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A MULTIPLICATIVE COMPARISON OF MACLANE HOMOLOGY AND

TOPOLOGICAL HOCHSCHILD HOMOLOGY

GEOFFROY HOREL AND MAXIME RAMZI

Abstract. Let Q denote MacLane’s Q-construction, and ⊗ denote the smash product of
spectra. In this paper we construct an equivalence Q(R) ≃ Z⊗ R in the category of A∞

ring spectra for any ring R, thus proving a conjecture of Fiedorowicz, Pirashvili, Schwänzl,
Vogt and Waldhausen. More precisely, we construct a symmetric monoidal structure on
Q (in the ∞-categorical sense) extending the usual monoidal structure, for which we
prove an equivalence Q(−) ≃ Z ⊗ − as symmetric monoidal functors. From this result,
we obtain a new proof of the equivalence HML(R, M) ≃ THH(R, M) originally proved by
Pirashvili and Waldaushen. This equivalence is in fact made symmetric monoidal, and
so it also provides a proof of the equivalence HML(R) ≃ THH(R) as E∞ ring spectra,
when R is a commutative ring.

Introduction

In 1992, Pirashvili and Waldhausen [PW92] proved that MacLane homology and topo-
logical Hochschild homology of a ring, functors introduced earlier by MacLane and Bökstedt
respectively, were isomorphic.

They actually proved it for both homology theories with various coefficients; although
their proof worked only at the homology level, and not at the level of the underlying spectra
or chain complexes – indeed it proceeds by showing that both homologies are universal
δ-functors for a certain functor.

In 1995, Fiedorowicz, Pirashvili, Schwänzl, Vogt and Waldhausen [FPS+95] outlined a
“brave new algebra” proof of the same result, which relied on an analysis of the underlying
spectra. The key ingredient in their strategy was the following conjecture.

Conjecture 0.1. For any discrete ring R, there is an equivalence Q(R) ≃ Z ⊗ R as A∞

ring spectra.

Here Q denotes MacLane’s Q-construction, which is used to define MacLane homology,
and ⊗ is our notation for the smash-product of spectra. Unfortunately, the authors of
[FPS+95] do not prove this conjecture and in fact, it seems that they were not completely
convinced that it was true at the time (see [FPS+95, Remark 3.9]). From this conjecture,
the equivalence between MacLane homology and topological Hochschild homology at the
spectrum level follows essentially formally, via general base-change arguments for Hochschild
homology.

The purpose of this paper is to prove that conjecture, and conclude that there is an equiv-
alence between topological Hochschild homology and MacLane homology at the spectrum
level. In fact, our proof even provides an equivalence of E∞ ring spectra when R is assumed
to be commutative. The E∞-structure on Z ⊗ R is clear when R is commutative, and on
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Q(R) it comes from an E∞-monoidal structure on the functor Q itself, first constructed by
Richter [Ric00] and which we obtain in a different way through the universal property of Q.
This E∞-equivalence implies an equivalence of the multiplicative structures on MacLane ho-
mology and topological Hochschild homology when R is commutative, which was not known
even at the level of homotopy groups, as far as the authors know.

The paper is organized as follows:

• In Section 1, we review Hochschild homology in an∞-categorical setting, in order to
establish the desired base-change formula which allows us to go from the conjecture
to the result about MacLane homology and topological Hochschild homology.

• In Section 2, we quickly review the definition and basic properties of the Q-construction,
which we need for later work.

• In Section 3, we review a theorem of Johnson and McCarthy [JM98] which interprets
the Q-construction as a first Goodwillie derivative.

• In Section 4, we construct natural symmetric monoidal structures on various cate-
gories which allow us to define a symmetric monoidal structure on the Q-construction.

• In Section 5, we compare two symmetric monoidal structures in order to finally
prove the conjecture in question.

• In Section 6, we compare our symmetric monoidal structure on Q to the one con-
structed by Richter in [Ric00].

• Section 7 is the conclusion, where we deduce the results about MacLane homology
and topological Hochschild homology.

• In Appendix A, we explain Remark 3.9 in [FPS+95].
• In Appendix B we prove a technical result that we needed in our proof and which

could potentially be of independant interest.
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Conventions

By default the categorical terminology (limit, colimit, adjoints, etc.) will refer to the
∞-categorical notion. We will sometimes have to work in model categories, in that case we
will use the standard terminology (homotopy limits and colimits, left/right Quillen functor,
etc.) We write ∞-categories in boldface and 1-categories in regular.

For C a category (recall that in our convention this means an ∞-category) and S a
collection of morphisms in C, we denote by S−1C the localization of C at S. If M is a model
category we denote by W −1M the localization of M at its weak equivalences (the class W
will always be clear from context). For instance for W the class of quasi-isomorphisms of
chain complexes of abelian groups, we have an equivalence

W −1Ch∗(Z) ≃ModZ

where ModZ denotes the category of Z-modules in spectra.



A MULTIPLICATIVE COMPARISON OF HML AND THH 3

We use ⊗ to denote the smash-product of spectra. We do not make a distinction nota-
tionally between a discrete or dg-ring and its associated Eilenberg-MacLane spectrum.

1. Hochschild homology

In this section, we review the definition of Hochschild homology with coefficients in a
bimodule in an∞-categorical setting. We denote by AB the 2-colored operad whose algebras
are pairs (A, M) consisting of an algebra and a bimodule. We denote by AB⊗ the category
over Fin∗ constructed from AB using [Lur17, Construction 2.1.1.7].

We denote by AB⊗
act the subcategory of AB⊗ where we only allow morphisms that send

the base point and nothing else to the base point. More concretely, this category can be
described as follows.

Construction 1.1. The objects of AB⊗
act are pairs (S, U) where S is a finite set and U is

a subset of S.
A morphism in AB⊗

act from (S, U) to (T, V ) is the data of

• A map f : S → T whose restriction to U is a bijection from U to V .
• A total order on the fiber f−1(t) for each t in T .

Given a morphism f : (S, U) → (T, V ) and g : (T, V ) → (X, W ), the composition is
constructed as follows.

• The map of sets g ◦ f : S → X is simply the composition of g and f .
• The total order on (g ◦ f)−1(x) is given by the following concatenation of ordered

sets

(g ◦ f)−1(x) = ⋆t∈g−1(x)f
−1(t).

Given an AB-algebra in a symmetric monoidal∞-category C, there is an induced functor

AB⊗
act → C⊗

act

that we can compose with the functor C⊗
act → C (this is similar to [NS18, Definition III.2.3])

to produce a functor AB⊗
act → C. Informally, if we think of an AB-algebra as a pair (A, M)

with A an associative algebra and M a bimodule, this functor sends an object (S, U) of
AB⊗

act to the tensor product A⊗S−U ⊗M⊗U . A morphism f : (S, U) → (T, V ) induces the
map

f : A⊗S−U ⊗M⊗U → A⊗T −V ⊗M⊗V

given by multiplying the copies of A and M using the algebra structure of A, the bimodule
structure of M and the data of the linear order on the fibers of f .

Remark 1.2. If C⊗ is a symmetric monoidal 1-category, the informal description above is
in fact an accurate description of this functor.

Construction 1.3. Now, we construct a functor

χ : ∆op → AB⊗
act.

For this purpose it will be convenient to identify ∆op with the category whose objects are
totally ordered sets [n] = {0, 1, . . . , n + 1} and morphisms are order preserving maps that
preserve the minimal and maximal element. With this description, the functor χ can be
constructed as follows.

(1) On objects, we set χ([n]) = ({0, 1, . . . , n}, 0).
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(2) To a map f : [n]→ [m], we assign a map χ(f) : ({0, 1, . . . , n}, 0)→ ({0, 1, . . . , m}, 0)
as follows :

χ(f)(i) = f(i) if f(i) 6= m + 1

χ(f)(i) = 0 if f(i) = m + 1.

(3) For j ∈ {1, . . . , m}, the linear order on χ(f)−1(j) = f−1(j) is the obvious one. The
linear order on χ(f)−1(0) is the concatenation f−1(m + 1) ⋆ f−1(0)

Definition 1.4. Given an AB-algebra (A, M) in a symmetric monoidal category C⊗, the
cyclic bar construction of (A, M) denoted Bcy(A, M) is the following composite

∆op χ
−→ AB⊗

act

(A,M)
−−−−→ C⊗

act → C.

If the colimit of the cyclic bar construction of (A, M) exists in C we call it the Hochschild
homology of A with coefficients in M and denote it by HH(A, M).

Remark 1.5. Contrary to what the name suggests, the cyclic bar construction does not
extend in general to a cyclic object unless we use A as a bimodule of coefficients.

Notation 1.6. We follow the standard convention and write THH(A, M) instead of HH(A, M)
if C is the category of spectra.

Remark 1.7. Assume that C is actually a symmetric monoidal 1-category. In that case, a
AB-algebra is simply a pair (A, M) with A an associative algebra in C and M a bimodule.
The cyclic bar construction that we construct is the usual simplicial object ∆op → C sending
[n] to M ⊗A⊗n with all the face maps but the last given by multiplying two adjacent factors
and the last face map given by multiplying the factor M with the last copy of A using the
left A-module structure on M (see for instance [FPS+95, Section 2.1] for a precise definition
of this simplicial object).

Now, assume that our symmetric monoidal category C⊗ is obtained by localizing a sym-
metric monoidal model category (D,⊗) at its weak equivalences. In this situation we have
a symmetric monoidal localization functor Dc → C, where Dc denotes the full subcategory
of D spanned by cofibrant objects [Lur17, Proposition 4.1.7.4., Example 4.1.7.6.]. Then we
can consider the following commutative diagram

AlgAB(Dc,⊗)
Bcy

//

��

Fun(∆op, Dc)

��

hocolim

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

AlgAB(C⊗)
Bcy

// Fun(∆op, C)
colim

// C

in which the vertical arrows are induced by the symmetric monoidal localization functor
Dc,⊗ → C⊗. The commutation of the square is immediate and the commutation of the
triangle is the definition of the hocolim functor. From this diagram, we see that, given an
AB-algebra (A, M) in Dc, Hochschild homology in our sense of its image in AlgAB(C⊗)
is given by the homotopy colimit of its cyclic bar construction Bcy(A, M). This implies
that our construction is a generalization of the classical definition of topological Hochschild
homology as given for example in [EKMM97, Chapter IX, Definition 2.1] in the case of
EKMM spectra or in [Shi00, Section 4.1] in the case of symmetric spectra.

