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ANNALS OF MATHEMATICS
Vol. 46, No. 1, January, 1945

ON THE COHOMOLOGY GROUPS OF AN ASSOCIATIVE ALGEBRA

By G. HocHscHILD
(Received May 22, 1944)

Introduction.

The cohomology theory of associative algebras is concerned with the m-linear
mappings of an algebra A into a two-sided A-module P. In this theory,
the additive group (U™ :9P) of the m-linear mappings of ¥ into B plays a role
analogous to that of the group of m-dimensional cochains in combinatorial
topology. A linear mapping of (4™ :$) into (A" :P) analogous to the co-
boundary operator of combinatorial topology and leading to the notion of P-
“cohomology group” has been defined by Eilenberg and MacLane'. The spe-
cial cases of dimension one and two (linear and bilinear mappings of ¥ into a
two-sided %-module) have appeared before in connection with the so-called first
and second lemmas of Whitehead®.

In a sense, the cohomology theory of associative algebras is degenerate: the
1-dimensional cohomology groups already determine all the others. In fact,
if P is any two-sided A-module, one can construct another two-sided ¥-module,
(%:P), such that (for m = 2) the m-dimensional P-cohomology group of U is
isomorphic with the (m — 1)-dimensional (%(:P)-cohomology group of A (Theo-
rem 3.1).

The present paper is concerned primarily with the connections between the
structure of an algebra and the vanishing of its cohomology groups. It is shown
that an algebra is separable if and only if all its cohomology groups vanish
(Theorem 4.1). This is a generalization of a result obtained previously for the
case of a non-modular ground field®.

The 2-dimensional cohomology groups of an algebra are directly connected
with the “extensions” of 9, i.e. algebras 8B of which ¥ is 2 homomorphic image.
In particular, the condition that all 2-dimensional cohomology groups of A
vanish signifies that every extension of ¥ has the form $ = A* + K, where A*
is a subalgebra isomorphic with % and & is the kernel of the homomorphism of 8
onto A (Theorem 6.1). This is connected with the (generalized) third structure
theorem of Wedderburn which may be stated by saying that the 2-dimensional
cohomology graups of a separable algebra vanish.

More generally, one would be interested in the structural significance of the
condition C,, : “all m-dimensional cohomology groups vanish.” Theorem 3.1
implies that C .1 is a consequence of C,, , form = 1. But it is an open question
whether or not C,, and C,.; are equivalent.

1 Unpublished. The analogous concepts for groups are contained in: S. Eilenberg and
8. MacLane, Bull. Am. Math. Soc., vol. 50, (1944), Abstract No. 9.

2 G. Hochschild, ‘‘Semi-Simple Algebras and Generalized Derivations,” Amer. Jour.
Math., vol. 64, (1941) p.p. 677-694.

3 G. Hochschild, loc. cit., Theorems 3.4, 3.2.
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COHOMOLOGY GROUPS OF ASSOCIATIVE ALGEBRA 59

1. A-modules and Cochains of .

Let % be an associative algebra over an arbitrary field #. We consider linear
spaces P over ® which are at the same time ¥-left modules and %-right modules*.
If a ¢ A we denote the corresponding #-endomorphisms’ of Bbyu — a-u, u = u-a
respectively. In addition to the usual requirements on these operations for
one-sided modules we demand that, if @, , a; e X and u e B, (a1-u) a2 = a1+ (u-a2).
Then P is called a two-sided A-module.

We denote the Kronecker product of m linear spaces isomorphic with the linear
space underlying % by A™. If a;, @, - -+ , a, is a basis of %A over &, A™ is
the n™-dimensional linear space which is spanned by the elements a:, X ai, X
-+« X ai;, . By an m-dimensional B-cochain of %, briefly an (m, B)-cochain of
%, is meant a linear mapping of A™ into the two-sided A-module P. By a
(0, PB)-cochain of 9 we mean simply an element of P. The linear space over
formed by all the (m, PB)-cochains of ¥ will be denoted by (A™ :B).

