Ring Spectra with Coefficients in $V(1)$ and $V(2)$, I

By Syun-ichi Yanagida and Zen-ichi Yosimura
(Received April 30, 1976)

For a (reduced) cohomology theory h the $\bmod q$ cohomology theory $h\left(; Z_{q}\right)$ is defined by $h^{*}\left(X ; Z_{q}\right)=h^{*+2}\left(X \wedge M_{q}\right)$ where M_{q} is a co-Moore space of type ($Z_{q}, 2$). By the representability theorem any (multiplicative) cohomology theory h is represented by a certain (ring) spectrum $E . \quad \Sigma^{-1} M_{q}$ is a Moore spectrum of type Z_{q}, so we put $V_{q}(0)=\Sigma^{-1} M_{q}$. Since $V_{q}(0)$ is self dual, $E \wedge V_{q}(0)$ is a represented spectrum of $h\left(; Z_{q}\right)$ so that $h^{*}\left(X ; Z_{q}\right) \cong$ $\left\{X, E \wedge V_{q}(0)\right\}_{-*}$. In [1] Araki-Toda discussed the multiplicative structure in $\bmod q$ cohomology theories. In other words they investigated several conditions on a ring spectrum E under which $E \wedge V_{q}(0)$ is a nice ring spectrum.

Let p be a fixed prime. A spectrum $V(n)$ is defined to be a finite $C W$ spectrum having $H^{*}\left(V(n) ; Z_{p}\right) \cong E\left(Q_{0}, Q_{1}, \cdots, Q_{n}\right)$ as a module over the $\bmod p$ Steenrod algebra where Q_{i} are Milnor elements. For example, we can take as $V(0)$ a Moore spectrum of type Z_{p}, i.e., $V(0)=V_{p}(0)$, and the existence of $V(n)$ is assured for $n=1, p \geqq 3$, for $n=2, p \geqq 5$ and for $n=3, p \geqq 7$. Making use of Adams spectral sequence Toda [4] computed the homotopy groups of $V(1)$ and $V(2)$ up to some range, and he then determined the structure of the algebra $\{V(1), V(1)\}_{*}$ in [5].

Let E be a ring spectrum equipped with a multiplication μ and a unit ι. The purpose of the present work is to give conditions on E under which $E \wedge V(1)$ and $E \wedge V(2)$ are nice ring spectra (Theorem 4.2), by means of Toda's computations. In § 1 we restate several results of Araki-Toda [1], mainly existence theorems of admissible multiplications for $E \wedge V(0)$, but they are presented here in terms of the stable homotopy category of $C W$-spectra. If $p \geqq 3$, then $V(0)$ becomes a ring spectrum which admits a unique multiplication ψ. In § 2 we first give a condition under which $E \wedge V(1)$ has a multiplication whose restriction to $E \wedge V(0)$ is $(\mu \wedge \psi)(1 \wedge T \wedge 1)$ where T denotes the map switching two factors. We next study a condition for the commutativity of $E \wedge V(1)$. In particular, when $p \geqq 5 V(1)$ is a ring spectrum whose multiplication $\psi_{1,1}$ is a unique extension of ψ. In § 3 we give a condition under which $E \wedge V(2)$ has a multiplication whose restriction to $E \wedge V(1)$ is induced by μ and $\psi_{1,1}$, and then discuss the commutativity of $E \wedge V(2)$.

In $\S 4$ we show that in the $p \geqq 3$ cases $B P \wedge V(n)$ are associative and commutative ring spectra for the Brown-Peterson spectrum $B P$ (Theorem 4.7), although it seems difficult to investigate the associativity of $E \wedge V(1)$ and $E \wedge V(2)$ for a general E. We can construct a certain $C W$-spectrum $P(n)$ using the Baas-Sullivan technique of defining bordism theories with singularities (see [2]). Since $B P \wedge V(n)$ is isomorphic to $P(n+1)$, the above result means that $P(n+1)$ is an associative and commutative ring spectrum if $p \geqq 3$ and $V(n)$ exists (Theorem 4.10). In appendix we show that $P(n)$ is always a ring spectrum even if $V(n)$ does not exist, and in addition that it is commutative for $p \geqq 3$.

In this note we shall work in the stable homotopy category of $C W$ spectra.

The authors wish to thank Professor S. Oka for his kind advices.

§ 1. Admissible multiplications of $E \wedge V(0)$

1.1. Let us fix a prime p and denote by $V(0)$ the Moore spectrum of type Z_{p}, so we have a cofibering

$$
\Sigma^{0} \xrightarrow{p} \Sigma^{0} \xrightarrow{i} V(0) \xrightarrow{\pi} \Sigma^{1} .
$$

A $C W$-spectrum X is called a Z_{p}-spectrum if the identity $1_{X}: X \rightarrow X$ has order p. Thus a Z_{p}-spectrum X is equipped with two maps

$$
\psi_{X}: X \wedge V(0) \longrightarrow X \quad \text { and } \quad \phi_{X}: \Sigma^{1} X \longrightarrow X \wedge V(0)
$$

satisfying the equalities

$$
\begin{gather*}
\psi_{X} \cdot \phi_{X}=0, \\
\psi_{X}(1 \wedge i)=(1 \wedge \pi) \phi_{X}=1_{X} \quad \text { and } \quad(1 \wedge i) \psi_{X}+\phi_{X}(1 \wedge \pi)=1_{X \wedge V(0)} . \tag{1.1}
\end{gather*}
$$

Remark that ψ_{X} and ϕ_{X} are uniquely determined when $\left\{\Sigma^{1} X, X\right\}=0$.
It is well known that

$$
\begin{array}{ll}
p \cdot 1_{V(0)}=0 & \text { if } p \text { is odd, but } \\
p \cdot 1_{V(0)}=i \cdot \eta \cdot \pi \neq 0 & \text { if } p=2, \tag{1.2}
\end{array}
$$

where $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the Hopf map [1, Theorem 1.1]. This means that $V(0)$ is a Z_{p}-spectrum for an odd p, but not so for $p=2$. Let N denote the mapping cone of the composition $i \cdot \eta: \Sigma^{1} \rightarrow V(0)$. By Verdier's lemma (see [3]) we then have a cofibering

$$
\Sigma^{1} \xrightarrow{j_{0}} V(0) \wedge V(0) \xrightarrow{k_{0}} N \xrightarrow{p \cdot \pi_{N}} \Sigma^{2}
$$

making the diagram below commutative

in which the right-lower square commutes up to the sign -1 .
For any Z_{p}-spectrum $Y(1 \wedge \pi)^{*}:\left\{\Sigma^{1} X, Y\right\} \rightarrow\{X \wedge V(0), Y\}$ is monic. Hence
Lemma 1.1. $\quad X \wedge V(0)$ is a Z_{p}-spectrum if and only if $1_{X} \wedge i \cdot \eta: \Sigma^{1} X \rightarrow$ $X \wedge V(0)$ is trivial.

We say that a map $\gamma: X \wedge V(0) \wedge V(0) \rightarrow X \wedge V(0)$ is a pre multiplication of $X \wedge V(0)$ if it satisfies $\gamma(1 \wedge 1 \wedge i)=\gamma(1 \wedge i \wedge 1)=1$. Assume that $X \wedge V(0)$ is a Z_{p}-spectrum, so we have a left inverse $\gamma_{N}: X \wedge N \rightarrow X \wedge V(0)$ of $1 \wedge i_{N}$. Making use of this left inverse we define a map

$$
\gamma_{0}: X \wedge V(0) \wedge V(0) \longrightarrow X \wedge V(0)
$$

as the composition $\gamma_{0}=\gamma_{N}\left(1 \wedge k_{0}\right)$.
Lemma 1.2. The map γ_{0} is a pre multiplication of $X \wedge V(0)$.
Proof. The difference $i \wedge 1-1 \wedge i$ belongs to $\pi^{*}\left\{\Sigma^{1}, V(0) \wedge V(0)\right\}=$ $\pi^{*} j_{0 *}\left\{\Sigma^{1}, \Sigma^{1}\right\}$ as $\left\{\Sigma^{1}, N\right\}=0$. So we get immediately

$$
\gamma_{N}\left(1 \wedge k_{0}\right)(1 \wedge i \wedge 1)=\gamma_{N}\left(1 \wedge k_{0}\right)(1 \wedge 1 \wedge i)=\gamma_{N}\left(1 \wedge i_{N}\right)=1
$$

The above result means that
(1.3) $X \wedge V(0)$ is a Z_{p}-spectrum if and only if it has a pre multiplication.

For two pre multiplications γ, γ^{\prime} of $X \wedge V(0)$ we can choose a map $b: X \wedge \Sigma^{1} V(0) \rightarrow X \wedge V(0)$ such that $\gamma-\gamma^{\prime}=b(1 \wedge 1 \wedge \pi)$. Obviously $b(1 \wedge i)(1 \wedge \pi)$ $=0$ and hence $b(1 \wedge i)=0$ because $p\left\{\Sigma^{1} X, X \wedge V(0)\right\}=0$. Consequently there exists a unique map

$$
\begin{equation*}
B\left(\gamma, \gamma^{\prime}\right): \Sigma^{2} X \longrightarrow X \wedge V(0) \tag{1.4}
\end{equation*}
$$

so that $\gamma-\gamma^{\prime}=B\left(\gamma, \gamma^{\prime}\right)(1 \wedge \pi \wedge \pi) . \quad B\left(\gamma, \gamma^{\prime}\right)$ measures the difference of pre multiplications γ and γ^{\prime}.

Let E be a ring spectrum, i.e., it has given maps $\mu: E \wedge E \rightarrow E$ and $\iota: \Sigma^{0}$ $\rightarrow E$ such that $\mu(1 \wedge c)=\mu(\iota \wedge 1)=1$. Every pre multiplication γ of $E \wedge V(0)$
gives rise to a map

$$
\mu_{r}: E \wedge V(0) \wedge E \wedge V(0) \longrightarrow E \wedge V(0)
$$

defined by the composition $\mu_{r}=\gamma(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)$ where T is the map switching factors. This map satisfies the property

$$
\begin{equation*}
\mu_{r}(1 \wedge T \wedge 1)(1 \wedge 1 \wedge 1 \wedge i)=\mu_{r}(1 \wedge T \wedge 1)(1 \wedge 1 \wedge i \wedge 1)=\mu \wedge 1 \tag{1}
\end{equation*}
$$

Therefore this gives $E \wedge V(0)$ the structure of a ring spectrum having $\iota \wedge i$ as the unit. On the other hand, each multiplication $\tilde{\mu}$ of $E \wedge V(0)$ satisfying $\left(\Lambda_{1}\right)$ yields a pre multiplication $\gamma_{\tilde{\mu}}$ by putting $\gamma_{\tilde{\mu}}=\tilde{\mu}(1 \wedge 1 \wedge c \wedge 1)$. This correspondence is a left inverse of the previous $\gamma \rightarrow \mu_{r}$.

Proposition 1.3. Let E be a ring spectrum. The following conditions are equivalent:
i) $E \wedge V(0)$ is a Z_{p}-spectrum,
ii) $E \wedge V(0)$ has a multiplication satisfying $\left(\Lambda_{1}\right)$, and
iii) $E \wedge V(0)$ is a ring spectrum with the unit $\iota \wedge i$.

Proof. The above observations show the implications i) \rightarrow ii) \rightarrow iii), and iii) $\rightarrow i$) is immediate.

By the same argument as (1.4) we obtain a unique map

$$
\begin{equation*}
B\left(\tilde{\mu}, \tilde{\mu}^{\prime}\right): \Sigma^{2} E \wedge E \longrightarrow E \wedge V(0) \tag{1.5}
\end{equation*}
$$

so that $\tilde{\mu}-\tilde{\mu}^{\prime}=B\left(\tilde{\mu}, \tilde{\mu}^{\prime}\right)(1 \wedge \pi \wedge 1 \wedge \pi)$ for two multiplications $\tilde{\mu}, \tilde{\mu}^{\prime}$ of $E \wedge V(0)$ satisfying $\left(\Lambda_{1}\right)$.

LEMMA 1.4. If a multiplication $\tilde{\mu}$ of $E \wedge V(0)$ satisfies the property $\left(\Lambda_{1}\right)$, then there exists a unique map $\tilde{\gamma}_{N} ; E \wedge E \wedge N \rightarrow E \wedge V(0)$ such that $\tilde{\mu}(1 \wedge T \wedge 1)=\tilde{\gamma}_{N}\left(1 \wedge 1 \wedge k_{0}\right)$.

Proof. Take a left inverse γ_{N} of $1 \wedge i_{N}$ and fix our multiplication $\mu_{0}=$ $\mu_{\gamma_{0}}$ associated with the pre multiplication $\gamma_{0}=\gamma_{N}\left(1 \wedge k_{0}\right)$. Since

$$
\begin{aligned}
\tilde{\mu}(1 & \wedge T \wedge 1)\left(1 \wedge 1 \wedge j_{0}\right) \\
& =\mu_{0}(1 \wedge T \wedge 1)\left(1 \wedge 1 \wedge j_{0}\right)+B\left(\tilde{\mu}, \mu_{0}\right)(1 \wedge 1 \wedge \pi \wedge \pi)\left(1 \wedge 1 \wedge j_{0}\right) \\
& =0
\end{aligned}
$$

we can find a required map which is unique.
A similar discussion to the above shows that
every pre multiplication γ of $X \wedge V(0)$ admits a factorization $\gamma=\gamma_{N}\left(1 \wedge k_{0}\right)$.
1.2. We put $\rho=\eta$ in the $p=2$ case and $\rho=0$ in the other cases and denote by P its mapping cone. There exists a cofibering

$$
\Sigma^{0} \xrightarrow{p \cdot i_{p}} P \xrightarrow{j_{N}} N \xrightarrow{k_{N}} \Sigma^{1}
$$

so that the diagram below is commutative

'Take a map $k: N \rightarrow \Sigma^{1}$ such that $(1 \wedge \pi)(1+T)=i \cdot k \cdot k_{0}$ as $\pi_{*}(1 \wedge \pi)(1+T)=0$ and $k_{0}^{*}:\left\{N, \Sigma^{1}\right\} \rightarrow\left\{V(0) \wedge V(0), \Sigma^{1}\right\}$ is epic. Setting $k \cdot j_{N}=a_{\eta} \cdot \pi_{P}, a \in Z_{2}$, where $a=0$ in the $p=2$ case, the map k is expressed as a sum $k=a \eta \cdot \pi_{N}+b k_{N}, b \in Z$. Therefore $(1 \wedge \pi)(1+T)=b i \cdot k_{N} \cdot k_{0}$. Applying $(1 \wedge i)^{*}$ on both sides we get $b \equiv 1 \bmod p$. Thus

$$
\begin{equation*}
(1 \wedge \pi)(1+T)=i \cdot k_{N} \cdot k_{0} . \tag{1.7}
\end{equation*}
$$

Let D be the Moore spectrum of type $Z_{p^{2}}$ and $j: \Sigma^{0} \rightarrow D$ be the canonical inclusion. Then we have a cofibering

$$
\Sigma^{-1} V(0) \xrightarrow{\delta} V(0) \xrightarrow{i_{p}} D \xrightarrow{\pi_{D}} V(0)
$$

so that $p \cdot j=i_{D} \cdot i$ and $\pi_{D} \cdot j=i$, corresponding to the short exact sequence $0 \rightarrow$ $Z_{p} \rightarrow Z_{p^{2}} \rightarrow Z_{p} \rightarrow 0$. Put $\rho_{0}=j \cdot \eta$ in the $p=2$ case and $\rho_{0}=0$ in the other cases. Denoting by Q its mapping cone there exists a commutative diagram

consisting of four cofiberings. The above k_{N}^{\prime} coincides with the composition $i \cdot k_{N}$ as $k_{N}^{\prime}-i \cdot k_{N}$ belongs to $\pi_{N}^{*}\left\{\Sigma^{1}, V(0)\right\}=0$.

