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ABSTRACT. We analyze the C-motivic (and classical) Adams-Novikov spectral sequence for
the C-motivic modular forms spectrum mmf (and for the classical topological modular forms
spectrum tmf ). We primarily use purely algebraic techniques, with a few exceptions. Along
the way, we settle a previously unresolved detail about the multiplicative structure of the
homotopy groups of tmf .

1. INTRODUCTION

The topological modular forms spectrum tmf plays an essential role in the study of the
stable homotopy groups of spheres [Bau08] [Beh20] [DFHH14] [Goe10] [Hop95] [Hop02]
[HM14] [Rez02]. The unit map S → tmf from the sphere spectrum to tmf detects much
of the structure of the stable homotopy groups of S, including the elements η (1-stem), ν
(3-stem), ε (8-stem), κ (14-stem), κ (20-stem), and many additional elements. The unit map
is far from injective (for example, σ (7-stem) maps to zero in tmf ), so it does not detect all
of the stable homotopy groups of spheres. Moreover, it is also not surjective. The compu-
tation of the tmf -Hurewicz image is a difficult problem that leads to the identification of
infinite v2-periodic families in the stable homotopy groups of spheres [BMQ20].

The spectrum tmf serves as an approximation to the sphere spectrum. This approxim-
ation is highly suitable for testing theories and for developing computational techniques.
The structure of tmf is complicated enough to exhibit the complex phenomena related to
the computation of stable homotopy groups, but it is also simple enough to be computed
exhaustively. We have found that the study of tmf is an indispensable step along the way
to understanding the sphere spectrum.

By comparison, the spectrum ko is arguably too simple to serve as a test case for com-
putational theories. For example, its Adams spectral sequence collapses, so its homotopy
reduces to an entirely algebraic problem. Neither the Adams nor the Adams-Novikov
spectral sequence collapses for tmf . However, the analysis of tmf does not involve cross-
ing differentials or crossing extensions in the sense of [IWX20, Section 2.1]. This means
that the homotopy of tmf does not share the most delicate parts of the homotopy groups
of spheres.

Bruner and Rognes [BR21] have recently exhaustively studied the Adams spectral se-
quence for tmf . They completely determine the additive and (primary) multiplicative
structure of the stable homotopy groups of tmf , with one exception.
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The goal of this manuscript is to carry out the Adams-Novikov spectral sequence for
tmf . In fact, we will work in the more general C-motivic context and compute the motivic
Adams-Novikov spectral sequence for the C-motivic modular forms spectrum mmf . The
classical computation is easily recovered from the motivic computation by an algebraic
localization.

More specifically, there is a certain motivic element τ. Inverting τ has the effect of
collapsing C-motivic computations to classical computations. In particular, τ-torsion phe-
nomena disappear in the classical context. Henceforth, we will work in the C-motivic
context. The interested reader can easily recover classical computations from our work by
inverting τ.

From another perspective, we also compute the C-motivic effective slice spectral se-
quence for mmf , since it agrees with the Adams-Novikov spectral sequence over C. This
identification of spectral sequences does not appear to be cleanly stated in the literature,
but it is a computational consequence of the weight 0 result of [Lev15, Theorem 1].

Our goal is not merely to record the details of the Adams-Novikov spectral sequence,
which have previously appeared in [Bau08]. More specifically, we have attempted to give
proofs that are as algebraic as possible. Such algebraic proofs are less likely to contain
subtle mistakes, and they are more easily verifiable by machine. The motivic context
provides us with additional algebraic tools that are not accessible in the strictly classical
context. We also correct a few oversights and minor mistakes in the analysis of [Bau08].

1.1. Algebraic philosophy. We do not use any information from the sphere spectrum as
input for our computations. We do, however, assume full knowledge of the algebraic
structure of the motivic Adams and motivic Adams-Novikov E2-pages for mmf . This is
consistent with our goal of using algebraic techniques whenever possible. It is also con-
sistent with our philosophy that the role of tmf is to inform us about the sphere spectrum.
By comparison, in [BR21] it is necessary to import the relation η2κ = 0 to tmf from previ-
ous knowledge of the sphere spectrum. Fortunately for us, we have the relation h2

1d = 0 in
the Adams-Novikov E2-page for mmf . Because there are no elements in higher filtration,
the relation η2κ = 0 therefore has an entirely algebraic proof.

A computation involving the Adams or Adams-Novikov spectral sequence breaks into
two main stages. The first stage is entirely algebraic and involves the computation of
the E2-page. In the modern era, this first stage is typically conducted by machine. The
computation of the E2-pages for tmf is not elementary, but it can be done manually with
enough patience [Bae] [Bau08, Section 7] [BR21] [Rez02, Section 18].

The second stage of the process involves the computation of differentials and hidden ex-
tensions. This stage typically requires input from topology, so it cannot be fully automated
because it is not entirely algebraic.

Our contribution is to recognize that much of this topological second stage actually can
be carried out using only algebraic information. The key idea is to use the additional
structure of the motivic context in order to pass back and forth between the Adams and
Adams-Novikov spectral sequences. Each E2-page tells us some things about the homo-
topy groups of tmf . The information contained in these E2-pages does overlap, but not
perfectly. The union of the information in both E2-pages is strictly greater than the inform-
ation in either one of the E2-pages.

We give several concrete examples of information available in only one of the two E2-
pages.

(1) In the classical Adams E2-page for tmf , we have the relation h4
1 = 0. This implies

the relation η4 = 0 in homotopy. However, in the classical Adams-Novikov E2-
page, the element h4

1 is non-zero and is hit by an Adams-Novikov d3 differential.
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Thus, the relation η4 = 0 has an entirely algebraic proof, but only in the Adams
spectral sequence.

(2) In fact, the relation h4
1 = 0 is a consequence of the Massey product h2

1 = 〈h0, h1, h0〉
in the Adams E2-page. In the classical Adams-Novikov E2-page, the corresponding
Massey product 〈2, h1, 2〉 is zero. Consequently, the Toda bracket η2 = 〈2, η, 2〉 has
an entirely algebraic proof, but only in the Adams spectral sequence.

(3) In the classical Adams-Novikov E2-page for tmf , we have the relation h3
2 = h1c.

This implies the relation ν3 = ηε. However, in the classical Adams E2-page, we
have h3

2 = 0. In fact, there is a hidden ν extension from h2
2 to h1c in the Adams

spectral sequence. Thus, the relation ν3 = ηε has an entirely algebraic proof, but
only in the Adams-Novikov spectral sequence.

(4) In fact, the relation h3
2 = h1c is a consequence of the Massey product c = 〈h2, h1, h2〉

in the Adams-Novikov E2-page. In the classical Adams E2-page, the correspond-
ing Massey product is zero. Consequently, the Toda bracket ε = 〈ν, η, ν〉 has an
entirely algebraic proof, but only in the Adams-Novikov spectral sequence. See
Lemma 2.20 for more detail on this example.

In order to obtain one key Adams-Novikov differential, we use Bruner’s theorem on
the interaction between algebraic Steenrod operations [May70] and Adams differentials in
the context of the Adams spectral sequence. We refer to [Bru84, Theorem 2.2] for a precise
readable statement; see also [BMMS86] and [Mäk73]. The practical implementation of
Bruner’s theorem requires only algebraic information in the form of algebraic Steenrod
operations on Ext groups. These operations can be computed by machine, although not
as effectively as the additive and multiplicative structure of the Ext groups. The algebraic
Steenrod operations are additional structure on top of what topologists usually think of as
“standard homological algebra".

In the context of the Adams-Novikov spectral sequence, we also rely on the Leibniz rule
in the form dr(xk) = kxk−1dr(x). Philosophically, this formula is connected to Bruner’s
theorem, although we do not know how to make a precise connection. As in the case
of Bruner’s theorem, it feels like slightly more information than is usually considered in
standard homological algebra.

We also draw attention to Proposition 4.5, in which we establish a hidden 2 extension in
the 110-stem. Here we use some information about the homotopy groups of mmf /τ2. One
might argue that this information is not entirely of an algebraic nature. By comparison, the
corresponding 2 extension in the Adams spectral sequence is hidden, but not particularly
difficult [BR21, Theorem 9.8(110)].

1.2. Techniques. Section 2.10 describes a particularly powerful method for studying the
C-motivic Adams-Novikov spectral sequence in a way that has no classical analogue.
There is a map q : mmf /τ → Σ1,−1mmf that can be viewed as projection to the top cell
of the 2-cell mmf -module mmf /τ. The homotopy of mmf /τ is entirely understood in an
algebraic sense since it is isomorphic to the classical Adams-Novikov E2-page for tmf .
Moreover, the map q maps onto the homotopy of mmf that is annihilated by τ. Thus q can
be used to detect structure in mmf that is related to classes that are annihilated by τ.

In practice, many specific questions about hidden extensions do not directly involve
elements that are annihilated by τ. Frequently, if we multiply these elements by a power
of τ and a power of g, then we end up with elements that are annihilated by τ. We can use
q to understand these latter elements, and finally deduce information about the original
elements. Table 5 lists numerous specific examples of this process. The majority of hidden
extensions can be handled very easily in this way, although a few extensions require more
complicated arguments.
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We avoid the use of Toda brackets whenever possible, but occasionally they are inev-
itable. In those cases where we must compute a Toda bracket, we once again rely ex-
clusively on algebraic techniques. Namely, our Toda brackets arise from corresponding
Massey products in either the Adams or Adams-Novikov E2-page. The Moss Conver-
gence Theorem [Mos70] says that such algebraic Massey products detect Toda brackets in
“well-behaved" situations. In practice, all of the situations that we study are well-behaved.

1.3. The differentials on ∆k. Having carried out the entire analysis of the motivic Adams-
Novikov spectral sequence for mmf , we can see in hindsight that there are a few key steps
from which all of the other miscellaneous computations follow. Our experience shows
that the key steps involve the differentials on elements of the form 2j∆k. This is not par-
ticularly surprising; we expect the element ∆ to play a dominant role since it represents
v2-periodicity.

First, we establish d5(∆) = τ2h2g in Proposition 3.8. This follows immediately by
comparison to the Adams spectral sequence, in which τ2h2g is already zero in the E2-
page. Thus, we have an algebraic proof for d5(∆). Then the Leibniz rule implies that
d5(∆2) = 2τ2∆h2g.

The Leibniz rule also implies that d5(∆4) = 4τ2∆3h2g. However, 4τ2∆3h2g is zero in the
Adams-Novikov E2-page. Because of the hidden 2 extension from 2τ2h2 to τ3h3

1, the ele-
ment τ3∆3h3

1g ought to play the role of 4τ2∆3h2g. This strongly suggests that there should
be a differential d7(∆4) = τ3∆3h3

1g. In fact, this formula is correct (see Proposition 3.14),
but it requires some work to give a precise proof.

Our solution, once again, is to play the Adams and Adams-Novikov spectral sequences
against each other. We used the Adams E2-page to obtain the Adams-Novikov differen-
tial d5(∆). Then we used the Leibniz rule in the Adams-Novikov spectral sequence to
obtain d5(∆2). In turn, this last Adams-Novikov differential implies an Adams differen-
tial d2(∆2), or d2(w2) in the notation of [BR21]. Next, we obtain an Adams differential
d3(∆4), or d3(w2

2) in the notation of [BR21], by applying Bruner’s theorem on the inter-
action between squaring operations and Adams differentials [BMMS86] [Bru84]. Finally,
the Adams differential d3(∆4) implies that there is an Adams-Novikov differential d7(∆4).
For more details, see Sections 3.3 and 3.4. Curiously, precise statements about the Adams-
Novikov differential d7(∆4) are missing from [Bau08] [HM14] [Rez02].

1.4. Main results. Our main results are expressed in the charts in Section 7. For complete-
ness, we express this in the form of a main theorem.

Theorem 1.1. The charts in Section 7 represent the C-motivic Adams-Novikov spectral sequence
for the motivic modular forms spectrum mmf , including complete descriptions of

• the E2-page.
• all differentials.
• the E∞-page.
• all hidden extensions by 2, η, and ν.

The proof of Theorem 1.1 consists of the sum of a long list of miscellaneous compu-
tations, which are carried out throughout the manuscript. See especially the tables in
Section 6. These tables summarize the main computational facts, and they give cross-
references to more detailed proofs of each fact.

Our work is not as complete as [BR21] because we have not completely analyzed the
multiplicative structure. In principle, this could be done using the same techniques. We do
study one family of multiplicative relations in more detail. Bruner and Rognes identify a
family νk of elements in the homotopy of tmf . They mostly determine the products among
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these elements, but they leave one case unresolved. Our techniques settle this last detail
about the 2-primary multiplicative structure of the homotopy of tmf .

Theorem 1.2. In the context of [BR21], ν4ν6 = νν2M.

Theorem 1.2 is proved later as Corollary 5.12. In fact, it is a consequence of the more
general Theorem 5.10, which offers a graceful simultaneous analysis of products νjνk. Bru-
ner and Rognes empirically observed the formula

νiνj = (i + 1)ννi+j.

Our proof shows that the coefficients (i + 1) arise naturally from the Leibniz rule

d5(∆i+1) = (i + 1)∆id5(∆).

1.5. Future directions. Our work raises some questions that deserve further study.

Problem 1.1. Compute the κ-periodic C-motivic spectrum mmf [κ−1].

Frequently, we detect elements and relations by first computing their products with
various powers of g or κ. In other words, much of the structure of mmf is reflected in
the κ-periodic spectrum mmf [κ−1]. This motivic spectrum is non-trivial, but its homotopy
is entirely annihilated by τ11. Consequently, its Betti realization is trivial, and it repres-
ents purely “exotic" motivic phenomena. We mention that [BBC23] also studies g-periodic
phenomena in tmf , although not in a way that is particularly close to our perspective.