The linear space (A:PB) formed by the (1, P)-cochains of A will play an
important part in what follows. We make (A :P) into a two-sided ¥-module
in a way specially adapted to our purpose: If f ¢ (A :P) and a ¢ ¥ we define an
element a*f of (AP :P) as follows: (a*f) {a’} = a-f{a’'}, for everya’ ¢ A. Clearly,
this makes (¥°:P) into an A-left module. Furthermore, we define an element
f*a of (A :P) by setting (f*a){a’} = flaa’} — fla}-a’, for every @’ e A. It
can be verified directly that the operation f — f*a makes (%”:9P) into an A-right
module and that (4 :P) has in fact become a two-sided A-module. We state
these facts in the following proposition:

ProrosiTiON 1.1. The linear space (A :B) of the (1, B)-cochains of ¥ is a
two-stded A-module with the operations f — a*f and f — f*a, where

(a*f){a’} = a-fla’} and
(fra){a’} = flaa’} — fla}-a’.
When (A®:B) is regarded as a two-sided A-module in this particular fashion
we denote it by (%A:P).
2. Coboundary, Cocycle, Cohomology Group.

We define a “coboundary operator,” 8, operating on the set of all cochains
of % as follows:
DeFINITION 2.1. & maps (A™ :P) linearly into (A :P). If f e (A™:P),

ilar, -+, @Gm} = ar-flaz, -+, Ay}
+ é (_1)‘f{al‘, cee ’a‘.a'._'_l R 7am+l}

+ (=D™ffar, -+ , am} “Gmi1 .

4 In the conventional sense. See, for instance, N. Jacobson, ‘‘The Theory of Rings”,
Math. Surv. No. II, Amer. Math. Soc. (1943), p.p. 14-16.
5 Cf. N. Jacobson, loc. cit., pp. 4-5.
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60 G. HOCHSCHILD

We wish to prove that 85f = 0, for every cochain f. We shall do this by
making an induction on the dimension m of f: For m = 0, f ¢ B, and §f{a} =
a'f - f'a’
8flar, ax} = ar1-6f{a} — 8f{aas} + of{ar}-@

=a(@f — fa) — (@ef — faw) + (@f — fa)ae

= 0.
Corresponding to any element f of (A™:P), m = 1, we define an element
Fe(A™ ™V (A:P)) by the relation f{ay, -« -, @mi}{an} = flar, -+, an}. (We

identify (A (%:P)) with (A:P)). Then we can verify directly from Definition
2.1 that, if fe(A™:P), m = 1,

flar, -+, G} = (al*f{az, oy @) {@me

m—1

+ g (—1)‘7{04) trt Qi Qi 0, am} {am-H.}

+ (=D"(flar, -+, @na}*am) {@nia}
= o8f{ar, -++, @n} {@mi1}, whence o&f = &f
Thus, 85f = 6f = 8.
Since dim (f) = dim (f) — 1, and since f = 0 only if f = 0, we can now apply
induction to prove our result.

We now make the customary definitions:

DEFINITION 2.2. A cochain f is called a cocycle if 8f = 0. f1ssaid to be a co-
boundary if there exists a cochain g such that f = &g.

Clearly, the set of (m, B)-cocycles of U constitutes a subgroup of the additive
group of the (m, PB)-cochains of A. By the last result, the set of coboundaries
constitutes a subgroup of the corresponding group of cocycles.

DerFINITION 2.3. For m = 1, the m-dimensional cohomology group of U for the
module B, denoted by H™(A, B), is the group of the (m, P)-cocycles of A, modulo the
subgroup of coboundaries.’

3. A Fundamental Isomorphism.

It is obvious that the mapping f — f, defined in section 2, maps (A :P)
isomorphically onto (™ V:(A:P)), for m = 1. The relation §f = &f shows
furthermore that this isomorphism maps the group of (m, B)-cocycles onto the
group of (m — 1, (A:P))-cocycles. Finally, if dim (f) = 2, f = 3¢ if and only
if f = 6g. Hence the mapping f — f induces an isomorphism between H™(2, B)
and H™ (Y, (A:P)):

Tarorem 3.1. Ifm = 2, H™(Y, B) = H™ (¥, (A:B)).

4. Separability and the 1-dimensional Cohomology Groups.

In this section, we wish to prove the fundamental result that an algebra is
separable if and only if all its 1-dimensional cohomology groups vanish. We

¢ Ho(9, B) is of no interest. We may define it as the additive subgroup of P consisting of
all u ¢ B such that a.u = u.a, for all a € A.
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COHOMOLOGY GROUPS OF ASSOCIATIVE ALGEBRA 61

recall that an algebra % over the field ® is said to be separable if 9r is semi-simple
for every extension field T of ®. Here, Ar denotes the algebra over I' which
consists of all linear combinations Y1, y:a;, where v; ¢ T and where a; , - - - , an
constitute a basis of A over ¥, multiplication being derived from the multiplica-
tion of the a; in A over ®.”