Let E be a ring spectrum such that $1 \wedge \rho_{0}: \Sigma^{1} E \rightarrow E \wedge D$ is trivial. For any left inverse $\gamma_{Q}: E \wedge Q \rightarrow E \wedge D$ of $1 \wedge i_{Q}$ we now construct a left inverse $\gamma_{N}: E \wedge N \rightarrow E \wedge V(0)$ of $1 \wedge i_{N}$ which is compatible with it. Considering the diagram

with two cofiberings, we get a map $\gamma^{\prime}: E \wedge N \rightarrow E \wedge V(0)$ which makes the entire diagram commute. Five lemma shows that $\gamma^{\prime}\left(1 \wedge i_{N}\right)$ is a homotopy equivalence. So we put $\gamma_{N}=\left\{\gamma^{\prime}\left(1 \wedge i_{N}\right)\right\}^{-1} \cdot \gamma^{\prime}$, which makes the above diagram commutative again and satisfies $\gamma_{N}\left(1 \wedge i_{N}\right)=1$.

Consider the multiplication μ_{0} of $E \wedge V(0)$ associated with the pre multiplication $\gamma_{0}=\gamma_{N}\left(1 \wedge k_{0}\right)$. This satisfies the property
$\left(\Lambda_{2}\right)^{\prime}$

$$
(1 \wedge \delta) \mu_{0}=(1 \wedge 1 \wedge \pi)(1+1 \wedge T)(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)
$$

because of (1.7). In other words the equality

$$
\begin{equation*}
(1 \wedge \delta) \mu_{0}=\mu_{0}(1 \wedge \delta \wedge 1 \wedge 1)+\mu_{0}(1 \wedge 1 \wedge 1 \wedge \delta) \tag{2}
\end{equation*}
$$

holds. Thus $1 \wedge \delta$ behaves as a derivation.
Proposition 1.5. Let E be a ring spectrum. In the $p=2$ case $E \wedge V(0)$ has a multiplication satisfying $\left(\Lambda_{1}\right)$ and $\left(\Lambda_{2}\right)$ if and only if $1 \wedge j \cdot \eta: \Sigma^{1} E \rightarrow E \wedge D$ is trivial. In the other cases $E \wedge V(0)$ has always a multiplication satisfying $\left(\Lambda_{1}\right)$ and $\left(\Lambda_{2}\right)$.

Proof. Our multiplication μ_{0} constructed suitably as the previous satisfies the properties $\left(\Lambda_{1}\right)$ and $\left(\Lambda_{2}\right)$. We next assume that there exists a multiplication $\tilde{\mu}$ of $E \wedge V(0)$ with the two properties when $p=2$. Lemma 1.4 says that $\tilde{\mu}$ has a factorization $\tilde{\mu}=\tilde{\gamma}_{N}\left(1 \wedge 1 \wedge k_{0}\right)(1 \wedge T \wedge 1)$. By use of (1.7) the equality $\left(\Lambda_{2}\right)^{\prime}$ yields

$$
\begin{aligned}
(1 \wedge \delta) \tilde{\gamma}_{N}\left(1 \wedge 1 \wedge k_{0}\right) & =(1 \wedge 1 \wedge \pi)(1+1 \wedge T)(\mu \wedge 1 \wedge 1) \\
& =(1 \wedge i)\left(1 \wedge k_{N}\right)\left(1 \wedge k_{0}\right)(\mu \wedge 1 \wedge 1)
\end{aligned}
$$

This then implies that $(1 \wedge \delta) \tilde{\gamma}_{N}=(1 \wedge i)\left(1 \wedge k_{N}\right)(\mu \wedge 1)$ as $2\left\{\Sigma^{1} E \wedge E, E \wedge V(0)\right\}$ $=0$. Putting $\gamma_{N}=\tilde{\gamma}_{N}(\iota \wedge 1 \wedge 1)$, it is a left inverse of $1 \wedge i_{N}$ which has $(1 \wedge \delta) \gamma_{N}$ $=1 \wedge k_{N}^{\prime}$. By the same argument as (1.8) we can find a left inverse γ_{Q} of $1 \wedge i_{Q}$ such that $\left(1 \wedge \pi_{D}\right) \gamma_{Q}=\gamma_{N}\left(1 \wedge j_{N}^{\prime}\right)$. Hence $1 \wedge j \cdot \eta: \Sigma^{1} E \rightarrow E \wedge Q$ is trivial.
1.3. Let E be a ring spectrum and $f: A \rightarrow B$ be a map which induces the trivial $1 \wedge f: E \wedge A \rightarrow E \wedge B$. Denote by C the mapping cone of the map f, so we have a cofibering

$$
A \xrightarrow{f} B \xrightarrow{i_{c}} C \xrightarrow{\pi_{c}} \Sigma^{1} A .
$$

For any $\xi: \Sigma^{1} A \rightarrow E \wedge C$ with $\left(1 \wedge \pi_{C}\right) \xi=\iota \wedge 1$ we define a left inverse of $1 \wedge i_{C}$

$$
\gamma_{\xi}: E \wedge C \longrightarrow E \wedge B
$$

by the formula $\left(1 \wedge i_{C}\right) \gamma_{\xi}=1-(\mu \wedge 1)(1 \wedge \xi)\left(1 \wedge \pi_{C}\right)$. As is easily checked, the correspondence $\xi \rightarrow \gamma_{\xi}$ has a left inverse and hence it is injective.

Lemma 1.6. Let $\xi: \Sigma^{1} A \rightarrow E \wedge C$ be a map such that $\left(1 \wedge \pi_{C}\right) \xi=\iota \wedge 1$.
i) If E is associative, then the relation $\gamma_{\epsilon}(\mu \wedge 1)=(\mu \wedge 1)\left(1 \wedge \gamma_{\xi}\right)$ holds.
ii) If E is associative and commutative, then the relation $\gamma_{\xi}(\mu \wedge 1)(1 \wedge T)$ $=(\mu \wedge 1)(1 \wedge T)\left(\gamma_{\xi} \wedge 1\right)$ holds.

Proof. Under our assumptions a routine computation shows that

$$
\left(1 \wedge i_{C}\right) \gamma_{\xi}(\mu \wedge 1)=(\mu \wedge 1)\left(1 \wedge 1 \wedge i_{C}\right)\left(1 \wedge \gamma_{\xi}\right)
$$

and $\quad\left(1 \wedge i_{C}\right) \gamma_{\xi}(\mu \wedge 1)(1 \wedge T)=(\mu \wedge 1)(1 \wedge T)\left(1 \wedge i_{C} \wedge 1\right)\left(\gamma_{\xi} \wedge 1\right)$.
Let E be an associative ring spectrum such that $E \wedge V(0)$ is a $Z_{p^{-}}$ spectrum. Take a map $\xi: \Sigma^{2} \rightarrow E \wedge N$ satisfying $\left(1 \wedge \pi_{N}\right) \xi=\iota$ and consider the left inverse γ_{ξ} of $1 \wedge i_{N}$ induced by the map ξ. This gives us a pre multiplication γ_{0} by putting $\gamma_{0}=\gamma_{\xi}\left(1 \wedge k_{0}\right)$. Note that there exists a map $\xi_{0}: \Sigma^{2} \rightarrow$ N satisfying $\pi_{N} \cdot \xi_{0}=1$ whenever p is odd. By means of Lemma 1.6 we see that the above γ_{0} is compatible with the multiplication μ of E in the sense that
$\left(\Lambda_{3}\right)^{\prime}$

$$
\begin{aligned}
& \gamma_{0}(\mu \wedge 1 \wedge 1)=(\mu \wedge 1)\left(1 \wedge \gamma_{0}\right) \\
& \gamma_{0}(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)(1 \wedge 1 \wedge T)=(\mu \wedge 1)(1 \wedge T)\left(\gamma_{0} \wedge 1\right)
\end{aligned}
$$

when E is commutative or $\xi=(c \wedge 1) \xi_{0}$. The property $\left(\Lambda_{3}\right)^{\prime}$ implies that the multiplication μ_{0} induced by the left inverse γ_{ξ} is quasi associative, i.e.,
and

$$
\begin{align*}
& \mu_{0}(\mu \wedge 1 \wedge 1 \wedge 1)=(\mu \wedge 1)\left(1 \wedge \mu_{0}\right) \tag{3}\\
& \mu_{0}(\mu \wedge 1 \wedge 1 \wedge 1)(1 \wedge T \wedge 1 \wedge 1)=\mu_{0}(1 \wedge 1 \wedge \mu \wedge 1) \\
& \mu_{0}(1 \wedge 1 \wedge \mu \wedge 1)(1 \wedge 1 \wedge 1 \wedge T)=(\mu \wedge 1)(1 \wedge T)\left(\mu_{0} \wedge 1\right)
\end{align*}
$$

A multiplication of $E \wedge V(0)$ is said to be admissible if it satisfies the properties $\left(\Lambda_{1}\right),\left(\Lambda_{2}\right)$ and $\left(\Lambda_{3}\right)$ (see [1]).

Proposition 1.7. Let E be an associative ring spectrum. In the $p=2$ case $E \wedge V(0)$ has an admissible multiplication if $1 \wedge j \cdot \eta: \Sigma^{1} E \rightarrow E \wedge D$ is trivial and E is commutative. In the other cases admissible multiplications of $E \wedge V(0)$ exist always. (Cf., [1, Theorem 5.9]).

Proof. For any $\xi^{\prime}: \Sigma^{2} \rightarrow E \wedge Q$ satisfying $\left(1 \wedge \pi_{Q}\right) \xi^{\prime}=\iota \wedge 1$ we put $\xi=$ $\left(1 \wedge j_{N}^{\prime}\right) \xi^{\prime}$. This determines the left inverse γ_{ξ} of $1 \wedge i_{N}$, which satisfies $\gamma_{\xi}\left(1 \wedge j_{N}^{\prime}\right)=\left(1 \wedge \pi_{D}\right) \gamma_{\xi^{\prime}}$ and $(1 \wedge \delta) \gamma_{\xi}=(1 \wedge i)\left(1 \wedge k_{N}\right)$. When p is odd we can take the composition $(c \wedge 1) \xi_{0}^{\prime}$ as ξ^{\prime} where $\xi_{0}^{\prime}: \Sigma^{2} \rightarrow Q$ satisfies $\pi_{Q} \cdot \xi_{0}^{\prime}=1$. Therefore our multiplication $\mu_{0}=\gamma_{\xi}\left(1 \wedge k_{0}\right)(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)$ is admissible.

Remark. Araki-Toda [1, Corollary 3.9] showed that admissible multiplications $\tilde{\mu}, \tilde{\mu}^{\prime}$ of $E \wedge V(0)$ coincide if and only if

$$
B\left(\tilde{\mu}, \tilde{\mu}^{\prime}\right)(c \wedge \iota)=0 \in\left\{\Sigma^{2}, E \wedge V(0)\right\} .
$$

1.4. Taking as a ring spectrum E the sphere spectrum S, Proposition. 1.3 implies that $V(0)$ is a ring spectrum with the unit i whenever p is odd. Its multiplication

$$
\psi: V(0) \wedge V(0) \longrightarrow V(0)
$$

is unique as $\left\{\Sigma^{1} V(0), V(0)\right\}=0 . \quad V(0)$ is commutative when $p \geqq 3$ and associative when $p \geqq 5$. However it is not associative in the $p=3$ case [4, Lemma. 6.2]. Thus

$$
\begin{array}{ll}
\psi \cdot T=\psi, \psi(\psi \wedge 1)=\psi(1 \wedge \psi)+i \cdot \alpha_{1}(\pi \wedge \pi \wedge \pi) & \text { when } p=3, \\
\psi \cdot T=\psi, \psi(\psi \wedge 1)=\psi(1 \wedge \psi) & \text { when } p \geqq 5, \tag{1.9}
\end{array}
$$

where $\alpha_{1}: \Sigma^{3} \rightarrow \Sigma^{0}$ is the generator of the 3-primary part (see 2.1).
We next discuss the commutativity of $E \wedge V(0)$ for $p=2$. When $p=2$, choose maps $\bar{\eta}: \Sigma^{1} V(0) \rightarrow \Sigma^{0}$ and $\tilde{\eta}: \Sigma^{2} \rightarrow V(0)$ such that $\bar{\eta} \cdot i=\eta$ and $\pi \cdot \tilde{\eta}=\eta$, then put $\eta_{1}=i \cdot \bar{\eta}$ and $\eta_{2}=\tilde{\eta} \cdot \pi$. Since $\left\{\Sigma^{1} V(0), V(0)\right\}$ is generated by two η_{1} and η_{2}, a routine computation shows that

$$
\{V(0) \wedge V(0), V(0)\} \cong Z_{2}+Z_{2}+Z_{2}
$$

with generators $\eta_{1}(1 \wedge \pi), \eta_{2}(1 \wedge \pi)$ and $i \cdot \eta \cdot k_{N} \cdot k_{0}$.
Put

$$
k_{0}(T-1)=a i_{N} \eta_{1}(1 \wedge \pi)+b i_{N} \eta_{2}(1 \wedge \pi), \quad a, b \in Z
$$

as $\pi_{N} k_{0}(T-1)=(\pi \wedge \pi)(1-T)=0$. We use the relation $(1 \wedge i)\left(\eta_{1}+\eta_{2}\right)(1 \wedge \pi)=$ $2 \cdot 1_{V(0) V V(0)}$ to rewrite

$$
k_{0}(T-1)=(a-b) i_{N} \eta_{1}(1 \wedge \pi)+2 b k_{0}=(b-a) i_{N} \eta_{2}(1 \wedge \pi)+2 a k_{0} .
$$

We here assume $a \equiv b \bmod 2$, and set $T=(2 b+1)+c j_{0} k_{N} k_{0}$ for some $c \in Z_{4}$. Then $c \equiv 1 \bmod 2$, because $\delta=(1 \wedge \pi) T(1 \wedge i)=c(1 \wedge \pi) j_{0} k_{N} k_{0}(1 \wedge i)=c \delta$. By the above setting we have

$$
T^{2}=1+2 j_{0} k_{N} k_{0}
$$

which implies that $2 j_{0} k_{N} k_{0}=(1 \wedge i)_{*} i \cdot \eta \cdot k_{N} k_{0}=0$. This is a contradiction. Therefore

$$
\begin{equation*}
k_{0}(T-1) \equiv i_{N} \eta_{1}(1 \wedge \pi) \equiv i_{N} \eta_{2}(1 \wedge \pi) \quad \bmod 2\{V(0) \wedge V(0), N\} \tag{1.10}
\end{equation*}
$$

(cf., [1, Theorem 7.4]).
Proposition 1.8. Let E be a commutative ring spectrum such that $E \wedge V(0)$ is a Z_{2}-spectrum. Then the following conditions are equivalent:
i) $E \wedge V(0)$ has at least one commutative multiplication satisfying $\left(\Lambda_{1}\right)$,
ii) $1 \wedge \eta_{1}(1 \wedge \pi)=1 \wedge \eta_{2}(1 \wedge \pi): E \wedge V(0) \wedge V(0) \rightarrow E \wedge V(0)$ is trivial,
iii) $1 \wedge \bar{\eta}: E \wedge \Sigma^{1} V(0) \rightarrow E$ is trivial, and
iv) $1 \wedge \tilde{\eta}: \Sigma^{2} E \rightarrow E \wedge V(0)$ is trivial.

