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Higher chromatic Thom spectra via unstable homotopy theory

SANATH K DEVALAPURKAR

We investigate implications of an old conjecture in unstable homotopy theory related to the Cohen–Moore–
Neisendorfer theorem and a conjecture about the E Œ2�–topological Hochschild cohomology of certain
Thom spectra (denoted by A, B and T .n/) related to Ravenel’s X.pn/. We show that these conjectures
imply that the orientations M Spin! bo and M String! tmf admit spectrum-level splittings. This is
shown by generalizing a theorem of Hopkins and Mahowald, which constructs HFp as a Thom spectrum,
to construct BPhn�1i, bo, and tmf as Thom spectra (albeit over T .n/, A, and B, respectively, and not over
the sphere). This interpretation of BPhn� 1i, bo, and tmf offers a new perspective on Wood equivalences
of the form bo^C�' bu: they are related to the existence of certain EHP sequences in unstable homotopy
theory. This construction of BPhn� 1i also provides a different lens on the nilpotence theorem. Finally,
we prove a C2–equivariant analogue of our construction, describing HZ as a Thom spectrum.
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1 Introduction

1.1 Statement of the main results

One of the goals of this article is to describe a program to prove the following old conjecture (studied, for
instance, by Laures and Schuster [60; 61], and discussed informally in many places, such as Section 7 of
Mahowald and Rezk [75]):
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50 Sanath K Devalapurkar

Conjecture 1.1.1 The Ando–Hopkins–Rezk orientation (see [6]) MString! tmf admits a spectrum-level
splitting.

The key idea in our program is to provide a universal property for mapping out of the spectrum tmf. We
give a proof which is conditional on an old conjecture from unstable homotopy theory stemming from the
Cohen–Moore–Neisendorfer theorem and a conjecture about the E2–topological Hochschild cohomology
of certain Thom spectra (the latter of which simplifies the proof of the nilpotence theorem of Devinatz,
Hopkins and Smith [38]). This universal property exhibits tmf as a certain Thom spectrum, similarly to
the Hopkins–Mahowald construction of HZp and HFp as Thom spectra.

To illustrate the gist of our argument in a simpler case, recall Thom’s classical result from [92]: the
unoriented cobordism spectrum MO is a wedge of suspensions of HF2. The simplest way to do so is to
show that MO is an HF2–module, which in turn can be done by constructing an E2–map HF2!MO.
The construction of such a map is supplied by the following theorem of Hopkins and Mahowald:

Theorem (Hopkins and Mahowald; see Mahowald [67] and Mahowald, Ravenel and Shick [73,
Lemma 3.3]) Let � W �2S3 ! BO denote the real vector bundle over �2S3 induced by extending
the map S1! BO classifying the Möbius bundle. Then the Thom spectrum of � is equivalent to HF2

as an E2–algebra.

Remark 1.1.2 The Thomification of the E2–map � W�2S3!BO produces the desired E2–splitting
HF2!MO.

Our argument for Conjecture 1.1.1 takes this approach: we shall show that an old conjecture from unstable
homotopy theory and a conjecture about the E2–topological Hochschild cohomology of certain Thom
spectra provide a construction of tmf (as well as bo and BPhni) as a Thom spectrum, and utilize the
resulting universal property of tmf to construct an (unstructured) map tmf!MString.

Mahowald was the first to consider the question of constructing spectra like bo and tmf as Thom spectra
(see [71]). Later work by Rudyak [88] sharpened Mahowald’s results to show that bo and bu cannot
appear as the Thom spectra of a p–complete spherical fibration. Angeltveit, Hill and Lawson [10] gave an
alternative proof of this fact under the assumption that the p–complete spherical fibration is classified by
a map of E3–spaces. Recently, Chatham [27] has shown that tmf^2 cannot appear as the Thom spectrum
of a structured 2–complete spherical fibration over a loop space. Our goal is to argue that these issues are
alleviated if we replace “spherical fibrations” with “bundles of R–lines” for certain well-behaved spectra R.

The first hint of tmf being a generalized Thom spectrum comes from a conjecture of Hopkins and Hahn
regarding a construction of the truncated Brown–Peterson spectra BPhni as Thom spectra. To state this
conjecture, we need to recall some definitions. Recall (see [38]) that X.n/ denotes the Thom spectrum of
the map�SU.n/!�SU'BU. Upon completion at a prime p, the spectra X.k/ for pn� k �pnC1�1

split as a direct sum of suspensions of certain homotopy commutative ring spectra T .n/, which in turn filter
the gap between the p–complete sphere spectrum and BP (in the sense that T .0/D S and T .1/D BP).
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Conjecture 1.1.3 (Hahn and Hopkins, unpublished) There is a map f W�2S jvnjC3! BGL1.T .n//,
which detects an indecomposable element vn 2 �jvnjT .n/ on the bottom cell of the source , whose Thom
spectrum is a form of BPhn� 1i.

The primary obstruction to proving that a map f as in Conjecture 1.1.3 exists stems from the failure of
T .n/ to be an E3–ring (due to Lawson [62, Example 1.5.31]). If R is an E1– or E2–ring spectrum, let
Z3.R/ denote the E2–topological Hochschild cohomology of R (see Definition 3.3.2). Hahn suggested
that one way to get past the failure of T .n/ to be an E3–ring would be via the following conjecture:

Conjecture 1.1.4 (Hahn) There is an indecomposable element vn 2 �jvnjT .n/ which lifts to the
E2–topological Hochschild cohomology Z3.X.p

n// of X.pn/.

We do not know how to prove this conjecture (and have no opinion on whether or not it is true). We
shall instead show that Conjecture 1.1.3 is implied by the two conjectures alluded to above. We shall in a
moment state these conjectures precisely as Conjectures D and E; let us first state our main results.

We need to introduce some notation. Let y.n/ (resp. yZ.n/) denote the Mahowald–Ravenel–Shick
spectrum, constructed as a Thom spectrum over �Jpn�1.S

2/ (resp. �Jpn�1.S
2/h2i) introduced in [73]

to study the telescope conjecture (resp. by Angelini-Knoll and Quigley [8] as z.n/). Let A denote the
E1–quotient S==� of the sphere spectrum by � 2 �3.S/; its mod 2 homology is H�.A/Š F2Œ�

4
1
�. The

spectrum A has been intensely studied by Mahowald and his coauthors Davis and Unell in [67; 31; 69;
68; 70; 77], for instance, where it is often denoted by X5. (See Remark 2.1.8 for motivation for the term
“E1–quotient”.) Let B denote the E1–ring we introduced in [34, Construction 3.1]; it has been briefly
studied under the name X by Mahowald and Hopkins [72]. It may be constructed as the Thom spectrum
of a vector bundle over an E1–space N which sits in a fiber sequence �S9!N !�S13. The mod 2

homology of B is H�.B/Š F2Œ�
8
1
; �4

2
�.

We also need to recall some unstable homotopy theory. Cohen, Moore and Neisendorfer [29; 30; 81]
constructed a map �n W�

2S2nC1! S2n�1 whose composite with the double suspension E2 W S2n�1!

�2S2nC1 is the degree p map. (The E stands for “Einhängung”, which is German for “suspension”.)
Such a map was also constructed by Gray [44; 42]. In Section 4.1, we introduce the related notion of a
charming map (Definition 4.1.1), one example of which is the Cohen–Moore–Neisendorfer map.

