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 ON THE TOPOLOGICAL HOCHSCHILD HOMOLOGY OF bu, I

 By J. E. MCCLURE1 and R. E. STAFFELDT2

 1. Introduction. The purpose of this paper and its sequel is to determine

 the homotopy groups of the spectrum THH(f). Here p is an odd prime, ? is the
 Adams summand of p-local connective K-theory (see for example [1]) and THH

 is the topological Hochschild homology construction introduced by Bokstedt in

 [6]. In the present paper we will determine the mod p homotopy groups of
 THH(f) and also the homotopy type of THH(L) (where L denotes the periodic

 Adams summand). In the sequel we will investigate the integral homotopy groups

 of THH(fl) using our present results as a starting point.
 The THH construction appears to be of basic importance in algebraic K-

 theory because it combines two useful properties: it can be used to construct

 good approximations to the algebraic K-theory functor, and it is very accessible to

 calculation. We shall review what is known about the first property in a moment;

 the second property was demonstrated by Bokstedt's calculation, in his paper

 [7], of the homotopy groups of THH(HZ/p) and THH(HZ) (here HZ/p and

 HZ denote the evident Eilenberg-Mac Lane spectra). It is natural to ask about

 THH(R) for other popular ring spectra R, and our work is a first step in this

 direction. We pay special attention to the connective case because this is the case

 which is likely to be relevant in applications (see Subsection 1.4 below).

 The calculation which we present in this paper is a homotopy-theoretic one

 which uses the Adams spectral sequence. This calculation has several interesting

 features; in particular it is a pleasing example of an Adams spectral sequence

 calculation in which, although there are infinitely many differentials, it is still

 possible to get the complete answer.

 Here is a summary of the contents of the paper. In Section 2 we review

 the facts we need to know about ordinary Hochschild homology. In Section 3

 we do the same for topological Hochschild homology. In Section 4 we calculate

 the mod p homology of THH(fl) and use it to find the E2 term of the Adams
 spectral sequence converging to 7r*(THH(f); Z/p). This section also contains a
 quick calculation, which was pointed out to us by Larry Smith and Andy Baker,

 Manuscript received May 3, 1990; revised January 10, 1991.

 IPartially supported by NSF grant DMS-8803279 and by SFB 170 at the University of Gottingen.
 2Partially supported by the Alexander von Humboldt Foundation, Bonn.
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 2 J. E. MCCLURE AND R. E. STAFFELDT

 of the homotopy groups of THH(MU) and THH(BP), where MU is the com-

 plex cobordism spectrum and BP is the Brown-Peterson summand of MU (but

 we must assume for the latter calculation that BP has an E,, structure). In Sec-
 tion 5 we calculate the mod p K-theory of THH(fQ) and use it to determine the
 v vl-inverted" homotopy of THH(f). In Section 6 we work backwards from this
 result to determine the behavior of the vl-inverted Adams spectral sequence for

 THH(f). In Section 7 we show that the behavior of the vi -inverted Adams spec-

 tral sequence completely determines that of the Adams spectral sequence itself,

 thereby completing the calculation of 7r.(THH(f); Z/p). In Section 8, which de-
 pends only on Sections 2, 3, and 5, we determine the homotopy type of THH(L).

 In Section 9 we confess that our definition of the spectrum ? is not the usual

 one; on the other hand we show that it agrees with the usual one up to p-adic

 completion. Our definition has the advantage that it provides an E,, structure
 for ?; this implies that e has an Aco structure, which is necessary in order for
 THH(fQ) to be defined, and it also provides extra structure for THH(Q) which
 will be used in the sequel to determine differentials and extensions in the Adams

 spectral sequence converging to 7r.THH(f).

 Acknowledgements. We would like to thank everyone who has discussed

 this subject with us, especially Andy Baker, Marcel Bokstedt, Nick Kuhn, and

 Friedhelm Waldhausen.

 In the remainder of the introduction we shall give a short summary of some

 things which are known or suspected about algebraic K-theory; these provide

 motivation for the THH construction, but none of what follows will actually be

 used in our work.

 1.1. The Dennis trace map. The simplest way in which Hochschild ho-

 mology is related to algebraic K-theory is via the Dennis trace map, which is a

 natural transformation

 r: K*S -* HH*S;

 here S is a discrete ring and HH*S denotes ordinary Hochschild homology. (See

 [20, pages 106-114] or [17, Section I1.1] for the construction of r). Unfortunately,
 this map does not usually give much information about K*(S), (although it can

 be useful for low-dimensional calculations; see [13]). It is, however, possible to

 improve r by factoring it through one of the variants of cyclic homology: that

 is, there is a commutative diagram

 HC-S

 K*S T HH*S
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 HOCHSCHILD HOMOLOGY OF bu, I 3

 (see [17, page 364] for the definitions of HC- and ir and [17, Section 2.3] for the

 definition of oa). The following basic theorem, due to Goodwillie [17, Theorem

 II.3.4], says that the map ae can be used to calculate rationalized relative algebraic

 K-theory in certain situations.

 THEOREM 1.1. If SI - S2 is a surjection with nilpotent kernel then

 oa0Q:K*(SI - S2)0Q - HC*-(SI OQ - S2OQ)

 is an isomorphism.

 See [17, pages 365 and 373] for the definitions of HC- and ae in the relative

 situation.

 The most important application of Theorem 1.1 is to Waldhausen's functor

 A(X). For this, one needs to generalize Theorem 1.1 to apply to simplicial rings

 S. This can be done (see [17]), and in this generality the hypothesis of Theorem

 1.1 is replaced by the much less stringent hypothesis that the map

 iroSI -* lrOS2

 be a surjection with nilpotent kernel (see [17]). Now given a space X, it is easy

 to construct a simplicial ring whose K-theory agrees rationally with A(X), and

 thus Theorem 1.1 can be applied to calculate xr*A(X -* Y) 0 Q whenever X -* Y
 is a 2-connected map (see [17, pages 348-349]).

 1.2. Algebraic K-theory of ring spectra. The reason for introducing topo-

 logical Hochschild homology is to try to formulate and prove an analog of The-

 orem 1.1 which holds integrally and not just rationally. One can get a hint as to

 how to do this by recalling that one of the basic principles of Waldhausen's work

 on algebraic K-theory is that the K-functor should be applied not just to rings

 but to ring spectra (also called "brave new rings"). Waldhausen gave a sketch

 of how to do this in [35], and a precise construction was given by the combined

 work of May, Steinberger, and Steiner (see [25], [33] and [34], and also [31]).

 For technical reasons one must restrict to A,, ring spectra, but in practice this is
 not an inconvenience. We shall refer to this functor as Waldhausen K-theory and

 denote it by KW; when R is an A,, ring spectrum, KW(R) is a spectrum whose
 homotopy groups will be denoted by K*W(R). The functor Kw generalizes both
 K* and A(X), for when R is the Eilenberg-Mac Lane spectrum HS associated to

 a discrete ring S one has the equation

 (1) KW =HS = K*S;
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 4 J. E. MCCLURE AND R. E. STAFFELDT

 and when R is the sphere spectrum SO, or more generally the suspension spectrum

 r0(YQX)+, one has

 KW(SO) = A(*)

 and

 KW(E(Q2X)+) = A(X)

 (here (QX)+ denotes the space obtained by adding a disjoint basepoint to the loop

 space of X).

 1.3. Topological Hochschild homology. In view of what has been said so

 far, it is natural to try to approximate KWR by means of a Hochschild homology

 construction which can be applied to A,, ring spectra R. This is what topolog-
 ical Hochschild homology THH(R) is. It is clear enough in principle how one

 should construct THH(R) (see Section 3), although the technical details are quite

 complicated (see [6] and [15]). THH(R) is a spectrum and we shall denote its

 homotopy 7r*THH(R) by THH*(R).

 There is a natural transformation

 KWR -* THH*R

 which is analogous to the Dennis trace map. (See [6, Section 2] for the construc-

 tion of rT).

 In the special case R = HS it is important to note that the analog of equation

 (1) does not hold for THH*; that is, it is not true that THH*(HS) agrees with
 HH*(S) for a discrete ring S. Instead, there is a commutative diagram which

 shows that rT gives a second way of lifting the Dennis trace map:

 K*S f *HH*S

 THH*HS

 (See Remark 3.5 for a hint about the construction of the map 0). This diagram
 shows that T' can detect elements of K*S which are not detected by r. For
 example, if S = Z then r must be zero in all positive dimensions (because HH*Z
 is zero in all positive dimensions), but Bokstedt has shown that rT is nonzero
 in infinitely many dimensions (see [8]); more precisely, what he shows is that

 for each prime p the localization of r' at p is nontrivial (and epimorphic) in
 dimension 2p - 1.

This content downloaded from 
�����������128.151.150.9 on Tue, 03 Oct 2023 17:08:50 +00:00������������ 

All use subject to https://about.jstor.org/terms



 HOCHSCHILD HOMOLOGY OF bu, I 5

 In the cases R = So and R = X?(QX)+ mentioned above one can give explicit
 descriptions of THH(R):

 THH(S0) = So

 and

 THH(ZX?(QX)+) = Z?(AX)+,

 where A denotes the free loop space; the first equation is obvious from the defi-

 nition in Section 3 and the second follows from that definition and [21, Theorem

 6.2].

 Probably the most important fact about rT is that it can be identified with

 the map from Kw to its first Goodwillie derivative; more precisely we mean the

 derivative "at X = S?" of the functor

 X |- ?KW(R A (QX)+)

 from pointed spaces to spectral (see [18] for the definition of the derivative and

 the proof of this fact in the special case R = SO). This fact is significant in
 two ways: it implies that THH is a "first order" approximation to Kw in much

 the same way that stable homotopy is a first order approximation to unstable

 homotopy, and it can be used to obtain a "higher order" approximation, as we

 explain in the next subsection.