Now, let A be a separable algebra over ®, and let P be any two-sided 9-module.
A has an identity element: e, say. For any element u ¢ P we may write u =
e-u + (1 — e)-u, where 1 stands for the identity operator on P. This gives a
direct decomposition of P into the A-invariant linear subspaces e-Pand (1 — ¢) - P.
If fis any (1, B)-cocycle of A we have

(1 —e)-fla} = (1 —e)-flea} = (1 — e)-fle}-a.

If we set u = (1 — e)-f{e} we have therefore f{a} = e-fla} — (a-u — u-a).
It follows that f cobounds if and only if the (1, e-P)-cocycle f, where f{a} =
e-f{a}, cobounds. Thus, in proving that every 1l-dimensional cocycle of A
cobounds, we may confine our attention to those two-sided A-modules P for which
the identity e of A is the left identity operator.

Since U is separable there exists a finite algebraic extension T of & such that
Ur is the direct sum of full matrix algebras over I';say qr = T'n, + -+ 4 Ta,,.
If fis any (1, B)-cocycle of A over ® we definea (1, Pr)-cocycle f* of Ar by setting
v = D ravifla). Letel; G, 7 =1,---, ng) denote the matrix
units of T, . Then €} er, = 8,.9;:€i,, and Z.’,"_l > e el; = e. Consider
now the element u* = Z;’;l Dol el *{el.;} of Br : We have

m n m n
Chewt — ureop = 30 O ety ] — z‘, o1 (F¥letehs] — el flenad)

g=1 1=1 gq=1 i=

ny Ny
= 21 e,'..tei.yf*{ei..-} - Z; e:.l'fk{e;.iez.t} + e-f*{eh.}
= ==

= f*{en.d.
By linearity, it follows that f*{a*} = a*-u* — u*-a*, for every a* e Ar. In
particular, f{a} = a-u* — u*-a, for every a e . The question of whether

there exists an element u € B such that f{a} = a-u — u-a, for every a ¢ A can
be reduced to the question of whether a certain system of linear equations with
coefficients in ® possesses a solution in . The last equation means that there
does exist a solution in T. Hence, there must already be a solution in &, and
we have proved that every 1-dimensional cocycle of 9 is a coboundary.
Conversely, suppose that % is an algebra over ® such that H'(¥, B) = {0}
for every two-sided A-module PB. It is known that under these circumstances
o is semi-simple®. We shall, however, reproduce the proof here since it will
throw some light on the significance of the 1-dimensional cohomology groups.

7 From here on we shall make use of the classical results in the theory of separable alge-
bras without giving specific references. The results in question can be found in any of the
standard expositions, such as: Deuring, ‘‘ Algebren’’; Van der Waerden, ‘“ Moderne Algebra’’;
or Jacobson, loc. cit.

8 G. Hochschild, loc. cit., Th. 2.3.
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62 G. HOCHSCHILD

As is well known, a necessary and sufficient condition for an algebra to be
semi-simple i1s that every representation be completely decomposable into ir-
reducible parts. This in turn is equivalent to the following condition: If P
is any left A-module, T an Y-invariant subspace of P, then there exists a (com-
plementary) U-invariant subspace R such that P is the direct sum of T and R.

We shall show that this condition is satisfied if all the 1-dimensional cohomol-
ogy groups of U are {0}:

Given the left 9-module B and an invariant subspace Q, let us first choose
any linear subspace & of P such that P, as a linear space, is the direct sum of Q
and €. For any s e @ and a ¢ A we may write a-s = S.{s} + Q.{s}, where
Sa{s} is a uniquely determined element of &€ and Q.{s} a uniquely determined
element of Q. Clearly, S, and @, are linear mappings of & into & and Q re-
spectively From the relation a;-(az-s) = aa:-s and the fact that the sum
L 4+ € is direct we obtain the relations

SaISag = Salag and Qalsag + al*Qaz = Qulaz ’

where a*Q) is defined by (a*Q){s} = a-Q{s}.