Proof. Since $E \wedge V(0)$ is a Z_{2}-spectrum, $1 \wedge \eta_{1}(1 \wedge \pi)=1 \wedge \eta_{2}(1 \wedge \pi)$ and the conditions ii), iii) and iv) are equivalent.
i) \rightarrow ii): Let $\tilde{\mu}$ be a commutative multiplication satisfying $\left(\Lambda_{1}\right)$. By virtue of Lemma 1.4 we obtain a decomposition $\tilde{\mu}=\tilde{\gamma}_{N}\left(1 \wedge 1 \wedge k_{0}\right)(1 \wedge T \wedge 1)$. By the commutativity of $\tilde{\mu}$ we have

$$
\begin{aligned}
\tilde{\mu}(\iota \wedge 1 \wedge \iota \wedge 1) & =\tilde{\mu}(1 \wedge T \wedge 1)(T \wedge T)(1 \wedge T \wedge 1)(\iota \wedge 1 \wedge \iota \wedge 1) \\
& =\tilde{\gamma}_{N}\left(1 \wedge 1 \wedge k_{0}\right)(1 \wedge 1 \wedge T)(\iota \wedge \iota \wedge 1 \wedge 1) \\
& =\tilde{\mu}(\iota \wedge 1 \wedge \iota \wedge 1)+(\mu \wedge 1)\left(1 \wedge 1 \wedge \eta_{1}(1 \wedge \pi)\right)(\iota \wedge \iota \wedge 1 \wedge 1)
\end{aligned}
$$

which implies that $\iota \wedge \eta_{1}(1 \wedge \pi)=0$, and hence $1 \wedge \eta_{1}(1 \wedge \pi)=0$.
ii) \rightarrow i) : For any left inverse γ_{N} of $1 \wedge i_{N}$ we see

$$
\gamma_{N}\left(1 \wedge k_{0}\right)(1 \wedge T)=\gamma_{N}\left(1 \wedge k_{0}\right)+\left(1 \wedge \eta_{1}\right)(1 \wedge 1 \wedge \pi)
$$

by (1.10). Therefore the pre multiplication $\gamma_{0}=\gamma_{N}\left(1 \wedge k_{0}\right)$ is commutative, and so our multiplication μ_{0} associated with the above γ_{0} is commutative as E is commutative.
1.5. In order to discuss the associativity of $E \wedge V(0)$ when $p=2$ we require the following lemmas.

Lemma 1.9. In the $p=2$ case there exists a map $p_{0}: N \rightarrow P \wedge V(0)$ so that $p_{0} i_{N}=i_{P} \wedge 1,\left(\pi_{P} \wedge 1\right) p_{0}=i \cdot \pi_{N}, p_{0} j_{N}=1 \wedge i$ and $(1 \wedge \pi) p_{0}=i_{P} k_{N}$.

Proof. First, consider the diagram

with two cofiberings. We then have a map $p_{0}^{\prime}: N \rightarrow P \wedge V(0)$ which makes the entire diagram commute. In the commutative diagram

with two exact rows, the left j_{N}^{*} is epic. As $\left(\pi_{P} \wedge 1\right)_{*}\left(p_{0}^{\prime} j_{N}\right)=\left(\pi_{P} \wedge 1\right)_{*}(1 \wedge i)$ we get a map $q: N \rightarrow V(0)$ such that $\left(i_{P} \wedge 1\right) q \cdot j_{N}=1 \wedge i-p_{0}^{\prime} j_{N}$. Put $p_{0}=p_{0}^{\prime}+$ $\left(i_{P} \wedge 1\right) q$, it is clear that $\left(\pi_{P} \wedge 1\right) p_{0}=i \cdot \pi_{N}$ and $p_{0} j_{N}=1 \wedge i$. Further $p_{0} i_{N}=i_{P} \wedge 1$ because $q \cdot i_{N} \in 2\{V(0), V(0)\}$ and $2\left(i_{P} \wedge 1\right)=\left(i_{P} \wedge 1\right) i \cdot \eta \cdot \pi=0$. On the other hand, we may set $(1 \wedge \pi) p_{0}=a i_{P} k_{N}, a \in Z$, as $j_{N}^{*}(1 \wedge \pi) p_{0}=0$. We apply i_{N}^{*} on both sides to get $a \equiv 1 \bmod 2$. Hence $(1 \wedge \pi) p_{0}=i_{P} k_{N}$.

LEMMA 1.10. There exist maps $\kappa_{0}, \kappa_{0}^{\prime}: N \wedge V(0) \rightarrow P \wedge V(0)$ such that $\kappa_{0}\left(j_{N} \wedge 1\right)=\kappa_{0}^{\prime}\left(j_{N} \wedge 1\right)=1, \kappa_{0}\left(i_{N} \wedge 1\right)=\kappa_{0}^{\prime}\left(i_{N} \wedge 1\right) T=p_{0} k_{0}$ and $\kappa_{0}(1 \wedge i)=\kappa_{0}^{\prime}(1 \wedge i)=p_{0}$.

Proof. Consider the commutative diagram

consisting of two exact rows. Since $p_{0} k_{0}(i \wedge 1)=p_{0} k_{0}(1 \wedge i)=p_{0} i_{N}=i_{P} \wedge 1$, both $p_{0} k_{0}$ and $p_{0} k_{0} T$ are contained in the ($i_{N} \wedge 1$)*-image. By chasing the above diagram we get immediately maps κ_{0} and κ_{0}^{\prime} which satisfy the first two equalities. The last equality composed j_{N} from the right is valid. Since $j_{N}^{*}:\{N, P \wedge V(0)\} \rightarrow\{P, P \wedge V(0)\}$ is monic, the last is satisfied.

Let us consider the short exact sequence

$$
\begin{aligned}
0 \longrightarrow\left\{\Sigma^{1} V(0), P \wedge V(0)\right\} \xrightarrow{\left(k_{N} \wedge 1\right)^{*}} & \{N \wedge V(0), P \wedge V(0)\} \\
& \xrightarrow{\left(j_{N} \wedge 1\right)^{*}}\{P \wedge V(0), P \wedge V(0)\} \longrightarrow 0 .
\end{aligned}
$$

This sequence is split as $\kappa_{0}\left(j_{N} \wedge 1\right)=1$. The first group is generated by $\left(i_{P} \wedge 1\right) \eta_{1}$ of order 2 , and the last is generated by $1_{P \wedge V(0)}$ of order 4 and $\tilde{\zeta} \cdot \pi_{P} \wedge 1$ of order 2 where $\tilde{\zeta}: \Sigma^{2} \rightarrow P$ is defined by $\pi_{P} \tilde{\zeta}=2 \cdot 1_{\Sigma^{2}}$ (see [1, Theorem 8.3]). Hence we see

$$
\{N \wedge V(0), P \wedge V(0)\} \cong Z_{4}+Z_{2}+Z_{2}
$$

with generators $\kappa_{0}, \tilde{\zeta} \cdot \pi_{N} \wedge 1$ and $\left(i_{P} \wedge 1\right) \eta_{1}\left(k_{N} \wedge 1\right)$.
For the Hopf map $\nu: \Sigma^{3} \rightarrow \Sigma^{0}$ we may put

$$
\left(i_{P} \wedge i\right) \nu\left(\pi_{N} \wedge \pi\right)=a \kappa_{0}+b \tilde{\zeta} \cdot \pi_{N} \wedge 1+c\left(i_{P} \wedge 1\right) \eta_{1}\left(k_{N} \wedge 1\right)
$$

with $a \in Z_{4}$ and $b, c \in Z_{2}$. Applying $\left(j_{N} \wedge 1\right)^{*}$ on both sides we get

$$
\left(i_{P} \wedge i\right) \nu\left(\pi_{P} \wedge \pi\right)=a+b \tilde{\zeta} \cdot \pi_{P} \wedge 1
$$

Recall the relation $2 \cdot 1_{P \wedge(0)}=\left(i_{P} \wedge i\right) \nu\left(\pi_{P} \wedge \pi\right)$ obtained in [1, Theorem 8.3]. This implies that $a=2$ and $b=0$. Similarly, applying $\left(i_{N} \wedge 1\right)^{*}$ we get

$$
0=2 p_{0} k_{0}+c\left(i_{P} \wedge 1\right) \eta_{1}(\pi \wedge 1) .
$$

Since $2 p_{0} k_{0}=p_{0} k_{0}(1 \wedge i)(1 \wedge \eta)(1 \wedge \pi)=\left(i_{P} \wedge 1\right)(1 \wedge \eta)(1 \wedge \pi)=0$, we find $c=0$. Thus the relation

$$
\begin{equation*}
\left(i_{P} \wedge i\right) \nu\left(\pi_{N} \wedge \pi\right)=2 \kappa_{0} \tag{1.11}
\end{equation*}
$$

holds.
We here compare with the composition maps $\kappa_{0}\left(k_{0} \wedge 1\right)$ and $\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)$ ($T \wedge 1$). Making use of the above results we have

$$
\begin{align*}
& \kappa_{0}\left(k_{0} \wedge 1\right)(1 \wedge i \wedge 1)=\kappa_{0}\left(k_{0} \wedge 1\right)(i \wedge 1 \wedge 1)=\kappa_{0}\left(i_{N} \wedge 1\right) T=p_{0} k_{0} \\
& \kappa_{0}\left(k_{0} \wedge 1\right)(1 \wedge 1 \wedge i)=\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1)(i \wedge 1 \wedge 1)=p_{0} k_{0} \tag{1.12}
\end{align*}
$$

and

$$
\begin{aligned}
\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1)(1 \wedge 1 \wedge i) & =\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1)(1 \wedge i \wedge 1) \\
& =\kappa_{0}^{\prime}\left(i_{N} \wedge 1\right) T=p_{0} k_{0} .
\end{aligned}
$$

LEMMA 1.11. $\quad \kappa_{0}\left(k_{0} \wedge 1\right) \equiv \kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1) \bmod 2\{V(0) \wedge V(0) \wedge V(0)$, $P \wedge V(0)\}$.

Proof. Using the exact sequences

$$
\begin{aligned}
& \left\{\Sigma^{1}, V(0)\right\} \xrightarrow{\eta_{*}}\left\{\Sigma^{2}, V(0)\right\} \xrightarrow{\left(i_{P} \wedge 1\right)_{*}}\left\{\Sigma^{2}, P \wedge V(0)\right\} \longrightarrow 0 \\
& \{V(0), V(0)\} \xrightarrow{\eta_{*}}\left\{\Sigma^{1} V(0), V(0)\right\} \xrightarrow{\left(i_{P} \wedge 1\right)_{*}}\left\{\Sigma^{1} V(0), P \wedge V(0)\right\} \longrightarrow 0
\end{aligned}
$$

we see that $\left\{\Sigma^{2}, P \wedge V(0)\right\}$ and $\left\{\Sigma^{1} V(0), P \wedge V(0)\right\}$ are Z_{2}-modules which have one generator $\left(i_{P} \wedge 1\right) \tilde{\eta}$ and $\left(i_{P} \wedge 1\right) \eta_{1}$ respectively. Therefore $\pi^{*}:\left\{\Sigma^{2}, P \wedge V(0)\right\}$ $\rightarrow\left\{\Sigma^{1} V(0), P \wedge V(0)\right\}$ and $(1 \wedge \pi)^{*}:\left\{\Sigma^{1} V(0), P \wedge V(0)\right\} \rightarrow\{V(0) \wedge V(0), P \wedge V(0)\}$ are monic. Hence (1.12) implies that

$$
\kappa_{0}\left(k_{0} \wedge 1\right)-\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1) \in(\pi \wedge \pi \wedge \pi)^{*}\left\{\Sigma^{3}, P \wedge V(0)\right\}
$$

Observe that $\left(i_{P} \wedge 1\right)_{*}:\left\{\Sigma^{3}, V(0)\right\} \rightarrow\left\{\Sigma^{3}, P \wedge V(0)\right\}$ is epic, then we have the equality that $\kappa_{0}\left(k_{0} \wedge 1\right)-\kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1)=a\left(i_{P} \wedge i\right) \nu(\pi \wedge \pi \wedge \pi)$ for some $a \in Z_{2}$. The result is now immediate from (1.11).

Let E be a ring spectrum such that $1 \wedge \eta: \Sigma^{1} E \rightarrow E$ is trivial. Take a $\operatorname{map} \xi^{\prime \prime}: \Sigma^{2} \rightarrow E \wedge P$ with $\left(1 \wedge \pi_{P}\right) \xi^{\prime \prime}=\iota \wedge 1$ and $\xi=\left(1 \wedge j_{N}\right) \xi^{\prime \prime}$. Between the left inverses γ_{ξ} and $\gamma_{\xi^{\prime \prime}}$ induced by the maps ξ and $\xi^{\prime \prime}$ we have the relation

$$
\gamma_{\xi}=\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge p_{0}\right)
$$

because the $\left(1 \wedge i_{P} \wedge 1\right)_{*}$-images of both sides coincide.
We say that a pre multiplication γ is associative if it satisfies the relation $\gamma(\gamma \wedge 1)=\gamma(T \wedge 1)(1 \wedge \gamma)(T \wedge 1 \wedge 1)$.

Lemma 1.12. The pre multiplication $\gamma_{0}=\gamma_{\epsilon}\left(1 \wedge k_{0}\right)$ is associative when $p=2$.

