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For a (reduced) cohomology theory h the mod q cohomology theory 

h(;Zq) is defined by h* (X;Zq)=h*+Z(Xƒ©Mq) where Mq is a co-Moore space 

of type (Zq, 2). By the representability theorem any (multiplicative) coho

mology theory h is represented by a certain (ring) spectrum E. ‡”-1Mq is a 

Moore spectrum of type Zq, so we put Vq(0)=‡”-1Mq. Since Vq(0) is self 

dual, Eƒ©Vq(0) is a represented spectrum of h(;Zq) so that h*(X;Zq)_??_

{X, Eƒ©Vq(0)}_*. In [1] Araki-Toda discussed the multiplicative structure 

in mod q cohomology theories. In other words they investigated several con

ditions on a ring spectrum E under which Eƒ©Vq(0) is a nice ring spectrum.

Let p be a fixed prime. A spectrum V(n) is defined to be a finite GW

- spectrum having H*(V(n);Zp)_??_E(Q0, Q1, ... , Qn) as a module over the mod p 

Steenrod algebra where Qi are Milnor elements. For example, we can take 

as V(0) a Moore spectrum of type Zp, i.e., V(0)=Vp(0), and the existence of 

V (n) is assured for n=1, p•†3, for n=2, p•†5 and for n=3, p•†7. Making 

use of Adams spectral sequence Toda [4] computed the homotopy groups of 

V(1) and V(2) up to some range, and he then determined the structure of 

the algebra {V(1), V(1)}* in [5].

Let E be a ring spectrum equipped with a multiplication ƒÊ and a unit ƒÇ. 

The purpose of the present work is to give conditions on E under which 

Eƒ©V(1) and Eƒ©V(2) are nice ring spectra (Theorem 4.2), by means of 

Toda's computations. In •˜ 1 we restate several results of Araki-Toda [1], 

mainly existence theorems of admissible multiplications for Eƒ©V (0), but they 

are presented here in terms of the stable homotopy category of CW-spectra. 

If p•†3, then V (0) becomes a ring spectrum which admits a unique multipli

cation ƒµ. In •˜ 2 we first give a condition under which Eƒ©V(1) has a mul

tiplication whose restriction to Eƒ©V (0) is (ƒÊƒ©ƒµ) (1ƒ©Tƒ©1) where T denotes 

the map switching two factors. We next study a condition for the com

mutativity of Fƒ©V(1). In particular, when p•†5V(1) is a ring spectrum 

whose multiplication ƒµ1,1 is a unique extension of . In •˜ 3 we give a condi

tion under which Eƒ©V(2) has a multiplication whose restriction to Eƒ©V(1) 

is induced by ƒÊ and ƒµ1,1, and then discuss the commutativity of Eƒ©V(2).
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In •˜ 4 we show that in the p•†3 cases BPƒ©V (n) are associative and com

mutative ring spectra for the Brown-Peterson spectrum BP (Theorem 4.7), 

although it seems difficult to investigate the associativity of Eƒ©V(1) and 

Eƒ©V(2) for a general E. We can construct a certain CW-spectrum P(n) 

using the Baas-Sullivan technique of defining bordism theories with singu

larities (see [2]). Since BPƒ©V (n) is isomorphic to P(n+1), the above result 

means that P(n+1) is an associative and commutative ring spectrum if p•†3 

and V(n) exists (Theorem 4.10). In appendix we show that P(n) is always 

a ring spectrum even if V(n) does not exist, and in addition that it is com

mutative for p•†3.

In this note we shall work in the stable homotopy category of CW

- spectra.

The authors wish to thank Professor S. Oka for his kind advices.

•˜ 1. Admissible ultiplications of Eƒ©V(0)

1.1. Let us fix a prime p and denote by V(0) the Moore spectrum of 

type Zp, so we have a cofibering

A CW-spectrum X is called a Zp-spectrum if the identity 1X:X•¨X has 

order p. Thus a Zp-spectrum X is equipped with two maps

ƒµ x:Xƒ©V (0)•¨X and ƒÓx: ‡”1X•¨Xƒ©V(0)

satisfying the equalities

(1.1)
~rx• ~i5x=0,

~rx(1Ai)_(1A7r)q5x=1x and (1AiNnx+~75x(1Air)=1gnv(°).

Remark that ƒµx and ƒµx are uniquely determined when {‡”1X, X}=0.

It is well known that

(1.2)
p•E1v(0)=0 if p is odd, but

p•E1v(0)=iƒÅ•EƒÎ•‚0 if p=2,

where ƒÅ:‡”1•¨‡”0 is the Hopf map [1, Theorem 1.1]. This means that V(0) is 

a Zp-spectrum for an odd p, but not so for p=2. Let N denote the mapping 

cone of the composition i•EƒÅ:‡”1•¨V(0). By Verdier's lemma (see [3]) we then 

have a cofibering
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making the diagram below commutative

in which the right-lower square commutes up to the sign -1.

For any Zp-spectrum Y (1Air)*:{?1X,Y}-*{XAV(0),Y} is monic. Hence

LEMMA 1.1. Xƒ©V(0) is a Zp-spectrum if and only if 1~Ai:

XA V(0) is trivial.

We say that a map r:XAV(O)AV(o)--~XAV(0) is a pre multiplication 

o fXƒ©V(0) if it satisfies ƒÁ(1ƒ©1ƒ©i)=ƒÁ(1ƒ©iƒ©1) =1. Assume that Xƒ©V(0) 

is a Zp-spectrum, so we have a left inverse rN:XAN->XAV(0) of 1ƒ©iN. 

Making use of this left inverse we define a map

To:XAV(O)AV(o)-~XAV(o)

as the composition To =TN(1 AICo).

LEMMA 1.2. The map To is a pre multiplication o f Xƒ©V(0).

PROOF. The difference iƒ©1-1ƒ©i belongs to ar* V(0)AV(O)}=

2r*jo*{'1,~1} as {`1,N}=0. So we get immediately

TN(1Ako)(1AiA1)=TN(1Ako)(1A1Ai)=TN(1AiN)=1.

The above result means that

(1.3) Xƒ©V (0) is a Zp-spectrum if and only if it has a pre multiplication.

For two pre multiplications ƒÁ, ƒÁ•Œof Xƒ©V (0) we can choose a map 

b:XA1V(0)-~XAV(0) such that r-T'=b(1nln~c). Obviously b(1ni)(1Aar)

=0 and hence b(1Ai)=0 because p{~'1X,XAV(0)}=0. Consequently theree 

exists a unique map

(1.4) B(r,T'):.~?ZX--~XAV(0)

so that 2'1"=B(r,r')(1AirAir).R(r,r') measures the difference of pre mul

tiplications ƒÁ and ƒÁ•Œ.