Proposition 1.8. Assume that C⊗ is a symmetric monoidal category with sifted colimits
and that the symmetric monoidal structure commutes with sifted colimits in each variable.
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Then the Hochschild homology functor can be promoted to a symmetric monoidal functor

AlgAB(C⊗)→ C.

Proof. Indeed this functor can be written as the following composition of symmetric monoidal
functors

AlgAB(C⊗) ≃ Fun⊗(AB⊗
act, C⊗)→ Fun(AB⊗

act, C)→ Fun(∆op, C)
colim
−−−→ C.

�

1.1. Base change formula for Hochschild homology. In this subsection, we specialize
to categories of left modules ModR for R a commutative ring spectrum. In that case, we
write HHR for the Hochschild homology R-module in order to keep track of the base ring.

Let α : R → S be a map of commutative rings. In that case, we have the change of
scalars adjunction

α! : ModR ⇆ ModS : α∗

with α! symmetric monoidal and α∗ lax symmetric monoidal.
Let A be an associative algebra in ModR and M be an α!(A)-bimodule. Since α∗ is

lax monoidal, α∗(M) inherits an α∗(α!A)-bimodule structure. We can restrict along the
map of associative algebras A → α∗(α!A) and view the pair (A, α∗M) as an object in
AlgAB(ModR). In that case, we can consider the following composition

(1.1) α![B
cy(A, α∗M)]

≃
−→ Bcy(α!A, α!α

∗M)→ Bcy(α!A, M)

where the first map comes from the fact that α! is symmetric monoidal and the second map
comes from the fact that the counit map α!α

∗M → M is a map of α!A-bimodules. Taking
colimits (using the fact that α! commutes with colimits), we obtain a map

(1.2) α!HHR(A, α∗M)→ HHS(α!A, M).

Proposition 1.9. The map

(1.3) HHR(A, α∗M)→ α∗HHS(α!A, M)

adjoint to the map 1.2 is an equivalence.

Proof. We start with a simple observation. Take X in ModS and Y in ModR. Then we
can consider the following composite

α!(α
∗X ⊗R Y )

≃
−→ α!α

∗X ⊗S α!Y → X ⊗S α!Y

where the second map is induced by the counit of the adjunction. We claim that the adjoint
map

α∗X ⊗R Y → α∗(X ⊗S α!Y )

is an equivalence. Indeed, this map is natural in Y and both functors of Y preserve colimits,
therefore, it suffices to prove it for Y = R which is straightforward.

We can now prove the proposition. The map 1.3 is obtained by applying the colimit
functor to the map

(1.4) Bcy(A, α∗M)→ α∗Bcy(α!A, M)

that is adjoint to the map 1.1 (this uses the fact that the functor α∗ preserves colimits).
Therefore, it is enough to prove that the map 1.4 is degreewise an equivalence. In simplicial
degree n, this map is simply the map

α∗M ⊗R A⊗n →M ⊗S α∗(α!A
⊗n)

that we considered in the first paragraph of this proof and showed is an equivalence. �
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Now we want to make the proposition above functorial and symmetric monoidal in the
data. We introduce a category AlgAB(R, S). Informally, this category is the category of
pairs (A, M) with A an associative algebra over R and M a bimodule over α!(A). The

precise definition is via the following cartesian square in PrL:

AlgAB(R, S) //

��

AlgAB(ModS)

res

��

AlgAss(ModR) α!

// AlgAss(ModS)

Recall that PrL is the category of presentable categories [Lur09, Definition 5.5.3.1].
The functor res is induced by the obvious inclusion of operads Ass → AB. Hence,

a slightly more formal definition of an object of AlgAB(R, S) is a triple (A, B, M), with
(B, M) an AB-algebra in the category of S-modules, A, an associative algebra in R-modules
and the data of an equivalence α!(A) ≃ B. Note that the functor res is indeed a left adjoint
as shown in the following proposition.

Proposition 1.10. For any presentable symmetric monoidal category C, the restriction
functor

res : AlgAB(C)→ AlgAss(C)

has a right adjoint.

Proof. The functor res is a presentable fibration in the sense of [Lur09, Definition 5.5.3.2].
The analogous situation with AB replaced by the operad for algebras and left modules is
treated in [Lur17, Corollary 4.2.3.7]. The case of algebras and bimodules is completely
analogous. In particular, it is both a cartesian and a cocartesian fibration. Using [Lur09,
Proposition 2.4.4.9], we can construct a section σ of res such that, for each A ∈ AlgAss(C),
the object σ(A) is a terminal object in res−1(A). Then, [Lur09, Proposition 5.2.4.3] asserts
that this section is a right adjoint to res. �

Observe moreover, that the functor α! and res are symmetric monoidal functors. It
follows that the category AlgAB(R, S) inherits a symmetric monoidal structure.

We shall denote by α! the top horizontal functor in the above square. Informally, we have
α!(A, M) = (α!(A), M). We can also construct a left adjoint functor

β : AlgAB(ModR)→ AlgAB(R, S).

The functor β comes from the following commutative square in PrL, using the universal
property of pullbacks

AlgAB(ModR)
α!

//

res

��

AlgAB(ModS)

res

��

AlgAss(ModR) α!

// AlgAss(ModS)

Observe, moreover, that the functor β inherits the structure of a symmetric monoidal functor
from the symmetric monoidal structure on all the functors in the above square. We denote
by α∗ the right adjoint to β, this is a lax monoidal functor. Informally, it is given by
α∗(A, M) = (A, α∗(M)). This descriptions follows from the equivalence PrL ≃ (PrR)op.

Now, we can state precisely, the base change formula for Hochschild homology. Let us
denote by HHR (resp. HHS) the Hochschild homology functor in ModR (resp. in ModS).
We have two lax monoidal functors from AlgAB(R, S) to ModR. One is given by α∗◦HHS◦α!

and the other by HHR ◦ α∗.



A MULTIPLICATIVE COMPARISON OF HML AND THH 7

Theorem 1.11. There is a weak equivalence of lax symmetric monoidal functors

HHR ◦ α∗ ∼
−→ α∗ ◦HHS ◦ α!

Proof. The main difficulty is to construct a comparison map between these two functors.
The adjunction (α!, α∗) induces an adjunction

α! : AlgAB(ModR) ⇆ AlgAB(ModR) : α∗

By definition of β, there is an equivalence of functors α!
∼
−→ α! ◦β. We can precompose both

sides with α∗ and we get an equivalence

α! ◦ α∗ ∼
−→ α! ◦ β ◦ α∗.

We can then use the natural transformation β ◦ α∗ → idAlgAB(R,S) given by the counit of
the adjunction (β, α∗). This gives a natural transformation

α! ◦ α∗ ∼
−→ α! ◦ β ◦ α∗ → α!

of functors AlgAB(R, S) → AlgAB(ModS). Now, we can further compose with the func-
tor HHS : AlgAB(ModS) → ModS . Using the fact that α! is symmetric monoidal and
commutes with colimits, there is a natural equivalence α! ◦HHR ≃ HHS ◦ α!. So the above
natural transformation induces a natural transformation

α! ◦HHR ◦ α∗ → HHS ◦ α!

Finally, by adjunction this gives a natural transformation

(1.5) HHR ◦ α∗ → α∗ ◦HHS ◦ α!

Now, all the functor in sight are at least lax symmetric monoidal functors and the natural
transformations that we used : α!

∼
−→ α! ◦ β, β ◦ α∗ → id, α! ◦ HHR ≃ HHS ◦ α! are

all natural transformation of lax symmetric monoidal functors. It follows that the natural
transformation (1.5) is a natural transformation of lax monoidal functors.

The fact that this natural transformation is a natural equivalence is simply the observation
that if we apply it to an object (A, M) of AlgAB(R, S), the natural transformation above
is simply the map that appears in Proposition 1.9. �

2. The Q-construction

In this section, we review Mac Lane’s Q-construction. We first briefly recall its definition
and some basic facts which will later help us analyze it and understand its universal property.
In Section 6, we compare some of our constructions with Richter’s work in [Ric00], so our
definition of the Q-construction follows this paper.

2.1. Generalities. In what follows, Z[−] will denote the functor Ab → Ab sending an
abelian group to the free abelian group on its underlying set.

Let Cn = {0, 1}n denote the n-cube, let 0i, 1i : Cn → Cn+1 denote the maps that insert
a 0 or a 1 in the i-th position, for 1 ≤ i ≤ n + 1. For an abelian group A, we denote by ACn

the abelian group of maps Cn → A. Then have the following natural maps ACn+1 → ACn :

R′
if(e) = f(0ie), S′

if(e) = f(1ie), P ′
i = R′

i + S′
i

for any f ∈ ACn+1.

Definition 2.1. We set Q′
n(A) = Z[ACn ], and Ri, Si, Pi : Qn+1(A) → Qn(A) are defined

as Z[R′
i],Z[S′

i],Z[P ′
i ] respectively. We define δ : Q′

n+1(A) → Q′
n(A) using the formula

δ =
∑n+1

i=1 (−1)i(Pi −Ri − Si)

One can check, using cubical identities, that (Q′
∗(A), δ) is a chain complex.
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Remark 2.2. It is important to observe that Z[−] is not an additive functor. It follows that
Z[0] = Z[P ′

i − R′
i − S′

i] is different from Z[P ′
i ]− Z[R′

i]− Z[S′
i] = Pi −Ri − Si. This chain

complex can be seen as an attempt to compensate this non-additivity. This interpretation
is compatible with Q’s universal property which we will explain later.

