. Let X be any space, then 

(1) cocat X = 0 iff X is contractible. 
(2) cocat X = 1 iff X is an H-space. 

We can also define the weak version of cocategory: 

Definition 3.9. Let Fn ~ V n+lX ~ WnX be the fibration sequence associated 
to in. Define the weak cocategory of X, wcocat X, as the least integer n (or infinite) 
for which (7 jn = * with (7 the folding map. 

Similar considerations as in 3.6 and 3.7 show that wcocat is a homotopy 
invariant. Moreover, 

Proposition 3.10. wcocat X ::; cocat X. 

Proof. Assume cocat X ::; n, i.e., there exists rp: WnX ---4 X so that rp in = (7. 

Then (7 jn = rpinjn = *. D 

The fact that this is indeed a weaker notion shall be proved in §5. We now 
relate our invariant with the inductive co category or the equivalent definition based 
in the Ganea's cofibrations, both stated in the introduction. For that, first we find 
a bridge between WnX and GnX: 

Proposition 3.11. For any n ~ 0 there exists a map fn : WnX - GnX such 
that the following diagram is commutative: 

Vn+lX~ WnX 

"j i. j 
X qn. GnX 
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Proof. By induction on n. For n = 0 there is nothing to prove. Assume that we 
have already constructed the map fn-l : Wn- 1X - Gn- 1X, then the following 
diagram is commutative 

X (1 ,*) X i n -lVlx W X X 
Vn - Vn+l ---" n-l V 

j .1 f.-. v,._. 1 
* ... ---- X __ q_n_-_l - .. t Gn-1X. 

Applying lemma 2.7 to the diagram above we get the desired fn' taking into 
account that Gn+1(X) = * UxGn(X) for n ~ o. 0 

Now, the relation between cocat X and indcocat X is clear; 

Theorem 3.12. cocat X ~ indcocat X 

Proof. Using 3.11, any retraction rn : Gn(X) - X of the map qn gives us a 
map cp = rnfn such that cpin = an+!. Thus, cocat X ~ n . 0 

It is important to remark that at the present we are unable to prove or 
disprove if cocat equals indcocat. The way of proceeding to show that all the 
notion of category coincide cannot be applied in the dual context. This is due to 
the fact that the J-axiom of Doeranne [4J (or Mather's cube theorem [15]) does 
not dualize. 

We use 3.12 in the following 

Example 3.13. cocat S2 = 2. In fact cocat S2 > 1 since it is not an H-space. We 
now show that indcocat S2 ~ 2. For that simply observe that the Hopf fibration 
SI ---. S3 ---. S2 induces another fibration sequence S2 ---. BS1 ---. BS3. Thus, since 
BS1 is an H-space we have cocat BS1 = 1. Hence, in view of the definition of 
inductive cocategory, cocat S2 = indcocat S2 = 2. 

We end up this section with another basic property 

Proposition 3.14. cocat (X x Y) = max {cocat X, cocat Y}. 

Proof. Since X and Yare dominated by X x Y, both cocat X and cocat Yare 
less or equal than cocat (X x Y) . Let n = max{ cocat X, cocat Y}. Then, there 
exists maps cp: WnX ---. X and 1/;: WnY ---. Y for which cpin = a, 1/;in = a. Now, 
using proposition 3.3, we see that in behaves nicely with respect to the product: 
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This, together with the aid of this picture, 

XxY 

being f = (V n+1P x, V n+1PY ), let us conclude that the following commutes: 

where 9 = ('I' x ¢)(WnPx, Wnpy). Hence, cocat (X x Y) ::::; n. o 

Remark 3.15. One might be tempted to think that a relation between cocat (X V 

Y) and cocat X + cocat Y should exist, at least for simply connected spaces, as 
the Eckmann-Hilton duality suggests. However, this is not the case. Indeed, the 
fact cat (X x Y) ::::; cat X + cat Y is a consequence of a very special behavior of 
categorical coverings of the product (see [6] or [18] for details). We postpone an 
example for this until 4.9. 

Remark 3.16. We point out here that our notion of cocategory is smaller that the 
one defined by M. Hovey [12] which we now recall: Let N be the opposite category 
of proper subsets of {I, ... ,n} and let Gn : Top - ToVV be the functor defined 
by Gn(X) = ViEAX and Gn(X)(A :::l B): ViEA - VjEB the projection. Then 
pnx is defined as the component of the base point ofholimGn(X). Considering 
spaces as constant diagrams in ToVV, the obvious map Vi=l X - Gn(X) induces 
a natural map Tn: Vi=l X - pnx. Then Hovey's notion of cocategory of a 
space X is the least integer n (or infinite) for which there exists g: pn+l X - X 

such that the following diagram commutes: 

At present we do not know whether pn+l X and WnX coincide for n ~ 2 (they 
do in the rational category!). However there exists a map J.ln: WnX _ pn+1 X 
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such that the diagram 

Vn+lX 

commutes. Indeed J-Ln is induced by maps Wn : WnX -+- ViEA X (jor each subset 
A c {l, ... , n + I}) which are defined inductively by: 

{
P(J, if n + 1 tf. A, 

Wn = (Wn-l V Ix )a, if n + 1 E A, 

with a and (J as in diagram (1), where p: V~lX - ViEA X is the projection, 
and Wn-l: Wn-1X - V A-{n+l} X. 

Hence, if g: pn+lx - X makes Hovey's invariant less or equal than n, 
then gJ-L allows us to conclude than cocat X :::; n. 

4. Investigating the map in 

As we pointed out in the introduction, a careful study of the map in shall let 
us deduce the dual of all the classical homotopy properties of the L8 category 
(properties which are known to be satisfied by the inductive cocategory [7], [8]). 
We start off by showing how the connectivity degree of in increases with n. 

First, we recall a result of O. Cornea, which relate cofibrations and fibrations . 

Proposition 4.1. [3] Let F -- E -- B be a fibration and let Z -- B' -- B 
a cofibration. Let E' be the homotopy pullback of the diagram B' - B +-- E. 
Then there is a cofibration sequence ~ (Z 1\ F) - B' / E' - B / E. 

Then the following technical lemma is an easy consequence (as in §3, call Fn 
the homotopy fibre of in) 

Lemma 4.2. There is a cofibration sequence of the form: ~(X I\Fn) -- A ~ B 
where A = (WnX V X)/Wn+lX and B = WnX/ Vn+l X. 

Proof. It follows from 4.1 applied to the fibration Fn - Vn+l X ~ WnX 
and the cofibration X-+- WnX V X-+- WnX. 0 

Now, recall that if Z is n-connected and Y is m-connected (m, n ~ 0), then 
Z 1\ Y is (m + n + I)-connected. Then, we have 

Theorem 4.3. Let X be q-connected, then in is (n + 1 )q-connected. 

Proof. By induction on n. It is trivial for n = o. Assume that the result has 
been proved up to n - 1. Then, the map fn-l constructed in lemma 4.2 induces 
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isomorphism in homology till degree (n + l)q + 2 as E{X 1\ Fn - 1 ) is ({n + l)q + 2)
connected by hypothesis. Also, it fits in the following commutative diagram of 
cofibrations 

x - Wn-1X V X -- • Wn-1X 

~/ 
Wn-1XV X 

B=== ====B 

where A = (Wn-1X V X)/WnX and B = Wn-1X/ Vn X. This diagram gives rise 
to the following diagram in homology: 

HrH{Wn-lX V X) -+ Hr+1{B) -- Hr{VnHX) -- Hr{Wn-lX V X) -- Hr{B) 

II Un-tlr+l r (in)·l II Un-tlr r 
Hr+1{Wn-lX V X) -- HrH{A) - Hr{WnX) -- Hr{Wn-lX V X) -- Hr{A) 

If r :::; {n + l)q + 1, then {fn-drH and {fn-dr are isomorphism, and by the 
Five's Lemma, {in)r is so. 0 

This proposition allows us to calculate the cocategory of spaces with a few 
homotopy groups as the following corollary shows, 

Corollary 4.4. Let X be a q-connected space such that 7rr X = 0 if r > (n + l)q. 
Then cocat X :::; n. In particular, n-th Postnikov stages of simply connected spaces 
have cocategory bounded above by n. 

Proof. For any space Z, we will denote by z(r) the r-th stage of the Postnikov sys
tem of Z. By theorem 4.3, in induces homotopy equivalences between (Vn+lx)(r) 
and (WnX)(r) for any r:::; {n+l)q. If we choose r = {n+l)q, we have the following 



336 A. Murillo and A. Viruel 

commutative diagram 

X a(r) 

~ 
x(r) 

Therefore, the desired extension to the folding map 'P : WnX ----+- X appears as 
the composition 'P = a(r)(i~»)-I'Yn which proves the corollary. 0 

Another important consequence of theorem 4.3 is the following result, known 
for the inductive cocategory [9J 

Theorem 4.5. Let X(q) be the q-connected cover of X, q ~ O. Then cocat X(q) ~ 
co cat X. 

Proof. Assume cocat X = n and let 'P: WnX ---. X be an extension of the folding 
map. Then consider the following diagram (where the dotted 7jJ has to be defined) 

Vn+!X(q) • Vn+IX 

~ .~ 
Wn(X(q)) h • W X 

" 1/." 
X(q) --------. X -------. X(q) 

pq 

in which the bottom row is a fibration. By theorem 4.3, Vn+IX(q) ~ Wn(X(q)) 
is q-connected so is W n (X (q) ). Therefore Pq 'P h = * and the dotted arrow 7jJ making 
the whole set commutative does exist. Hence, cocat X (q) ~ n. 0 

Next, we shall see how the space WnX mimics the same property as the 
product with respect to Whitehead products. From now on, given a space X 
and elements ai E 1I".(X), i = 1, ... ,n, we denote by [ab ... ,anJ the iterated 
Whitehead product [[[ ... [aI, a2Ja3J .. . JanJ. Then we have, 

Theorem 4.6. Let aI, ... ,an+! E 11". (X) and let jk : X'---+ Vn+IX the inclusion of 
the k-th copy of X, k = 1, ... ,n + 1. Then, in 11". (WnX), 

11". (in) [iIal, ... ,jn+lan+IJ = 0 
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Proof. We prove it by induction on n . For n = 1 is a well known fact. Indeed, 
for a given space Y and elements a E 7Tp(Y), f3 E 7Tq(Y), the Whitehead product 

[a, (3) = 0 if and only if the map SP V sq ~ Y has a homotopy extension to 
SP x sq. Hence, given elements al E 7Tp(X), a2 E 7Tq(X), 7T.(il)[jlal,12a2) = 0 
since the map (iljlal, i1l2a2): SP V sq - W1X = X X X has obviously an 
extension to the product: al x a2. 

Assume the assertion is true for n - 1 and let al, ... ,an+! E 7T.(X). Again, 
if [al, . . . , an) E 7Tp(X) and an+l E 7Tq(X) then 

will vanish if the map 

has an extension to SP x sq. For explicitly defining such an extension consider the 
diagram (where the dotted arrows are yet to be defined and q is the projection) 

and define f and g as follows: 

. SP sq Pl SP [iletl , '" ,Jnetn] V X 
g. x - • n 

where Pl>P2 are projections and j is the inclusion. Next, observe that , by induction 
hypothesis, qf = * = in-l[jlal, ... ,jnanj, and therefore there exists the dotted 
arrow <p of the diagram above making the whole picture homotopy commutative. 
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It remains to see that the square 

SP V sq [jl 0 1, ... ,jn Q n]Vjn+l Q n+l 
Vn +1 X • 

,[ j '" 
SP x sq • WnX 

<p 

is homotopy commutative. But, for that, in view of the WUPHPB, it is enough to 
see that (call (3 = [j1D:1, ... ,jnD:n]) 

Indeed: 

bin ((3 V jn+1D:n+d = b<p k, 

a in ((3 V jn+1D:n+d = a <p k. 

bin ((3 V jn+1D:n+dlsp = (in- 1 V Ix )((3 V jn+1D:n+1)lsp 

= i n - 1(3 = (by hypothesis) = * 
= f klsp = b<pkb, 

bin ((3 V jn+1D:n+1)lsq = (in-1 V Ix )((3 V jn+1D:n+dlsq = D:n+1 

= f klsq = b<pklsq. 

And, on the other hand, 

a in ((3 V jn+1D:n+dlsp = (3 = a <p klsp, 

a in ((3 V jn+1D:n+1)lsq = * = a <p klsq. 

o 
As an immediate consequence we obtain the following: Given a space X recall 

that wlength X (Whitehead product length of X) is the largest integer n for which 
there is a non trivial Whitehead product of order n. This invariant is a classical 
bound for the inductive cocategory [Ga2J and from the theorem above we may 
sharpen this bound: 

Corollary 4.7. wlength X :S wcocat X. 

Proof. Assume wcocat X :S n. Observe that, any (n+ I)-order Whitehead product, 
in view of its naturality, can be written as: 

[D:1, ... ,D:n+1J = 7r*(a)[j1D:1, ... ,jn+1D:n+1J. 

However, from proposition above we have in [j1D:I, ... ,jn+1D:n+1J = 0 and there
fore [j1D:1, . .. ,jn+1D:n+1J factors through the fiber of in (call it j: Fn '-....4 Vn+1X). 
That is to say, for some map h: sm - Fn , 

[j1D:1, ... ,jn+1D:n+1J = 7r* (a)[j1D:1' ... ,jn+1D:n+d = 7r*(a) j h = *, 
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since a j = *. o 

Remark 4.8. As we shall see in the next section, the corollary above is in fact a 
sharper bound since the inequality wcocat X < cocat X may occurs. 

Corollary 4.7 leads to some interesting remarks: 

Remark 4.9. (1) We are now able to exhibit the promised example which shows 
that there is no relation between cocat (X V Y) and cocat X + cocat Y, 
even for simply connected spaces: On one hand, in view of the corollary 
above, cocat (82 V 8 2 ) = 00 since there are non trivial Whitehead products 
of arbitrarily high order, while cocat 8 2 = 2. On the other hand, consider 
the space X = K(Z/p,n) V K(Z/q,n) with 1 < nand (p,q) = 1. Then 
the inclusion K(Z/p, n) V K(Z/q, n) '----t K(Z/p, n) x K(Z/q, n) induces an 
isomorphism in cohomology and thus it is an equivalence. Hence, X is an 
H-space, i.e., cocat X = 1. Therefore, 1 = cocat K(Z/p,n)VK(Z/q,n) < 
cocat K(Z/p, n) + cocat K(Z/q, n) = 2. 

(2) Another consequence is that we can see now how the hypothesis of q
connectivity in 4.4 is necessary. Let X be a space with perfect funda
mental group. Thus , there are non trivial commutators of any length in 
7rl (X). Therefore, by 4.7 and independently of its higher homotopy groups, 
cocat X = 00. 

Another special behavior of the map in occurs when dealing with universal 
commutators: 

Definition 4.10. Let X be a co-H-space with comultiplication v and inverse TJ. We 
define the universal commutator c: X -+ X V X as the composite, 

v V v T2 3 h a V a 
X ------+ XVXvXvX -.:... XvXvXvX ------+ XVXvXvX ------+ XVX 

in which 72,3 is the (2,3) transposition and h = Ix V TJ V Ix V TJ. This is suggested 
from the fact that, if X is a cogroup, given maps a,(3: X -+ Y, the commutator 
(a , (3) in the group [X, Y] is precisely (a, (3) = a( a V (3)c. Now define recursively 
the n-th universal commutator as follows: Co = lx, Cl = c and cn : X -+ Vn+lX, 
where Cn = (Cn-l V 1x)c. Again, the commutator (al,'" ,an+d in [X,Y] is 
a(al V .. . Van+l)cn, 

Then we have 

Theorem 4.11. cnin = *. 
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Proof. By induction on n. For n = 1 it is a well known fact [1]. Assume the 
assertion is true for n - 1 and consider the diagram 

x __ c ..... X V X cn_1VI~ ( ) X in_1VIx W X X VnX V -----+. n-I V 

~/ 
./nx~ 

VnX -------+. Wn-IX 
in-l 

Therefore, to conclude, it is enough to see that 

(i) (in-I V Ix )cn = * and 
(ii) aCn = *. 

Indeed, 

(i) We have that 

(in-I V Ix )cn = (in- I V Ix )(Cn-I V lx)c 

= (in-Icn-I V lx)c = (by hypothesis) = (* V lx)c 

= (plidc = (again by hypothesis) = * 

Here PI denotes the projection over the first factor. 
(ii) aCn = (Cn-I V lx)c = a(cn-I V *)c, i.e., the following composite, 

X C X Cn_1V* ( ) ( ) CT - VX- VnX V VnX - VnX 

But this is, by definition, the commutator (Cn-I, *) in the group [X, VnX] 
and therefore it is trivial. 

o 

As a consequence we obtain the following result which is the Eckmann-Hilton 
dual of the classical Whitehead bound for the category [20], [1]. Recall that for a 
group G, the nilpotency index of G, nil G, is the least integer n for which all the 
commutators of order n + 1 of G vanish. 

Theorem 4.12. Given a cogroup X, nil [X, Y] ::; wcocat Y. 
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Proof. Assume wcocat Y ::; n and let (h, . . . ,fn+d be an (n + I)-commutator in 
[X, Y]. Consider the diagram 

Fn(X) 
{J 

• Fn(Y) n 

. j ;j ..... . r.······ j 

X en 
• Vn +1 X Vn +l Y 

a .y • 

'" j 

ft V ... VJn+l 

'" j 
WnX • WnY 

"'n 

in which an is produced by h V ... V fn+1 (see proposition 3.3), j is the inclusion 
of the fibre Fn of in and f3n is induced by an and h V ... V fn+I . In view of 
theorem above in Cn = * and therefore Cn factors through Fn(X) (the dotted 'P 
of the diagram). Hence (h, ... ,fn+d = a(h V ... V fn+1)cn = ajf3'P = 0 since 
ja = * 0 

Remark 4.13. Recall that given a space X, nil nx is the biggest integer n for 
which the universal commutator map of order n nx x . . . nx --> nx is essential. 
A result of [1] asserts that wlength X ::; nil nx while on the other hand it is easy 
to see that nil nx = sup z nil [Z, nX]. But this is the same as sup z nil [L:Z, X] 
which, in view of theorem 4.12, is bounded above by wcocat X. Hence we have the 
following: 

wlength X ::; nil nx ::; wcocat X ::; cocat X 
Also, observe that corollary 4.7 could be deduced from this remark. 

5. Some examples 

Along this section we shall construct spaces for which the inequality 

wcocat X ::; cocat X 

is strict. All the examples are constructed in a similar way. Let BS I be the clas
sifying space of SI. It is well known that H*(BSl;Z) = Z[Lj, where ~ has degree 

two. Let Tn denote the map BSI ~ K(Z, 2n) which detects the cohomological 
class ~n, that is, if ~2n is the fundamental class generating H2n(K(Z, 2n), Z), the 
map Tn is characterized by Tn(~2n) = ~n . 

Call X(n) the homotopy fiber of the map Tn, that is, we have a fibration: 

X(n) ~ BSI ~ K(Z,2n) . (2) 

The spaces X(n) are the source of all our examples. The following lemmas show 
that cocat X(n) = 2 for n > 1 (note that X(I) is a point). 



342 A. Murillo and A. Viruel 

Lemma 5.1. cocat X(n) ::; 2 

Proof. As BS I is an H-space then indcocat BS I = 1, and by (2), we get that 
indcocat X(n) ::; indcocat BS I + 1 = 2. Using that cocat X(n) ::; indcocat X(n) 
we get the desired result . 0 

Lemma 5.2. The spaces X (n) are not H-spaces for n > 1. 

Proof. To prove the result, we show that H*(X; Z) is not a Hopf-algebra. Assume 
that X(n) is an H-space, and therefore H*(X;Z) is a Hopf-algebra. Let 0: = 
hn(L) be the generator of H 2(X;Z). As L is primitive in H*(BSl;Z), 0: is so in 
H*(X; Z) and therefore it generates a Hopf-subalgebra of H*(X; Z). The Hopf
algebra generated by 0: in H*(X; Z) is a monogenic Hopf-algebra over a ring of 
characteristic 0, and its generator is even dimensional, thus it has to be Z[o:]. But 

which is impossible. 

An easy consequence is 

Corollary 5.3. cocat X (n) = 2 if n > 1. 

Now we study nX(n) in order to calculate wcocat X(n). 

Lemma 5.4. lfn> 1, then nX(n) ':0:' Sl x K(Z,2(n -1)). 

Proof. Looping the fibration (2) we get a new fibration 

nX(n) ~ Sl ~ K(Z, 2n - 1). 

o 

As n > 1, K (Z, 2n -1) is simply connected and thus n'Yn is trivial. Hence nx (n) ':0:' 

Sl X K(Z, 2(n - 1)). 0 

Then we can calculate wcocat X (n) when n ~ 3. 

Proposition 5.5. wcocat X(n) = 1 for n ~ 3. 

Proof. Let Fl be the homotopy fiber of i l : X(n) V X(n) - X(n) x X(n). To 
prove the result we show that [Fl' X (n)] = 1 for n ~ 3. But this follows from this 
sequence of bijections: 

[Fl, X(n)] = [~(nX(n) 1\ nX(n)), X(n)] 

~ [nX(n) 1\ nX(n), nX(n)] 

~ [nX(n) 1\ nX(n), K(Z, 2(n - 1))] EB [nX(2) 1\ nX(2), Sl] 

~ H2n-l(nX(n) 1\ nX(n); Z) EB Hl(nX(n) 1\ nX(n); Z) 

Finally, as n ~ 3 those cohomology groups are trivial. o 
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Corollary 5.6. 1 = nil nX(n) = wcocat X(n) < cocat X(n) = 2 for n ~ 3. 

Finally, the case of X(2) is exceptional. 

Proposition 5.7. wcocat X(2) = 2. 