Now, let It denote the linear space of all linear mappings of & into Q. We
make M a two-sided A-module by the definitions: (axM){s} = a-M{s}, M*a =
MS,,for M eI, ae, seS. Itis easy to see from the above relations that
the mapping a — Q. is a (1, M)-cocycle of A. By our hypothesis, there exists
an element M, ¢ M such that Q, = axM, — M,S,, i.e. Qf{s} = a-My{s} —
Mo{S.{s}}. Now, consider the mapping s — s — My{s} of & into B. This
maps & onto some linear subspace R of B. We have a- (s — Mo{s}) = S.{s} +
Qa{s} — a-Mo{s} = S.{s} — Mo{Ss{s}}, which shows that R is Y-invariant.
It is obvious that the mapping s — s — M,{s} is a linear isomorphism, whence
dim (R) = dim (&). Furthermore, it is easy to see that ®# NQ = {0}. Hence
P is the direct sum of Q and R. This completes the proof that o is semi-simple.

Hence, what we have to show now is that if ¥ is semi-simple and inseparable
there exist a two-sided UA-module P and a non-cobourrding (1, B)-cocycle of .
Since 2 must have an inseparable simple component and since any non-co-
bounding 1-cocycle of a simple component of U can be trivially extended to give a
non-cobounding 1-cocycle of A we may suppose from now on that ¥ is simple.
Then—as is well known—the center € of ¥ is a field which is algebraic and
inseparable over ®. In the case where ¥ itself is an inseparable extension
field of &, the result in question follows immediately from the known theory of
derivations—i.e. (1, €)-cocycles of €—in fields of characteristic p.*  Of the re-
sults of this theory we shall require only the following lemma:

LemMA 4.1.  Let ® be a field of characteristic p (3 0), € an inseparable algebraic
extension of ®. Then there exists a non-zero derivation of € (i.e. a non-cobounding
(1, @)-cocycle of §) over ®.

*F. K. Schmidt, ‘“Zusatz bei der Korrektur”, Crelle’s Journal, Vol. 177, pp. 223-237.
R. Baer, ““Algebraische Theorie der differentiterbaren Funktionen-koerper 1,’’, Sitzungsber-
ichte, Heidelberger Akademie, 1927, p.p. 15-32. N. Jacobson, ‘ Abstract Derivations and Lie
Algebras,” Trans. Amer. Math. Soc., vol. 42 (1937), p.p. 206-224.

This content downloaded from
128.151.150.9 on Wed, 01 Nov 2023 20:43:54 +00:00
All use subject to https://about.jstor.org/terms



COHOMOLOGY GROUPS OF ASSOCIATIVE ALGEBRA 63

Proor. It is easy to see that there exists an intermediate field € over &
such that € = &(c), where ¢’ ¢ ©. We define a linear mapping D of € into
itself by setting D{s} = 0, for every s ¢ &, and D(sc?) = sqc* '¢o , where ¢, is an
arbitrary fixed element (0) of €. It is easy to verify that D is a non-zero
derivation of € over &, and hence also over &.

We can now begin the construction of a non-cobounding 1-cocycle of the
simple inseparable algebra . If m is the dimension of A over its center ©
the regular representation of % over € provides us with an isomorphic mapping
a — M, of A into the matrix algebra G,, (m-rowed square matrices with elements
in €). It follows that the definitions a-M = MM, M-a = MM, make G,
(regarded as a linear space over ®) a two-sided 2-module.

Now let D be a derivation of € over & which does not map all of € into zero
(such a D exists, by Lemma 4.1). If M = (c;;) is any element of €, we define
D{M} = (D{c:;}) and verify that this is a derivation of €., over . If we now
set fla} = D{M.,}, it is clear that f is a (1, €n.)-cocycle of A. If ce §, we
must obviously have M, = ¢l , where I,, denotes the identity matrix in €, .
Hence, f{c} = Df{c}I., which is different from zero for some ce €. On the
other hand, if f were a coboundary, we should have a matrix M, ¢ €., such that
fla} = MMy —*M M, , for every a ¢ 9. But this would imply that f{c} = 0,
for every c e €. Hence, f cannot cobound. Thus, we have proved the follow-
ing theorem:

THEOREM 4.1. A necessary and sufficient condition for an algebra A to be
separable s that H' (¥, B) = {0} for every two-sided N-module P.