Let E be a ring spectrum, i.e., it has given maps 4a: EAE-~E and: ~°

--~E such that p(1Ac)=p(cA1)=1 . Every pre multiplication r of Eƒ©V(0)
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gives rise to a map

pr:EAV(o)AEAV(o)---~EAV(o)

defined by the composition p1Vr(pA1A1)(1ATA1) where T is the map 

switching factors. This map satisfies the property

(A1)~cr(1nT/~1)(1n1n1ni)=~r(1/~T/~1)(1nlninl)=~cn1.

Therefore this gives Eƒ©V(0) the structure of a ring spectrum having ƒÇƒ©i 

as the unit. On the other hand, each multiplication p of Eƒ©V(0) satisfying 

(ƒ©1) yields a pre multiplication ƒÁƒÊ by putting ƒÁƒÊ=ƒÊ(1ƒ©1ƒ©ƒÇƒ©1). This corres

 pondence is a left inverse of the previous ƒÁ•¨ƒÊƒÁ•E

PROPOSITION 1.3. Let E be a ring spectrum. The following conditions 
are equivalent:

i) Eƒ©V(0) is a Zp-spectrum,

ii) Eƒ©V(0) has a multiplication satisfying (A1), and

iii) Eƒ©V(O) is a ring spectrum with the unit ƒÇƒ©i.

PROOF. The above observations show the implications i)•¨ii)•¨iii), and 

iii)•¨i) is immediate.

By the same argument as (1.4) we obtain a unique map

(1.5) B(p,p'):22EAE--EAV(0)

so that p-p'=B(u,p')(1AirA1Air) for two multiplications ƒÊ, ƒÊ•Œof Eƒ©V(0) 

satisfying (ƒ©1).

LEMMA 1.4. If a multiplication ƒÊ of Eƒ©V (0) satisfies the property 

(ƒ©1), then there exists a unique map ƒÁN; EAEAN-~EAV (O) such that 

p(1ATA1)=?N(1A1Ako).

PROOF. Take a left inverse ƒÁN of 1ƒ©iN and fix our multiplication ƒÊ0=

ƒÊƒÁo associated with the pre multiplication ro=rN(1Ak0). Since

we can find a required map which is unique.

A similar discussion to the above shows that

(1.6)
every pre multiplication ƒÁ of Xƒ©V(0) admits a factorization 

1=1N(1 Ak0).
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1.2. We put p=ƒÅ in the p=2 case and p=0 in the other cases and 

udenote by P its mapping cone. There exists a cofibering

so that the diagram below is commutative

Take a map k: N->' such that (1Air)(1+T)=ikk° as ar*(1Air)(1+T)=0 

and ko:{N,.~'}-*{V(0)nV(0),~'1} is epic. Setting k• JN=a~• ire,aƒÃZ2i where

, a=0 in the p=2 case, the map k is expressed as a sum k= ark• 2rN+bkN, beZ. 

Therefore (1An)(1+T)=bi• kN• k°. Applying (1ƒ©i)* on both sides we get 

b•ß1 mod p. Thus

( 1.7) (1Alr)(1+T)=i• kN• k°.

Let D be the Moore spectrum of type Zp2 and j:‡”0•¨D be the canonical 

inclusion. Then we have a cofibering

so that p• j=iD• i and JrD• j=i, corresponding to the short exact sequence 0--~ 
Z~-~Zp2--~Zp->0. Put p°=:1 i in the p=2 case and p0=0 in the other cases. 
Denoting by Q its mapping cone there exists a commutative diagram

tconsisting of four cofiberings . The above k•ŒN coincides with the composition 

i • kN as kN  i • kN belongs to 7rN{ .~',V(0)}=0.

Let E be a ring spectrum such that 1ƒ©p0°:~''E--*E n D is trivial. For 

any left inverse rQ : E A Q--~E AD of 1 A iQ we now construct a left inverse 

7N. E A N-->E A V(0) of 1ƒ©iN which is compatible with it. Considering the 

diagram
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(1.8)

with two cofiberings, we get a map ƒÁ•Œ: Eƒ©N•¨Eƒ©V(0) which makes the 

entire diagram commute. Five lemma shows that ƒÁ•Œ(1ƒ©iN) is a homotopy 

equivalence. So we put rN={y'(1AiN)}_1. ", which makes the above diagram. 

commutative again and satisfies TN(1 AiN)=1.

Consider the multiplication po of Eƒ©V(0) associated with the pre multi

plication To =TN(1 Ak0). This satisfies the property

(ƒ©2)•Œ (1AO)p0=(1AlAir)(1+1AT)(1aA1A1)(1ATA1)

because of (1.7). In other words the equality

(ƒ©2) (1AO)p0=p0(1AOA1A1)+po(1A1A1AO)

holds. Thus 1ƒ©„q behaves ass a derivation.

PROPOSITION 1.5. Let E be a ring spectrum. In the p=2 case EAV(0)

has a multiplication satisfying (ƒ©1) and (ƒ©2) if and only if 1ƒ©j•EƒÅ:‡”1E•¨Eƒ©S 

is trivial. In the other cases Eƒ©V(0) has always a multiplication satisfy

ing (ƒ©1) and (ƒ©2).

PROOF. Our multiplication ƒÊ0 constructed suitably as the previous satis

fies the properties (111) and (112). We next assume that there exists a multi

plication ƒÊ of Eƒ©V(0) with the two properties when p=2. Lemma 1.4 says 

that p has a factorization ƒÊ=? r(1 A 1 A k0) (1 A T A 1). By use of (1.7) the 

equality (ƒ©2)•Œ yields

(1AO)?N(lnlnko)=(1nln7r)(1+1AT)(1an1A1)

= (1Ai)(1AkN)(1Ak0)(,aA1A1).

This then implies that (1 A O)YN = (1 A i) (1 A kN) (a A 1) as 2{~'E A E, E A V(0)} 

= 0. Putting TN=TN(ƒÇƒ©1ƒ©1), it is a left inverse of 1ƒ©iN which has (1ƒ©„q)ƒÁN 

=1ƒ©k•ŒN. By the same argument as (1.8) we can find a left inverse ƒÁQ of 

1ƒ©iQ such that (1ƒ©ƒ©ƒÎD)ƒÁQ =TN(1ƒ©j•ŒN). Hence 1 A j .:'E->E A Q is trivial.