 1.4. Topological cyclic and epicyclic homology. The next step is to con-

 sider functors which combine the desirable properties of HC- and THH. For

 example, one can define topological cyclic homology THC- by observing that

 the spectrum THH(R) has a natural cyclic structure and therefore has an S1 action

 (at least if everything works as in the category of spaces- cf. [21] and [15]),

 and letting

 THC-R = 7r*THH(R)hSl,

 where hS1 denotes the homotopy fixed-point spectrum (cf. Remark 3.5). Unfortu-
 nately it is known that this functor cannot satisfy an integral version of Theorem

 1.1.2 On the other hand, there is considerable evidence for the following conjec-
 ture

 1Lecture on "Brave new rings" by F Waldhausen at Northwestern University, Springer 1988.

 2Letter from T. G. Goodwillie to F Waldhausen, August 10 1987.
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 6 J. E. MCCLURE AND R. E. STAFFELDT

 Conjecture 1.2. It is possible to construct a functor THE, related to THH

 and THC-, and a natural transformation

 Tr l: KW(R) * THE(R)

 which induces an equivalence of derivatives.

 The notation THE stands for "topological epicyclic homology".3 Goodwillie

 has recently given a specific candidate for THE which is closely related to the

 functor defined in [9] (but we warn the reader that Goodwillie uses the notation

 TC for his functor instead of THE) and he has proved the conjecture in the

 special case R = ??QX)+.
 If the conjecture is true then the calculus of functors will imply the following

 integral version of Theorem 1.1: the induced map

 r:K*W(RI -- R2) -- THE*(RI -- R2)

 is an isomorphism for any map R1 -* R2 of A,, ring spectra such that

 7riRl I1- riR2

 is an isomorphism for i < 0.

 This explains the statement we made earlier that connective spectra are of

 particular importance for the potential applications.

 We conclude with one further remark about the potential applications of

 THH. In [36], Waldhausen has proposed an interesting program for studying the

 relative Kw theory of the map

 So -* HZ

 by means of the intermediate spectra KW(L,(SO)) and KW(Ln(S0)c) where Ln(S0)
 denotes the L,-localization of the sphere (see [27]) and Ln(S%)c is the associated
 connective spectrum. When n = 1 the spectrum LI (SO)c is the connective image-
 of-J spectrum j. It seems likely that the results and methods of our work are a
 good way to obtain information about THH(j).

 2. A brief review of Hochschild homology. In this section we recall the

 facts we need about ordinary (algebraic) Hochschild homology. Our basic refer-

 ence for this subject is [12, Chapters IX and X].

 3Letter from T. G. Goodwillie to F. Waldhausen, August 10 1987.
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 HOCHSCHILD HOMOLOGY OF bu, I 7

 If S is a graded algebra over a ground field k, its Hochschild homology

 HH*(S) is defined to be the homology of the Hochschild complex [12, page 175]

 (2) l
 SOS

 S,

 in which the differential is given by the formula

 n-I

 d(to X. (0 tn) = Z(-1)ito (0 . (3 titi+l (... (0 tn
 i=O

 + (_l)n(_l)jtnj(jtoj+ +|tn_l 1)tnto 0 tl 0 0 tn-

 As one might expect, HH*(S) can also be described in terms of Tor; it is

 TorS?OSOP (S, S),

 where the first factor of S 0 SOP acts on S by multiplication on the left and
 the second factor by multiplication on the right [12, page 169]. The reader may

 perhaps wonder why one uses this definition for the homology of S instead of

 the "obvious" definition Tors(k, k). For our purposes, the answer is that the latter
 is the appropriate definition for the category of augmented algebras, but we need

 to work more generally; the functor HH*(S) is closely related to Tors(k,k), but
 it is defined for arbitrary algebras S.

 There is an evident natural map

 :S -* HHo(S),

 which is an isomorphism when S is commutative. There is also a "suspension"

 map

 S -* HH1(S)

 which takes t E S to the class of 1 0 t. If S is commutative there is a product

 HHj(S) 0 HHj(S) - HHi+j(S),

 which gives HH*(S) the structure of a commutative graded S-algebra (see [12,
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 8 J. E. MCCLURE AND R. E. STAFFELDT

 page 217]); moreover t is a ring homomorphism and a is a derivation:

 (3) u(st) = so(t) + (- l)lsltItoC(s).

 It will not surprise the reader to find that there are times when we actually

 need to compute the ring HH*(S). The following result is sufficient for our

 purposes.

 PROPOSITION 2. 1. If S has the form

 Z/p [XI,X2, ... ]A(y1 Y2 ...)

 then HH*(S) has the form

 S O A(u(xl), (X2),* .)F Xr(Y(y1)(y2), O )

 where the inclusion of the first factor is the natural map

 S : S HHo(S)

 and a is the suspension map

 S -* HHI(S).

 Proof. Let

 p:S -+S0S

 be the ring map which takes xi and yj to

 xi 0 1- 1xi

 and

 yj 10 1-1 yj,

 respectively. By [12, Theorem X.6.1], p induces an isomorphism

 Tors(S,, Z/p) -* TorSIS(S, S) = HH*(S),

 where S(, denotes the S-module structure on S obtained by pulling back its S 0S-
 module structure along f. In our case S is commutative, so that S, has the trivial
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 HOCHSCHILD HOMOLOGY OF bu, I 9

 S-module structure, and we conclude that there is an isomorphism

 (4) S 0 Tors(Z/p, Z/p) ? HH*(S).

 But it is well known that

 Tors(Z/p, Z/p) A(& (xl), a'(x2),.. .) (0 F(U(Y1), '(Y2),)

 where F denotes a divided polynomial algebra and a' is the suspension map

 S -* Tor(Z/p, Z/p);

 and it is not hard to check that the isomorphism (4) takes '(xi) to u(xi) and

 cr'(yj) to c(y3). E

 3. Introduction to topological Hochschild homology. In this section we

 turn to the topological version of Hochschild homology. We will give an overview

 of the construction and some of its properties, without any attempt at technical

 completeness (those who are interested in knowing the details should consult

 [6] and [15]). Our goal in this section is simply to provide the reader with the

 intuition which is needed for the rest of the paper (and for the other papers in

 this area).

 Roughly speaking, topological Hochschild homology is constructed by re-

 placing the algebra S in the Hochschild complex (2) by an A,, ring spectrum R.
 As a first step in making this idea more precise we must reformulate the definition

 of HH*(S). Let HH.(S) be the simplicial abelian group

 SOS

 S.

 Here the face maps 9i and degeneracy maps si are given by the formulas

 to 0..0titi+1 0 ..0tn if 0 < i < n
 Oi(to**8 tn) =

 (_)0tn1(1t01+ +1tn-10tn ti 0 0 tn-1 if i =n

 and

 s.(tn R) * a tn) = to a X at. a I X i X * a tn
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 10 J. E. MCCLURE AND R. E. STAFFELDT

 Clearly the Hochschild complex is the chain complex associated to this simplicial

 abelian group. But for any simplicial abelian group, the homology of its associated

 chain complex is the same as the homotopy of its geometric realization (see [22,

 Theorem 22.1]), so in our case we conclude

 HH*(S) = ir*IHH.(S)I.

 Next we want to show how to modify this definition to obtain the topological

 Hochschild homology spectrum THH(R) associated to an A,, ring spectrum R.
 If R were a strictly associative ring spectrum we could define THH(R) to be the

 geometric realization of the simplicial spectrum

 R AR AR

 THH.(R)= 1tU
 RAR

 R.

 Here the face map

 n+1 n

 ai: R A *. AR --R A AR

 is defined by the following equation (suitably interpreted):

 rO A **Ariri+1A *Arn if 0<i< n
 9i(ro A . A rn) =

 rnroArl A .Arn- if i=n,

 and the degeneracy map

 n+1 n+2

 si:RA ..AR -RA AR

 is defined to be the composite

 n+1 i+1 n-i n+2

 R .A . AR- RA - ARASOARAR AR -ARAl . A R,

 where e is the unit map SO -? R; thus the i-th degeneracy inserts a unit in
 the (i + 1)-st position. (Our assumption that the multiplication in R is strictly
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 HOCHSCHILD HOMOLOGY OF bu, I I 1

 associative is necessary in order that the maps Oi and si defined in this way
 satisfy the simplicial identities).

 Unfortunately we must now admit that there is no known category of spectra

 in which strictly associative ring spectra can even exist! (Thus the use of A,,
 structures in this context cannot be avoided). Nevertheless the description just

 given is still the best guide to intuition and we shall proceed in the remainder

 of the section as if it were literally correct. (In fact it is possible to define, for

 each A,, ring spectrum R, a simplicial spectrum THH.(R) which agrees up to
 homotopy with the object denoted THH.(R) in the previous discussion; see [15]

 for the details. One then defines THH(R) to be the geometric realization of this

 simplicial spectrum).

 We shall write

 F:R -- THH(R)

 for the inclusion of the 0-th simplicial filtration in THH(R). If the multiplication

 in R is sufficiently commutative then THH(R) inherits a ring-spectrum structure

 and I is a ring map (see [6, Section 2]). If R is an Eo, ring spectrum then THH(R)

 inherits an Eoo ring structure and I is an Eoo ring map (see [15]). Our definition

 of the spectrum X, which is given in Section 9, automatically implies that i is an

 Ex ring spectrum, so we conclude that THH(f) is also.
 Now suppose that we are given a homology theory h. with a multiplication

 and that we want to know h*(THH(R)). In [7], Bokstedt introduced the following

 spectral sequence for this sort of calculation.

 PROPOSITION 3.1. If h. satisfies the strict Kiinneth formula

 h*(X A Y) - h*X ?h*So h*Y

 then there is a spectral sequence

 (5) HH* (h* (R)) X:~ h* (THH(R)),

 where HH* is defined with respect to the ground ring h*S0. For each x E h*(R)
 the element

 L*(X) E HHo(h*(R))

 survives to
 l*(X) E h*(THH(R)).