Proof. To show that wcocat X(2) = 2, it is enough to prove that the map 

Fl -- X(2)V X(2) ~ X(2) is not trivial. In order to prove that , first we prove 
. 0 

that any map from Fl to X(2) factors umquely through the map K(Z, 3) -- X(2) 
that appears extending the fibration (2). This follows from the sequence of bijec
tions: 

and 

[Fl ' X(2)] ~ [nX(2) 1\ nX(2), nX(2)] 

~ [nX(2) 1\ nX(2), K(Z, 2)] EB [nX(2) 1\ nX(2) , Sl] 

~ H2(nX(2) 1\ nX(2); Z) EB Hl(nX(2) 1\ nX(2); Z) 

~ H2(nX(2) 1\ nX(2); Z) 

[Fl' K(Z, 3)] ~ [nX(2) 1\ nX(2), nK(Z, 3)] 

~ [nX(2) 1\ nX(2), K(Z, 2)] 

~ H2(nX(2) 1\ nX(2); Z) 

which are compatible with the map 6. Thus we have the following commutative 
diagram 

nX(2)2 - Fl - X(2) V X(2) 

I r r 
Sl _ K(Z,3) 0 • X(2) 

(3) 

where the composition Fl - X(2) V X(2) ~ X(2) is trivial if and only if 
the map () is so. To see that () is not trivial we show that ()* (L3) i= 0 where L3 is 
the fundamental class that generates H3(K(Z , 3); Z). To do that we compare the 
Serre spectral sequences associated to the fibrations in (3). 

The low dimensional cohomology of the spaces in (3) is 

H$3(X(2); Z) = Z[a2], H$3(K(Z , 3); Z) = AZ[L3], 

H$3(Sl;Z) = AZ[Ll], H$3(X(2) V X(2);Z) = Z[,82,,8;], 

H$3(Fl ;Z) = AZ[E3], H$3(nX(2)2;Z) = AZ [Xl'X~] 

where the differentials (in the Serre s.s.) are d2(Ll) = a2 , and d2(xd = ,82 and 
d2(xD = ,8~ . Therefore, in the corresponding spectral sequences, the classes L3 and 
E3 are represented by the classes Ll Q9 a2 and (Xl + x~) Q9 (a2 + a~) respectively. 
By the edge morphisms we get that ()* (L3) = E3. 
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Hence the map Fl - X(2) V X(2) ~ X(2) is not trivial and the result 
is proved. 0 

6. Cocategory and localization 

In what follows all spaces will be I-connected and localization shall mean 7lp -

localization in which P is a (non necessary non empty) set of prime numbers 
and tlp denotes the P-Iocalized integers. Here we study the behavior of cocat 
respect to localization and show that in the same fashion that the category of a 
space decreases when localized, cocategory does. We start with an easy lemma 
which shows that generalized inverse limits behaves as usual limits with respect 
to localization: 

Lemma 6.1. Let A --- B -4-- C be a diagram of abelian groups, then 

(inv-limS(A - B -- C))071p ~ inv-limS(A071p - B071p -- C071p ) 

Proof. Let 
O_A_EO_E1 _ 

be an injective resolution of the abelian group A. Then 

0--- A071p --- E0071p --- E1071p ___ 

is an injective resolution of the abelian group A 0 tlp since _ 0 tlp is exact and 
again each Ei 071p is injective. Finally the result follows from this together with 
the fact that for usual limits we have the isomorphism 

(inv-lim(A - B -- C))071p ~ inv-lim(A071p - B071p -- C071p ). 

o 

The next result shows that P-Iocalization commutes with the Wn construc-
tion. 

Proposition 6.2. Wn(Xp) is P-local. Moreover, Wn(Xp) = Wn(X)p and the nat
ural map Wn(X) --- Wn(Xp) is the P-localization map. 

Proof. By induction on n. For n = 0 we have that Wo(X) = Wo(Xp) = Wo(X)p = 
* and there is nothing to prove. 

Assume the proposition holds up to n - 1 and recall that Wn(X) is obtained 

as the homotopy pullback of the diagram VnX ~ Wn-1(X) -- Wn_1(X)VX. 
Therefore, by the induction hypothesis and lemma 6.1, P-Iocalization induces 
the following commutative diagram in which the front and back faces are ho
motopy pullbacks, and f is the whisker map that closes the diagram in view of the 
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WUPHPB: 

Wn(X) ...................................• Wn- 1 (X) V X 

.~ ~ 
Wn(Xp) ······················1········. Wn_,(Xp) v Xp 

--_. Wn-1(X) 

~ 
Now Wn(Xp) is P-Iocal since it is an inverse homotopy limit of local spaces. To 
finish the proof all we show that f induces iso in 7r * ® '1l.p. In order to do so we 
compare the Bousfield-Kan spectral sequences (BKss) associated to both pullbacks 
(see [2]). The 2nd stage of the BKss associated to the pullback diagram D = 
VnX -- Wn-1(X) -- Wn-1(X) V X is given by E~,t(D) = inv-limS(7rt(D)) 
and it converges to 7r* holimD. By lemma 6.1 and since _ ® '1l. p is an exact the 
spectral sequence with 2nd stage E~, t ® '1l. p = inv-limS(7rt(D) ® '1l. p ) converges to 
7r* holimD ® '1l. p . 

Now, the P-Iocalization map gives an isomorphism 

17U : 7r*(holimD) ®'1l. p -- 7r*(holimDp ) 

which also induces an isomorphism between the 2nd stage of the spectral sequences 

E*'* ® '1l. (D) ~ E* '*(D ). 2 p - 2-P 

Hence the Eoo terms are isomorphic, that is, 

To finish, since Wn(Xp) is local, the map f factors through Wn(X)p as the 
following diagram shows: 

An easy analysis shows that j induces isomorphism in homotopy, which finishes 
the proof. 0 
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Finally, the main theorem of this section is 

Theorem 6.3. cocat Xp ::; cocat X . 

Proof. Assume n = cocat X and let 'P : Wn(X) -- X so that 'Pin = a. Applying 
P-Iocalization to this we obtain the following diagram: 

(Vn+lX)p ~ Wn(X)p 

.pj;/ 
Xp 

Now recall that (Vn+1X)p = Vn+1(Xp ) is an equivalence and therefore the 
map 'ljJ = 'PP 1-1 , with 1 as in proposition above, makes the diagram. 

Vn+1Xp ~ Wn(Xp) 

.j/ 
commutative D 
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Rational self-equivalences for H -spaces 

Salvina Piccarreta 

Abstract. Let X be an H-space and a 1-connected CW-complex. We describe 
the rational homotopy type of the H-space aut(X) of the self-equivalences 
of X and its subspaces autd(X) and autl(X)i bounds for their H-nilpotency 
are given. As a particular case G /U is considered for G and U belonging to 
certain classes of classical Lie groups. 

1. Introduction 

Given a space X, we denote by aut(X) the subspace of map(X, X) consisting of 
maps which are homotopy equivalences. With respect to composition this space 
is an H-group, strictly associative and with a strict unity. We are interested in 
the following subspaces of aut(X): autl (X) is the path-connected component of 
aut(X) containing the identity of X, and aut~(X) is the subspace of maps inducing 
the identity on homotopy groups. Both subs paces are H-groups. 

Clearly, 1l"o(aut(X)) is a group with respect to the operation induced by com
position, which is denoted by £(X) and called group of homotopy self-equivalences 
of X. We consider also the subgroup £~(X) = 1l"o(aut~(X)). 

In his work, Sullivan associates to the rationalization X<Q of X a differential 
graded algebra Mx; moreover, if X is a finite I-connected CW-complex, he gives 
a graded Lie algebra isomorphism: 

H*(Derl(Mx)) ~ 1l"*(aut l(X)) ® <Q 

where the product structure on 1l"*(autl(X)) is given by the Samelson product 
and H*(Derl(Mx)) is an algebraic object depending only on Mx. Analogous 
properties hold for the rational homotopy type of aut~(X) (see [4]). 

2. The derivations Lie algebra 

We begin with some standard conventions. If Vi is a vector space over the ratio
nals <Q for each positive integer i, then we call the collection V = {Vi} a graded 
vector space. If VI, ... , Vk,' . . is a basis of V we write V = (VI, ... , Vk, . . . ) . By 
x E V we mean x E Vp for some p, and write Ixl = p for the degree of x. 

The author was partially supported by CNR (Consiglio Nazionale delle Ricerche) . 
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Let M = (A(V), d) be a free, differential graded commutative algebra over <Q. 
A derivation of degree i on M, 0: M -; M, is a map of degree i, satisfying the 
Leibnitz rule: 

O(x· y) = O(x) . y + (-I)ilxl x . O(y). 
Let X be a finite I-connected CW-complex and let M = (A(V), d) be its Sullivan 
minimal model. There is a natural isomorphism of DC Lie algebras [4]: 

(1) 

where the graded algebra structure on the right hand term is given by the Samelson 
product and Deru(M) is the DC Lie algebra defined as follows: 

• Deru(M) = Li>O(DerU(M)i), where DerU(M)i is the rational vector space 
of all derivations of degree -i if i > ° and DerU(M)o = DERU(M) = 
{O I 0 derivation of degree ° commuting with d and such that O( v) E 
Mi>o /(Mi>o . Mi>O) for all v E V}; 

• product ( , ): Deru(Mh x Deru(M)j ---+ Deru(Mh+j given by: 

1. (ep, 'If;) = [ep, 'If;] as in Derl (M), when lepl = k > 0, I 'If; I = j > 0; 

2. (ep, 'If;) = <P(iP(ep, 'If;), <P( -ep, -'If;)) , when lepl = 0, I 'If; I = 0, where 

1 1 
<P( ep, 'If;) = ep + 'If; + 2 [ep, 'If;] + 12 [ep, [ep, 'If;]] + ... 

is the Baker- Campbell- Hausdorff formula; 

(-I)n . 
3. (ep, 'If;) = Ln2:1 ~ [ep, [ep, ... ( n times) ... , [ep, 'If;] . . . ], 

when lepl = ° and I 'If; I > 0; 

• differential of degree -1, 

8 = [-,d]: DerU(M)i ---+ Deru(M)i-l. 

This isomorphism is the extension of the natural isomorphism of differential 
graded Lie algebras [5]: 

H*(Derl (M), 8) ~ 7r*(autl (X)) @ <Q, (2) 

where the graded Lie algebra structure on the right hand term is given by the 
Samelson product and Derl(M) = Li>O(Deru(M)i), by the natural isomorphism 
of groups given by the exponential map [5]: 

e: DERu(M) -; EU(M). (3) 

If X is a I-connected CW-complex, the H-nilpotency of autU(X<Q) (respec
tively of autl (X<Q)) equals the maximum length of the Samelson products in 
7r*(autU(X<Q)) (respectively in 7r* (autl (X<Q))) and then [4]: 

H-nil(autl(X<Q)) = nilH*(Derl(M)), (4) 

H-nil(autu(X<Q)) = nil H*(Deru(M)), (5) 

nil(EU(X<Q)) = nil Ho(Deru(M)). (6) 
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3. Rational H -spaces 

If X is a rational H -space, its Sullivan model M = A( VI, ... ,Vk) has differential 
zero, so that H*(DerU(M)) = DerU(M) and H*(Derl(M)) = Derl(M). More
over, in this case DerU (M) (respectively Derl (M)) is generated by the elemen
tary derivations e{ (resp. by the elementary derivations with positive degree) , 
j = 1, . . . , k, where X is a monomial in A(V), Ixi ::; IVj I, X decomposable if 
Ixl = IVjl, defined by: 

{e~(Vj) = X 

e~ = ° on the other generators. 

Thus, 

Proposition 3.1. If X has the rational homotopy type of an H -space, then 

dim 7ri(autdX(Q)) = L dim(7rj(X) ® Hk(Xj <Q)) 
j-k=i 

and p(£U(X(Q)) = L (dim(7rk(X) ® Hk(Xj <Q)) - dim(7rk(X) ® <Q)) . (*) 
k 

(Note that the summands in (*) are nonnegativej in fact, 

dimHk(Xj <Q) ~ dim(7rk(X) ® <Q), 

as it can be easily deduced from the Sullivan model of X .) 
p(£U(X(Q)) denotes the number of generators of DerU(M)oj if X has the ho

motopy type of a finite CW-complex (and M has generators in odd degrees) it is 
equal to the Hirsch rank of £U(X), and consequently (cf. Theorem 1 in [1]): 

n 

p(£u(X)) = L rank(7r2l-1 (X) ® <Q) . Uhl-l - rank(7r2l-1 (X) ® <Q)). 
l=1 

We calculate explicitly the H-nilpotency of some classes of H-spaces using 
the equalities (4) and (5). 

Remark 3.2. Suppose that S is a set of elementary derivations such that the 
composition of elements in S is an element of S . If S is a generating set for 
H*(DerU(M)), then the elements in H*(DerU(M)) are in S or they are sums of 
elements of Sj thus, the linearity of the bracket implies that nil(H*(DerU(M))) ::; 
n - 1, if the brackets of n elements of S are trivial. 

The following proposition is an extension of a result of Arkowitz and Lup
ton [2], which gives a rule to calculate nil(£U(M)), when M satisfies some special 
conditions: 

Proposition 3.3. Let M = (A(Vl, ... ,Vk),O) with IVil = ni. Suppose the degrees 
of the generators form an arithmetic progression, nj = a + (j - l)u, for an odd 
integer a ~ 1 and u ~ 2 even, with a and u relatively prime. Then 

nil(Deru(M)) = nil(Derl(M)) = k - 1. 
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Proof. We prove first that nil(Derl(M)) :::; nil(Der~(M)) :::; k -1. By Remark 3.2 
it suffices to show that if (): f:. 0, X = Vj! ..... Vjl' is a bracket of 8 elementary 
derivations, then 8 :::; k - 1. Let ho be the number of these derivations with degree 
zero, hI be the number of derivations with positive degree not multiple of u, and 
8 - ho - hI be the number of derivations with positive degree multiple of u. Note 
that given an integer h, if Ivml = IVj! ..... Vjll + h, then a(l- 1) == -h mod u. 

It follows that l ~ uho + hI + 1 and 

Ixl:::; IVNI-u(8-ho -hd -hI :::;a+(k-1)u-U8+uho +uhl -hl , 

and consequently 

I-I. l(i-I) 
a + (k - I)u - us + uho + uhl - hi 2: Ixl 2: IVI ..... vd 2: z)a + zu) = ai + --2-u , 

i=O 

Clearly 8 is maximal when l = 1, i.e., when hi = 0 for i = 0,1, and in this 
case 8 :::; k -1. On the other hand, nil(Derl (M)) ~ nil(Der~(M)) ~ k -1, because 

(()~k - ! ... ()~J = [()~k-! ... ()~J = ()~! 

is a nontrivial bracket/product of k - 1 derivations. o 
For the Sullivan model of a generic finite dimensional H -space, bounds can 

be determined by: 

Proposition 3.4. Let M = (A(VI, ... ,Vk)'O) be a minimal algebra satisfying 
IVil = 2ni + 1, nl :::; .. . :::; nk. Then 

r - 1 :::; nil(Der~(M)) = nil(Derl(M)) :::; nk - nl, 

where r is the number of different ni 'so 

Proof. We prove first that nil(Derl(M)) :::; nil(Der~(M)) :::; nk - nl. It suffices to 
show that if (): f:. 0, X = Vj! . .... Vjl' is the bracket of 8 elementary derivations, 

then 8:::; nk-nl. Let 8 = 2::;=0 hi, where h2 is the number of these derivations with 
even, positive degree, hI is the number of derivations with odd degree, and ho is 
the number of derivations with degree o. Then, noting that Ivml-lvJt ... . ·Vj, 1+1 == 
t mod 2, we have 

2 2 

l ~ L(2 - i)hi + 1 ~ 28 - L ihi + 1 and 
i=O i =O 

2 2 

Ixl :::; IVNI- L ihi :::; 2nk + 1 - L ihi :::; 2nk + l - 28; therefore 
i=O i=O 
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Clearly, s is maximal when l = 1, i.e., when hi = 0 for i = 0,1. In this 
case, s ~ nk - nl. Moreover, there are r indecomposables, Vit, .. . , Vir such that 
nik < nik+1' so we have the nontrivial bracket/product of r - 1 derivations: 

(Oir Oi2 ) - [Oir Oi2 1 - Oir 
Vir_I' •• ViI - Vir_I'" ViI - ViI' 

Thus, nil(DerU(M)) ~ nil(Derl(M)) ~ r - 1. o 

Remark 3.S. Both inequalities can be strict. For u ~ 4, Proposition 3.3 gives a 
minimal algebra such that r - 1 = nil(DerU(M)) < nk - nl. 

Consider now the minimal model 

with IZil = 27, Iyd = 9, IXil = 3. Since 

[013 012 Oll OlD 1 - ±013 
YIOYUY12' X7X8X9' X4XSX6' XIX2X3 - XIX2X3X4XSX6X7XSX9 

is nontrivial, nil(DerU(M)) ~ 4 > 2 = r - 1. 

Corollary 3.6. If X<Q is a finite dimensional H-space, then 

m-n 
r -1 ~ H-nil(autU(X<Q)) = H-nil(aut l(X<Q)) ~ -2-

where 7l"i(X) ® <Q = 0, except for n ~ i ~ m, and r is the number of nontrivial 
groups 7l"i(X) ® <Q. 

Proposition 3.7. Let u ~ 2 be a fixed even integer and M = (A(Vl, ... , Vk), 0), 
with IVil = iu, i = 1, ... , k. Then nil(DerU(M)) = k - 1. 

Proof. We prove first that nil(Derl (M)) ~ nil(DerU (M)) ~ k - 1. It is sufficient 
to show that if O~ =I- 0, X = Vj1 ..... Vjl' is the bracket of s elementary derivations, 
then s ~ nk - nl. Let h be the number of these derivations with degree o. Then 
1 ~ h + 1 and Ixi ~ IVkl- u(s - h) ~ uk - us + uh. It follows that 

uk - us + uh ~ Ixl ~ IVl ..... vII ~ ul ~ uh + u => s ~ k - 1. 

On the other hand, nil(DerU(M)) ~ nil(Derl(M)) ~ k - 1, as we have 
the following nontrivial bracket/product of k - 1 derivations: (0~k _ 1'···' O~J 

[0~k_1' ... ,0~11 = 0~1· 0 

Examples 

1. The Sullivan model of the group SU(n) is M = A(Vl, ... , Vn -l) with 
IVil = 2i + 1 and d = 0 (n ~ 2). By Proposition 3.3, 

H-nil(autU(SU(n)<Q)) = H-nil(autl(SU(n)<Q)) = n - 2. 

2. The Sullivan model of the symplectic group Sp(n) is M = A(Vl, ... , vn ) 

with IVil = 4i - 1 and d = 0 (n ~ 1). Again, by Proposition 3.3, 

H-nil(autU(Sp(n)<Q)) = H-nil(autl(Sp(n)CQ)) = n-1. 
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3. The Sullivan model of the classifying spaces BU (k) is M = A( VI, ... , Vk) 

with IVil = 2i and d = 0 (k 2: 1). By Proposition 3.7, 

H-nil(aut~(BU(k)<Q)) = H-nil(autl(BU(k)<Q)) = k - 1. 

4. The Sullivan model ofthe classifying spaces BSp(k) is M = A(VI,"" Vk) 

with IVil = 4i and d = 0 (k 2: 1). Again, by Proposition 3.7, 

H-nil(aut~(BSp(k)<Q)) = H-nil(autl(BSp(k)<Q)) = k - 1. 

The following result is analogous to Proposition 4.4 in [2]. 

Proposition 3.8. Let M = A( VI, ... , Vk, ... ) with IVII ::::; ... ::::; IVk I ::::; ... and let 
(iI, ... , is) be a sequence of positive integers with i = max ( it, .. . , is), Assume that 
for every j = 1, ... , s there is an elementary derivation ()~j E Der~(M) such that 
IVij I is odd and Xi is a monomial in VI, ... , Vk, . ... Define a monomial 0: E M as 
follows: list all the Vr which occur as factors in Xl, . . . , Xs (allowing repetitions). 
If some of ViI' .. . , Vi, ... Vis do not appear in the list, set 0: = O. Otherwise, delete 
one occurrence of each of ViI' ... , Vi, ... Vis from the list and set 0: equal to the 
product of the remaining members. Then the s-fold bracket [()~s"'" ()~2' ()~J is 
either 0 or ()~a' 

In [3] rational models (not always minimal) for a large class of homogeneous 
spaces are given; models for the same spaces can be found in other contexts and 
with different notations. 

Proposition 3.9. 

H-nil (aut~ ((U(n)jU(k))<Q)) = H-nil (autl ((U(n)jU(k))<Q)) = n - k - 1, 

H-nil (aut~ ((U(n)jSO(n))<Q)) = H-nil (autl ((U(n)jSO(n))<Q)) = m - 1, 

H-nil (aut~ ((U(n)jQ(m))<Q)) = H-nil (autl ((U(n)jQ(m))<Q)) = m - 2, 

H-nil (aut~ ((SO(2m + 1)jSO(2k + 1))<Q)) = 
H-nil(autl ((SO(2m + 1)jSO(2k + 1))<Q)) = m - k -1, 

H-nil (aut~ ((Q(n)jQ(k))<Q)) = H-nil (autl ((Q(n)jQ(k))<Q)) = n - k - 1, 

H-nil (aut~ ((SO(2m)jSO(2k + 1))<Q)) = 
H-nil (autl ((SO(2m)jSO(2k + 1))<Q)) = 

{ 
m - k - 1 if m < 2k + 2 or m odd 

m - k - 2 if m 2: 2k + 2 and m even. 