1.3. Let E be a ring spectrum and f:A•¨B be a map which induces 

the trivial 1ƒ©f: E A A-~E A B. Denote by C the mapping cone of the map 

f, so we have a cofibering
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For any e:~'A-~EAC with (1ƒ©ƒÎc)=ƒÇƒ©1 we define a left inverse of 1ƒ©ic

Y :EAC-*EAB

by the formula (1Aic)ie=1(pA1)(1A)(1A2Tc). As is easily checked, the 

correspondenceƒÌ•¨ƒÁƒÌg has a left inverse and hence it is injective.

LEMMA, 1.6. Let ƒÌ:~`1A-~EAC be a map such that (1ƒ©ƒÎc)e=ƒÇƒ©1.

i) If E is associative, then the relation Ye (Al)_(uA1)(1AYe) holds.
ii) If E is associative and commutative, then the relation r (pA1)(1nT)

(pA1)(1AT)(YeA1) holds.

PROOF. Under our assumptions a routine computation shows that

a nd

(1 Aic)Yg(pA1)=(pA1)(1Alnic)(1AYe)

(1 Aic)Y(pA1)(1AT)=(pn1)(1AT)(1Ai0A1)(Yen1).

Let E be an associative ring spectrum such that Eƒ©V(0) is a Zp

- spectrum. Take a map :~'2->E A N satisfying (1A2rN)e = c and consider 

the left inverse ƒÁƒÌ of 1ƒ©iN induced by the map. This gives us a pre mul

tiplication ƒÁ0 by putting ƒÁ0=ƒÁƒÌ(1ƒ©k0). Note that there exists a map ƒÌ0:‡”

2•¨ N satisfying ƒÎN•EƒÌ0=1 whenever p is odd. By means of Lemma 1.6we see 

that the above ƒÁo is compatible with the multiplication ƒÊ of E in the sense 

that

(ƒ©3)•Œ
Yo(pn1A1)_(pA1)(1AYo),

Yo(pn1n1)(1ATA1)(1A1AT)=(pA1)(1AT)(Yon1)

when E is commutative or=(cA1) 0. The property (ƒ©3)•Œimplies that the 

multiplication Po induced by the left inverse ƒÁƒÌ is quasi associative, i.e.,

(ƒ©3)
p0(pn1A1A1)=(uA1)(1Ap0),

po(pA1A1A1)(1A TA1A1)=po(1A1ApA1),
and po(1A1ApA1)(1A1A1AT)=(pA1)(1AT)(pon1).

A multiplication of Eƒ©V(0) is said to be admissible if it satisfies the 

properties (ƒ©1), (ƒ©2) and (ƒ©3) (see [1]).

PROPOSITION 1.7. Let E be an associative ring spectrum. In the p=2 

case Eƒ©V(0) has an admissible multiplication if 1ƒ©j•EƒÅ: ‡”1E•¨Eƒ©D is 

trivial and E is commutative. In the other cases admissible multiplications 

of Eƒ©V(0) exist always. (Cf., [1, Theorem .9]).
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PROOF. For any ':~2---*E A Q satisfying (1A2TQ) '=cA1 we put 

(1Aj)'. This determines the left inverse ƒÁƒÌ of 1ƒ©iN, which satisfies 

ƒÁƒÌ(1ƒ©j•ŒN)=(1ƒ©ƒÎD)rƒÌ•Œ and (1Ao)re=(1Ai)(1AkN). When p is odd we can take. 

the composition (ƒÇƒ©1)ƒÌ•Œ0 as ƒÌ•Œwhere ƒÌ•Œ0:‡”2•¨Q satisfies ƒÎQ•EƒÌ•Œ0=1. Therefore. 

our multiplication o=r~(lAk°)QiA1A1)(1ATA1) is admissible.

REMARK. Araki-Toda [1, Corollary 3.9] showed that admissible multi 

plications ƒÊ, ƒÊ•Œof Eƒ©V(0) coincide if and only if

B(p,p')(tAc)=0 e {2, ~`EAV(0)}.

1.4. Taking as a ring spectrum E the sphere spectrum S, Proposition. 

1.3 implies that V(0) is a ring spectrum with the unit i whenever p is odd. 

Its multiplication

:V(O)AV(o)---)V(o)

is unique as {'1V(O),~V(0)}=0.V(0) is commutative when p•†3 and associa

tive when p>5. However it is not associative in the p=3 case [4, Lemma 

6.2]. Thus

(1.9)
rJ(+n1)=iJt(1niJt)+i.c1(2rA2rnrr) when p=3,

• T=(A1)=+(1n) when p•†5
,

where c:~3--°is the generator of the 3-primary part (see 2.1).
We next discuss the commutativity of Eƒ©V(0) for p=2. When p=2,, 

choose maps :~'V(0)-~E°and:~2--~V(0) such that ƒÅ•Ei=ƒÅ, and ƒÎ•EƒÅ=ƒÅ then 

put ƒÅ1=i•EƒÅ. and ƒÅ2=ƒÅ•EƒÎ. Since {X'V(O), V(0)} is generated by two ƒÅ1 and ƒÅ2,

 a routine computation shows that

{V(0)AV(0),V(0)}Z2+Z2+Z2

with generators ƒÅ1(1ƒ©ƒÎ), ƒÅ2(1ƒ©ƒÎ) and i•EƒÅ•EkN•Ek0.

Put

k°(T-1) =aiN~l(1A2r)+biN7)2(1n7r), a, b ƒÃ Z

as 7rNk°(T-1)=(rn7r)(1T)=0. We use the relation (1Ai)(ii1+Y)2)(1A2c) =.
2.1v(°)vv(°)to rewrite

k°(T-1)=(a--b)iNl)l(A2r)+2bk°=(b-a)iN~2(1A2r)+2ak°.

We here assume a b mod 2, and set T=(2b+1)+cj0kNk0 for some c ƒÃ Z4•E 

Then c•ß1 mod 2, because d=(1A7r)T(1Ai)=c(1Arc)jOkNk°(1Ai)=cd. By the. 

above setting we have
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T2=1+2i0kNk0

which implies that 2j0kNk0=(1ni),~i..kNko=0. This is a contradiction. 
Theref ore

(1.10) ko(T-1).iNil(1A2c)iNr~2(1n~r) mod2{V(0)AV(0),N}

(cf., [1, Theorem 7.4]).