Our main result is then:

Theorem A Suppose R is a base spectrum of height n as in the second line of Table 1. Let KnC1 denote
the fiber of a charming map �2S2pnC1C1! S2pnC1�1. Then Conjectures D and E imply that there is a
map � WKnC1!BGL1.R/ such that the mod p homology of the Thom spectrum K

�
nC1

is isomorphic to
the mod p homology of the associated designer chromatic spectrum ‚.R/ as a Steenrod comodule.1

1We elected to use the symbol ‚ because the first two letters of the English spelling of ‚ and of Thom’s name agree.
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height 0 1 2 n n n

base spectrum R S^p A B T .n/ y.n/ yZ.n/

designer chromatic spectrum ‚.R/ HZp bo tmf BPhni k.n/ kZ.n/

Table 1: To go from a base spectrum “of height n”, say R, in the second line to the third, one
takes the Thom spectrum of a bundle of R–lines over KnC1.

If R is any base spectrum other than B, the Thom spectrum K
�
nC1

is equivalent to ‚.R/ upon p–
completion for every prime p. If Conjecture F is true , then the same is true for B: the Thom spectrum
K
�
nC1

is equivalent to ‚.B/D tmf upon 2–completion.

Making sense of Theorem A relies on knowing that T .n/ admits the structure of an E1–ring; this is
proved by Beardsley and Lawson [21]; see also Remark 3.1.6. Note that the spectra A, B, y.n/ and yZ.n/

all admit E1–structures by construction. In Remark 5.4.7, we sketch how Theorem A relates to the proof
of the nilpotence theorem.

Although the form of Theorem A does not resemble Conjecture 1.1.3, we show that Theorem A implies
the following result:

Corollary B Conjectures D and E imply Conjecture 1.1.3.

In the case nD 0, Corollary B recovers the Hopkins–Mahowald theorem constructing HFp. Moreover,
Corollary B is true unconditionally when nD 0; 1.

Using the resulting universal property of tmf, we obtain a result pertaining to Conjecture 1.1.1.

Theorem C Assume that the composite Z3.B/! B ! MString is an E3–map. Then Conjectures
D, E and F imply that there is a spectrum-level unital splitting of the Ando–Hopkins–Rezk orientation
MString.2/! tmf.2/.

In particular, Conjecture 1.1.1 follows (at least after localizing at p D 2; a slight modification of our
arguments should work at any prime). We believe that the assumption that the composite Z3.B/! B!

MString is an E3–map is too strong: we believe that it can be removed using special properties of fibers
of charming maps, and we will return to this in future work.

We stress that these splittings are unstructured; it seems unlikely that they can be refined to structured
splittings. In [34], we showed (unconditionally) that the Ando–Hopkins–Rezk orientation MString! tmf
induces a surjection on homotopy, a result which is clearly implied by Theorem C.

We remark that the argument used to prove Theorem C shows that, if the composite Z3.A/!A!MSpin
is an E3–map, then Conjectures D and E imply that there is a spectrum-level unital splitting of the Atiyah–
Bott–Shapiro orientation MSpin! bo. This splitting was originally proved unconditionally (ie without
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Higher chromatic Thom spectra via unstable homotopy theory 53

assuming Conjecture D or Conjecture E) by Anderson, Brown and Peterson [4] via a calculation with the
Adams spectral sequence.

1.2 The statements of Conjectures D, E and F

We first state Conjecture D. The second part of this conjecture is a compilation of several old conjectures in
unstable homotopy theory originally made by Cohen, Moore and Neisendorfer [29; 30; 81], Gray [44; 42]
and Selick [89]. The statement we shall give differs slightly from the statements made in the literature;
for instance, in Conjecture D(b), we demand a Q1–space splitting (Notation 2.2.6), rather than merely an
H–space splitting.

Conjecture D The following statements are true:

(a) The homotopy fiber of any charming map (Definition 4.1.1) is equivalent as a loop space to the loop
space on an Anick space (Example 4.1.3).

(b) There exists a p–local charming map f W�2S2pnC1! S2pn�1 whose homotopy fiber admits a
Q1–space retraction off of �2.S2pn

=p/. There are also integrally defined maps �2S9! S7 and
�2S17! S15 whose composites with the double suspension on S7 and S15, respectively , are the
degree 2 maps. Moreover , their homotopy fibers K2 and K3 (respectively) admit deloopings , and
admit Q1–space retractions off of �2.S8=2/ and �2.S16=2/ (respectively).

Next, we turn to Conjecture E. This conjecture is concerned with the E2–topological Hochschild co-
homology of the Thom spectra X.pn� 1/.p/, A and B introduced above.

Conjecture E Let n� 0 be an integer. Let R denote X.pnC1� 1/.p/, A (in which case nD 1) or B (in
which case nD 2). Then the element �n 2 �jvnj�1R lifts to the E2–topological Hochschild cohomology
Z3.R/ of R, and is p–torsion in ��Z3.R/ if RDX.pnC1�1/.p/, and is 2–torsion in ��Z3.R/ if RDA

or B.

Finally, we state Conjecture F. It is inspired by Adams and Priddy [2] and Angeltveit and Lind [12]. We
believe this conjecture is the most approachable of the conjectures stated here.

Conjecture F Suppose X is a spectrum which is bounded below and whose homotopy groups are finitely
generated over Zp. If there is an isomorphism H�.X IFp/ŠH�.tmfIFp/ of Steenrod comodules , then
there is a homotopy equivalence X^p ! tmf^p of spectra.

After proving Theorems A and C, we explore relationships between the different spectra appearing on
the second line of Table 1 in the remainder of the article. In particular, we prove analogues of Wood’s
equivalence bo^C�' bu (see also Mathew [78]) for these spectra. We argue that these are related to
the existence of certain EHP sequences.

Finally, we describe a C2–equivariant analogue of Corollary B at nD 1 as Theorem 7.2.1, independently
of a C2–equivariant analogue of Conjectures D and E. This result constructs HZ as a Thom spectrum
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of an equivariant bundle of invertible T .1/R–modules over ��S2�C1, where T .1/R is the free E�–
algebra with a nullhomotopy of the equivariant Hopf map z� 2 �� .S/, and � and � are the regular and
sign representations of C2, respectively. This uses results of Behrens and Wilson [24] and Hahn and
Wilson [48]. We believe there is a similar result at odd primes, but we defer discussion of this. We discuss
why our methods do not work to yield BPhniR for n� 1 as in Corollary B.

Outline

Section 2 contains a review some of the theory of Thom spectra from the modern perspective, as well as
the proof of the classical Hopkins–Mahowald theorem. The content reviewed in this section will appear
in various guises throughout this project, hence its inclusion.

In Section 3, we study certain E1–rings; most of them appear as Thom spectra over the sphere. For
instance, we recall some facts about Ravenel’s X.n/ spectra, and then define and prove properties about the
E1–rings A and B used in the statement of Theorem A. We state Conjecture E, and discuss (Remark 5.4.7)
its relation to the nilpotence theorem.

In Section 4, we recall some unstable homotopy theory, such as the Cohen–Moore–Neisendorfer map and
the fiber of the double suspension. These concepts do not show up often in stable homotopy theory, so
we hope this section provides useful background to the reader. We state Conjecture D, and then explore
properties of Thom spectra of bundles defined over Anick spaces.

In Section 5, we state and prove Theorem A and Corollary B, and state several easy consequences of
Theorem A.

In Section 6, we study some applications of Theorem A. For instance, we use it to prove Theorem C,
which is concerned with the splitting of certain cobordism spectra. In a previous version of this article,
we had two subsections discussing Wood-like equivalences, and topological Hochschild homology of the
chromatic Thom spectra of Table 1. However, while making revisions to this article, we decided to split
these two sections off into separate articles [33; 36].

In Section 7, we prove an equivariant analogue of Corollary B at height 1. We construct equivariant
analogues of X.n/ and A, and describe why our methods fail to produce an equivariant analogue of
Corollary B at all heights, even granting an analogue of Conjectures D and E.