 We warn the reader that there is in general no Hopf algebra structure in this

 spectral sequence (but see [19] for a situation in which a Hopf algebra structure

 does exist).
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 12 J. E. MCCLURE AND R. E. STAFFELDT

 If h. does not satisfy the strict Kiinneth formula then the spectral sequence
 still exists and converges; moreover it is likely, although we shall not attempt

 to prove it, that the E2 term in this generality can be described explicitly as

 Torh*(RAR)(h*(R),h*(R)) (cf. [29, Theorem 13.1]).

 Outline of the proof of Proposition 3.1. For any simplicial spectrum X., we

 may apply the theory h* to the simplicial filtration of IX. in the usual way to
 obtain a spectral sequence converging to h*(IX. I). One would like to say that the
 E2 term of this spectral sequence is the homology of the complex

 (6) h* h*(Xn) h* (Xi) -- h*(Xo),

 with differential

 d =

 but for this one must assume that X. is "proper" (meaning that the degeneracy

 maps are cofibrations-cf. [23, Theorem 11.14]). On the other hand, Elmendorf

 has shown that there is a "properization" functor which replaces each simplicial

 spectrum by a weakly equivalent proper one (see [14]). Thus if we redefine
 geometric realization to be properization followed by geometric realization in the

 usual sense (as we have implicitly done in the definition of THH), then we can

 conclude that the spectral sequence always has the desired E2 term. In particular

 when X. is THH.(R) and h* satisfies the strict Kiinneth formula the complex

 given above is just the Hochschild complex for h*(R), and we conclude that

 E2 ~-- HH*(h*(R))

 as required. E

 At the end of the next section we shall need to have somewhat tighter control

 of the spectral sequence (5). The information we need is provided by our next

 result.

 PROPOSITION 3.2. There is a natural transformation

 a:ER -THH(R)

 such that the element
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 HOCHSCHILD HOMOLOGY OF bu, I 13

 survives to

 j*(Zx) E h*(THH(R))

 for each x E h*(R).

 The transformation J may seem somewhat mysterious-we give some moti-

 vation for it in Remark 3.6.

 Outline of the proof. Before we can define Jr we need some preliminary

 constructions. Let S.(R) be the simplicial spectrum obtained by "replacing all

 A's in THH.(R) by V's." More precisely, the n-th simplicial.degree of S,(R) is

 n+1

 R V ... V R.

 The i-th face operator

 n+1 n

 Oi: R V . .. VR --+R V . .. VR

 is defined by the equation

 J Ij-1 if i < j

 1i0 J=j Ij if i> jand j<n

 Io if i =j =n;

 here

 Ij :R--RV ... VR

 is the inclusion of the j-th wedge summand. The i-th degeneracy map si is defined
 by the equation

 Ij+1 if i<j

 Si oIj =(
 Ij if i> j.

 We pause to determine the homotopy type of IS.(R)I.
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 14 J. E. MCCLURE AND R. E. STAFFELDT

 LEMMA 3.3. IS.(R)I | R V XR.

 Proof of Lemma 3.3. Clearly we have

 IS.(R)I ] IS.(SO)I AR.

 Now S.(S?) can be obtained by adding a disjoint basepoint to the standard sim-

 plicial decomposition of S1 (see [6, page 20]), and so we have

 IS.(R)I (S1)+ A R.

 But for any space X, the space X+ obtained by adding a disjoint basepoint splits

 stably as So V X, so finally we have

 IS.(R)I (S0 V S1) A R -R V R

 as required. O

 For each n we can define a map

 n+1 n+1

 wn: RV ... VR -RA ... AR

 by letting the restriction of wn to the j-th wedge summand be the composite

 i n-j n+1
 eAlAe " R-SoA SoAR A So A So -RA... AR

 Taken together, the wn give a map

 w.: S.(R) -- THH.(R).

 By passing to geometric realizations and using Lemma 3.3 we obtain a map4

 w: R V ER -* THH(R)

 The restriction of w to the R summand is the map

 :R - THH(R)

 4In [6, Section 3] and [7, Section 2] this map is denoted by A.
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 HOCHSCHILD HOMOLOGY OF bu, I 15

 defined earlier. We can now define

 j :R >- THH(R)

 to be the restriction of w to the ER summand.

 To complete the proof of Proposition 3.2 it only remains to show that the

 transformation j has the desired relation to the spectral sequence (5). Let C*(X.)

 denote the chain complex (6). A straightforward calculation shows that the homol-

 ogy of C*(S.(R)) vanishes in all dimensions except 0 and 1, and in particular the

 spectral sequence associated to S.(R) collapses. For each x E h*(R) the element

 Il*x c h*(R VR)

 is a 1-dimensional cycle in C*(S.(R)) which represents a class x in E2(S.(R)).

 If we write J for the inclusion of ER as a wedge summand in IS.(R) , then x
 survives to

 J*(av) E h*(IS.(R)I).

 It follows that the image of x in E2(THH.(R)) survives to w*J*(Xx), which by

 definition is 6(Xx)j in h*(THH.(R)). But the image of Il*x in the Hochschild
 complex C*(THH.(R)) is 1 0 x, and so the image of x in E2(THH.(R)) is ax.
 We have now shown that ax survives to J(Xx), as required to finish the proof of

 Proposition 3.2. E2

 We conclude this section with some remarks which will not be used in the

 rest of the paper.

 Remark 3.4. Alan Robinson has defined a "topological" analog of Tor'(M,N),
 which he denotes by E AR F (see [29]). In analogy with the equation

 HH*S = Tors0soP(S,S)

 one presumably has

 THH(R) c R ARARoP R.

 Remark 3.5. There is another way to relate Robinson's work to THH. If T is

 an Eoo ring spectrum and T -- R is an Ax map, it should be possible to define

 a spectrum

 THHT(R)
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 16 J. E. MCCLURE AND R. E. STAFFELDT

 (i.e., "topological Hochschild homology over the ground ring T ") by replacing

 all the smash products in the definition of THH(R) by AT products. In particular,

 if R = HS for a discrete ring spectrum S one should have a formula

 1r*THHHzHS = HH*S

 relating topological Hochschild homology to ordinary Hochschild homology; this

 would give one way to construct the map 0 mentioned in Subsection 1.3 of the
 introduction. It should also be the case that

 7r*(THHHZ HS) - HC* S;

 cf. Subsection 1.4.

 Remark 3.6. Here is one more way to motivate the THH construction. If G

 is a topological group, its classifying space BG is the geometric realization of

 the following simplicial space.

 G xG

 G

 The face and degeneracy maps are given by the equations

 ( g29 ... g") if i=O
 9ig gn) = (g1 *. 99igi+19, *,9n) if O< i< n

 t (g19 - gn-1) if i=n

 and

 si(gi, *** gn) = gig 1 g i+l, * *.*)

 The same construction can be applied when G is merely an associative monoid.

 It would be natural to try to apply this construction to an associative ring

 spectrum R, replacing the G's by R's, the x's by A's, and * by So. If one attempts
 to carry this out, however, it becomes apparent that there is no sensible way to

 define the first and last degeneracy maps do and An. Further reflection shows that
 this is because there is no sensible way to define an augmentation map R -+ So.
 This brings us back to the observation made at the beginning of Section 2: in the

 analogous algebraic situation, one compensates for the lack of an augmentation

This content downloaded from 
�����������128.151.150.9 on Tue, 03 Oct 2023 17:08:50 +00:00������������ 

All use subject to https://about.jstor.org/terms



 HOCHSCHILD HOMOLOGY OF bu, I 17

 by using the Hochschild complex instead of the bar construction. Thus one can

 think of the THH construction as being the closest one can come to imitating

 the classifying space construction for a ring spectrum R. From this point of view

 the map ar described in Proposition 3.2 is the analog of the standard map from

 the suspension of a group to its classifying space. (The analogy is not precise,

 however, and in particular if the analog of the Hochschild construction is applied

 to a topological group G the result is not BG but instead is the free loop space

 Map(S1,BG); see [16]).

 4. Calculation of the E2-term of the Adams spectral sequence. We re-

 mind the reader that p denotes an odd prime.

 Let M denote the Moore spectrum So Up el. By definition we have

 7r*(X; Z/p) = ir*(X A M))

 for any spectrum X, and we accordingly write

 Er(X; Z/P)

 for the classical Adams spectral sequence converging to ir*(X AM). We will index
 this spectral sequence as usual, so that

 E27s s(X; Z/p) = ExtAt (Z/p,H*(X A M; Z/p)).

 The differentials dr have bidegree (-1, r), and E's,* is the associated graded of

 a filtration on irt-,(X; Z/p). The Moore spectrum M is a ring spectrum (since
 p is odd; cf. [4]), and it follows that the spectral sequence has a multiplicative

 structure (see [28, Theorem 2.3.3]).

 The case X = ? is of particular importance for our work. In this case it is
 well known (cf. [28, page 75], and also see the proof of Theorem 4.1 below) that

 E2(V; Z/P) rVZ/p [all] E00(f; Z/p),

 where al is an element in bidegree (2p - 2, 1) representing vi E 7r2p-2(f; Z/P).
 We shall also write al for the image of this element under the map

 E2(e; Z/p) -- E2(THH(f); Z/p)

 induced by the inclusion r: ? -4 THH(f).
 The purpose of this section is to prove the following theorem.

 THEOREM 4. 1. E2(THH(e); Z/ p) has the form

 7Z/nrnpal A(A, Z/pr[i]
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 18 J. E. MCCLURE AND R. E. STAFFELDT

 where Al is in bidegree (2p - 1,0), A2 is in bidegree (2p2 - 1,0), and 1u is in
 bidegree (2p2,0).

 This, in turn, is a consequence of our next result. As usual, we write A* for

 the dual of the Steenrod algebra.