The Q-construction is then defined as some quotient of Q′
∗.

Construction 2.3. Let Nn(A) denote the subgroup of Q′
n(A) = Z[ACn ] generated by the

f : Cn → A such that f ◦ 0i or f ◦ 1i is constant equal to 0 for some i. For n = 0, N0(A)
is the subgroup spanned by the constant 0 function C0 → A. The collection of subgroups
N∗(A) is stable under δ and is therefore a subcomplex of Q′

∗(A). By definition, MacLane’s
Q-construction is the functor Q∗(A) = Q′

∗(A)/N∗(A). It is a functor Ab → Ch∗(Z). We
will also view it as a functor Ab→ModZ without changing the notation.

We will the following two results about the Q-construction :

Lemma 2.4 ([JP91], 2.6). The functor Qn : Ab→ Ab is a direct summand of the functor
Q′

n = Z[−Cn ].

Remark 2.5. It is not the case that Q∗ is a direct summand of Q′
∗ as functors with values

in chain complexes.

Lemma 2.6 ([JM98], 6.3). The natural map Q∗(U) ⊕ Q∗(V ) → Q∗(U ⊕ V ) is a quasi-
isomorphism for any U, V ∈ Ab.

2.2. MacLane homology. In order to define MacLane homology, it is necessary to know
that Q has a lax monoidal structure as a functor Ab → Ch∗(Z), induced by the so-called
Dixmier products. We will eventually review and promote to a symmetric monoidal structure
(on Q as a functor Ab → ModZ this time: there is no 1-categorical symmetric monoidal
structure extending the Dixmier products), and a monoidal augmentation Q∗ → i, where
i : Ab→ Ch∗(Z) is the inclusion in degree 0.

This monoidal structure is given by

Z[ACn ]⊗ Z[BCm ]→ Z[(A ×B)Cn×Cm ]→ Z[(A ⊗B)Cn+m .

One checks that this is compatible with the quotient Q′
∗ → Q∗ and with the differentials, as

well as with the augmentation Z[A]→ A.
With this definition, one can see any A-bimodule as a Q∗(A)-bimodule, and thus define :

Definition 2.7. Let A be a ring and M an A-bimodule. Then the MacLane homology of A
with coefficients in M is defined to be the Hochschild homology (in ModZ) of Q∗(A) with
coefficients in M :

HML(A, M) = HHZ(Q∗(A), M).

As a functor, this can be defined as the composite

AlgAB(Ab)→ AlgAB(Ch∗(Z))→ AlgAB(ModZ)
HHZ−−−→ModZ

where the first map is (A, M) 7→ (Q∗(A), M).

Remark 2.8. Note that Q∗(R) is degreewise flat for any R, so the infinity-categorical
version of Hochschild homology, where tensor products are all derived, agrees with the
usual, underived construction and so this functor agrees with the usual MacLane homology.
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2.3. The Q-construction as a left Kan extension.

Notation 2.9. Let FZ denote the full subcategory of Ab on finitely generated free abelian
groups (observe that it is essentially small). Let Modc

R denote the full subcategory of ModR

on connective modules.

Lemma 2.10. The inclusion FZ →Modc
Z exhibits Modc

Z as the nonabelian derived category
of FZ (as defined in [Lur09, 5.5.8]).

Proof. The nonabelian derived category of FZ is, by definition, the category Fun×(F op
Z

, S).

The category F op
Z

is an algebraic theory, and so Fun×(F op
Z

, sSet), the category of product-
preserving functors F op

Z
→ sSet, is the category of models of F op

Z
in sSet, that is, sAb,

the category of simplicial abelian groups. The latter is known to be Quillen equivalent
(and in fact, equivalent) to Ch≥0(Z). Also, by [Lur09, 5.5.9.3], we have an equivalence

W −1 Fun×(F op
Z

, sSet) ≃ Fun×(F op
Z

, S). It follows that

Modc
Z ≃W −1Ch≥0(Z) ≃W −1 Fun×(F op

Z
, sSet) ≃ Fun×(F op

Z
, S).

Moreover one can easily trace through these equivalences to check that the Yoneda embed-
ding FZ → Fun(F op

Z
, S) is identified with the usual inclusion FZ →Modc

Z �

Remark 2.11. The fact that the model category Fun×(F op
Z

, sSet) presents Fun×(F op
Z

, S)
is specific to sSet and S and is not true for more general model categories. In fact an easy
consequence of some of the results of this paper is that in general it does not hold for Ch∗(R)
and ModR.

These ideas can be traced back to [Bad02], where a similar result is proved for an arbitrary
algebraic theory.

Corollary 2.12. For any presentable category C, the restriction functor

Funsif (Modc
Z, C)→ Fun(FZ, C)

is an equivalence, where Funsif denotes the full subcategory of Fun on sifted-colimit preserv-
ing functors. This equivalence further restricts to an equivalence

FunL(Modc
Z, C)→ Fun∐(FZ, C)

between colimit-preserving functors and coproduct-preserving functors.

We can now define a new functor denoted Q.

Definition 2.13. We denote by Q the functor Modc
Z
→ModZ corresponding to Q|FZ

via
the above equivalence.

Proposition 2.14. The restriction of Q to Ab ⊂Modc
Z is naturally equivalent to Q.

Proof. The functor Q is the left Kan extension of Q along the fully-faithful inclusion FZ →
Modc

Z. This inclusion factors as FZ → Ab → Modc
Z, both of which are fully-faithful, so

that the restriction of Q to Ab is the left Kan extension of Q to Ab. The result then follows
from the following lemma. �

Lemma 2.15. The functor Q : Ab →ModZ is the left Kan extension of its restriction to
FZ.

Proof. The Kan extension will be pointwise, so it suffices to prove the result for

Q : Abκ → ModZ

where Abκ is the (essentially small) category of abelian groups of cardinality < κ for κ an
infinite cardinal.
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We restrict to Abκ as a technical convenience, to be able to identify Fun(Abκ, ModZ) with
W −1 Fun(Abκ, Ch∗(Z)), which requires the domain to be (essentially) small. The argument
does not depend on it significantly, apart from this.

The restriction functor i∗ : Fun(Abκ, Ch∗(Z)) → Fun(FZ, Ch∗(Z)) is exact, therefore its
derived functor Fun(Abκ, ModZ)→ Fun(FZ, ModZ) is just restriction, denoted i∗ as well.

Its left adjoint, the 1-categorical left Kan extension, can be derived. The resulting functor
is the ∞-categorical left Kan extension. Since Q : FZ → Ch∗(Z) is a connective chain
complex of projective functors, it is cofibrant in the projective model structure, and therefore
the ∞-categorical left Kan extension of Q is simply computed as the 1-categorical left Kan
extension.

The result now follows from the following lemma. �

Lemma 2.16. Let κ be an arbitrary infinite cardinal. Then, as a functor of 1-categories,
Abκ → Ch∗(Z), the functor Q is the left Kan extension of its restriction to FZ.

Proof. The category Ch∗(Z) is cocomplete and colimits of chain complexes are computed
degreewise. So we only need to prove the result for each Qn : Abκ → Ab.

Moreover, note that FZ ⊂ Abκ ⊂ Ab are full-subcategory inclusions, therefore to prove
the result about Qn : Abκ → Ab, it suffices to prove that Qn : Ab → Ab is the left Kan
extension of its restriction to FZ, and the result for Abκ will follow.

Recall from Lemma 2.4 that Qn is a direct summand of Q′
n = Z[(−)Cn ], and the Kan

extension functor is left adjoint so it preserves direct sums; in particular it suffices to prove
the result for Q′

n. Now the result will follow from the fact that Q′
n preserves sifted colimits,

as a composite of two functors that do.
Given any abelian group A, we can form the slice category D := FZ/A of pairs

(P, f), P ∈ FZ, f : P → A.

We claim that D is sifted. To show this, consider ((P, f), (Q, g)) ∈ D × D, note that
(P ⊕ Q, f ⊕ g) is initial in ((P, f), (Q, g))/D, so that the latter is a weakly contractible
category. It follows that D → D ×D is cofinal, so D is sifted.

In particular, Q′
n(A) ∼= colim(P,f)∈FZ/AQ′

n(P ) = Lani(Q
′
n ◦ i)(A), where i : FZ → Ab is

the inclusion, so Q′
n is indeed the Kan extension of its restriction. The result follows. �

3. The Q-construction as a first Goodwillie derivative

In this section, we review a theorem of Johnson and McCarthy by interpreting [JM98] in
terms of Goodwillie derivative.

We denote by Modc
Z

the category of connective Z-modules. We denote by Mod
c,ω
Z

the
category of Z-modules that are connective and compact. For C a pointed presentable ∞-
category, we denote by Funexc(Mod

c,ω
Z

, C) the full subcategory of Fun(Mod
c,ω
Z

, C) spanned
by functors that are excisive. We will slightly differ from the usual conventions, and say
that a functor is excisive if it preserves the terminal object and sends cocartesian squares to
cartesian squares (this is usually called reduced excisive).

The inclusion into pointed functors (those that preserve the terminal object)

Funexc(Mod
c,ω
Z

, C)→ Fun∗(Mod
c,ω
Z

, C)

has a left adjoint denoted D1. An explicit construction is given by the following formula

D1F (X) = colimn ΩnF (ΣnX).

This formula is due to Goodwillie in the context of functors from spaces to spaces (see
[Goo03, Section 1]). See also [Kuh07, Example 5.3] for more general model categories and
[Lur17, Example 6.1.1.28] for an ∞-categorical version of this statement.