PROPOSITION 1.8. Let E be a commutative ring spectrum such that 

Eƒ©V(0) is a Z2- spectrum. Then the following conditions are equivalent:

i) Eƒ©V(0) has at least one commutative multiplication satisfying (ƒ©1)
,

ii) 1ƒ©rjl(1n2r)=1nX12(1n2r):EnV(0)AV(0)-EnV(0) is trivial
,

iii) 1nj:En~1V(0)-~E is trivial, and

iv) 1nj:?2E->EAV(0) is trivial.

PROOF. Since Eƒ©V(0) is a Z2-spectrum, 1AX1(1n2c)=1A .i2(1A2c) and 

the conditions ii), iii) and iv) are equivalent.

i)•¨iii): Let ƒÊ be a commutative multiplication satisfying (ƒ©1). By 

virtue of Lemma 1.4 we obtain a decomposition p=?N(1n1nk0)(1ATA1) . 

By the commutativity of ƒÊ we have

p(cn1Acn1)=p(1ATn1)(TAT)(1ATn1)(eA1n~A1)
=rN(lnlnko)(ln1A T)(cAeA1n1)

=P(~AlA Al)+(1an1)(1A1n,11(1nir))(~ncnlnl)

which implies that cnX1(1n2r)=0, and hence 1A(lA2r)=0 ,

ii)•¨i): For any left inverse ƒÁN of 1ƒ©iN we see

rN(lAko)(1AT)=7N(1Ako)+(1AYJ1)(1A1A1r)

by (1.10). Therefore the pre multiplication ƒÁo=ƒÁN(1ƒ©k0) is commutative
, 

and so our multiplication Po associated with the above To is commutative as 

E is commutative.

1.5. In order to discuss the associativity of EnV(0) when p=2 we 

require the following lemmas.

LEMMA 1.9. In the p=2 case there exists a map p0:N-3PnV(0) so 
that poiN=ipnl, (rPA1)po=i'lrN, pojN=1Ai and (1Alr)po=2PkN.

PROOF. First, consider the diagram
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with two cofiberings. we then have a map po:N*PAV(0) which makes 
the entire diagram commute. In the commutative diagram

with two exact rows, the left jN is epic. As (2rPA1)*(pojN) _(~rpA1),x(1Ai) 

we get a map q:N-~V(0) such that (ipA1)q., N=1Ai--potN•  Put po=po+

(iPA1)q, it is clear that (lTPA1)po=i.2rN and poJN=1Ai. Further poiN=ipA1 

because q.iNe2{V(0), V(0)} and 2(iPAl)=(ppA1)i.• n=0. On the other hand, 

we may set (1Aar)po=aiPkN, a ƒÃ Z, as jN(1Air)po=0. We apply iN on both 

sides to get a•ß1 mod 2. Hence (1Aar)po=ipkN.

LEMMA 1.10. There exist maps ko, rco:NAV(0)->PAV(0) such that 
/co(jNA1)=~o(jNn1)=19, o(iNn1)='o(iNA1)T=poko and K0(1Ai)=/o(1Ai)=po.

PROOF. Consider the commutative diagram

consisting of two exact rows. Since poko(iA1)=poko(1Ai)=poiN=iPA1, both 

poko and p0k0T are contained in the (iNn1)*-image. By chasing the above 
diagram we get immediately maps k0 and ,o which satisfy the first two 
equalities. The last equality composed JN from the right is valid. Since 

j:{N,PAV(0)}-{P,PAV(0)} is monic, the last is satisfied.

Let us consider the short exact sequence
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This sequence is split as ICO(~N.A1)=1. The first group is generated by 

(2pA1)~l of order 2, and the last is generated by 1PAV(0) of order 4 and • ?CPA1 
of order 2 where :~2->P is defined by 2rp=2.12 (see [1, Theorem 3.3]). 
Hence we see

with generators ~0, ° iNA1 and (2pA1)7)l(kN Al).

For the of map v:~3->~'° we may put

with a ƒÃ Z4 and b, c ƒÃ Z2. Applying (NAl)* on both sides we get

Recall the relation 2.1PAV(0)=(2PAi)v(7rpA7r) obtained in [1, Theorem S.3]. 

This implies that a=2 and b=0. Similarly, applying (NAl)* we get

Since 2p0k0=p0k0(1Ai)(1A~)(1Aic)=(2pA1)(1A~)(1nic)=0, we find c=0. 

Thus the relation

(1.11) (2pAi)v(2rNA7r)=2~0

holds.

We here compare with the composition maps ic0(k0Al) and io(k0A1)(1AT)

(TA1). Making use of the above results we have

(1.12)
and

LEMMA 1.11. ,0(k0A1)=,a(k0n1)(1AT)(TA1) mod 2{V(0)AV(0)AV(0), 
PAV(0)}.

 RooF. Using the exact sequences
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we see that {2,~'PAV(O)} and {~2V(O), PnV(0)} are Z2-modules which have 
one generator (ipn1)r~ and (ipA1)i respectively. Therefore lr*:{2,~PAV(O)}
--~ {~'V(o),PnV(o)} and (1nr)*:{~'V(O),PnV(0)}-->{V(O)AV(o),PnV(o)} 
are monic. Hence (1.12) implies that

Observe that (ipA1)*:{X3,V(0)}-{~'3,PAV(0)} is epic, then we have the 

equality that ico(koAl)io(kon1)(1nT)(TAl)=a(ipAi)v(icAisAir) for some. 

a ƒÃ Z2. The result is now immediate from (1.11).

Let E be a ring spectrum such that 1A:~'E->E is trivial. Take a 
map e":~'2-*EnP with (1n2rp)e"=cn1 and e=(lnjN)e". Between the left 
inverses r~ and induced by the maps and e" we have the relation

because the (1niPAl)-images of both sides coincide.

We say that a pre multiplication ƒÁ is associative if it satisfies the relation 

r(TA1)=r(Tn1)(1nr)(Tn1n1).

LEMMA 1.12. The pre multiplication ro=rc(lnko) is associative when 

p=2.

PROOF. By definition (1nip)rc„ (an1)(1Ae")=0, and hence re„ (uA1)
(1ne")= 0. Using Lemma 1.10 and this result we have

and similarly

The above equalities yield

and
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Making use of Lemma 1.11 we obtain that

which implies

Let ~r be a multiplication of EAV(0) associated with a pre multiplication 

ƒÁ. If ƒÁ is compatible with p, i.e., if it satisfies (A3)', then a routine compu

tation shows

Hence we see that

(1.13)
~r is associative if p and r are associative and if r is compatible 
with p.