 PROPOSITION 4.2. As an algebra, H*(THH(f); Z/p) has the form

 H*(f; Z/p) 0 A(A1, A2) 0 Z/P [i]

 where A1 is in degree 2p - 1, A2 is in degree 2p2 - 1, 1u is in degree 2p2, and

 the inclusion of the first factor is the natural map

 l*: H.(Q; Z/p) H.(THH(t); Z/p).
 The A*-coaction

 v: H.(THH(e); Z/p) A* 0 H,(THH(t); Z/p)

 is determined by the equations

 v(Ai) = 1 0 Ai

 and

 vQ(,)= 10t +To A0 A2

 Proof of Theorem 4.1. We need to calculate

 ExtA. (Z/p, H* (THH(f) A M; Z/p)).

 We shall do this by using a standard change-of-rings theorem:

 (7) Extr(Z/p, IozN) - Extx(Z/p, N)

 (see [28, Theorem A1.3.12]). Here r denotes a Hopf algebra, ? a quotient Hopf
 algebra, and N a ?-comodule; the o-product is defined on page 311 of [28]. (See
 pages 337-339 of [2] for a dual version of the following argument which avoids

 the o-product).

 First we observe that if N is actually a I-comodule (more precisely if the

 ?-comodule structure on N is induced by a I-comodule structure) then the map

 rEON * rEON
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 HOCHSCHILD HOMOLOGY OF bu, I 19

 which takes g 0 n to

 S ggi 0 n

 (where, as usual, we have written

 n' H 5gi( 0ni

 for the F-coaction on N) induces an isomorphism

 (FoiZ/p) 0 N -r FoZN

 (where the domain has the diagonal F-coaction). We can therefore rewrite (7) in
 this situation as follows:

 (8) Extr(Z/p, (FotZ/p) 0 N) - Extx(Z/p, N).

 Now let F be A., let I be the Hopf-algebra quotient of the inclusion

 H*(e A M; Z/p) -- H*(HZ/p; Z/p) = A.,

 and let N be

 A(A1, A2) 0 Z/P [l]

 Proposition 4.2 implies

 H.(THH(e) A M; Z/p) H(t A M; Z/p) 0 N,

 and we have

 ]FoZ/p :V H&(t A M; Z/p)

 by [28, Lemma A1.1.16], so finally we have

 H*(THH(e) A M; Z/p) - (FotZ/p) 0 N.

 We can therefore conclude from equation (8) that

 ExtA. (Z/p, H.*(THH(e) A M; Z/p)) ' Extx(Z/p, N).

 But

 5 = A(vr,)
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 20 J. E. MCCLURE AND R. E. STAFFELDT

 and in particular Proposition 4.2 shows that the X-coaction on N is trivial. Thus
 we have

 Ext (Z/ p, N) , Extx(Z/ p, Z/ p) 0 N,

 and by [28, Lemma 3.1.9] this is

 Z/p[al] ON

 as required.

 Proof of Proposition 4.2. Of course, the first step in the proof of Proposition
 4.2 is to calculate HI(THH(f); Z/p) as an algebra by using the spectral sequence
 of Proposition 3.1. We shall denote this spectral sequence by

 ^-r
 E (R)

 in order to distinguish it from the Adams spectral sequence. To carry out the
 spectral sequence calculation, all we have to do is modify the proof of [7, The-
 orem 1.1].

 Since

 E (f) ?' HH*(H*(f; Z/p)),

 we must begin by remembering what H*( ; Z/p) is. In order to describe it we
 recall from [2, Lemma 16.8] that the canonical map

 E : - HZ/p

 (i.e., the map which represents the generator of H0(f; Z/p)) induces a monomor-
 phism

 H.(f; Z/p) -* H*(HZ/p; Z/p) = A.

 with image

 Z/P Ml(, X(2, ]. 8 A(Xr2, Xr3, );

 here X is the canonical anti-automorphism of A*s.
 We can now apply Proposition 2.1 of Section 2 to conclude that

 E (?) - H.(?; Z/p) 0 A(a(Xy1), a(X(2), .) 0 J7[a(Xr2), c(XT3),.]

 5We need to use X in this description where Adams does not because we are thinking of H. (e; Z/p) as
 ir*(HZ/p A e) instead of 7r*(e A HZ/p).
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 HOCHSCHILD HOMOLOGY OF bu, I 21

 where H*(Q; Z/p) is in filtration-degree 0, a(X(i) has bidegree (2p1 - 2, 1), and

 Y(XTi) has bidegree (2p i- 1, 1).6 'The next step is to determine the differentials in
 the spectral sequence ErQ?). This is easily done by comparing it with the spectral

 sequence E (HZ/p), whose behavior has been completely determined in [7]. It

 follows from [31, Proposition 4.1] that the map E is an E,, ring map (more
 precisely, we should say that there is an Eo, ring map in its homotopy class). In
 particular, it is an A,, ring map, and thus it induces a map

 ^_r ^_r
 E (O) E (HZ/p)

 A calculation similar to that for E (f) shows that

 E (HZ/p) - A. 0 A(a(X(,), a(Xf2),. . .) 0 J?[U(XTO), 5(XT1),**

 By [7, Lemma 1.3], the only nontrivial differential in E (HZ/p) is given by the
 formula

 dP-1 Yj(U(XTi)) = U(Xji+i) Yj-p(Q(XTi)) if j > p;

 here we have written -Yj(a(XTi)) for the j-th divided power of Y(XT.) The same

 formula therefore holds in E (f) for i > 2, and we conclude that

 EP () - H*(f; Z/p) 0 A(U(Xf,), U(X62)) 0 TPp[u(xT2), (X-3), . . *]

 where TPp denotes a truncated polynomial algebra of height p (cf. [7, page
 6]). Since all indecomposables in E (J) are in filtrations 0 and 1 we can further
 conclude that

 -_p -_~oo
 E(Q) = E (i).

 Proposition 3.2 implies that the elements a(X(i) and a(XTi) in Es" are represented

 in H*(THH(J)) by j*(X(X(E)) and &*(X(XTI)) respectively.
 Next we need to determine the multiplicative extensions in H*(THH(f); Z/p).

 For this we use Dyer-Lashof operations. As we have seen in the previous section,

 THH(Q) is an E, ring spectrum, and so its homology supports Dyer-Lashof
 operations

 Q HJ(THH(f); Z/p)) -* Hn+2i(p-j)(THH(f); Z/p)),

 6We can now explain why it is necessary to use the Adams summand ? instead of bu itself in our work.

 The mod p homology of bu is related to that of ? by the equation

 H*(bu; Z/p) - H.(i; Z/p) 0 Z/p [x]/(xP-1).

 The Hochschild homology of the factor Z/p [x]/(xP-1), while it is not difficult to compute, is rather compli-
 cated, and its presence would make it difficult if not impossible to apply the methods of this paper.
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 22 J. E. MCCLURE AND R. E. STAFFELDT

 (see [32]). If x is an element of dimension 2s then Qsx = xP, ([32, Theorem
 1.1(4)]) so in particular we have

 (&*(Y,(x,i)))P = QP *(Y(xti

 But Bokstedt shows that the map

 &*,: H (R; Z/p) -* H,+ (THH(R); Z/p)

 commutes with Dyer-Lashof operations (see [7, Lemma 2.9]), and Steinberger

 has calculated the action of the Qi in H*(f; Z/p):

 QP XTi = XTi+1

 (see [32, Theorem 2.3]). We conclude that

 (a* (YX,i))P=a* (XY'ri+i)

 for all i > 2, and hence that

 (d*(XxT2))P' = *(XXTi+2)

 for all i > 0. If we denote &*JX(Xl) by A1, &J*(X62) by A2, and J*X(XT2) by p,
 we have now shown that

 H*(THH(j); Z/p) - H*(f; Z/p) 0 A(A1, A2) 0 Z/P [A]

 as an algebra.

 To complete the proof of Proposition 4.2 we need to determine the A*-

 coaction on A1, A2, and /a. We shall give the calculation of v(A2); the others
 are similar.

 Since the map *Y, commutes with v, we have

 v(A2) = (1 0 *,)V(Xy2).

 Now v(Xy2) is determined by Milnor's calculations: it is

 1 0'42+41 ?f1p +'20 1

 (see [28, Theorem 3.1.1]). We therefore conclude that

 v(A2)= 1 A2+ 1 + &*X ) + 42 ? 6*(1)
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 HOCHSCHILD HOMOLOGY OF bu, I 23

 and it remains to show that the second and third terms are zero. But 6*1(gP)
 represents the element a(4P) in the spectral sequence, and this element is zero
 because a is a derivation (equation (3) of Section 2). It follows that 6*1(41f) is

 an element in filtration 0 with dimension 2p2 - 2p + 1, and an inspection of the

 spectral sequence shows that the only such element is 0. Similarly, &*X(1) is an
 element in filtration 0 with dimension 1, and again the only such element is 0.

 This completes the proof of Proposition 4.2. E1

 Remark 4.3. (Andy Baker and Larry Smith) The methods we have used

 in this section can also be used to give simple calculations of 7r*THH(BP) and

 7r*THH(MU).7 We shall use a result of Brown and Peterson [11, Theorem 1.3]
 which says that if a p-local spectrum Y satisfies:

 (i) H*Y is torsion free, and

 (ii) H*(Y; Z/p) is isomorphic, as a comodule over A*, to H*(BP; Z/p) 0
 PH*(Y; Z/p) (where P denotes the primitives with respect to the A* coaction),

 then it also satisfies

 (iii) Y is a wedge of suspensions of BP,

 (iv) 7r*(Y; Z/p) '- 7r*(BP; Z/p) 0 PH*(Y; Z/p), and

 (v) the Hurewicz homomorphism 7r*Y -- H*Y is a monomorphism.

 We begin by applying this result to Y = THH(BP). Since H*BP is torsion

 free, the Kunneth theorem implies that there is a spectral sequence

 HH*(H*BP) =X H*THH(BP).