Finally, in Section 8, we suggest some directions for future research. There are also numerous interesting
questions arising from our work, which we have indicated in the body of the article.

Conventions

Unless indicated otherwise, or if it goes against conventional notational choices, a Latin letter with a
numerical subscript (such as x5) denotes an element of degree given by its subscript. If X is a space
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and R is an E1–ring spectrum, then X� will denote the Thom spectrum of some bundle of invertible
R–modules determined by a map � WX ! BGL1.R/. We shall often quietly localize or complete at an
implicit prime p. Although we have tried to be careful, all limits and colimits will be homotopy limits and
colimits; we apologize for any inconvenience this might cause.

We shall denote by Pk.p/ the mod p Moore space Sk�1[p ek with top cell in dimension k. The symbols
�i and �i will denote the conjugates of the Milnor generators (commonly written nowadays as �i and �i ,
although, as Haynes Miller pointed out to me, our notation for the conjugates was Milnor’s original
notation) in degrees 2.pi � 1/ and 2pi � 1 for p > 2 and 2i � 1 (for �i) at p D 2. Unfortunately, we will
use A to denote the E1–ring in appearing in Table 1, and write A� to denote the dual Steenrod algebra.
We hope this does not cause any confusion, since we will always denote the homotopy groups of A by
��A and not A�.

If O is an operad, we will simply write O–ring to denote an O–algebra object in spectra. A map of
O–rings respecting the O–algebra structure will often simply be called a O–map. Unless it is clear that
we mean otherwise, all modules over non-E1–algebras will be left modules.

Hood Chatham pointed out to me that S3h4i would be the correct notation for what we denote by
S3h3i D fib.S3!K.Z; 3//. Unfortunately, the literature seems to have chosen S3h3i as the preferred
notation, so we stick to that in this project.

When we write that Theorem A, Corollary B or Theorem C implies a statement P , we mean that
Conjectures D and E (and Conjecture F if the intended application is to tmf) imply P via Theorem A,
Corollary B or Theorem C.
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2 Background, and some classical positive and negative results

2.1 Background on Thom spectra

In this section, we will recall some facts about Thom spectra and their universal properties; the discussion
is motivated by [5].

Definition 2.1.1 Let A be an E1–ring and let � W X ! BGL1.A/ be a map of spaces. The Thom
A–module X� is defined as the homotopy pushout

†1CGL1.A/ //

��

†1C fib.�/

��

A // X�

Remark 2.1.2 Let A be an E1–ring and let � W X ! BGL1.A/ be a map of spaces. The Thom A–
module X� is the homotopy colimit of the functor X

�
�! BGL1.A/!Mod.A/, where we have abused

notation by identifying X with its associated Kan complex. If A is an E1–R–algebra, then the R–module
underlying X can be identified with the homotopy colimit of the composite functor

X
�
�! BGL1.A/! BAutR.A/!Mod.R/;

where we have identified X with its associated Kan complex. The space BAutR.A/ can be regarded as
the maximal subgroupoid of Mod.R/ spanned by the object A.

The following is immediate from the description of the Thom spectrum as a Kan extension:

Proposition 2.1.3 Let R and R0 be E1–rings with an E1–ring map R! R0 exhibiting R0 as a right
R–module. If f W X ! BGL1.R/ is a map of spaces , then the Thom spectrum of the composite
X !BGL1.R/!BGL1.R

0/ is the base change X f ^R R0 of the (left) R–module Thom spectrum X f.

Corollary 2.1.4 Let R and R0 be E1–rings with an E1–ring map R!R0 exhibiting R0 as a right R–
module. If f WX !BGL1.R/ is a map of spaces such that the composite X !BGL1.R/!BGL1.R

0/

is null , then there is an equivalence X f ^R R0 'R0 ^†1CX.

Moreover (see eg [15, Corollary 3.2]):

Proposition 2.1.5 Let X be a k–fold loop space and let R be an EkC1–ring. Then the Thom spectrum
of an Ek–map X ! BGL1.R/ is an Ek–R–algebra.

We will repeatedly use the following classical result, which is again a consequence of the observation that
Thom spectra are colimits, as well as the fact that total spaces of fibrations may be expressed as colimits;
see also [19, Theorem 1]:

Algebraic & Geometric Topology, Volume 24 (2024)



Higher chromatic Thom spectra via unstable homotopy theory 57

Proposition 2.1.6 Let X i
�! Y ! Z be a fiber sequence of k–fold loop spaces (where k � 1), and

let R be an Em–ring for m � k C 1. Suppose that � W Y ! BGL1.R/ is a map of k–fold loop spaces.
Then there is a k–fold loop map � W Z! BGL1.X

�ıi/ whose Thom spectrum is equivalent to Y � as
Ek�1–rings. Concisely, if arrows are labeled by their associated Thom spectra , then there is a diagram

X
i

//

X�ıi
$$

Y //

� Y �

��

Z

� Y �DZ�

��

BGL1.R/ // BGL1.X
�ıi/

The argument to prove Proposition 2.1.6 also goes through with slight modifications when k D 0, and
shows:

Proposition Let X i
�! Y ! Z be a fiber sequence of spaces with Z connected , and let R be an

Em–ring for m � 1. Suppose that � W Y ! BGL1.R/ is a map of Kan complexes. Then there is a
map � WZ! BAutR.X�ıi/ such that the homotopy colimit (ie “Thom spectrum” ) Z� of the following
composite is equivalent to Y � as an R–module:

(2-1) Z
�
�! BAutR.X�ıi/�ModR:

We will abusively refer to this result in the sequel also as Proposition 2.1.6.

Proof of the second form of Proposition 2.1.6 It will be convenient to use the model for Thom spectra
following [5]. Observe that a fibration X ! Y ! Z implies (eg by [5, Remark 2.4]) that there is a
functor Z! Top whose homotopy colimit is Y, and whose fiber over any vertex of z 2Z is X. Since X

is connected, we may write Y ' hocolimZ X. The map X ! Y is induced by the inclusion fzg ,!Z.
Since Y is a Kan complex, the Thom spectrum Y � can be identified (by [5, Definition 1.4]) with the
homotopy colimit of the composite Y

�
�! BGL1.R/ ' R–line � ModR (which we will temporarily

denote by � W Y ! ModR). We will write this as Y � ' hocolimY R. The left Kan extension of the
map Y !Z along the functor � W Y !ModR defines a functor � WZ!ModR, which sends z 2Z to
X�ıi ' hocolim.X ! Y

�
�!ModR/. Since Z is connected, this implies that Y � ' hocolimY R is the

homotopy colimit of the functor (2-1).

The following is a slight generalization of [15, Theorem 4.10]:

Theorem 2.1.7 Let R be an EkC1–ring for k � 0 and let ˛ W Y ! BGL1.R/ be a map from a pointed
space Y. For any 0 �m � k, let z̨ W�m†mY ! BGL1.R/ denote the extension of ˛. Then the Thom
spectrum .�m†mY /z̨ is the free Em–R–algebra A for which the composite Y !BGL1.R/!BGL1.A/

is null. More precisely, if A is any Em–R–algebra , then

MapAlgEm
R

..�m†mY /z̨;A/'

�
Map�.Y; �

1A/ if ˛ W Y ! BGL1.R/! BGL1.A/ is null;
∅ otherwise:
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Remark 2.1.8 Say Y D SnC1, so ˛ detects an element ˛ 2 �nR. Theorem 2.1.7 suggests interpreting
the Thom spectrum .�mSmCnC1/z̨ as an Em–quotient; to signify this, we will denote it by R==Em

˛. If
mD 1, then we will simply denote it by R==˛, while if mD 0, then the Em–quotient is simply the ordinary
quotient R=˛. See [15, Definition 4.3], where the quotient R==Em

˛ is called the versal R–algebra of
characteristic ˛.