Proof. By definition $\left(1 \wedge i_{P}\right) \gamma_{\xi^{\prime \prime}}(\mu \wedge 1)\left(1 \wedge \xi^{\prime \prime}\right)=0$, and hence $\gamma_{\xi^{\prime \prime}}(\mu \wedge 1)$ $\left(1 \wedge \xi^{\prime \prime}\right)=0$. Using Lemma 1.10 and this result we have

$$
\begin{aligned}
\gamma_{\xi}(1 & \left.\wedge k_{0}\right)\left(\gamma_{\xi} \wedge 1\right) \\
& =\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge \kappa_{0}\right)\left(1 \wedge i_{N} \wedge 1\right)\left(\gamma_{\xi} \wedge 1\right) \\
& =\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge \kappa_{0}\right)\left(1-(\mu \wedge 1 \wedge 1)\left(1 \wedge 1 \wedge j_{N} \wedge 1\right)\left(1 \wedge \xi^{\prime \prime} \wedge 1\right)\left(1 \wedge \pi_{N} \wedge 1\right)\right) \\
& =\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge \kappa_{0}\right)
\end{aligned}
$$

and similarly

$$
\gamma_{\xi}\left(1 \wedge k_{0} T\right)\left(\gamma_{\xi} \wedge 1\right)=\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge \kappa_{0}^{\prime}\right)
$$

The above equalities yield

$$
\gamma_{0}\left(\gamma_{0} \wedge 1\right)=\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge k_{0}\right)\left(1 \wedge k_{0} \wedge 1\right)
$$

and

$$
\begin{aligned}
\gamma_{0}(T \wedge 1)\left(1 \wedge \gamma_{0}\right)(T \wedge 1 \wedge 1) & =\gamma_{0}(1 \wedge T)\left(\gamma_{0} \wedge 1\right)(1 \wedge 1 \wedge T)(1 \wedge T \wedge 1) \\
& =\left(\gamma_{\xi^{\prime \prime}} \wedge 1\right)\left(1 \wedge \kappa_{0}^{\prime}\right)\left(1 \wedge k_{0} \wedge 1\right)(1 \wedge 1 \wedge T)(1 \wedge T \wedge 1)
\end{aligned}
$$

Making use of Lemma 1.11 we obtain that

$$
1 \wedge \kappa_{0}\left(\kappa_{0} \wedge 1\right)=1 \wedge \kappa_{0}^{\prime}\left(k_{0} \wedge 1\right)(1 \wedge T)(T \wedge 1)
$$

which implies

$$
\gamma_{0}\left(\gamma_{0} \wedge 1\right)=\gamma_{0}(T \wedge 1)\left(1 \wedge \gamma_{0}\right)(T \wedge 1 \wedge 1)
$$

Let μ_{r} be a multiplication of $E \wedge V(0)$ associated with a pre multiplication γ. If γ is compatible with μ, i.e., if it satisfies $\left(\Lambda_{3}\right)^{\prime}$, then a routine computation shows

$$
\begin{aligned}
& \mu_{\gamma}\left(\mu_{r} \wedge 1 \wedge 1\right) \\
& \quad=\gamma(\gamma \wedge 1)(\mu(\mu \wedge 1) \wedge 1 \wedge 1 \wedge 1)(1 \wedge 1 \wedge T \wedge 1 \wedge 1)(1 \wedge T \wedge T \wedge 1) \\
& \mu_{\gamma}\left(1 \wedge 1 \wedge \mu_{\gamma}\right) \\
& \quad=\gamma(T \wedge 1)(1 \wedge \gamma)(T \wedge 1)(\mu(1 \wedge \mu) \wedge 1 \wedge 1 \wedge 1)(1 \wedge 1 \wedge T \wedge 1 \wedge 1)(1 \wedge T \wedge T \wedge 1)
\end{aligned}
$$

Hence we see that
μ_{γ} is associative if μ and γ are associative and if γ is compatible
with μ.

By means of (1.9) and Lemma 1.12 with (1.13) we obtain
Proposition 1.13. Let E be an associative ring spectrum. Assume that E is commutative and $1 \wedge \eta: \Sigma^{1} E \rightarrow E$ is trivial if $p=2$ and that $1 \wedge i \cdot \alpha_{1}: \Sigma^{3} E$ $\rightarrow E \wedge V(0)$ is trivial if $p=3$. Then there exists an associative admissible multiplication of $E \wedge V(0)$.

§ 2. Multiplications of $E \wedge V(1)$

2.1. For any Z_{p}-spectra X, Y a map $f: \Sigma^{k} X \rightarrow Y$ is called a Z_{p}-map if it satisfies $f \cdot \psi_{X}=\psi_{Y}(f \wedge 1)$ and $(f \wedge 1) \phi_{X}=(-1)^{k} \phi_{Y} \cdot f$. Let C denote the mapping cone of a Z_{p}-map $f: \Sigma^{k} X \rightarrow Y$, so we have a cofibering

$$
\Sigma^{k} X \xrightarrow{f} Y \xrightarrow{i_{c}} C \xrightarrow{\pi_{c}} \Sigma^{k+1} X .
$$

By a similar discussion to (1.8) we find a map $\psi_{c}: C \wedge V(0) \rightarrow C$ such that $\psi_{C}(1 \wedge i)=1_{C}$. Thus C is a Z_{p}-spectrum if $f: \Sigma^{k} X \rightarrow Y$ is a Z_{p}-map. For any Z_{p}-spectra X and Y Toda [5] introduced an operation

$$
\theta:\left\{\Sigma^{k} X, Y\right\} \longrightarrow\left\{\Sigma^{k+1} X, Y\right\}
$$

by the formula $\theta(f)=\psi_{Y}(f \wedge 1) \phi_{X}$. This operation has the properties
i) θ is derivative, i.e., $\theta(g \cdot f)=g \cdot \theta(f)+(-1)^{\operatorname{deg}(f)} \theta(g) \cdot f$,
ii) f is a Z_{p}-map if and only if $\theta(f)=0$.

Lemma 2.1 ([5, Lemma 2.3]). Let X and Y be Z_{p}-spectra and C be the mapping cone of a map $f: \Sigma^{k} X \rightarrow Y$. Then C is a Z_{p}-spectrum if $\theta(f)=0$. The converse is valid under the assumption that $\left\{Y, \Sigma^{k} X\right\}=\left\{\Sigma^{1} X, X\right\}=$ $\left\{\Sigma^{1} Y, Y\right\}=0$.

Proof. The above observations show the first half. On the other hand, we get

$$
\begin{aligned}
(1 \wedge i)_{*}\left(i_{C} \theta(f) \pi_{C}\right) & =\left(i_{C} \wedge 1\right)\left(1-\phi_{Y}(1 \wedge \pi)\right)(f \wedge 1) \phi_{X} \pi_{C} \\
& =(-1)^{k+1}\left(i_{C} \wedge 1\right) \phi_{Y} f \cdot \pi_{C}=0 .
\end{aligned}
$$

Hence $i_{C} \theta(f) \pi_{C}=0$ when $p\{C, C\}=0$. The latter half is now immediate.
In the following we always assume that a fixed prime p is odd. $V(0)$ is a Z_{p}-spectrum, so that it has unique maps

$$
\psi: V(0) \wedge V(0) \longrightarrow V(0), \quad \phi: \Sigma^{1} V(0) \longrightarrow V(0) \wedge V(0)
$$

which satisfy (1.1) and moreover which are commutative, i.e., $\psi \cdot T=\psi$ and $T \cdot \phi=-\phi$. So we note that

$$
\begin{equation*}
\psi(1 \wedge i)=\psi(i \wedge 1)=1, \quad(1 \wedge \pi) \phi=-(\pi \wedge 1) \phi=1 \tag{2.2}
\end{equation*}
$$

A Z_{p}-spectrum X is said to be associative if $\psi_{X}\left(\psi_{X} \wedge 1\right)-\psi_{X}\left(1 \wedge \psi^{2}\right)=0$ and $\left(\phi_{X} \wedge 1\right) \phi_{X}+(1 \wedge \phi) \phi_{X}=0$. There exists uniquely a map $\alpha_{X}: \Sigma^{2} X \rightarrow X$ so that

$$
\psi_{X}\left(\psi_{X} \wedge 1\right)-\psi_{X}\left(1 \wedge \psi^{\prime}\right)=\alpha_{X}(1 \wedge \pi \wedge \pi)
$$

and

$$
\left(\phi_{X} \wedge 1\right) \phi_{X}+(1 \wedge \phi) \phi_{X}=(1 \wedge i \wedge i) \alpha_{X}
$$

when $\left\{\Sigma^{1} X, X\right\}=0$ (see [5, Proposition 2.1]). In particular X is associative if $\left\{\Sigma^{1} X, X\right\}=\left\{\Sigma^{2} X, X\right\}=0$.

As an analogy of θ Toda [5] defined another operation

$$
\lambda=\lambda_{X}:\left\{\Sigma^{k} V(0), V(0)\right\} \longrightarrow\left\{\Sigma^{k+1} X, X\right\}
$$

by the formula $\lambda(h)=\psi_{X}(1 \wedge h) \phi_{X}$ for each Z_{p}-spectrum X. From the commutativities of ψ and ϕ we obtain

$$
\lambda_{V(0)}(h)=-\theta(h)
$$

for every $h: \Sigma^{k} V(0) \rightarrow V(0)$.
Recall the spectrum $V(n)$ whose ordinary cohomology is a certain exterior algebra over the $\bmod p$ Steenrod algebra. For $n=1, p \geqq 3$, for $n=2$, $p \geqq 5$ and for $n=3, p \geqq 7$ spectra $V(n)$ were constructed in [4]. However $V(1)$ for $p=2$ and $V(2)$ for $p=3$ do not exist [4, Theorem 1.2]. Consider the following cofiberings

$$
\begin{array}{ll}
\Sigma^{q} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{\pi_{1}} \Sigma^{q+1} V(0), & p \geqq 3 \\
\Sigma^{p q+q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i_{2}} V(2) \xrightarrow{\pi_{2}} \Sigma^{p q+q+1} V(1), & p \geqq 5
\end{array}
$$

where we set $q=2(p-1)$. When $p=3$ a map $\left[\beta i_{1}\right]: \Sigma^{16} V(0) \rightarrow V(1)$ exists even though β does not exist.

We use the notations

$$
\begin{gathered}
i_{0}=i_{1} \cdot i: \Sigma^{0} \longrightarrow V(1), \quad \pi_{0}=\pi \cdot \pi_{1}: V(1) \longrightarrow V(1) \quad \text { and } \quad \delta_{0}=i_{0} \cdot \pi_{0}: \Sigma^{q+2} \\
\delta_{1}=i_{1} \cdot \pi_{1}: \Sigma^{-q-1} V(1) \longrightarrow V(1) \longrightarrow V(1)
\end{gathered}
$$

and put

$$
\alpha^{\prime}=\alpha_{1} \wedge 1: \sum^{q-1} V(1) \longrightarrow V(1) \quad \text { and } \quad \beta^{\prime}=\beta_{1} \wedge 1: \sum^{p q-2} V(1) \longrightarrow V(1)
$$

for the elements $\alpha_{1}=\pi \cdot \alpha \cdot i \in \pi_{q-1}(S)$ and $\beta_{1}=\pi_{0} \cdot \beta \cdot i_{0} \in \pi_{p q-2}(S)$. Then we obtain maps

$$
\alpha^{\prime \prime}: \sum^{q-2} V(1) \longrightarrow V(1) \quad \text { and } \quad \beta^{\prime \prime}: \sum^{p q+2 q-3} V(1) \longrightarrow V(1)
$$

such that $\alpha^{\prime \prime} \cdot i_{1}=\alpha^{\prime} \cdot i_{1} \cdot \delta$ and $\beta^{\prime \prime} \cdot i_{1}=\alpha^{\prime \prime} \cdot \beta \cdot i_{1} \cdot \delta$ [5, Lemmas 3.1 and 3.5].
Notice that $V(1)$ and $V(2)$ are Z_{p}-spectra. Making use of the Adams spectral sequence Toda computed the homotopy groups of $V(1)$ and $V(2)$ (see [4, Theorem 5.2 and Corollary 5.4] and [5, Theorem 3.2 and Proposition 6.9]) :

$$
\begin{equation*}
\text { i) } \quad \pi_{*}(V(1)) \cong P\left(\beta, \beta^{\prime}\right) \otimes\left\{1, \alpha^{\prime}, \delta_{1} \beta, \alpha^{\prime \prime} \beta, \delta_{0} \beta^{2}, \delta_{0} \beta^{2} \alpha^{\prime}\right\} \otimes\left\{i_{0}\right\} \tag{2.3}
\end{equation*}
$$

for degree $<p^{2} q-3$ when $p \geqq 5$ and for degree <31 when $p=3$,

$$
\text { ii) } \quad \pi_{*}(V(2)) \cong\left\{i_{2}\right\} \otimes P\left(\beta^{\prime}\right) \otimes\left\{1, \alpha^{\prime}, \delta_{1} \beta, \alpha^{\prime \prime} \beta, \delta_{0} \beta^{2}, \delta_{0} \beta^{2} \alpha^{\prime}\right\} \otimes\left\{i_{0}\right\}
$$

for degree $<p^{2} q-3$ when $p \geqq 5$.
By applying the operations θ and λ Toda [5, Theorems 3.6 and 6.11] determined an additive basis of the algebra $\{V(1), V(1)\}_{*}$ up to some range:

$$
\begin{align*}
\{V(1), V(1)\}_{*} \cong & P\left(\beta, \beta^{\prime}\right) \otimes\left\{1, \alpha^{\prime}, \delta_{1} \beta, \alpha^{\prime \prime} \beta, \delta_{0} \beta^{2}, \delta_{0} \beta^{2} \alpha^{\prime}\right\} \otimes E\left(\delta_{0}\right) \tag{2.4}\\
& +P\left(\beta, \beta^{\prime}\right) \otimes\left\{\delta_{1}, \alpha^{\prime \prime}, \delta_{1} \beta \delta_{1}, \delta_{0} \beta, \alpha^{\prime \prime} \beta \delta_{1}, \beta^{\prime \prime}, \delta_{0} \beta^{2} \delta_{1}, \delta_{0} \beta^{2} \alpha^{\prime \prime}\right\}
\end{align*}
$$

for degree $<\left(p^{2}-1\right) q-5$ when $p \geqq 5$ and for degree <14 when $p=3$.
The $p=3$ case is quite different from the other cases. Besides the previous examples we have that the products $\alpha^{\prime \prime} \cdot \alpha^{\prime \prime}$ and $\alpha^{\prime} \cdot \alpha^{\prime \prime}=\alpha^{\prime \prime} \cdot \alpha^{\prime}$ are not trivial for $p=3$. Thus the relations

$$
\begin{equation*}
\alpha^{\prime \prime} \cdot \alpha^{\prime \prime}=\beta^{\prime} \cdot \delta_{0} \quad \text { and } \quad \alpha^{\prime} \cdot \alpha^{\prime \prime}=\alpha^{\prime \prime} \cdot \alpha^{\prime}=\beta^{\prime} \cdot \delta_{1} \tag{2.5}
\end{equation*}
$$

hold [5, Theorem 6.2]. Further we see [5, Theorem 6.4] that

$$
\begin{equation*}
\theta\left(\left[\beta i_{1}\right]\right)=\alpha^{\prime \prime}\left[\beta i_{1}\right] \delta \quad \text { for } p=3 \tag{2.6}
\end{equation*}
$$