Proof. The proof is an immediate consequence of Proposition 3.3 in all cases 
except SO(2m)jSO(2k + 1), which can anyway be obtained by straightforward 
calculations. 0 
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Proposition 3.10. nil(£(X(Q)) = r, where r is the biggest integer such that 

where 

and 

II ru(ru+1) 
~ +ra+ 2 

a = 2k + 1, u = 2, l = n - k if X = U(n)jU(k), 

a = 1, u = 2, l = m if X = U(n)jSO(n), 

a = 1, u = 2, l = m - 1 if X = U (n) j Q (m), 

a = 4k + 3, u = 4, l = m - k if X = SO(2m + 1)jSO(2k + 1), 

a = 4k + 3, u = 4, l = n - k if X = Q(n)jQ(k), 

rl ::; nil(£~(SO(2m + 1)jSO(2k + 1))) ::; r2, 

where rl is the maximum positive integer such that 

3rl + 2rl (4rl + 1) ::; m - k - 2 

and r2 is the maximum positive integer such that 

32(r2)2 + 10 - 44r2 + 16kr2 ::; 4m - 5. 

References 

355 

[1] M. Arkowitz, C. R. Curjel, Groups of Homotopy classes, Lecture Notes in Math. 4, 
Springer, Heidelberg, Berlin, New York, 1967. 

[2] M. Arkowitz, G. Lupton, On the Nilpotency of Subgroups of Self-Homotopy Equiva
lences, Progress in Math. 136, Birkhiiuser, Basel, 1996, 1- 22. 

[3] W. H. Greub, S. Halperin, J . R. Vanstone, Connections, Curvature and Cohomology, 
vol. III, Academic Press, New York, 1975. 

[4] P. Salvatore, Rational Homotopy Nilpotency of Self-Equivalences, Topology Appl. 77 
(1997), 37- 50. 

[5] D. Sullivan, Infinitesimal Computation in Topology, Inst. Hautes Etudes Sci. Publ. 
Math. 47 (1977), 269- 331. 

[6] T. Yamanoshita, On the spaces of self-homotopy equivalences of certain CW
complexes, J. Math. Soc. Japan 37 (1985), 455- 470. 

Dipartimento di Matematica, 
Universita di Milano, 
via Saldini 50, 
20133 Milano, Italy 
E-mail address:piccarreta~socrates.mat.unimi.it 



Progress in Mathematics, Vol. 196 
© 2001 Birkhauser Verlag Basel/Switzerland 

Cellular approximations using Moore spaces 

Jose L. Rodriguez and Jerome Scherer 

Abstract. For a two-dimensional Moore space M with fundamental group G, 
we identify the effect of the cellularization CW M and the fibre PM of the nulli
fication on an Eilenberg- Mac Lane space K(N, 1), where N is any group: both 
induce on the fundamental group a group theoretical analogue, which can also 
be described in terms of certain universal extensions. We characterize com
pletely M-cellular and M-acyclic spaces, in the case when M = M(Z/pk , 1) . 

1. Introduction 

Let M be a pointed connected CW -complex. The nullification functor PM and the 
cellularization functor CW M have been carefully studied in the last few years (see 
e.g. [8], [17], [18], [14]). These are generalizations of Postnikov sections and con
nective covers, where the role of spheres is replaced by a connected CW-complex 
M and its suspensions. This list of functors also includes plus-constructions and 
acyclic functors associated with a homology theory, for which M is a universal 
acyclic space (cf. [2], [13], [22], [24]). Recall that a connected space X is called 
M -cellular if CW M X ~ X, or, equivalently, if it belongs to the smallest class 
C(M) of spaces which contains M and is closed under homotopy equivalences and 
pointed homotopy colimits. Analogously, X is called M -acyclic if PM X ~ * or, 
equivalently, PMX ~ X. It was shown in [14] that the class of M-acyclic spaces is 
the smallest class C(M) of spaces which contains M and is closed under homotopy 
equivalences, pointed homotopy colimits, and extensions by fibrations . 

Very interesting examples are given by the family of Moore spaces M(Z/p, n), 
the homotopy cofibre of the degree p self-map of sn. For n 2: 2, these spaces 
are the "building blocks" for simply-connected p-torsion spaces. More precisely, 
it is shown in [3] (see also [11]) that the M(Z/p, n)-cellular spaces are exactly 
the (n - I)-connected spaces X such that p. 1l"nX = 0 and 1l"kX is p-torsion for 
k > n . However the methods used in those papers can not handle the non-simply 
connected case. In this paper we introduce the group theoretical tools that are 
necessary to deal with this case. They apply to the more general situation when 
M is a two-dimensional CW-complex with fundamental group G. As we will see in 
Proposition 3.10 and in the introduction of Section 3, the interesting phenomena 

The first author was partially supported by DGICYT grants PB94--D725 and PB97-0202. The 
second by the grant 81LA-51213 of the Swiss National Foundation for Science and the CRM. 
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occur when H2 (M; Z) = O. In that case we say that M is a Moore space of type 
M(G, 1), and we shortly write M = M(G, 1). 

The G-socle of a group N, which we denote by SaN, is the subgroup of N 
generated by the images of all homomorphisms from G into N. We introduce the 
class C( G) for any group G. It is the smallest class of groups containing G which is 
closed under isomorphisms and colimits. We construct explicitly the right adjoint 
Ca to the inclusion of C(G) in the category of groups and show the following (see 
also Theorem 3.3). 

Theorem 3.9 Let M be a two dimensional CW -complex and G its fundamental 
group. Let X = K(N, 1) where N is any group. Then we have a natural isomor
phism 

'lrl(CWMX) ~ CaN. 

Moreover, the action of CaN on the higher homotopy groups ofCWMX is trivial. 

We further prove the existence of a central extension 

o --> A --> CaN --> SaN --> 1 

which is universal in the sense explained in Theorem 3.7. 
The proof of such results uses a description of ChachOlski, exhibiting CW M X 

as the fibre of a map X --> LX, where LX is obtained from X by first killing all 
maps from M, and then applying EM-nullification. 

This leads us, in the case when G = Zip, to the following result. We must 
note that our proof is also valid for M(Z/p, n) with n 2:: 2, cases which were 
previously dealt with in [3] or [11]. 

Theorem 7.2 Let M = M(Z/p, 1) be the cofibre of the degree p self-map of SI and 
X be a connected space. Then X is M -cellular if and only if'lrlX is generated by 
elements of order p and Hn(X; Z) is p-torsion for n 2:: 2. 

In particular, a nilpotent space X is M(Z/p, I)-cellular if and only if 'lrlX is 
generated by elements of order p and 'lrn(X) is p-torsion for n 2:: 2. 

Of course, the homotopy groups of non-nilpotent M-cellular spaces need 
not be p-torsion. For instance, the universal cover of M(Z/2, 1) is S2. Likewise, 
a space all whose homotopy groups are generated by p-torsion elements need 
not be M-cellular, as shown by Example 7.4, where we compute the M(Z/2,I)
cellularization of K(E3, 1) . Theorem 7.5 gives then a general formula for computing 
the M(Z/p, I)-cellularization of classifying spaces of Zip-cellular groups in terms 
of their q-completions. 

Nullifications with respect to Moore spaces are better understood. Our aim 
here is to investigate the homotopy fibre of such nullifications. 

Recall that the G-radical of a group N, which we denote by TaN as in [10] 
or [8], is the smallest subgroup of N such that Hom(G,N/TaN) = o. It is known 
[10] that when M is a two dimensional CW-complex with fundamental group G, 
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then 'TrIPMX 9:! 'TrIXITe('TrIX). If in addition M is an M(C, 1), the space PMX 
can be viewed, for a suitable ring R, as the fibrewise R-completion, in the sense of 
Bousfield and Kan [9], of a covering fibration associated to the C-radical subgroup; 
see [9], [10], and [12]. 

We introduce the class C(C), for any group C.1t is the smallest class of groups 
containing C which is closed under isomorphisms, colimits, and extensions. We 
show in Proposition 4.11 that the fundamental group of any M -acyclic space be
longs to this class. We define then DeN as the fundamental group of PMK(N, 1), 
note that the action of DeN on the higher homotopy groups of PMK(N, 1) is 
trivial, and prove: 

Theorem 4.13 Let M = M(C, 1) be a two-dimensional Moore space. Then Dc is 
right adjoint to the inclusion of C( C) in the category of groups. 

As in the case of cellularization, there exists a central extension 

0-> B -> DeN -> TeN -> 1 (1.1) 

which is universal in the sense explained in Theorem 4.3. 
A very enlightening example is given by the acyclic space described by Berrick 

and Casacuberta in [2, Example 5.3], which turns out to be an M(C, 1) for some 
acyclic group C. In this case M(C, I)-nullification is equivalent to Quillen'S plus
construction and the C-radical of any group N is its largest perfect subgroup. Thus, 
in this case, the central extension (1.1) is the usual universal central extension of 
TeN. 

Similar results have been obtained by Mislin and Peschke in [22] in the case 
when PM is the plus construction associated to a generalized homology theory. In 
all these cases CW M and PM coincide. 

Finally, we obtain the following result for C = Zip (compare with [3] or [11]) . 

Theorem 7.1 Let M = M(Zlp, 1). Then X is M -acyclic if and only if'TrIX coin
cides with its Zip-radical and Hn(X; Z) is p-torsion for n 2: 2. 

In particular, a nilpotent space X is M(Zlp, I)-acyclic if and only if'TrIX 
coincides with its ZIp-radical and 'Trn(X) is p-torsion for n 2: 2. 

Acknowledgements: This paper was mainly elaborated during the 1998 Topolo
gy Semester at the CRM. We are especially indebted to Jon Berrick and Woj
ciech Chach6lski for several enlightening discussions. We warmly appreciate Carles 
Casacuberta's advice and encouragement. The second author would like to thank 
the CRM for making the life of a post-doctoral fellow so pleasant. 

2. Preliminary results 

We give here a short review of the terminology involved in the theory of homo
topical localization. We also remind the reader some of the results needed in this 
paper. More details can be found in [17], [18], [14], [7]. 
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By an idempotent augmented functor in the category of spaces, we mean a 
functor E from the category of pointed spaces to itself. It preserves weak homotopy 
equivalences and is equipped with a natural transformation c : E ---- Id from E to 
the identity functor, such that CEX : EEX :::: EX for all spaces X. 

The most important examples for us are CW M and PM. Let M be a con
nected CW-complex. A map Y ---- X is an M -cellular equivalence if it induces a 
weak equivalence on pointed mapping spaces 

map*(M, Y) -=:::... map*(M, X). 

There exists then, for each connected space X, an M -cellular approximation map 
CWMX ---- X, which is universal (initial) among all M-cellular equivalences to X. 
The spaces for which CW M X :::: X are called M -cellular. The class of M -cellular 
spaces has been identified as the smallest class C (M) of spaces containing M 
and closed under weak equivalences and pointed homotopy colimits; see [18, 2.D] 
and [14, Theorem 8.2]. A connected space Z is said to be M-null if map*(M, Z) 
is weakly contractible, that is, [L: k M, X] = * for all k 2: O. There exists a map 
X ---- PM X, called M -nullification, which is universal (terminal) among all maps 
from X to an M-null space. Finally denote by PMX ---- X the homotopy fibre of 
X ---- PM X. A connected space X is called M -acyclic if PM X :::: *, i.e., PM X :::: X. 
The class of M-acyclic spaces has been identified in [14, Theorem 17.3] as the class 
C(M). In addition to being closed under weak equivalences and pointed homotopy 
colimits, it is also closed under extensions by fibrations. 

So, every M-cellular space is M-acyclic and furthermore, it is known that 
each L:M-acyclic space is M-cellular ([18, 3.B.3]). Hence by universality we have 
natural maps 

(2.2) 

Thus CWMX can be thought of as the fibre of a mixing process between M- and 
L:M -nullification. More precisely: 

Theorem 2.1. ([14, Theorem 20.5]) Let M be any connected CW -complex. There 
is a fibration 

CWMX --> X ~ LX 

where'TJ is the composition of the inclusion X ---- X' of X into the homotopy cofibre 
of the evaluation map V[M,xjM ---- X , followed by X' ---- Pr:.M(X'). 

Note that the inclusion X ---- X' is in fact functorial in the homotopy category, 
and it is universal (initial) among all maps X ---- Z such that M ---- X ---- Z is 
homotopically trivial (compare with [2, Corollary 2.2]). Hence, X ---- LX is also 
functorial in the homotopy category. 

The fundamental groups of PM X and LX have a group theoretical meaning 
in the case when M is a two-dimensional CW-complex, as we next explain. The 
G-socle of a group N, which we denote by SeN, is the subgroup of N generated 
by the images of all homomorphisms from G into N. The G-radical of N, which 
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we denote by TaN as in [10] or [8], is the smallest subgroup of N such that 
Hom(G, NjTaN) = o. The G-radical of N can be constructed as a (possibly 
transfinite) direct limit of subgroups Ti where TI is the G-socle of N and the 
quotient Ti/Ti - l = Sa(NjTi - I ). In other words, the groups N such that TaN = N 
are precisely the groups which have a normal series whose factors coincide with 
their G-socles. The first link between the topological functors PM and Land 
their discrete analogues is given by the following result . The first isomorphism is 
obtained in [10, Theorem 3.5] (see also [6, Theorem 5.2]) . 

Lemma 2.2. If M is a two-dimensional CW -complex with fundamental group G 
and X is any space, we have isomorphisms 

7r1(P/I1X) ~ 7rI XjTa (7r I X) and 7rIX' ~ 7rILX ~ 7rIXjSa(7rIX) , 

where X' and LX are as in Theorem 2.1. o 
Such a two-dimensional CW-complex M is called a Moore space if the in

tegral homology group H2 (M; Z) = O. It has type M(G, 1) if 7rIM ~ G. Using 
Theorem 2.1 it is easy to see that two Moore spaces of type M(G, 1) determine 
the same cellularization and nullification functors . 

Bousfield computed in [8, Section 7] the effect of the nullification functor with 
respect to a two-dimensional Moore space M(G, 1) on nilpotent spaces; see also 
[10, Theorem 4.4] for G = Zjp, and [12, Theorem 2.4] when G = Z[ljp]. Let J 
be the set of primes p for which Gab is uniquely p-divisible. Define R = Z(J), the 
integers localized at J, if Gab is torsion, and R = (f)PEJZjp otherwise. Let RooX 
be the Bousfield-Kan R-completion of X; see [9]. Then PMX can be obtained as 
the fibrewise R-completion of the covering fibration associated to the G-radical of 
7rIX. That is, we have a diagram of fibrations 

---+ K(7rI XjTa (7r I X),I) 

II 
---+ K(7r I XjTa (7rI X),I), 

(2.3) 

where RooX is simply connected, as the fundamental group of X is R-perfect, 
i.e., H1(X;R) = HI(Ta(7rIX);R) = O. Hence RooX coincides with XiiR' the 
plus-construction with respect to ordinary homology with coefficients in R; see 
[9, VII.6] and [12]. The universal cover of PMX is thus equivalent to the three 
following spaces: 

- - - + 
PMX ~ RooX ~ X HR · 

Let ARX denote the homotopy fibre of the plus construction X --> Xii R (cf. 
[9, VII, 6.7]). Then, a connected space X is HR-acyclic, i.e., H*(X; R) = 0, if and 
only if ARX ~ X. The above remark immediately implies the following. 

Proposition 2.3. Let M = M(G, 1) be a two-dimensional Moore space, and X be 
any connected space. If X denotes the covering of X corresponding to the subgroup 
Ta (7r I X), then 
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where R is the ring associated to G as above. o 
Corollary 2.4. Let M = M(G, 1) be a two-dimensional Moore space, and X be any 
connected space. Then, X is M -acyclic if and only if 

Te(7fIX) = 7fI X and Hk(X; R) = 0 for k ~ 2. 0 

3. The fundamental group of M ( G, 1 )-cellular spaces 

In this section we define algebraically a G-cellularization functor Ge in the cate
gory of groups. We show that GeN coincides with the fundamental group of the 
M(G,l)-cellularization of K(N,l). This yields a characterization of GeN as a 
certain universal central extension of the G-socle of N . We also prove that the 
action of GeN is trivial on the higher homotopy groups of GWM(e,I)K(N, 1). 

As suggested by Dror-Farjoun, we introduce the closed class of groups C (G). 
It is the smallest class of groups containing G, and closed under isomorphisms and 
taking colimits. In other words, if F : I -> Groups is a diagram with F(i) E C(G) 
for any i E I, then colim I F should again belong to C (G). 

The following proposition gives the explicit construction of a G-cellularization 
functor. The existence of such a functor is also ensured by [5, Corollary 7.5]. 

Proposition 3.1. Let G be a group. The inclusion C (G) c Groups has a right 
adjoint Ge : Groups -> C(G). 

Proof. For any group N, the map GeN -> N is constructed by induction as follows. 
First define Go = *h:e--->NG, the free product of as many copies of G as there are 
homomorphisms from G to N, and let ho : Go -> N be the evaluation morphism 
(so that ho(Go) = SeN). Now take the free product *(h',h,,)G, where (h', hlf) is 
any pair of morphisms G =l Go co equalized by ho. Define GI as the coequalizer 
of *(h' ,h,,)G =l Go, and repeat this process (maybe transfinitely). Notice that 
this inductive construction of GeN shows that we have a natural epimorphism 
GeN----»SeN for any group N. The group GeN is in C(G) and the morphism 
c : GeN -> N is universal (terminal) with this property as it induces a bijection 
of sets Hom(G,c): Hom(G, GeN) ~ Hom(G,N). 0 

By analogy to the case of spaces, a group N in C (G) is called G- cellular. 

Lemma 3.2. Let M be a two-dimensional GW -complex with fundamental group G. 
A group homomorphism N -> N' induces an isomorphism GeN ~ GeN' if and 
only if GWMK(N, 1) ~ GWMK(N', 1). 

Proof. The pointed mapping space map*(M, K(N, 1)) is weakly equivalent to the 
discrete set Hom ( G, N). 0 

Since 7f1 commutes with homotopy colimits, the fundamental group of any 
M-cellular space is 7fI M-cellular, for any M. Furthermore, the following holds 
(this could also have been taken as definition of Ge ): 
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Theorem 3.3. Let M be a two-dimensional GW -complex and G its fundamental 
group. Let X = K(N,l) where N is any group. Then we have a natural isomor
phism 

7l'1(GWMX) ~ GeN. 

Proof. By the previous observation, 7l'1 (GWMX) is G-cellular. It thus only remains 
to prove that c: GWMX -+ X induces a bijection of sets 7l'1(C)* = Hom(G,7l'1(C)). 
Consider the following commutative diagram (of sets) 

[M,GWMX] 

Le. 
[M,X] 

~ Hom(G,7l'1(GWMX)) 

!,rde). 
e ' 

---+ Hom(G, N). 

Since M is two-dimensional , e is surjective and X being a K(N, 1), e' is bijective. 
On the other hand, c* is also bijective by the universal property of GW M. Thus, 
7l'1(C)* is bijective, as desired. D 

Lemma 3.4. Let M be a two-dimensional GW -complex with fundamental group G 
and let X denote the covering of X corresponding to the subgroup Se(7l'1X), Then 

(i) (X)' is the universal cover of X', 
(ii) LX is the universal cover of LX, 

where X' and LX are defined in Theorem 2.1. 

Proof. The covering fibration X -+ X .E. K(7l'1XjSe(7l'1X), 1) induces a bijection 
[M, X] ~ [M, X] because the map [M, p] is trivial. Apply now Mather-Puppe 
theorem (see [16, Proposition 6.1]) saying that "the fibre of the push-out is the 
push-out of the fibres" when the base space is fixed. This produces a new fibration 
(X)' -+ X' -+ K(7l'1XjSe(7l'1X) , I), which is the universal cover fibration by 
Lemma 2.2. So part (i) holds. For part (ii) we note that the previous fibration has 
a ~M-null base, and is therefore preserved under ~M-nullification. D 

The following corollary could also have been proved directly by checking that 
the covering X -+ X is indeed an M -equivalence. 

Corollary 3.5. Let X denote the covering of X corresponding to the subgroup 
Se (7l'1 X) and let M be a two-dimensional GW -complex with fundamental group G. 
We have a homotopy equivalence GW M X :::: GW M X. D 

Lemma 3.6. Let G be any group, and 0 -+ A -+ E -+ N -+ 1 be a central extension 
of groups. Then GeE ~ GeN if and only if Hom(Gab, A) = 0 and the natural 
map Hom(G,N) ---+ H 2(G;A) is trivial. 

Proof. Apply map*(K(G, 1), -) to the fibration K(E, 1) -+ K(N, 1) -+ K(A, 2). 
This gives a new fibration , whose homotopy sequence 

0-+ Hom(G, A) -+ Hom(G, E) -+ Hom(G,N) -+ H2(G;A) 

is exact as in [9 , IX, 4.1]). The lemma is proved. D 
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We now know enough to describe our first universal central extension. It is 
nothing but a universal central G-cellular equivalence. 

Theorem 3.7. Let G be any group. Then, for each group N, there is a central 
extension 

o --> A --> GeN --> BeN --> 1 

such that Hom(Gab, A) = 0 and the natural map Hom(G,N) ----+ H2(G;A) is 
trivial. Moreover, this extension is universal with respect to these two properties. 

Proof. Let M be a two-dimensional GW-complex with fundamental group G and 
let X = K(BeN, 1). The space LX is I-connected by Lemma 2.2 and define then 

A = 7r2LX ~ 7r2X' jTeab(7r2X') 

(this isomorphism follows from [8, Theorem 7.5]). The long exact sequence in 
homotopy of the fibration GW M X --> X --> LX produces now the desired central 
extension, where we identify Ge(BeN) with GeN. This can be deduced from 
Corollary 3.5. The G-cellularization of GeN --> BeN is also an isomorphism since 
Hom(G, GeN) ~ Hom(G, BeN). Hence Hom(Gab, A) = 0 and the natural map 
Hom(G, N) ----+ H2(G; A) is trivial by Lemma 3.6. The universal property is a 
direct consequence of the same lemma. 0 

Corollary 3.8. Let M be a two-dimensional GW -complex and G its fundamental 
group. Then BeN = N if and only if LK(N, 1) is 1-connected, and GeN ~ N if 
and only if LK(N, 1) is 2-connected. In particular 

(1) 7r2LK(N, 1) ~ H2LK(BeN, 1); 
(2) 7r3LK(N, 1) ~ H3LK(GeN, 1). 0 

In the next theorem we identify the universal cover of GWMK(N, 1) and 
remark that the action of the fundamental group is trivial. This could also be 
seen as a particular case of [20, Proposition A.l] or the even more general [22, 
Corollary 7.7]. 