A MULTIPLICATIVE COMPARISON OF HML AND THH 11

Recall that the functor Z[−] : Ab → Ab is the functor that sends an abelian group A
to the free abelian group generated by the set A. We can extend Z[−] to a functor from
simplicial abelian groups to simplicial abelian groups. The resulting functor preserves weak
equivalences and thus induces a functor ModZ → ModZ. This functor can easily be seen
to be equivalent to the functor A 7→ Z ⊗ Σ∞

+ A (recall that ⊗ is the tensor product over S,
i.e. the smash product of spectra)

Similarly, there is a reduced version Z̃[−] that sends A to the quotient Z[A]/Z[0]. Applying
this functor levelwise we obtain a functor

Z̃[−] : sAb→ sAb.

This functor preserves weak equivalences and thus induces a functor

Modc
Z →Modc

Z.

This last functor can easily be checked to be the functor A 7→ Z⊗ Σ∞A (where A is based
at 0).

The main theorem of Johnson and McCarthy is the following.

Theorem 3.1. There is an equivalence

Q ≃ D1(Z̃[−])

in the category Funexc(Mod
c,ω
Z

, ModZ).

In order to prove Johnson and McCarthy’s theorem above, we need to relate Q and the
“naive” extension of Q to Modc

Z
that is defined in [JM98].

Definition 3.2. We let Q denote the naive extension of Q to Ch≥0(Z). Explicitly, this is
given by the following composite

Ch≥0(Z)
DK−1

−−−−→ sAb
Q
−→ sCh≥0(Z)

DK
−−→ Ch≥0Ch≥0(Z)

Tot
−−→ Ch≥0(Z)

where DK denotes the Dold Kan equivalence and Tot denotes the total complex of a double
complex.

Proposition 3.3. The functor Q from Ch≥0(Z) to itself preserves quasi-isomorphisms, and
filtered colimits.

Proof. The claim for filtered colimits follows from the fact that Q preserves them. This is
the case because, by Lemma 2.4, the functor Q is degreewise a direct summand of Z[(−)Cn ],
which clearly preserves filtered colimits.

As for quasi-isomorphisms, this follows from [JM98, Theorem 7.5], and the fact that
D1Z̃[−] preserves quasi-isomorphisms. For the latter, this is the case because it is a filtered
colimit of quasi-isomorphism-preserving functors. �

In particular, Q descends to a functor Modc
Z → ModZ. We use the same notation for

this new functor.

Notation 3.4. We denote by Funrex(C, D) the full subcategory of Fun(C, D) on the right
exact functors, that is, those that preserve finite colimits. Observe that if D is stable and
C is pointed, we have an equivalence

Funrex(C, D) ≃ Funexc(C, D).

Theorem 3.5. There is an equivalence

Q ≃ D1(Z̃[−]).

in the category Funrex(Mod
c,ω
Z

, ModZ) ≃ Funexc(Mod
c,ω
Z

, ModZ).
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Proof. This is [JM98, Theorem 7.5]. �

We can now prove Theorem 3.1

Proof of Theorem 3.1. Because of the previous theorem, it suffices to prove that Q ≃ Q as
functors on Modc

Z
. The functor Q preserves direct sums as a functor FZ →ModZ. It follows

that Q lives in FunL(Modc
Z, ModZ). The theorem and proposition above imply that Q

preserves filtered colimits, and that its restriction to Mod
c,ω
Z

preserves finite colimits, hence

Q lives in FunL(Modc
Z, ModZ) as well. Therefore, by Corollary 2.12 they are equivalent if

and only if their restriction to FZ are. But both these restrictions are just Q, by definition.
�

There is also a universal property of the restriction of Q to FZ. Let Fun⊕(FZ, ModZ) be
the category of functors that preserve finite direct sums. Let

Add : Fun(FZ, ModZ)→ Fun⊕(FZ, ModZ)

be the left adjoint to the inclusion (its existence follows from Theorem 4.2 in the next
section, the proof of which does not depend on the results in this section). Equipped with
this functor, we have the following proposition. We were not able to find it in the literature
but as is clear from the proof, it is an easy consequence of [JM98, Theorem 7.5].

Proposition 3.6. There is an equivalence

Q ≃ Add(Z[−]).

in the category of functors Fun(FZ, ModZ).

Proof. Let us consider the following commutative diagram of left adjoints

Fun(FZ, ModZ)
Add

//

��

Fun⊕(FZ, ModZ)

≃

��

Fun(Mod
c,ω
Z

, ModZ)
P

// Fun∗(Mod
c,ω
Z

, ModZ)
D1

// Funexc(Mod
c,ω
Z

, ModZ)

The vertical functors are given by left Kan extension and the horizontal functors are the left
adjoint to the inclusions. The diagram commutes since the corresponding diagram of right
adjoints obviously commutes. Let us start with Z[−] in the top left corner. The left Kan
extension of Z[−] to Mod

c,ω
Z

is again the functor Z[−]. If we apply P to this we obtain the

functor Z̃[−] and then if we apply D1 we obtain Q by the theorem of Johnson and McCarthy
above. By the commutativity of the diagram, we obtain the desired result. �

Let Abω denote the full subcategory of Ab on finitely generated modules. Then we can
deduce from the above proposition a similar result for the restriction of Q to Abω and Abκ.

Corollary 3.7. There is an equivalence Q ≃ Add(Z[−]) in the category Fun(Abω, ModZ),
as well as in Fun(Abκ, ModZ).

Proof. Consider the following commutative diagram of left adjoints :

Fun(FZ, ModZ) //

��

Fun(Abω, ModZ)

��

Fun⊕(FZ, ModZ) // Fun⊕(Abω, ModZ)
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The horizontal arrows are left adjoint to restriction, and the vertical arrows are left adjoint
to inclusion. Since the diagram of right adjoints obviously commutes, this diagram does too.

Note that Z[−] : Abω →ModZ is the left Kan extension of its restriction to FZ (the proof
is the same as for Q), so we can compute its image in Fun⊕(Abω, ModZ) by computing the
image of Z[−] in the top left hand corner. But this factors through Fun⊕(FZ, ModZ) so by
the previous proposition, this image is the same as the image of Q.

But Q|Abω is also the left Kan extension of its restriction to FZ, so if we start from Q in
the top left hand corner, we get Q in Fun(Abω, ModZ), which is already additive, so we get
Q in the bottom right hand corner, which is what we wanted.

The same proof works verbatim for Abκ. �

All the reasonable candidates for Q having been identified, we can now use a common
notation for all of them.

Notation 3.8. We let Q denote any of the functors Q, Q, Q, Q|FZ
.

Here is a summary of this work on the Q-construction :
There is a functor Q : Modc

Z
→ ModZ whose restriction to Ab is the classical Q-

construction, which also agrees, on the level of Ch≥0(Z), with the naive extension of Q
using the Dold-Kan equivalence. This functor is the left Kan extension of its restriction to
FZ and therefore to all intermediate full subcategories (Ab, Abω, Abκ, Mod

c,ω
Z

).
This functor is the “rexification” of the functor

A 7→ Z⊗ Σ∞A

and when restricted to FZ, Abω, Abκ, it is the additivization of Z[−] (or Z̃[−]).

4. The symmetric monoidal structure

In the following, we denote by A a small symmetric monoidal category. We give ourselves
a set of diagrams

fu : K⊳
u → A

indexed by a set U where the categories Ku are finite. For C a category with limits, we
denote by FunU (A, C) the category of functors F : A → C sending the diagrams in U to
limit diagrams.

Example 4.1. (1) If U = {u} is a singleton, Ku = ∅ and fu : [0] = ∅
⊳ → A is the

map hitting the object a ∈ A, then FunU (A, C) is the category of functors sending
a to the terminal object of C.

(2) Assume that A has finite products, we can take U to be the set of pairs of objects
of A and for (a, a′) ∈ U we consider the diagram

a← a× a′ → a′

in A. Then FunU (A, C) is the category of functors that preserve binary products. If
we add the diagram ∗ = ∅⊳ with value the terminal object of A, we get the category
of functors preserving arbitrary finite products.

(3) Take U to be the set of cartesian squares in A. We can view a cartesian square as
a diagram K⊳ → A with K the category freely generated by the graph • → • ← •.
In that case, the category FunU (A, C) is the category of functors that preserve
cartesian squares.

(4) Using cocartesian squares instead of cartesian squares in the previous example, the

category FunU (A, C) is the category of functors sending cocartesian squares to carte-
sian squares.
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(5) Combining the first and fourth example, we see that the category of excisive functors

is a category of the form FunU (A, C) for a certain choice of U .

Theorem 4.2. Let C be a presentable category.

(1) The category FunU (A, S) is presentable.
(2) The canonical functor

FunU (A, S)⊗C→ FunU (A, C)

is an equivalence. In particular, the category FunU (A, C) is presentable.
(3) The inclusion

FunU (A, C)→ Fun(A, C)

has a left adjoint.

Proof. The first part comes from the observation that FunU (A, S) is the category of local
objects with respect to the maps

colimi∈Ku
mapA(fu(i),−)→ mapA(fu(∞u),−),

where ∞u denotes the tip of the cone K⊳
u. This immediatly gives the presentability and the

fact that the inclusion FunU (A, S) → Fun(A, S) has a left adjoint, which is given by the
localization.

In order to prove the second part, we will use the equivalence E ⊗ C ≃ FunR(Cop, E),
for presentable categories E, C (see [Lur17, 4.8.1.17]). Let us consider the full inclusion

ι : FunR(Cop, FunU (A, S)) ⊂ FunR(Cop, Fun(A, S)).

The essential image is the category of functors Cop → Fun(A, S) with the property that for

each object c ∈ Cop the value of the functor lands in FunU (A, S). On the other hand, there
is an equivalence

FunR(Cop, Fun(A, S)) ≃ Fun(A, FunR(Cop, S)).

Seen through this equivalence, the essential image of the functor ι above is identified with
the full subcategory

FunU (A, FunR(Cop, S)) ⊂ Fun(A, FunR(Cop, S)).

Since FunR(Cop, S) is equivalent to C, this full subcategory is the category FunU (A, C).