Problem 1.2. Develop better technology to deduce the differential d7(∆4) = τ3∆3h3
1g dir-

ectly from the differential d5(∆) = τ2h2g.

It is conceivable that d7(∆4) could be deduced directly from d5(∆) using a variant of
Bruner’s theorem that would apply in the Adams-Novikov spectral sequence, but we have
not even formulated a precise statement of such a variant. There is a connection between
Bruner’s theorem and the Leibniz rule dr(x2) = 2xdr(x), but the precise relationship is not
clear to us.

Another possible approach to Problem 1.2 might involve an enriched E2-page in which
the 2 extension from 2τ2h2 to τ3h3

1 is not hidden.

Problem 1.3. Construct a spectral sequence whose E2-page reflects the algebraic structure
of both the Adams and Adams-Novikov E2-pages.

We frequently pass back and forth between the Adams and Adams-Novikov spectral
sequences. In order to facilitate these transitions, Section 2.5 introduces a notion of corres-
pondence between elements of the Adams spectral sequence and elements of the Adams-
Novikov spectral sequence.

This setup feels like a preliminary attempt to describe a richer connection between the
two spectral sequences. It would be much more convenient and effective to compute in
just a single spectral sequence that reflects the algebraic structure of both the Adams and
Adams-Novikov spectral sequences. There are some preliminary indications that “bimo-
tivic homotopy theory" (also known as HF2-synthetic BP-synthetic homotopy theory)
provides a context for this.

1.6. Outline. We begin in Section 2 with a discussion of tools that we will use to carry
out our explicit computations. We describe both the motivic Adams and motivic Adams-
Novikov spectral sequences for mmf , and we establish notation for elements in these spec-
tral sequences. We also establish notation for certain homotopy elements that we will use
later. We draw particular attention to Sections 2.9 and 2.10, which establish a powerful
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tool for detecting hidden extensions. The basic idea is to use the motivic spectrum mmf /τ,
whose homotopy is entirely algebraic.

Our explicit computations begin in Section 3, where we establish all of the Adams-
Novikov differentials. The propositions in this section are mostly in order of increasing
length of differentials. However, we make some exceptions to this general rule to preserve
the logical order, so each result only depends on previously proved results.

Once the Adams-Novikov differentials are computed, we proceed to compute all hid-
den extensions by 2, η, and ν in Section 4. Most of these extensions follow immediately
by comparison to the homotopy of mmf /τ, but there are several cases with more difficult
proofs.

Finally, in Section 5, we consider an explicit family of products that are particularly
interesting. Our results on these products fill a gap in the product structure of π∗tmf , as
described in [BR21].

1.7. Conventions. We work exclusively at the prime 2. There are interesting aspects to the
computation of tmf at the prime 3 ([Bau08, Chapter 5], [DFHH14], [BR21, Chapter 13]), but
we do not address that topic. We use the motivic Adams-Novikov spectral sequence to
compute the homotopy groups of the 2-localization of mmf . We also use the E2-page of the
motivic Adams spectral sequence, which actually converges to the homotopy groups of the
2-completion of mmf . The distinction between localization and completion is not essential
since only finitely generated abelian groups appear in our work. For expository simplicity,
these localizations or completions do not appear in our notation. For example, the symbol
Z refers to the integers localized at 2, or to the 2-adic integers. Similarly, π∗,∗mmf refers to
the motivic stable homotopy groups of the 2-localization (or 2-completion) of mmf .

The adjective “motivic" always refers exclusively to the C-motivic context. We consider
no base fields other than C.

Many of our explicit results are labelled with the degrees in which they occur. These
degrees may help the reader navigate the overall computation, especially in finding the
relevant elements on Adams-Novikov charts.

1.8. Acknowledgements. We thank Tilman Bauer, Robert Bruner, and John Rognes for
various discussions related to the production of this manuscript. We also appreciate stim-
ulating discussions with the participants of the Winter 2023 eCHT reading seminar on the
Adams spectral sequence for tmf.

2. BACKGROUND

In this section, we discuss the techniques that we will use later to carry out our compu-
tations.

2.1. The C-motivic modular forms spectrum mmf . There is a C-motivic E∞-ring spectrum
mmf that can be viewed as the analogue of the classical topological modular forms spec-
trum tmf [GIKR22]. The Betti realization of mmf is the classical spectrum tmf . Moreover,
the cohomology of mmf is A � A(2), where A denotes the C-motivic Steenrod algebra and
A(2) is the subalgebra generated by Sq1, Sq2, and Sq4.

2.2. The C-motivic Adams spectral sequence for mmf . We abbreviate the motivic Adams
spectral sequence for mmf by mAss. The cohomology of C-motivic A(2) is the E2-page of
the mAss. The manuscript [Isa09] computes the cohomology of C-motivic A(2) using the
motivic May spectral sequence, and it gives a complete description of its ring structure.
The mAss E2-page consists entirely of algebraic information, which we take as given. We
grade the mAss E2-page in the form (s, f , w), where s is the topological stem, f is the
Adams filtration, and w is the motivic weight.
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The motivic Adams differentials are recorded in [Isa18]. However, this manuscript does
not depend on previous knowledge of any Adams differentials, neither classical nor mo-
tivic. For completeness, we provide self-contained proofs for two Adams differentials in
Proposition 3.19.

We adopt the notation of [Isa09] and [Isa18] for the mAss. For the reader’s conveni-
ence, Table 1 provides a concordance between our notation and the notation of [BR21].
Beware that the motivic generators u and ∆u have no classical counterparts because they
are annhilated by τ.

Table 1: Generators of the motivic Adams E2-page for mmf

(s, f , w) [Isa09] [BR21]

(0, 1, 0) h0 h0
(1, 1, 1) h1 h1
(3, 1, 2) h2 h2
(8, 3, 5) c c0
(8, 4, 4) P w1
(11, 3, 7) u
(12, 3, 6) a or α α
(14, 4, 8) d d0
(15, 3, 8) n or ν β
(17, 4, 10) e e0
(20, 4, 12) g g
(25, 5, 13) ∆h1 γ
(32, 7, 17) ∆c δ
(35, 7, 19) ∆u
(48, 8, 24) ∆2 w2

2.3. The C-motivic Adams-Novikov spectral sequence for mmf . The E2-page of the clas-
sical Adams-Novikov spectral sequence for tmf is given by Ext∗∗BP∗BP(BP∗, BP∗tmf ), where
BP denotes the Brown-Peterson spectrum. Analogously to the classical Adams-Novikov
spectral sequence, one can construct a motivic Adams-Novikov spectral sequence by re-
solving with respect to the motivic Brown-Peterson spectrum. We abbreviate the motivic
Adams-Novikov spectral sequence by mANss. We grade the mANss E2-page in the form
(s, f , w), where s is the topological stem, f is the Adams-Novikov filtration, and w is the
motivic weight.

The mANss is easy to describe in classical terms. The motivic E2-page can be obtained
from its classical analogue by first assigning a third degree, called the weight, to be half of
the total degree for each class, then adjoining a polynomial generator τ of degree (0, 0,−1)
(see, e.g. [HKO11][Isa19]). More explicitly, a classical element x in degree (s, f ) corres-
ponds to a family of elements {τnx|n ≥ 0} in the mANss, where the motivic element x has
degree

(
s, f , s+ f

2

)
.

The E2-page of the mANss consists entirely of algebraic information, which we take as
given. For our purposes, the best way to compute this E2-page is by the algebraic Novikov
spectral sequence, which is worked out in detail in [Bae].

Remark 2.1. The E2-page of the classical Adams-Novikov spectral sequence for tmf is the
cohomology of a version of the elliptic curve Hopf algebroid ([Rez02][Bau08]). By the
change-of-rings theorem [Rez02, Theorem 15.3], this is the same as the cohomology of the
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Hopf algebroid (BP∗tm f , BP∗BP⊗BP∗ BP∗tm f ). See [Rez02, Proposition 15.7 and Section
20] for more details. We do not rely on this perspective.

2.4. Notation for the motivic Adams-Novikov spectral sequence. Table 2 lists the mul-
tiplicative generators for the mANss E2-page for mmf . These generators are the starting
point of our computation.

Table 2: Generators of the motivic Adams-Novikov E2-page for
mmf

(s, f , w) generator

(0, 0,−1) τ
(1, 1, 1) h1
(3, 1, 2) h2
(5, 1, 3) h1v2

1
(8, 0, 4) P
(8, 2, 5) c
(12, 0, 6) 4a
(14, 2, 8) d
(20, 4, 12) g
(24, 0, 12) ∆

One must be slightly careful with the definitions of some of these elements because
they belong to cyclic groups of order greater than 2. In these cases, there is more than one
possible generator. Specifically, this issue arises for the elements h2, P, 4a, g, and ∆. For P,
4a, and g, we simply choose arbitrary generators.

Remark 2.2. (3, 1, 2) The choice of h2 makes little practical difference to us, as long as it
is a generator of the mANss E2-page in degree (3, 1, 2). For definiteness, we take h2 to
represent the homotopy element ν, assuming an a priori definition of ν (for example, by
appealing to the homotopy of the sphere spectrum or by appealing to a geometric con-
struction of ν involving quaternionic multiplication).

The choice of ∆ also makes little practical difference. We choose ∆ in such a way to
make our formulas easier to write. See Remark 3.9 and Remark 5.8 for more details. Note
that the choice of ∆ depends on a previous choice of h2.

Remark 2.3. (12, 0, 6) The notation 4a does not appear to be natural and deserves some
explanation. There are two closely related reasons why we find this notation to be con-
venient. First, the element 4a is detected in the algebraic Novikov spectral sequence [Bae]
by an element h2

0a. Second, the element 2 · 4a turns out to be a permanent cycle that detects
an element in π12,6mmf . This same homotopy element is detected by h3

0a in the Adams
spectral sequence for mmf .

The element g is a permanent cycle and therefore represents a homotopy class κ. Multi-
plication by g provides regular structure to the mANss for mmf . We typically sort elements
into families that are related by g multiplication. In other words, when we consider a par-
ticular element x, we also typically consider the elements xgk for all k ≥ 0 at the same
time.

Taken together, Figures 1 and 3 depict the E2-page of the mANss for mmf graphically.
The careful reader should superimpose these figures in order to obtain a full picture of the
mANss. Figure 1 depicts a regular v1-periodic pattern in the E2-page, to be discussed in
detail in Section 2.7. Figure 3 depicts the remaining classes.
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2.5. Comparison between the mANss and the mAss.

Definition 2.4. Let a be a permanent cycle in the mANss for mmf , and let b be a permanent
cycle in the mAss for mmf . The elements a and b correspond if there exists a non-zero
element in π∗,∗mmf that is detected by a in the mANss for mmf and is detected by b in the
mAss for mmf .

Remark 2.5. Beware that a permanent cycle may detect more than one element in π∗,∗mmf ,
depending on the presence of permanent cycles in higher filtration. We ask only that the
cosets detected by a and b intersect; they need not coincide. We give an explicit example.

The element P of the mANss E∞-page detects two elements of π8,4mmf because of the
presence of τc in higher filtration. On the other hand, the element P of the mAss E∞-page
detects infinitely many elements (which differ only by a 2-adic unit factor) because of the
presence of Phk

0 in higher filtration for k ≥ 1. This is an example of a corresponding pair of
elements that do not detect precisely the same coset of homotopy elements.

Remark 2.6. It is possible that a single element of the mANss corresponds to two different
elements of the mAss. For example, the element P of the mANss detects two elements of
π8,4mmf because of the presence of τc in higher filtration. These two homotopy elements
are detected by τc and by P in the mAss. Consequently, the mANss element P corresponds
to the mAss element P, and it also corresponds to the mAss element τc. Fortunately, this
kind of complication never arises for us in practice. For example, none of the correspond-
ences listed in Table 4 exhibit this type of behavior.

Remark 2.7. The element 2 of the mANss E∞-page detects a single element in homotopy
since there are no elements in higher filtration. On the other hand, the element h0 of the
mAss E∞-page detects infinitely many elements in homotopy, all of which differ by a 2-
adic unit factor, because of the presence of hk

0 in higher filtration. Consequently, while 2
and h0 are a corresponding pair, they do not detect the same sets of homotopy elements.
Rather, the homotopy elements detected by 2 form a subset of the homotopy elements
detected by h0.

Among the corresponding pairs listed in Table 4, the same phenomenon occurs for h2,
g, ∆h1, and 4∆2. In all of these cases, the homotopy elements detected by the mANss
E∞-page element form a subset of the homotopy elements detected by the mAss E∞-page
element.

Multiplicative structure respects corresponding pairs. The following proposition estab-
lishes this principle precisely.

Proposition 2.8. Let a and a′ be elements of the mANss E∞-page, and let b and b′ be elements of
the mAss E∞-page. If a corresponds to a′, b corresponds to b′, and ab and a′b′ are non-zero; then
ab corresponds to a′b′.

Proof. Let a and a′ detect a homotopy element α, and let b and b′ detect a homotopy element
β. Then ab and a′b′ detect the product αβ. �

Remark 2.9. The motivic Thom reduction map BP→ HF2 induces a map from the mANss
for mmf to the mAss for mmf . This map detects some corresponding pairs but not all of
them. Namely, it detects the pairs involving h1, h2, and g. These are the elements for which
there is no filtration shift between the mANss and the mAss.

2.6. Homotopy elements. Table 3 lists some notation that we use for elements in the ho-
motopy of mmf . We use the same symbols as in [BR21] for our motivic versions. Beware
that some of our homotopy elements may not be exactly compatible under Betti realiza-
tion with the ones in [BR21]. We discuss the details of these ambiguities in the following
paragraphs.
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We define elements in homotopy by specifying the elements in the mANss E∞-page that
detect them. In some cases, it is already easy to see that these detecting elements survive
to the E∞-page. For example, there are no possible targets for differentials on h1 and h2;
nor can they be hit by differentials. Beware that we do not yet know that some of these
detecting elements actually survive to the E∞-page. This will only become apparent after
our analysis of Adams-Novikov differentials.