Theorem 3.9. Let M be a two-dimensional GW -complex and G its fundamental 
group. Then GWMK(N, 1) ~ GWMK(GeN, 1) and the universal cover fibration 
is given by 

OLK(GeN, 1) ----+ GWMK(N, 1) ----+ K(GeN, 1). 

Moreover the action of GeN on 7rn GWMK(N, 1) for n ~ 2 is trivial. 

Proof. The first part follows from Lemma 3.2. The fibration of Theorem 2.1 

GWMK(N, 1) --> K(GeN, 1) --> LK(GeN, 1) 

induces a long exact sequence of GeN-modules in homotopy. But LK(GeN, 1) is 
a 2-connected space by Corollary 3.8, so that the action of GeN on the higher 
homotopy groups of GWMK(N, 1) is trivial. 0 
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We end this section by a result that motivates our study of Moore spaces. 
Indeed the effect of the cellularization functor for other two-dimensional complexes 
is completely understood. 

Proposition 3.10. Let M be a two-dimensional GW -complex with fundamental 
group G. Assume that H 2 (Mj Z) =I=- O. Then 

GWMK(N, 1) ~ K(GGN, 1). 

Proof. Choose a presentation ¢ : *Z ---> *Z of G, and realize it as a map f between 
wedges of circles having M as its homotopy cofibre. Note that a simply connected 
space Y is EM-null if and only if the G-radical of 7l"2Y is trivial, and 7l"kY is 
¢ab-Iocal for any k ~ 3, i.e., Hom(¢ab,7l"kY) is bijective (see [23, Theorem 4.3.6]) . 
When H2 (Mj Z) =I=- 0, the homomorphism ¢ab is not injective and any ¢ab-Iocal 
group is trivial. So LK(GGN, 1) is the trivial space, as it is already 2-connected 
(see [23, Corollary 4.3.9]). D 

Example 3.11. If G = G2 and N is nilpotent then GGN = SGN (by Corollary 7.3 
below). However, GGN ~ SGN in general, as shown by the following example, 
which was suggested by Alejandro Adem: 

N = (a, b, c, d I a2 = b2 = c2 = d2 = 1, abab = cdcd) . 

In other words N is the push-out of the diagram G2*G2 +-- Z ---> G2*G2 where both 
arrows send the generator of Z to the commutator. The Mayer-Vietoris sequence 
shows then that H2N ~ Z ~ A. Thus GGN is an extension of N by Z. This also 
provides an example of a quotient of a free product of copies of G which is not 
cellular. 

4. The fundamental group of M ( G) 1 )-acyclic spaces 

We imitate now the preceding section, replacing GW M by PM. First we change 
our closed class. In addition to being closed under isomorphisms and colimits, the 
class C (G) is assumed to be closed under taking arbitrary extensions. That is, if 
N <---> E---++Q is an extension with N, Q E C(G), then E belongs to G(G) as well. 
The right adjoint of the inclusion of G( G) in the category of groups is denoted by 
DG and we construct it by topological means, namely as the fundamental group 
of PM(G,l)K(N, 1). It could be interesting to have an algebraic description of 
DGN, similar to that of GGN, in terms of colimits and extensions by short exact 
sequences. 

A well known topological proof of the existence of the universal central exten
sion of a perfect group N uses Quillen's plus-construction. We will follow exactly 
the same line of proof here, the plus-construction being replaced by a nullifica
tion functor with respect to a Moore space. This is a true generalization of this 
old result in light of [2], where it is proven that the plus-construction is indeed 
the nullification with respect to a Moore space. Another approach is taken in 
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[22], where the plus-construction associated to any homology theory determines a 
universal central extension. 

When M is a two-dimensional CW -complex with fundamental group G which 
is not a Moore space, i.e., H2 (Mj Z) i:- 0, the effect of PM is drastic. As in the 
proof of Proposition 3.10, one shows that, for any connected space X, 

PMX ~ K(7r1X/Te(7r1X), 1). 

Hence PMX is the covering of X corresponding to the subgroup Te(7rlX). From 
now on, we will therefore only consider Moore spaces. 

Define, for a two-dimensional Moore space M = M(G, 1), 

DeN:= 7rl(PMK(N, 1)) . 

This does not depend on the choice of M by the observation made after Lemma 2.2. 

Lemma 4.1. Let M be a two-dimensional Moore space with fundamental group G 
and let B denote the group 7r2PMK(TeN, 1) . The space K(B,2) is then M-null, 
or equivalently, Hom(Gab , B) = 0 = Ext (Gab , B). 

Proof. The space PMK(TeN, 1) is I-connected by Lemma 2.2. The second Post
nikov section K(7r2X, 2) of a simply connected M-null space X is M-null as well, 
since 7r2PMX only depends on 7r2X by [8, Theorem 7.5]. D 

The groups B satisfying Hom(Gab, B) = 0 = Ext(Gab , B) can only be of the 
two following forms ([8, 7.1]): 

Fact 4.2. Let J denote the set of primes p such that Gab is uniquely p-divisible, 
and J' the complementary set of primes. Then, either Gab is J'-torsion and B 
is J-Iocal, or Gab is uniquely J-divisible and B has to be Ext-J-complete (in 
the sense of [9]). In other words, Hom(Gab, B) = 0 = Ext(Gab,B) if and only 
if Hom(H, B) = 0 = Ext(H, B) where H = (fJPEJ'Z/P in the case when Gab is 
torsion, or H = Z[J- 1] otherwise. 

We are now ready to prove the existence of our second universal central 
extension. 

Theorem 4.3. Let G be the fundamental group of a two-dimensional Moore space, 
which we denote by M . Then, for each group N, there is a central extension 

o --t B --t DeN --t TeN --t 1 

such that Hom(Gab, B) = 0 = Ext(Gab, B). Moreover, this extension is universal 
(initial) with respect to this property. 

Proof. The idea of the proof is analogous to that of Theorem 3.7. Let X denote 
K(TeN, 1). The fibration PMX --t X --t PMX produces the desired extension 
using Proposition 2.3 to identify DeTeN with DeN. By Lemma 4.1 the group 
B = 7r2PMK(TeN, 1) satisfies the property. 

We check now the universal property. Let B' be an abelian group having the 
above property, and 0 --t B' --t E --t TeN --t 1 a central extension. Realize it as 
a fibration K(E, 1) ---+ X ---+ K(B', 2). As the base space is M-null , there exists 
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a map PMX ----; K(B',2), unique up to homotopy, inducing a map of fibrations. 
The map on the fibres gives the desired morphism DeN ----; E. 0 

Example 4.4. Let G = C2 and N be the group described in Example 3.11. Then 
DeN is an extension of N by Z[1/2]. 

Remark 4.5. The group TeN is R-perfect and the central extension of Theorem 4.3 
is the universal central extension of TeN with coefficients in R , that is, the one 
induced from the fibration AnK(TeN, 1) ----; K(TeN, 1) ----; K(TeN, 1)tn- These 
two extensions coincide by Proposition 2.3. Even though this "R universal central 
extension" seems to be classical, we do not know any other reference than [22]. 

Example 4.6. Let G = Z[l/p]' so that R = Zip. In [22, Proposition 5.4] Mislin 
and Peschke computed that 

B ~ Ext(Z(pOO), H2(Te Nj Z)) E9 Hom(Z(pOO), HI (TeNj Z)) , 

where Z(pOO) is the ~torsion subgroup of Q/Z. Let G = Zip, so that R = Z[l/p]. 
Then B = H2(TeNj R). 

An interesting consequence of the previous result is that the functor Dc is 
idempotent. It is worth noting that it seems rather difficult to prove this fact 
directly from the definition. 

Theorem 4.1. Let M be a two-dimensional Moore space with fundamental group G. 
Then PMK(DeN, 1) ~ PMK(N, 1) and in particular the functor Dc is idempo
tent. The universal cover fibration is given by 

o'PMK(De N,l) ---t PMK(N, 1) ---t K(DeN, 1). 

Moreover the action of DeN on 7rn P MK(N, 1) for n ~ 2 is trivial. 

Proof. The functor PM preserves the fibration 

K(DeN, 1) ----; K(TeN, 1) ----; K(B, 2) 

of Theorem 4.3 since K(B, 2) is M-null by Lemma 4.1. Thus so does the functor 
PM . That is, we have PMK(DeN, 1) ~ PMK(TeN, 1). The later space is equi
valent to PMK(N, 1) by Proposition 2.3. The statements about the universal cover 
fibration follow as in Theorem 3.9. 0 

Remember that the ring R is determined by the group G as follows: R = Z(J) 
if Gab is torsion, and R = E9 pEJ Z/p otherwise. We say that a group N is super 
R-perfect if HI (Nj R) = 0 = H2(Nj R). 

Proposition 4.8. Let G be the fundamental group of a two-dimensional Moore 
space M . The following statements are equivalent: 

(1) DeN ~ N. 
(2) The space PMK(N, 1) is 2-connected. 
(3) H2(Nj B) = 0 for any B such that Hom(Gab , B) = 0 = Ext(Gab , B). 
(4) TeN = Nand N is super R-perfect. 
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Proof. Theorem 4.3 implies that (1), (2), and (3) are equivalent. We only prove that 
(4) implies (2). Since N coincides with its G-radical, PMK(N, 1) ~ K(N,I)iIR 
(see diagram (2.3)), and this space is I-connected. Thus K(N, l)iIR ~ K(N, I)HR 
the HR-homologicallocalization by [22, Proposition 1.6]. Moreover, by [4, The
orem 5.5], 7r2K(N, I)HR is an HR-local group. But HI (7r2K(N, I)HR; R) = 0 since 
N is super R-perfect, so it has to be trivial. 0 

As a consequence, we obtain the following formulae for the low-dimensional 
homotopy groups of PMK(N, 1); cf. [1, Corollary 8.6]. 

Corollary 4.9. Let M be a two-dimensional Moore space and G its fundamental 
group. Then 

(1) 7r2PMK(N, 1) ~ H2PMK(Te N, 1); 
(2) 7r3PMK(N, 1) ~ H3PMK(De N, 1). 0 

We end this section by proving that this topological construction gives no
thing else but the right adjoint of the inclusion of C (G) into the category of groups. 
We denote the class {N I DeN ~ N} by V(G). 

Proposition 4.10. Let G be the fundamental group of a two-dimensional Moore 
space M. The class V(G) is closed under arbitrary extensions and colimits. 

Proof. The class of G-radical groups is closed under colimits and extensions, and 
so is the class of super R-perfect groups: An easy Hochschild-Serre spectral se
quence argument shows that an extension of super R-perfect groups is again super 
R-perfect, and a Mayer- Vietoris argument shows it for a push-out. Since homology 
commutes with telescopes, the proposition is proved. 0 

Proposition 4.11. Let G be the fundamental group of a two-dimensional Moore 
space M. Then C(G) = V(G). 

Proof. By Proposition 4.10, C(G) c V(G). To show the converse we prove that 
the fundamental group of any space in C(M) is in C(G) . But C(M) is the smallest 
class containing M which is closed under homotopy colimits and extensions by 
fibrations. Clearly the fundamental group of the homotopy coli mit of a diagram 
all whose values have 7r1 in C(G) is again in C(G). So assume we have a fibration 
F ----> E ----> B of connected spaces, where the fundamental groups of F and Bare 
in C(G). We have to prove 7rIE E C(G). The cokernel of the boundary morphism 
7r2B ----> 7rIF is isomorphic to the coinvariants (7r IF) 7r2B = colim7r2 B(7rIF) and 
thus belongs to C(G). Therefore 7rIE is an extension of two groups of C(G). 0 

Corollary 4.12. Let G be the fundamental group of a two-dimensional Moore space. 
A group N belongs then to V( G) if and only if there exists an M -acyclic space X 
with 7rI X ~ N. 0 

Theorem 4.13. Let M be a two-dimensional Moore space and G its fundamental 
group. The augmented functor Dc is then right adjoint to the inclusion of C (G) in 
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the category of groups, i.e., we have an isomorphism Hom(L, DeN) ~ Hom(L, N) 
for any group L E C(G). 

Proof. The map K(DeN, 1) -+ K(N, 1) induces a weak equivalence 

PMK(DeN, 1) ~ PMK(N, 1) 

by Theorem 4.7. Let L E C(G). Then 

map*(PMK(L, 1), K(DeN, 1)) ~ mapJPMK(L, 1), K(N, 1)), 

i.e., Hom(L, DeN) ~ Hom(L, N). 

5. Acyclic spaces 

o 

We illustrate the preceding sections by the case when the Moore space M is acyclic 
(with respect to ordinary integral homology). We identify the functors PM and 
CW M. The motivating example is the universal acyclic group F of Berrick and 
Casacuberta [2, Example 5.3]. It satisfies SFN = TFN = PN, the maximal perfect 
subgroup of N. In this case CFN = DFN = PN the universal central extension 
of PN and the two central extensions coincide. If M = M(F,l), the functors 
PM and CWM coincide with Dror's acyclic functor A, the fibre of Quillen's plus
construction. 

We want to consider now an arbitrary acyclic group G, and an acyclic complex 
M with fundamental group G. This space M is of course not determined by the 
group. Since EM ~ *, the fibration of Theorem 2.1 has the form 

CWMX -+ X -+ X' 

where X' is the homotopy cofibre of the map V[M,x)M -+ X. Let xt denote 
the plus-construction of X with respect to a perfect, normal subgroup N of 7rlX, 

and let AN X be the homotopy fibre of the natural map X -+ xt. The universal 
property ofthe plus-construction ensures that X' ~ xt, where S = S(M, X) is the 
topological socle, i.e., the subgroup generated by the images of all homomorphisms 
7rl (M) -+ 7rl (X) which are induced by maps M -+ X (see [2, Section 2]). This 
subgroup of 7rlX is sometimes also called the subgroup swept by M. Arguing 
similarly with PMX we deduce the following; cf. [2, Corollary 2.2]. 

Theorem 5.1. Let M be an acyclic CW -complex. The map (3 : CW M X -+ PM X 
of (2.2) is then equivalent to AsX -+ ATX where S is the subgroup swept by M 
and T is such that 7rlPMX ~ 7rlX/T. 0 

When M is two-dimensional, S = SeN and T = TeN for any space X with 
fundamental group N. We also have S = SeN if M is any CW-complex and 
X = K(N, 1). Therefore, we deduce the following. 
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Corollary 5.2. Let X be a space with fundamental group Nand M an acyclic 
CW -complex with fundamental group G. Suppose that M is of dimension two or 
that X is a K(N, 1). Then 11'1 (CWMX) S:! CaN is the universal central extension 
of SaN. D 

6. Nilpotent spaces 

When X is a nilpotent space, the homotopy long exact sequence associated to the 
fibration PMX -> X -+ PMX yields the homotopy groups of the M-acyclic part 
of X, as follows: 

Proposition 6.1. Let M be a Moore space M(G, n) with cells in dimension nand 
n + 1, where n ~ 1, and let X be any connected space. Suppose that X is nilpotent 
if n = 1. Let J be the set of primes p such that Gab is uniquely p-divisible and 
J' be the complementary set of primes. Then PMX is (n - I)-connected and for 
k ~n, 

(I) if Gab is torsion, then 

_ { IIpE J'(Z(pOO)@ll'k+lX EB Tor(Z(pOO),ll'kX)) 
ll'k(PMX) S:! 

IIpEJ'Z(pOO) @ ll'n+lX EB TG(ll'nX) 

if k ~ n + 1, 

if k = n; 

(II) if Gab is not torsion, then 

_ { IIpEJ(Ext(Z[I/p] , ll'k+lX) EB Hom(Z[I/p]' ll'kX)) if k ~ n + 1, 
ll'k(PMX) S:! 

IIpEJExt(Z[I/p], ll'n+lX) EB DG(ll'nX) if k = n. 

Proof. We use from [8, Theorem 7.5] that in the first case we have 

{ 
ll'k(X) @ Z(J') if k ~ n + 1, 

ll'k(PMX) S:! 

ll'nX/TG(ll'nX) if k = n; 

In the second case we have: 

{ 
IIpEJ(Ext(Z(pOO),ll'kX) EB Hom(Z(pOO),ll'k_l X )) 

ll'k(PMX) S:! 

ll'nX/Ta(ll'nX) 

if k ~ n + 1, 

if k = n. 

D 

Example 6.2. Let G be a rational group of rank 1 of type (r2' r3, r5, ... ). That is, 
G is the additive subgroup of Q generated by the fractions 1/ pS, for s :::; r p (we 
write rp = 00 if G is uniquely p-divisible). Note that if rp < 00 then the G-radical 
contains the Zip-radical. Moreover, in the category of abelian groups, the G-socle 
coincides with the G-radical if and only if G = Z[J-l] (see [19]) . 

This allows us to construct two subgroups of Q having the same set of primes 
for which they are uniquely p-divisible, but with distinct radical, and thus distinct 
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acyclic approximation. Fix a prime p and define G by rp = 00 and rq = 1 when 
q # p , so that H = Z[ljp]. Let M = M(G, 1) and M' = M(H, 1). Then we have 
PMK(Z[ljp], 1) '::::' *, while PM'K(Z[ljp], 1) '::::' K(Z[ljp], 1). 

We next give a description of the class of nilpotent M -acyclic spaces; compare 
with Corollary 7.9 in [8], see also [21]. The case when n = 1 gives a less general 
result than Corollary 2.4, but gives a characterization of M(G, I)-acyclic spaces 
in terms of their homotopy groups rather than their homology groups. 

Proposition 6.3. Let M be a Moore space M(G, n) with cells in dimension nand 
n + 1, where n 2: 1, and let X be any connected space. Suppose that X is nilpotent 
if n = 1. Then, X is M -acyclic if and only if X is (n-l)-connected, 7fn X coincides 
with its G-radical, and 7fk(X) is J' -torsion for k 2: n + 1 in the case when G is 
torsion, or 7fk (X) is uniquely J -divisible for k 2: n + 1 otherwise. 0 

7. The torsion case 

In this section we only deal with the case of the Moore spaces M(Zjpk, 1), ho
motopy cofibre of the degree pk self-map of Sl, for k 2: 1. We give a character
ization of M(Zjpk, I)-cellular spaces, which holds even for non-nilpotent spaces. 
The M(Zjpk, I)-acyclic spaces have been already identified in Corollary 2.4. The 
following reformulation only makes use of the fact that an abelian group A is 
p-torsion if and only if A ® Z[ljp] = O. 

Theorem 7.1. Let M = M(Zjpk, 1), k 2: 1. Then a space X is M-acyclic if and 
only if 7f1X coincides with its Zjp-radical and Hn(X; Z) is p-torsion for n 2: 2. 0 

Theorem 7.2. Let M = M (Z j pk , 1), k 2: 1. Then a space X is M -cellular if and 
only if 7f1X is generated by elements of order pi for l ~ k and Hn(X; Z) is p-torsion 
for n 2: 2. 

Proof. We use again the fact that CW M X can be obtained as the fibre of the 
map X ...... PM(Z/pk ,2)X', where X' is the cofibre of vM ...... X. So we have to find 
a necessary and sufficient condition for PM(Z/p,2)X' to be trivial. First X' has 
to be I-connected, and this is equivalent to 7r1X coinciding with its Zjpk-socle. 
Knowing that X' and thus PM(Z/p ,2)X' are I-connected, the triviality of the latest 
is equivalent to its acyclicity. By Proposition 6.3 the homotopy, or equivalently the 
reduced integral homology of X', has to be p-torsion. The long exact sequence in 
homology of the cofibration sequence defining X' shows that this is equivalent to 
H*(X; Z) being p-torsion. D 

Corollary 7.3. Let M = M(Zjpk, 1) . A nilpotent space X is M -cellular if and only 
if 7r1X is generated by elements of order pi for l ~ k and 7fn(X) is p-torsion for 
n 2: 2. 0 
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The characterization given in [14, 12.5] or [15] of M(Zj2, n)-cellular spaces 
(1Tn is generated by involutions, and the higher homotopy groups are 2-torsion) is 
true for n = 1 if we work in the category of nilpotent spaces. An easy counter
example for non-nilpotent spaces is given by M(Zj2,I) itself. It is of course an 
M(Zj2, I)-cellular space, even though 1T2M(Zj2, 1) e:: Z. We finally consider the 
following example. 

Example 7.4. The symmetric groups En are C2-cellular for n ~ 2. Indeed, using 
the presentation 

En = (O"I, ... ,O"n-1 I O"T = 1, O"iO"H I O"i = O"i+IO"iO"i+I,O"iO"i+jO"i = O"Hj for j ~ 2), 

one can obtain En as a push-out of a family of homomorphisms between free 
products of C2. For n - 1 ~ j ~ 1, let Gj be the coproduct of n - 1 - j copies 
of C2 * C2 , and H j the coproduct of as many copies of C2 . Define Gj -> H j to 
be the coproduct of the fold maps C2 * C2 -> C2 . Let K be the coproduct of 
n - 1 copies of C2 , and call the generators Xl, . .. , Xn-l . Define a map GI -> K by 
sending the (2i - 1 )st generator to XiXi+lXi and the 2ith one to XHIXiXHI, where 
n - 1 ~ i ~ 1. For j ~ 2, the map Gj -> K is defined by sending the (2i - I)st 
generator to XiXHjXi and the 2ith one to Xi+j. The push-out of the diagram 

(*j~IIHj) ~ (*j~IIGj) -> K 

is then the symmetric group En. 
The spaces K(En,I) have therefore C2-cellular fundamental group, and 

2-torsion higher homotopy groups. They are however, for n ~ 3, not M(Zj2,I)
cellular by Theorem 7.2, since the integral homology of K(En, 1) contains 3-torsion. 
Actually, we can even compute the cellularization of K(E3 , 1). We know by The
orem 2.1 that it is the fibre of the map K(E3, 1) -> PM(Z/2,2)K(E3, I)'. The later 
space is simply connected, and is 3-complete. Its mod 3 cohomology is that of 
K(E3, 1), so it is by [9, VII, 4.4] the delooping of S3{3}, the fibre of the degree 3 
self-map of S3. In other words CWM (Z/2,I)K(E3, 1) is a space whose fundamental 
group is E3 and whose universal cover is S3{3}. Thus the universal cover fibration 
is 

S3{3} -> CWM(Z/2,1)K(E3, 1) -> K(E3, 1). 