 The integral homology of BP is given by

 H *(BP) ~-- Z(p) [b 1, b2, ],

 where the degree of bi is 2pi - 2, and thus the E2 term of this spectral sequence
 15

 H*BP 0 A(a(bj), a(b2),.)

 the spectral sequence collapses for dimensional reasons and we conclude

 H*THH(BP) - H*BP 0 A(&*(Xbj), &*(Xb2), .).

 7In order to make the calculation of 7r.THH(BP) rigorous we must assume that BP is an A,, ring
 spectrum (otherwise THH(BP) isn't even defined) and also that THH(BP) is a ring spectrum (for which it

 would suffice to know that BP is Eo,). On the other hand, the calculation of 7r.THH(MU) is rigorous since
 MU is known to be E. (see [24, Section IV.2]).
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 24 J. E. MCCLURE AND R. E. STAFFELDT

 In particular, THH(BP) satisfies condition (i) above. Next we consider the spectral

 sequence

 HH*(H*(BP; Z/ p)) X:~ H*,(THH(BP); Z/ p).

 From the equation

 H*(BP; Z/p) = Z/p [Xf1, X(2, ]

 we see that E2 has the form

 H*(BP; Z/p) 0 A(a(X(1), U(X62),.)

 The spectral sequence collapses, and thus we have

 H*(THH(BP); Z/p) = H*(BP; Z/p) 0 A(&*X(X 1), j*ZX(X2),.)

 As in the proof of Proposition 4.2, it is easy to check that the elements &*Z(X(i)

 are primitives of the A* coaction, hence condition (ii) above is satisfied and we
 conclude that THH(BP) is a wedge of suspensions of BP and that

 7r*THH(BP) - ir*BP 0 A(A1, A2,..)

 where the mod p reduction of the Hurewicz image of Ai is &*Z(Xti).
 The case where Y = THH(MU)(p, is handled similarly; the only new ingre-

 dient is Lemma 3.1.7 of [28] which gives the structure of H*(MU; Z/p) as an
 A*-comodule. The conclusion is that

 7r*THH(MU) - ir*MU 0 A(A', )4Al

 where the dimension of A> is 2i + 1; it follows from this that THH(MU) is a
 wedge of suspensions of MU.

 5. The mod p K-theory of THH(Q). In the previous section we determined
 the mod p homology of THH(Q). In this section we consider its mod p K-theory.

 THEOREM 5.1. The inclusion

 ? - THHQ()

 induces an isomorphism
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 HOCHSCHILD HOMOLOGY OF bu, I 25

 Here K(1) denotes the first Morava K-theory. When p = 2 this is the same

 as mod 2 K-theory, and for odd primes it is the Adams summand of mod p

 K-theory. Its coefficient ring is given by

 7r*(K(l)) = Z/p [vl, vT1],

 where the dimension of v1 is 2(p - 1).8

 Theorem 5.1 will be used in two ways in our work. In Section 8 it will be the

 main step in determining the homotopy type of THH(L). In the present section

 we will use it to determine the vl-periodic homotopy of THH(Q). We define the
 v1-periodic mod p homotopy vT1 7rn(X; Z/p) of an ?-module X to be the direct
 limit of the system

 wrn(X; Z/p) -* 7r2(p-l)+n(X; Z/P) -* 7r4(p-l)+n(X; Z/P) *

 where each of the maps is multiplication by vi E 72(p- 1)e. (We shall show at the
 end of the section that this is a special case of the usual definition of vl-periodic
 homotopy given, for example, on page 271 of [10].)

 COROLLARY 5.2. The inclusion

 t: ?-? THHQ(I)

 induces an isomorphism

 1 v-1 7r(f; Z/p) V 11*THH(f); Z/P).

 Corollary 5.2 is an immediate consequence of Theorem 5.1 and [10, Theorem

 4.11(ii)] once one knows that our definition of v1-periodic homotopy agrees with

 that in [10]. We shall also give an elementary proof which does not depend on

 the deep results in Section 4 of [10].

 Corollary 5.2 will be used in later sections to determine the differentials in the

 Adams spectral sequence Er(THH(Q); Z/p) converging to the mod p homotopy
 of THH(Q). It is in some sense analogous to Bokstedt's results on THH(Z(p))
 in [7]. (Actually he discusses THH(Z) and not THH(Z(p)), but it is clear that

 the results in [7] have parallels for THH(Z(p)).) It is an easy consequence of his

 computations that the inclusion of spectra

 t: Z(p) ) THH(Z(p))

 8If K(1) is replaced in Theorem 5.1 by K(n) and ? by BP(n) (see [28, page 132]), and if we assume that

 BP(n) has an Aoc structure, so that THH(BP(n)) is defined, then the theorem remains true with essentially
 the same proof.
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 26 J. E. MCCLURE AND R. E. STAFFELDT

 induces an isomorphism in homotopy tensored with Z[l/p]. In other words,
 inverting p in homotopy kills the difference between the Eilenberg-MacLane

 spectrum Z(p) and THH(Z(p)). Corollary 5.2 states that something similar happens
 for THH(Q) if we consider multiplication by v1 in mod-p homotopy instead of
 multiplication by p in p-local homotopy.

 The rest of this section will be devoted to the proofs of 5.1 and 5.2. For

 the proof of 5.1 we recall that K(1) satisfies the strict Kuinneth formula (see [28,

 page 133]), and so Proposition 3.1 gives a spectral sequence

 HH*(K(1)*f) X:~ K(l)*(THH(f)).

 We therefore consider the structure of the ring K(1)j.

 PROPOSITION 5.3.

 (a) K(1)*t ?9 K(1)* 0 K(1)o .

 (b) K(1)o f has the form limAn, where each A, is a direct sum of finite
 fields.

 (c) The Hochschild homology of K(1)o ? with respect to the ground ring

 Z/p is given by the formula

 K(1)o? if i = O
 HHi(K(1)o f) =

 0 if i>O0.

 (d) The Hochschild homology of K(1)*f with respect to the ground ring
 K(1)* is given by the formula

 K(1)*f if i =O
 HHi(K(1)*f) =

 0 if i>0.

 Of course, part (d) of this result, and the spectral sequence given above,

 immediately imply Theorem 5.1. (We should note that Proposition 5.3 is implicitly

 contained in Robinson's paper [30], where it is used for a different purpose; cf.

 [30, Theorem 2.2]).

 Proof of Proposition 5.3. We begin by calculating K(1)*?. First we recall the
 equation

 (s) BP*BP = BP* [td, t2( 1)a

 (se 28 Theonre-m 41.18R(b)]);her t, has diiegreei- p- 1) No MM7K(1)~ ic a modulef

This content downloaded from 
�����������128.151.150.9 on Tue, 03 Oct 2023 17:08:50 +00:00������������ 

All use subject to https://about.jstor.org/terms



 HOCHSCHILD HOMOLOGY OF bu, I 27

 spectrum over BP, and equation 9 implies that BP*BP is a free left module over

 BP*, so we have

 (10) K(1)*BP -K(1)* OBP* BP*BP

 Z/p [V1 V-1 [t1, t29 . . .]

 We shall write qRR, as usual, for the right unit map BP* -, BP*BP, and 4R for the
 projection of this map to K(1)*BP. Then we have

 (11) ?RR(Vk+ 1) V vtk Vl tk modulo (WR(V2),. * * * (Vk))

 in K(1)*(BP) for all k > 1 (see formula 6.1.13 of [28], but note that the equation

 there differs from ours by a typographical error). Next we recall that ? can be

 constructed from the spectrum BP by an iterated Sullivan-Baas construction

 BP - ?

 which realizes the quotient map

 Z(p)[Vl, ... , Vn .. .] ) Z(p)[Vl, ... , Vn* .]/(V2, V3, V * ..

 on homotopy groups (see [28, pages 131-132]; in the notation used there one has

 ? = BP(1)). Now equation (11) implies for each k > 1 that 4R(Vk+1) is not a zero

 divisor mod (WR(V2)D. ... rR (Vk)). Combining this fact with the standard cofiber
 sequence associated to the Sullivan-Baas construction (cf. [28, page 131]) and

 equation (10) we obtain

 K(1)*f K(1)*BP1(~R(V2)9 NR(V3)9 .)

 - Z/p [vi, vT1][tl, t2,.. .]/(Vi4 -1 tk: k> 1);

 in particular, this implies that K(1)*f is zero in degrees not divisible by 2(p - 1),
 and this in turn implies part (a) of the proposition.

 Next we define subalgebras An of K(1)o ? for each n > 1 by

 An = Z/ p [Ul , U2, ... *, Unll(u p -Uk : 1 < k <n),

 where the elements Uk are defined by

 UkV_ k tk.

 We clearly have K(1)o ? '- limAn. Each element of An is equal to its own p-th

 power, so An certainly contains no nilpotent elements. We also know that An is
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 28 J. E. MCCLURE AND R. E. STAFFELDT

 finite dimensional over Z/p so we conclude that it is semisimple. Since it is

 commutative and finite it must therefore be a direct sum of finite fields (in fact

 it is a direct sum of copies of Z/p). This proves part (b).

 For part (c), we first recall that the 0-dimensional Hochschild homology of

 any commutative algebra A is equal to A (see formula (3) on page 170 of [12]).

 Next we observe that Hochschild homology commutes with direct sums [12,

 Theorem IX.5.3] and direct limits. The result now follows from part (b) and the

 fact that the Hochschild homology of a finite field, with Z/p as the ground ring,

 vanishes in po.!itive dimensions (see [12, Theorem IX.7.10]).

 To show part (d) we need only observe that part (a) implies the formula

 HH*(K(1)*t) - K(1)* 0 HH*(K(l)o ?)

 relating the Hochschild homology of K(1)*f with respect to the ground ring K(1)*
 to that of K(1)o ? with respect to the ground ring Z/p. :1

 Our next result, together with Theorem 5.1, will immediately imply Corol-

 lary 5.2.