By means of (1.9) and Lemma 1.12 with (1.13) we obtain

PROPOSITION 1.13. Let E be an associative ring spectrum. Assume that 
E is commutative and 1Aij:.''E-~E is trivial ifp=2 and that 1Ai.c:~'3E
-EAV(0) is trivial if p=3. Then there exists an associative admissible 

multiplication of EAV(0).

•˜ 2. Multiplications of EAV(1)

2.1. For any Zr-spectra X,Ya map f:YkX-~Y is called a Zr-map if 

it satisfies f.=t,PY(fAl) and (fA1)c(1) lC~5Y.f. Let C denote the 
mapping cone of a Zr-map f:~'X-~Y, so we have a cofibering

By a similar discussion to (1.8) we find a map Jc:CAV(0)-~C such that 

c(1Ai)=1C. Thus C is a Zr-spectrum if f:YkX-Y is a Zr-map. For any 
Zr-spectra X and Y Toda [5] introduced an operation
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by the formula 0(f)=j(fA1)cbx• This operation has the properties

(2.1)
i) 0 is derivative, i.e., 0(g.f)=g.0(f)+(--1)dec'O(g)• f

ii) f is a Zr-map if and only if 0(f)=0.

LEMMA 2.1 ([5, Lemma 2.3]). Let X and Y be Zr-spectra and C be the 
mapping cone of a map f:Then C is a Zr-spectrum if0(f)=0. 
The converse is valid under the assumption that {Y,YX}={'X,~'X}=

{"Y,~Y}=0.

PROOF. The above observations show the first half. On the other hand, 

we get

Hence ic0(f)2rc=0 when p{C,C}=0. The latter half is now immediate.

In the following we always assume that a fixed prime p is odd. V(0) 

is a Zp-spectrum, so that it has unique maps

which satisfy (1.1) and moreover which are commutative, i.e.,.T=and
T• ~=-~5. So we note that

(2.2)

Zp-spectrum X is said to be associative if fix(+xAl)Jrx(1AJr)=0 
and (cxn1)~bx+(1n~b)cx=0. There exists uniquely a map cx:2X~X so 

that

and

when {SIX,X}=0 (see [5, Proposition 2.1]). In particular X is associative 
if {SIX,X}={2X,X}=0.

As an analogy of 0 Toda [5] defined another operation

by the formula A(h)=Jx(1Ah)~bx for each Zp-spectrum X. From the com

 utativities of+and ~5 we obtain
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for every h:~kV(0)--~V(0)®

Recall the spectrum V (n) whose ordinary cohoology is a certain ex 

tenor algebra over the mod p Steenrod algebra. For n=1, p>_3, for n=2,

p>_5 and for n=3, p>7 spectra V(n) were constructed in [4]. However 
V(1) for p=2 and V(2) for p=3 do not exist [4, Theorem 1.2]. Consider 

the following cofiberings

where we set q=2(p-1). When p=3 a map [i1]:216V(0)-->V(1) exists evenn 

though j9 does not exist.

We use the notations

and and putand

for the elements a1=• a• iercq _1(S) and ~1=ire.• iseTCpq-Z(S). Then we obtainn 
maps

andsuch that a"• it =a'• ito and R"• i1=a"• jS'i1'o [5, Lemmas 3.1 and 3.5].
Notice that V(1) and V(2) are Zp-spectra. Making use of the Adamss 

spectral sequence Toda computed the homotoy groups of V(1) and V(2) (sea 

[4, Theorem 5.2 and Corollary 5.4] and [5, Theorem 3.2 and Proposition 6.9])

(2.3) i)

for degree<p2q-3 when p>5 and for degree<31 when p=3,

ii)

for degree<p3q-3 when p>5.
By applying the operations 0 and A Toda [5, Theorems 3.6 and 6.113 

determined an additive basis of the algebra {V(1), V(1)}* up to some range:

(2.4)
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for degree<(p2-1)q-5 when p•†5 and for degree<14 when p=3.

The p=3 case is quite different from the other cases. Besides the previ

ous examples we have that the products a"• a" and a'• a"=a"• a' are not 

trivial for p=3. Thus the relations

(2.5) and

hold [5, Theorem 6.2]. Further we see [5, Theorem 6.4] that

(2.6) for

2.2. As {~2V(1),V(1)}=0 the Zp-spectrum V(1) has unique maps

satisfying (1.1). As is easily checked, l and c1 are compatible with ijr and 

~f respectively in the sense that the relations

(2.7) and

hold.

By means of Lemma 2.1 we see that a:~'qV(0)-~V(0) is a Zp-map, i.e.,

(2.8)

Whenever p•†5 V(1) is associative, but it is not so in the p=3 case. Thus 

we have

(2.9)

when p=3 [5, Lemma 6.5].

We here give a decomposition of the smash product 1Aa:~qV(1)AV(0)
->V(1)AV(0). By virtue of (2.4) we have

with a generator a',

with a generator j3'.

with generators ~1• R• ~o,,3'• o1.

So we may set

where w, x, y, z ƒÃ Zp. The following result was implicitly given in Toda [5].
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LEMMA 2.2. 1na=~51.a'.iJr~-c1.j3'o0(1n'r)+(1ni)Q'o1(1nir)-(1ni)j3'

0~`Ji when p=3, but 1na=~51.a'. 1 when p>5.

PROOF. The latter half is clear by the dimensional reason. We prove 
only the p=3 case. We first use (2.2) and (2.8) to verify

By use of (2.5) and (2.9) we compute

This implies x=0 and y=1. Next, by (2.8) and (2.9) we get

and similarly

On the other hand, by (2.2) and (2.7) we see

Consequently it follows that z=w=-1.

Since o.*=1nir+itn1 we have

COROLLARY 2.3. X1(1na)=~'.i1(1Air-rtn1)(?rlAl) when p=3, but 

1(1na)=0 when p•†5.

2.3. A map r:XnV(1)nV(1)-~XnV(1) is said to be a pre multipli

cation of XnV(1) if r(1n1nil)=r(1niln1)(1AT)=1ny'1. We here con
struct a pre multiplication of XnV(1) under a suitable assumption on X. 
Let V be the mapping cone of ik1(1na). Then there exists a map 
v:V(1)AV(1)-~V which makes the diagram below commutative
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We put p1=3`i1(1Ar-rAl) in the p=3 case and p1=0 in the other cases, 
and denote by its mapping cone. We then have a commutative diagram

involving four cofiberings in which the right-lower square commutes up to 

the sign -1.

Assume that 1Apt:XA2q+'V(0)nV(0)--~XAV(1) is trivial. Each left 

inverse r:XA->XAV(1) of 1AiR gives rise to a map

defined by the composition r1=TR(1Ak)(1Av)

LEMMA 2.4. The map rl is a pre multiplication of XAV(1).