6. A Natural Homomorphism.

If Bis an ideal of the algebra 9 and P a two-sided A-module, then P is also a
two-sided 8-module. A P-cochain f of 2, when restricted to B, determines a
P-cochain f of 8. The mapping f — f is clearly linear and maps cocycles into
cocycles, and coboundaries into coboundaries. Therefore, it defines a homo-
morphism of H™(Y, B) into H™(B, PB) which we shall call the natural homo-
morphism.

We shall confine our attention to the 1-dimensional cohomology groups and
prove the following theorem:

TaEOREM 5.1. Let Q be the subspace of P which is annihilated by B. Then
the kernel of the natural homomorphism of H' (Y, B) into H (B, PB) is isomorphic
with H'(A/B, Q), where O is regarded as a two-sided A/B-module.

Proor. If fis a 1-dimensional P-cocycle of A which cobounds in B there
exists an element u e P such that f{b} = b-u — u-b, for every b e 8. Consider
the (1, B)-cocycle f/ of A defined by:f'{a} = fla} — a-u+u-a. Thenf'{b} =0,
for every b e, ie. f/ = 0. Furthermore, b-f'{a} — f'{ba} + f'{b}-a = 0,
since f’ is a cocycle. This reduces to b-f’{a} = 0, and similarly, f'{a}-b = 0,
for all be®B and all a € A. Thus, f/ maps ¥ into Q. Clearly, f/ may be re-
garded as a (1, Q)-cocycle f* of A/B. If f* cobounds there exists an element
v Q) such that f*{a} = a-v — v-a. But thenf{a} = a-(u + v) — (u + v)-aq,
i.e. f cobounds. Hence the mapping f — f* which is determined to within a
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64 G. HOCHSCHILD

coboundary, defines an isomorphism of the kernel of our homomorphism
H'(Y, p) — H'(DB, p) into H'(A/B, Q).

Finally, if 2* is any (1, <)-cocycle of A/B we can define a (1, B)-cochain h
of A by the relation h{a} = h*{a}, where d is the coset of a mod B. It is easily
seen that h is actually a cocycle which vanishes on 8. Obviously, & is mapped
into h* by the above isomorphism, which is therefore an isomorphism onto
H'(UA/WB, ). This proves Theorem 5.1.

We may also start with any two-sided 2/8B-module C and make it a two-sided
A-module by the definitions: a-v = d-v, v-a = v-a, where v ¢  and a is the coset
of a mod B. Theorem 5.1 then shows that the kernel of the natural homo-
morphism of HY(¥, L) into H'(B, ) is isomorphic with A'(A/B, T). Com-
bining these results with Theorem 4.1 we obtain the following corollary:

CoRrOLLARY. A mecessary and sufficient condition that /B be separable is that
the natural homomorphism of H'(U, B) into H'(B, B) be an isomorphism, for every
two-sided A-module P.

6. Two-dimensional Cohomology and Extensions.

Let A be an algebra over ®. By an extension of 3 we shall mean a pair
{8, o}, where B is an algebra over ® and o a homomorphism of 8 onto A. The
extension {B, o} is called singular if the kernel & of ¢ satisfies the condition
& = {0}. % is said to be segregated in the extension {8, ¢} if B is the direct
sum of & and a subalgebra A* isomorphic with .

We wish to investigate those algebras which have the property of being
segregated in every extension. It will be shown that this property is equivalent
to that of having all 2-dimensional cohomology groups vanish. It turns out
that, in this connection, only the singular extensions are of importance. In
fact, we have the following proposition:

ProposiTioN 6.1. If U is segregated in every singular extension then ¥ is segre-
gated in every extension.

Proor. We shall show first that we can reduce the problem to the case where
the kernel & of the extension is nilpotent. Specifically, we suppose that A
is segregated in every extension with nilpotent kernel and prove that then
is segregated in every extension.

Let {3, o} be any extension of U, let & denote the kernel of the homomorphism
o, and let N denote the radical of B. Consider B/R: clearly, (R + RN)/N is
an ideal of B/R (for K is an ideal of B). Since B/R is semi-simple (we need
not consider the case where 8, and hence also R, is nilpotent), so is (R + R)/R.
Further, (R + R)/R is isomorphic with /N, where # = & N R. Obviously,
N is a nilpotent ideal of B, K/N is a semi-simple ideal of B/N, and we have the
isomorphisms A =2 B/ = (B/N)/(K/N).