In some cases, there are E∞-page elements in higher filtration. When this occurs, the spe-
cified element in the E∞-page detects more than one element in homotopy. For example,
the element τh3

1 lies in filtration higher than the filtration of h2. Therefore, h2 detects two
distinct elements in homotopy. In Table 3, this ambiguity occurs only for ν, κ4, and the
elements of the form νk.

The choice of ν is of little practical signficance to us. For definiteness, we may use an a
priori definition of ν, as discussed in Remark 2.2. The choices of νk will be discussed later
in Definition 5.4. The choice of κ4 is immaterial for our purposes, so it can be an arbitrary
generator of π110,56.

Table 3: Some elememts of π∗,∗mmf

(s, w) name detected by

(1, 1) η h1
(3, 2) ν h2
(8, 5) ε c
(14, 8) κ d
(20, 12) κ̄ g
(25, 13) η1 ∆h1
(27, 14) ν1 2∆h2
(51, 26) ν2 ∆2h2
(96, 48) D4 2∆4

(99, 50) ν4 ∆4h2
(110, 56) κ4 ∆4d
(123, 62) ν5 2∆5h2
(147, 74) ν6 ∆6h2
(192, 96) M ∆8

Remark 2.10. (20, 4, 12) Bruner and Rognes choose κ by reference to the unit map S→ tmf ,
together with a prior choice of κ in π20S. For our purposes, we only need that κ is detected
by g in the mANss E∞-page, so we may choose κ to be compatible with the one in [BR21].

There is a slight complication with κ. In [Isa19] and [IWX20], the symbol κ is used for
an element of π20,11S0,0 that is detected by τg in the motivic Adams spectral sequence.
The point is that g does not survive the May spectral sequence, so it does not exist in the
motivic Adams spectral sequence.

Here, we use κ for an element of π20,12mmf . This element is detected by g in the Adams
spectral sequence for mmf . The unit map S0,0 → mmf takes κ to τκ.

Remark 2.11. Bruner and Rognes refer to the “edge homomorphism" in order to specify
certain elements in π∗tmf . From the perspective of the Adams-Novikov spectral sequence,
this edge homomorphism takes a particularly convenient form that can be easily described
as a surjection followed by an injection. The surjection takes π∗tmf onto its quotient by ele-
ments that are detected in strictly positive Adams-Novikov filtration. In other words, the
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surjection maps π∗tmf onto the Adams-Novikov E∞-page in filtration 0. Then the injec-
tion is the inclusion of the Adams-Novikov E∞-page into the Adams-Novikov E2-page in
filtration 0. In other words, the edge homomorphism detects the homotopy elements that
are detected in Adams-Novikov filtration 0. This description of the edge homomorphism
applies equally well in the setting of π∗,∗mmf and the motivic Adams-Novikov spectral
sequence.

The edge homomorphism depends on the choice of ∆ (see Remark 3.9). Beware that
our choice of ∆ does not guarantee that our edge homomorphism is identical to the one
discussed in [BR21]. Consequently, our definitions of the homotopy elements D4 and M in
Table 3 may not be the same as [BR21, Definition 9.22]. All possible choices of ∆ differ by
multiples of 2, so ∆k is well-defined up to multiples of 2k. Therefore, our choices of D4 and
M agree with the Bruner-Rognes definitions up to multiples of 16 and 256 respectively.

2.7. v1-periodicity. Part of the mANss for mmf reflects v1-periodic homotopy. The pattern
of differentials in this part is similar to the Adams-Novikov differentials for ko (see [Bau08,
page 31]). We consider this part separately and omit them from computations of higher
differentials. Beware that we are not employing an intrinsic definition of v1-periodic ho-
motopy. Rather, we are simply observing some specific structure in the mANss for mmf .

In the mANss E2-page, consider elements of the form τahb
1Pm(4a)ε∆n, where ε equals 0

or 1 and m + ε > 0. We refer to these elements as the v1-periodic classes.
Note that 1 and ∆n (as well as their τ multiples and h1 multiples) are excluded from

this family of elements. The knowledgeable reader may observe that these powers of ∆
satisfy an intrinsic definition of v1-periodicity. Our family is constructed for its practical
convenience, not for its intrinsic properties. The v1-periodic elements, as we have defined
them, only interact with each other through the Adams-Novikov differentials. However,
the powers of ∆ support Adams-Novikov differentials that take values outside of the v1-
periodic family. Consequently, we consider them in conjunction with the non-v1-periodic
elements.

Figures 1 and 2 display the v1-periodic portions of the mANss E2-pages and E∞-pages
respectively. Our other charts exclude the v1-periodic family.

2.8. The spectrum mmf /τ. Consider the cofiber sequence

(2.12) Σ0,−1mmf τ−→ mmf i−→ mmf /τ
q−→ Σ1,−1mmf

of mmf -modules. The spectrum mmf /τ is a 2-cell mmf -module, in the sense that it is built
from two copies of mmf . We refer to i as inclusion of the bottom cell, and we refer to q as
projection to the top cell.

The mANss for mmf /τ has a particularly simple algebraic form. The E2-page is iso-
morphic to the E2-page of the classical Adams-Novikov spectral sequence for tmf , except
that it has a third degree. However, this additional degree carries no extra information
since it equals half of the total degree, i.e., the sum of the stem and the Adams-Novikov
filtration.

Moreover, the mANss for mmf /τ collapses. There are no differentials, so the E∞-page
equals the E2-page. Even better, there are no possible hidden extensions for degree reas-
ons. Consequently, the homotopy of mmf /τ is isomorphic to the classical Adams-Novikov
E2-page for tmf . Therefore, we take the homotopy of mmf /τ as given since it is entirely al-
gebraic information. The results discussed in this paragraph are tmf versions of the results
in [Isa19, Section 6.2], which are stated for the sphere spectrum.

We use the notation of Table 2 in order to describe homotopy elements in π∗,∗mmf /τ.
On the other hand, we need to be more careful about notation for elements in π∗,∗mmf .
We can specify elements in π∗,∗mmf by giving detecting elements in the mANss E∞-page,

11



but this only specifies homotopy elements up to higher filtration. See Section 2.6 for more
discussion of choices of elements in π∗,∗mmf .

The mAss for mmf /τ is isomorphic to the algebraic Novikov spectral sequence, for
which we have complete information [Bae]. This is a tmf version of the results in [GWX21],
which are stated for the sphere spectrum.

2.9. Inclusion and projection. We discuss the inclusion i and the projection q from Equa-
tion (2.12) in more detail. Many of these ideas first appeared in [Isa19, Chapter 5] in more
primitive forms.

We already observed that both i and q are mmf -module maps. Note that the inclusion i is
a ring map, but the projection q is not. They induce maps of motivic Adams-Novikov spec-
tral sequences. These spectral sequence maps are in fact module maps over the mANss for
mmf . Similarly, the induced maps of homotopy groups are π∗,∗mmf -module maps.

We describe the inclusion i : mmf → mmf /τ of the bottom cell in computational terms.
If α is a homotopy element that is not a multiple of τ, then i(α) is an element of the mANss
E2-page that detects α. On the other hand, if α is a multiple of τ, then i(α) is zero. This fact
is closely related to the observation that the motivic Adams-Novikov spectral sequence is
the same as the τ-Bockstein spectral sequence.

Table 3 gives a number of values of i. For example, we have i(η) = h1. In fact, we have
defined the elements in the middle column of the table to have the appropriate values
under i.

For later use, we describe the computational implication that q : mmf /τ → Σ1,−1mmf
is an mmf -module map. Let α be an element of π∗,∗mmf , and let x be an element of
π∗,∗mmf /τ. The object mmf /τ is a right mmf -module, and

x · α = x · i(α),
where the dot on the left side represents the module action and the dot on the right side
represents the multiplication of the ring spectrum mmf /τ. Then we have that

(2.13) q(x) · α = q(x · α) = q(x · i(α)),
where the dot on the left represents multiplication in mmf ; the dot in the center represents
the mmf -module action on mmf /τ; and the dot on the right represents multiplication in
mmf /τ.

We need a precise statement about the values of q. Our desired statement has essentially
the same content as [BHS19, Theorem 9.19(1c)], which we reformulate into a form that is
more convenient for us.

Proposition 2.14. Let x be an element of the mANss E2-page that is not divisible by τ, and suppose
that there is a non-zero motivic Adams-Novikov differential d2r+1(x) = τry. If we consider x as
an element of π∗,∗mmf /τ, then the element q(x) of π∗,∗mmf is detected by −τr−1y in the mANss
E∞-page.

Proof. The proof is a chase of the right side of the diagram

mmf /τ
τr
// mmf /τr+1 // mmf /τr β // mmf /τ

mmf

i

OO

τr−1

��

τr
// mmf

OO

//

=

��

mmf /τr

=

OO

//

��

mmf

i

OO

τr−1

��
mmf

τ
// mmf

i
// mmf /τ q

// mmf ,
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in which the rows are cofiber sequences. We start with the element x in π∗,∗mmf /τ in the
bottom row. This element lifts to mmf /τr in the middle row by [BHS19, Theorem 9.19]
because x survives to the E2r+1-page. The map β is the “Bockstein" mentioned in [BHS19,
Theorem 9.19], so we have that β(x) equals −y in the upper right corner of the diagram.
Then −y lifts to an element of π∗,∗mmf in the middle row that is detected by −y. Finally,
multiply by τr−1 to obtain q(x). �

Remark 2.15. Proposition 2.14 requires that x supports a non-zero Adams-Novikov differ-
ential. On the other hand, suppose that x is a permanent cycle. Then x is in the image of i,
and q(x) = 0 since the composition qi is zero.

2.10. Hidden extensions. We briefly review the notion of hidden extensions in spectral
sequences. We adopt the following definition of hidden extensions.

Definition 2.16. [Isa19, Definition 4.1.2] Let α be an element in the target of a multiplic-
ative spectral sequence, and suppose that α is detected by an element a in the E∞-page of
the spectral sequence. A hidden extension by α is a pair of elements b and c of the E∞-page
such that:

(1) the product a · b equals zero in the E∞-page.
(2) the element b detects an element β in the target such that c detects the product α · β.
(3) if there exists an element β′ of the target that is detected by b′ such that α · β′ is

detected by c, then the filtration of b′ is less than or equal to the filtration of b.

We will use projection q to simplify our analysis of hidden extensions. We shall show
that two different products in π∗,∗mmf are the image of the same element in π∗,∗mmf /τ.
Therefore, they are equal.

Method 2.17. Suppose that α is not divisible by τ, so i(α) = a, where a is an element of the
mANss that detects α. Consider a possible hidden α extension from b to c in the mANss
for mmf . If b and c detect classes β and γ that are annihilated by τ, then β and γ are in the
image of projection q to the top cell. Let b and c be their pre-images in π∗,∗(mmf /τ). Since
this latter object is algebraic and completely known, we can determine whether b and c are
related by an extension by mere inspection.

Equation (2.13) shows that

q(b · a) = q(b · i(α)) = q(b) · α = β · α,

where the first two dots represent multiplication in mmf /τ, while the last two dots repres-
ent multiplication in mmf . If b · a equals c, then β · α equals q(c) = γ, and there is a hidden
α extension from b to c.

On the other hand, if b · a equals zero, then β · α equals zero, and there is not a hidden α
extension from b to c.

In practice, Method 2.17 is very effective for determining hidden extensions. The main
restriction is that it only applies to extensions between classes that are annihilated by τ.

Example 2.18. (54, 2, 28) We illustrate Method 2.17 with a concrete example of the hidden 2
extension from ∆2h2

2 to τ4dg2 in the 54-stem. In this example, we assume some knowledge
of the relevant Adams-Novikov differentials (see Section 3). Consequently, one should
view this example as a deduction of a hidden extension from previously determined dif-
ferentials.

First, multiply by τg. If we establish a hidden 2 extension from τ∆2h2
2g to τ5dg3 in the

74-stem, then we can immediately conclude the desired extension in the 54-stem. This step
already requires motivic technology, since both ∆2h2

2g and dg3 are hit by classical Adams-
Novikov differentials.
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The key point is that the two elements under consideration in the 74-stem are non-zero
but annihilated by τ. They are annihilated by τ because of the differentials d5(∆3h2) =
τ2∆2h2

2g and d13(2∆3h2) = τ6dg3, to be proved later in Propositions 3.8 and 3.16.
The elements τ∆2h2

2g and τ5dg3 represent classes in π74,39mmf that are annihilated by
τ. Therefore, these elements lie in the image of q : π75,38mmf /τ → π74,39mmf .

By Proposition 2.14, the preimages in π75,38mmf /τ are ∆3h2 and 2∆3h2 respectively.
These two elements are connected by a 2 extension. Therefore, their images under q are
also connected by a 2 extension.

2.11. Toda brackets. For background on Massey products and Toda brackets, including
statements of the May convergence theorem and the Moss convergence theorem, we refer
readers to [Tod62], [May69], [Mos70] and also [Isa19], [BK21].

Massey products in the E2-page of an Adams or Adams-Novikov spectral sequence
are algebraic information since they are part of the structure of Ext groups. Some Toda
brackets in homotopy can be deduced directly from these Massey products using the Moss
convergence theorem. In order to apply this theorem, one must establish the absence of
crossing differentials. Whenever we apply the Moss convergence theorem, there will be
no possible crossing differentials. In other words, the crossing differentials condition is
satisfied for algebraic reasons. Thus, the Toda brackets that we use are algebraic in the
sense that they can be deduced directly from the algebraic structure of Ext.