 LEMMA 5.4. Let X and Y be ?-module spectra and let f: X -* Y be an

 ?-module map which induces an isomorphism K(1)*X -? K(1)*Y. Then f also
 induces an isomorphism v1w7r*(X; Z/p) -v 17r*(Y; Z/p).

 Proof. Let ux: ? AX -* X and py: A Y -* Y define the ?-module structures
 on X and Y. Consider the commutative diagram

 7r*(X; Z/p) * ir*(Y; Z/p)

 lh lh

 7r* ( AX; Z/p) f ir*(e A Y; Z/p)

 1 Ux * I /-Y*

 7r*(X; Z/p) * ir*(Y; Z/p)

 where the h's are Hurewicz maps induced by the unit map So -? ?. The composites
 ,ux* o h and uyr* o h are identity maps, and in particular ,uy* is a surjection. The

 maps in the lower square (but not those in the upper square!) are 7r*f-module
 maps and so we can localize the lower square to obtain the diagram

 v-l 7(E AX; Z/p) v1 7r*(f A Y; Z/p)

 1X Iyx**
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 HOCHSCHILD HOMOLOGY OF bu, I 29

 Now we have

 K(1) (Z) = v-lw7r*( A Z; Z/p)

 for any Z and so the hypothesis states that the upper arrow here is an isomorphism.

 As the localization of an epimorphism is an epimorphism, the arrow ,uy* in the

 new diagram is an epimorphism, so we conclude that the lower f

 vT17r*(X;Z/p) - vj1 7r (y; Zip),

 is also surjective.

 Now we must prove the lower f* is injective. Suppose that x E ker(f*).
 By definition of localization we can find an integer m such that vrx = x' E

 7r*(X; Z/p). By choosing m larger if necessary we can arrange that

 i*: 7r*(X; Zip) ) 7r*(Y; Z/p)

 carries x' to zero. By commutativity of the upper square of the first diagram,

 f*(h(x')) = 0,

 so that injectivity of the localized f implies there is m' such that

 VrM h(x') = 0.

 Then

 0 = i,tx*(vrmh(x'))

 = VM/lix*(h(x'))

 = V7 lxX

 in 7r*(X; Z/p) so that in vT17r*(X; Z/p)

 O m+m'
 0=v1 X.

 We conclude that x = 0, so that

 f*: v- 17r*(X; Z/P) , -17r* (Y; Z/ )

 is also injective.

 We conclude this section by showing that our definition of vT 17rn(X; Z/p)
 for ?-modules X is a special case of the usual definition of v1-periodic homotopy.
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 30 J. E. MCCLURE AND R. E. STAFFELDT

 PROPOSITION 5.5. If X is any L module, then its v1-periodic mod p homotopy

 vj 1wn(X; Z/p) as defined above is the direct limit of the system

 (1AA)~ E-2(-Om OMA), E4POm (1AA). (12) 7rn(X A M - rn(XA 1M ) 7rn(X A )

 where M is the Moore spectrum SO Up e1 and

 A: M _ -2(p-1)M

 is the Adams map.

 Let us write 7rperX for the direct limit of the system (12). We begin with a
 lemma which will also be needed in Section 8.

 LEMMA 5.6. Let X be an L-module and let vx denote the composite

 x2(P-1x ) VI4 eAX - X.

 Then vx induces a K(1)-isomorphism.

 Proof. Consider the diagram

 -1 A X veAl X

 1 x
 z2(p- Ox VXX

 The vertical maps are split epimorphisms, and the diagram commutes, so it suf-

 fices to prove the lemma for X = L. Next recall that the map

 (1 A A). :rn(L A M) -Wn+2(p-l)( A M)

 is multiplication by vl. Since Ve also induces multiplication by vl, it is clearly
 an isomorphism on 7rpoer. But then it is also a K(1)-isomorphism by [10, Theorem
 4.11(ii)].

 Proof of Proposition 5.5. Consider the following double direct system.

 7r*(X A M) )* 7r*(X A M) (A
 1(vXAI)* 1(vXAI)*

 7r* (X A M) * 7r* (X A M) (A)
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 HOCHSCHILD HOMOLOGY OF bu, I 31

 Of course, the direct limit of this system is the same whether one first passes to

 the limit horizontally and then vertically or first vertically and then horizontally.

 We will prove the proposition by showing that the first way of passing to the

 limit gives 7rperX and the second way gives vT1 7r.(X; Z/p).
 The limit along each row is, by definition, 7r perX, so passage to the limit

 along the rows gives the direct system

 perx

 1 (vx)*
 perX

 1 (vx)*

 But the map vx is a K(l)-isomorphism by Lemma 5.6., and hence it is a 7r*er-

 isomorphism by [10, Theorem 4.11(ii)]. Thus the direct limit of this system is

 7rPerX as asserted.

 On the other hand, passage to the limit along the columns gives the direct

 system

 vT 7r*(X AM) )* v 17r*(X AM)(1A)*

 But the map 1 AA is a K(l)-isomorphism and hence (by Lemma 5.4) it induces an

 isomorphism of vT 1 7r*. Thus the direct limit of this system is equal to vT 1 7r*(X A

 M), and this in turn is (by definition) equal to v71 7r*(X; Z/p). This completes
 the proof. M

 6. The localized Adams spectral sequence. This section contains the last

 of the preliminary computations we need before we compute 7r*(THH(Q); Z/p)
 with the classical Adams spectral sequence.

 Until now we have used the notation Er(X; Z/p) for the Adams spectral
 sequence converging to 7r*(X; Z/p), but from now on we shall use the somewhat

 simpler notation ErX. Let X be an ? module spectrum. Since Er ? is isomorphic to
 Z/p [al] for all r, we know that ErX is a spectral sequence of Z/p [al] modules,
 and since localization is an exact functor we may invert ai in this situation to

 obtain a spectral sequence of Z/p [a,, a-1] modules which we will denote by
 al1ErX. We do not assert in general that this spectral sequence converges to
 VT1w7r*(X; Z/p).

 Our main result in this section (Theorem 6.2) will determine all differentials

 in the spectral sequence al lErTHH(Q).
 First recall that Theorem 4.1 gives an isomorphism

 (13) E2THH(?) - Z/p [al] 08) A(A1, A2) () Z/p [],
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 32 J. E. MCCLURE AND R. E. STAFFELDT

 where bidegree al = (2(p - 1), 1), bidegree Ai = (2pi - 1,0), and bidegree
 ,u = (2p2, 0); we therefore have an isomorphism

 (14) al 1E2THH(Q) - Z/p [al,,a1] a A(Al, A2) 0 Z/p [A4.

 Next we consider the E,, term.

 PROPOSITION 6.1. The map t: ? -- THH(Q) induces an isomorphism

 a 1.* : Z/p [al, a-1] al1E,,THH(Q).

 Proof. Essentially, the proposition is a consequence of the isomorphism

 (15) V- 16 v- 7*'f; Zlp) v- 1,7*(THH(f); Z/p)

 given by Theorem 5.2, but we need to be a bit careful with the details since we are

 not assuming any relationship between al1EJTHH(Q)) and v 1ir-(THH(D;Z/p).
 First of all, suppose that a' is in the kernel of alT1*. We may assume that n

 is positive and that a' is zero in E00THH(f1). We know by (15) that the image

 of v7 in -r*(THH(f); Z/p) must be nonzero, and it follows that this image must

 represent a nonzero element of EO,THH(f) with dimension 2n(p- 1) and filtration
 higher than that of a'. But an inspection of equation (13) above shows that there

 is no such element, so a' must be nonzero in E0THH(Q) after all. This shows
 that the map al11* is a monomorphism.

 Next suppose that x E al1E,0(THH(Q)) is a nonzero element in the cokernel
 of al 1 I; Without loss of generality we may assume that x is actually an element

 of Ej(THH(?)). Let ( E ir*(THH(fl); Z/p) be an element representing x. By
 equation (15), there must be an n such that -v7 is killed by a power of vi. But
 we have seen above that x must be in lower filtration than a', so -v7 must

 represent x, and it follows that some power of al must kill x. This contradicts the

 assumption that x is nonzero in al1E,0(THH(f)), and we conclude that a- '[* is
 an epimorphism. E1

 We will see in a moment that there is only one pattern of differentials in the

 spectral sequence al 1Er(THH(f) which is consistent with Proposition 6.1. Before
 giving a formal statement, let us consider the first few differentials. Equation 14

 implies that A1 and A2 are permanent cycles for dimensional reasons (note that A2

 cannot hit a P+1 because of Proposition 6.1), and that ,p survives at least to a 'Ep.
 On the other hand, if dp(Q) = 0 then pt is a permanent cycle and the multiplicative
 structure implies that there are no differentials in the spectral sequence. Since this

 would contradict Proposition 6. 1, ,u must hit the only thing which is dimensionally
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 HOCHSCHILD HOMOLOGY OF bu, I 33

 possible, and thus we have

 dp(,u -' aPA1; 1

 here and from now on we use the symbol - to denote equality up to multiplication

 by a nonzero element of Z/p. We can now conclude that

 al Ep+l Z/p [al,al1] X A(A2, AlpP-1) 0 Z/p [NP],

 where A2, A1, 1P-, and ,aP are in bidegrees (2p2-1, O), (2p3 -2p2+2p-1, O), and
 (2p3, 0) respectively. For dimensional reasons AtP must survive at least to al 1E,22,

 so we have aTlE 2 - al Ep+i, but as before we must have dp2Q(/IP) $ 0, and
 this implies

 d~QP) = p2 dp2(,1)-1 alP A2

 and

 al lEp2+1 Z/p [al, a-1] 0 A(Ai,/uP-1, A2,ub2-) 0 Z/p [P2]

 Similarly, we have

 dp3+p(IP2) - alp3+PA1up-l

 and

 aT1E3+p+l 3 Z/p [a,,,a-1] (0 A(A22_pP2 Api P3P2+P1) 0 p3

 The general pattern is given by our next result.