2.2 The Hopkins–Mahowald theorem

The primary motivation for this project is the following miracle (see [67] for p D 2 and [73, Lemma 3.3]
for p > 2, as well as [15, Theorem 5.1] for a proof of the equivalence as one of E2–algebras):

Theorem 2.2.1 (Hopkins and Mahowald) Let S^p be the p–completion of the sphere at a prime p and
let f W S1! BGL1.S

^
p / detect the element 1�p 2 �1BGL1.S

^
p /' Z�p . Let � W�2S3! BGL1.S

^
p /

denote the E2–map extending by f ; then there is a p–complete equivalence .�2S3/�!HFp of E2–ring
spectra.

It is not too hard to deduce the following result from Theorem 2.2.1:

Corollary 2.2.2 Let S3h3i denote the 3–connected cover of S3. Then the Thom spectrum of the
composite �2S3h3i !�2S3 �

�! BGL1.S
^
p / is equivalent to HZp as an E2–ring.

Remark 2.2.3 Theorem 2.2.1 implies a restrictive version of the nilpotence theorem: if R is an E2–ring
spectrum, and x 2 ��R is a simple p–torsion element which has trivial HFp–Hurewicz image, then x is
nilpotent. This is explained in [79, Proposition 4.19]. Indeed, to show that x is nilpotent, it suffices to
show that the localization RŒ1=x� is contractible. Since px D 0, the localization RŒ1=x� is an E2–ring in
which pD 0, so the universal property of Theorem 2.1.7 implies that there is an E2–map HFp!RŒ1=x�.
It follows that the unit R!RŒ1=x� factors through the Hurewicz map R!R^HFp . In particular, the
multiplication-by-x map on RŒ1=x� factors as the indicated dotted map:

†jxjR

��

x
// R //

��

RŒ1=x�

HFp ^†
jxjR

x
// R^HFp

99

However, the bottom map is null (because x has trivial HFp–Hurewicz image), so x must be null in
��RŒ1=x�. This is possible if and only if RŒ1=x� is contractible, as desired. See Proposition 5.4.1 for the
analogous connection between Corollary 2.2.2 and nilpotence.

Since an argument similar to the proof of Theorem 2.2.1 will be necessary later in Step 2 of Section 5.2,
we will recall a proof of this theorem. The key nonformal input is the following result of Steinberger’s
from [26, Theorems III.2.2 and III.2.3]:
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Theorem 2.2.4 (Steinberger) Let �i denote the conjugate to the Milnor generators �i of the dual
Steenrod algebra , and similarly for �i at odd primes. Then

(2-2) Qpi

�i D �iC1; Qpj �j D �jC1

for i; j C 1> 0.

Proof of Theorem 2.2.1 By Theorem 2.1.7, the Thom spectrum .�2S3/� is the free E2–ring with
a nullhomotopy of p. Since HFp is an E2–ring with a nullhomotopy of p, we obtain an E2–map
.�2S3/�!HFp . To prove that this map is a p–complete equivalence, it suffices to prove that it induces
an isomorphism on mod p homology.

The mod p homology of .�2S3/� can be calculated directly via the Thom isomorphism HFp^.�
2S3/�'

HFp ^†
1
C�

2S3. Note that this is not an equivalence as HFp^HFp–comodules: the Thom twisting is
highly nontrivial.

For simplicity, we will now specialize to the case p D 2, although the same proof works at odd primes.
The homology of �2S3 is classical: it is a polynomial ring generated by applying E2–Dyer–Lashof
operations to a single generator x1 in degree 1. Theorem 2.2.4 implies that the same is true for the mod 2

Steenrod algebra: it, too, is a polynomial ring generated by applying E2–Dyer–Lashof operations to the
single generator �1 D �1 in degree 1. Since the map .�2S3/�!HF2 is an E2–ring map, it preserves
E2–Dyer–Lashof operations on mod p homology. By the above discussion, it suffices to show that the
generator x1 2H�.�

2S3/� ŠH�.�
2S3/ in degree 1 is mapped to �1 2H�HF2.

To prove this, note that x1 is the image of the generator in degree 1 in homology under the double
suspension S1! �2S3 and that �1 is the image of the generator in degree 1 in homology under the
canonical map S=p ! HFp. It therefore suffices to show that the Thom spectrum of the spherical
fibration S1! BGL1.S

^
p / detecting 1�p is simply S=p. This is an easy exercise.

Remark 2.2.5 When p D 2, one does not need to p–complete in Theorem 2.2.1: the map S1 !

BGL1.S
^
2
/ factors as S1! BO! BGL1.S/, where the first map detects the Möbius bundle over S1

and the second map is the J–homomorphism.

Notation 2.2.6 Let Q1 denote the (operadic nerve of the) cup-1 operad from [62, Example 1.3.6]: this is
the operad whose nth space is empty unless nD 2, in which case it is S1 with the antipodal action of †2.
We will need to slightly modify the definition of Q1 when localized at an odd prime p: in this case, it will
denote the operad whose nth space is a point if n< p, empty if n> p, and, when nD p, is the ordered
configuration space Confp.R2/ with the permutation action of †p. Any homotopy commutative ring
admits the structure of a Q1–algebra at pD 2, but at other primes it is slightly stronger to be a Q1–algebra
than to be a homotopy commutative ring. If k � 2, any Ek–algebra structure on a spectrum restricts to a
Q1–algebra structure.
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Remark 2.2.7 As stated in [62, Proposition 1.5.29], the operation Q1 already exists in the mod 2

homology of any Q1–ring R, where Q1 is the cup-1 operad from Notation 2.2.6 — the entire E2–structure is
not necessary. With our modification of Q1 at odd primes as in Notation 2.2.6, this is also true at odd primes.

Remark 2.2.8 We will again for the moment specialize to p D 2 for convenience. Steinberger’s
calculation in Theorem 2.2.4 can be rephrased as stating that Q1�i D �iC1, where Q1 is the lower-indexed
Dyer–Lashof operation. (See [26, page 59] for this notation.) As in Remark 2.2.7, the operation Q1

already exists in the mod p homology of any Q1–ring R. Since homotopy commutative rings are Q1–
algebras in spectra, this observation can be used to prove results of Würgler [95, Theorem 1.1] and
Pazhitnov and Rudyak [82, Theorem in Introduction].

Remark 2.2.9 The argument with Dyer–Lashof operations and Theorem 2.2.4 used in the proof of
Theorem 2.2.1 will be referred to as the Dyer–Lashof hopping argument. It will be used again (in the
same manner) in the proof of Theorem A.

Remark 2.2.10 Theorem 2.2.1 is equivalent to Steinberger’s calculation (Theorem 2.2.4), as well as
to Bökstedt’s calculation of THH.Fp/ (as a ring spectrum, and not just the calculation of its homotopy).
Let us sketch an argument. First, Theorem 2.2.4 implies Theorem 2.2.1 (by the proof above). The other
direction (ie the calculation (2-2)) can be argued by observing that the Thom isomorphism HFp^HFp '

HFp ^ †
1
C�

2S3 is an equivalence of E2–HFp–algebras, so that the Dyer–Lashof operations are
determined by the operations in H�.�

2S3IFp/. But the Dyer–Lashof operations are defined by classes
in H�.�

2S3IFp/, and Theorem 2.2.4 is a consequence of the fact that the iterates of Q1 on the generator
of H1.�

2S3IFp/ describe all the polynomial generators H�.�
2S3IFp/.