Now, if € is any algebra and & a semi-simple ideal of € then € is the direct
sum of & and another ideal T. For, if § is the radical of € we have S N $ =
{0}; €/ is semi-simple and contains the semi-simple ideal (& + )/ = &.
Hence /9 is the direct sum of (& + $)/ and another ideal I.  Clearly, there
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COHOMOLOGY GROUPS OF ASSOCIATIVE ALGEBRA 65

exists an ideal T (D $) of € such that 1 = T/H. Since U N (S + H)/H =
{0} we have TN & C H, and since S N O = {0} this implies that T N S =
{0}. Thus, € is the direct sum of & and T.

Applying this to the above we conclude that there exists an ideal D of 8/N
such that ¥ =~ D. But D is of the form D/N, where D is an ideal of B, and
there is a homomorphism of D onto ¥ with the nilpotent kernel ®. By hypo-
thesis, there exists a subalgebra A* of D such that A* == A and D is the direct
sum of N and A*. Obviously, A*is also a subalgebra of B, and B is the direct
sum of ® and A* i.e. A is segregated in {PB, o}.

It remains to show that if o is segregated in every singular extension then ¥
is segregated in every extension whose kernel is nilpotent. This we prove by an
induction on the dimension of the kernel. If the kernel is of dimension 0, 8
is isomorphic with % and there is nothing to prove. Suppose now that the
dimension of the nilpotent kernel is n, and that our result has already heen
established for all extensions with a nilpotent kernel of dimension less than n.
The homomorphism ¢ of B onto A induces a homomorphism & of B/&* onto A
whose kernel is 8/8%, so that {8/8°, &} is a singular extension of %. Hence,
there exists a subalgebra 9 of B/8” such that % = A and B/K* is the direct sum
of 8/8*and . Let @ be the subalgebra of 8 such that €/f* = 9. Then therc
exists a homomorphism  of € onto % whose kernel is . Since f is nilpotent,
dim (R*) < =, and it follows from our inductive hypothesis that there exists a
subalgebra A* of € such that A* = A and € is the direct sum of &* and A*.
Clearly, A* is also a subalgebra of B and B is the direct sum of & and A*. This
completes the proof of Proposition 6.1.

In view of Proposition 6.1 we may confine our attention to singular extensions.
We shall say that two extensions {8, ¢} and {B*, ¢*} are isomorphic if there
exists an isomorphism I of B onto B* such that ¢*I = ¢. We wish to show
that there is a one to one correspondence between the classes of isomorphic
singular extensions of A and its 2-dimensional cohomology classes.

Let {8, o} be a singular extension of A with kernel 8. Let p be any linear
mapping of A into B such that

oi{pla}} = a, for every ae¥N, or—which is equivalent—
pf{oi{bl} = b mod R, for every be®B. (1)

We can make & a two-sided A-module by the definitions a-k = plalk, k-a =
kp{a}, where ke R, a ¢ A. Since the difference of any two mappings p satis-
fying (1) is a mapping of ¥ into ® and since & = {0} it is clear that k-a and
a-k are independent of the particular mapping p we have selected. Thus the
two-sided A-module R is uniquely determined by the extension {3, ¢}. Fur-
thermore, if {B*, ¢*} is an isomorphic extension, we have:

o*{p*{a}} = a = ofpla}} = o*I{p{a}}, ie. p*{a} = I{p{a}} mod *.

Hence,
a-I{k} = p*{a}I{k} = I{pla}}I{k} = I{a-k},
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66 G. HOCHSCHILD

and, similarly,
I{k}-a = Itk-a}.

This means that I is an operator isomorphism between the two-sided 9[-modules
f and £*, and we have shown that isomorphic extensions lead to operator-
isomorphic A-modules.

Consider now the mapping a; X a; — f,{ai, a2} = plar}p{az} — plaas}
of A X Ainto . It is easy to verify that f, is a (2, {)-cocycle of ¥A.