Presentability of FunU (A, C) immediately follows from this description.
The third part follows from the fact that the inclusion preserves limits (as limits commute

with limits) and is accessible (as in any presentable category, for κ large enough, κ-filtered
colimits commute with κ-small limits), and from the adjoint functor theorem. �

4.1. Localization and Day convolution. Now, we assume that A and C are symmetric
monoidal categories. In that case, there is a symmetric monoidal structure on the func-
tor category Fun(A, C) called the Day convolution structure. This symmetric monoidal
structure enjoys the following universal property (see [Lur17, 2.2.6.8]) :

The data of a lax symmetric monoidal functor B→ Fun(A, C) is equivalent to the data
of a lax symmetric monoidal functor B×A → C.

Notation 4.3. We will let ⊗Day denote the Day tensor product.

We make the following additional assumption on A and U .

Assumption 4.4. The category A has a symmetric monoidal structure and for all diagrams
fu : K⊳

u → A and all object a of A, the diagram a ⊗ fu is also in U (or equivalent to a
diagram of U).



A MULTIPLICATIVE COMPARISON OF HML AND THH 15

Theorem 4.5. Let C be a symmetric monoidal presentable category.

(1) The category Fun(A, C) equipped with the Day convolution tensor product is a sym-
metric monoidal presentable category.

(2) There is a unique symmetric monoidal structure on FunU (A, C) such that the local-
ization functor

Fun(A, C)→ FunU (A, C)

is symmetric monoidal.
(3) The inclusion

FunU (A, C)→ Fun(A, C)

is lax symmetric monoidal.

To establish this, we will need a couple of lemmas. First, recall the following result due
to Glasman.

Proposition 4.6. [Gla16, Section 3] Suppose C is a small symmetric monoidal category,
and let Fun(Cop, S) have the Day convolution monoidal structure. Then there is a canonical
symmetric monoidal structure on the Yoneda embedding C → Fun(Cop, S)

Using this and our assumption, we can conclude that our localization is compatible with
the Day structure on Fun(A, S).

Proposition 4.7. The localization Fun(A, S) → FunU (A, S) is compatible with the Day
symmetric monoidal structure. Concretely, this means that if f becomes an equivalence
after localization, then f ⊗Day F does so too, for any F ∈ Fun(A, S).

Proof. Local equivalences are closed under colimits, and the Day convolution structure is
compatible with colimits by [Gla16, 2.13], so we may assume F = map(P,−) for some
P ∈ A.

For f = colimi∈Ku
mapA(fu(i),−)→ mapA(fu(∞u),−), since the Yoneda embedding is

symmetric monoidal, f ⊗Day map(P,−) is identified with

colimi∈Ku
mapA(fu(i)⊗ P,−)→ mapA(fu(∞u)⊗ P,−).

By assumption, the diagram fu ⊗ P is (equivalent to a diagram) in U , so clearly this map
is a local equivalence. Since our localization is accessible and the class of local equivalences
is generated by maps f of this form (see the proof of theorem 4.2), we are done. �

By [Lur17, 2.2.1.9 and 4.1.7.4], we automatically get Theorem 4.5 for the special case
C = S. To extend to the general case, we use part (2) of Theorem 4.2.

For this, we compare the two natural symmetric monoidal structures on Fun(A, C) : the
Day convolution structure, and the one obtained from Fun(A, C) ≃ Fun(A, S) ⊗ C (note

that in PrL, this tensor product is a coproduct of commutative algebras, so it gets a natural
symmetric monoidal structure compatible with colimits in each variable).

Lemma 4.8. The canonical functor Fun(A, S) ⊗C→ Fun(A, C) has a natural symmetric
monoidal structure, where the right hand side has the Day convolution structure and the
left hand side has the structure described above. It is therefore an equivalence of symmetric
monoidal categories.

Proof. In PrL, symmetric monoidal categories with a compatible tensor product corre-
spond to commutative algebra objects, and therefore tensor product is simply the coprod-
uct. Therefore, to equip the canonical functor Fun(A, S) ⊗ C → Fun(A, C) with a sym-
metric monoidal structure is equivalent to doing so for both Fun(A, S) → Fun(A, C) and
C→ Fun(A, C).
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Note that there is an essentially unique colimit preserving symmetric monoidal functor
S→ C. Recall the universal property of the Day convolution structure (see [Lur17, 2.2.6.8]),
which implies then that Fun(A, S)×A → S has a canonical lax symmetric monoidal struc-
ture, so that the composite Fun(A, S) ×A → S→ C does so too.

In particular, this gives Fun(A, S)→ Fun(A, C) a lax symmetric monoidal structure. The
explicit formula for the Day tensor product, as well as the fact that S → C is symmetric
monoidal and preserves colimits imply that this lax symmetric monoidal structure is actually
a (strict) symmetric monoidal structure.

Moreover, let ⊙ temporarily denote the tensor product C× S→ C. Then the composite

C × A
id×map(1,−)
−−−−−−−−−→ C× S

⊙
−→ C is a composite of functors that all have canonical lax

symmetric monoidal structures, so it has one as well. Therefore, the corresponding functor
C → Fun(A, C) does too. One may then similarly check (using the fact that the Yoneda
embedding Aop → Fun(A, S) is symmetric monoidal) that it is also not only lax but actually
a (strict) symmetric monoidal functor.

Therefore we also get a symmetric monoidal functor Fun(A, S) ⊗ C → Fun(A, C), and
it is easy to check that on the underlying categories, it is the canonical functor which is an
equivalence. �

Proof of Theorem 4.5. The localization Fun(A, C)→ FunU (A, C) is identified with

Fun(A, S)⊗C→ FunU (A, S) ⊗C.

In this second form, it acquires a symmetric monoidal structure, which means that the
localization is compatible with the Day convolution structure on Fun(A, C). We can there-
fore again apply [Lur17, 2.2.1.9 and 4.1.7.4] and get a symmetric monoidal structure on

FunU (A, C) with the desired properties. �

Corollary 4.9. The following statements hold.

(1) There is a unique symmetric monoidal structure on Funrex(Mod
c,ω
Z

, ModZ) such
that the localization functor

Fun(Mod
c,ω
Z

, ModZ)→ Funrex(Mod
c,ω
Z

, ModZ)

is symmetric monoidal.
(2) The functor Q is the unit of Funrex(Mod

c,ω
Z

, ModZ).

(3) The same holds for Fun⊕(Abω, ModZ) or Fun⊕(Abκ, ModZ), and the restriction
of Q there.

Proof. Statement (1) and the first half of statement (3) follow from Theorem 4.5 using an
appropriate choice of U (using 4.1).

By Lemma 4.8 and Proposition 4.6, the functor Z[−] is the monoidal unit of the category
Fun(Mod

c,ω
Z

, ModZ). The functor Q is the image of Z[−] under the localization functor,
therefore it is the unit of the symmetric monoidal category Funrex(Mod

c,ω
Z

, ModZ).
The claim about Abω, Abκ follows in a similar way using Proposition 3.7. �

Lemma 4.10. Let C⊗ be a symmetric monoidal category. Let I be the unit of C⊗. Then I

has a unique commutative algebra structure.

Proof. The more precise statement would be as follows. Let C⊗ be a symmetric monoidal
category with unit I, and suppose I has an algebra structure with structure map η : I→ I.
Then η is an equivalence of commutative algebras.

To see that, note that by composing with C→ Ho(C), since this functor preserves algebra
objects and reflects equivalences, we may assume C is a 1-category, which we will accordingly
denote by C.
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Then EndC(I) is a commutative monoid under composition, by the Eckmann-Hilton argu-
ment, so it suffices to prove that η has a retraction. We then have the following commutative
diagram, where µ : I⊗ I→ I is the multiplication of the algebra structure under considera-
tion, the isomorphisms are the ones given by the symmetric monoidal structure on C, and
α is defined by the commutative triangle :

I I⊗ I I⊗ I I

I I

∼

id

id⊗η

∼

µ

η

∼
α

In particular, αη = idI, so we have a retraction, and we may thus conclude. �

Corollary 4.11. There is a unique commutative algebra structure on Q in the category
Fun(Mod

c,ω
Z

, ModZ). The same holds for the restriction of Q to Abω or Abκ.

4.2. MacLane homology as a lax symmetric monoidal functor. We are now equipped
to give a construction of HML as a lax symmetric monoidal functor

HML : AlgAB(Ab)→ModZ.

Construction 4.12. Note that Q is initial in Funlax(Abω, ModZ) (where Funlax(C, D) de-
notes the category of lax symmetric monoidal functors C→ D) so it has a unique symmetric
monoidal transformation Q→ i, where i is the inclusion, and therefore, by [Lur17, 4.8.1.10],
there is also a unique symmetric monoidal transformation Q→ i as functors Ab→ModZ.
The same can be said monoidally (that is, dropping symmetry), and so this transformation
must agree with the monoidal augmentation that we defined in Section 2.

This symmetric monoidal augmentation therefore yields a symmetric monoidal augmen-
tion Q → i as functors AlgAss(Ab) → AlgAss(ModZ), which is the one we used to define
MacLane homology : from it, we said that we could define the structure of a Q(A)-bimodule
on any A-bimodule M .

To define this more conceptually, one may say that the morphism (Q(A), M) → (A, M)
in AlgAB(ModZ) is cartesian over Q(A) → A. We may thus use Appendix B to define it.
By Theorem B.1 (whose hypotheses are readily checked here),

Funlax(AlgAB(Ab), AlgAB(ModZ))→ Funlax(AlgAB(Ab), AlgAss(ModZ))

is a cartesian fibration; and we may thus lift Q → i to get our pointwise cartesian mor-
phism (Q(A), M) → (A, M) functorially, and symmetric monoidally. In particular, we get
a well-defined functor (A, M) 7→ (Q(A), M) from the category AlgAB(Ab) to the category
AlgAB(ModZ) which is lax symmetric monoidal. Since all other functors in the definition
of HML are symmetric monoidal, this gives HML a lax symmetric monoidal structure.

5. A symmetric monoidal equivalence

The goal of this section is to prove the following theorem.