Remark 2.19. In general, Massey products and Toda brackets are defined as sets, not ele-
ments. An equality of the form 〈α, β, γ〉 = δ means that

(1) δ is contained in the bracket;
(2) the bracket has zero indeterminacy.

The following lemma gives an explicit example of an algebraic deduction of a Toda
bracket. See Table 3 for an explanation of the notation.

Lemma 2.20. (8, 3, 5) The Toda bracket 〈ν, η, ν〉 in π8,5mmf is detected by c and has no indeterm-
inacy.

Proof. The proof follows several steps:
(1) Establish the Massey product c = 〈h2, h1, h2〉 in the E2-page of the mANss.
(2) Check that there are no crossing differentials.
(3) Check that the Toda bracket 〈ν, η, ν〉 is well-defined and that it has no indetermin-

acy.
(4) Apply the Moss convergence theorem to the Massey product and deduce the de-

sired Toda bracket.
For step (1), we check the following statements:

(a) The Massey product is well-defined because of the relation h1h2 = 0 in the E2-page
of the mANss for mmf (see Figure 3).

(b) The element c is contained in the Massey product [Bau08, Equation (7.3)] [Bae].
(c) The indeterminacy is trivial by inspection. In more detail, the indeterminacy equals

h2 · E5,1,3
2 . The only non-zero element of E5,1,3

2 is h1v2
1, and h2 · h1v2

1 = 0. This last
relation holds already in the E2-page of the motivic algebraic Novikov spectral
sequence [Bae].

For step (2), we need to check for crossing differentials for the relation h1h2 in degree
(4, 2, 3). We are looking for non-zero Adams-Novikov differentials in degrees (5, f , 3),
where f < 1. There are no possible sources for such differentials (see Figure 3).

For step (3), we check that the Toda bracket is well-defined because ην is zero in π4,3mmf
for degree reasons. The indeterminacy equals ν ·π5,3mmf , which is zero for degree reasons.
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For step (4), we apply the Moss convergence theorem. The theorem implies that there
exists an element in 〈h2, h1, h2〉 that is a permanent cycle and that detects an element in
〈ν, η, ν〉. Since there are no indeterminacies for both the Massey product and the Toda
bracket, the permanent cycle must be c. �

3. DIFFERENTIALS

In this section, we compute all differentials in the mANss for mmf , proving hidden
extensions and Toda brackets only as needed along the way. Our results are presented in
logical order, so each proof only depends on earlier results. We return to a more exhaustive
study of hidden extensions later in Section 4.

Theorem 3.1. Table 6 lists all of the non-zero differentials on all of the indecomposable elements of
each mANss Er-page.

Proof. The differentials are proved in the various propositions later in this section. The last
column of Table 6 indicates the specific proposition that proves each differential.

Some indecomposables do not support differentials. In most cases, this follows for
degree reasons, i.e., because there are no possible targets. Proposition 3.30 handles two
slightly more difficult cases. �

All differentials follow from straightforward applications of the Leibniz rule to the ones
listed in Table 6.

3.1. d3 differentials.

Proposition 3.2. (5, 1, 3) d3(h1v2
1) = τh4

1.

Proof. In the mAss E2-page, h4
1 is a non-zero element that is annihilated by τ. By inspection,

h4
1 corresponds to the element of the same name in the mANss. Therefore, τh4

1 must be hit
by an Adams-Novikov differential, and there is only one possibility. �

Proposition 3.3. (12, 0, 6) d3(4a) = τPh3
1.

Proof. For degree reasons, d3(P) = 0. Thus Proposition 3.2 implies that d3(P · h1v2
1) =

τPh4
1. We have the relation P · h1v2

1 = h1 · 4a in the Adams-Novikov E2-page. Note that
this relation arises from a hidden h1 extension from h2

0a to Ph4
1 in the algebraic Novikov

spectral sequence [Bae]. Therefore, 4a must also support a d3 differential, and there is only
one possibility. �

The Leibniz rule, combined with Proposition 3.2 and Proposition 3.3, implies some ad-
ditional d3 differentials. By inspection, the other multiplicative generators do not support
d3 differentials.

Remark 3.4. All of the d3 differentials are h1-periodic, in the sense that they can be com-
puted in the localization of the mANss E2-page in which h1 is inverted. This localized spec-
tral sequence computes the homotopy of the η-periodic spectrum mmf [η−1]. See [GI15,
Section 6.1] for a related discussion.

3.2. Corresponding pairs. Earlier in Section 2.5, we discussed the notion of elements from
the mANss and from the mAss that correspond. Having computed the d3 differentials, we
are now in a position to establish a number of corresponding pairs that will be used in later
arguments.

Theorem 3.5. Table 4 lists some pairs of elements that correspond.
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Table 4: Some corresponding elements in the motivic Adams and
motivic Adams-Novikov spectral sequences

mANss degree mANss element mAss element mAss degree

(0, 0, 0) 2 h0 (0, 1, 0)
(1, 1, 1) h1 h1 (1, 1, 1)
(3, 1, 2) h2 h2 (3, 1, 2)
(14, 2, 8) d d (14, 4, 8)
(20, 4, 12) g g (20, 4, 12)
(25, 1, 13) ∆h1 ∆h1 (25, 5, 13)
(27, 1, 14) 2∆h2 an (27, 6, 14)
(48, 0, 24) 4∆2 ∆2h2

0 (48, 10, 24)
(110, 2, 56) ∆4d ∆4d (110, 20, 56)

Proof. We discuss the correspondence between 2∆h2 and an in detail. Most of the other
corresponding pairs are established with essentially the same argument. Some slightly
more difficult cases are established later in Lemmas 3.10 and 3.34.

For degree reasons, the element 2∆h2 of the mANss for mmf cannot support an Adams-
Novikov differential, nor can it be hit by an Adams-Novikov differential. (Beware that ∆h2
does support a differential.) Therefore, 2∆h2 detects some element α in π27,14mmf .

The inclusion i : mmf → mmf /τ induces a map

(3.6) E2(mmf ) //

��

E2(mmf /τ)

��
π∗,∗mmf // π∗,∗mmf /τ

of motivic Adams spectral sequences. The spectral sequence on the right is identified with
the algebraic Novikov spectral sequence that converges to the classical Adams-Novikov
E2-page for tmf [GWX21].

The element α in the lower left corner maps to 2∆h2 in the lower right corner. This latter
element is detected by an in filtration 6 in the upper right corner [Bae]. Therefore, α is
detected in the upper left corner in filtration at most 6. The only possible value is an. �

Remark 3.7. Previous knowledge of the d3 differentials is required in order to conclude
that 2∆h2 (and other elements as well) does not support an Adams-Novikov differential.
For example, it is conceivable that d25(2∆h2) = τ12h26

1 . However, we already know that
τ12h26

1 is hit by the differential d3(τ
11h22

1 · h1v2
1).

3.3. d5 differentials. Having determined all d3 differentials, one can mechanically com-
pute the E4-page. Through the 22-stem, no additional differentials are possible for degree
reasons, so the E4-page equals the E∞-page in that range.

Proposition 3.8. (24, 0, 12) There exists a generator ∆ of the mANss E2-page in degree (24, 0, 12)
such that d5(∆) = τ2h2g.

Proof. The mAss element h2g is annihilated by τ2 in the E2-page. Moreover, τh2g does not
support a hidden τ extension in the mAss because of the presence of τh2g in the homotopy
of mmf /τ. More precisely, projection to the top cell takes τh2g to τh2g, so τh2g must detect
homotopy elements that are annihilated by τ.

The mANss element h2g corresponds to the mAss element h2g because of Table 4 and
Proposition 2.8. Therefore, τ2h2g must be hit by an Adams-Novikov differential. The only
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possibility is a d5 differential whose source is in degree (24, 0, 12). Since τ2h2g is not a
multiple of 2, the source of the differential must be a generator. �

Remark 3.9. (24, 0, 12) Proposition 3.8 does not uniquely specify ∆. Since 4τ2h2g is zero
in the mANss E2-page, ∆ is only well-defined up to multiples of 4. Later in Remark 5.8
we will make a further refinement in the definition of ∆. Also note that the choice of ∆
depends on a previous choice of h2, as in Remark 2.2.

The Leibniz rule, together with Proposition 3.8, implies additional d5 differentials. The
other multiplicative generators of the E5-page do not support differentials.

Of particular note is the differential

d5(∆2) = 2∆d5(∆) = 2τ2∆h2g.

This easy computation is an Adams-Novikov version of Bruner’s theorem on the interac-
tion between Adams differentials and algebraic squaring operations [BMMS86] [Bru84].
However, its corresponding Adams differential d2(∆2) = τ2ang is not as easy to obtain by
direct analysis of the Adams spectral sequence [BR21]. The difficulty is that ∆2 is not the
value of an algebraic squaring operation since ∆ is not present in the Adams E2-page. By
“postponing" the differential that hits τ2h2g from algebra to topology, we obtain an easier
argument for the differential on ∆2.

Lemma 3.10. (48, 0, 24) The element 4∆2 of the mANss for mmf corresponds to ∆2h2
0 in the mAss

for mmf .

Proof. Having established that d5(∆2) = 2τ2∆h2g as a consequence of the Leibniz rule and
Proposition 3.8, we conclude that 4∆2 does not support an Adams-Novikov differential for
degree reasons. (Beware that 2∆2 does support a differential, but we do not need to know
that already.) Note that 4∆2 is detected in the algebraic Novikov spectral sequence by ∆2h2

0,
which has filtration 10. Using the argument in the proof of Theorem 3.5, we conclude that
4∆2 corresponds to an element in the mAss with filtration at most 10. However, there are
three possibilities: ∆2, ∆2h0, and ∆2h2

0.
The top horizontal map of Diagram (3.6) takes ∆2 and ∆2h0 to elements of the same

name. These elements detect ∆2 and 2∆2 in the Adams-Novikov E2-page. This means that
4∆2 cannot correspond to ∆2 or ∆2h0. �

3.4. d7 differentials. The main goal of this section is to establish some d7 differentials in
Proposition 3.14 and Proposition 3.21. In order to obtain these differentials, we will need
some hidden extensions and some later differentials. We establish these other results first,
in order to preserve strict logical order.

Lemma 3.11. (3, 1, 2) There is a hidden 2 extension from 2h2 to τh3
1.

Proof. According to Table 4 and Proposition 2.8, the mANss element 2h2 corresponds to
the mAss element h0h2. The element h0h2 supports an h0 extension in the mAss E2-page,
so 2h2 must support a 2 extension in the mANss. There is only one possible target for this
extension. �

Remark 3.12. The hidden extension of Lemma 3.11 is the first in an infinite family of sim-
ilar hidden extensions from the elements 2h2gk to the elements τh3

1gk. For k ≥ 1, these
extensions are “exotic” in the sense that they do not occur classically, since both 2h2gk and
h3

1gk are the targets of classical Adams-Novikov differentials.

Lemma 3.13. (27, 1, 14) There is a hidden 2 extension from 2∆h2 to τ∆h3
1.
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Proof. We already observed in Table 4 that 2∆h2 and ∆h1 · h2
1 correspond to an and ∆h3

1 in
the mAss. In the mAss E2-page, we have the relation h0 · an = τ∆h3

1. Therefore, there must
be a hidden 2 extension between the corresponding Adams-Novikov elements. �

Proposition 3.14.
(1) (24, 0, 12) d7(4∆) = τ3h3

1g.
(2) (48, 0, 24) d7(2∆2) = τ3∆h3

1g.

Proof. Proposition 3.8 says that τ2h2g is hit by an Adams-Novikov differential, so 2τ2h2g
is also hit by an Adams-Novikov differential. Remark 3.12 says that there is a hidden 2
extension from 2h2g to τh3

1g. Therefore, τ3h3
1g is hit by a differential, and there is just one

possible source for this differential.
The proof for the second differential is essentially the same. We need a hidden 2 exten-

sion from 2∆h2g to τ∆h3
1g, which follows from Lemma 3.13 and multiplication by g. �

Remark 3.15. Proposition 3.8 and Proposition 3.14 show that both 2τh2gk and τ2h3
1gk are

annihilated by τ. In hindsight, we can see that the hidden 2 extensions connecting them
are examples of Method 2.17. Their pre-images in mmf /τ are 2∆gk−1 and 4∆gk−1, which
are related by 2 extensions.

However, beware that we needed the hidden 2 extension from 2h2 to τh3
1 in order to

establish the differential d7(4∆). An independent proof of Lemma 3.11 is necessary in
order to avoid a circular argument.

Before finishing the analysis of the d7 differential in Proposition 3.21, we deduce some
higher differentials.

Proposition 3.16. (75, 1, 38) d13(2∆3h2) = τ6dg3.

Proof. We have the relation ang · an = τ4dg3 in the mAss E2-page because of the relations
a2n = τd · ∆h1 and ∆h1 · n = τ3g2 [Isa09, Theorem 4.13]. According to Table 4 and Propos-
ition 2.8, the mANss elements 2∆h2g, 2∆h2, d, and g correspond to the mAss elements ang,
an, d, and g. This means that there is a hidden 2∆h2 extension from 2∆h2g to τ4dg3 in the
mANss.

Using the Leibniz rule and Proposition 3.8, we already know that 2τ2∆h2g is hit by
the differential d5(∆2). Therefore, τ6dg3 must also be hit by a differential. There are two
possibilities for this differential: d11(τ∆3h3

1) and d13(∆3h2). However, τ∆3h3
1 is a product

τ(∆h1)
3 of permanent cycles, so it cannot support a differential. �

Remark 3.17. The proof of Proposition 3.16 contains an example of Method 2.17. There is a
hidden 2∆h2 extension from 2τ∆h2g to τ5dg3. Both of these elements are annihilated by τ.
Their pre-images under projection to the top cell of mmf /τ are ∆2 and 2∆3h2 respectively,
which are related by a 2∆h2 extension.