It remains to argue that Theorem 2.2.1 is equivalent to the calculation that THH.Fp/' Fp Œ�S3� as an
E1–Fp–algebra. This is shown in [58, Remark 1.5].

2.3 No-go theorems for higher chromatic heights

In light of Theorem 2.2.1 and Corollary 2.2.2, it is natural to wonder if appropriate higher chromatic
analogues of HFp and HZ, such as BPhni, bo or tmf, can be realized as Thom spectra of spherical
fibrations. The answer is known to be negative (see [71; 88; 27]) in many cases:

Theorem 2.3.1 (Mahowald, Rudyak and Chatham) There is no space X with a spherical fibration
� WX !BGL1.S/ (even after completion) such that X� is equivalent to BPh1i or bo. Moreover , there is
no 2–local loop space X 0 with a spherical fibration determined by an H–map � WX 0! BGL1.S

^
2
/ such

that X 0
� is equivalent to tmf^2 .

The proofs rely on calculations in the unstable homotopy groups of spheres.

Remark 2.3.2 Although not written down anywhere, a slight modification of the argument used by
Mahowald to show that bu is not the Thom spectrum of a spherical fibration over a loop space classified
by an H–map can be used to show that BPh2i at p D 2 (ie tmf1.3/) is not the Thom spectrum of a
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spherical fibration over a loop space classified by an H–map. We do not know a proof that BPhni is not
the Thom spectrum of a spherical fibration over a loop space classified by an H–map for all n� 1 and all
primes, but we strongly suspect this to be true.

Remark 2.3.3 A lesser-known no-go result, due to Priddy, appears in [64, Chapter 2.11], where it is
shown that BP cannot appear as the Thom spectrum of a double loop map �2X !BGL1.S/. In fact, the
argument shows that the same result is true with BP replaced by BPhni for n� 1; we had independently
come up with this argument for BPh1i before learning about Priddy’s argument. Since Lewis’s thesis is
not particularly easy to acquire, we give a sketch of Priddy’s argument. By the Thom isomorphism and
the calculation (see [63, Theorem 4.3] as well as [94, Proposition 1.7; 13, Proposition 5.3])

H�.BPhn� 1iIFp/Š

�
F2Œ�

2
1
; : : : ; �2

n�1
; �2

n ; �nC1; : : : � if p D 2;

Fp Œ�1; �2; : : : �˝ƒFp
.�n; �nC1; : : : / if p > 2;

we find that the mod p homology of �2X would be isomorphic as an algebra to a polynomial ring on
infinitely many generators, possibly tensored with an exterior algebra on infinitely many generators. The
Eilenberg–Moore spectral sequence then implies that the mod p cohomology of X is given by

H�.X IFp/Š

�
F2Œb1; : : : ; bn; cnC1; : : : � if p D 2;

Fp Œb1; b2; : : : �˝ƒFp
.cnC1; : : : / if p > 2;

where jbi j D 2pi and jci j D 2pi�1 C 1. If p is odd, then, since jb1j D 2p, we have Pp.b1/ D b
p
1

.
Liulevicius’s formula for P1 in terms of secondary cohomology operations [65, Theorem 1] allows us to
write Pp.b1/ as a sum c0R.b1/C

P

 c0;
�
 .b1/, where R.b1/ is a coset in H 2pC4.p�1/.X IFp/ and

�
 is an operation of odd degree, so that �
 .b1/ is in odd degree. We will not need to know what exactly
the sum is indexed by, or what any of these operations are. Observe that �
 kills b1 because everything is
concentrated in even degrees in the relevant range, and R also kills b1 since jR.b1/j D 4.p� 1/C 2pi

is never a sum of numbers of the form 2pk when p > 2. Using this, one can conclude that b
p
1
D 0,

which is a contradiction. A similar calculation works at p D 2, using Adams’ study of secondary mod 2

cohomology operations in [1].

Remark 2.3.4 Using the calculations of THH.bo/ and THH.ku/ from [11], Angeltveit, Hill and Lawson
[10] show that neither bo nor ku can appear as the Thom spectrum of a double loop map�2X!BGL1.S/.

Our primary goal in this project is to argue that the issues in Theorem 2.3.1 are alleviated if we replace
BGL1.S/ with the delooping of the space of units of an appropriate replacement of S. In the next section,
we will construct these replacements of S.

3 Some Thom spectra

In this section, we introduce certain E1–rings; most of them appear as Thom spectra over the sphere.
Table 2 summarizes the spectra introduced in this section and gives references to their locations in the
text. The spectra A and B were introduced in [34].
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Thom spectrum definition “height” BP–homology

T .n/ Theorem 3.1.5 n Theorem 3.1.5
y.n/ and yZ.n/ Definition 3.2.2 n Proposition 3.2.3

A Definition 3.2.8 1 Proposition 3.2.13
B Definition 3.2.18 2 Proposition 3.2.21

Table 2: Certain Thom spectra and their homologies.

3.1 Ravenel’s X.n/ spectra

The proof of the nilpotence theorem in [38; 54] crucially relied upon certain Thom spectra arising from
Bott periodicity; these spectra first appeared in Ravenel’s seminal paper [84].

Definition 3.1.1 Let X.n/ denote the Thom spectrum of the E2–map �SU.n/ � BU J
�! BGL1.S/,

where the first map arises from Bott periodicity.

Example 3.1.2 The E2–ring X.1/ is the sphere spectrum, while X.1/ is MU. Since the map�SU.n/!
BU is an equivalence in dimensions � 2n � 2, the same is true for the map X.n/! MU ; the first
dimension in which X.n/ has an element in its homotopy which is not detected by MU is 2n� 1.

Remark 3.1.3 The E2–structure on X.n/ does not extend to an E3–structure (see [62, Example 1.5.31]).
If X.n/ admits such an E3–structure, then the induced map H�.X.n//!H�.HFp/ on mod p homology
would commute with E3–Dyer–Lashof operations. However, we know that the image of H�.X.n// in
H�.HFp/ is Fp Œ�

2
1
; : : : ; �2

n �; since Steinberger’s calculation (Theorem 2.2.4) implies that Q2.�
2
i /D �

2
iC1

via the relation Q2.x
2/DQ1.x/

2, we find that the image of H�.X.n// in H�.HFp/ cannot be closed
under the E3–Dyer–Lashof operation Q2.

Remark 3.1.4 The proof of the nilpotence theorem shows that each of the X.n/ detects nilpotence.
However, it is known (see [84, Theorem 3.1]) that hX.n/i> hX.nC 1/i.

After localizing at a prime p, the spectrum MU splits as a wedge of suspensions of BP; this splitting comes
from the Quillen idempotent on MU. The same is true of the X.n/ spectra, as explained in [85, Section 6.5]:
a multiplicative map X.n/.p/!X.n/.p/ is determined by a polynomial f .x/D

P
0�i�n�1 aix

iC1 with
a0 D 1 and ai 2 �2i.X.n/.p//. One can use this to define a truncated form of the Quillen idempotent �n

on X.n/.p/ (see [50, Proposition 1.3.7]), and thereby obtain a summand of X.n/.p/. We summarize the
necessary results in the following theorem:

Theorem 3.1.5 Let n be such that pn � k � pnC1� 1. Then X.k/.p/ splits as a wedge of suspensions
of the spectrum T .n/D �pn �X.pn/.p/.