PROOF. Obviously TR(1Ak)(lAv)(1A1nil)=1n1. Since icv*(v(i1Al))
=nv*(jv(1A~1))we set

we apply (iAio)* on both sides to get that ivi0=aivi0 which implies a=1. 
Thus v(i1Al)=j(lA2r1)+ivy 1T . Hence we see

Let E be a ring spectrum equipped with a multiplication and a unite. 

For any pre multiplication r of EAV(1) we define a map

as the composition r(~A1A1)(1ATA1). This map satisfies the property

(A1)1



Ring spectra with V(1) and V(2) 209

Every map p with (A1)1 gives EAV(1) the structure of a ring spectrum 

having cAi0 as the unit. As a consequence we obtain

PROPOSITION 2.5. Let E be a ring spectrum and assume that

is trivial if p=3. Then EAV(1) is a ring spectrum which has a multipli
cation satisfying the property (11)1.

2.4. Take the sphere spectrum S as the ring spectrum E in Proposition 

2.5 when p•†5. Then V(1) becomes a ring spectrum equipped with the unit 

i0. Its multiplication

is unique and it is associative and commutative because

and

are isomorphic. Thus J1,1 satisfies the equalities

(2.10) and when p•†5.

We here study the commutativity of RAV(1) in the p=3 case. Denot
ing by M the mapping cone of j3'.it:72+ZV(0)-~V(1) when p=3, then we have 
a commutative (up to sign) diagram

consisting of three cofiberings. In the exact sequence

(1A2r1)* is epic as(1Aa)*iJp1*0. Therefore {V(1)AV(1),V(1)} is spanned 
by (1A?rl)*(tijSoi(1An)), (1A1r1)*(o1poo`Y1) and (1n2ri)*(/'o1lJr1) . But (1A4*
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(a"(1Air))=a"(a'1--13'x0(1Air))=j3'o111 because of Lemma 2.2 and (2.5). 
Hence we have

with generators U1j• i1(1Air)(ir1Ai'1) and U8• i1o.yr(7r1Air1).
Setting k1=JCR• kV• v,lrM*(kl(T--1))=(1Air-itA1)(ir1Afr1)(T-1)=0. So 

we put

where a, b ƒÃ Z3. Applying T from the right we get

we substract the first equality from the latter to obtain

Thus

(2.11)

PROPOSITION 2.6. Let E be a commutative ring spectrum and assume 

that 1Aj3'•i1:E~Zq+ZV(0)-~EnV(1) is trivial if p=3. Then there exists a 
commutative multiplication o f EAV(1) satisfying the property (A1)1.

PRooF. We may assume p=3. Take a left inverse rM:EAM-EAV(1) 
of 1/\iM and put r1=TM(1/\k1)c(kl)o113`i1o.fr(i1Airl),c(k1)e 3. Making use 
of Lemma 2.4 and (2.9) we see that ri is a pre multiplication of EAV(1) such 
that ri(1AT)=ri. Therefore our multiplication pl associated with the above 

rl is commutative.

•˜ 3. Multiplications of EAV(2)

3.1. In this section we assume p•†5, so V(2) exists. The Zp-spectrum 

V(2) has unique maps

satisfying (1.1) as{~2V(2),V(2)}=0. Note that V(2) is associative. As is 
easily seen, *2 and c2 are compatible with y~l and c1 respectively, thus

(3.1) and

Recall that V(1) has a unique multiplication
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which is associative and commutative whenever p•†5 . Of course this is an 

extension of i.e.,

and

Note that ~3:~.?pq+gV(1)_~V(1) is an attaching map of the Zr-spectrum V(2)
. Lemma 2.1 shows that it is a Zr-map, i.e., *1(Rn1)_ j9. 1. The 

equalities

(3.2)

hold because the aboves composed 1Ait or it A1 from the right are valid . 
Hence there exists a map

making the diagram below commutative

*2,1 becomes an extension of 1112, i.e., 112,1(1Ai1)=1112. A routine computation 
shows that *2 ,1 is associative in the sense that

(3.3) when p•†7.

But the authors don't know whether *2 ,1 is so or not in the p=5 case, 
although the equality

holds in general.

We now consider the composition *2,1(1A):?P+V(2)nV(1)-~V(2) . 
Since *2,1(1nj3)(i2Al)=i2*1,1(1Aj9)=i2~.`Y1,1=0by(3.1) and (3.2) there exists 
a map

such that *2,1(1AR)=P2(~'2A1).

LEMMA 3.1. P2=x(P2)i2U1j3.13'2i1*(2r1/\ir1)
, x(p2)eZ1, if p=5 and P2=0 if 

p•†7.
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PROOF. Consider the following diagram

By use of (2.3) ii) we see directly that all maps in the above are isomorphic, 
and also that ir2pq+4q+3(V(2)) is spanned by one generator i251R./3'2i0 in the p=5 
case, but it is zero in the other cases. Therefore

whenwhen where the former has a generator i25113.P12o1W1(1Airi). The result is now im
mediate.

3.2. Denote by W and U the mapping cones of *2,1(lnj3) and p2 respec
tively. Then we have commutative diagrams

where the right-lower square commutes up to the sign -1.
As the V(1) case a map r:XAV(2)AV(2)-~XAV(2) is said to be a pre 

multiplication of XAV(2) if r(1A1Ai2)=r(1Ai2A1)(1AT)=1A*2,1. Assume 
that 1Ap2:XA2pq+2q+iV(1)AV(1)--~XAV(2) is trivial. For any left inverse 

rv:XAU-~XAV(2) of 1AiU we define a map

by putting r2=rv(lAkW)(lAw).

LEMMA 3.2. The map 12 is a pre multiplication of XAV(2).
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PROOF. Clearly r~(1AkW)(1Aw)(1A1Ai2)=1AJ'2,1. {V(1)AV(2) ,V(2)} 
is generated by *2,1T because (i0A1)*:{V(l)AV(2),V(2)}-~{V(2),V(2)} is 
isomorphic. We set

as arw*(w(i2Al))=zrW*(jw(1A7r2)). The above equality yields that w(i2i0ƒ©i2i0)

=iwi2i0=aiwi2i0 which implies a=1. Therefore

For a ring spectrum E every pre multiplication r of EAV(2) gives us 

a map

defined by the composition pr=r(pn1A1)(1ATA1) . As is easily seen,

(A1)2

The above observation shows

PROPOSITION 3.3. Let E be a ring spectrum and assume that 1Ai2o113

13'221(irlAirl)~/I/1~2pq+2q+1V(1)AV(l)--~EAV(2) is trivial if p=5. Then 
EAV(2) is a ring spectrum equipped with a multiplication satisfying (A1)2.