The action of E3 on S3{3} is trivial by Theorem 3.9. 

In the above example we could identify a certain 3-complete space as the 
delooping of S3{3}. In general it is of course not to expect to find nice and well
known spaces as the fibre of the cellularization. However, the same argument as 
above proves the following result. 

Theorem 7.5. Let 1T be a finite Cp-cellular group. The universal cover fibration of 
Theorem 3. 9 is then 

nK(1T,1);, -> CWM (Z /p,I)K(1T, 1) -> K(1T, 1) 

where X;, denotes the completion away from p, i.e., X;, = II X;. 
qi-p 

o 
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Configuration spaces with Sllmmable labels 

Paolo Salvatore 

Abstract. An n-monoid is the appropriate extension of an Aoo-space for the 
theory of n-fold loop spaces. We define spaces of configurations on n-manifolds 
with summable labels in partial n-monoids. In particular we obtain an n-fold 
delooping machinery, that extends the construction of the classifying space 
by Stasheff. Our configuration spaces cover also symmetric products, spaces 
of rational curves and spaces of labelled subsets. A configuration space with 
connected space of labels has the homotopy type of the space of sections of a 
certain bundle. This extends and unifies results by Bodigheimer, Guest, Kallel 
and May. 

1. Introduction 

The interest in labelled configuration spaces in homotopy theory dates back to the 
seventies. May [15] and Segal [20] showed that the 'electric field map' C(JRn; X) -+ 

nnEn(x) is a weak homotopy equivalence if X is path connected, and in general is 
the group completion. Segal showed later [21] that the inclusion Rat*(S2) '---4 n2s2 
of the space of based rational selfmaps of the spheres into all based selfmaps is 
the group completion. He used the identification of Rat* (S2) with a space of 
configurations in C with partially summable labels in N V N, by counting zeros and 
roots multiplicities. Guest has recently extended his framework in [9] to the space of 
based rational curves on projective toric varieties. Labelled configuration spaces on 
manifolds have been studied by Bodigheimer in [3], where the labels are in a based 
space, and by Kallel in [10], where the summable labels belong to a discrete partial 
abelian monoid. In both cases the authors have theorems of equivalence between 
configuration and mapping spaces. We define configuration spaces on a manifold 
M with labels in A, where A need not to be abelian. It is sufficient that A has 
a partial sum that is homotopy commutative up to level dim(M). The definition 
is not trivial and involves tensor products over the Fulton-MacPherson operad. 
A substantial part of the paper introduces the necessary tools. We generalize the 
results listed above to the non-abelian setting, and construct a geometric n-fold 
delooping in one step. Here is a plan of the paper: 

Supported by the TMR Grant ERBSMBICT983241 of the European Commission. 
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In the second section we define the preliminary notion of a partial algebra 
over an operad and its completion. In the third section we introduce the Fulton
MacPherson operad Fn. We call an algebra over Fn an n-monoid. A I-monoid 
is exactly an Aoo-space [12]. In the fourth section we describe the homotopical 
algebra of topological operads and their algebras. The main results characterize 
the homotopy type of Fn. 

Corollary 4.8. The unbased Fulton-MacPherson operad is cofibrant. 

Proposition 4.9. The operad of little n-cubes is weakly equivalent to Fn. 

This implies that the structure of n-monoid is invariant under based homo
topy equivalences, and any connected n-monoid has the weak homotopy type of a 
n-fold loop space. In the fifth section we recall from [14] that a partial compactifica
tion C(M) of the ordered configuration space on an open parallelizable n-manifold 
M is a right module over Fn. We define the configuration space C(M; A) on M 
with summable labels in a partial n-monoid A, by tensoring C(M) and A over the 
operad Fn. The definition of C(M; A) is extended to a general open n-manifold 
M when A is framed, i.e. it has a suitable GL(n)-action. In the sixth section we 
define C(M, N; A) for a relative manifold (M, N) by forgetting the particles in 
N. Let us denote Bn (A) = C (In, 8In; A). For n = 1 we obtain the well known 
construction by Stasheff. 

Proposition 6.11. If A is an Aoo-space, then Bl (A) is homeomorphic to the clas
sifying space B(A) by Stasheff. 

The n-monoid completion of a partial n-monoid A is C(I~n; A), up to homo
topy. We obtain the n-fold delooping of this space in one step: 

Theorem 7.3. If A is framed, then Bn(A) is an n-fold delooping of C(JRn; A). 

Finally we characterize configuration spaces on manifolds under some condi
tions. 

Theorem 7.6. If M is a compact closed parallelizable n-manifold and A is a path 
connected partial framed n-monoid, then there is a weak equivalence 

C(M; A) ~ Map(M; Bn(A)). 

As corollary we obtain a model for the free loop space on a suspension built 
out of cyclohedra. This answers a question by Stasheff [22]. 

Corollary 7.7. If X is path connected and well pointed, then there is a weak homo
topy equivalence C(SI;X) ~ Map(SI, EX). 

This work is part of the D.Phil. thesis of the author [18], University of Oxford, 
1998, written under the direction of U. Tillmann. I am grateful to her for her 
continuous support, and to M. Markl and J. Stasheff for many valuable suggestions. 
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2. Partial modules over operads 

Let C be a symmetric closed monoidal category, with tensor product 0 and unit 
element e. We assume that C has small limits and colimits. 

Definition 2.1. A L.-object X in C is a collection of objects X(n), for n E N, such 
that X(n) is equipped with an action of the symmetric group L.n-

The category of L.-objects in C will be denoted by L.C. We observe as in [8] 
that L.C is a monoidal category as follows: given two objects A and B, their tensor 
product A 0 B is defined by 

00 

(A 0 B)(n) = II A(k) 0~k ( II 
k=O 7rEMap(n,k) i=1 

where M ap( n, k) is the set of maps from {I, ... , n} to {I, ... , k}. Here each element 
Bs, where S is a set of numbers, is identified to B#s by the order preserving 
bijection, and the action of L.n is given accordingly. There is a natural embedding 
functor j : C <.......t L.C considering an object X as a L.-object concentrated in degree 
0, so that 

j(X)(n) = {X ~f n = 0, 
o If n # 0, 

with the trivial actions of the symmetric groups. Here 0 denotes the initial 
object of C. The functor j is left adjoint to the forgetful functor B I--t B(O) from 
L.C to C. More generally we have an embedding functor jn : L.nC --; L.C, that is 
left adjoint to the forgetful functor B I--t B(n). 

The unit element L of L.C is defined by 

L(n)={e ifn=l, 
o if n # 1. 

Definition 2.2 ([8]). An operad in C is a monoid in the monoidal category L.C. We 
denote the category of operads in C by OP(C). 

This means that an operad (F, p" TJ) is a L.-object F together with composition 
morphism p, : F0F --; F and unit morphism TJ : L --; F, such that the associativity 
property p,(p,0F) = p,(F 0 p,) : F0F0F --; F and the unit property p,(F 0 p,) = 
p,(p,0 F) = idF : F --; F hold. Note that the functor F 0 _ forms a triple. 

Example 2.3. The category CHR of non negatively graded chain complexes over a 
commutative ring R is monoidal by the tensor product. The operads in CHR are 
called differential graded operads over R. 

Definition 2.4 ([14]). Given an operad F in C, a left F-module A is a L.-object A, 
with a morphism p : F 0 A --; A of L.-objects such that 

p(F 0 p) = p(p,0 A) : F 0 F 0 A --; A and p(TJ 0 A) = idA: A --; A. 
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In other words A is an algebra over the triple F 0 _ . Dually we define the 
notion of right F-module. We denote the category of left F-modules by ModF, 
and the category ofright F-modules by FMod. 

Definition 2.5. If F and G are operads in C, then a F-G-bimodule A is a left F
module and a right G-module such that the left F -module structure map is a right 
G -homomorphism. 

Definition 2.6. An algebra X over an operad F, or F -algebra, is an object X of C 
together with a left F -module structure on j (X). 

We denote the category of F-algebras by AlgF. Moreover we will denote by 
F(Y) the free F-algebra generated by the object Y in C. This object is defined by 
j(F(Y)) = F 0 j(Y). 

Definition 2.7. A partial left F -module A is a "L.-object A in C together with a "L. 
object Comp in C called the object of composables, a monomorphism i : Comp '-....+ 

F 0 A in "L.C and a composition map p: Comp --> A such that 

1. The unit 'Tf 0 A: A --> F 0 A factors uniquely through fJ : A --> Comp and 
the composition p(fJ) = idA is the identity. 

2. The pullbacks in"L.C ofi : Comp '-....+ F 0 A along the two maps (jL 0 A)(F0 
i) : F 0 Comp --> F0A and F0p: F 0 Comp --> F 0 A coincide. Moreover 
the compositions of the two pullback maps with p: Comp -+ A coincide. 

Partial right F-modules are defined dually. A partial F-algebra is an ob
ject X of C such that j(X) is a partial left F-module. We denote the cate
gories of partial left F-modules, right F-modules and F-algebras respectively by 
PartModF, FPartMod, and PartAlgF. 

A morphism 9 : (A, ComPA) -+ (B, ComPB) of partial left F-modules is a 
morphism in "L.C such that (F 0 g)iA : ComPA --> F 0 B factors through 9 : 
CompA -+ CompB , and gPA = PBg· 

We exhibit a functor from partial to total left modules that is left adjoint 
to the forgetful functor. The analogous construction for right modules is exactly 
dual. 

If A is a partial F-Ieft module, then define A by the coequalizer in the category 

(JL~M)(F0i ) , 
F 0 Comp : F 0 A ......... A. 

F0p 

Proposition 2.8. There is a left F -module structure on A. 
Proof. The proof is modelled on Lemma 1.15 in [8] . The coequalizer above is 
reflexive because the input arrows admit the common section F 0 fJ : F 0 A -+ 

F 0 Comp. Now A admits the structure of left F-module, because by Lemma 2.3.8 
in [17] F 0 _ preserves reflexive coequalizers. Moreover A is the coequalizer of the 
pair above in the category of left F-modules. D 
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Proposition 2.9. The completion A f---+ A induces a functor that is left adjoint to 
the forgetful functor U : ModF --+ PartModF. 

Definition 2.10. For any right F -module C with structure map (J : C Q9 F --+ C 
and a partial left F -module (A, Camp, i) we define the tensor product C Q9 F A as 
coequalizer in ~C 

(<70 A)(C0 i) 
C Q9 CampA : C Q9 A ......... C Q9 FA. 

C 0 p 

Dually we define the tensor product of a partial right F-module and a left 
F-module. 

Proposition 2.11. Given a partial right F-module A, an F-G-bimodule B, and a 
partial left G -module C, there is a natural isomorphism 

The isomorphism holds because the tensor product is a left adjoint and pre
serves colimits. 

3. The Fulton-MacPherson operad 

The category CQ of compactly generated weak Hausdorff topological spaces is a 
closed monoidal category with all limits and colimits, hence it satisfies the as
sumptions of the previous section. We note however that in general the forgetful 
functor to the category of sets does not preserve colimits. Operads and modules 
in CQ shall be called simply topological operads and topological modules. 

The key topological operads in this paper are the Fulton-MacPherson oper
ads, that are suitable cofibrant versions of the little cubes operads. They were intro
duced in [8]. We recall their definition. Consider the differential-geometric blow-up 
of (JRn)k along the small diagonal D. = {Xl, .. . , Xk I Xl = ... = xd. The blow-up 
is explicitly obtained if we replace the diagonal by its normal sphere bundle. The 
fiber of the trivial normal bundle at the origin is F = {YI, ... , Yk I E~~~ Yi = O} 
and the sphere bundle PF = (F - O)/(JR+) can be seen as the space of closed 
half-lines in F. Then the blow-up is 

Bl6,((JRn)k) = {(x , y) E (JRn)k x PF I X - 7r6,(x) E y} , 

where the orthogonal projection is 7r 6, (Xl, ... , X k) = (E:~~ xd k, . . . , E:~~ xd k). 
For any set S ~ {I, ... , k} let us denote by Bl6,((JRn)S) the blow-up of (JRn)S 
along its small diagonal. 

Let C2 (JRn) c M ap( {I, . . . , k}, JRn) be the space of ordered pairwise distinct 
k-tuples in JRn. There is a natural right ~k-action on this space, and we consider it 
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as left ~k-space by the opposite action. As c2(l~n) does not intersect any diagonal, 
there is a natural embedding 

j : c2(l~n) ----> II Blt.((JRn)8). 
8~{I, ... ,n}, #8"22 

Definition 3.1. The Fulton-MacPherson configuration space Ck(JRn) is the closure 
of the image of j. 

We note that GL(n) acts diagonally on each blowup, j is a GL(n)-equivariant 
map and therefore Ck(JRn ) is a GL(n)-space. 

In a similar way we define the Fulton-MacPherson configuration space Ck(M) 
of a smooth open manifold M. In this case one builds the differential-geometric 
blowups of Mk along the diagonal !:1M by gluing together Mk - !:1M and the 
normal sphere bundle via a tubular neighbourhood of !:1M in Mk. It turns out 
that Ck(M) is a manifold with corners ~k-equivariantly homotopy equivalent to 
its interior, the ordinary configuration space C2(M) of ordered pairwise distinct 
k-tuples in M. 

There is a blow-down map b : Ck(M) ----> Mk such that the composite 

C2(M) c..J.... Ck(M) ~ Mk is the inclusion. We will say that the blow-down 
map gives the macroscopic locations of the particles. 

There is a characterization of the Fulton-MacPherson configuration space by 
means of trees due to Kontsevich. For us a tree is an oriented finite connected 
graph with no cycles such that each vertex has exactly one outcoming edge. An 
ordered tree is a tree together with an ordering of the incoming edges of each 
vertex. The ordering is equivalent to the assignation of a planar embedding. The 
only edge with no end vertex is the root, the edges with no initial vertex are the 
twigs, and all other edges are internal. A tree on a set I is a tree together with a 
bijection from the set of its twigs to I. The valence of a vertex is the number of 
incoming edges. Let G(n) be the group of affine transformations of JRn generated 
by translations and positive dilatations. 

Proposition 3.2 ([12]). Let M be an open manifold. Then each element in Ck(M) 
is uniquely determined by: 

1. Distinct macroscopic locations PI, ... ,Pi EM, with 1 ~ l ~ k. 
2. For each 1 ~ i ~ l a tree Ti with fi twigs, so that L:!=I fi = k, and for 

each vertex in Ti of valence m an element in C~(TPi(M))/G(n), where 
TPi (M) is the tangent plane at Pi. 

3. A global ordering of the k twigs of the trees. 

Definition 3.3. If b : Ck (JRn) ----> (JRn)k is the blowdown map, then the Fulton
MacPherson space is Fn(k) = b-I({O}k). 

This space contains all configurations macroscopically located at the origin. 

Proposition 3.4 ([8]). The space Fn(k) is a manifold with corners, and it is a com
pactification of C2(JRn)/G(n). 
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The faces of Fn(k) are indexed by trees on {I, . .. , k}, and the co dimension 
of a face is equal to the number of internal edges of the indexing tree. 

Proposition 3.5 ([14]). The spaces Fn(k) k ~ 0 assemble to form a topological 
operad. Moreover Fn(k) is a L.k-equivariant deformation retract of Ck(JRn). 

The composition law is easily described in terms of trees: each element in 
Fn is described by a single tree by Proposition 3.2. If a E Fn(k) and bj E Fn{ij) 
for j = 1, ... , k then a 0 (b1, ... , bk) E Fn(il + ... + ik) corresponds to the tree 
obtained by merging the j-th twig of the tree of a with the root of the tree of bj 

for j = 1, ... , k, and assigning the new twigs the induced order. This operation 
on trees will be called grafting. Note that Fn(l) is a point, the unit i of the 
operad, and is represented by the trivial tree. We assume that Fn(O) is a point, 
the empty configuration. We stress the fact that Getzler and Jones in [8] consider 
the unpointed version Fn such that Fn(k) = Fn(k) for k > 0 and Fn(O) = 0. 
Their paper focuses on the differential graded operad en = H*(Fn; Q), the rational 
homology of Fn. They denote H*(Fn; Q) by e~. The deformation retraction r : 
CdJRn) x I -+ Ck (JRn) such that r( Ck (JRn) x {I}) = Fn (k) is defined for t =f. 0 and 
x E c2(JRn) by r(x, t) = xt. 

Definition 3.6. We call an algebra over Fn an n-monoid, and an algebra over Fn 
an n-semigroup. 

Example 3.7 ([12]). The l-monoids are the Aoo-spaces. 

In fact Fl (i) = Ki X L.i, where Ki denotes the associahedron by Stasheff [22], 
so Fl is the symmetric operad generated by the non-symmetric Stasheff operad 
K. But an Aoo space is by definition an algebra over K. 

4. Homotopical algebra and the little discs 

We describe the closed model category structure of the categories of topological 
operads and their algebras. 

Definition 4.1 ([6]). A cofibrantly generated model category is a closed model cate
gory [16], together with a set I of generating cofibrations, and a set J of generating 
trivial cofibrations, so that the fibrations and the trivial fibrations are respectively 
the maps satisfying the right lifting property with respect to the maps in J and I. 

Consider the free operad functor 11' : L.(Cg) -+ OP(CQ), left adjoint to the 
forgetful functor llJ : OP(CQ) -+ L.(CQ). Let Sn be the family of subgroups of L.n · 
The simplicial version of the following proposition is 3.2.11 in [17]. 

Proposition 4.2 ([18]). The category of topological operads is a cofibrantly gener
ated model category, with the following structure: 

1. The set of generating cofibrations is I = {1l'(8Ii X H \ L.n <.......t Ii X H \ 
L.n) Ii, n E N, HE Sn}; 
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2. The set of generating trivial cofibrations is 
J = {lI'((Ii-l X {O}) x H \ En Co......+ Ii X H \ En) Ii, n E N, HE Sn}; 

3. A morphism f is respectively a weak equivalence or a fibration if for any 
n E Nand H E Sn the restriction ff! of fn to the H -invariant subspaces 
is respectively a weak homotopy equivalence or a Serre fibration. 

There is a functorial cofibrant resolution for operads, introduced in [1] . Let 
A be a topological operad. Let Mk be the set of isomorphism classes of ordered 
trees on {I, ... , k}, and for each tree t let V (t) be the set of its vertices and E( t) 
the set of its internal edges. For each vertex x E V(t) let Ixl be its valence. 

Definition 4.3. The space of ordered trees on {I, . . . , k} with vertices labelled by 
elements of A, and with internal edges labelled by real numbers in [0, 1] is 

Tk(A) = II ( II A(lx\) x [0, 1]#E(t»). 
tEMk xEV(t) 

Let Tt be the summand indexed by a tree t E M k . For each internal edge 
e E E(t) the operad composition induces a map oe : Tt ---+ Tt - e, where t - e is 
obtained from t by collapsing e to a vertex. If e goes from x to y, Iyl = n, and e is 
the i - th incoming edge of y, then Oe(x) is the multiplication of the composition 
(}i : A(lx\) x A(ly\) ----+ A(lxl + Iyl - 1) by the identity maps of the vertices in 
V(t) - {xuy}. 

Definition 4.4. The space W A(k) is the quotient of Tk(A) under the following 
relations: 

1. Suppose that t E Tk(A), v is a vertex oft of valence n labelled by 0: E A(n), 
the subtrees stemming from v are tl < ... < tn, and (j E En. Then t is 
equivalent to the element obtained from t by replacing 0: by (j-lo: and by 
permuting the order of the subtrees to tal < ... < tan. 

2. If t E Tk(A) has an edge e of length 0, then t is equivalent to the labelled 
tree obtained by collapsing e to a vertex, and composing the labels of its 
vertices. 

3. If t E Tk(A) has a vertex w of valence 1 labelled by the unit ~ E A(l) of 
the operad A, then t is equivalent to the labelled tree obtained by removing 
w. If w is between two internal edges of lengths sand t, then we assign 
length s + t - st to the merged edge . 

There is an action of Ek on W A(k) induced by permuting the labelling of 
the twigs of elements in Tk (A). 

Proposition 4.5 ([1]). There is an operad structure on W A, defined by grafting 
trees, and by assigning length 1 to the new internal edges. A natural ordering of 
the twigs of the composite is induced. The trivial tree consisting of an edge with 
no vertices is the identity of W A. 

For us a cofibration of topological spaces is the retract of a generalized CW
inclusion [6]. We say that a pointed space (X, xo) is well-pointed if the inclusion 
{xo} Co......+ X is a cofibration. The following proposition is essentially proved in [1]. 
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Proposition 4.6. Let A be a topological operad such that (A(l), L) is well-pointed 
and each A(n) is a cofibrant space. Then W A is a cofibrant resolution of A. 

Proposition 4.1. There is an isomorphism of topological operads W(Fn) ~ Fn. 

Proof. We observe that W(Fn)(i) is obtained by gluing together for each face S of 
Fn (i) of codimension d a copy of S x [0, l]d. This is true because the codimension 
of a face of the manifold with corners Fn (i) is equal to the number of internal 
edges of the associated tree. Then W(Fn)(i) admits the structure of manifold with 
corners diffeomorphic to Fn(i), and the composition maps of both operads are 
described by grafting of trees. 0 

Corollary 4.8. The operad Fn is cofibrant. 