2.2. As $\left\{\Sigma^{1} V(1), V(1)\right\}=0$ the Z_{p}-spectrum $V(1)$ has unique maps

$$
\psi_{1}: V(1) \wedge V(0) \longrightarrow V(1), \quad \phi_{1}: \Sigma^{1} V(1) \longrightarrow V(1) \wedge V(0)
$$

satisfying (1.1). As is easily checked, ψ_{1} and ϕ_{1} are compatible with ψ and ϕ respectively in the sense that the relations

$$
\begin{array}{cl}
\psi_{1}\left(i_{1} \wedge 1\right)=i_{1} \psi, & \pi_{1} \psi_{1}=\psi\left(\pi_{1} \wedge 1\right) \\
\phi_{1} i_{1}=\left(i_{1} \wedge 1\right) \phi \quad \text { and } & \left(\pi_{1} \wedge 1\right) \phi_{1}=-\phi \cdot \pi_{1} \tag{2.7}
\end{array}
$$

hold.
By means of Lemma 2.1 we see that $\alpha: \Sigma^{q} V(0) \rightarrow V(0)$ is a Z_{p}-map, i.e.,

$$
\begin{equation*}
\psi(\alpha \wedge 1)=\alpha \cdot \psi=\psi(1 \wedge \alpha), \quad(\alpha \wedge 1) \phi=\phi \cdot \alpha=(1 \wedge \alpha) \phi . \tag{2.8}
\end{equation*}
$$

Whenever $p \geqq 5 V(1)$ is associative, but it is not so in the $p=3$ case. Thus we have

$$
\begin{align*}
\psi_{1}\left(\psi_{1} \wedge 1\right)-\psi_{1}(1 \wedge \psi) & =\alpha^{\prime \prime}(1 \wedge \pi \wedge \pi) \\
\left(\phi_{1} \wedge 1\right) \phi_{1}+(1 \wedge \phi) \phi_{1} & =(1 \wedge i \wedge i) \alpha^{\prime \prime} \tag{2.9}
\end{align*}
$$

when $p=3$ [5, Lemma 6.5].
We here give a decomposition $\mathbf{0}^{\hat{i}}$ the smash product $1 \wedge \alpha: \Sigma^{q} V(1) \wedge V(0)$ $\rightarrow V(1) \wedge V(0) . \quad$ By virtue of (2.4) we have

$$
\begin{array}{ll}
\left\{\Sigma^{q-1} V(1), V(1)\right\} \cong Z_{p} & \text { with a generator } \alpha^{\prime} \\
\left\{\Sigma^{p q-q-4} V(1), V(1)\right\} \cong Z_{p} & \text { with a generator } \beta^{\prime} \cdot \delta_{0} \\
\left\{\Sigma^{p q-q-3} V(1), V(1)\right\} \cong Z_{p}+Z_{p} & \text { with generators } \delta_{1} \cdot \beta \cdot \delta_{0}, \beta^{\prime} \cdot \delta_{1}
\end{array}
$$

So we may set

$$
\begin{aligned}
1 \wedge \alpha= & \phi_{1} \cdot \alpha^{\prime} \cdot \psi_{1}+w \phi_{1} \cdot \beta^{\prime} \delta_{0}(1 \wedge \pi) \\
& +(1 \wedge i)\left(x \delta_{1} \beta \delta_{0}+y \beta^{\prime} \delta_{1}\right)(1 \wedge \pi)+z(1 \wedge i) \beta^{\prime} \delta_{0} \cdot \psi_{1}
\end{aligned}
$$

where $w, x, y, z \in Z_{p}$. The following result was implicitly given in Toda [5].

LEMMA 2.2. $1 \wedge \alpha=\phi_{1} \cdot \alpha^{\prime} \cdot \psi_{1}-\phi_{1} \cdot \beta^{\prime} \delta_{0}(1 \wedge \pi)+(1 \wedge i) \beta^{\prime} \delta_{1}(1 \wedge \pi)-(1 \wedge i) \beta^{\prime}$ $\delta_{0} \cdot \psi_{1}$ when $p=3$, but $1 \wedge \alpha=\phi_{1} \cdot \alpha^{\prime} \cdot \psi_{1}$ when $p \geqq 5$.

Proof. The latter half is clear by the dimensional reason. We prove only the $p=3$ case. We first use (2.2) and (2.8) to verify

$$
\theta(\alpha \cdot \delta)=\psi(\alpha \wedge 1)(i \wedge 1)(\pi \wedge 1) \phi=-\alpha
$$

By use of (2.5) and (2.9) we compute

$$
\begin{aligned}
\lambda_{V_{(1)}}(\alpha) & =\psi_{1}(1 \wedge \alpha) \phi_{1} \\
& =-\psi_{1}(1 \wedge \psi)(1 \wedge \alpha \cdot \delta \wedge 1)(1 \wedge \phi) \phi_{1} \\
& =\psi_{1}(1 \wedge \psi T)(1 \wedge \alpha \cdot \delta \wedge 1)(1 \wedge T \phi) \phi_{1} \\
& =\left(\psi_{1}\left(\psi_{1} \wedge 1\right)-\alpha^{\prime \prime}(1 \wedge \pi \wedge \pi)\right)(1 \wedge 1 \wedge \alpha \cdot \delta)\left((1 \wedge i \wedge i) \alpha^{\prime \prime}-\left(\phi_{1} \wedge 1\right) \phi_{1}\right) \\
& =\alpha^{\prime \prime}(1 \wedge \pi)(1 \wedge \pi \wedge 1)(1 \wedge 1 \wedge \alpha)(1 \wedge 1 \wedge i) \phi_{1} \\
& =\alpha^{\prime \prime}(1 \wedge \pi)(1 \wedge \alpha)(1 \wedge i)=\beta^{\prime} \delta_{1} .
\end{aligned}
$$

This implies $x=0$ and $y=1$. Next, by (2.8) and (2.9) we get

$$
\begin{aligned}
& \psi_{1}\left(\psi_{1} \wedge 1\right)(1 \wedge \alpha \wedge 1)(1 \wedge i \wedge 1) \phi_{1} \\
& \quad=\left(\psi_{1}(1 \wedge \psi)+\alpha^{\prime \prime}(1 \wedge \pi \wedge \pi)\right)(1 \wedge \alpha \wedge 1)(1 \wedge i \wedge 1) \phi_{1} \\
& \quad=\psi_{1}(1 \wedge \alpha) \phi_{1}+\alpha^{\prime \prime} \alpha^{\prime}=-\beta^{\prime} \delta_{1}
\end{aligned}
$$

and similarly

$$
\psi_{1}(1 \wedge \pi \wedge 1)(1 \wedge \alpha \wedge 1)\left(\phi_{1} \wedge 1\right) \phi_{1}=-\beta^{\prime} \delta_{1} .
$$

On the other hand, by (2.2) and (2.7) we see

$$
\theta\left(\delta_{0}\right)=\psi_{1}\left(i_{1} \wedge 1\right)(i \wedge 1)(\pi \wedge 1)\left(\pi_{1} \wedge 1\right) \phi_{1}=-i_{1} \psi(i \wedge 1)(\pi \wedge 1) \phi \cdot \pi_{1}=\delta_{1} .
$$

Consequently it follows that $z=w=-1$.
Since $\delta \cdot \psi=1 \wedge \pi+\pi \wedge 1$ we have
COROLLARY 2.3. $\quad \psi_{1}(1 \wedge \alpha)=\beta^{\prime} \cdot i_{1}(1 \wedge \pi-\pi \wedge 1)\left(\pi_{1} \wedge 1\right)$ when $p=3$, but $\psi_{1}(1 \wedge \alpha)=0$ when $p \geqq 5$.
2.3. A map $\gamma: X \wedge V(1) \wedge V(1) \rightarrow X \wedge V(1)$ is said to be a pre multiplication of $X \wedge V(1)$ if $\gamma\left(1 \wedge 1 \wedge i_{1}\right)=\gamma\left(1 \wedge i_{1} \wedge 1\right)(1 \wedge T)=1 \wedge \psi_{1}$. We here construct a pre multiplication of $X \wedge V(1)$ under a suitable assumption on X. Let V be the mapping cone of $\psi_{1}(1 \wedge \alpha)$. Then there exists a map $v: V(1) \wedge V(1) \rightarrow V$ which makes the diagram below commutative

We put $\rho_{1}=\beta^{\prime} \cdot i_{1}(1 \wedge \pi-\pi \wedge 1)$ in the $p=3$ case and $\rho_{1}=0$ in the other cases, and denote by R its mapping cone. We then have a commutative diagram

involving four cofiberings in which the right-lower square commutes up to the sign -1 .

Assume that $1 \wedge \rho_{1}: X \wedge \Sigma^{2 q+1} V(0) \wedge V(0) \rightarrow X \wedge V(1)$ is trivial. Each left inverse $\gamma_{R}: X \wedge R \rightarrow X \wedge V(1)$ of $1 \wedge i_{R}$ gives rise to a map

$$
\gamma_{1}: X \wedge V(1) \wedge V(1) \longrightarrow X \wedge V(1)
$$

defined by the composition $\gamma_{1}=\gamma_{R}\left(1 \wedge k_{V}\right)(1 \wedge v)$.
Lemma 2.4. The map γ_{1} is a pre multiplication of $X \wedge V(1)$.
Proof. Obviously $\gamma_{R}\left(1 \wedge k_{V}\right)(1 \wedge v)\left(1 \wedge 1 \wedge i_{1}\right)=1 \wedge \psi_{1}$. Since $\pi_{V^{*}}\left(v\left(i_{1} \wedge 1\right)\right)$ $=\pi_{V^{*}}\left(j_{V}\left(1 \wedge \pi_{1}\right)\right)$ we set

$$
v\left(i_{1} \wedge 1\right)=j_{V}\left(1 \wedge \pi_{1}\right)+a i_{V} \psi_{1} T, \quad a \in Z_{p}
$$

We apply $\left(i \wedge i_{0}\right)^{*}$ on both sides to get that $i_{\nabla} i_{0}=a i_{\Gamma} i_{0}$ which implies $a=1$. Thus $v\left(i_{1} \wedge 1\right)=j_{V}\left(1 \wedge \pi_{1}\right)+i_{V} \psi_{1} T$. Hence we see

$$
\gamma_{R}\left(1 \wedge k_{V}\right)(1 \wedge v)\left(1 \wedge i_{1} \wedge 1\right)(1 \wedge T)=\gamma_{R}\left(1 \wedge k_{V}\right)\left(1 \wedge i_{V}\right)\left(1 \wedge \psi_{1}\right)=1 \wedge \psi_{1} .
$$

Let E be a ring spectrum equipped with a multiplication μ and a unit ι. For any pre multiplication γ of $E \wedge V(1)$ we define a map

$$
\mu_{r}: E \wedge V(1) \wedge E \wedge V(1) \longrightarrow E \wedge V(1)
$$

as the composition $\gamma(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)$. This map satisfies the property

$$
\begin{aligned}
& \mu_{r}(1 \wedge T \wedge 1)\left(1 \wedge 1 \wedge 1 \wedge i_{1}\right) \\
& \quad=\mu_{r}(1 \wedge T \wedge 1)\left(1 \wedge 1 \wedge i_{1} \wedge 1\right)(1 \wedge 1 \wedge T)=\mu \wedge \psi_{1}
\end{aligned}
$$

Every map $\tilde{\mu}$ with $\left(\Lambda_{1}\right)_{1}$ gives $E \wedge V(1)$ the structure of a ring spectrum having $\iota \wedge i_{0}$ as the unit. As a consequence we obtain

Proposition 2.5. Let E be a ring spectrum and assume that

$$
1 \wedge \beta^{\prime} \cdot i_{1}(1 \wedge \pi-\pi \wedge 1): E \wedge \Sigma^{2 q+1} V(0) \wedge V(0) \longrightarrow E \wedge V(1)
$$

is trivial if $p=3$. Then $E \wedge V(1)$ is a ring spectrum which has a multiplication satisfying the property $\left(\Lambda_{1}\right)_{1}$.
2.4. Take the sphere spectrum S as the ring spectrum E in Proposition 2.5 when $p \geqq 5$. Then $V(1)$ becomes a ring spectrum equipped with the unit i_{0}. Its multiplication

$$
\psi_{1,1}: V(1) \wedge V(1) \longrightarrow V(1)
$$

is unique and it is associative and commutative because

$$
\left(1 \wedge i_{0}\right)^{*}:\{V(1) \wedge V(1), V(1)\} \longrightarrow\{V(1), V(1)\}
$$

and

$$
\left(1 \wedge 1 \wedge i_{0}\right)^{*}:\{V(1) \wedge V(1) \wedge V(1), V(1)\} \longrightarrow\{V(1) \wedge V(1), V(1)\}
$$

are isomorphic. Thus $\psi_{1,1}$ satisfies the equalities

$$
\begin{equation*}
\psi_{1,1} T=\psi_{1,1} \quad \text { and } \quad \psi_{1,1}\left(\psi_{1,1} \wedge 1\right)=\psi_{1,1}\left(1 \wedge \psi_{1,1}\right) \quad \text { when } p \geqq 5 \tag{2.10}
\end{equation*}
$$

We here study the commutativity of $E \wedge V(1)$ in the $p=3$ case. Denoting by M the mapping cone of $\beta^{\prime} \cdot i_{1}: \Sigma^{2 q+2} V(0) \rightarrow V(1)$ when $p=3$, then we have a commutative (up to sign) diagram

consisting of three cofiberings. In the exact sequence

$$
\begin{aligned}
\left\{\Sigma^{1} V(1) \wedge V(0), V(1)\right\} & \xrightarrow{(1 \wedge \alpha)^{*}}\left\{\Sigma^{q+1} V(1) \wedge V(0), V(1)\right\} \xrightarrow{\left(1 \wedge \pi_{1}\right)^{*}}\{V(1) \wedge V(1), V(1)\} \\
& \xrightarrow{\left(1 \wedge i_{1}\right)^{*}}\{V(1) \wedge V(0), V(1)\} \xrightarrow{(1 \wedge \alpha)^{*}}\left\{\Sigma^{q} V(1) \wedge V(0), V(1)\right\},
\end{aligned}
$$