Theorem 5.1. There is a symmetric monoidal equivalence Q(−) ≃ Z ⊗ − in the category
of functors Modc

Z
→ModZ

The main tool that we shall use in order to prove this result is the following theorem.

Theorem 5.2. There is a symmetric monoidal equivalence of categories

ModZ⊗Z → Funrex(Mod
c,ω
Z

, ModZ)

sending M to the functor M ⊗Z −.
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We start by proving a non symmetric monoidal version of this theorem.

Proposition 5.3. The functor

ModZ⊗Z → Funrex(Mod
c,ω
Z

, ModZ)

sending M to M ⊗Z − is an equivalence.

Proof. First, since Modc
Z

is compactly generated, the restriction map

FunL(Modc
Z
, ModZ)→ Funrex(Mod

c,ω
Z

, ModZ)

is an equivalence. Indeed, by [Lur09, 5.3.5.10], this is true for filtered colimit-preserving
functors on the left-hand side and arbitrary functors on the right hand side, and by [Lur09,
5.5.1.9], this equivalence restricts to an equivalence between colimit-preserving functors on
the right-hand side and finite colimit-preserving functors on the left-hand side.

By [Lur17, 1.3.5.21], the canonical t-structure on ModZ is right complete, and therefore

ModZ ≃ lim(. . .
Ω
−→ Modc

Z

Ω
−→ Modc

Z), so that ModZ is the presentable stabilization of
Modc

Z
. It follows that the restriction map

FunL(ModZ, ModZ)→ Funrex(Mod
c,ω
Z

, ModZ)

is an equivalence. The desired result then follows from [Lur17, 7.1.2.4]. �

Remark 5.4. One can prove in a similar way that Fun⊕(FZ, ModZ) ≃ ModZ⊗Z. From
this we can give more details about Remark 2.11. Indeed, we have Fun×(F op

Z
, Ab) ≃ Ab so

that Fun×(F op
Z

, Ch∗(Z)) ≃ Ch∗(Z) and in particular

W −1 Fun×(F op
Z

, Ch∗(Z)) ≃ModZ 6≃ModZ⊗Z ≃ Fun⊕(FZ, ModZ) ≃ Fun×(F op
Z

, ModZ),

where the last equivalence follows from the fact that hom(−,Z) : F op
Z
→ FZ is an equivalence.

Proposition 5.5. There is a lax symmetric monoidal structure on the functor ModZ⊗Z →
Funrex(Mod

c,ω
Z

, ModZ)

Proof. We write our functor as a composite

ModZ⊗Z → Fun(Mod
c,ω
Z

, ModZ)→ Funrex(Mod
c,ω
Z

, ModZ).

By the work of Section 4, the second arrow has a canonical symmetric monoidal structure.
We shall give the first map a lax symmetric monoidal structure. By [Lur17, 2.2.6.8], this

amounts to giving the adjoint functor

ModZ⊗Z ×Mod
c,ω
Z
→ModZ

a lax symmetric monoidal structure.
We then note that this functor can be written as a composite

ModZ⊗Z ×Mod
c,ω
Z
→ModZ⊗Z ×ModZ →ModZ,

where the first functor has a natural symmetric monoidal structure. The second functor is
itself the composite

ModZ⊗Z ×ModZ →ModZ⊗Z ⊗ModZ →ModZ.

The first functor is lax monoidal. Recall, from [Lur17, 4.8.5.16], that ModZ ⊗ModZ ≃
ModZ⊗Z via (M, N) 7→ M ⊗ N . It follows that we only need to give a lax symmetric
monoidal structure to the functor ModZ ⊗ModZ ⊗ModZ →ModZ sending (M, N, A) to
M ⊗ U(N ⊗Z A) where U : ModZ → Sp denotes the forgetful functor. This has a clear
lax symmetric monoidal structure. Indeed, the functor ⊗Z : ModZ ⊗ModZ → ModZ is
symmetric monoidal, the functor U : ModZ → Sp is lax symmetric monoidal, and the

equivalence ModZ ⊗ Sp
≃
−→ModZ is symmetric monoidal. �
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The claim of Theorem 5.2 is now that this is actually a symmetric monoidal equivalence.

Proof of Theorem 5.2. We let F denote our functor for this proof. We need to prove two
things. First, that the canonical map Q → F (Z ⊗ Z) is an equivalence and second that
for any M, N ∈ ModZ⊗Z, the canonical map F (M) ⊗Day

rex F (N) → F (M ⊗Z⊗Z N) is an
equivalence, where ⊗Day

rex denotes the tensor product on Funrex.
We already know that F is an equivalence on the underlying categories and that both

tensor products commute with colimits and desuspensions. It follows that, in order to
prove the second point, we can restrict to M = N = Z ⊗ Z. Then, for this one, various
compatibility relations imply that it actually suffices to check the first point, that is, that
Q→ F (Z⊗ Z) is an equivalence.

For this, we use Lemma 4.10. Indeed, since F was given a lax symmetric monoidal
structure, Q→ F (Z⊗ Z) is the unit map of a commutative algebra structure on F (Z⊗ Z).
Therefore, if we know, for some other reason, that F (Z⊗Z) is equivalent to Q, then it will
follow that this unit map must be an equivalence.

So we are reduced to proving that F (Z⊗Z) is equivalent to Q, asbtractly. For this, we use
the Yoneda lemma, as well as Theorem 3.6. Indeed, we have, naturally in M ∈ModZ⊗Z :

mapModZ⊗Z
(Z⊗ Z, M) ≃ mapSp(S, M) ≃ Ω∞M

(we have suppressed the forgetful functor ModZ⊗Z → Sp from the notation).
We also have, naturally in M :

mapFunrex(Mod
c,ω

Z
,ModZ)(Q, F (M)) ≃ mapFun(Mod

c,ω

Z
,ModZ)(Z[−], F (M))

≃ mapFun(Mod
c,ω

Z
,Sp)(Σ

∞
+ map(Z,−), F (M))

≃ mapFun(Mod
c,ω

Z
,S)(map(Z,−), Ω∞ ◦ F (M))

≃ Ω∞(F (M)(Z))

≃ Ω∞M,

where we again suppressed the forgetful functor from the notation, as well as the inclusion
functor Funrex(Mod

c,ω
Z

, ModZ)→ Fun(Mod
c,ω
Z

, ModZ). In this equivalence, the first line
uses Theorem 3.1, and in the second to last line, we use the Yoneda lemma applied to
Mod

c,ω
Z

. It follows, by the Yoneda lemma, that F (Z ⊗ Z) ≃ Q. By what we said above,
this concludes the proof. �

We may now prove Theorem 5.1:

Proof of Theorem 5.1. From Theorem 5.2, we deduce that the image of Z ⊗ Z via this
equivalence must coincide with the unit of Funrex(Mod

c,ω
Z

, ModZ) namely Q. Explic-
itly, this is saying that the functor M 7→ Z ⊗ M is equivalent to Q in the category
Funrex(Mod

c,ω
Z

, ModZ).
As Modc

Z
≃ Ind(Mod

c,ω
Z

), we can apply [Lur17, Proposition 4.8.1.10] to get that the
category of filtered-colimit preserving lax symmetric monoidal functors Modc

Z →ModZ is
equivalent to that of lax symmetric monoidal functors Mod

c,ω
Z
→ ModZ, the equivalence

being given by restriction. Since Q and Z ⊗ − have the same restriction to Mod
c,ω
Z

, it
suffices to check that they both preserve filtered colimits.

Obviously the functor M 7→ Z⊗M preserves all colimits. This is also the case for Q by
definition (see Definition 2.13). �
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6. Comparison with Richter’s work

In this section we show that the lax symmetric monoidal structure that we have on the
functor Q : Ab → ModZ coincides with the one constructed by Richter in [Ric00]. Let
(C,⊗, 1C) be either Abω or Abκ with its usual symmetric monoidal structure.

We use [Hin15] to explain how to construct, from the E∞-algebra structure on Q con-
structued by Richter a commutative algebra structure in the sense of [Lur17] on Q, which
we will call QR. We first fix a notation. Given an operad P in the category Ch(Z) and a
symmetric monoidal 1-category M enriched over Ch(Z), we denote by Algst

P (M) the category
of P -algebras in M. Explicitly, a P -algebra in M is the data of an object A of M and a map
of dg-operads from P to the operad of endomorphisms of A. In [Hin15], Hinich introduces
the notion of homotopically sound dg-operad. The precise definition is irrelevant here, the
only important fact is that, if P is homotopically sound, the category Algst

P (Ch(Z)) admits
a projective model structure (weak equivalences and fibrations are colorwise) and the un-
derlying ∞-category of this model category only depends on the quasi-isomorphism type
of P . Let us also mention that cofibrant dg-operads are homotopically sound (see [Hin15,
Proposition 2.3.2]) which implies that any dg-operad can be replaced by a quasi-isomorphic
homotopically sound operad.

We now recall the main theorem of [Hin15].

Theorem 6.1. Let P be a simplicial operad (that we view as an ∞-operad) and let R →
C∗(P ) be a homotopically sound replacement. Then, there is an equivalence

W −1Algst
R (Ch∗(Z))

≃
−→ AlgP (ModZ).

Construction 6.2. Richter constructs an E∞-dg-operad O together with an action of O
on the functor Q. More precisely she constructs a (O × C)-algebra in Ch∗(Z) where C
here is viewed as the operad underlying a symmetric monoidal (1-)category, and the map
O × C → Ch∗(Z) is Ch∗(Z)-enriched in the O-coordinate.

By that, we more precisely mean that for each n and each (A1, ..., An; A) ∈ C, we have
a map L : O(n)×Mult(A1, ..., An; A)→ Mult(Q(A1), ..., Q(An); Q(A)) such that at a fixed
f ∈ Mult(A1, ..., An; A), the map g 7→ L(g, f) is a chain map.