Let Dn be the operad of little n-discs. The space Dn(k) is the space of 
k-tuples of direction preserving affine selfembeddings of the unit n-disc with pair
wise disjointed images. The operad structure is defined by multicomposition of 
the embeddings. There is a sequence of Ek-equivariant homotopy equivalences 
Dn(k) ---4 CZ(In) '-....+ CZ(lRn) '-....+ Ck(lRn ) ---4 Fn(k). The first map sends the 
little discs to their centers, the last is a deformation retraction. The inclusion 
CZ(In) '-....+ CZ(lRn) is a Ek-equivariant homotopy equivalence because the inclu
sion In '-....+ lRn is isotopic to a homeomorphism. The image of the composite rk is 
the interior of the manifold with corners Fn(k) . It follows that the E-map r = {rd 
is not an operad map because all elements in the boundary of Fn(k) are composite. 

Proposition 4.9. The operad Dn is weakly equivalent to Fn . 

Proof. We build an extension R : W Dn ---4 Fn of r : Dn ---4 Fn that is a map of 
operads and a weak equivalence. 

An element a in WDn(k) is represented by a labelled tree 7 E Tk(Dn) 
on {I, ... , k}. If the i-tuple (fi', ... , fn labels a vertex v of valence i , then for 
each j we associate the embedding fi to the j-th incoming edge ej(v) of v. The 
equivalence relation defining W Dn preserves this association. We observe inciden
tally that the multicomposition of the labels of 7 is the k-tuple of embeddings 
(g1, ... , gk) such that for each j gj is the composition of the embeddings associ
ated to the edges along the unique path from the j-th twig to the root. Suppose 
that the internal edges of 7 are labelled by numbers in (0,1). Let l(e) denote the 
length of an edge e and if r E (0,1] let Jr be the dilatation of the n-disc by r. 
Consider the labelled tree 7' obtained from 7 by replacing for each vertex v and 
for each j = 1, ... , Ivl the embedding fi by the rescaling fi 0 J1(ej(v»' Let b be 
the multicomposition of the labels of 7', and set Rk(a) = rk(b). We have defined 
Rk on a dense subspace of W Dn (k). The map Rk extends to W Dn (k) and R is 
an operad map, because the boundary and the composition of Fn are described 
by a limit procedure. Let ik : Dn(k) ---4 W Dn(k) be the inclusion such that ik(a) 
is represented by the tree on {1, . . . , k} with a single vertex labelled by a. The 
map Rk : W Dn (k) ---4 Fn (k) is a Ek-equivariant homotopy equivalence for each 
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k because ik is such [1] and Rkik = rk . In particular R is a weak equivalence of 
topological operads, and Dn '::::' Fn. 0 

The simplicial analogue of the following proposition is 3.2.5 in [17]. 

Proposition 4.10 ([18] [19]). Let F be a topological operad. Then the category AlgF 
is a cofibrantly generated model category with the following structure: 

1. The set of generating cofibrations is I = {F( 8Ii ) '-> F(Ii) liE N}. 
2. The set of trivial generating cofibrations is 

J = {F(Ii-l X {O}) '-> FW) liE N}. 

3. A F -homomorphism is a weak equivalence or a fibration if it is respectively 
a weak homotopy equivalence or a Serre fibration. 

Under mild conditions there is a functorial cofibrant resolution of topological 
algebras over operads, introduced in [1]. Let A be a topological operad. Consider 
the ~-space W+ A defined similarly as W A, except that relation 3 is not applied 
if w is the root vertex. It turns out that W+ A is an A - W A-bimodule, by action 
of A on the label of the root, and by grafting trees representing elements of W A. 
Let X be an A-algebra. It has a W A-algebra structure induced by the projection 
c: WA -4 A. We define the A-algebra UA(X) = W+ A Q9WA X. The projection 
W+ A -4 W A, obtained by extending relation 3 to the root vertex, induces an 
A-homomorphism 7f : UA(X) -4 X, that is a deformation retraction, see p. 51 of 
[1]. 

Proposition 4.11 ([18]). If X is a cofibrant space then UA(X) is a cofibrant A
algebra. 

Definition 4.12. If A is a topological operad, and X , Yare A-algebras, then a ho
motopy A-morphism from X to Y is an A-homomorphism from UA(X) to Y. 

Proposition 4.13. If F is a topological operad, X is the retract of a generalized 
CW -space, and H o(Al9F) is the homotopy category, then H o(AlgF )(X, Y) = 
Al9F(UF(X), Y)/ '::::'. 

Proof. The set of right homotopy classes [X, Y] in the sense of [16] is the set of F
homomorphisms from a cofibrant model of X to a fibrant model of Y modulo right 
homotopy. Now UF(X) is a cofibrant resolution of X, and Y is fibrant because 
every object is such. It is easy to see that the the right homotopy classes of F
homomorphisms from UF(X) to Yare ordinary homotopy classes, because yI is 
a~h~~. 0 

This result is consistent with the formulation of the homotopy category of 
F-algebras in [1]. 

Proposition 4.14. If Z is an n-semigroup and p : Y -4 Z is a homotopy equiva
lence, then Y has a structure of n-semigroup such that p extends to a homotopy 
Fn -morphism. 
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Proof. It is sufficient to observe that W Fn is homeomorphic to Fn, and apply the 
homotopy invariance theorem 8.1 in [1]. 0 

5. Modules and configuration spaces with summable labels 

Proposition 5.1 ([14]). For any parallelizable open manifold M of dimension n, 
the space of configurations G(M) = llkEN Gk(M) is a right Fn-module. 

Proof. We choose a trivialization of the tangent bundle T(M) ~ M x IRn. Then 
the composition G(M) 0 Fn --+ G(M) is described by grafting of trees representing 
elements as in 3.2. 0 

Markl in [14] gives a similar picture for generic open manifolds by introducing 
the framed Fulton-MacPherson operads. 

Definition 5.2. Let G be a topological group, and let F be a topological operad 
such that F(i) is a G x Ei-space for each i, and the structure map JL of F is G
equivariant. The semidirect product F ><I G is the operad defined by (F ><I G)(i) = 
F( i) X Gi , with structure map 

Definition 5.3. The framed Fulton-MacPherson operad is the semidirect product 
fFn = Fn ><I GL(n). 

Definition 5.4. Let M be an open n-manifold. The GL(n)-bundle of frames on M 
induces a GL(n)k-bundle fGk(M) on Gk(M), acted on by Ek, that we call the 
framed configuration space of k frames in M. 

Proposition 5.5 ([14]). The E-space fG(M) of framed configurations is a right 
module over f Fn . 

An element of the framed configuration space f G k (M) is uniquely determined 
by labelled trees as in Proposition 3.2, and by additional k frames of the tangent 
planes associated to the k twigs. A smooth embedding i : M '-----> N of open n

manifolds induces a right f Fn-homomorphism fG(i) : fG(M) '-----> fG(N) . 

Remark 5.6. If M is a Riemannian n-manifold, then we can define for each k 
a O(n)k-bundle fOGk(M) over Gk(M), so that fOG(M) is a right Fn ><I O(n)
module. If M is oriented then we can define a SO(n)k-bundle fsoGk(M) on 
Gk(M) so that fsoG(M) is a right Fn ><I SO(n)-module. 

Definition 5.1. We call an algebra over f Fn a framed n-monoid. 

Hence a framed n-monoid is an n-monoid equipped with an action of GL(n), 
that is compatible with the n-monoid structure map. 
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Definition 5.8. A partial framed n-monoid is a partial n-monoid with an action 
of GL(n), such that GL(n) preserves the space of composables and respects the 
partial composition. 

Definition 5.9. Let f Dn(k) be the space of k-tuples of of affine selfembeddings of 
the unit n-disc that preserve angles and have pairwise disjointed images. The mul
ticomposition gives f Dn the structure of an operad, that we call the operad of 
framed little n-discs. 

Remark 5.10. Consider the iterated loop space nn(x, xo) as the space of maps 
from the closed unit n-disc to X, sending the boundary to the base point Xo. This 
space is an algebra over f Dn. 

Proposition 5.11. The operad of framed little n-discs f Dn is weakly equivalent to 
the framed Fulton-MacPherson operad f Fn. 

Proof We apply the same proof of Proposition 4.9 to show that f Dn ~ Fn ~ O(n), 
and conclude by the homotopy equivalence O(n) '---> GL(n). 0 

If we restrict to the suboperad JDn C f Dn containing orientation preserving 
embeddings, then we obtain a weak equivalence JDn ~ Fn ~ SO(n). 

Definition 5.12. Let A be a partial n-monoid, and let M be an open parallelizable 
manifold of dimension n. Then the space of configurations in M with partially 
summable labels in A is C(M; A) := C(M) ®Fn A. 

An element of C(M) ® A = ilk Ck(M) XEk Ak consists by 3.2 of a finite 
set of trees based at distinct points in M, with vertices labelled by Fn and twigs 
labelled by A. The equivalence relation defining C(M; A) says that if some twigs 
labelled by al , ... , ak are departing from a vertex labelled by c E Fn(k) in t E 
C(M) ®A and p(c; al, . .. ,ak) is defined, then we identify t with the forest obtained 
from t by cutting such twigs, and by replacing their vertex by a twig labelled by 
p(c; al,.'" ak). Furthermore if the i-th twig departing from a vertex labelled by c 
in t is labelled by the base point ao then we identify t to forest obtained by cutting 
the twig and by replacing the label c by Si(C), where Si : Fn(k) -4 Fn(k - 1) is the 
projection induced by forgetting the i-th coordinate. 

If A is an n-monoid, then by iterated identifications any element in C(M; A) 
has a unique representative consisting of a finite set of trivial trees in M, or points, 
with labels in A - {ao}. 

We denote by I I : CG -4 Set be the forgetful functor. 

Proposition 5.13. Suppose that the inclusion Comp '---> F(A) is a cofibration, and 
A is well-pointed. Then 

1. IC(M; A)I = IC(M)I ® IFnl IAI ; 
2. the space C(M; A) has the weak topology with respect to the filtration 

Ck(M; A) = Im(ili:Sk C(M)i xEi Ai) , kEN. 
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Proof. If A is a proper n-monoid, then we have relative homeomorphisms 

(Ck(M),8Ck(M)) XEk (A, ao)k ---> (Ck(M; A), Ck- 1 (M; A)) 

for k 2: 1, and we conclude by 8.4, 9.2 and 9.4 in [23]. If A is a partial n-monoid, 
then we denote by Ri C Ci (M) X Ei Ai the space of reducible elements that are 
equivalent to an element of some Cj(M) XEj Aj with j < i. For example, 

Rl = M x {aD}; 

R2 = (C2(M) XE2 (A V A)) U (M x Comp2); 

R3 = (C3(M) XE3 (A V A V A)) U (C2(M) XE2 (Comp2 x A)) U (M x ComP3). 

We have relative homeomorphisms (Ci(M) xEiAi, Ri ) -+ (Ci(M; A), Ci- 1(M; A)), 
and we argue similarly. D 

Definition 5.14. Suppose that M is an open n-dimensional smooth manifold, and 
A is a partial framed n-monoid. Then the space of configurations in M with labels 
in A is C(M;A):= fC(M) ®fFn A. 

Note that if Mis parallelizable then the definition is consistent with 5.12. In 
fact the framed configurations in M are given by fC(M) = C(M) ®Fn f F n and 
by 2.11 

fC(M) ®fFn A = C(M) ®Fn fFn ®fFn A = C(M) ®Fn A. 

Proposition 5.15. Let A be a partial framed n-monoid with base point ao such that 
the inclusions Comp<-+ fFn(A) and {aD} <-+ A are cofibrations ofGL(n)-spaces. 
Let M be an open n-manifold. Then 

1. IC(M; A)I = IfC(M)I®lfFnIIAI ; 
2. the space C(M; A) has the weak topology with respect to the filtration 

Ck(M; A) = Im(Ui~k fC(M)i XEi Ai), kEN. 

We give some examples of configuration spaces with summable labels. Let us 
denote by An the completion of a partial n-monoid A. 

Proposition 5.16. If A is a partial n-monoid, then there is a strong deformation 
retraction WA : C(JRn; A) -+ An. 

Proof. It is sufficient to observe that there is a deformation retraction of right 
Fn-modules W : C(JRn) -+ Fn. If an element x E C(JRn; A) is represented by a 
finite number of labelled trees Tl, ... ,Tk based at distinct points PI , ... ,Pk E JRn, 
then WA (x) is represented by the single tree obtained by connecting Tl, . .. ,Tk to 
a root vertex labelled by the class [PI,"" Pk] E CZ(lRn)/G(n) C Fn(k). 

D 

Example 5.17. If M is a discrete partial monoid, then Ml has the homotopy type 
of its monoid completion. If M is abelian then Moo has the homotopy type of its 
abelian monoid completion. 
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Definition 5.18. Let A be a partial abelian monoid and M an n-manifold. We 
denote by CO(M; A) the quotient of Uk Cf(M) XEk Ak under the following relation 
rv; if(ml, ... ,mk) E Cf(M), al, ... ,ak E A, ml = m2 and al +a2 is defined, 
then 

Lemma 5.19. If A is a partial abelian monoid, and M is an n-dimensional open 
manifold, then the inclusion CO(M; A) '-+ C(M; A) is a weak equivalence. 

Proof. The proof makes use of the fact that a copy of the manifold with corners 
CdM) lies inside its interior Cf(M) , so the retraction r : Ck(M) ....... Cf(M) is 
a Ek-equivariant homeomorphism onto its image. We compare via this retraction 
the pushout diagram for Cf(M; A) 

Cf(M) XEk Ak U (Co(M) Xr Comp(A))k -_. Cf(M; A), 

and the pushout diagram for Ck(M; A) 

Here we denote by (CO(M) Xr Comp(A))k the subspace of C(M)k XEk Ak 
of those labelled configurations such that several points are concentrated in the 
same macroscopic location if and only if their labels are summable. The inclusion 
of the space on the left hand top corner of the first diagram into that of the second 
diagram is a homotopy equivalence, because r induces a common retraction onto 
a copy of the second space. The same holds for the spaces on the left hand bottom 
corner. We conclude by induction and the gluing lemma [4]. 

o 
If we regard a pointed space (A , ao) as a partial abelian monoid with x+ao = 

x as the only defined sums, for x E A, then CO(M; A) is the configuration space 
with labels studied in [3]. 

Corollary 5.20. Let (A, ao) be a well-pointed space. Then for any open n-manifold 
M there is a weak equivalence CO(M; A) ~ C(M; A). 

Proof. The space A is a partial n-monoid by Comp = Uk Fn(k) XEk V~=lA. 0 



Configuration spaces with summable labels 389 

For some background about toric varieties we refer to [7J. 

Corollary 5.21. If V is a projective toric variety such that H 2 (V) is torsion free, 
then there exists a partial discrete abelian monoid ~v, such that the union of some 

• 2 
components of (~v) is homotopy equivalent to the space Rat(V) of based rational 
curves on v. 

Proof. Guest has shown in [9J that if ~v is the fan associated to the variety V [7J 
then the union of some components of CO(JR.2 ; ~v) is homeomorphic to Rat(V). 
The corollary follows from the theorem and from proposition 5.16. 0 

Remark 5.22. It is possible to define labelled configurations with support in a man
ifold with corners M. It is sufficient to choose an embedding M ~ M', with M' 
open, consider the right Fn-submodule C(M) ~ C(M') of configurations macro
scopically located at points of M, and carry through the discussion as for open 
manifolds. 

6. The relative case 

We define relative labelled configuration spaces on relative manifolds. 
Let (X, xo) be a pointed topological space. Let M be a manifold with corners 

and N ~ M a cofibration such that M - N is an open manifold. We obtain easily 
from 3.2 that each element c E C(M; X) is uniquely determined by a finite set 
S(c) c M, and for each P E S(c) a labelled tree Tp as in 3.2, with the only 
difference that the twigs of the tree are labelled by X - xo. 

Definition 6.1. The based space C(M, N)(X) is the quotient C(M; X)/ '" by the 
equivalence relation such that a '" a' if and only if S(a)n(M -N) = S(a')n(M -N) 
and the trees indexed by these intersections coincide. The base point is the class 
raj such that S(a) eN. 

If we regard pointed spaces as partial n-monoids, then the n-monoid comple
tion induces a monad (F~, "l*, J-L*) on the category of pointed compactly generated 
spaces CQ* . Each element in the completion F~(X) = .in is represented by a tree 
with vertex labels in Fn and twigs labels in X - xo. The product J-L* is given by 
grafting of trees, and the unit "l* sends an element x to the trivial tree labelled by 
x. 

Proposition 6.2. If M is a parallelizable n-manifold, and N ~ M is a cofibration 
such that M - N is open, then the functor C(M, N) has a structure of right algebra 
over F~. 
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Proof. We need to exhibit a natural transformation ,\ : C(M, N)F~ ---; C(M, N) 
such that ,\ 0 C(M, N)'rJ* is the identity and the diagram 

C(M N)F* F* C(M, N)J-L: C(M N)F* , n n , n 

Aj 
,\ 

C(M,N)F~ ----. C(M,N) . 

commutes. The morphism ,\ is obtained by grafting of trees. o 
Definition 6.3. If (A, p) is an n-monoid, and M, N are as before, then the space 
C(M, N; A) of configurations in (M, N) with summable labels in A is the coequal-
izer 

C(M,N)p 
C(M,N)F~(A) : C(M,N)A ......... C(M,N;A) . 

AA 

Definition 6.4. A partial n-monoid A is good if the inclusion Comp(A) ---; Fn(A) 
is a cofibration, and the partial composition p : Comp(A) ---; A induces a map on 
the quotient Comp*(A) c F~(A) of Comp(A). 

The definition of a good framed partial n-monoid is similar. l,From now on 
we will assume implicitly that all partial (framed) n-monoids are good. 

By means of the framed Fulton-MacPherson operad we can define similarly 
C(M, N; A), if M is an n-dimensional manifold with corners, N '-+ M is a cofi
bration, and A is a good partial framed n-monoid, and as in 5.13 we obtain: 

Proposition 6.S. Define a filtration so that [a] E Ck(M, N ; A) if and only if k is 
the number of twigs of trees in S(a) n (M - N). Then C(M, N; A) has the weak 
topology with respect to the filtration and it is compactly generated. 

Definition 6.6. If A is a partial framed n-monoid, then Bk(A) = C((Ik,&Ik) X 

In-k; A) for i = 1, ... ,n. 

If A is a partial abelian monoid and (M, N) is any pair then we define the 
relative labelled configuration space CO(M, N; A) as quotient of CO(M; A), by 
identifying configurations that coincide on M - N. We state the relative version 
of 5.19. 

Proposition 6.7. If M is a manifold, N'-+ M is a cofibration, and M - N is open, 
then there is a weak equivalence CO(M, N; A) ~ C(M, N; A). 

Proof. The proof is similar to that of 5.19. In this case we use for each k a Ek-
equivariant retraction rk : Ck(M) ---; C2(M) such that rk preserves b-1(Mk - Nk), 
where b : Ck(M) ---; Mk is the blowdown. 0 

Corollary 6.8. If V is a projective toric variety such that H2(V) is torsion free, 
with torus T and fan A v, then there is a weak equivalence B2 (A v) ~ V X T ET. 
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Proof. Guest has shown in [9] that V XT ET is homotopy equivalent to 
C°(I2, ()J2; tiv). 0 

The relative version of 5.20 is: 

Corollary 6.9. For any well-pointed space X there is a weak equivalence 
CO(M,N;X) ~ C(M,N;X). 

Corollary 6.10. Let X be a well-pointed space considered as partial n-monoid. Then 

there is a weak equivalence ~n(x) c....::... Bn(X) . 

Proof. The space of open configurations CO (In ,81n; X) retracts onto ~n(x), con
sidered as space of configurations of a single labelled point in (In, 81n). The re
traction is achieved [5] by pushing radially the particles away onto the boundary. 
But the inclusion CO(r, 8r; X) '--+ C(In, ()In; X) = Bn(X) is a weak equivalence 
by 6.9. 0 

By means of configuration spaces we obtain the classifying space constructed 
by Stasheff. 

Proposition 6.11. Let (A, ao) be a well-pointed ACXl space. The quotient map 
C(I, {o}; A) -+ C(I, 81; A) = Bl (A) is canonically homeomorphic to the 

universal arrow E(A) -+ B(A). 

Proof. It is sufficient to carry out the discussion in the non-symmetric case: in 
fact Ck([O, 1]) = Sk([O, 1]) x ~k' where Sk([O, 1]) compactifies the space of strictly 
ordered maps from {I, ... , k} to 1 = [0,1]. 

Let Sk(I){O, I} ~ Sk(I) be the closure of the subspace of maps 
a: {1, ... ,k} -+ 1 such that a(1) = 0, a(k) = 1. Its elements are de

scribed by appropriate trees as in 3.2. For k 2: 2, we have homeomorphisms 
r : Sk(I){O, I} ~ Sk(O) : j, where Sk(O) is the space of configurations in IR 
macroscopically concentrated at the point 0. 

If ai -+ a E Sk(1){O, I}, ai E C2(I), then r(a) = limi i(Q~(0~il~(o))· 
If {3i -+ (3 E Sk(O), (3i E C2(IR), then j({3) = limi j3~\)~~iO(~). 
We have seen in 3.2 that Sk(O) = Kk is the associahedron. Under the identi

fication Kk ~ Sk(I){O, I} the Stasheff space B(A) is defined to be the quotient of 
11 Sk(1){O, I} x Ak-2, seen as space of forests labelled by A, under the following 
steps: 

1. We replace a tree on i twigs by a point having as label the action of the 
tree on its twigs via Ki x Ai -+ A. 

2. We can cut twigs labelled by ao. 
3. We identify any two labelled forests coinciding outside ° and 1. 

But this quotient is exactly Bl (A) = C(I, 81; A). In a similar way one shows that 
E(A) = 11 Sk(I){O, I} x Ak-l/ rv is homeomorphic to C(I, {O}; A). In this case in 
3 we identify forests coinciding outside 0. 0 
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7. Approximation theorems 

We say that a partial framed n-monoid A has homotopy inverse if the H-space An 
has homotopy inverse. 