$\left(1 \wedge \pi_{1}\right)^{*}$ is epic as $(1 \wedge \alpha)^{*} \psi_{1} \neq 0$. Therefore $\{V(1) \wedge V(1), V(1)\}$ is spanned by $\left(1 \wedge \pi_{1}\right)^{*}\left(\delta_{1} \beta \delta_{1}(1 \wedge \pi)\right),\left(1 \wedge \pi_{1}\right)^{*}\left(\delta_{1} \beta \delta_{0} \psi_{1}\right)$ and $\left(1 \wedge \pi_{1}\right)^{*}\left(\beta^{\prime} \delta_{1} \psi_{1}\right) . \quad$ But $(1 \wedge \alpha)^{*}$
$\left(\alpha^{\prime \prime}(1 \wedge \pi)\right)=\alpha^{\prime \prime}\left(\alpha^{\prime} \psi_{1}-\beta^{\prime} \delta_{0}(1 \wedge \pi)\right)=\beta^{\prime} \delta_{1} \psi_{1}$ because of Lemma 2.2 and (2.5). Hence we have

$$
\{V(1) \wedge V(1), V(1)\} \cong Z_{3}+Z_{3}
$$

with generators $\delta_{1} \beta \cdot i_{1}(1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1}\right)$ and $\delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right)$.
Setting $k_{1}=k_{R} \cdot k_{V} \cdot v, \pi_{M^{*}}\left(k_{1}(T-1)\right)=(1 \wedge \pi-\pi \wedge 1)\left(\pi_{1} \wedge \pi_{1}\right)(T-1)=0 . \quad$ So we put

$$
k_{1}(T-1)=a i_{M} \delta_{1} \beta \cdot i_{1}(1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1}\right)+b i_{M} \delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right)
$$

where $a, b \in Z_{3}$. Applying T from the right we get

$$
k_{1}(1-T)=-a i_{M} \delta_{1} \beta \cdot i_{1}(\pi \wedge 1)\left(\pi_{1} \wedge \pi_{1}\right)-b i_{M} \delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right) .
$$

We substract the first equality from the latter to obtain

$$
k_{1}(T-1)=(b-a) i_{M} \delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right) .
$$

Thus

$$
\begin{equation*}
k_{1} T=k_{1}+c\left(k_{1}\right) i_{M} \delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right), \quad c\left(k_{1}\right) \in Z_{3} . \tag{2.11}
\end{equation*}
$$

Proposition 2.6. Let E be a commutative ring spectrum and assume that $1 \wedge \beta^{\prime} \cdot i_{1}: E \wedge \Sigma^{2 q+2} V(0) \rightarrow E \wedge V(1)$ is trivial if $p=3$. Then there exists a commutative multiplication of $E \wedge V(1)$ satisfying the property $\left(\Lambda_{1}\right)_{1}$.

Proof. We may assume $p=3$. Take a left inverse $\gamma_{M}: E \wedge M \rightarrow E \wedge V(1)$ of $1 \wedge i_{M}$ and put $\gamma_{1}^{\prime}=\gamma_{M}\left(1 \wedge k_{1}\right)-c\left(k_{1}\right) \delta_{1} \beta \cdot i_{1} \delta \cdot \psi\left(\pi_{1} \wedge \pi_{1}\right), c\left(k_{1}\right) \in Z_{3}$. Making use of Lemma 2.4 and (2.9) we see that γ_{1}^{\prime} is a pre multiplication of $E \wedge V(1)$ such that $\gamma_{1}^{\prime}(1 \wedge T)=\gamma_{1}^{\prime}$. Therefore our multiplication μ_{1} associated with the above γ_{1}^{\prime} is commutative.

§ 3. Multiplications of $E \wedge V(2)$

3.1. In this section we assume $p \geqq 5$, so $V(2)$ exists. The Z_{p}-spectrum $V(2)$ has unique maps

$$
\psi_{2}: V(2) \wedge V(0) \longrightarrow V(2), \quad \phi_{2}: \Sigma^{1} V(2) \longrightarrow V(2) \wedge V(0)
$$

satisfying (1.1) as $\left\{\Sigma^{1} V(2), V(2)\right\}=0$. Note that $V(2)$ is associative. As is easily seen, ψ_{2} and ϕ_{2} are compatible with ψ_{1} and ϕ_{1} respectively, thus

$$
\begin{array}{cl}
\psi_{2}\left(i_{2} \wedge 1\right)=i_{2} \psi_{1}, & \pi_{2} \psi_{2}=\psi_{1}\left(\pi_{2} \wedge 1\right) \\
\phi_{2} i_{2}=\left(i_{2} \wedge 1\right) \phi_{1} & \text { and } \tag{3.1}\\
\left(\pi_{2} \wedge 1\right) \phi_{2}=-\phi_{1} \pi_{2} .
\end{array}
$$

Recall that $V(1)$ has a unique multiplication

$$
\psi_{1,1}: V(1) \wedge V(1) \longrightarrow V(1)
$$

which is associative and commutative whenever $p \geqq 5$. Of course this is an extension of ψ_{1}, i.e.,

$$
\psi_{1,1}\left(1 \wedge i_{1}\right)=\psi_{1} \quad \text { and } \quad \psi_{1,1}\left(i_{1} \wedge 1\right)=\psi_{1} T
$$

Note that $\beta: \Sigma^{p q+q} V(1) \rightarrow V(1)$ is an attaching map of the Z_{p}-spectrum $V(2)$. Lemma 2.1 shows that it is a Z_{p}-map, i.e., $\psi_{1}(\beta \wedge 1)=\beta \cdot \psi_{1}$. The equalities

$$
\begin{equation*}
\psi_{1,1}(\beta \wedge 1)=\beta \cdot \psi_{1,1}=\psi_{1,1}(1 \wedge \beta) \tag{3.2}
\end{equation*}
$$

hold because the aboves composed $1 \wedge i_{1}$ or $i_{1} \wedge 1$ from the right are valid. Hence there exists a map

$$
\psi_{2,1}: V(2) \wedge V(1) \longrightarrow V(2)
$$

making the diagram below commutative

$\psi_{2,1}$ becomes an extension of ψ_{2}, i.e., $\psi_{2,1}\left(1 \wedge i_{1}\right)=\psi_{2}$. [A routine computation shows that $\psi_{2,1}$ is associative in the sense that

$$
\begin{equation*}
\psi_{2,1}\left(1 \wedge \psi_{1,1}\right)=\psi_{2,1}\left(\psi_{2,1} \wedge 1\right) \quad \text { when } p \geqq 7 \tag{3.3}
\end{equation*}
$$

But the authors don't know whether $\psi_{2,1}$ is so or not in the $p=5$ case, although the equality

$$
\psi_{2,1}\left(1 \wedge \psi_{1}\right)=\psi_{2}\left(\psi_{2,1} \wedge 1\right)
$$

holds in general.
We now consider the composition $\psi_{2,1}(1 \wedge \beta): \Sigma^{p q+q} V(2) \wedge V(1) \rightarrow V(2)$. Since $\psi_{2,1}(1 \wedge \beta)\left(i_{2} \wedge 1\right)=i_{2} \psi_{1,1}(1 \wedge \beta)=i_{2} \beta \cdot \psi_{1,1}=0$ by (3.1) and (3.2) there exists a map

$$
\rho_{2}: \Sigma^{2 p q+2 q+1} V(1) \wedge V(1) \longrightarrow V(2)
$$

such that $\psi_{2,1}(1 \wedge \beta)=\rho_{2}\left(\pi_{2} \wedge 1\right)$.
LEMMA 3.1. $\rho_{2}=x\left(\rho_{2}\right) i_{2} \delta_{1} \beta \cdot \beta^{\prime 2} i_{1} \psi\left(\pi_{1} \wedge \pi_{1}\right), x\left(\rho_{2}\right) \in Z_{5}$, if $p=5$ and $\rho_{2}=0$ if $p \geqq 7$.

Proof. Consider the following diagram

By use of (2.3) ii) we see directly that all maps in the above are isomorphic, and also that $\pi_{2 p q+4 q+3}(V(2))$ is spanned by one generator $i_{2} \delta_{1} \beta \cdot \beta^{\prime 2} i_{0}$ in the $p=5$ case, but it is zero in the other cases. Therefore

$$
\left\{\Sigma^{2 p q+2 q+1} V(1) \wedge V(1), V(2)\right\} \cong \begin{cases}Z_{5} & \text { when } p=5 \\ 0 & \text { when } p \geqq 7,\end{cases}
$$

where the former has a generator $i_{2} \delta_{1} \beta \cdot \beta^{\prime} \delta_{1} \psi_{1}\left(1 \wedge \pi_{1}\right)$. The result is now immediate.
3.2. Denote by W and U the mapping cones of $\psi_{2,1}(1 \wedge \beta)$ and ρ_{2} respectively. Then we have commutative diagrams
$\Sigma^{p q+q} V(2) \wedge V(1) \xrightarrow{1 \wedge \beta} V(2) \wedge V(1) \xrightarrow{1 \wedge i_{2}} V(2) \wedge V(2) \xrightarrow{1 \wedge \pi_{2}} \Sigma^{p q+q+1} V(2) \wedge V(1)$

$$
\Sigma^{p q+q+1} V(1) \wedge V(1)=\Sigma^{p q+q+1} V(1) \wedge V(1)
$$

where the right-lower square commutes up to the sign -1 .
As the $V(1)$ case a map $\gamma: X \wedge V(2) \wedge V(2) \rightarrow X \wedge V(2)$ is said to be a pre multiplication of $X \wedge V(2)$ if $\gamma\left(1 \wedge 1 \wedge i_{2}\right)=\gamma\left(1 \wedge i_{2} \wedge 1\right)(1 \wedge T)=1 \wedge \psi_{2,1}$. Assume that $1 \wedge \rho_{2}: X \wedge \Sigma^{2 p q+2 q+1} V(1) \wedge V(1) \rightarrow X \wedge V(2)$ is trivial. For any left inverse $\gamma_{U}: X \wedge U \rightarrow X \wedge V(2)$ of $1 \wedge i_{U}$ we define a map

$$
\gamma_{2}: X \wedge V(2) \wedge V(2) \longrightarrow X \wedge V(2)
$$

by putting $\gamma_{2}=\gamma_{U}\left(1 \wedge k_{W}\right)(1 \wedge w)$.
Lemma 3.2. The map γ_{2} is a pre multiplication of $X \wedge V(2)$.

Proof. Clearly $\gamma_{U}\left(1 \wedge k_{W}\right)(1 \wedge w)\left(1 \wedge 1 \wedge i_{2}\right)=1 \wedge \psi_{2,1} . \quad\{V(1) \wedge V(2), V(2)\}$ is generated by $\psi_{2,1} T$ because $\left(i_{0} \wedge 1\right)^{*}:\{V(1) \wedge V(2), V(2)\} \rightarrow\{V(2), V(2)\}$ is isomorphic. We set

$$
w\left(i_{2} \wedge 1\right)=j_{W}\left(1 \wedge \pi_{2}\right)+a i_{W} \psi_{2,1} T, \quad a \in Z_{p}
$$

as $\pi_{W^{*}}\left(w\left(i_{2} \wedge 1\right)\right)=\pi_{W^{*}}\left(j_{W}\left(1 \wedge \pi_{2}\right)\right)$. The above equality yields that $w\left(i_{2} i_{0} \wedge i_{2} i_{0}\right)$ $=i_{W} i_{2} i_{0}=a i_{W} i_{2} i_{0}$ which implies $\mathrm{a}=1$. Therefore

$$
\gamma_{U}\left(1 \wedge k_{W}\right)(1 \wedge w)\left(1 \wedge i_{2} \wedge 1\right)=\gamma_{U}\left(1 \wedge k_{W}\right)\left(1 \wedge i_{W}\right)\left(1 \wedge \psi_{2,1} T\right)=1 \wedge \psi_{2,1} T
$$

For a ring spectrum E every pre multiplication γ of $E \wedge V(2)$ gives us a map

$$
\mu_{r}: E \wedge V(2) \wedge E \wedge V(2) \longrightarrow E \wedge V(2)
$$

defined by the composition $\mu_{r}=\gamma(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)$. As is easily seen,

$$
\begin{align*}
& \mu_{r}(1 \wedge T \wedge 1)\left(1 \wedge 1 \wedge 1 \wedge i_{2}\right) \tag{1}\\
& \quad=\mu_{r}(1 \wedge T \wedge 1)\left(1 \wedge 1 \wedge i_{2} \wedge 1\right)(1 \wedge 1 \wedge T)=\mu \wedge \psi_{2,1}
\end{align*}
$$

The above observation shows
Proposition 3.3. Let E be a ring spectrum and assume that $1 \wedge i_{2} \delta_{1} \beta$ $\beta^{\prime 2} i_{1} \psi\left(\pi_{1} \wedge \pi_{1}\right): E \wedge \Sigma^{2 p q+2 q+1} V(1) \wedge V(1) \rightarrow E \wedge V(2)$ is trivial if $p=5$. Then $E \wedge V(2)$ is a ring spectrum equipped with a multiplication satisfying $\left(\Lambda_{1}\right)_{2}$.
3.3. According to Proposition 3.3, $V(2)$ is a ring spectrum having $i_{2} i_{0}$ as the unit when $p \geqq 7$. As is easily checked, its multiplication

$$
\psi_{2,2}: V(2) \wedge V(2) \longrightarrow V(2)
$$

is unique and it is associative and commutative. Thus

$$
\begin{equation*}
\psi_{2,2} T=\psi_{2,2} \quad \text { and } \quad \psi_{2,2}\left(\psi_{2,2} \wedge 1\right)=\psi_{2,2}\left(1 \wedge \psi_{2,2}\right) \quad \text { when } p \geqq 7 . \tag{3.4}
\end{equation*}
$$

We next discuss the commutativity of $E \wedge V(2)$ in the $p=5$ case. Put $\rho_{2}^{\prime}=x\left(\rho_{2}\right) i_{2} \delta_{1} \beta \cdot \beta^{\prime 2} i_{1}$ when $p=5$, i.e., $\rho_{2}=\rho_{2}^{\prime} \psi\left(\pi_{1} \wedge \pi_{1}\right)$, and denote by L its mapping cone. Then we have a commutative (up to sign) diagram

with three cofiberings.
Setting $k_{2}=k_{U} \cdot k_{W} \cdot w, k_{2}(T-1)$ belongs to $i_{L_{*}}\{V(2) \wedge V(2), V(2)\}$ as $\pi_{L^{*}}\left(k_{2}(T-1)\right)=-\psi\left(\pi_{1} \wedge \pi_{1}\right)\left(\pi_{2} \wedge \pi_{2}\right)(T-1)=0$. In order to compute the group $\{V(2) \wedge V(2), V(2)\}$ we use the exact sequence

$$
\begin{aligned}
\left\{\Sigma^{p q+q+1} V(2)\right. & \wedge V(1), V(2)\} \xrightarrow{\left(1 \wedge \pi_{2}\right)^{*}}\{V(2) \wedge V(2), V(2)\} \\
\xrightarrow{\left(1 \wedge i_{2}\right)^{*}}\{V(2) & \wedge V(1), V(2)\} \xrightarrow{(1 \wedge \beta)^{*}}\left\{\Sigma^{p q+q} V(2) \wedge V(1), V(2)\right\} .
\end{aligned}
$$

A routine computation shows that $\left\{\sum^{p q+q+1} V(2) \wedge V(1), V(2)\right\}=0$ and $\{V(2) \wedge$ $V(1), V(2)\}$ is generated by $\psi_{2,1}$. If $\psi_{2,1}(1 \wedge \beta) \neq 0$, then $\{V(2) \wedge V(2), V(2)\}=0$ which implies $k_{2} T=k_{2} \in\{V(2) \wedge V(2), L\}$.