Proposition 3.18. (56, 2, 29) d9(∆2c) = τ4h1dg2.

Proof. Recall from Example 2.18 that there is a hidden 2 extension from ∆2h2
2 to τ4dg2. The

argument for this hidden extension uses Proposition 3.8 and Proposition 3.16. Therefore,
τ4h1dg2 must be hit by a differential because 2h1 = 0. There is only one possible differen-
tial. �

Proposition 3.19. In the mAss for mmf , we have the Adams differentials:
(1) (48, 8, 24) d2(∆2) = τ2ang.
(2) (96, 16, 48) d3(∆4) = τ8ng4.
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Proof. We start with the Adams-Novikov differential d5(∆2) = 2τ2∆h2g. We know from
Table 4 and Proposition 2.8 that 2∆h2g corresponds to the element ang in the mAss. There-
fore, τ2ang must be hit by some Adams differential, and the only possibility is that d2(∆2)
equals τ2ang.

Next, we apply Bruner’s theorem on the interaction between Adams differentials and
algebraic squaring operations. We refer to [BR21, Theorem 5.6] for a precise readable state-
ment, although [Bru84], [BMMS86] and [Mäk73] are preceding references. We apply Bru-
ner’s theorem with x = ∆2, r = 2, and i = 8; so s = 8, t = 56, v = v(48) = 1, and a = h0.
We obtain that

d∗ Sq8(∆2) = Sq9 d2(∆2)u h0 · ∆2 · d2(∆2) = Sq9(τ2ang) + h0 · ∆2 · τ2ang = Sq9(τ2ang).

Next, we compute that Sq9(τ2ang) = τ4 · τ∆h1 · n2 · g2, using the Cartan formula for al-
gebraic squaring operations, as well as the formulas Sq2(a) = τ∆h1, Sq3(n) = n2, and
Sq4(g) = g2 [BR21, Theorem 1.20]. Finally, apply the relation ∆h1 · n = τ3g2 to obtain the
Adams differential d3(∆4) = τ8ng4. �

Remark 3.20. The careful reader may object to our use of a motivic version of Bruner’s the-
orem in the proof of Proposition 3.19, while only the classical version of the theorem has
a published proof. In fact, this concern is irrelevant here. One can use the classical Bru-
ner’s theorem to establish the classical Adams d3 differential and then deduce the motivic
version of the differential.

Proposition 3.21. (96, 0, 48) d7(∆4) = τ3∆3h3
1g.

Proof. Table 4 shows that the mANss element 4∆2 corresponds to the mAss element ∆2h2
0.

Therefore, Proposition 2.8 shows that the mANss element 16∆4 corresponds to the mAss
element ∆4h4

0.
Proposition 3.19 shows that ∆4 does not survive the mAss. Therefore, ∆4h4

0 does not
detect homotopy elements that are divisible by 16. Consequently, the corresponding ele-
ment 16∆4 in the mANss does not detect homotopy elements that are divisible by 16. This
means that ∆4 must support an Adams-Novikov differential.

There are two possible values for this differential: τ3∆3h3
1g and τ9h1dg4. However, Pro-

position 3.18 shows that the latter element is already hit by the differential d9(τ
5∆2cg2) =

τ9h1dg4. �

3.5. d9 differentials. At this point, we have determined all differentials dr for r ≤ 7. It
remains to study higher differentials, although some higher differentials have already been
determined in earlier propositions. We continue to proceed roughly in order of increasing
values of r, although we occasionally need some Toda brackets, hidden extensions, and
later differentials to preserve strict logical order.

Proposition 3.22. (171, 1, 86) d13(2∆7h2) = τ6∆4dg3.

Proof. The argument is nearly identical to the proof of Proposition 3.16. The mAss E2-page
relation ∆4ang · an = τ4∆4dg3 implies that there is a hidden 2∆h2 extension from 2∆5h2g
to τ4∆4dg3 in the mANss. We already know that 2τ2∆5h2g is hit by the differential d5(∆6).
Therefore, τ6∆4dg3 must also be hit by a differential.

There are two possibilities for this differential: d11(τ∆7h3
1) and d13(2∆7h2). The former

possibility is ruled out by the decomposition τ∆6h2
1 · ∆h1 and the observation that both

∆6h2
1 and ∆h1 survive past the E11-page for degree reasons. �

Lemma 3.23. (150, 2, 76) There is a hidden 2 extension from ∆6h2
2 to τ4∆4dg2.
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Proof. The proof is similar to the argument in Example 2.18. We already know the differ-
entials d5(∆7h2) = τ2∆6h2

2g and d13(2∆7h2) = τ6∆4dg3 from Propositions 3.8 and 3.22.
Therefore, projection to the top cell detects a hidden 2 extension from τ∆6h2

2g to τ5∆4dg3.
Finally, use τg multiplication to deduce the hidden 2 extension on ∆6h2

2. �

Proposition 3.24.
(1) (80, 2, 41) d9(∆3c) = τ4∆h1dg2.
(2) (176, 2, 89) d9(∆7c) = τ4∆5h1dg2.

Proof. We saw in Example 2.18 that τ4dg2 detects a multiple of 2. Therefore, ∆h1 · τ4dg2

must detect zero since ∆h1 does not support a 2 extension for degree reasons. Therefore,
τ4∆h1dg2 must be hit by a differential, and there is only one possibility.

The argument for the second differential is nearly identical. Lemma 3.23 shows that the
element τ4∆4dg2 detects a multiple of 2. Therefore, ∆h1 · τ4∆4dg2 must detect zero, and
there is only one differential that can hit it. �

Proposition 3.25. (152, 2, 77) d9(∆6c) = τ4∆4h1dg2.

Proof. The argument is similar to the proof of Proposition 3.18. Lemma 3.23 shows that
τ4∆4dg2 detects a multiple of 2. Therefore, τ4∆4h1dg2 must be hit by a differential because
2h1 = 0. There is only one possible differential. �

Lemma 3.26. (25, 1, 13) The Toda bracket 〈η, ν, τ2κ̄〉 is detected by ∆h1 and has indeterminacy
detected by P3h1.

Proof. By inspection, the Toda bracket is well-defined and has indeterminacy detected by
P3h1 (which is a v1-periodic element).

We use the Moss convergence theorem in the mAss for mmf . By [Isa09, Definition 4.4(1)],
we have the Massey product ∆h1 = 〈h1, h2, τ2g〉 in the E2-page of the mAss for mmf . There
are no possible crossing differentials in the mAss for mmf .

Finally, Table 4 implies that the mAss elements h1, h2, and τ2g detect η, ν, and τ2κ
respectively (see also Table 3). �

Lemma 3.27. (25, 1, 13) There is a hidden ν extension from ∆h1 to τ2cg.

Proof. Lemmas 2.20 and 3.26 show that the Toda brackets 〈ν, η, ν〉 and 〈η, ν, τ2κ̄〉 are detec-
ted by c and ∆h1 respectively.

The hidden ν extension follows from the shuffling relation

ν〈η, ν, τ2κ̄〉 = 〈ν, η, ν〉τ2κ̄.

�

Lemma 3.28. (25, 1, 13) There is a hidden η extension from 2∆h2 to τ2cg.

Proof. As in the proof of Lemma 3.27, the element τ2cg detects 〈η, ν, τ2κ〉ν, which equals
η〈ν, τ2κ, ν〉. Therefore, τ2cg is the target of a hidden η extension. There are two possible
sources for such an extension: τ∆h3

1 and 2∆h2. The former possibility is ruled out by
Lemma 3.13, which shows that τ∆h3

1 is the target of a hidden 2 extension. �

Proposition 3.29.
(1) (49, 1, 25) d9(∆2h1) = τ4cg2.
(2) (73, 1, 37) d9(∆3h1) = τ4∆cg2.
(3) (145, 1, 73) d9(∆6h1) = τ4∆4cg2.
(4) (169, 1, 85) d9(∆7h1) = τ4∆5cg2.
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Proof. It follows from Lemma 3.28 that there is a hidden η extension from 2∆h2g to τ2cg2.
Proposition 3.8 and the Leibniz rule imply that d5(∆2) = 2τ2∆h2g. Therefore, τ4cg2 must
be hit by some differential, and there is only one possibility.

Having established the first differential, we can compute that

d9(∆3h2
1) = ∆h1 · d9(∆2h1) = τ4∆h1cg2.

Since ∆3h2
1 = ∆3h1 · h1, it follows that d9(∆3h1) equals τ4∆cg2.

Similarly,
d9(∆7h2

1) = ∆5h1 · d9(∆2h1) = τ4∆5h1cg2,
from which it follows that d9(∆7h1) equals τ4∆5cg2. However, we need to observe that
d9(∆5h1) is zero. The only possible non-zero value for d9(∆5h1) is τ4∆3cg2, but this is
ruled out by the observation that τ4∆3cg2 supports a d9 differential by Proposition 3.24.

Finally, note that d9(∆7h2
1) = ∆h1 · d9(∆6h1). The value of d9(∆7h2

1) was computed in
the previous paragraph. It follows that d9(∆6h1) equals τ4∆4cg2. �

Proposition 3.30.
(1) d9(∆4c) = 0.
(2) d9(∆5c) = 0.

Proof. It follows from Proposition 3.29 that τ4∆4cg2 and τ4∆5cg2 are targets of d9 differen-
tials, so they cannot support d9 differentials. This implies that ∆4c and ∆5c cannot support
d9 differentials. �

The Leibniz rule, together with the differentials given in Propositions 3.24, 3.25, 3.29,
and 3.30, determines all d9 differentials.

3.6. d11 differentials.

Lemma 3.31. (14, 2, 8) There is a hidden ε extension from d to τh2
1g.

Proof. We will show that there is a hidden ε extension from h1d to τh3
1g. The desired ex-

tension follows immediately.
The relation h1c = h3

2 in the mANss E2-page implies that ηε equals ν3. Also, the relation
h2

2d = 4g implies that ν2κ = 4κ. Then

ηεκ = ν3κ = 4νκ = τη3κ.

The last equality uses the hidden 2 extension from 2h2 to τh3
1, as shown in Lemma 3.11. �

Lemma 3.32. (39, 3, 21) There is a hidden ν extension from ∆h1d to τ3h2
1g2.

Proof. The element ∆h1d detects the product η1 · κ. Lemma 3.27 implies that ν · η1 · κ equals
τ2εκκ. Lemma 3.31 implies that this last product equals τ3η2κ2, which is detected by
τ3h2

1g2. �

Proposition 3.33.
(1) (62, 2, 32) d11(∆2d) = τ5h1g3.
(2) (158, 2, 80) d11(∆6d) = τ5∆4h1g3.

Proof. The element τ5h2
1g3 detects τ5η2κ3. Lemma 3.32 implies that τ5η2κ3 equals τ2νκ ·

η1 · κ. Because of Proposition 3.8, we know that τ2νκ is zero. Therefore, τ5h2
1g3 is hit

by some differential. The only possibility is that d11(∆2h1d) = τ5h2
1g3. It follows that

d11(∆2d) = τ5h1g3.
For the second formula, multiply by the permanent cycle ∆4h1 to see that d11(∆6h1d)

equals τ5∆4h2
1g3. It follows that d11(∆6d) equals τ5∆4h1g3. �
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3.7. d13 differentials. We have already established some d13 differentials in Propositions
3.16 and 3.22 because we needed those results in order to compute shorter differentials.
We now finish the computation of the d13 differentials.

Lemma 3.34. (110, 2, 56) The element ∆4d of the mANss for mmf corresponds to the element of
the same name in the mAss for mmf .

Proof. We have already analyzed all possible Adams-Novikov differentials of length 11 or
less, and there are no other possible values for a differential on ∆4d. Therefore, ∆4d is a
permanent cycle in the mANss for mmf .

Now the argument given in the proof of Theorem 3.5 applies. The mANss element ∆4d
is detected in filtration 20 in the Adams E2-page for mmf /τ. Therefore, ∆4d corresponds
to an element of the mAss with Adams filtration at most 20. There is only one possible
element in the mAss with sufficiently low filtration. �

Lemma 3.35.

(1) (39, 3, 21) There is a hidden η extension from ∆h1d to 2τ2g2.
(2) (135, 3, 69) There is a hidden η extension from ∆5h1d to 2τ2∆4g2.

Proof. Table 4 shows that the elements ∆h1 and d in the mANss for mmf correspond to
elements of the same name in the mAss for mmf . The product ∆h1 · h1d is non-zero in
the mAss E2-page and also in the mAss E∞-page because there are no possible differen-
tials that could hit it. (Note that this product is non-zero in the motivic context, but the
corresponding classical product is zero in the E2-page of the Adams spectral sequence for
tmf .)

Therefore, ∆h1d must support a hidden η extension in the mANss for mmf . There are
three possible targets for this extension: τ2g2, 2τ2g2, and 3τ2g2. The first and last possibil-
ities are ruled out by the relation 2η = 0.

The argument for the second extension is nearly identical. Table 4 and Proposition 2.8
imply that the mANss element ∆5h1d corresponds to the mAss element ∆4 · ∆h1 · d. The
product ∆4 · ∆h1 · h1d is non-zero in the mAss E∞-page, so ∆5h1d must support a hidden η

extension in the mANss. The only possible target for this extension is 2τ2∆4g2. �

Proposition 3.36.

(1) (81, 3, 42) d13(∆3h1c) = 2τ6g4.
(2) (177, 3, 90) d13(∆7h1c) = 2τ6∆4g4.