3.3. According to Proposition 3.3, V(2) is a ring spectrum having i2i0 

as the unit when p•†7. As is easily checked, its multiplication

is unique and it is associative and commutative. Thus

(3.4) and when p>7.

We next discuss the commutativity of EAV(2) in the p=5 case. Put 

p2=x(p2)i2o1R•13`2i1 when p=5, i,e., p2=p2 (r1Air1), and denote by L its mapp
ing cone. Then we have a commutative (up to sign) diagram
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with three cofiberings.
Setting k2=k~,.k~w,k2(T--1) belongs to iL* {V(2)AV(2),V(2)} as 

1rL*(k2(T--1))=--ijr(?r1A2r1)&r2Air2)(T-1) =0. In order to compute the group 
{V(2)AV(2),V(2)} we use the exact sequence

A routine computation shows that {P+cJ+lV(2)A~qV(1),V(2)}-0and{V(2)A

V(1),V(2)} is generated by If k2 ,1(1A)*~0, then {V(2)AV(2),V(2)}=0 

which implies k2T=k2ƒÃ{V(2)AV(2),L}.

PROPOSITION 3.4. Let E be a commutative ring spectrum and assume 
that 1Ai251j9.13/2i1.Ei/\~,2Pq+4q+3V(0)_>EnV(2) is trivial if p=5. Then there 
exists a commutative multiplication o f E/\ V(2) which satisfies the property 

(A1)2.

PROOF. If `Y 2,1(1A)=0~ for p=5, then P2=°. So we have a multipli. 
cation JP2,2. V(2)AV(2)-V(2)~even if p=5. Since (1Ai2io)*:{V(2)AV(2),
V(2)}-{V(2),V(2)} is always monic, y~2,2 is commutative. So we may as
sume that `Y2,1(1AR)*0 for p=5. Any left inverse IL:EAL->EAV(2) of 
1AiL gives rise to a pre multiplication 12 of EAV(2) defined by the composi

tion TL(1Ak2), which is commutative. Consequently the multiplication of 
EAV(2) associated with the above 12 is commutative.

•˜ 4. Brown-Peterson spectrum BP

4.1. Let E be a ring spectrum equipped with a multiplication p and a 
unite. For any map f:A--~B the smash 1Af:EAA-EAB is rewritten 
as the composition (pA1)(1AcA1)(1Af ). So we have

(4.1) 1Af:EAA-~EAB is trivial if {A,EAB}=0.

Recall that 2r(S) is a finite group for each n•†1.

LEMMA 4.1. Let f e~rn(S), n>_1, be a p-torsion element. If arn(E) is p
-torsion free, then 1nf:~E-aE is trivial.

As a summary of Propositions 1.7, 1.13, 2.5, 2.6, 3.3 and 3.4 and (1.9), 

(2.10) and (3.4) we obtain

THEOREM 4.2. Let E be an associative and commutative ring spectrum.
i) The p=2 case: EAV(0) is an associative ring spectrum if 7r1(E) is 

2-torsion free.
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ii) The p=3 case:EAV(0) is an associative and commutative ring 
spectrum if ~c3(E) is 3-torsion free, and EAV(1) is a commutative ring spec
trum if i'pq_2(E) is 3-torsion free.

iii) The p=5 case:EnV(1) is always associative and commutative 
ring spectrum, and EAV(2) is a commutative ring spectrum if 7r2pq_4(E) is 
5-torsion free.

iv) The p•†7 case:EnV(1) and EnV(2) are always associative and 

commutative ring spectra.

Let E be an associative and commutative ring spectrum such as 7r(E) is 

torsion free. For example, as candidates of E we have the BU-spectrum K, 

the unitary Thom spectrum MU, the Brown-Peterson spectrum BP and sa 

on. Since the above E satisfies all assumptions stated in Theorem 4.2,

(4.2)
EnV(O), EnV(1) and EAV(2) are all ring spectra, and moreover 

the last two are commutative.

4.2. Fix a prime p and denote by BP the Brown-Peterson spectrum at 
the prime p. This ring spectrum has a coefficient ring BP*(r*(BP)) 

., v,, ... ] where the degree of v, is 2(pn-1). There is an equiva

lent characterization of the V(n) spectra in terms of the BP homology. Thus 
we may define the spectrum V(n) by specifying the structure of its BP

- homology as a BP*-module (see [3]):

If V(n) exists and if we can find a map w:~Z~pn+l-1'V(n)-~V(n) for which 
   BP*-2(pn+l_1)(V(n))-ABP*(V(n)) is the multiplication by vn~1, then V(n+1) 
is constructed as the mapping cone of wn, so

(4.3)

is a cofibering.

Note that ic* (BPnV(n))°~Zp[vn+ 1,...], n•†0. This shows than the 

canonical inclusion jn:°-V(n) induces isomorphisms

when p•†2,

when p•†3,

and

when p•†5,

because V(n) is 2(pn+1-1)/(p-1)-(n+1) dimensional. If p is odd, then
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there exists a unique map

(4.4)n

whose restriction onto ~° is the canonical inclusion cnjn .
Clearly we have

LEMMA 4.3. The map qn satisfies the equalities gn(jnAl)=q n(1Aj)=
`A1 and qnT=qn.

It follows immediately that the map qn has the relation

(Aa)n

whenever p•†5.

We now assume p=3, so V(1) exists only. We shall next show that the 
map q1 satisfies the property (Aa)1, too. By the sparseness of is*(BPAV(l)) 
we get that the sequence

is exact, and

is isomorphic. Since {'6V(O),~`BPAV(l)} is spanned by one generator 

(cA1)[13i1], we have

with generators

and and

with a generator (cn1)[pit]*(* Al).
For the map q1:V(1)nV(1)-ABPnV(1)of(4.4)1 we put

This satisfies the equality

(4.5)
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LEMMA 4.4.

where a ƒÃ Z3.

PROOF. Set

vl(TA1)]1+(cn1)[~3i1]Jr(a12rn1A1+a21A7rn1+a31A1n1r)(1r1A2r1A7r1), 

a1, a2, a3 ƒÃ Z3 as (ioAioAio)*(v1(TA1-1))=0. Composing 1AT from the right 

we get

We apply (TA1)* on two equalities to obtain

The former implies a1=a2, and the latter does a1=a3 and a2=a3. Thus a1=

a2=a3.