Equivalently, this is a O⊗Z Z[C]-algebra in Ch∗(Z), where O⊗Z Z[C] is the operad with
colors the colors of C, and

MultO⊗ZZ[C](A1, ..., An; A) = O(n) ⊗Z Z[MultC(A1, ..., An; A)]

(note that the multi-operation spaces in C are just sets).
Let C∗ denote the singular chains functor. Note that because C is a discrete simplicial

operad, for any simplicial operad E, we have an isomorphism of operads in chain complexes

C∗(E × C) ∼= C∗(E)⊗Z Z[C].

So if we take E to be a cofibrant E∞-operad in simplicial sets, then C∗(E) will be a cofibrant
dg-operad. In particular, there exists a quasi-isomorphism of operads C∗(E)→ O and thus
a dg-operad map C∗(E × C) → O ⊗Z Z[C]. So Richter constructs a C∗(E × C)-algebra in
Ch∗(Z). Finally, let us take a homotopically sound replacement R→ C∗(E×C) in the sense
of [Hin15]. Then, using Theorem 6.1, we can view Richter’s construction as constructing
an object in AlgE×C(ModZ) whose underlying functor C →ModZ is equivalent to Q. We

call this object QR.
Note that QR ∈ AlgE×C(ModZ), so by the defining universal property of Day convolu-

tion (see [Lur17, 2.2.6.8]), we may view QR as an object of ∈ AlgE(Fun(C, ModZ)). Since
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E is equivalent to the commutative operad, we have an equivalence

AlgE(Fun(C, ModZ)) ≃ AlgCom(Fun(C, ModZ)).

Seen through this equivalence, Richter’s construction yields a commutative algebra in Fun(C, ModZ)
that we still denote by QR and whose underlying functor C →ModZ is equivalent to Q.

From this construction, we can extract the following proposition.

Proposition 6.3. Let C = Abω or C = Abκ for any cardinal κ. Then Richter’s construc-
tion produces a lax symmetric monoidal functor QR : C → ModZ which is equivalent to
Q.

Proof. Construction 6.2 produces a lax symmetric monoidal functor QR whose underlying
functor is Q. The result then follows from Corollary 4.11. �

This proposition should be sufficient for any application as we can always choose a κ big
enough so that all the objects that we are interested in live in Abκ.

We can also obtain a statement that is independant of a choice of κ using the theory of
Grothendieck universes. Let V0 and V1 be two Grothendieck universes with V0 ∈ V1. We
shall denote by Ab(V0) (resp. Ab(V1)) the category of abelian groups in V0 (resp. in V1).
Likewise, we denote by Ch(Z)(V0) (resp. Ch(Z)(V1)) the chain complexes in Ab(V0) (resp.
Ab(V1)). Finally, we denote by ModZ(V0) (resp. ModZ(V1) the localization of Ch(Z)(V0)
(resp. Ch(Z)(V1)) at the quasi-isomorphisms.

Proposition 6.4. Let Ch∗(Z)(V0) → Ch∗(Z)(V1) be the canonical fully-faithful inclusion.
Then the induced functor ModZ(V0)→ModZ(V1) is fully faithful.

Proof. Since both categories are stable, it suffices to check the claim on homotopy categories.
We can then use the projective model structure on Ch∗(Z)(V0) to replace any pair of

objects with a pair of bifibrant objects, for which it is clear that the hom-sets in the homotopy
category agree (because in the case of Ch∗(Z), homotopies in the model category are the
same as the usual chain homotopies).

We just need to make sure that cofibrant objects in Ch∗(Z)(V0) are cofibrant in Ch∗(Z)(V1).
This is clear using the fact that in cofibrantly generated model categories, cofibrant objects
are retracts of cell complexes, and that in the case of Ch∗(Z), the generating cofibrations
do not depend on the universe. �

We can then apply the previous work to C = Ab(V0), we then have an equivalence
QR ≃ Q as commutative algebras in Fun(Ab(V0), ModZ(V1)), so as lax symmetric monoidal
functors Ab(V0)→ModZ(V1). However, they both land in the full subcategory ModZ(V0)
(the explicit model of the Q-construction clearly shows this) so that they are equivalent as
lax symmetric monoidal functors Ab(V0)→ModZ(V0).

Taking V0 to be our universe of interest we obtain the following proposition.

Proposition 6.5. Richter’s construction endows Q with a lax symmetric monoidal structure
QR on Ab. Moreover, we have an equivalence QR ≃ Q in the category of lax symmetric
monoidal functors Ab→ModZ.

Proof. By Proposition 6.4, they are equivalent as lax monoidal functors on Abω. Just as
in the proof of Theorem 5.1, we can use [Lur17, Proposition 4.8.1.10.] and the fact that
Ab ≃ Ind(Abω) to conclude that QR ≃ Q in the category of lax monoidal functors from Ab
to ModZ. �
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7. Conclusion

We can now prove our main Theorem. We have the category AlgAB(Ab) of associative
algebras and bimodules in the category of abelian groups. This category has a symmetric
monoidal structure given by the formula

(A, M)⊗ (B, N) = (A⊗Z B, M ⊗Z N).

The map of commutative algebras α : S → Z induces a lax symmetric monoidal functor
α∗ : AlgAB(Ab)→ AlgAB(Sp). To simplify notations, we will simply denote by (A, M) the
value of this functor on an object (A, M) of AlgAB(Ab). In particular,

(A, M) 7→ THH(A, M)

defines a lax symmetric monoidal functor from AlgAB(Ab) to Sp.

Theorem 7.1. There is an equivalence of lax symmetric monoidal functors from AlgAB(Ab)
to Sp

HML(A, M) ≃ THH(A, M).

Proof. Using the morphism of commutative algebras α : S → Z, we can construct the
category AlgAB(S,Z) as in Paragraph 1.1. There is a lax symmetric monoidal functor

γ : AlgAB(ModZ)→ AlgAB(S,Z)

which is right adjoint to the functor α!. We still write γ for the restriction of this functor
to the subcategory AlgAB(Ab) ⊂ AlgAB(ModZ).

We can precompose the base change formula (Theorem 1.11) with the functor γ, and we
get an equivalence

(7.1) THH(α∗γ(A, M)) ≃ α∗HHZ(α!γ(A, M))

in the category of lax symmetric monoidal functors from AlgAB(Ab) to spectra.
By composition of adjunctions, the composite α∗γ is the right adjoint to the functor α!β

which is equal to the functor α! : AlgAB(ModS) → AlgAB(ModZ). It follows that this
composite coincides with the functor α∗ : AlgAB(ModZ) → AlgAB(ModS) In particular,
the left-hand side of equivalence 7.1 is simply the functor (A, M) 7→ THH(A, M)

Now, we claim that we have an equivalence

α!γ(A, M) ≃ (Q(A), M)

in the category of lax symmetric monoidal functors from AlgAB(Ab) to AlgAB(ModZ).
This claim will be proved at the end of the section. Admitting it for the moment, the
right-hand side of equivalence 7.1 can be identified with HML(A, M) as desired. �

In particular, we deduce the following corollary.

Corollary 7.2. There is an equivalence of commutative algebras in Sp

HML(R) ≃ THH(R)

that is functorial in the discrete commutative ring R.

Proof. There is an obvious functor

AlgCom(Ab)→ AlgCom(AlgAB(Ab))

that sends a discrete commutative ring R to the pair (R, R). Composing this functor with
the equivalence in the Theorem above, we obtain the desired result. �
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The rest of this section will be devoted to the unjustified claim in the proof of Theorem 7.1.
Recall from Construction 4.12 that the lax symmetric monoidal functor (A, M) 7→ (Q(A), M)
is defined via a cartesian lift of Q(A)→ A along

Funlax(AlgAB(Ab), AlgAB(ModZ))→ Funlax(AlgAB(Ab), AlgAss(ModZ)).

So to prove that statement, we only need to prove that the co-unit α!γ(A, M)→ (A, M) is
such a cartesian lift (more precisely, we will prove that it’s a cartesian lift of Z⊗A→ A, which
is equivalent to what we need by theorem 5.1). To prove this, we prove first a categorical
result.

Proposition 7.3. Let A, B, C, E be categories with a pullback square as follows :

E
p

//

q

��

C

g

��

B
b

// A

Assume that g is a cartesian fibration, and that b has a right adjoint b∗.
Then p also has a right adjoint p∗, the co-unit pp∗ → id is pointwise g-cartesian and

qp∗ ≃ b∗g.

Proof. Let ǫ : bb∗ → id denote the co-unit of the adjunction b ⊣ b∗; and consider ǫg : bb∗g → g.
This is a morphism in Fun(C, A) and its codomain is g∗(idC), so, because

g∗ : Fun(C, C)→ Fun(C, A)

is a cartesian fibration, it has a cartesian lift δ → id.
Moreover, gδ ≃ bb∗g by definition, so we may define a functor m : C → E by the

requirements that pm ≃ δ and qm ≃ b∗g.
We will now prove that m is right adjoint to p and that the co-unit of this adjunction is

identified with the lift pm ≃ δ → id. This will prove all the statements at once.
Let us denote by a : E→ A the composition a = g ◦ p = b ◦ q. Naturally in e ∈ E, c ∈ C,

we have

mapE(e, m(c)) ≃ mapC(p(e), pm(c))×map
A

(a(e),am(c)) mapB(q(e), qm(c)).(7.2)

Observe that, since pm ≃ δ, mapC(p(e), pm(c)) ≃ mapC(p(e), δ(c)) and so by c-cartesian-
ness of δ → id, the latter is equivalent to mapC(p(e), c)×map

A
(a(e),g(c))mapA(g(p(e)), g(δ(c))),

where the map on the second factor is just g∗ : mapC(p(e), δ(c))→ mapA(g(p(e)), g(δ(c))).
In particular, this is the same as the map mapC(p(e), pm(c))→ mapA(a(e), am(c)) which

defines the fiber product in the equivalence 7.2, so that we actually get

mapE(e, m(c)) ≃ mapC(p(e), c)×map
A

(a(e),g(c)) mapB(q(e), qm(c)).