Proof. Lemma 3.35 implies that there is a hidden η extension from ∆h1dg2 to 2τ2g4. Pro-
position 3.24 shows that τ4∆h1dg2 is hit by a differential. Therefore, 2τ6g4 must also be hit
by a differential. There is only one possible source for this differential.

The proof for the second formula is similar. There is a hidden η extension from ∆5h1dg2

to 2τ2∆4g4. Since τ4∆5h1dg2 is hit by a differential, 2τ6∆4g4 must also be hit by a differen-
tial. �

3.8. d23 differentials.

Lemma 3.37. (75, 3, 38) There is a hidden η1 extension from τ∆3h3
1 to τ9g5.

Proof. According to Table 4, the mANss elements ∆h1 and g correspond to elements of the
same name in the mAss. In the mAss E2-page, the relations given in [Isa09, Theorem 4.13]
imply that τ(∆h1)

4 = τ9g5. Therefore, in the mANss, τ9g5 detects the product τη4
1 . On the

other hand, τ∆3h3
1 detects the product τη3

1 in the mANss. �
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Remark 3.38. (75, 3, 39) Beware that ∆3h3
1 does not support a hidden η1 extension. Rather,

it supports a non-hidden extension since ∆4h4
1 is non-zero. However, ∆4h4

1 is annihilated
by τ, which allows for the hidden extension on τ∆3h3

1.

Proposition 3.39. (121, 1, 61) d23(∆5h1) = τ11g6.

Proof. The hidden extension of Lemma 3.37 implies that there is a hidden η1 extension
from τ∆3h3

1g to τ9g6. We already know that τ3∆3h3
1g is zero because of the differential

d7(∆4) from Proposition 3.21. Therefore, τ11g6 must be the value of some differential, and
there is only one possibility. �

4. HIDDEN EXTENSIONS

In Section 3, we established several hidden extensions in the mANss for mmf as steps
towards computing differentials. In this section, we finish the analysis of all hidden exten-
sions by 2, η, and ν. Our work does not completely determine the ring structure of π∗,∗mmf
because there exist hidden extensions by other elements. Up to one minor uncertainty, the
entire ring structure of π∗tmf is determined in [BR21].

Theorem 4.1. Up to multiples of g and ∆8, Tables 7, 8 and 9 list all hidden extensions by 2, η, and
ν in the mANss for mmf .

Proof. Some of the non-zero hidden extensions are established in the previous results be-
cause we needed them to compute Adams-Novikov differentials. The remaining non-zero
hidden extensions are proved in the following results. The last columns of the tables in-
dicate the specific proofs for each extension.

There are some possible hidden extensions that turn out not to occur. Most of these pos-
sibilities can be ruled out using Method 2.17. For example, consider the possible hidden η

extension from τ∆h3
1 to τ2cg. Because of multiplication by τg, we may instead consider the

possible hidden η extension from τ2∆h3
1g to τ3cg2. These last two elements are annihilated

by τ, so they are in the image of projection to the top cell. By inspection, there is no η
extension in the homotopy of mmf /τ in the appropriate degree.

A few miscellaneous cases remain, but their proofs are straightforward. For example,
• (65, 3, 34) there is no hidden 2 extension from ∆2h2d to τ3∆h1g2 because the latter

element supports an h1 extension.
• (24, 0, 12) there is no hidden ν extension from 8∆ to τ∆h3

1 because the first element
is annihilated by g while the second element is not.

�

Proposition 4.2. Table 5 lists some hidden extensions in the mANss for mmf .

Table 5: Some hidden extensions deduced from Method 2.17

(s, f , w) source type target reason

(51, 1, 26) 2∆2h2 2 τ∆2h3
1 d5(2∆3) = 2τ2∆2h2g d7(4∆3) = τ3∆2h3

1g
(54, 2, 28) ∆2h2

2 2 τ4dg2 d5(∆3h2) = τ2∆2h2
2g d13(2∆3h2) = τ6dg3

(99, 1, 50) 2∆4h2 2 τ∆4h3
1 d5(2∆5) = 2τ2∆4h2g d7(4∆5) = τ3∆4h3

1g
(123, 1, 62) 2∆5h2 2 τ∆5h3

1 d5(∆6) = 2τ2∆5h2g d7(2∆6) = τ3∆5h3
1g

(147, 1, 74) 2∆6h2 2 τ∆6h3
1 d5(2∆7) = 2τ2∆6h2g d7(4∆7) = τ3∆6h3

1g
(51, 1, 26) ∆2h2 η τ2∆cg d5(∆3) = τ2∆2h2g d9(∆3h1) = τ4∆cg2

(99, 1, 50) ∆4h2 η τ9g5 d5(∆5) = τ2∆4h2g d23(∆5h1) = τ11g6

(123, 1, 62) 2∆5h2 η τ2∆4cg d5(∆6) = 2τ2∆5h2g d9(∆6h1) = τ4∆4cg2
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Table 5: Some hidden extensions deduced from Method 2.17

(s, f , w) source type target reason

(124, 6, 63) τ2∆4cg η τ9∆h1g5 d9(∆6h1) = τ4∆4cg2 d23(∆6h2
1) = τ11∆h1g6

(129, 3, 66) ∆5h1c η τ7∆2h2
1g4 d9(∆7h2

1)=τ4∆5h1cg2 d23(∆7h3
1) = τ11∆2h2

1g6

(147, 1, 74) ∆6h2 η τ2∆5cg d5(∆7) = τ2∆6h2g d9(∆7h1) = τ4∆5cg2

(161, 3, 82) ∆6h2d η τ3∆5h2
1g2 d5(∆7d) = τ2∆6h2dg d11(∆7h1d)=τ5∆5h2

1g3

(0, 0, 0) 4 ν τh3
1 d5(∆h2d) = 4τ2g2 d7(4∆g) = τ3h3

1g2

(48, 0, 24) 4∆2 ν τ∆2h3
1 d5(∆3h2d) = 4τ2∆2g2 d7(4∆3g) = τ3∆2h3

1g2

(51, 1, 26) 2∆2h2 ν τ4dg2 d5(2∆3) = 2τ2∆2h2g d13(2∆3h2) = τ6dg3

(57, 3, 30) ∆2h3
2 ν 2τ4g3 d5(∆3h2

2) = τ2∆2h3
2g d13(∆3h3

2) = 2τ6g4

(96, 0, 48) 4∆4 ν τ∆4h3
1 d5(∆5h2d) = 4τ2∆4g2 d7(4∆5g) = τ3∆4h3

1g2

(144, 0, 72) 4∆6 ν τ∆6h3
1 d5(∆7h2d) = 4τ2∆6g2 d7(4∆7g) = τ3∆6h3

1g2

(147, 1, 74) 2∆6h2 ν τ4∆4dg2 d5(2∆7) = 2τ2∆6h2g d13(2∆7h2) = τ6∆4dg3

(153, 3, 78) ∆6h3
2 ν 2τ4∆4g3 d5(∆7h2

2) = τ2∆6h3
2g d13(∆7h3

2) = 2τ6∆4g4

Proof. All of these extensions follow from Method 2.17, using the differentials in the last
two columns of Table 5. To illustrate, we discuss the first extension in the table. In order
to obtain the extension from 2∆2h2 to τ∆2h3

1, we can establish a hidden 2 extension from
2τ∆2h2g to τ2∆2h3

1g. Then the desired extension follows immediately.
The elements 2τ∆2h2g and τ2∆2h3

1g are annihilated by τ in the E∞-page of the mANss
for mmf . Therefore, they detect elements in π71,37mmf that are in the image of π72,36mmf /τ

under projection to the top cell. By inspection, these preimages are 2∆3 and 4∆3. These
latter elements are connected by a 2 extension, so their images are also connected by a 2
extension.

The other extensions have essentially the same proof. First multiply by an appropriate
power of g. Then pull back to π∗,∗mmf /τ, where the extension is visible by inspection. �

Remark 4.3. (124, 6, 63) The hidden η extension from τ2∆4cg to τ9∆h1g5 in Table 5 de-
serves further discussion. Note that ∆4cg and τ∆4cg support η extensions that are not
hidden. However, τ2∆4h1cg is zero, so τ2∆4cg can support a hidden η extension. This
explains why the E∞-page chart in Figure 5 shows both an h1 extension and a hidden η

extension on the element ∆4cg in the 124-stem.
The subtleties of this situation are illuminated by consideration of homotopy elements.

Let α be an element of π124,65mmf that is detected by ∆4cg. The element τ2α is detected by
τ2∆4cg. The hidden η extension implies that τ2ηα is detected by τ9∆h1g5.

Now let β be an element in π122,64 that is detected by ∆4h2
2g. Note that τ2β must be zero

because τ2∆2h2
2g is zero and because there are no E∞-page elements in higher filtration.

Then νβ is detected by h2 · ∆4h2
2g, which equals ∆4h1cg.

Both ηα and νβ are detected by the same element of the E∞-page, but they are not
equal. The first product is not annihilated by τ2, while the latter product is annihilated by
τ2. In fact, the difference between ηα and νβ is detected by τ7∆h1g5. This phenomenon
corresponds to the classical relation ν2ν4 = ηε4 + η1κ4 [BR21, Proposition 9.17].

Remark 4.4. (65, 3, 34) The chart in [Bau08] shows a hidden η extension from ∆2h2d to
∆h2

1g2 in the 66-stem. According to Definition 2.16, this is not a hidden extension because
of the presence of ∆h1g2 in higher filtration.
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Nevertheless, there is a relevant point here about multiplicative structure. Because of
the presence of τ3∆h1g2 in higher filtration, the element ∆2h2d detects two homotopy ele-
ments. One of these elements is annihilated by η, and one is not. The product ν2κ is one
of the two homotopy elements that are detected by ∆2h2d. In fact, ν2κ is the homotopy
element that is not annihilated by η. This follows from the hidden η extension from ∆2h2
to τ2∆cg and the hidden κ extension from ∆cg to τ∆h2

1g2.

Proposition 4.5. (110, 2, 56) There is a hidden 2 extension from ∆4d to τ6∆2h2
1g3.

Proof. The proof is a variation on Method 2.17, in which we use the long exact sequence

π∗,∗mmf π∗,∗mmf /τ2 π∗−1,∗+2mmf π∗−1,∗mmfτ2

induced by the cofiber sequence

mmf mmf /τ2 Σ1,−2mmf Σ1,0mmf .τ2

We will show that there is a hidden 2 extension from τ4∆4dg3 to τ10∆2h2
1g6. The desired

2 extension follows immediately by multiplication by τ4g3.
Recall from Proposition 3.22 that there is a differential d13(2∆7h2) = τ6∆4dg3. Also, it

follows from Proposition 3.39 that there is a differential d23(∆7h3
1) = τ11∆2h2

1g6.
Therefore, τ4∆4dg3 and τ10∆2h2

1g6 detect elements in π170,88mmf that are annihilated
by τ2. Hence they have preimages in π171,86mmf /τ2 under projection to the top cell. By
inspection, these preimages are 2∆7h2 and τ∆7h3

1.
In the mANss for mmf , there is a differential d5(∆7) = τ2∆6h2g. However, in the mANss

for mmf /τ2, the element τ2∆6h2g is already zero in the E2-page. Therefore, ∆7 is a perman-
ent cycle in the mANss for mmf /τ2.

Recall the hidden 2 extension from 2h2 to τh3
1 established in Lemma 3.11. Multiplication

by ∆7 gives a hidden 2 extension in the mANss E∞-page for mmf /τ2 from 2∆7h2 to τ∆7h3
1.

Finally, apply projection to the top cell to obtain the hidden 2 extension from τ4∆4dg3

to τ10∆2h2
1g6. �

Proposition 4.6. (50, 2, 26) There is a hidden ν extension from ∆2h2
1 to τ2∆h1cg.

Proof. This follows from ∆h1 multiplication on the hidden extension from ∆h1 to τ2cg es-
tablished in Lemma 3.27. �

The next several lemmas establish some Toda brackets that we will use to deduce further
hidden extensions. All of these Toda brackets are deduced from algebraic information, i.e.,
from Massey products in the mANss E2-page.

Lemma 4.7. (32, 2, 17) The Toda bracket 〈ν2, 2, η1〉 is detected by ∆c and has no indeterminacy.

Proof. We have the Massey product c = 〈h2
2, h0, h1〉 in the motivic algebraic Novikov E2-

page [Bae]. The May convergence theorem [May69] [BK21, Theorem 4.16] implies that
c = 〈h2

2, 2, h1〉 in the mANss E2-page. Multiply by ∆ to obtain

∆c = 〈h2
2, 2, h1〉∆ = 〈h2

2, 2, ∆h1〉.
The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [Mos70, Theorem
1.2] [BK21, Theorem 4.16] implies that ∆c detects the Toda bracket. By inspection, the
bracket has no indeterminacy. �
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Lemma 4.8. (128, 2, 65) The Toda bracket
〈
ν2

2 , 2, η1
〉

is detected by ∆5c and has no indeterminacy.

Proof. As in the proof of Lemma 4.8, we have the Massey product c = 〈h2
2, 2, h1〉 in the

mANss E2-page. Multiply by ∆5 to obtain

∆5c = ∆4〈h2
2, 2, h1〉∆ = 〈∆4h2

2, 2, ∆h1〉.

The second equality holds because there is no indeterminacy by inspection.
There are no crossing differentials, so the Moss convergence theorem [Mos70, Theorem

1.2] [BK21, Theorem 4.16] implies that ∆5c detects the Toda bracket. By inspection, the
bracket has no indeterminacy. �

Lemma 4.9. (35, 7, 21) The Toda bracket 〈ν2, 2, εκ̄〉 is detected by h1dg and has no indeterminacy.