Lemma 7.1. Let M be a connected compact n-manifold, M' C M a compact n
submanifold, N C M a closed sub manifold, and A a partial framed n-monoid. 
Suppose that either A has a homotopy inverse or the pair (M', NnM') is connected. 
Then there is a quasijibration 

C(M',NnM';A) - C(M,N;A) ~ C(M,M'UN;A). 

This holds in particular if A is path connected. 

Proof. We follow the proof of proposition 3.1 in [5]. The space C(M, M' UN; A) 
has a filtration by Ck := Ck(M, M' UN; A). There is a homeomorphism ak : 
7r- 1(Ck-Ck_1) ~ C(M' , NnM'; A) x (Ck-Ck-l) such that 7ra;1 is the projection 
onto the factor Ck - Ck - 1 . Choose a collared neighbourhood U of M' in M and a 
smooth isotopy retraction r : U -t M' such that r(U n N) eN. For each k there 
is an open neighbourhood Uk of Ck in CHI such that r induces a smooth isotopy 
retraction rk : Uk X J -t Ck, and a smooth isotopy retraction 1'k : 7r - 1(Uk) x J -t 

7r- 1 (Ck) covering rk. For any point P E Uk we need to show that the restriction 
t : 7r- 1(P) -t 7r- 1(rl(P)) of 1'1 is a weak homotopy equivalence. If we identify 
domain and range of t to C(M',N n M';A) by ak, then t pushes the labelled 
particles away from N, and adds a finite set of trees T in proximity to N. But if 
the pair (M', N n M') is connected, then the trees in T can be moved continuously 
to N, where they vanish, and t is homotopic to a homeomorphism. On the other 
hand, if A has a homotopy inverse, then t has a homotopy inverse that pushes 
the particles away from N and adds some homotopy inverses of the trees in T in 
proximity to N. 0 

Proposition 7.2. Let A be a partial framed n-monoid. Then for i = 1, ... ,n there 
are maps Si : Bi- 1(A) - DBi(A) , such that 8i is a weak homotopy equivalence 
for i > 1, and 81 is a weak homotopy equivalence if A has a homotopy inverse. 

Proof. Note that Bo(A) is homotopic to the framed n-monoid completion of A. 
For each i the base point of Bi(A) is the empty configuration. The translation 
71 (t) : rn -t JR x In-l of the first coordinate by t induces a map 7rT1 (t) : Bo(A) -t 

Bl(A), composite of the induced map C(1n;A) C(Ti(t);A). C(JR x In-l;A) and 
the projection C(JR x In-l;A) -t C((1, 81) x In-l;A). Then the 'scanning' map 
81 is defined for x E Bo(A) = C(1n;A) by 81(X)(t) = 7rTd2t-1)(X) E BdA). 
For i > 0 the translation of the (i + l)-th coordinate by t induces similarly a map 
7rTi+1 (t) : Bi(A) -t Bi+l (A), and 8i+l : Bi(A) -t DBi+! (A) is given by 8i+! (x)(t) = 
7r Ti+l (2t-l) (x). We define M = Jk X [0, 2] x In-k-l, N = (ark x [0,2] x In-k-l )U(1k X 

Ox In-k-l), and we identify Bk(A) to C(1k x [1, 2] xJn-k-l, ark x [1, 2] x I n- k- 1; A) 



Configuration spaces with summable labels 

via Tk+l(l). We consider for 1 ~ k ~ n - 1 a commutative diagram 

Bk(A) -- C(M,N;A) -- Bk+l(A) 

Sk+'1 'I 
OBk+l(A) -- PBk+l(A) --> Bk+l(A) . 
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The top row is a quasi fibration and the bottom row a fibration. The scanning 
map s is defined on the total space C(M, N; A) by s(x)(t) = 7rTk+d 2t )(x) and 
is consistent with Sk+l. Now the space C(M, N; A) is contractible. In fact by 
excision C(M N· A) c:,; C(M' N'· A) with M' = JRk X (-00 2] x JRn-k-l and "- '" , 
N' = M' - (M - N). Moreover there is a smooth isotopy H t : (M, N) --> (M', N'), 
such that Ho is the inclusion and H1(M) eN'. For example define H t as the 
dilatation by 3t centered in (~, ... , ~, 3, ~, ... , ~), with 3 at the (k + 1 )-st position. 
We conclude by comparing the long exact sequences in homotopy and by induction 
on k. D 

The spaces Bo(A) = C(In; A) and on Bn(A) are both f Dn-algebras. The map 
s: Bo(A) --> on Bn(A) constructed by looping and composing the scanning maps 
in proposition 7.2 can be extended to a homotopy f Dn-morphism by rescaling 
suitably the scanning maps on the labels of trees in UfDn(Bo(A)). By 7.2 we 
obtain: 

Theorem 1.3. If A is a partial framed n-monoid, then s : Bo (A) --> on Bn (A) 
is the group completion. If A has homotopy inverse, then s is a weak homotopy 
equivalence. 

Actually s is the group completion in the homotopy category of f Dn-algebras. 

Corollary 1.4 ([15]). If X is a well-pointed space, then s : cO(JRn; X) --> on~n X 
is the group completion. If X is path connected, then s is a weak homotopy equiv
alence. 

Proof. Consider X as a partial n-monoid as in corollary 5.20. Now Bo(A) = 
C(In; A) ~ An by the same argument of proposition 5.16 . Moreover An ~ 
C(JRn; A) by 5.16, C(JRn; A) ~ CO(JRn; A) by 5.20 and ~n X ~ Bn(X) by 6.10. 
Now we can apply the theorem. D 

Corollary 1.5 ([9]). If V is a projective toric variety such that H2(V) is torsion 
free, then s : Rat(V) --> 02(V) is the group completion. 

Proof. Apply corollaries 5.21 and 6.8, and restrict to the relevant components. D 

Given an n-manifold M, and its tangent bundle T, there is a bundle 'Y = 
C(T,OT;A) on M with fiber Bn(A) = C(In,oIn;A), consisting of relative fiber
wise configurations in the fiberwise one-point compactification modulo the sec
tion at infinity (7,00). Whether aM is empty or not we can define a map s : 
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C(M, 8M; A) --> f(M; BnA) to the space of sections of 'Y. Note that if M is par
allelizable then r(M; BnA) = M ap(M; BnA). The scanning map s is constructed 
by the exponential map: if x E C(M, 8M; A), then s(x) sends a point P E M to 
the restriction of x to a small disc neighbourhood of P modulo its boundary. 

Theorem 7.6. Let A be a partial framed n-monoid. Let M be a compact connected 
n-manifold with boundary. Then the scanning map s : C(M, 8M; A) --> r(M; BnA) 
is a weak homotopy equivalence. If A has homotopy inverse and N is a compact 
connected n-manifold without boundary then s : C(N; A) --> f(N; BnA) is a weak 
homotopy equivalence. 

Proof. We follow the proof of 10.4 in [10]. There is a finite handle decomposi
tion of M with no handles of index n. If M' is obtained from M" by attaching 
a handle H of index i , then we apply lemma 7.1 and we obtain a quasifibra
tion C(H, 8H - 8H n M"; A) --> C(M', 8M'; A) --> C(M", 8M"; A). On the other 
hand we have a fibration f(H/(H n M"); BnA) --> r(M'; BnA) --> f(M"; BnA). 
But C(H, 8H - 8H n M"; A) ~ Bn-i(A), and f(H/(H n M"); BnA) ~ niBn(A). 
We compare the two sequences by the scanning maps and we conclude by propo
sition 7.2 and induction on the number of handles. In the case of N we have even 
a handle of index n and we apply the second part of proposition 7.2. 0 

Corollary 7.7. If X is a well-pointed path connected space then s : C(S\ X) --> 

M ap( SI , ~X) is a weak homotopy equivalence. 

Proof. We consider X as partial framed I-monoid as in corollary 5.20. By corollary 
6.10 BdX) ~ ~X. We apply the second part of the theorem, and note that 
r( SI , ~X) ~ M ap( S\ ~X) because SI is parallelizable. 0 

This answers a question raised by Stasheff in [22] p. 10. The analogous result 
for CO(SI; X) is in [3]. 

Any partial framed n-monoid gives an approximation theorem for mapping 
spaces, and the homotopy theorist is tempted to discover new examples. It might 
be worth considering colimits of abelian monoids in the category of n-monoids. 
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Kaleidoscoping Lusternik-Schnirelmann 
category type invariants 

Hans Scheerer and Daniel Tame 

Abstract. A general LS-category type invariant is defined as a function of 
two variables. It specializes to (old and new) relative invariants and generates 
strong category notions. Each invariant is determined by an axiom scheme 
whose form has been established by Lusternik and Schnirelmann. We also 
discuss the corresponding absolute invariants and formulate, in a general cat
egory C, a method to define LS-category and strong LS-category concepts. 
They specialize to the usual ones and it turns out that some relative invari
ants are absolute invariants in the new sense. 

1. Introduction 

The original concept of category invented by Lusternik and Schnirelmann in [12] 
was one for maps that can be characterized by a simple axiom scheme. Meanwhile 
many variations of the first concept have been introduced (we refer to the survey 
articles [10], [11]). Today, the original invariant is called a relative one. 

In the present paper, we give a "general" invariant which is a function on the 
class of pairs of maps (I, g) having a fixed target B. In fact, its definition is based on 
the question when does 9 factor through f', if f' is obtained from f by successively 
applying certain constructions. We show in a kaleidoscoping manner that this 
invariant specializes to many known and also some new invariants. And we like to 
emphasize that each variant is determined by its axiom scheme. We also introduce 
relative strong category notions which are governed by slightly different axiom 
systems. It has to be observed, moreover, that any other factorization problem 
similarly leads to corresponding other "general invariants" . 

We then discuss absolute versions of the relative concepts. On the way we are 
led to formulate a general method to define LS-category and strong LS-category 
concepts in any category C. And it turns out that some relative invariants are 
absolute ones in that sense. 

The paper is organized as follows. In Section 2 we set up the general LS
invariant. A first specialization to a relative invariant is given in Section 3. A second 
one related to the category in the sense of Clapp and Puppe [1] appears in Section 4 
as well as a notion of strong relative category. In Section 5 we discuss the transition 
to the absolute case and a general method to obtain invariants in any category C. 
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In an Appendix, we consider a mapping theorem for some of the relative category 
concepts which specializes to the mapping theorem of [7], [8J. 

In Sections 2, 3 and 4, we work in the category '4 of pointed spaces; the 
symbols mor('4), mor( -, B) denote the class of morphisms of '4, resp. the class 
of morphisms of '4 with target B. We recall that '4 is a closed model category with 
homotopy equivalences as weak equivalences and Hurewicz fibrations as fibrations . 
Moreover it is also a J-category in the sense of [3J. All we do in these sections could 
also be performed in any other model category (with J -structure if necessary). Any 
map j: X ---> Y of '4 factors as a weak equivalence followed by a fibration which 
we call the associated fibration 1': X' ---> Y. 

2. The general invariant 

We fix B E '4. 

Notation 2.1. Let j: X ---> B, g: Y ---> B be elements of mor( -, B). We write 
j :::; 9 if there exists a homotopy commutative diagram 

X ---4 Y 
f"-. /g 

B . 

Let K, 'lj; be classes of constructions, i.e., functions 

mor( -, B) ---> {subclasses of mor( -, B)} . 

Note that classes of constructions can be composed in the sense of correspondences. 

Definition 2.2. Given j, 9 E mor( -, B) we set 

(K, 'lj;) - cat(f, g) = inf {r I 31' E KT('lj;(f)) such that 9 :::; f'}. 

Definition 2.3. A class of constructions K is reasonable if for all j, 9 E mor( -, B) 
with j :::; 9 and l' E K(f) there is g' E K(g) with l' :::; g'. 

Proposition 2.4. (1) Ijg1 :::;g2, then (K,'lj;)-cat(f,gd:::; (K,'lj;)-cat(f,g2)' 
(2) Let K be reasonable, let j, 9 E mor( -, B) and g' E K(g). Then 

(K,'lj;) -cat(f,g') :::; (K,'lj;) -cat(f,g) + l. 
(3) Let K, 'lj; be reasonable and II :::; h. Then 

(K,'lj;) -cat(h,g) :::; (K,'lj;) -cat(lI,g). 

Proof. (1) Suppose g2 factors through a map in KT('lj;(f)). Then so does g1. 
(2) If 9 factors through a map in KT('lj;(f)), then g' factors through a map 

in KT+l('lj;(f)). 
(3) Left as exercise. 0 
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Theorem 2.5. Let JC be reasonable. Then the function (JC, 'IjJ) -cat satisfies the 
following three properties and is the maximum of all functions n: mor( -, B) x 
mor( -, B) -+ N U {oo} satisfying these: 

(i) n(f,g) = 0 if there is a E 'IjJ(f) such that 9 ~ ai 
(ii) for all f and gl ~ g2, one has n(f,gd ~ n(f,g2)i 

(iii) for all f , 9 E mor(-,B) and g' E JC(g), n(f,g') ~ n(f,g) + 1 holds. 

Proof By definition and Proposition 2.4, (JC, 'IjJ) - cat satisfies (i), (ii), (iii) . 
Let now (JC,'IjJ)-cat(f,g) = r and choose a E 'IjJ(f) , I' E JCT(a) such that 

9 ~ 1'. Then n(f, g) ~ n(f, 1') ~ n(f, a) + r = r. 0 

Remark 2.6. Property (ii) is the analogue of the "domination property" for the 

usual LS-category: If Y dominates X , i.e., there are maps X ~ Y ~ X with 
7r 0 i rv idx, then cat(X) ~ cat(Y). 

Convention. We will always assume that JC is reasonable. 

Here is a trivial example: 

Example 2.1. Let JC = id and 'IjJ = id. Then 

(JC,'IjJ)-cat(f,g) = { : 
if 9 ~ f, 
else. 

Remark 2.8. Consider the following factorization problem: Given a homotopy com
mutative square, simply denoted by (f ; g), 

E ~ Y 
f ! ! 9 

B f- X, 
u 

does there exists a map w: X -+ E (called solution) such that f 0 w rv U and 
w 0 9 rv v? 

View mor( -, B) as the category of objects over B and let JC be a class of 
functors T: mor( -, B) -+ mor( -, B) admitting natural transformations id -+ T. 
Then we may define 

JC- cat(f; g) = inf {r I 31' E JCT (f) with a solution w' for the problem (f'; g)} 

where (f'; g) is the square obtained from (f; g) using repeatedly the natural trans
formations as follows: 

E f

T(J) ! 
B 

E f- Y 
f ! ! 9 

B f- X. 

The axiomatic description of this invariant takes a slightly different form: 
The function JC- cat on the class of squares (f; g) satisfies the following prop

erties and is the maximum of all functions satisfying these: 
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(i) n(f; g) = 0 if the factorization problem (f; g) has a solution; 
(ii) n(f';g) 2': n(f;g) - 1 for all f' E K(f). 

As an application we just mention the invariant on mor( -, B) given by 
f f--* K- cat(f;!) where K consists of the one functor assigning to f its join with 
* ~ B over B. This invariant is used in [2]. 

3. First specialization to a notion of relative LS-category 

We choose 'If; = id and delete 'If; from the notation, i.e., we obtain a function 
K-cat(f,g). 

Definition 3.1. Given f E mor(-,B), we set K-cat(f) = K-cat(f,idB ). 

We leave it as an exercise to characterize the function K- cat on mor( -, B) 
by the axiomatization scheme. 

Example 3.2. Let C be a class of maps in mor( -, B). Denote by C* the class 
of constructions f f--* {f *B pip E C} (for a definition of the join *B see the 
Appendix). 

(i) Take C = {* ~ B}. Then C * - cat( * ~ B) = cat(B) (where cat(B) 
is calculated according to Ganea [9]). To see this we note that performing the 
construction r times starting from * ~ B gives the r-th Ganea space of B. 

(ii) Let C be the class of spherical fibrations over B. Then 

C * _ cat(f) = {O if f has a section, 
1 else. 

Example 3.3. Let g c mor(T,.) be a subclass and for each BET,. let g(B) = 
{f E g 1 target (f) = B}. Suppose moreover that g satisfies the following property: 

I M I For all g: B ~ C E mor(T,.), g* W(B)) c g (C). 

To such a class g we shall associate a modified Ganea construction: Given 
f: X ~ B, let f': E ~ B be an associated fibration with fibre F, choose 0 E g(F) 
and define g: E UF C(o) ~ B by glE = f, glc(o) = * (where C(o) denotes the 
mapping cone of 0). 

Define now the class of constructions KW) by 

KW)(!) = {g 1 9 obtained by a modified Ganea construction from f}. 

The condition I M I ensures that KW) is reasonable. We thus have the function 
qg)-cat(f,g) and obtain the relative invariant KW)-cat(f). 

Remark 3.4. The important examples for such g are obtained as follows: Let 
A c Obj(T,.) be a subclass and define 

gA(B) = {f: A ~ B 1 f E mor(A,B), A E A}. 

We think that KWA)- cat(f) may be an interesting invariant, just as the 
corresponding absolute invariant X f--* KWA)-cat(* ~ X) (compare Section 5). 
Indeed, if A = T,., then KWA)-cat(* ~ X) = cat(X). 
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4. Relative invariants according to Clapp and Puppe 

4.1. General case 

We assume now that the function 'ljJ is constant , i.e., we may look at 'ljJ as being a 
subclass of mor( -, B), B fixed again. 

Definition 4.1. Given 9 E mor( -, B), we set (K, 'ljJ) - cat(g) = (K, 'ljJ) - cat(idB , g). 

Example 4.2. As in Example 3.2, let £c mor( -, B) be a class. Then (£*, £) - cat(g) 
is the relative invariant defined by Clapp and Puppe in [1] for the case that 
£ = gA(B) (for gA see example 3 above). 

Example 4.3. Let 9 be as in Example 3.3. Then we have the invariant 

(K(Q), g(B)) - cat(f). 

In particular, (K(g), g(B)) - cat(idB ) is the absolute invariant considered in [13] 
in case 9 = gA. 

4.2. Strong relative category 

Notation 4.4. Let gl, g2 E mor( -, B). Then we write gl ,...., g2 if there is a homo
topy equivalence h with g2 0 h ,...., gl. 

Definition 4.5. Given 9 E mor( -, B), set 

(K, 'ljJ) - Cat(g) = inf {r I g""" g' for some g' E Kr('ljJ)}. 

This time we will write down the axiom scheme for (K, 'ljJ) - cat and for 
(K, 'ljJ) - Cat to emphasize that it is the analogue of the corresponding scheme 
for usual cat and Cat (see e.g. [13]). 

Theorem 4.6. The function (K, 'ljJ) -cat on mor( -, B) satisfies the following three 
properties and is the maximum of all functions n: mor( -, B) --t NU{ oo} satisfying 
these: 

(i) n(g) = 0 if 9 ~ 0: for some 0: E 'ljJ; 
(ii) if gl ~ g2, then n(gl) ~ n(g2); 

(iii) for any g' E K(g) one has n(g') ~ n(g) + l. 

Proof. Apply Theorem 2.5. D 

Theorem 4.7. The function (K, 'ljJ) -Cat on mor( -, B) satisfies the following three 
properties and is the maximum of all functions n: mor( -, B) --t Nu { oo} satisfying 
these: 

(i) n(g) = 0 if g""" 0: for some 0: E 'ljJ; 
(ii) if gl ,...., g2, then n(gl) = n(g2); 

(iii) for any g' E K(g) one has n(g') ~ n(g) + l. 
Proof. We show maximality: Let (K, 'ljJ) - Cat(g) = r and choose g' E Kr ('ljJ) , 
g""" g' . Then n(g') ~ n(o:) + r = r, for some 0: E 'ljJ. D 
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Remark 4.8. Obviously (K, 't/J) - cat ~ (K, 't/J) - Cat and the problem arises to say 
anything about the difference. 

Example 4.9. Let K = id and 't/J be the class of spherical fibrations over B. Then 
(K, 't/J) - cat(g) = 0 if 9 factors through a spherical fibration and 

(K 0") _ Cat( ) = { 0 if 9 '" g' with g' spherical, 
,If' 9 00 else. 

Hence, (K,'t/J)-cat(B x (SI V SI) --t B) = 0 and its strong category is infinite. 

5. Absolute invariants 

An absolute LS-invariant should be a function Obj(T..) --t N U {(X)} which can be 
characterized by a simple axiom system in our favorite form. To obtain an absolute 
invariant from a relative one we need classes of constructions K, 't/J: mor(T..) --t 

{subclasses of mor(T..)} such that 

o for f E mor( -, B), K(f), 't/J(f) c mor( -, B). 

We then obtain classes of constructions 

K(B) , 't/J(B): mor(-, B) --t {subclasses of mor( -, B)} 

as we need to define 

(K,'t/J)-cat(B) = (K(B),'t/J(B))-cat(* --t B,idB ). 

The choice of the pair (* --t B, id B) does make sense in the familiar examples. 

We will give a solution to the problem of finding conditions on K, 't/J such 
that this invariant can be described by a simple axiom scheme (as an absolute 
invariant). However, in analogy to the relative situation we may set up a general 
method to define absolute LS-category notions. This should be done in arbitrary 
categories, for it will then be possible to interprete some relative invariants in T.. 
as absolute ones in (T..) B. It is this scheme we apply in 5.2. 

5.1. Strong category and category in a category C 

Let C be a category, and 't/Jo, Ko be classes of constructions 

Obj(C) --t {subclasses of Obj(C)}. 

Definition 5.1. Given X E Obj(C), we set 

(Ko,'t/Jo)-Cat(X) = inf {r 13Y E Ko('t/Jo(X)), Y ~ X}. 

Suppose that in addition there is given a class, of morphisms (called special). 

Definition 5.2. Given X E Obj(C), we set 

(Ko ,'t/Jo,,)-cat(X) = inf {r 13Y E Ko('t/Jo(X)) and 3(0-: X --t Y) E,}. 
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The most common choice of special morphisms is the class of morphisms 
i: X -; Y such that there exists r: Y -; X with r 0 i = idx . In that case we 
drop 'Y from the notation. 