� The map T .n/! BP is an equivalence in dimensions � jvnC1j � 2, so there is an indecomposable
element vi 2 ��T .n/ which maps to an indecomposable element in ��BP for 0� i � n.
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� This map induces the inclusion BP�T .n/ D BP�Œt1; : : : ; tn� � BP�.BP/ on BP–homology , and
the inclusions F2Œ�

2
1
; : : : ; �2

n � � F2Œ�
2
1
; �2

2
; : : : � and Fp Œ�1; : : : ; �n� � F2Œ�1; �2; : : : � on mod 2 and

mod p homology.

� T .n/ is a homotopy associative and Q1–algebra spectrum.

Remark 3.1.6 It is known that T .n/ admits the structure of an E1–ring (see [21, Section 7.5]). We will
interpret the phrase “Thom spectrum X� of a map � W X ! BGL1.T .n//” where � arises via a map
X

�0
�! BGL1.X.p

nC1� 1// to mean the base change X�0 ^X .pnC1�1/ T .n/.

It is believed that T .n/ in fact admits more structure (see [9, Section 6] for some discussion):

Conjecture 3.1.7 The Q1–ring structure on T .n/ extends to an E2–ring structure.

Remark 3.1.8 This is true at p D 2 and nD 1. Indeed, in this case T .1/DX.2/ is the Thom spectrum
of the bundle given by the 2–fold loop map �S3 D �2BSU.2/ ! BU, induced by the inclusion
BSU.2/! B3U D BSU.

Remark 3.1.9 Conjecture 3.1.7 is true at p D 2 and nD 2. The Stiefel manifold V2.H
2/ sits in a fiber

sequence
S3
! V2.H

2/! S7:

There is an equivalence V2.H
2/' Sp.2/, so �V2.H

2/ admits the structure of a double loop space. There
is an E2–map � W�V2.H

2/! BU, given by taking double loops of the composite

BSp.2/! BSU.4/! BSU' B3U:

The map � admits a description as the left vertical map in the map of fiber sequences

�V2.H
2/ //

�

��

�S7 //

��

S3

��

BU // � // B2U

Here, the map S3! B2U detects the generator of �2.BU / (which maps to � 2 �2.BGL1.S// under
the J–homomorphism). The Thom spectrum �V2.H

2/� is equivalent to T .2/, and it follows that T .2/

admits the structure of an E2–ring. We do not know whether T .n/ is the Thom spectrum of a p–complete
spherical fibration over some space for n� 3.

It is possible to construct X.nC 1/ as an X.n/–algebra (see also [20]):

Construction 3.1.10 There is a fiber sequence

�SU.n/!�SU.nC 1/!�S2nC1:

According to Proposition 2.1.6, the spectrum X.nC 1/ is the Thom spectrum of an E1–map �S2nC1!

BGL1.�SU.n//�DBGL1.X.n//. This E1–map is the extension of a map S2n!BGL1.X.n// which
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detects an element �n2�2n�1X.n/. This element is equivalently determined by the map†1C�
2S2nC1!

X.n/ given by the Thomification of the nullhomotopic composite

�2S2nC1
!�SU.n/!�SU.nC 1/!�SU' BU;

where the first two maps form a fiber sequence. By Proposition 2.1.6, X.nC 1/ is the free E1–X.n/–
algebra with a nullhomotopy of �n.

Remark 3.1.11 Another construction of the map �n 2 �2n�1X.n/ from Construction 3.1.10 is as
follows. There is a map i WCPn�1!�SU.n/ given by sending a line `�Cn to the loop S1! SU.n/D
Aut.Cn; h ; i/ defined as follows: � 2S1 is sent to the (appropriate rescaling of the) unitary transformation
of Cn sending a vector to its rotation around the line ` by the angle � . The map i Thomifies to a stable
map †�2CPn!X.n/. The map �n is then the composite

S2n�1
!†�2CPn

!X.n/;

where the first map is the desuspension of the generalized Hopf map S2nC1!CPn which attaches the
top cell of CPnC1. The fact that this map is indeed �n follows immediately from the commutativity of
the diagram

(3-1)

S2n�1 //

��

CPn�1 //

��

CPn

��

�2S2nC1 // �SU.n/ // �SU.nC 1/

where the top row is a cofiber sequence and the bottom row is a fiber sequence.

An easy consequence of the observation in Construction 3.1.10 is the following lemma:

Lemma 3.1.12 Let �n 2 �jvnC1j�1T .n/ denote the element �pnC1�1. Then the Thom spectrum of the
composite �S jvnC1jC1! BGL1.X.p

nC1� 1//! BGL1.T .n// is equivalent to T .nC 1/.

Example 3.1.13 The element �0 2 �jv1j�1T .0/D �2p�3S.p/ is ˛1.

Example 3.1.14 Let us specialize to pD 2. Theorem 3.1.5 implies that H�T .n/ŠF2Œ�
2
1
; : : : ; �2

n �. Using
this, one can observe that the 6–skeleton of T .1/ is the smash product C�^C�, and so �1 2�5.C�^C�/.
This element can be described very explicitly: the cell structure of C�^C� is shown in Figure 1, and the
element �1 shown corresponds to the map defined by the relation �� D 0.

Example 3.1.15 The element �n in the Adams–Novikov spectral sequence for T .n/ is represented by
the element ŒtnC1� in the cobar complex. See [86, Section 1], where �n�1 is denoted by ˛. Ov1=p/.

A calculation with the Adams–Novikov spectral sequence (as in [86, Theorem 3.17]) proves the following:
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� �

�1 D ��

�

Figure 1: C�^C� shown horizontally, with 0–cell on the left. The element �1 is given by the
map � on the 4–cell defined by a nullhomotopy of �� D 0 2 �4.S

0/, as indicated in (3-1).

Lemma 3.1.16 The class �n�1 is killed by p in �jvnj�1X.pn� 1/.

Proof The argument is essentially the same as the classical observation that ˛1 2 �2p�3.S
0/ is simple

p–torsion. As mentioned in Example 3.1.15, �n�1 D ˛. Ov1=p/ in the notation of [86]. If

�.nC 1/D BP�.BP/=.t1; : : : ; tn/

denotes the Hopf algebroid of [86] — so that ExtBP�BP
�
BP�;BP�.T .n//

�
ŠExt�.nC1/.BP�;BP�/— then

˛ is the connecting homomorphism in cohomology over �.nC 1/ for the short exact sequence

0! BP�! p�1BP�! p�1BP�=BP�! 0:

Since Ov1=p is of order p in p�1BP�=BP�, we see that ˛. Ov1=p/ is of order p in the E2–page of the
Adams–Novikov spectral sequence computing ��T .n/. The class ˛. Ov1=p/ survives to the E1–page;
one observes there are no possible additive extensions, so p�n�1 D 0 2 ��T .n/.

In particular, the element �n�1 D �pn�1 2 �jvnj�1X.pn � 1/ is p–torsion, and the following is a
consequence of Example 3.1.15:

Proposition 3.1.17 The class �n�1 2 �jvnj�1X.pn � 1/ is null in ��X.pn/, and the Toda bracket
hp; �n�1; 1X .pn/i in �jvnjX.p

n/ contains an indecomposable vn.

Corollary 3.1.18 The element �n�1 2 �jvnj�1X.pn � 1/ lifts to �jvnjC1.CP jvnj=2/ along the map
†�2CP jvnj=2!X.pn� 1/.

Proof By Remark 3.1.11, the map �n�1 W S jvnj�1 ! X.pn � 1/ is given by the composite of the
generalized Hopf map S jvnj�1!†�2CPpn�1 with the map †�2CPpn�1!X.pn�1/. Moreover, this
generalized Hopf map is the desuspension of the unstable generalized Hopf map S jvnjC1! CPpn�1,
and so �n�1 lifts to an element of the unstable homotopy group �jvnjC1.CP jvnj=2/.