Recall that V(1) is a Zr-spectrum equipped with unique structure maps 

Y1 and c11. For any CW-spectrum X we may regard XAV(1) as a Zp
-spectrum whose structure maps are 1Ayl and 1A(. Abbreviating

we operate the derivation 8 on it.

LEMMA 4.5.

PROOF. Making use of (1.9), (2.6) and (2.7) we compute
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PROPOSITION 4.6. The map qn:V(n)AV(n)->BPAV(n) satisfies the 
equality (pA1)(1Agn)(gnA1)=(pA1)(1Agn)(TA1)(1Aq)

PROOF. The (p,n)=(3,1) case: By Lemmas 4.4 and 4.5 we obtain

On the other hand, it is clear that

and

because ®(q1) belongs to {'V(l)A ~'V(1), BPAV(1)}=0. Consequently we have 
a=0, so 1.11(TA1)=v1. We use this relation and (4.5) to compute

The other cases have already been done.

4.3. When p•†3, we consider the map

given by the composition (pA1)(1Aqn). A routine computation shows that

(~13)n

as p is associative and commutative. Moreover Lemma 4.3 and Proposition 

4.6 imply that Yn satisfies the relations

(4.6) and

As before we define a multiplication

to be the composition rn(pA1A1)(1ATA1). By use of (1.13) and (4.6) we 

obtain
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THEOREM 4.7. If p•†3, then BPAV(n) is a ring spectrum equipped 

with the unit c Aj which is associative and commutative.

4.4. Let E be an associative BP-module spectrum whose coefficient 

module 7r(E) is finitely presented as a BP*-module, further Y be a finite 

CW-spectrum and W be a connective CW-spectrum such that HZ(p)*(W) is. 

Z(5)-free. Since BP*(W) is BP-fiat, the pairing BPAE-~E gives us an iso

morphism

(4.7)

Assume that E*() is a BP*/(p,v1,.• •,v)-module. The generator vn 

yields a homomorphism vn:BP*(BP)_ABP*-Z(pn-1) whose image is contained 
in the prime ideal (p, v1, .•., vn) (see [2, Lemma 1.7]). Hence vn01:
BP*(BP)®Bp*E*(Y)-ABP*-Z(pn_l)®Bp* E*(Y) is trivial. Making use of (4.7) 
the triviality of vn®1 implies that

(4.8)

is trivial for any finite Y.
Using the Baas-Sullivan theory of manifolds with singularities we can . 

construct BP-module spectra P(n) with coefficient modules P(n)*(-7r*(P(n)))
~ BP

*/(p,v1,• • •,vn_1) (see [2]). In particular

P(n+1) is related to P(n) by a cofibering of BP-module spectra

(4.9)

where • v,, is given by the composition mn(vn Al):~'2(pn-1)P('j'L)-~BPn P(n)--~ 
P(n).

Since E* (P(n)AX) is always Hausdorff for n•†1, (4.8) is true for 

P(n)/\X. Hence we have

LEMMA 4.8 ([2, Lemma 2.8]). Let E be an associative BP-module spec
trum whose coefficient module 2r(E) is a finitely presented BP-module. If 
E*() is a P(n+1)*-module, then the cofibering (4.9) induces a short exact 
sequence

for any X.

PROPOSITION 4.9. BPAV(n) is homotopy equivalent to P(n+1).
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PROOF. Beginning with BPAV(0)=P(1) the proof is inductively pro
ceeded. We now assume that there exists a homotopy equivalence Zn:P(n)
-->BPAV(n-1) which induces the identity in homotopy groups. Note that 

BPAV(n)*O becomes a P(n+1)*-module because BPAV(n) is a ring spec
trum. In virtue of Lemma 4.8 we can choose a map

such that Zn+1gn=(1Ain_1)vn. Since the map ~n+1 induces the identity in 

homotopy groups, it is a homotopy equivalence.

Theorem 4.7 combined with Proposition 4.9 shows

THEOREM 4.10. Assume p•†3. If V(n) exists, then P(n+1) is an 

associative and commutative ring spectrum.

Appendix

Recall that P(n) is an (associative) BP-module spectrum. Thus there 
exists a pairing mn:BPAP(n)-->P(n) which satisfies mn(cA1)=1. Denote 
by en:BP- P(n) the composition g1. • • go.

LEMMA A.1. There exist multiplications cn:P(n)AP(n)-P(n) such 
that qin(~nA1)=mn, ~n(1 Asn)=mnT and On+1(gnAg)=gn~n•

PROOF. Assume inductively that there exists a multiplication cn such 
that c5n(EnAl)-ma and On(1Ae)=mnT. We consider the commutative 
diagram

where two rows are induced by the cofibering (4.9) and all vertical arrows 

are done by the map Sri. By Lemma 4.8 two rows are exact and all vertical 

arrows are epic. Note that gn is a BP-module map, i.e., m+1(1 A gn) =gmm~ 

By chasing the above diagram we can choose a map

so that 'n+1(1Agn)=gnfi n and n+1(~n Al)-mn+i• We again consider the
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commutative diagram

which consists of two exact rows induced by the cofibering (4.9) and of three 

vertical arrows induced by ~n+1• By a similar diagram chasing to the above 

we get a map

such that cn+1(gnAl)=1~n+1 and ~bn+1(1non+1)=m11. Clearly ~n+1 has the 

properties as required.

LEMMA A.2. If p•†3, then we can take as fn's in the above lemma 

commutative ones.

PROOF. Assuming that a multiplication cn is commutative we shall 
construct a commutative one ~bn+1 which satisfies the properties stated in 
Lemma A. 1, we use the commutative diagram

where all rows and columns are induced by the cofibering (4.9) and they are 
exact. First, choose a map qn+1:P(n+1)AP(n+1)-~P(n+1) so that
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and Then we may assume that qn1(1Agn)=qn+1(gnA1)T. So there exists a 
unique map w:~4Pn-ZP(n)AP(n)-~P(n+1) such that

We compose T from the right to obtain

So we find w=wT . Putting

it becomes commutative, and moreover it has the properties as required.

Consequently we obtain

PROPOSITION A. 3. P(n) is a ring spectrum equipped with enc as unit, 

and gn:P(n+1)-P(n) is a map of ring spectra. Besides P(n) is commuta

tive in the p•†3 case.

REMARK. If 3n`2(p -1), then gn_1 yields an isomorphism

(cf., [2, Remark 2.14]). In this case P(n) is an associative and commutative 
ring spectrum.
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