 THEOREM 6.2. Define a sequence of numbers r(n) by the equations

 r(n) =pn + pn-2 + . +

 if n is odd, and

 r(n) =pn + pn-2 + . + * 2

 if n is even. Then

 (a) the only nonzero differentials in the spectral sequence aTlErTHH(Q)
 occur in the terms al Er(n),

 (b) al 1Er(n) has the form

 Z/p [al,aa1] 0 A(An, An+1) 0 Z/p [1Pf],
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 34 J. E. MCCLURE AND R. E. STAFFELDT

 where the A, are defined for n > 3 by A, = A, 2,uP3 (P 1), and

 (c) dr(n) is determined by the multiplicative structure and the formulas

 dr(n)(An) = 0, dr(n)(An+l) = 0, and dr(n)(IP n) - ar=(n)An

 Proof. We have already verified the assertions for n < 3. Let us assume

 inductively that

 alT1Er(n) Z/p [al,a-1] 0 A(An, An+I) 0 Z/p [,u ],

 with An and An+, defined as above. The bidegree of iuPs1 i (2pn+1 , 0), and an easy
 inductive argument shows that the bidegree of Am is (2pm - 2pm-1 +. +2p -1, 0)

 for m odd and (2pm - 2pm-1 +. .+2p2 -1, 0) for m even. The determination of the
 next differential follows the same pattern as the argument given for the first three

 differentials. By inductive hypothesis one knows that An is an infinite cycle. The
 only way An+1 could fail to be an infinite cycle is if dr(n)(An+l) - a r(n)+1, which

 is impossible by Proposition 6.1. On the other hand, ,aP must fail to be an

 infinite cycle, and the only way this can happen is for the equation

 dr(n)(1_pn) - i ar(n An

 to hold. We now have

 al Er(n)+1 Z/p [al, al1] 0 A(An+, An+2) 0 Z/p [1i ],

 and for dimensional reasons we must have al Er(n)+l = a- 'Er(n+1). This com-
 pletes the proof of the inductive step and thereby of the theorem. O

 7. The mod p homotopy of THH(?). We can now state a theorem which,
 together with Theorem 6.2, completely determines the differentials in the Adams

 spectral sequence ErTHH(Q) converging to -r*(THH(?); Z/p). From now on we
 will write S for the graded ring Z/p [al].

 THEOREM 7. 1.

 (a) Let r be at least 2. As an S module, ErTHH(f) is generated by elements
 in filtration 0, and it is a direct sum of copies of S and of S/(a') for i < r.

 (b) For each r > 2, the localization map

 ErTHH(e) al1ErTHH(f)

 is a monomorphism in filtrations > r -1.
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 HOCHSCHILD HOMOLOGY OF bu, I 35

 (c) For each r, the differentials in ErTHH(f) are determined by those in
 aTlErTHH(Q); more precisely, each element of ErTHH(Q) has the same differ-
 ential as its image in aT1ErTHH(f).

 As a consequence, we obtain an explicit description of -rr(THH(f); Z/p).

 Recall the numbers r(n) and the elements A, introduced in the statement of
 Theorem 6.2.

 COROLLARY 7.2.

 (a) For each n > 1 and each nonnegative integer m with m - p - 1 mod

 p there are elements Xn,m and x',m in -rr*(THH(f); Z/p) such that

 (i) xn,m projects to An,tmPn in E*,O.

 (ii) xl,m projects to A,A,+1,,mPn-1 in E,*.

 (iii) vr( Xn,m = Vr(n) Xm = 0.

 (b) As an S module, 'r*(THH(f);Z/p) is generated by the unit element
 1 E 7ro and the elements Xn,m and X' m. The only relations are vrj(n)xnm = 0 and

 Vr(n)/ = 0. VI Xn,m

 Proof of Theorem 7.1. We begin with part (a). Suppose inductively that this

 result holds for some r (Theorem 4.1 implies that it holds for r = 2). Choose a

 basis {fai} for the Z/p-vector space

 {xeEE0 Iar-lx=0}.

 The differential d, of any element ai must be an element in filtration r which is
 killed by a'j. But the inductive hypothesis implies that all nontrivial elements in

 filtration r have infinite al-order, and it follows that all elements ai are dr-cycles.

 Let us next choose a set {/3j} C E, so that the set {dr/3j} is a basis for the
 image of

 d, :E*,O --E*l!

 and let us choose elements j e EE,' with a>1yj = dr/3j. Then the ai and yj are
 linearly independent d,r-cycles, so we can choose elements 8k in E*'0 such that
 the set

 {ai} U {-yj} U {8k}

 is a basis for the dr-cycles in E* ?. It is now clear that the set

 {f.} U {I3j} U {yf} U {fk}
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 36 J. E. MCCLURE AND R. E. STAFFELDT

 is a basis for E*'? and that the differential dr is determined by the formulas

 drai = O, dr/3j = aryj, dryj = O, and drk = O.

 This in turn implies that Er+i is generated as an S module by the elements ai

 (each of which is killed by al-), -yj (killed by ar) and 8k (each of which has
 infinite al-order). This completes the inductive step for part (a).

 Part (b) follows from part (a) since all elements of Er in filtration > r -1

 have infinite a,-order.
 For part (c), we need only show that if an element x of Er maps to a cycle in

 a-'Er then it is already a cycle in Er. By part (a) we know that x has the form
 any with y E E*'0, and by part (b) we know that dry = 0; the result follows. O

 Remark. An inspection of the proof of Theorem 7.1 shows that the result

 remains valid with THH(Q) replaced by any ? module X for which E2X is a
 direct sum of copies of S and of S/(al) generated by elements in filtration 0.

 Proof of Corollary 7.2. It suffices to show that the corresponding statement

 about E,, holds, i.e, that the elements An, mP and AnAn+1_,mPn are infinite
 cycles, that together with the unit element they form a basis for E*O?, and that

 the al-order of each An,tmPn1 and AnAn+i,1j'P is r(n). Let us write (n,m and
 (n m for An,ltmpunI and AnAn+ 1MmPn respectively. We shall show by induction on

 n that Er(n)(THH(?)) has the form

 Mn E (S 0 A(An, An+1) 0 Z/p [,Pn-ll])

 where Mn is generated by the set

 {Gk,m ,k,m I k < nf}

 with relations

 ar(k) k,m = ar(k),m = 0,

 and this will imply the corollary. So let us assume that this statement is true for

 some n (it clearly holds for n = 1). Then Theorems 7.1(c) and 6.2 imply that the

 only nontrivial differentials on E`*, are given by the formulas
 r(n)

 dr(n)/Jtm+ )Pn- = (m + 1)ar(n) An, -n a

 and

 dr(n)An+l y(m+1)pn1 = (m4 ,)1n) + mpn- =
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 HOCHSCHILD HOMOLOGY OF bu, I 37

 for m - (p - 1) mod p. Together with Theorem 7.1(a), these formulas imply that

 Er(n)+l has the form

 Mn (DNn+1 ED (S 08 A(An+l, AnA (p-l)pn-,) (3 Z/p [/_pn)

 where Nn+j has generators (n,m and n',m and relations

 ar(n) n'm = ar(n) = 0.

 To complete the proof of the inductive step, we need only observe that Er(n)+l =

 Er(n+l) (by Theorems 7.1(c) and 6.2(a)), and that Mn @ Nn+1 = Mn+1 and

 Ant(p-l)pn- -= An+2 (by the definitions). ?

 8. The homotopy type of THH(L). Let us fix a prime p and write L for the

 p-adic completion of the Adams summand of complex K-theory. In this section

 we assume that L has an A,, structure, so that THH(L) is defined,9 and we
 prove the following theorem. We shall denote the rationalization of a spectrum

 X byXQ.

 THEOREM 8.1. THH(L) - L V (XL)Q.

 For the proof of Theorem 8.1 we shall use Bousfield's theory of localization.

 First we recall that Proposition 2.9 of [10] gives a homotopy pullback diagram

 THH(L) ) JJ THH(L)SZ/q
 q

 (16) 1 1

 THH(L)Q (, THH(L)sz/q)

 q Q

 where q runs over all primes and SZ/q denotes a mod q Moore spectrum; note

 that the SZ/q-localization of a spectrum is its q-adic completion.

 We begin by determining the spectra THH(L)szlq when q is not equal to the
 prime p which we fixed at the beginning of the section. The mod q homotopy

 of L is trivial for every q $ p (see for example Proposition 2.5 of [10]) and

 the same holds for THH(L), since THH(L) can be obtained from L by smash

 products, passage to cofibers, and a direct limit. In the language of [10], this says

 that THH(L) is SZ/q-acyclic, and hence THH(L)szlq is trivial for each q $ p.

 9Andy Baker has proved a result in [5] which is expressed in somewhat different language but probably

 implies what we need. Moreover, the first author has an unpublished proof that L is actually E., a result
 which has been simplified and greatly extended (to a certain version of E(n)) in recent work of Mike Hopkins

 and Haynes Miller.
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 38 J. E. MCCLURE AND R. E. STAFFELDT

 Next we consider THH(L)Sz/p.

 PROPOSITION 8.2. The inclusion t: L -- THH(L) induces an equivalence

 L + THH(L)sz/p.

 Proof. First consider the following diagram

 K(1)*f K (1) *THH (t)
 1 1

 K(1)*L K (1) *THH (L)

 The left-hand vertical arrow is an isomorphism by Lemma 5.6., since in the
 notation of that Lemma L is the direct limit of the system

 LSZ/A -2(p-1 )SZ/P t -4(p-1)S

 (note that tsz/p has the same mod p K-homology as L since already the smash
 product of LSZ/p with the mod p Moore spectrum SZ/p is homotopy equivalent
 to A SZ/p). The spectral sequence of Proposition 3.1 now implies that the right-
 hand vertical arrow is also an isomorphism. Furthermore, Theorem 5.1 implies
 that the upper 1* is an isomorphism, so we conclude that the lower 1* is an
 isomorphism. Since mod p K-theory is a direct sum of copies of K(1), we have
 shown that I induces an isomorphism

 K*(L; Z/p) ?* K*(THH(L); Z/p)

 If we write KZ/p for the spectrum representing mod p K-theory, then the defi-
 nition of localization now gives an equivalence

 LKZ/P THH(L)Kz/p,

 and by [10, Proposition 2.11] we can rewrite this in the form

 (LK)SZ/P + (THH(L)K)SZ/p.