3.2 Related Thom spectra

We now introduce several Thom spectra related to the E1–rings T .n/ described in the previous section;
some of these were introduced in [34]. (Relationships to T .n/ will be further discussed in Section 6.2.)
For the reader’s convenience, we have included a table of the spectra introduced below with internal
references to their definitions at the beginning of this section.
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Remark 3.2.1 Recall (eg from [85, Section 4.4]) that, under the map

BP�.BP/Š BP�Œt1; t2; : : : �!H�.BPIFp/Š

�
F2Œ�

2
1
; �2

2
; : : : � if p D 2;

Fp Œ�1; �2; : : : � if p > 2;

the class ti is sent to �2
i (resp. �i) modulo decomposables when pD 2 (resp. p > 2). Moreover, under the

map
H�.BPIFp/!H�.HFpIFp/Š

�
F2Œ�1; �2; : : : � if p D 2;

Fp Œ�1; �2; : : : �˝E.�0; �1; : : : / if p > 2;

the classes �iC1 (resp. �i) at pD 2 (resp. p> 2) detect a nullhomotopy of vi 2�2pi�2BP in HFp˝HFp .
This implies, for instance, that, if X is a spectrum such that BP�.X /' BP�=.p; : : : ; vj�1/Œt1; : : : ; tm�

with j �m, then

H�.X IFp/Š

�
Fp Œ�1; : : : ; �m�˝E.�1; : : : ; �j�1/ if p > 2;

F2Œ�
2
1
; : : : ; �2

j ; �jC1; : : : ; �m� if p D 2:

The following Thom spectrum was introduced in [73]:

Definition 3.2.2 Let y.n/ denote the Thom spectrum of the composite

�Jpn�1.S
2/!�2S3 1�p

��! BGL1.S
^
p /:

If Jpn�1.S
2/h2i denotes the 2–connected cover of Jpn�1.S

2/, then let yZ.n/ denote the Thom spectrum
of the composite

�Jpn�1.S
2/h2i !�2S3

h3i !�2S3 1�p
��! BGL1.S

^
p /;

so that both y.n/ and yZ.n/ admit the structure of E1–rings via [15, Corollary 3.2].

Proposition 3.2.3 As BP�BP–comodules , we have

BP�.y.n//Š BP�=InŒt1; : : : ; tn�; BP�.yZ.n//Š BP�=.v1; : : : ; vn�1/Œt1; : : : ; tn�;

where In denotes the invariant ideal .p; v1; : : : ; vn�1/.

Proof The claim for y.n/ is [73, equation 2.8]. There is an equivalence yZ.n/=p ' y.n/, so that
BP�.yZ.n//=p ' BP�.y.n//. The Bockstein spectral sequence collapses, and the extensions on the
E1–page simply place p in filtration 1. This implies the second equivalence.

One corollary is the following; this can be deduced from Proposition 3.2.3 using Remark 3.2.1. We also
refer to [8, Lemma 2.3] for a direct proof.

Corollary 3.2.4 As A�–comodules , we have

H�.y.n/IFp/Š

�
F2Œ�1; �2; : : : ; �n� if p D 2;

Fp Œ�1; �2; : : : ; �n�˝E.�0; : : : ; �n�1/ if p � 3;
and

H�.yZ.n/IFp/Š

�
F2Œ�

2
1
; �2; : : : ; �n� if p D 2;

Fp Œ�1; �2; : : : ; �n�˝E.�1; : : : ; �n�1/ if p � 3:
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We will now relate y.n/ and yZ.n/ to T .n/.

Construction 3.2.5 Let m � n, and let Im be the ideal generated by p; v1; : : : ; vm�1, where the vi

are some choices of indecomposables in �jvi j
.T .n// which form a regular sequence. Inductively define

T .n/=Im as the cofiber of the map

T .n/=Im�1
vm^1
����! T .n/^T .n/=Im�1! T .n/=Im�1:

The BP–homology of T .n/=Im is BP�=ImŒt1; : : : ; tn�. The spectrum T .n/=.v1; : : : ; vm�1/ is defined
similarly.

Proposition 3.2.6 Let p > 2. There is an equivalence between T .n/=In (resp. T .n/=.v1; : : : ; vn�1/)
and the spectrum y.n/ (resp. yZ.n/) of Definition 3.2.2.

Proof We will prove the result for y.n/; the analogous proof works for yZ.n/. By [43], the space
�Jpn�1.S

2/ is homotopy commutative (since p > 2). Moreover, the map �Jpn�1.S
2/!�2S3 is an

H–map, so y.n/ is a homotopy commutative E1–ring spectrum. It is known (see [85, Section 6.5]) that
homotopy commutative maps T .n/! y.n/ are equivalent to partial complex orientations of y.n/, ie
factorizations

S //

1
%%

†�2CPpn�1


n

��

y.n/

Such a 
n indeed exists by obstruction theory: Suppose k < pn�1 and we have a map †�2CPk! y.n/.
Since there is a cofiber sequence

S2k�1
!†�2CPk

!†�2CPkC1

of spectra, the obstruction to extending along †�2CPkC1 is an element of �2k�1y.n/. However, the
homotopy of y.n/ is concentrated in even degrees in the appropriate range, so a choice of 
n does indeed
exist. Moreover, this choice can be made such that they fit into a compatible family in the sense that there
is a commutative diagram

†�2CPpn�1 //


n

��

†�2CPpnC1�1


nC1

��

y.n/ // y.nC 1/

The formal group law over HFp has infinite height; this forces the elements p; v1; : : : ; vn�1 (defined for the
“.pn�1/–bud” on ��y.n/) to vanish in the homotopy of y.n/. It follows that the orientation T .n/!y.n/

constructed above factors through the quotient T .n/=In. The induced map T .n/=In! y.n/ can be seen
to be an isomorphism on homology (via, for instance, Definition 3.2.2 and Construction 3.2.5).
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Remark 3.2.7 Since y.n/ has a vn–self-map, we can form the spectrum y.n/=vn; its mod p homology
is

H�.y.n/=vnIFp/Š

�
F2Œ�1; : : : ; �n�˝ƒF2

.�nC1/ if p D 2;

Fp Œ�1; : : : ; �n�˝ƒFp
.�0; : : : ; �n�1; �n/ if p � 3:

It is in fact possible to give a construction of y.1/=v1 as a spherical Thom spectrum. We will work at
p D 2 for convenience. Define Q to be the fiber of the map 2� W S3 ! S2. There is a map of fiber
sequences

Q //

��

S3 2�
//

��

S2

��

BGL1.S/ // � // B2GL1.S/

By [31, Theorem 3.7], the Thom spectrum of the leftmost map is y.1/=v1.

We end this section by recalling the definition of two Thom spectra which, unlike y.n/ and yZ.n/, are
not indexed by integers (we will see that they are only defined at “heights 1 and 2”). These were both
studied in [34].

Definition 3.2.8 Let S4!BSpin denote the generator of �4BSpinŠZ, and let �S5!BSpin denote
the extension of this map, which classifies a real vector bundle of virtual dimension zero over �S5. Let
A denote the Thom spectrum of this bundle.

Remark 3.2.9 As mentioned in the introduction, the spectrum A has been intensely studied by Mahowald
and his coauthors in (for instance) [67; 31; 69; 68; 70; 77], where it is often denoted by X5.

Remark 3.2.10 The map �S5 ! BSpin is one of E1–spaces, so the Thom spectrum A admits the
structure of an E1–ring with an E1–map A!MSpin.