Remark 5.3. Suppose that in Definition 5.2 we let 'Y be the class of isomorphisms 
then we just obtain Definition 5.1; thus we may consider the definition of Cat as 
a particular case of that of cat. 

Example 5.4. Let C = H 0 -T., 'l/Jo = {*} and Ko (X) the class of mapping cones 
of f: Y -; X, YET., then (Ko,'l/Jo)-cat and (Ko,'l/Jo)-Cat agree with the usual 
LS-invariants. 

Example 5.5. Let C = Ho-T., let A c Obj (T.), 'l/Jo = A, Ko(X) = {double map
ping cylinders X f- Y -; A, A E A}, then (Ko, 'l/Jo) - cat and (Ko, 'l/Jo) - Cat agree 
with the invariants introduced by Clapp and Puppe [1, Propositions 5-4 and 5-5]. 

Example 5.6. Let C = Ho-T., let A c Obj (T.), 'l/Jo = A, Ko(X) the class of 
mapping cones of f: A -; X, A E A, then (Ko, 'l/Jo) - cat and (Ko, 'l/Jo) - Cat agree 
with the invariants introduced in [13, Definition 3]. 

Example 5.7. Let C = Ho-T., let 'l/Jo = {*}, let Ko(X) be the class of total spaces 
of spherical fibrations over X. Then e.g. 

(Ko, 'l/Jo) - cat (U ( n )) = (Ko, 'l/Jo) - Cat (U ( n )) = n 

(where U(n) denotes the unitary group in n variables). 

Example 5.8. Let C be the category of modules, 'l/Jo the class of free modules and 
Ko = id, then, for a module M, the two invariants are infinite except 

(Ko, 'l/Jo) - Cat(M) = 0 if M is free, 
(Ko, 'l/Jo) - cat(M) = 0 if M is projective. 

Example 5.9. Let C be the category of differentiable manifolds, 'l/Jo = {*}, Ko(X) = 
X x]R, 'Y = {embeddings}. Then (Ko,'l/Jo ,'Y)-cat(X) :::; m if X embeds in ]Rm. 

Example 5.10. Let C = Ho-T.. Set Ko(X) = 'l/Jo(X) = {nX, ~X} (where n, ~ 
denote the loop space and reduced suspension respectively). By [5], there are non
trivial spaces X with (Ko, 'l/Jo)- Cat(X) < 00 . 

We state characterization schemes for (Ko,'l/Jo,'Y)-cat and (Ko,'l/Jo)-Cat UD

der some hypotheses (which are fulfilled in all examples of this section except the 
last one) and leave the proof to the kaleidoscope viewer. 

Definition 5.11. The triple (Ko, 'l/Jo, 'Y) is reasonable if 

(i) for each (a: X -; Y) E 'Y the relation 'l/Jo(X) ::::> 'l/Jo(Y) holds and if 
X' E Ko(X), there exists Y' E Ko(Y) and (a' : X' -; Y') E 'Y, and 

(ii) for each X and X' E Ko(X) one has 'l/Jo(X') ::::> 'l/Jo(X), and 
(iii) for each X and X' E 'l/Jo(X) there is Z E 'l/Jo(X') and X' -; Z in 'Y, and 
(iv) 'Y is closed under composition. 
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Theorem 5.12. Let (Ko,'l/lo,,) be reasonable. Then the function (Ko,'l/lo,,)-cat 
satisfies the following three properties and is the maximum of all functions 
n: Obj (C) -+ N U { oo} satisfying these: 

(i) n(X) = 0 if there is (a: X -+ Y) E, with Y E'l/lo(X); 
(ii) given (a: X -+ X') E " then n(X) :S n(X'); 

(iii) given X' E Ko(X), then n(X') :S n(X) + 1 holds. 

Theorem 5.13. Suppose that the triple (Ko, 'l/lo, L) where L is the class of isomor
phisms is reasonable. Then the function (Ko, 'l/lo) - Cat satisfies the following prop
erties and is the maximum of all functions n : Obj (C) -+ N U { oo} satisfying these: 

(i) n(X) = 0 if X ~ Y E'l/lo(X); 
(ii) if X ~ X', then n(X) = n(X'); 

(iii) given X' E Ko(X), then n(X') :S n(X) + 1 holds. 

5.2. From relative category notions towards absolute ones 

Let K, 'l/l be classes of constructions mor(T.) -+ {subclasses of mor(T.)} as at the 
beginning of this section. We obtain classes of constructions Ko, 'l/lo : Obj(T.) -+ 

{subclasses of Obj(T.)} as follows. 

Definition 5.14. Set 'l/lo(X) equal to the class of domains A where a: A -+ X 
belongs to 'l/l(X)(* -+ X). For X E T., let Ko(X) be the class of X' such that 
there exist f: X -+ Y and f': X' -+ Y belonging to K(Y)(f). 

Thus we have the invariants (Ko, 'l/lo)- cat and (Ko, 'l/lo)- Cat as above (recall 
that we continue to work in Ho-T.). The invariant (K,'l/l)-cat(* -+ X,idx) will 
be abbreviated by cat(X). 

Proposition 5.15. The inequality (Ko, 'l/lo)- cat(X) :S cat(X) holds for all X E T.. 

Proof. Let cat(X) = n, n < 00. Then there exists l' E Kn('l/l(* -+ X)) with 
homotopy section. By definition, the domain X' of l' has (Ko, 'l/lo)- Cat(X') :S n, 
hence (Ko, 'l/lo)- cat(X) :S n. 0 

To get the reverse inequality we need many more assumptions on K and 'l/l: 

Definition 5.16. We call K, 'l/l reasonable in the extended sense if the following 
conditions are satisfied: 

(i) Given u : X -+ Y and a: A -+ X in 'l/l(X)(* -+ X), then there exists 
(3: B -+ Y in 'l/l(Y)( * -+ Y) such that u 0 a :S (3. 

(ii) Similarly, given u: X -+ Y, f: U -+ X and g: V -+ Y with u 0 f :S g, 
given l' E K(X)(f), then there exists g' E K(Y)(g) such that u 0 l' :S g'. 

Theorem 5.17. Let K, 'l/l be reasonable in the extended sense. Suppose that for all 
X E T. the following is true: 

(i) For all A E 'l/lo(X), cat(A) = 0; 
(ii) for all f: X -+ Y and (f': X' -+ Y) E K(Y)(f), cat(X'):S cat(X) + l. 

Then (Ko, 'l/lo)- cat = cat. 
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Proof. It remains to show that the equation (Ko, 7/Jo)- cat(X) = n implies that 
cat(X) ::; n. If (Ko, 7/Jo)- cat(X) = n, then X is a retract up to homotopy of X' 
with (Ko, 7/Jo)- Cat(X') = n, i.e., X' rv X" where X" can be constructed from some 
A E 7/Jo(X) in a particular way. By condition (i), (ii), we obtain cat(X") ::; n. Now 
the condition "reasonable in the extended sense" implies that cat satisfies the 
domination property, hence cat(X) ::; cat(X') = cat(X") ::; n. 0 

Example 5.18. The conditions of the theorem hold in the following situations: 
(a) 7/J = id and K = K(YA) or 

(b) 7/J = YA and K = K(9A) or 
7/J = YA and K = YA* (compare 4.1). 

5.3. Back to relative category notions 

Choose an object B E C and consider CB the category of maps with target B. For 
7/J, K: Obj(CB) -+ {subclasses of Obj(CB)}, we obtain (K, 7/J) - Cat(f) , f: X -+ B. 
Various choices of classes of special morphisms then give corresponding "relative" 
category notions. 

As an example let us consider the case where C is the homotopy category 
Of4, BE 4, and assume that 7/J is constant. Then (K, 7/J) - Cat(f) , f E mor( -, B) , 
coincides with the corresponding notion of Section 4. Moreover, with, = mar (C B) 
the function (K, 7/J, ,) - cat coincides with the category notion of Clapp and Puppe 
of Section 4. However, the invariants of Section 3 cannot be obtained that way. 

6. Appendix 

This section is devoted to the definition of the join of two maps with the same 
target and to a mapping theorem for some relative category notions. We work in 
the category 4 and do not distinguish maps from homotopy classes of maps. 

Definition 6.1. Let f: A -+ Band g: C -+ B be two maps in 4 with associated 
fibrations 1': A' -+ Band g': C' -+ B. The pullback of l' and g' is called a 
homotopy pullback of f and 9 and denoted by A x B C. 

Dually, by considering the pushout of the associated cofibrations, we have 
the notion of homotopy pushout of maps B -+ X, B -+ Y, denoted by X VB Y. 

Definition 6.2. Let f: A -+ Band g: C -+ B be maps in 4 and let P = A XB C, 
J = A V p C . The universal properties of pullback and pushout give a canonical 
map J -+ B, called the join of f and 9 over B and denoted by f *B g. 

Recall one of the main properties of the join construction [4, Theorem 3.1]: 

Theorem 6.3. Consider two homotopy pullbacks 

A ---> B f- C 
111 
A' ---> B' f- C' . 
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Then the join construction gives rise to a new homotopy pullback: 

A*BC ---> B 
1 1 

A' *B' C' ---> B'. 

Given h: B -> C E 4, £B C mor( -, B) and £c C mor( -, C), we recall from 
Example 4.2 that (£B*,£B)-cat is a function on mor(-,B) and (£c*,£o)-cat 
is one on mor( - , C). 

Theorem 6.4. Suppose that h: B -> C, £B and £ c verify the following property: 
for all a E £c there exists (3 E £ B and a homotopy pullback 

Let 

Al -> Bl 

in 1 '" 
B ~ C 

x -> y 

fl 1 9 

B ~ C 
be a homotopy pullback. Then (£B*,£B) -cat(f) s:; (£c*,£c) -cat(g). 

Proof. Given aI, a2, ... , ak E £c and the corresponding (31, (32, ... , (3k E £ B, by 
the previous join theorem (Theorem 5.17) there is a homotopy pullback 

Gk(f,(31, ... ,(3k) 
1 

---> Gk(g,al, ... ,ak) 
1 

B ~ C 

where Gk(f, (31, ... , (3k) denotes the iterated joins over B of the indicated maps. 
Hence, if the right arrow of the diagram above has a section, the left one has a 
section. 0 

Corollary 6.S. (1) Let F ~ B be the homotopy fibre of h: B -> C. Let £B = {i} 
and £ c = {* -> C}. Then (£B*,£B) -cat(i) s:; (£c*,£o) -cat(*) = cat(C). 

(2) If moreover i rv *, then cat(B) s:; cat(C). 

Proof. (1) Apply Theorem 6.3 to the homotopy pullback 

F -> Y 
1 1 
B ~ C. 

(2) The existence of homotopy commutative diagrams 

Gn(i, ... ,i) ---> Gn(B)=Gnh···,*) 

~ / 
B 

implies cat(B) s:; (£B*,£B)-cat(i). o 
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Essential category weight 
and phantom maps 

Jeffrey Strom 

Abstract. The purpose of this paper is to study the relationship between 
maps with infinite essential category weight and phantom maps (there is a 
brief summary of the main results on essential category weight in the appen
dix to this paper) . It is not hard to see that any map with E(f) = 00 is a 
phantom map. We give examples to show that the converse is not always true: 
there are phantom maps f with E(f) = 1. We also show that if OX is homo
topy equivalent to a finite dimensional CW complex then every phantom map 
f: X ~ Y has E(f) = 00. We are able to adapt many of the results of the 
theory of phantom maps to give us results about maps with E(f) = 00. Fi
nally, we use the connections between essential category weight and phantom 
maps to answer a question (asked by McGibbon) about phantom maps. 

The purpose of this paper is to study the relationship between maps with infinite 
essential category weight and phantom maps. 

A map (all maps and spaces in this paper are pointed) f: X --t Y has essen
tial category weight at least N if fog ~ * whenever g: Z --t X and Z is a CW 
complex with Lusternik- Schnirelmann category at most N (or, equivalently, if the 
Lusternik-Schnirelmann category of 9 is at most N). We write E(f) ~ N; observe 
that if f 'f. *, then E(f) < cat(X). The appendix to this paper contains a brief 
summary of the main results on essential category weight. 

A map f has infinite essential category weight if E(f) ~ N for all N. Write 
E(X, Y) to denote the set of pointed homotopy classes of maps f: X --tY with 
E(f) = 00 . It follows from Theorem 9 of the Appendix that E(X, Y) is functorial 
in both X and Y. 

Rudyak [11] has made the observation that if E(f) = 00 , then f must be 
a phantom map. Recall that a map f : X --t Y is a phantom map if fog ~ * 
whenever g: Z--tX and the dimension of Z is finite (this is a phantom map of 
the first kind in McGibbon's article [7]) . To prove this, it suffices to look at each 
component of the domain; since connected finite dimensional spaces have finite 
category, the observation is immediate. 

Let Ph(X, Y) denote the set of pointed homotopy classes of phantom maps 
f: X --tY. Thus, E(X, y) ~ Ph(X, Y). It is not hard to see that this inclusion 
can be proper. For example, there is a phantom map f: IClP'oo--tS3 whose sus
pension is nontrivial [5] . Thus, Ef is a phantom map, but E(Ef) = 1. For another 
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example, if G is anyone of the groups Sp(2), Sp(3), G2 , F4 , then there are stably 
nontrivial phantom maps OG~K for certain finite type CW complexes K [7J. 
The suspensions ofthese maps are phantom maps with essential category weight l. 

This leads us to a natural question: for what spaces is it true that E(X, Y) = 
Ph(X, Y)? Our first theorem is a partial answer to this question. 

Theorem 1. Let X be a space whose loop space OX is homotopy equivalent to a 
finite dimensional CW complex. Then for any Y 

E(X, Y) = Ph(X, Y). 

Proof Let!: X ~ Y be a phantom map; we need to show that E(J) = 00. By 
Theorem 10 in the Appendix, it suffices to show that !IBNI1X ~ * for each N > O. 
This is the case because, since OX is homotopy equivalent to a finite dimensional 
CW complex, so is BNOX. 0 

It is trivial that E(X, Y) = Ph(X, Y) if Ph(X, Y) = *. But this is far from 
the situation in Theorem 1, as we now show. 

According to McGibbon (Example 3.12 in [7]), if G is a compact Lie group, 
then the universal phantom map out of BG is nontrivial. The same argument works 
equally well for any space X whose loop space OX is homotopy equivalent to a 
connected finite dimensional CW complex. Thus, we have the following corollary. 

Corollary 2. If OX is homotopy equivalent to a connected finite dimensional CW 
complex, then there is a space Y such that E(X, Y) -=1= *. It follows that 
cat(X) = 00. 

The universal phantom map [6J is a useful tool in the study of Ph(X, Y). 
There is an analogous map out of X which is weakly universal with respect to the 
property of having infinite essential category weight. 

For each CW complex X, we may form the cofiber sequence 

V BNOX~BOX ~ X~ VEBNOX 

in which i is the wedge of the inclusions of the BNOX. 

Theorem 3. Every map f: X ~ Y with E (J) = 00 has a factorization 

f 
X ---------------. Y 

~ / 

This factorization is not unique in general. 

The proof is a straighforward adaptation of Gray and McGibbon's Theorem 1 
in [6J, in which we replace the filtration 

Xo <:;; Xl <:;; • • • <:;; Xn <:;; •.• <:;; X 
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by the filtration 

and use Theorem 10 to interpret essential category weight in terms of this filtration. 
This filtration of X can also be used to give an algebraic computation 

of E(X, Y). 

Theorem 4. For CW complexes X and Y, 

E(X, Y) ~ liml[~BNOX, YJ. 
Proof. According to Bousfield and Kan [1], there is a short exact sequence 

* --diml[~BNOX, YJ -----> [X, YJ -L lim[BNOX, YJ -----> *. 

Theorem 10 allows us to identify E(X, Y) with r 1 (*). o 
Some other results of [6J carryover as well. For example, we have the following 

corollary, which is analogous to Theorem 2 in [6J. 

Corollary 5. Let X be a CW complex; then E(X, Y) = * for every Y if and only 
if ~X is dominated by V ~BNOX. 

Gray and McGibbon [6J use the universal phantom map to show that if f 
and 9 are compos able phantom maps, then fog ~ *; the same is true a fortiori if 
E(f) = E(g) = 00. However, we can say much more. 

Proposition 6. If 9 is a phantom map and E(f) > 1, then fog ~ *. This is the 
case, in particular, if E(g) = 00. 

Proof. We have the following commutative diagram 
9 f 

X • Y • z. 
~ /( 

~ (V Xn) 

Since cat (~(V Xn)) = 2 and E(f) 2: 2, we conclude that f 0 j ~ *, which finishes 
the proof. 0 

We have seen how to apply the theory of phantom maps to the study of maps 
with E(f) = 00. Our final result goes in the other direction: we will use the theory 
of essential category weight to answer a question of McGibbon's. 

Following Roitberg [9], McGibbon observes that if X and Y have finite type 
and Y is grouplike, then Ph(X, Y) has an abelian group structure which is natural 
in X. He asks in Question 6 of [7J whether the assumption of finite type is necessary. 
The exact sequence due to Bousfield and Kan shows that it is not. McGibbon's 
intention was to ask for a geometric argument that shows why the commutator of 
two phantom maps should be trivial. This is the question we resolve in our proof 
of Theorem 7. 
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Theorem 7. If X and Yare CW complexes and Y is grouplike, then Ph(X, Y) has 
an abelian group structure which is natural in X. 

Proof. We have to show that the commutator of any two phantom maps is trivial. 
Let x: Y x Y ----+Y denote the commutator map. Since XlyvY ~ *, there is 

a factorization 
Y x Y ___ x ___ • Y 

/ 
YAY 

in which A is the usual quotient map. By Theorem 8 in the Appendix, E(A) > 1. 
Using Theorem 9 in the Appendix, we see that E(X) > 1. 

Now let f, g: X ----+ Y be phantom maps; it follows that their product 

f x g: X X X ----+ Y x Y 

is also phantom. Since the commutator [f,gJ is equal to X 0 (f x g) 0 d, where 
d: X ----+X x X is the diagonal map, the theorem follows directly from Proposi
tion 6. 0 

A final note before moving on to the Appendix. This paper was written while 
I held a visiting position at Wayne State University. My thanks to the Mathemat
ics department there, and especially to Chuck McGibbon and Bob Bruner, for 
providing a helpful and stimulating working environment. 

Appendix: Essential category weight 

This is a summary of results from [13J. Essential category weight is a homotopy 
invariant version of category weight, which was introduced by Fadell and Hus
seini in [2J. Essential category weight has been studied independently by Rudyak 
([I1J, [12]), who called it strict category weight. 

Many of the most important lower bounds on the category of a space X take 
the form of a product formula. Theorem 8 can be considered the basic product 
formula from which all others follow. 

Theorem 8. Let f: X ----+ K and g: Y ----+ L. In the diagram 
fxg 

XxY-KxL 

K AL 

we have E(fxg) ;::: E(f) + E(g). 
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Proof. Write E(J) = p and E(g) = q, and suppose h: Z~X x Y with cat(Z) ~ 
p + q. Then we may write Z = Au B with cat(A) ~ p and cat(B) ~ q. Thus 
(J 0 h)IA ~ * and (g 0 h)IB ~ *. We can use homotopy extension to lift (J x g) 0 h 
into K V L, which shows that 1\ 0 (J x g) 0 h ~ * and completes the proof. 0 

When f and 9 represent cohomology classes (in any cohomology theory), 
this result becomes a stronger version of the classical cup length lower bound for 
cat(X). When f and 9 are maps to a grouplike space, we obtain a strengthening 
of Whitehead's theorem [16] that the nilpotence length of [X, Y] is bounded above 
by the category of X. 

Next we give a formula for the essential category weight of a composition of 
two maps. 

Theorem 9. Let f: X ~ Y and g: Y ~ Z. Then 

E(g 0 f) ~ E(g) . E(J). 

Proof. Write E(J) = p and E(g) = q and suppose h : W~X with cat(W) ~ pq. 
Then we may write 

W = Al U··· UAq 

with cat(Ai) ~ p. Thus (J 0 h)IA; ~ * for each i, and so f 0 h has a factorization 

W~X~Y~Z 

~/. 
Wi 

in which W' = W U (U CAi ). Since cat(W' ) ~ q and E(g) = q, we conclude that 
go i ~ *, which proves the theorem. 0 

A very important consequence of this theorem is that E(g 0 f) ~ E(g) and 
E(g 0 f) ~ E(J). 

If f represents a cohomology class u and 9 represents a cohomology opera
tion (), we find that E(()(u)) ~ E(()) . E(u). Thus, Fadell and Husseini's result [2] 
that E(pI (u)) ~ 2 if lui = e(I) can be instantly improved to E(pI (u)) ~ 2E(u). 
Nearly complete calculations of E(()) for ordinary cohomology operations can be 
found in [13] . 

Finally, we address the question of how to compute the essential category 
weight of a given map. Recall that if X is a CW complex, then we can form a 
filtration 

B10X s:;; ... s:;; BNOX s:;; . .. s:;; BOX ~ X 

by the usual construction of classifying spaces [8], [14], [3]. 

Theorem 10. Let f: X ~ Y be any map. Then E(J) ~ N if and only if the com-
posite 

is nullhomotopic. 
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Proof. Recall from [14J that a map f: Z ~ BG factors through a space Q with 
cat(Q) ~ N if and only if f factors through BNnX. Thus, if flBNflX c:::: *, 
then E(f) 2: N. 

It follows from the construction of BNnX that cat(BNnX) ~ N; thus, 
if E(f) 2: N, then flBNflX c:::: *. 0 

The filtration of X by BNnX gives rise to a Rothenberg-Steenrod spectral 
sequence (also called a Moore spectral sequence) [lOJ; the connection between this 
spectral sequence and cat(X) has been studied by Whitehead [17], Ginsburg [4J 
and Toomer [15J. Many of their results can be derived as instant corollaries of 
Theorem 10. Furthermore, we can see that the Eoo-term of this spectral sequence 
is precisely the graded module on H*(X) associated to the filtration by essential 
category weight. 
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