Proposition 3.4. Let E be a commutative ring spectrum and assume that $1 \wedge i_{2} \delta_{1} \beta \cdot \beta^{\prime 2} i_{1}: E \wedge \Sigma^{2 p q+4 q+3} V(0) \rightarrow E \wedge V(2)$ is trivial if $p=5$. Then there exists a commutative multiplication of $E \wedge V(2)$ which satisfies the property $\left(\Lambda_{1}\right)_{2}$.

Proof. If $\psi_{2,1}(1 \wedge \beta)=0$ for $p=5$, then $\rho_{2}=0$. So we have a multiplication $\psi_{2,2}: V(2) \wedge V(2) \rightarrow V(2)$ even if $p=5$. Since $\left(1 \wedge i_{2} i_{0}\right)^{*}:\{V(2) \wedge V(2)$, $V(2)\} \rightarrow\{V(2), V(2)\}$ is always monic, $\psi_{2,2}$ is commutative. So we may assume that $\psi_{2,1}(1 \wedge \beta) \neq 0$ for $p=5$. Any left inverse $\gamma_{L}: E \wedge L \rightarrow E \wedge V(2)$ of $1 \wedge i_{L}$ gives rise to a pre multiplication γ_{2} of $E \wedge V(2)$ defined by the composition $\gamma_{L}\left(1 \wedge k_{2}\right)$, which is commutative. Consequently the multiplication of $E \wedge V(2)$ associated with the above γ_{2} is commutative.

§4. Brown-Peterson spectrum BP

4.1. Let E be a ring spectrum equipped with a multiplication μ and a unit ८. For any map $f: A \rightarrow B$ the smash $1 \wedge f: E \wedge A \rightarrow E \wedge B$ is rewritten as the composition $(\mu \wedge 1)(1 \wedge \iota \wedge 1)(1 \wedge f)$. So we have
(4.1) $1 \wedge f: E \wedge A \rightarrow E \wedge B$ is trivial if $\{A, E \wedge B\}=0$.

Recall that $\pi_{n}(S)$ is a finite group for each $n \geqq 1$.
Lemma 4.1. Let $f \in \pi_{n}(S), n \geqq 1$, be a p-torsion element. If $\pi_{n}(E)$ is p torsion free, then $1 \wedge f: \Sigma^{n} E \rightarrow E$ is trivial.

As a summary of Propositions 1.7,1.13, 2.5, 2.6, 3.3 and 3.4 and (1.9), (2.10) and (3.4) we obtain

Theorem 4.2. Let E be an associative and commutative ring spectrum.
i) The $p=2$ case $: E \wedge V(0)$ is an associative ring spectrum if $\pi_{1}(E)$ is 2-torsion free.
ii) The $p=3$ case $: E \wedge V(0)$ is an associative and commutative ring spectrum if $\pi_{3}(E)$ is 3-torsion free, and $E \wedge V(1)$ is a commutative ring spectrum if $\pi_{p q-2}(E)$ is 3-torsion free.
iii) The $p=5$ case : $E \wedge V(1)$ is always associative and commutative ring spectrum, and $E \wedge V(2)$ is a commutative ring spectrum if $\pi_{2 p q-4}(E)$ is 5 -torsion free.
iv) The $p \geqq 7$ case : $E \wedge V(1)$ and $E \wedge V(2)$ are always associative and commutative ring spectra.

Let E be an associative and commutative ring spectrum such as $\pi_{*}(E)$ is torsion free. For example, as candidates of E we have the $B U$-spectrum K, the unitary Thom spectrum $M U$, the Brown-Peterson spectrum $B P$ and so on. Since the above E satisfies all assumptions stated in Theorem 4.2,
$E \wedge V(0), E \wedge V(1)$ and $E \wedge V(2)$ are all ring spectra, and moreover the last two are commutative.
4.2. Fix a prime p and denote by $B P$ the Brown-Peterson spectrum at the prime p. This ring spectrum has a coefficient ring $B P_{*}\left(=\pi_{*}(B P)\right) \cong$ $Z_{(p)}\left[v_{1}, \cdots, v_{n}, \cdots\right]$ where the degree of v_{n} is $2\left(p^{n}-1\right)$. There is an equivalent characterization of the $V(n)$ spectra in terms of the $B P$ homology. Thus we may define the spectrum $V(n)$ by specifying the structure of its $B P$ homology as a $B P_{*}$-module (see [3]) :

$$
B P_{*}(V(n)) \cong B P_{*} /\left(p, v_{1}, \cdots, v_{n}\right)
$$

If $V(n)$ exists and if we can find a map $\omega_{n}: \Sigma^{2\left(p^{n+1-1)}\right.} V(n) \rightarrow V(n)$ for which $\omega_{n^{*}}: B P_{*-2\left(p^{n+1-1)}\right.}(V(n)) \rightarrow B P_{*}(V(n))$ is the multiplication by v_{n+1}, then $V(n+1)$ is constructed as the mapping cone of ω_{n}, so

$$
\begin{equation*}
\Sigma^{2\left(p^{n+1-1}\right)} V(n) \xrightarrow{\omega_{n}} V(n) \xrightarrow{i_{n}} V(n+1) \xrightarrow{\pi_{n}} \Sigma^{2 p^{n+1-1}} V(n) \tag{4.3}
\end{equation*}
$$

is a cofibering.
Note that $\pi_{*}(B P \wedge V(n)) \cong Z_{p}\left[v_{n+1}, \cdots\right], n \geqq 0$. This shows that ${ }_{i}{ }^{\top}$ the canonical inclusion $j_{n}: \Sigma^{0} \rightarrow V(n)$ induces isomorphisms

$$
\begin{array}{ll}
\{V(n), B P \wedge V(n)\} \longrightarrow\left\{\Sigma^{0}, B P \wedge V(n)\right\} & \text { when } p \geqq 2, \\
\{V(n) \wedge V(n), B P \wedge V(n)\} \longrightarrow\{V(n), B P \wedge V(n)\} & \text { when } p \geqq 3,
\end{array}
$$

and

$$
\begin{array}{r}
\{V(n) \wedge V(n) \wedge V(n), B P \wedge V(n)\} \longrightarrow\{V(n) \wedge V(n), B P \wedge V(n)\} \\
\text { when } p \geqq 5,
\end{array}
$$

because $V(n)$ is $2\left(p^{n+1}-1\right) /(p-1)-(n+1)$ dimensional. If p is odd, then
there exists a unique map

$$
\begin{equation*}
q_{n}: V(n) \wedge V(n) \longrightarrow B P \wedge V(n) \tag{4.4}
\end{equation*}
$$

whose restriction onto Σ^{0} is the canonical inclusion $\iota \wedge j_{n}$.
Clearly we have
LEMMA 4.3. The map q_{n} satisfies the equalities $q_{n}\left(j_{n} \wedge 1\right)=q_{n}\left(1 \wedge j_{n}\right)=$ $\iota \wedge 1$ and $q_{n} T=q_{n}$.

It follows immediately that the map q_{n} has the relation

$$
\left(\Lambda_{a}\right)_{n} \quad(\mu \wedge 1)\left(1 \wedge q_{n}\right)\left(q_{n} \wedge 1\right)=(\mu \wedge 1)\left(1 \wedge q_{n}\right)(T \wedge 1)\left(1 \wedge q_{n}\right)
$$

whenever $p \geqq 5$.
We now assume $p=3$, so $V(1)$ exists only. We shall next show that the $\operatorname{map} q_{1}$ satisfies the property $\left(\Lambda_{a}\right)_{1}$, too. By the sparseness of $\pi_{*}(B P \wedge V(1))$ we get that the sequence

$$
\begin{aligned}
0 \longrightarrow & \left\{\Sigma^{3 q+3} V(0) \wedge V(0) \wedge V(0), B P \wedge V(1)\right\} \\
& \xrightarrow{\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)^{*}}\{V(1) \wedge V(1) \wedge V(1), B P \wedge V(1)\} \xrightarrow{\left(i_{0} \wedge i_{0} \wedge i_{0}\right)^{*}}\left\{\Sigma^{0}, B P \wedge V(1)\right\}
\end{aligned}
$$

is exact, and

$$
\begin{aligned}
\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)^{*}:\left\{\Sigma^{3 q+4} V(0) \wedge V(0)\right. & \wedge V(0), B P \wedge V(1)\} \\
& \longrightarrow\left\{\Sigma^{1} V(1) \wedge V(1) \wedge V(1), B P \wedge V(1)\right\}
\end{aligned}
$$

is isomorphic. Since $\left\{\Sigma^{16} V(0), B P \wedge V(1)\right\}$ is spanned by one generator ($_\wedge 1$) $\left[\beta i_{1}\right]$, we have

$$
\left\{\Sigma^{3 q+3} V(0) \wedge V(0) \wedge V(0), B P \wedge V(1)\right\} \cong Z_{3}+Z_{3}+Z_{3}
$$

with generators

$$
(\iota \wedge 1)\left[\beta i_{1}\right] \psi(\pi \wedge 1 \wedge 1),(\iota \wedge 1)\left[\beta i_{1}\right] \psi(1 \wedge \pi \wedge 1) \quad \text { and } \quad(\iota \wedge 1)\left[\beta i_{1}\right] \psi(1 \wedge 1 \wedge \pi)
$$

and

$$
\left\{\Sigma^{3 q+4} V(0) \wedge V(0) \wedge V(0), B P \wedge V(1)\right\} \cong Z_{3}
$$

with a generator $(c \wedge 1)\left[\beta i_{1}\right] \psi(\psi \wedge 1)$.
For the map $q_{1}: V(1) \wedge V(1) \rightarrow B P \wedge V(1)$ of (4.4) we put

$$
\nu_{1}=(\mu \wedge 1)\left(1 \wedge q_{1}\right)(T \wedge 1)\left(1 \wedge q_{1}\right): V(1) \wedge V(1) \wedge V(1) \longrightarrow B P \wedge V(1) .
$$

This satisfies the equality

$$
\begin{equation*}
\nu_{1}(1 \wedge T)=\nu_{1} . \tag{4.5}
\end{equation*}
$$

Lemma 4.4.

$$
\nu_{1}(T \wedge 1)=\nu_{1}+a(c \wedge 1)\left[\beta i_{1}\right] \psi(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1+1 \wedge 1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)
$$

where $a \in Z_{3}$.
Proof. Set

$$
\nu_{1}(T \wedge 1)=\nu_{1}+(\iota \wedge 1)\left[\beta i_{1}\right] \psi\left(a_{1} \pi \wedge 1 \wedge 1+a_{2} 1 \wedge \pi \wedge 1+a_{3} 1 \wedge 1 \wedge \pi\right)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)
$$

$a_{1}, a_{2}, a_{3} \in Z_{3}$ as $\left(i_{0} \wedge i_{0} \wedge i_{0}\right)^{*}\left(\nu_{1}(T \wedge 1-1)\right)=0$. Composing $1 \wedge T$ from the right we get

$$
\begin{aligned}
& \nu_{1}(T \wedge 1)(1 \wedge T) \\
& \quad=\nu_{1}-(\iota \wedge 1)\left[\beta i_{1}\right] \psi\left(a_{1} \pi \wedge 1 \wedge 1+a_{2} 1 \wedge 1 \wedge \pi+a_{3} 1 \wedge \pi \wedge 1\right)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)
\end{aligned}
$$

We apply $(T \wedge 1)^{*}$ on two equalities to obtain

$$
\begin{aligned}
& \nu_{1}=\nu_{1}(T \wedge 1)-(\iota \wedge 1)\left[\beta i_{1}\right] \psi\left(a_{1} 1 \wedge \pi \wedge 1+a_{2} \pi \wedge 1 \wedge 1+a_{3} 1 \wedge 1 \wedge \pi\right)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) \\
& \nu_{1}(T \wedge 1)(1 \wedge T) \\
& \quad=\nu_{1}(T \wedge 1)+(\iota \wedge 1)\left[\beta i_{1}\right] \psi\left(a_{1} 1 \wedge \pi \wedge 1+a_{2} 1 \wedge 1 \wedge \pi+a_{3} \pi \wedge 1 \wedge 1\right)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)
\end{aligned}
$$

The former implies $a_{1}=a_{2}$, and the latter does $a_{1}=a_{3}$ and $a_{2}=a_{3}$. Thus $a_{1}=$ $a_{2}=a_{3}$.

Recall that $V(1)$ is a Z_{p}-spectrum equipped with unique structure maps ψ_{1} and ϕ_{1}. For any $C W$-spectrum X we may regard $X \wedge V(1)$ as a $Z_{p^{-}}$ spectrum whose structure maps are $1 \wedge \psi_{1}$ and $1 \wedge \phi_{1}$. Abbreviating

$$
\begin{aligned}
A= & {\left[\beta i_{1}\right] \psi(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1+1 \wedge 1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right): } \\
& V(1) \wedge V(1) \wedge V(1) \longrightarrow V(1)
\end{aligned}
$$

we operate the derivation θ on it.
LEMMA 4.5. $\quad \theta(A)=\left[\beta i_{1}\right] \psi(\psi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)$.
Proof. Making use of (1.9), (2.6) and (2.7) we compute

$$
\begin{aligned}
\theta(A)= & \psi_{1}\left(\left[\beta i_{1}\right] \wedge 1\right)(\psi \wedge 1)(\pi \wedge 1 \wedge 1 \wedge 1+1 \wedge \pi \wedge 1 \wedge 1+1 \wedge 1 \wedge \pi \wedge 1) \\
= & \left(\psi _ { 1 } \wedge \pi _ { 1 } ([\beta i _ { 1 }] \wedge 1) ((1 \wedge i) \psi + \phi (1 \wedge \pi)) (\psi \wedge 1) \left((1 \wedge \phi)(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1)\left(1 \wedge \phi_{1}\right)\right.\right. \\
= & {\left[\beta i_{1}\right]\left(\psi(1 \wedge \psi)+i \alpha_{1}(\pi \wedge \pi \wedge \pi)\right)(1 \wedge \phi)(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) } \\
& +\left[\beta i_{1}\right] \psi(\psi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) \\
& +\theta\left[\beta i_{1}\right] \psi(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1+1 \wedge 1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\beta i_{1}\right] \psi(\psi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) } \\
& +\alpha^{\prime \prime}\left[\beta i_{1}\right](\pi \wedge 1+1 \wedge \pi)(\pi \wedge 1 \wedge 1+1 \wedge \pi \wedge 1+1 \wedge 1 \wedge \pi)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) \\
= & {\left[\beta i_{1}\right] \psi(\psi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right) . }
\end{aligned}
$$

PROPOSITION 4.6. The $\operatorname{map} q_{n}: V(n) \wedge V(n) \rightarrow B P \wedge V(n)$ satisfies the equality $(\mu \wedge 1)\left(1 \wedge q_{n}\right)\left(q_{n} \wedge 1\right)=(\mu \wedge 1)\left(1 \wedge q_{n}\right)(T \wedge 1)\left(1 \wedge q_{n}\right)$.