If o’ is a second linear mapping of U into B satisfying (1), we have:
folar, @} — forlar, @} = plai}lofae} — p'{as}]

= blaa} — p'laa}] + lbla} — o'{ai}lp’ {a)
= a-lplar) — p'{@}] — lpla} — p'{aias}]

+ lpla} — olai}l-as,
ie.f, — f,r = 8(p — p’). Hence the cohomology class f of f, is uniquely de-
termined by the extension {B, o¢}.

Now let {8B*, ¢*} be a singular extension of ¥ which is isomorphic (by the
isomorphism I) with {8, ¢}. Then Ip is clearly a linear mapping of U into B*
which satisfies (1). Hence f;, is a (2, 8*)-cocycle of A which lies in the cohomol-
ogy class determined by the extension {8* o*}. Since f;, = If,, the cohomol-
ogy class determined by the extension {B*, ¢*} is the isomorphic image by I
of the cohomology class determined by {9, o}.

Conversely, suppose that we are given a two-sided 2-module P and a (2, B)-
cocycle f of A. Let B be the direct sum of the linear space underlying % and the
linear space B. Let (a1, wi), (a2, u2) (a: € A, u; € B) be any two elements of B.
We define their product by the equation (a;, w)(az, ) = (a2, ay-u2 +
w-az + fl{a:, a2}). Using the fact that f is a cocycle we verify easily that this
multiplication is associative. Hence B has been given the structure of an
algebra, By, say. The mapping (e, u) — ¢{(a, )} = a is obviously a homo-
morphism of B; onto A. The kernel of ¢ is the ideal ® = (0, B) of B, and, clearly,
8% = {0}. Thus {B,, o} is a singular extension of %. Moreover, if p is the
mapping a — (a, 0) of ¥ into By, p satisfies condition (1) and the (2, 8)-cocycle
f» derived from the extension {®B;, ¢} and p is (to within a trivial isomorphism)
identical with f. It is obvious that if f and f* are corresponding cocycles over
operator-isomorphic U-modules the corresponding extensions of 2 are iso-
morphie.

Finally, let f’ be another (2, B)-cocycle of A which is cohomologous to f. Then
there exists a linear mapping 7 of A into P such that f — f* = &7, i.e.

flai, a2} = f'{a1, @} + ar-t{ae} — t{ai02} + {a}-as.

Consider the mapping (a, u) — I{(a, u)} = (a, v + 7{a}) of B; onto By, . We
have:
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I{(a:, w)(az, ur)} = (@maz, a1-uz + wi-az + flai, az} + 7{aa})
= (0, a1°uz + w62 + @ 7{az} + r{a} a2 + f'{a1, aa})
= (alyul + T{al})(aa’uz + T{a‘l}) = I{(alyul)}I{(aﬂru&)})

i.e. I is an isomorphism of B; onto B, . Moreover,
o'{I{(a, w}} = o'{(a, w + r{a})} = a = o{(a, W)}.

Hence the extensions {8, ¢} and {B;., o’} are isomorphic. We state the
foregoing results in the following proposition:

ProrosiTioN 6.2. There s a one to one correspondence between the classes of
isomorphic singular extensions, and the 2-dimensional cohomology classes of .
(We identify corresponding cohomology classes over operator-isomorphic N-modules.)

Next we prove:

ProrosiTioN 6.3. U is segregated in a singular extension if and only if the cor-
responding cohomology class is zcro.

ProoF: We note that if % is segregated in the extension {8*, ¢*}, and if {8, ¢}
is isomorphic with {8*, ¢*}, then U is segregated also in {8, ¢}. Now let {8, o}
be an extension which determines a zero cohomology class. Then it is obvious
that ¥ is segregated in the extension {B,, ¢*} constructed from the representa-
tive f = O of this class. Since {B, ¢} is isomorphic with {8y, ¢*}, A is segre-
gated in {B, ¢}. The necessity of the condition is obvious.

From Propositions 6.1, 6.2, and 6.3 follows immediately the main result of
this section:

THEOREM 6.1. A necessary and sufficitent condition for U to be segregated in
every extension is that H*(A, B) = {0}, for every two-sided N-module P.

This, with Theorems 4.1 and 3.1 implies a result which is essentially the
classical generalization (to arbitrary ground fields) of Wedderburn’s third struc-
ture theorem:

CoroLLARY: A separable algebra is segregated in every extension.

ABERDEEN Proving GrounD, Mb.
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