Note moreover that the map mapB(q(e), qm(c))→ mapA(a(e), g(c)) is the composite

mapB(q(e), qm(c))
b∗−→ mapA(a(e), am(c))→ mapA(a(e), g(c)),

where the second arrow is given by postcomposition with am(c) ≃ gδ(c)
g(δ(c)c)
−−−−−→ g(c).

In particular, using the definition of δ → id, this is identified with b∗bg(c)
ǫg(c)
−−−→ g(c) (nat-

urally in c), and so the map mapB(q(e), qm(c)) → mapA(a(e), g(c)) is, all in all, identified
with

mapB(q(e), b∗bg(c))
b∗−→ mapA(a(e), bb∗bg(c))→ mapA(a(e), bg(c)) = mapA(bq(e), bg(c))
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which is known to be an equivalence, because it’s the natural adjunction equivalence between
b and b∗.

In particular, we get a natural map mapE(e, m(c)) → mapC(p(e), c) which is an equiv-
alence. Tracing through the equivalences, we see that this natural map can be described
as

mapE(e, m(c))
p∗
−→ mapC(p(e), pm(c)) = mapC(p(e), δ(c))

δ(c)→c
−−−−→ mapC(p(e), c).

This is precisely the claim that p ⊣ m and that the co-unit is identified with δ → id, which
is what we wanted. �

We can now finally give the proof of the claim.

Proof of the claim. Recall that we have the following pullback square

AlgAB(S,Z)
α!

//

κ

��

AlgAB(ModZ)

res

��

AlgAss(Sp) α!

// AlgAss(ModZ)

and α∗ is right adjoint to α!, res is a cartesian fibration. γ is right adjoint to α!, so it
follows from the previous proposition that the co-unit α!γ(A, M)→ (A, M) is res-cartesian,
which means that the bimodule component of α!γ(A, M) is just the pullback of M along
res ◦ α!γ(A, M)→ A.

But now, res ◦ α!γ ≃ α!κγ, and by the above, κγ ≃ α∗ ◦ res, so

res ◦ α!γ(A, M) ≃ α!α
∗A ≃ Z⊗A

and the map α!α
∗A→ A is just the co-unit of α! ⊣ α∗.

This is not quite symmetric monoidal so far, but using Appendix B, we can make this
identification symmetric monoidal. Indeed, the co-unit α!γ(A, M)→ (A, M) is a pointwise
cartesian morphism which is also a transformation of lax symmetric monoidal functors, so
it suffices to prove that res ◦ α!γ(A, M) ≃ Z⊗A is a symmetric monoidal identification.

But now the identification res ◦α!γ ≃ α!α
∗res relies on the identification κγ ≃ α∗res, so

we just need to show that we can make this symmetric monoidal.
Let us use the notations of the previous proof. By Theorem B.1, we can chose δ → id

to be a symmetric monoidal transformation of lax symmetric monoidal functors; and we
can thus also make m lax symmetric monoidal with, by definition, a symmetric monoidal
identification qm ≃ b∗g (here, κm ≃ α∗ ◦ res) and pm ≃ δ (note that the forgetful functor
from symmetric monoidal categories to categories preserves pullbacks).

Therefore, what we need to do is show that the equivalence κm ≃ κγ (the identification
that comes from the fact that both γ and m are left adjoints to α!) can be made symmetric
monoidal. But this identification can be seen as the composite m → γα!m → γ where the
first map is the unit of α! ⊣ γ, and the second map is the co-unit of α! ⊣ m, which is
identified with δ → id and is therefore symmetric monoidal. So then m is equivalent to γ as
symmetric monoidal functors (where m is this “new” adjoint that we defined in the proof),
and so the whole identification res◦α!γ(A, M) ≃ Z⊗A can be made symmetric monoidally.
By cartesian-ness, it follows that we have an equivalence

α!γ(A, M) ≃ (Q(A), M)

of symmetric monoidal functors of (A, M), which is what was claimed. �
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Appendix A. On a remark in [FPS+95]

In this appendix, we make a remark about remark (3.9) in [FPS+95]. Theorem 5.1 implies
that for any ring R, we have an equivalence of Z-algebras Q(R) ≃ Z ⊗ R. In particular
Q(Z) ≃ Z⊗ Z and so Q(Z)⊗Z R ≃ Z⊗R.

Note, however, that in this second equivalence, the Z-algebra structure on Z ⊗ R comes
from the R-factor, not the Z-factor; whereas in the equivalence Q(R) ≃ Z⊗R, the Z-algebra
structure on Z⊗R comes from the Z-factor.

In particular, our main result does not imply that Q(R) ≃ Q(Z) ⊗Z R as Z-algebras in
general. This formula is known to hold in some special cases, e.g. when R is a generalized
monoid algebra (this is for instance given as exercise E.13.4.1. in [Lod98]).

In fact, the existence of an equivalence Q(R) ≃ Q(Z)⊗Z R is equivalent to requiring that
the two natural Z-algebra structures on Z ⊗ R are equivalent. The “recent calculations”
that are mentioned in that remark are therefore probably related to the latter question, but
in fact their inequivalence does not contradict the conjecture.

We now give an example to show that the two Z-algebra structures on Z ⊗ R are not
always equivalent.

Proposition A.1. The two natural Z-algebra structures on Z⊗ F2 are not equivalent.

Remark A.2. Here, the claim is not that the identity cannot be lifted to a Z-algebra map,
but that there is no “abstract” equivalence of Z-algebras between the two.

Proof. Suppose they were equivalent. Then tensoring over Z with F2 would also yield
equivalent algebras, i.e. we would have an equivalence of Z-algebras :

F2 ⊗ F2 ≃ Z⊗ (F2 ⊗Z F2)

As an associative algebra, we have F2 ⊗Z F2 ≃ F2[ǫ] with |ǫ| = 1, ǫ2 = 0, in particular, as
spectra F2 ⊗Z F2 ≃ F2 ⊕ ΣF2 and so the inclusion F2 ⊗Z F2 → Z ⊗ (F2 ⊗Z F2) is injective
on π1. In particular, the right-hand side has a nonzero nilpotent class in π1. On the other
hand, the left-hand side has the dual mod-2 Steenrod algebra as its homotopy groups which
is a polynomial algebra (main result of [Mil58]) and so has no nonzero nilpotents. The result
follows. �

Remark A.3. A similar result holds for Fp, with p odd. In that case, any class in odd
degree squares to zero, so the argument does not immediately work. However, one can argue
as follows. By naturality, and for degree reasons the pth Massey power of ǫ must vanish
in the right-hand side, whereas it does not in the dual mod-p Steenrod algebra. Massey
products only depend on the E1-structure of the algebras, so the result follows as well.

Appendix B. Monoidal fibrations

This appendix is devoted to proving the following theorem:

Theorem B.1. Let C⊗, D⊗, E⊗ be symmetric monoidal categories, p⊗ : D⊗ → E⊗ a
symmetric monoidal functor such that the underlying functor p : D → E is a Cartesian
fibration.

Then Funlax(C, D)→ Funlax(C, E) is a Cartesian fibration too and the Cartesian mor-
phisms are precisely the ones that are pointwise Cartesian.

Proof. p : D→ E is a Cartesian fibration, therefore for each 〈n〉 ∈ Fin∗, p⊗
〈n〉 : D⊗

〈n〉 → E⊗
〈n〉,

which is identified with Dn → En, is also one.
Moreover, for the same reason, for any inert map α : 〈n〉 → 〈m〉, the induced α∗ : D⊗

〈n〉 → D⊗
〈m〉

sends p⊗
〈n〉-Cartesian edges to p⊗

〈m〉-Cartesian ones.
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Now, noting that Cartesian edges are a form of relative limit, the dual of [Lur09, 4.3.1.15.]
implies that an edge in D⊗

〈n〉 is a p⊗
〈n〉-Cartesian edge in D⊗

〈n〉 if and only if it is p⊗-Cartesian

as an edge of D⊗.
In particular, p⊗ : D⊗ → E⊗ admits Cartesian lifts for all morphisms lying over id〈n〉

(although it may not be a Cartesian fibration)
Therefore FunFin∗

(C⊗, D⊗)→ FunFin∗
(C⊗, E⊗) is a Cartesian fibration. Indeed suppose

you have a natural transformation η of functors C⊗ → E⊗ lying over Fin∗. Then each ηc

lies over id〈n〉, and so has a p⊗-Cartesian lift. It follows that η itself has a Cartesian lift.

By base change, Funlax/E(C⊗, D⊗) → Funlax(C⊗, E⊗) is a Cartesian fibration, where

Funlax/E(C⊗, D⊗) denotes the category of functors C⊗ → D⊗ over Fin∗ whose projection
to E⊗ preserves inert edges.

It therefore finally suffices to show that if F → G is Cartesian and G preserves inert
edges, then F does so too (knowing that the projection of F also preserves inert edges).

So let f : x → y be an inert edge in C⊗, say it lies over α : 〈n〉 → 〈m〉 in Fin∗. Then
α∗F (x)→ α∗G(x) is p⊗

〈m〉-Cartesian because α∗ sends p⊗
〈n〉-Cartesian edges to p⊗

〈m〉-Cartesian

ones; and so is F (y) → G(y). Moreover, since G preserves inert edges, the canonical map
α∗G(x)→ G(y) is an equivalence.

The following square commutes:

α∗F (x) //

��

F (y)

��

α∗G(x)
≃

// G(y)

and both vertical arrows are p⊗
〈m〉-cartesian.

If we project this to E⊗, we get a commutative square where both horizontal arrows are
equivalences, it follows that the top horizontal arrows must also be an equivalence; which
means precisely that F (x)→ F (y) is inert and this is what we wanted to prove. �

Remark B.2. If we add the condition that p-cartesian edges are stable under tensor prod-
uct, then one can prove that Fun⊗(C, D) → Fun⊗(C, E) is a Cartesian fibration; but the
version here is all we need.
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