Proof. We have the Massey product h1dg = 〈h2
2, h0, cg〉 in the motivic algebraic Novikov

E2-page [Bae]. The May convergence theorem [May69] [BK21, Theorem 4.16] implies that
h1dg = 〈h2

2, 2, cg〉 in the mANss E2-page.
There are no crossing differentials, so the Moss convergence theorem [Mos70, Theorem

1.2] [BK21, Theorem 4.16] implies that h1dg detects the Toda bracket. By inspection, the
bracket has no indeterminacy. �

Lemma 4.10. (131, 7, 69) The Toda bracket
〈
ν2

2 , 2, εκ̄
〉

is detected by ∆4h1dg and has no inde-
terminacy.

Proof. As in the proof of Lemma 4.9, we have the Massey product h1dg = 〈h2
2, 2, cg〉 in the

mANss E2-page. Multiply by ∆4 to obtain

∆4h1dg = ∆4〈h2
2, h0, cg〉 = 〈∆4h2

2, h0, cg〉.

The second equality holds because there is no indeterminacy by inspection.
There are no crossing differentials, so the Moss convergence theorem [Mos70, Theorem

1.2] [BK21, Theorem 4.16] implies that ∆4h1dg detects the Toda bracket. By inspection, the
bracket has no indeterminacy. �

Proposition 4.11. There are hidden ν extensions:

(1) (32, 2, 17) from ∆c to τ2h1dg.
(2) (128, 2, 65) from ∆5c to τ2∆4h1dg.

Proof. Recall from Lemma 4.7 that the Toda bracket 〈ν2, 2, η1〉 is detected by ∆c. We have

〈ν2, 2, η1〉ν = 〈ν2, 2, ν · η1〉 = 〈ν2, 2, τ2εκ̄〉.

The first equality holds because there is no indeterminacy by inspection. The second equal-
ity follows from the hidden ν extension of Lemma 3.27. Lemma 4.9 implies that τ2h1dg
detects the last Toda bracket.

The proof for the second hidden extension is nearly identical. Consider the equalities

〈ν2
2 , 2, η1〉ν = 〈ν2

2 , 2, ν · η1〉 = 〈ν2
2 , 2, τ2εκ̄〉,

and use Lemma 4.8 and Lemma 4.10. �

Proposition 4.12. There are hidden ν extensions:

(1) (97, 1, 49) from ∆4h1 to τ9g5.
(2) (122, 2, 62) from ∆5h2

1 to τ9∆h1g5.
(3) (147, 3, 75) from ∆6h3

1 to τ9∆2h2
1g5.
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Proof. We prove the third hidden extension. Then the first two hidden extensions follow
from multiplication by ∆h1.

Proposition 4.5 and Lemma 3.23 imply that there is a hidden 4ν extension from ∆6h2 to
τ10∆2h2

1g5. We also have a hidden 2 extension from 2∆6h2 to τ∆6h3
1, as shown in Proposi-

tion 4.2. It follows that there must be a hidden ν extension from ∆6h3
1 to τ9∆2h2

1g5. �

Proposition 4.13. (110, 2, 56) There is a hidden ε extension from ∆4d to τ∆4h2
1g.

Proof. We showed in Lemma 3.31 that there is a hidden ε extension from d to τh2
1g. Mul-

tiply by ∆4h1 to obtain a hidden ε extension from ∆4h1d to τ∆4h2
1g. Finally, use h1 multi-

plication to obtain the hidden extension on ∆4d. �

Proposition 4.14. (135, 3, 69) There is a hidden ν extension from ∆5h1d to τ3∆4h2
1g2.

Proof. By Lemma 3.26, the element ∆h1 detects the Toda bracket 〈η, ν, τ2κ̄〉. Recall from
Table 3 that κ4 is an element of π110,56mmf that is detected by the permanent cycle ∆4d.
Then the element ∆5h1d detects 〈η, ν, τ2κ̄〉κ4. Now shuffle to obtain

ν〈η, ν, τ2κ〉κ4 = 〈ν, η, ν〉τ2κ · κ4.

Recall from Lemma 2.20 that ε = 〈ν, η, ν〉. Also recall from Proposition 4.13 that there
is a hidden ε extension from ∆4d to τ∆4h2

1g. We conclude that ε · τ2κ · κ4 is detected by
τ3∆4h2

1g2. �

5. THE ELEMENTS νk

The multiplicative structure of classical π∗tmf at the prime 2 has been completely com-
puted, with one exception [BR21, p. 19]. We will use the mANss for mmf in order to resolve
this last piece of 2-primary multiplicative structure.

As discussed in Remark 2.11, our choices of homotopy elements are not necessarily
strictly compatible with the choices in [BR21]. However, our choices do agree up to mul-
tiples of certain powers of 2. Our computations below in Proposition 5.9, Theorem 5.10,
Corollary 5.12, Proposition 5.13, and Proposition 5.15 lie in groups of order at most 8, so
the possible discrepancies are irrelevant.

We will frequently multiply by the element τκ in π20,11mmf in order to detect elements
and relations. Beware that multiplication by τκ is not injective in general. However, in all
degrees that we study, multiplication by τκ is in fact an isomorphism.

Recall the projection q : mmf /τ → mmf to the top cell that was discussed in detail in
Section 2.9. We will rely heavily on this map in order to transfer the algebraic information
in π∗,∗mmf /τ into homotopical information about π∗,∗mmf .

Lemma 5.1. The element q(∆k+1) of π∗,∗mmf is detected by−(k + 1)τ∆kh2g in Adams-Novikov
filtration 5.

Proof. If k + 1 is not a multiple of 4, then we have the non-zero differential d5(∆k+1) =
(k + 1)τ2∆kh2g. Proposition 2.14 implies that q(∆k+1) is detected by −(k + 1)τ∆kh2g.

If k + 1 is congruent to 4 modulo 8, then we have the non-zero differential d7(∆k+1) =
τ3∆kh3

1g. Proposition 2.14 implies that q(∆k+1) is detected by τ2∆kh3
1g in filtration 7. This

implies that q(∆k+1) is detected by zero in filtration 5.
If k + 1 is a multiple of 8, then ∆k is a permanent cycle, so q(∆k+1) equals zero. This

implies that q(∆k+1) is detected by zero in filtration 5. �

Remark 5.2. For uniformity, we have stated Lemma 5.1 for all values of k. As shown in
the proof of the lemma, there are in fact three cases, depending on the value of k. If k + 1
is not a multiple of 4, then −(k + 1)τ∆kh2g is a non-zero element in the mANss E∞-page.
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On the other hand, if k + 1 is a multiple of 4, then −(k + 1)τ∆kh2g is zero in the E∞-
page since τ∆kh2g is an element of order 4. In these cases, the lemma says that q(∆k+1)
is detected by zero in filtration 5. In other words, q(∆k+1) is detected in filtration strictly
greater than 5, if it is non-zero. In fact, q(∆k+1) is detected by τ2∆kh3

1g in filtration 7 when
k+ 1 is congruent to 4 modulo 8. Also, q(∆k+1) is zero when k+ 1 is a multiple of 8 because
∆k+1 is a permanent cycle.

Lemma 5.3. The element q(∆k+1) is a multiple of τκ.

Proof. Lemma 5.1 shows that q(∆k+1) is detected by −(k + 1)τ∆kh2g. By inspection, all
possible values of q(∆k+1) are multiples of τκ. �

Definition 5.4. Let νk be the element of π24k+3,12k+2mmf such that q(∆k+1) equals−τκ · νk.

Note that νk exists because of Lemma 5.3. Multiplication by τκ is an isomorphism in
the relevant degrees, so νk is specified uniquely. We choose a minus sign in the defining
formula of Definition 5.4 for later convenience.

Remark 5.5. Bruner and Rognes consider ν3 and ν7 to be “honorary" members of the fam-
ily of elements νk. They are not multiplicative generators; ν3 is non-zero but decomposable,
and ν7 equals zero. Definition 5.4 also implies that ν7 is zero. This follows from the obser-
vation that q(∆8) equals zero since ∆8 is a permanent cycle.

The careful reader will note that the elements νk were already partially defined in Table 3
in Section 2.6. The following lemma shows that the two approaches to νk are compatible.
Table 3 leaves some ambiguity in the definition of νk, and Definition 5.4 resolves that am-
biguity.

Lemma 5.6. The element νk is detected by (k + 1)∆kh2 in Adams-Novikov filtration 1.

Proof. Lemma 5.1 determines the mANss E∞-page elements that detect q(∆k+1). Then
Definition 5.4 means that −τκ · νk is detected by those same elements. Multiplication by
τg is an isomorphism in the relevant degrees, so the detecting elements for νk are then
determined. �

Remark 5.7. Similarly to Remark 5.2, Lemma 5.6 includes three cases. If k + 1 is not a
multiple of 4, then (k + 1)∆kh2 is a non-zero element of the mANss E∞-page. If k + 1 is a
multiple of 4, then (k + 1)∆kh2 is zero since ∆kh2 is an element of order 4. This means that
νk is detected in filtration strictly greater than 1, if it is non-zero. In fact, νk is detected by
τ∆kh3

1 in filtration 3 if k + 1 is congruent to 4 modulo 8, and νk is zero if k + 1 is a multiple
of 8.

Remark 5.8. Earlier in Remark 2.2, we chose h2 so that it detects the element ν. Lemma 5.6
shows that ν0 is also detected by h2, but that does not guarantee that it equals ν because of
the presence of τh3

1 in higher filtration. We can only conclude that ν and ν0 are equal up to
multiples of 4.

If ν equals 5ν0, then we compute that

q(5∆) = −5τκ · ν0 = −τκ · ν.

So we may replace ∆ by 5∆, if necessary, and assume without loss of generality that ν0
equals ν. This replacement is compatible with our previous choice of ∆ in Remark 3.9,
which specified ∆ only up to multiples of 4.

Proposition 5.9. νk+8 = νk ·M.
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Proof. Using Equation (2.13), we have

q(∆k+9) = q(∆k+1 · ∆8) = q(∆k+1 · i(M)) = q(∆k+1) ·M = −τκ · νk ·M.

Here we are using that i(M) = ∆8, which is equivalent to the definition that M is detected
by ∆8 (see Table 3).

On the other hand, q(∆k+9) equals −τκ · νk+8 by Definition 5.4. Finally, multiplication
by −τκ is an isomorphism in the relevant degrees. �

Proposition 5.9 means that for practical purposes, we only need to consider the elements
νk for 0 ≤ k ≤ 7.

Theorem 5.10.
νjνk = (k + 1)νj+kν0.

Proof. The proof splits into two cases, depending on whether k + 1 is a multiple of 4. First,
we handle the (more interesting) situation when k + 1 is not a multiple of 4. We address
the case when k + 1 is a multiple of 4 below in a separate Proposition 5.13. The proof
techniques for the two cases are similar, but the details are somewhat different.

Multiplication by τκ is an isomorphism in the relevant degrees, so it suffices to establish
our relation after multiplication by τκ.

Using Equation (2.13), we have

q((k + 1)∆j+k+1h2) = q(∆j+k+1 · (k + 1)h2) = q(∆j+k+1 · i((k + 1)ν0)) =

= q(∆j+k+1) · (k + 1)ν0 = −τκ · νj+k · (k + 1)ν0.

Here we are using that i((k + 1)ν0) = (k + 1)h2; in other words, (k + 1)ν0 is detected by
(k + 1)h2. This requires that k + 1 is not a multiple of 4. Otherwise, (k + 1)ν0 is a multiple
of τ, and i((k + 1)ν0) is zero.

We will now compute q((k + 1)∆j+k+1h2) another way. We have i(νk) = (k + 1)∆kh2; in
other words, νk is detected by the non-zero element (k + 1)∆kh2, as shown in Lemma 5.6.
This requires that k + 1 is not a multiple of 4. Otherwise, νk is a multiple of τ, and i(νk) is
zero.

Then we have

q((k + 1)∆j+k+1h2) = q(∆j+1 · (k + 1)∆kh2) = q(∆j+1 · i(νk)) = q(∆j+1) · νk = −τκ · νj · νk.

�

Remark 5.11. The exact form of the equation in Theorem 5.10 is guided by the structure of
our proof. One could also write

νiνj = (i + 1)ννi+j,

which more closely aligns with the notation in [BR21]. All of the elements νk are in odd
stems, so they pairwise anti-commute.

Corollary 5.12. (246, 2, 124) ν4ν6 = νν2M.

Proof. Theorem 5.10 implies that ν4ν6 equals 7ν10ν0, which equals −7ν0ν10 by graded com-
mutativity. By Remark 5.8 and Proposition 5.9, the latter expression equals −7νν2M. Fi-
nally, νν2M belongs to a group of order 4, so −7νν2M equals νν2M. �

We now return to the case of Theorem 5.10 in which k + 1 is a multiple of 4.

Proposition 5.13. If k + 1 is a multiple of 4, then νj · νk = (k + 1)νj+kν0.
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Proof. First, let k + 1 be a multiple of 8, so νk is zero. The element νj+kν0 belongs to a group
whose order divides 8, so (k + 1)νj+kν0 is zero. In other words, the equality holds because
both sides are zero.

Next, let k + 1 be congruent to 4 modulo 8. Let α be an element of π∗,∗mmf that is
detected by ∆kh3

1. The element νk is detected by τ∆kh3
1, according to Remark 5.7. Since

there are no elements in higher filtration, we can conclude that νk equals τα. We have

q(∆j+k+1h3
1) = q(∆j+1 · ∆kh3

1) = q(∆j+1 · i(α)) = q(∆j+1) · α = −τκ · νj · α = −κ · νj · νk.

Now we add the assumption that j + 1 is not congruent to 4 modulo 8. Given the
assumption that k + 1 is congruent to 4 modulo 8, we get that j + k + 1 is not congruent to
7 modulo 8. Then ∆j+k+1h3

1 is a permanent cycle, so q(∆j+k+1h3
1) is zero. Together with the

computation in the previous paragraph, this implies that νj · νk is zero since multiplication
by κ is an isomorphism in the relevant degrees. Note also that (k + 1)νj+kν0 is zero because
it belongs to a group whose order divides 4.