 But L is K-local (by [10, Theorem 4.11(i)]). Moreover, K-localization commutes

 with smash products, cofiber sequences, and direct limits (see [10, Corollary
 4.7]), and since THH(L) can be built up from L by these operations, we see that
 THH(L) is also K-local. So we can now rewrite our last equivalence as follows:

 LSZ/P - THH(L)SZ/P.
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 HOCHSCHILD HOMOLOGY OF bu, I 39

 But Lszlp is equivalent to L, since we have assumed that L is p-adically complete.
 This concludes the proof. :1

 Our next result, which is an immediate consequence of what has been shown

 so far, determines the lower right-hand corner of diagram (16).

 COROLLARY 8.3. The map i: L THH(L) induces an equivalence

 LQ (ii THH(L)SZ/q)
 q ~~Q

 To complete our analysis of diagram (16), it remains to determine the lower

 left corner. Recall the natural transformation

 v:ER -THH(R)

 defined in Section 3.

 PROPOSITION 8.4. The map

 (V L:LVXL --* THH(L)

 induces an equivalence

 LQ V (XL)Q THH(L)Q.

 Proof. Consider the spectral sequence

 HH*(H*(L; Q)) == H*(THH(L); Q)

 provided by Proposition 3.1. Since rational homology is the same thing as rational

 stable homotopy, we have

 H*(L; Q) -Q[vi, v-1 1.

 Since Hochschild homology commutes with algebraic localization, we have

 HH*(Q[vl, v- 1]) -Q[vi, vl1] (&Q[vl] HH*(Q[vi]),

 and thus the E2-term of the spectral sequence is

 Q[vi, v 1] 0 A(u(vD))
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 40 J. E. MCCLURE AND R. E. STAFFELDT

 with vi in bidegree (0,2(p - 1)) and a(vl) in bidegree (1,2(p - 1)). In par-
 ticular the spectral sequence collapses. Propositions 3.1 and 3.2 now imply that

 I V a induces a rational homology isomorphism, and hence an equivalence of

 rationalizations as required. o

 To sum up, we have now shown that diagram (16) has the following form:

 THH(L) ) L

 1 1
 LQV(?L)Q ) LQ.

 Furthermore, the restriction of the lower horizontal arrow to (YL)Q must be trivial,

 since LQ is a wedge of even-dimensional rational Eilenberg-MacLane spectra and

 (XL)Q is a wedge of odd-dimensional Eilenberg-MacLane spectra. The definition

 of homotopy pullback now gives a map

 L V (XL)Q -4 THH(L)

 and the Mayer-Vietoris sequence of the homotopy pullback diagram shows that

 this map is a homotopy equivalence. This completes the proof of Theorem 8.1.

 9. An E,,-structure for the Adams summand. In [1] J.F. Adams con-
 structed an idempotent cohomology operation e in the theory

 X | K(X; Z(p)) = [X,BU(p)]

 such that

 e(S') : K(S'; Z(p)) .,K(Sn; Z p)

 is the identity if n 0 mod 2(p - 1) and the zero map otherwise. Since e(X) is

 idempotent, the image groups e(X)K(X) form a representable functor. The repre-

 senting space W satisfies a variant of Bott periodicity (but with 2-fold periodicity

 replaced by 2(p - 1)-fold periodicity) and in the usual way W gives rise to a

 a periodic spectrum. Killing the negative dimensional homotopy groups of this

 spectrum gives the connective Adams summand which we shall denote by tAdams*

 There are maps

 0 tAdams bu(p)

 and

 q$: bu(p) LAdams
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 HOCHSCHILD HOMOLOGY OF bu, I 41

 such that 0 o 0 is the identity and 0 o X represents the idempotent e; in particular
 fAdams is indeed a summand of bu(p). The notation fAdams has been chosen in
 order to distinguish this object from that which we define next.

 Definition 9.1. Let p $ 2 be a prime and choose a prime q such that the
 residue class of q generates the group of units Z/p*. Let FqPi be the finite field

 of order qP' and let k' be the field U?- FqPi. Then f is the algebraic K-theory

 spectrum K(k').

 This is the definition of f which we have been using throughout the paper.

 Its advantage for us lies in the fact that algebraic K-theory spectra have E,O
 structures (see [24, Section 8.1]), whereas there is no known way to obtain such

 a structure from Adams' original construction. The idea of using the field k' to

 define t was suggested by Section 10 of Aguade's paper [3].

 We warn the reader that f and fAdams are not equivalent spectra. Our next

 result, which is intended to provide motivation for Definition 9.1, shows that there

 is nevertheless a close relationship between f and WAdams. Here, and for the rest
 of the section, we revert to the traditional notation XA for the p-adic completion

 of X (instead of the notation Xszlp which was used in the previous section).

 PROPOSITION 9.2. There is a map of spectra

 A' : K(k') L fAdams

 such that the induced map of p-adic completions

 (,\,)A: K (k )A ) (Adams )A

 is an equivalence.

 This result says that t is a "discrete model" for tAdams in the same way that

 the K-theory spectrum of the algebraic closure Fq is a discrete model for bu (see

 [24, page 217]).

 Proof. First recall that according to [24, Theorem 2.8, page 218] the Brauer

 lifting of characters induces a map of spectra

 K(Fq) - bu

 whose completion is an equivalence whenever q is a prime different from p.

 Next note that it is not necessary to go all the way to the algebraic closure Fq

 to obtain such an equivalence. By [26, page 577] the cohomology H*(GL(k); Z/p)
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 42 J. E. MCCLURE AND R. E. STAFFELDT

 for any algebraic extension k of Fq depends only on the image of

 Gal(Fqlk) Aut(,lpoo),

 where ,lpoo is the group of pth roots of unity in Fq. So, for instance, if we take

 00

 k = Fq [/upoo] = UFq(p-l)pi
 i=o

 then we have a chain of cohomology isomorphisms

 H*(BU; Z/p) -- H*(GL(Fq); Z/p) -- H*(GL(k); Z/p)

 and the proof of [24, Theorem VIII.2.8] shows that Brauer lifting induces a map

 A: K(k) -bu

 whose p-adic completion is an equivalence.

 We can now define the map A' by means of the diagram

 K(k') VAdams)
 K(j) I I o
 K(k) A bu,

 where we write K(j) for the map of K-theory spectra induced by the inclusion

 of fields j: k' C k. To prove the proposition, it suffices to show that A' induces

 an isomorphism on mod p homotopy groups. What we already know is that A

 is an isomorphism of mod p homotopy groups in all dimensions, and that 0 is
 an isomorphism of mod p homotopy in dimensions i 0 O mod 2(p - 1) and is
 otherwise zero. Therefore, what we actually have to do is to verify that

 7rn(K(k); Z/p) f Z/p if n = 0 mod 2(p - 1)
 0 otherwise

 and to prove that K(j) induces an isomorphism in mod p homotopy in dimensions

 i 0- mod 2(p - 1). To calculate the homotopy groups we use Quillen's results

 K2j(Fqr) = 0

 and

 K2- 1(Fqr) Z/(qrij - 1).
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 The tower

 Fq C FqP C C Fqpi C C k'

 implies

 Kn(k') = limKn(Fq P),

 so obviously

 Ko(k') - Z

 and

 K2j(k') = 0.

 Since we will eventually take homotopy with Z/p-coefficients, we just have to

 compute the p-torsion parts of the groups K2j_l(k'). Since we assumed that q

 generates Z/p* we see that p divides qP"i - 1 if and only if j- 0 mod (p - 1),

 and that if j 0 O mod (p - 1), then p' divides qPi -1. Going back to the formula

 K2j-1(Fqpi) - Z/(qP"' - 1),

 and using the fact that each higher K-group of a finite field is cyclic, we conclude

 that

 K2j (k')(p) Z Z/p? if j 0 mod (p - 1)
 10 otherwise.

 It follows that

 7rn(K(k'); Z/p) { Z/p if n =0 mod 2(p- 1)
 10 otherwise

 as desired. To calculate the map

 K(j)* : 7r2n(K(k); Z/p) 7 r2n(K(k'); Z/p)

 we appeal to the remark on page 585 of [26]: if k/k' is any extension of fields
 algebraic over Fq with Galois group G, then
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 induces an isomorphism

 K*(kt) -K*(k)G

 where the superscript G denotes G-invariant elements. The remark is also true for

 K-groups with coefficients, and in our situation it is easy to see that the extension

 k/k' is algebraic with Galois group G - Z/(p - 1), so the remark applies. But

 the action of G on the cyclic groups K2j(k; Z/p) is either trivial, or it has trivial
 invariants, so we conclude that

 K(j)* : '2n(K(k'); Z/p) 7 r2n(K(k'); Z/p)

 is an isomorphism when n -0 mod 2(p - 1), as required. O

 We conclude this section with some technical remarks. Since the map X used

 in the construction of A' is not a ring map, the proof just given does not provide

 an equivalence of ring spectra between K(k') and tAdams. It is possible to obtain
 such an equivalence by giving a more elaborate argument (essentially one must

 show that the composite A' oK(j)A factors through the map 0: (VAdams)A - buA).
 It is also not true that Proposition 9.2 provides an E,, ring spectrum which

 is homotopy equivalent to (VAdass). This would be true however if, as seems
 likely, the p-adic completion of a connective E,, ring spectrum is always E,,.
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