Proof. The $(p, n)=(3,1)$ case: By Lemmas 4.4 and 4.5 we obtain

$$
\theta\left(\nu_{1}(T \wedge 1-1)\right)=a(\iota \wedge 1)\left[\beta i_{1}\right] \psi(\psi \wedge 1)\left(\pi_{1} \wedge \pi_{1} \wedge \pi_{1}\right), \quad a \in Z_{3} .
$$

On the other hand, it is clear that

$$
\theta\left(\nu_{1}\right)=\left(1 \wedge \psi_{1}\right)(\mu \wedge 1 \wedge 1)\left(1 \wedge q_{1} \wedge 1\right)(T \wedge 1 \wedge 1)\left(1 \wedge q_{1} \wedge 1\right)\left(1 \wedge 1 \wedge \phi_{1}\right)=0
$$

and

$$
\theta\left(\nu_{1}(T \wedge 1)\right)=\theta\left(\nu_{1}\right)(T \wedge 1)=0
$$

because $\theta\left(q_{1}\right)$ belongs to $\left\{\Sigma^{1} V(1) \wedge V(1), B P \wedge V(1)\right\}=0$. Consequently we have $a=0$, so $\nu_{1}(T \wedge 1)=\nu_{1}$. We use this relation and (4.5) to compute

$$
\begin{aligned}
(\mu \wedge 1)\left(1 \wedge q_{1}\right)\left(q_{1} \wedge 1\right) & =(\mu \wedge 1)\left(1 \wedge q_{1}\right)(1 \wedge T)\left(q_{1} \wedge 1\right)(1 \wedge T)(1 \wedge T) \\
& =\nu_{1}(T \wedge 1)(1 \wedge T)=\nu_{1}
\end{aligned}
$$

The other cases have already been done.
4.3. When $p \geqq 3$, we consider the map

$$
\gamma_{n}: B P \wedge V(n) \wedge V(n) \longrightarrow B P \wedge V(n)
$$

given by the composition $(\mu \wedge 1)\left(1 \wedge q_{n}\right)$. A routine computation shows that
$\left(\Lambda_{3}\right)_{n}^{\prime}$

$$
\begin{aligned}
& \gamma_{n}(\mu \wedge 1 \wedge 1)=(\mu \wedge 1)\left(1 \wedge \gamma_{n}\right) \\
& \gamma_{n}(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)(1 \wedge 1 \wedge T)=(\mu \wedge 1)(1 \wedge T)\left(\gamma_{n} \wedge 1\right)
\end{aligned}
$$

as μ is associative and commutative. Moreover Lemma 4.3 and Proposition 4.6 imply that γ_{n} satisfies the relations

$$
\begin{align*}
\gamma_{n}\left(1 \wedge j_{n} \wedge 1\right) & =\gamma_{n}\left(1 \wedge 1 \wedge j_{n}\right)=1, \gamma_{n}(1 \wedge T)=\gamma_{n} \quad \text { and } \\
\gamma_{n}\left(\gamma_{n} \wedge 1\right) & =\gamma_{n}(T \wedge 1)\left(1 \wedge \gamma_{n}\right)(T \wedge 1 \wedge 1) . \tag{4.6}
\end{align*}
$$

As before we define a multiplication

$$
\mu_{n}: B P \wedge V(n) \wedge B P \wedge V(n) \longrightarrow B P \wedge V(n)
$$

to be the composition $\gamma_{n}(\mu \wedge 1 \wedge 1)(1 \wedge T \wedge 1)$. By use of (1.13) and (4.6) we obtain

THEOREM 4.7. If $p \geqq 3$, then $B P \wedge V(n)$ is a ring spectrum equipped with the unit $\subset \wedge j_{n}$ which is associative and commutative.
4.4. Let E be an associative $B P$-module spectrum whose coefficient module $\pi_{*}(E)$ is finitely presented as a $B P_{*}$-module, further Y be a finite $C W$-spectrum and W be a connective $C W$-spectrum such that $H Z_{(p) *}(W)$ is $Z_{(p)}$-free. Since $B P^{*}(W)$ is $B P_{*}$-flat, the pairing $B P \wedge E \rightarrow E$ gives us an isomorphism

$$
\begin{equation*}
B P^{*}(W) \underset{B P^{*}}{\otimes} E^{*}(Y) \longrightarrow E^{*}(W \wedge Y) \tag{4.7}
\end{equation*}
$$

Assume that $E^{*}()$ is a $B P_{*} /\left(p, v_{1}, \cdots, v_{n}\right)$-module. The generator v_{n} yields a homomorphism $v_{n}^{*}: B P^{*}(B P) \rightarrow B P^{*-2\left(p^{n-1)}\right.}$ whose image is contained in the prime ideal $\left(p, v_{1}, \cdots, v_{n}\right)$ (see [2, Lemma 1.7]). Hence $v_{n}^{*} \otimes 1$: $B P^{*}(B P) \otimes_{B P^{*}} E^{*}(Y) \rightarrow B P^{*-2\left(p^{n-1)}\right.} \otimes_{B P^{*}} E^{*}(Y)$ is trivial. Making use of (4.7) the triviality of $v_{n}^{*} \otimes 1$ implies that

$$
\begin{equation*}
\left(v_{n} \wedge 1\right)^{*}: E^{*}(B P \wedge Y) \longrightarrow E^{*-2\left(p^{n-1}\right)}(Y) \tag{4.8}
\end{equation*}
$$

is trivial for any finite Y.
Using the Baas-Sullivan theory of manifolds with singularities we can construct $B P$-module spectra $P(n)$ with coefficient modules $P(n)_{*}\left(=\pi_{*}(P(n))\right)$ $\cong B P_{*} /\left(p, v_{1}, \cdots, v_{n-1}\right)$ (see [2]). In particular

$$
P(0)=B P \quad \text { and } \quad P(1)=B P \wedge V(0)
$$

$P(n+1)$ is related to $P(n)$ by a cofibering of $B P$-module spectra

$$
\begin{equation*}
\Sigma^{2\left(p^{n}-1\right)} P(n) \xrightarrow{\cdot v_{n}} P(n) \xrightarrow{g_{n}} P(n+1) \xrightarrow{h_{n}} \Sigma^{2 p^{n}-1} P(n) \tag{4.9}
\end{equation*}
$$

where $\cdot v_{n}$ is given by the composition $m_{n}\left(v_{n} \wedge 1\right): \Sigma^{2\left(p^{n-1}\right)} P(n) \rightarrow B P \wedge P(n) \rightarrow$ $P(n)$.

Since $E^{*}(P(n) \wedge X)$ is always Hausdorff for $n \geqq 1$, (4.8) is true for $P(n) \wedge X$. Hence we have

Lemma 4.8 ([2, Lemma 2.8]). Let E be an associative BP-module spectrum whose coefficient module $\pi_{*}(E)$ is a finitely presented $B P_{*}$-module. If $E^{*}()$ is a $P(n+1)_{*}-m o d u l e$, then the cofibering (4.9) induces a short exact sequence

$$
0 \longrightarrow E^{*-2 p^{n+1}}(X \wedge P(n)) \xrightarrow{\left(1 \wedge h_{n}\right)^{*}} E^{*}(X \wedge P(n+1)) \xrightarrow{\left(1 \wedge g_{n}\right)^{*}} E^{*}(X \wedge P(n)) \longrightarrow 0
$$

for any X.
Proposition 4.9. $B P \wedge V(n)$ is homotopy equivalent to $P(n+1)$.

Proof. Beginning with $B P \wedge V(0)=P(1)$ the proof is inductively proceeded. We now assume that there exists a homotopy equivalence $\tau_{n}: P(n)$ $\rightarrow B P \wedge V(n-1)$ which induces the identity in homotopy groups. Note that $B P \wedge V(n)^{*}()$ becomes a $P(n+1)_{*}$-module because $B P \wedge V(n)$ is a ring spectrum. In virtue of Lemma 4.8 we can choose a map

$$
\tau_{n+1}: P(n+1) \longrightarrow B P \wedge V(n)
$$

such that $\tau_{n+1} g_{n}=\left(1 \wedge i_{n-1}\right) \tau_{n}$. Since the map τ_{n+1} induces the identity in homotopy groups, it is a homotopy equivalence.

Theorem 4.7 combined with Proposition 4.9 shows
Theorem 4.10. Assume $p \geqq 3$. If $V(n)$ exists, then $P(n+1)$ is an associative and commutative ring spectrum.

Appendix

Recall that $P(n)$ is an (associative) $B P$-module spectrum. Thus there exists a pairing $m_{n}: B P \wedge P(n) \rightarrow P(n)$ which satisfies $m_{n}(c \wedge 1)=1$. Denote by $\varepsilon_{n}: B P \rightarrow P(n)$ the composition $g_{n-1} \cdots g_{0}$.

Lemma A.1. There exist multiplications $\phi_{n}: P(n) \wedge P(n) \rightarrow P(n)$ such that $\phi_{n}\left(\varepsilon_{n} \wedge 1\right)=m_{n}, \phi_{n}\left(1 \wedge \varepsilon_{n}\right)=m_{n} T$ and $\phi_{n+1}\left(g_{n} \wedge g_{n}\right)=g_{n} \phi_{n}$.

Proof. Assume inductively that there exists a multiplication ϕ_{n} such that $\phi_{n}\left(\varepsilon_{n} \wedge 1\right)=m_{n}$ and $\phi_{n}\left(1 \wedge \varepsilon_{n}\right)=m_{n} T$. We consider the commutative diagram

where two rows are induced by the cofibering (4.9) and all vertical arrows are done by the map ε_{n}. By Lemma 4.8 two rows are exact and all vertical arrows are epic. Note that g_{n} is a $B P$-module map, i.e., $m_{n+1}\left(1 \wedge g_{n}\right)=g_{n} m_{n}$. By chasing the above diagram we can choose a map

$$
\psi_{n+1}: P(n) \wedge P(n+1) \longrightarrow P(n+1)
$$

so that $\psi_{n+1}\left(1 \wedge g_{n}\right)=g_{n} \phi_{n}$ and $\psi_{n+1}\left(\varepsilon_{n} \wedge 1\right)=m_{n+1}$. We again consider the
commutative diagram

which consists of two exact rows induced by the cofibering (4.9) and of three vertical arrows induced by ε_{n+1}. By a similar diagram chasing to the above we get a map

$$
\phi_{n+1}: P(n+1) \wedge P(n+1) \longrightarrow P(n+1)
$$

such that $\phi_{n+1}\left(g_{n} \wedge 1\right)=\psi_{n+1}$ and $\phi_{n+1}\left(1 \wedge \varepsilon_{n+1}\right)=m_{n+1} T$. Clearly ϕ_{n+1} has the properties as required.

Lemma A.2. If $p \geqq 3$, then we can take as ϕ_{n} 's in the above lemma commutative ones.

Proof. Assuming that a multiplication ϕ_{n} is commutative we shall construct a commutative one ϕ_{n+1} which satisfies the properties stated in Lemma A.1. We use the commutative diagram

$\stackrel{0}{\downarrow}$
$\longrightarrow P(n+1)^{*}(\stackrel{\rightharpoonup}{P}(n) \wedge P(n)) \longrightarrow 0$
$\longrightarrow P(n+1)^{*}(P(\stackrel{n}{\downarrow}) \wedge P(n+1)) \longrightarrow 0$
$\longrightarrow P(n+1)^{*}(\underset{P}{P}(n) \wedge P(n)) \longrightarrow 0$
\downarrow
0
where all rows and columns are induced by the cofibering (4.9) and they are exact. First, choose a map $\phi_{n+1}^{\prime}: P(n+1) \wedge P(n+1) \rightarrow P(n+1)$ so that

$$
\phi_{n+1}^{\prime}\left(\varepsilon_{n+1} \wedge 1\right)=m_{n+1}, \phi_{n+1}^{\prime}\left(1 \wedge \varepsilon_{n+1}\right)=m_{n+1} T \quad \text { and } \quad \phi_{n+1}^{\prime}\left(g_{n} \wedge g_{n}\right)=g_{n} \phi_{n} .
$$

Then we may assume that $\phi_{n+1}^{\prime}\left(1 \wedge g_{n}\right)=\phi_{n+1}^{\prime}\left(g_{n} \wedge 1\right) T$. So there exists a unique map $w: \sum^{4 p^{n-2}} P(n) \wedge P(n) \rightarrow P(n+1)$ such that

$$
\phi_{n+1}^{\prime} T=\phi_{n+1}^{\prime}+w\left(h_{n} \wedge h_{n}\right) .
$$

We compose T from the right to obtain

$$
\phi_{n+1}^{\prime}=\phi_{n+1}^{\prime} T-w T\left(h_{n} \wedge h_{n}\right) .
$$

So we find $w=w T$. Putting

$$
\phi_{n+1}=\phi_{n+1}^{\prime}+w / 2\left(h_{n} \wedge h_{n}\right)
$$

it becomes commutative, and moreover it has the properties as required.
Consequently we obtain
Proposition A.3. $P(n)$ is a ring spectrum equipped with $\varepsilon_{n} \iota$ as unit, and $g_{n}: P(n+1) \rightarrow P(n)$ is a map of ring spectra. Besides $P(n)$ is commutative in the $p \geqq 3$ case.

Remark. If $3 n<2(p-1)$, then g_{n-1} yields an isomorphism

$$
P(n)^{*}(P(n) \wedge P(n) \wedge P(n)) \longrightarrow P(n)^{*}(P(n-1) \wedge P(n-1) \wedge P(n-1))
$$

(cf., [2, Remark 2.14]). In this case $P(n)$ is an associative and commutative ring spectrum.

References

[1] S. Araki and H. Toda: Multiplicative structures in $\bmod q$ cohomology theories, I and II, Osaka J. Math., 2 (1965), 71-115 and 3 (1966), 81-120.
[2] D. C. Johnson and W. S. Wilson: BP operations and Morava's extraordinary K-theories, Math. Z., 144 (1975), 55-75.
[3] E. Thomas and R. Zahler: Generalized higher order cohomology operations and stable homotopy groups of spheres, Advances in Math. 20 (1976), 287-328.
[4] H. Toda: On spectra realizing exterior parts of the Steenrod algebra, Topology, 10 (1971), 53-65.
[5] H. Toda: Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ., 11 (1971), 197-251.