Finally, we must consider the case when j + 1 is congruent to 4 modulo 8, i.e., that j +
k + 1 is congruent to 7 modulo 8. Then q(∆j+k+1h3

1) is detected by τ10∆j+k−4h2
1g6 because

of Proposition 2.14 and the differential d23(∆j+k+1h3
1) = τ11∆j+k−4h2

1g6. This means that
−κ · νj · νk is detected by τ10∆j+k−4h2

1g6. It follows that νj · νk is detected by τ10∆j+k−4h2
1g5.

Finally, this latter element also detects (k + 1)νj+kν0 because of the hidden 2 extensions in
the 150-stem and their multiples under ∆8 multiplication (see Table 7). �

Remark 5.14. As shown in the proof, most cases of Proposition 5.13 hold because both
sides of the equation are zero. Both sides of the equation are non-zero precisely when j + 1
and k + 1 are congruent to 4 modulo 8.

Bruner and Rognes establish some relations that reduce the ambiguity in their defini-
tions of νk. Finally, we will show that our elements defined in Definition 5.4 satisfy those
same relations. We have already discussed the choice of ν0 in Remark 5.8. The only addi-
tional requirements are the relations

ν0D4 = 2ν4

ν1ν5 = 2ν0ν6

ν2ν4 = 3ν0ν6.

The first formula is proved in Proposition 5.15, while the last two are specific instances of
Theorem 5.10.

Proposition 5.15. (99, 1, 50) ν0D4 = 2ν4.

Proof. Because of Lemma 5.6, both products are detected by 2∆4h2. However, they are not
necessarily equal because of the presence of τ∆4h3

1 in higher filtration. We will show that
τκ · νD4 equals τκ · 2ν4. Our desired relation follows immediately because multiplication
by τκ is an isomorphism in the relevant degree.

Using Equation (2.13), we have

q(2∆5) = q(∆ · 2∆4) = q(∆ · i(D4)) = q(∆) · D4 = −τκ · ν · D4.

Here we are using that i(D4) = 2∆4, which is equivalent to the definition that D4 is detec-
ted by 2∆4 (see Table 3). On the other hand, we also have

q(2∆5) = q(∆5 · 2) = q(∆5 · i(2)) = q(∆5) · 2 = −τκ · ν4 · 2.

�
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6. TABLES

Table 6: Adams-Novikov differentials

(s, f , w) x r dr(x) proof

(5, 1, 3) h1v2
1 3 τh4

1 Proposition 3.2
(12, 0, 6) 4a 3 τPh3

1 Proposition 3.3
(24, 0, 12) ∆ 5 τ2h2g Proposition 3.8
(24, 0, 12) 4∆ 7 τ3h3

1g Proposition 3.14
(48, 0, 24) 2∆2 7 τ3∆h3

1g Proposition 3.14
(96, 0, 48) ∆4 7 τ3∆3h3

1g Proposition 3.21
(49, 1, 25) ∆2h1 9 τ4cg2 Proposition 3.29
(56, 2, 29) ∆2c 9 τ4h1dg2 Proposition 3.18
(73, 1, 37) ∆3h1 9 τ4∆cg2 Proposition 3.29
(80, 2, 41) ∆3c 9 τ4∆h1dg2 Proposition 3.24
(145, 1, 73) ∆6h1 9 τ4∆4cg2 Proposition 3.29
(169, 1, 85) ∆7h1 9 τ4∆5cg2 Proposition 3.29
(152, 2, 77) ∆6c 9 τ4∆4h1dg2 Proposition 3.25
(176, 2, 89) ∆7c 9 τ4∆5h1dg2 Proposition 3.24
(62, 2, 32) ∆2d 11 τ5h1g3 Proposition 3.33
(158, 2, 80) ∆6d 11 τ5∆4h1g3 Proposition 3.33
(75, 1, 38) 2∆3h2 13 τ6dg3 Proposition 3.16
(81, 3, 42) ∆3h1c 13 2τ6g4 Proposition 3.36
(171, 1, 86) 2∆7h2 13 τ6∆4dg3 Proposition 3.22
(177, 3, 90) ∆7h1c 13 2τ6∆4g4 Proposition 3.36
(121, 1, 61) ∆5h1 23 τ11g6 Proposition 3.39

Table 7: Hidden 2 extensions

(s, f , w) source target proof

(3, 1, 2) 2h2 τh3
1 Lemma 3.11

(27, 1, 14) 2∆h2 τ∆h3
1 Lemma 3.13

(51, 1, 26) 2∆2h2 τ∆2h3
1 Proposition 4.2

(54, 2, 28) ∆2h2
2 τ4dg2 Example 2.18

(99, 1, 50) 2∆4h2 τ∆4h3
1 Proposition 4.2

(110, 2, 56) ∆4d τ6∆2h2
1g3 Proposition 4.5

(123, 1, 62) 2∆5h2 τ∆5h3
1 Proposition 4.2

(147, 1, 74) 2∆6h2 τ∆6h3
1 Proposition 4.2

(150, 2, 76) ∆6h2
2 τ4∆4dg2 Proposition 4.2
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Table 8: Hidden η extensions

(s, f , w) source target proof

(27, 1, 14) 2∆h2 τ2cg Lemma 3.28
(39, 3, 21) ∆h1d 2τ2g2 Lemma 3.35
(51, 1, 26) ∆2h2 τ2∆cg Proposition 4.2
(99, 1, 50) ∆4h2 τ9g5 Proposition 4.2
(123, 1, 62) 2∆5h2 τ2∆4cg Proposition 4.2
(124, 6, 63) τ2∆4cg τ9∆h1g5 Proposition 4.2
(129, 3, 66) ∆5h1c τ7∆2h2

1g4 Proposition 4.2
(135, 3, 69) ∆5h1d 2τ2∆4g2 Proposition 4.2
(147, 1, 74) ∆6h2 τ2∆5cg Proposition 4.2
(161, 3, 82) ∆6h2d τ3∆5h2

1g2 Proposition 4.2

Table 9: Hidden ν extensions

(s, f , w) source target proof

(0, 0, 0) 4 τh3
1 Proposition 4.2

(25, 1, 13) ∆h1 τ2cg Lemma 3.27
(32, 2, 17) ∆c τ2h1dg Proposition 4.11
(39, 3, 21) ∆h1d τ3h2

1g2 Lemma 3.32
(48, 0, 24) 4∆2 τ∆2h3

1 Proposition 4.2
(50, 2, 26) ∆2h2

1 τ2∆h1cg Proposition 4.6
(51, 1, 26) 2∆2h2 τ4dg2 Proposition 4.2
(57, 3, 30) ∆2h3

2 2τ4g3 Proposition 4.2
(96, 0, 48) 4∆4 τ∆4h3

1 Proposition 4.2
(97, 1, 49) ∆4h1 τ9g5 Proposition 4.12
(122, 2, 62) ∆5h2

1 τ9∆h1g5 Proposition 4.12
(128, 2, 65) ∆5c τ2∆4h1dg Proposition 4.11
(135, 3, 69) ∆5h1d τ3∆4h2

1g2 Proposition 4.14
(144, 0, 72) 4∆6 τ∆6h3

1 Proposition 4.2
(147, 1, 74) 2∆6h2 τ4∆4dg2 Proposition 4.2
(147, 3, 75) ∆6h3

1 τ9∆2h2
1g5 Proposition 4.12

(153, 3, 78) ∆6h3
2 2τ4∆4g3 Proposition 4.2

Table 10: Some Toda brackets

(s, f , w) Toda bracket detected by indet proof used in

(8, 2, 5) 〈ν, η, ν〉 c 0 Lemma 2.20 3.27, 4.14
(25, 1, 13) 〈η, ν, τ2κ〉 ∆h1 P3h1 Lemma 3.26 3.27, 3.28, 4.14
(32, 2, 17) 〈ν2, 2, η1〉 ∆c 0 Lemma 4.7 4.11
(128, 2, 65) 〈ν2

2 , 2, η1〉 ∆5c 0 Lemma 4.8 4.11
(35, 7, 21) 〈ν2, 2, εκ〉 h1dg 0 Lemma 4.9 4.11
(131, 7, 69) 〈ν2

2 , 2, εκ〉 ∆4h1dg 0 Lemma 4.10 4.11
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7. CHARTS

The following charts display the E2-page, E9-page, and E∞-page of the mANss for mmf .
Each of these pages is free as a module over Z[∆8], where ∆8 is a class in the 192-stem.
For legibility, we display the v1-periodic elements on separate charts. See Section 2.7 for
discussion of v1-periodicity. To obtain the full E2-page, one must superimpose Figures 1
and 3. To obtain the full E∞-page, one must superimpose Figures 2 and 5.

We describe each chart in slightly more detail.
• Figure 1 shows the v1-periodic portion of the mANss E2-page, together with all

differentials that are supported by the displayed elements.
• Figure 2 shows the v1-periodic portion of the mANss E∞-page.
• Figure 3 shows the non-v1-periodic portion of the mANss E2-page, together with

all d3, d5, and d7 differentials that are supported by the displayed elements.
• Figure 4 shows the non-v1-periodic portion of the mANss E9-page, together with

all differentials that are supported by the displayed elements.
• Figure 5 shows the non-v1-periodic portion of the mANss E∞-page, together with

all hidden extensions by 2, η, and ν.

7.1. Elements. For each fixed stem and filtration, the mANss consists of a Z[τ]-module.
We use a graphical notation to describe these modules. Our notation represents the asso-
ciated graded object of a filtration that is related to the powers of 2.

• An open box indicates a copy of Z[τ] in the associated graded object.
• A solid gray dot • indicates a copy of F2[τ] in the associated graded object.
• A solid colored dot indicates a copy of F2[τ]/τr in the associated graded object.

The value of r is encoded in the color of the dot, as shown in Table 11.
• Short vertical lines indicate extensions by 2.

Our graphical notation has the advantages of flexibility, compactness, and convenience.
We illustrate with two examples.

Example 7.1. In Figure 3 at degree (48, 0), one sees . This notation indicates a copy of
Z[τ]. More precisely, it represents the filtration 4Z[τ] ⊆ 2Z[τ] ⊆ Z[τ] whose filtration
quotients are Z[τ], F2[τ], and F2[τ]. This particular filtration is relevant for our mANss
computation because 2Z[τ] is the subgroup of d5 cycles, and 4Z[τ] is the subgroup of d7
cycles.

Example 7.2. In Figure 5 at degree (120, 24), one sees . This notation indicates the Z[τ]-
module

Z[τ]

8, 4τ2, 2τ6, τ11 ,

which is somewhat cumbersome to describe in traditional notation. More precisely, it rep-
resents the filtration

4Z[τ]

8, 4τ2 ⊆
2Z[τ]

8, 4τ2, 2τ6 ⊆
Z[τ]

8, 4τ2, 2τ6, τ11 .

whose filtration quotients are F2[τ]/τ2, F2[τ]/τ6, and F2[τ]/τ11. The blue, magenta, and
orange dots correspond to these filtration quotients, as shown in Table 11.
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Table 11: Color interpretations for elements

n color

F2[τ] • gray
F2[τ]/τ • red
F2[τ]/τ2 • blue
F2[τ]/τ3 • green
F2[τ]/τ4 • cyan
F2[τ]/τ5 • brown
F2[τ]/τ6 •magenta
F2[τ]/τ11 • orange

7.2. Differentials. Lines of negative slope indicate Adams-Novikov differentials. The dif-
ferentials are colored according to their lengths, as described in Table 12. These color
choices are compatible with our choice of colors for τ torsion in Section 7.1, in the follow-
ing sense. An Adams-Novikov d2r+1 differential always takes the form d2r+1(x) = τry,
and it creates τr torsion in the following page. We use matching colors for d2r+1 and for τr

torsion.

Table 12: Color interpretations for Adams-Novikov differentials

color slope dr

red −3 d3
blue −5 d5
green −7 d7
cyan −9 d9
brown −11 d11
magenta −13 d13
orange −23 d23

7.3. Extensions.
• Solid lines of slope 1 indicate h1 multiplications. The colors of these lines are de-

termined by the τ torsion of the targets.
• Arrows of slope 1 indicate infinite families of elements that are connected by h1

multiplications. The colors of the arrows reflect the τ torsion of the elements.
• Solid lines of slope 1/3 indicate h2 multiplications. The colors of these lines are

determined by the τ torsion of the targets.
• Dashed lines indicate hidden extensions by 2, η, and ν. Some of these lines are

curved solely for the purpose of legibility.
• The colors of dashed lines indicate the τ torsion of the targets of the extensions.

For example, the vertical dashed line in the 23-stem of Figure 5 is blue because its
value τh3

1g is annihilated by τ2.

Figure 5 shows an h1 extension and also a hidden η extension on the element ∆4cg in
degree (124, 6, 65). See Remark 4.3 for an explanation.
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v1-periodic E2, stem up to 102
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FIGURE 1. The v1-periodic portion of the C-motivic Adams-Novikov E2-page for mmf

v1-periodic E4, stem up to 102
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FIGURE 2. The v1-periodic portion of the C-motivic Adams-Novikov E∞-page for mmf
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E2, up to d7, stem up to 202
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FIGURE 3. The C-motivic Adams-Novikov E2-page for mmf with differentials of length at most 7

E9, up to d23, stem up to 202
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FIGURE 4. The C-motivic Adams-Novikov E9-page for mmf with differentials of length at least 9

E∞ with hidden extensions, stem up to 202
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FIGURE 5. The C-motivic Adams-Novikov E∞-page for mmf with hidden extensions by 2, η, and ν
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