Remark 3.2.11 There are multiple equivalent ways to characterize this Thom spectrum. For instance,
the J–homomorphism BSpin! BGL1.S/ sends the generator of �4BSpin to � 2 �4BGL1.S/Š �3S.
The universal property of Thom spectra in Theorem 2.1.7 shows that A is the free E1–ring S==� with a
nullhomotopy of �. Note that A is defined integrally, and not just p–locally for some prime p.

Remark 3.2.12 There is a canonical map A ! T .1/ of E1–rings, constructed as follows. By the
universal property of A, it suffices to prove that the unit S! T .1/ extends along the inclusion S! C�,
ie that � D 0 2 �3T .1/ up to units. To see this, let us compute �3C� via the exact sequence

�3S1 �
�! �3S0

! �3C�! �2S0 �
�! �1S0:

This can be identified with

Z=2f�2
g
�
�! Z=8f�g ! �3C�! Z=2f�g

�
�! Z=2f�2

gI

the final map is an isomorphism and the first map sends �2 7! �3 D 4�. Therefore, �3C� Š Z=4f�g.
Now, since the class in H4.T .1/IF2/ is detected by a nontrivial Sq4, the attaching map of the 4–cell
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� 2� 3�

� �1

�

Figure 2: 15–skeleton of A at the prime 2 shown horizontally, with 0–cell on the left. The element
�1 given by the map � on the 4–cell, as indicated in the diagram above.

in T .1/ must be ˙�. Therefore, one of ˙� must be null in T .1/, which implies that there must be a map
C�! T .1/ (or C.��/! T .1/), as claimed.

The following result is [34, Proposition 2.7]; it is proved there at p D 2, but the argument clearly works
for p D 3 too:

Proposition 3.2.13 There is an isomorphism BP�.A/ Š BP�Œy2�, where jy2j D 4. There is a map
A.p/! BP. Under the induced map on BP–homology, y2 maps to t2

1
mod decomposables at p D 2, and

to t1 mod decomposables at p D 3.

Remark 3.2.14 For instance, when p D 2, we have BP�.A/Š BP�Œt2
1
C v1t1�.

One corollary (using Remark 3.2.1) is the following:

Corollary 3.2.15 As A�–comodules , we have

H�.AIFp/Š

8<:
F2Œ�

4
1
� if p D 2;

F3Œ�1� if p D 3;

Fp Œx4� if p � 5;

where x4 is a polynomial generator in degree 4.

Example 3.2.16 Let us work at p D 2 for convenience. Example 3.1.14 showed that �1 is the element
in �5.C�^ C�/ given by the lift of � to the 4–cell (which is attached to the bottom cell by �) via a
nullhomotopy of ��. In particular, �1 already lives in �5.C�/ and, as such, defines an element of S==�DA

(by viewing C� as the 4–skeleton of A); note that, by construction, this element is 2–torsion. The image
of �1 2 �5.A/ under the canonical map of Remark 3.2.12 is its namesake in �5.T .1//. See Figure 2.

Remark 3.2.17 The element �1 2�5.A.2// defined in Example 3.2.16 in fact lifts to an element of �5.A/,
because the relation �� D 0 is true integrally and not just 2–locally. An alternative construction of this
map is the following: The Hopf map �4 W S

5 ! S4 (which lives in the stable range) defines a map
S5! S4!�S5 whose composite to BSpin is null (since �5.BSpin/D 0). Upon Thomification of the
composite S5!�S5! BSpin, one therefore gets a map S5!A whose composite with A!MSpin
is null. The map S5!A is the element �1 2 �5.A/.

Finally, we have:
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Definition 3.2.18 Let BN be the space defined by the homotopy pullback

BN //

��

S13

f

��

BO.9/ // BO.10/

where the map f W S13! BO.10/ detects an element of �12O.10/Š Z=12. There is a fiber sequence

S9
! BO.9/! BO.10/;

and the image of f under the boundary map in the long exact sequence of homotopy detects 2� 2

�12.S
9/Š Z=24. In particular, there is a fiber sequence

S9
! BN ! S13:

If N is defined to be �BN, then there is a fiber sequence

N !�S13
! S9:

Define a map N ! BString via the map of fiber sequences

N //

��

�S13 //

��

S9

��

BString // � // B2String

where the map S9! B2String detects a generator of �8BString. Let B denote the Thom spectrum of
the induced bundle over N.

Remark 3.2.19 The map N ! BString is in fact one of E1–spaces, so B admits the structure of an
E1–ring. To prove this, it suffices to show that there is a map BN ! B2String. Recall that BStringD
��8�

1KO, so the desired map is the same as a class in KO1.BN /. Using the Serre spectral sequence
for the fiber sequence defining BN, one can calculate that there is a class in KO1.BN / which lifts the
generator of KO1.S9/Š �8KO Š Z.

We introduced the spectrum B and studied its Adams–Novikov spectral sequence in [34]. The Steenrod
module structure of the 20–skeleton of B is shown in [34, Figure 1], and is reproduced here as Figure 3.
As mentioned in the introduction, the spectrum B has been briefly studied under the name X in [72].

Remark 3.2.20 As with A, there are multiple different ways to characterize B. There is a fiber sequence

�S9
!N !�S13;

and the map �S9 ! N ! BString is an extension of the map S8 ! BString detecting a generator.
Under the J–homomorphism BString! BGL1.S/, this generator maps to � 2 �8BGL1.S/Š �7S, so
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�

�
� �2

Figure 3: Steenrod module structure of the 20–skeleton of B; the bottom cell (in dimension 0)
is on the left; straight lines are Sq4, and curved lines correspond to Sq8 and Sq16, in order of
increasing length. The bottom two attaching maps of B are labeled. The map �2 is shown.

the Thom spectrum of the bundle over �S9 determined by the map �S9! BString is the free E1–ring
S==� with a nullhomotopy of �. Proposition 2.1.6 now implies that N is the Thom spectrum of a map
�S13! BGL1.S==�/. While a direct definition of this map is not obvious, we note that the restriction
to the bottom cell S12 of the source detects an element z� of �12BGL1.S==�/Š �11S==� . This in turn
factors through the 11–skeleton of S==� , which is the same as the 8–skeleton of S==� (namely C�).
This element is precisely a lift of the map � W S11! S8 to C� determined by a nullhomotopy of ��
in ��S. Although z� 2 �11C� does not come from a class in �11S, its representative in the Adams
spectral sequence for C� is the image of h22 in the Adams spectral sequence for the sphere.

The following result is [34, Proposition 3.2]; it is proved there at p D 2, but the argument clearly works
for p � 3 too:

Proposition 3.2.21 The BP�–algebra BP�.B/ is isomorphic to a polynomial ring BP�Œb4;y6�, where
jb4j D 8 and jy6j D 12. There is a map B.p/! BP. On BP�–homology , the elements b4 and y6 map to
t4
1

and t2
2

mod decomposables at p D 2, and y6 maps to t3
1

mod decomposables at p D 3.

One corollary (using Remark 3.2.1) is the following:

Corollary 3.2.22 As A�–comodules , we have

H�.BIFp/Š

8̂̂̂<̂
ˆ̂:

F2Œ�
8
1
; �4

2
� if p D 2;

F3Œ�
3
1
; b4� if p D 3;

F5Œ�1;x12� if p D 5;

Fp Œx8;x12� if p � 7;

where x8 and x12 are polynomial generators in degrees 8 and 12, and b4 is an element in degree 8.

Example 3.2.23 For simplicity, let us work at p D 2. There is a canonical ring map B! T .2/, and
the element �2 2 �13T .2/ lifts to B. We can be explicit about this: the 12–skeleton of B is shown in
Figure 3, and �2 is the element of �13.B/ that exists thanks to the relation �� D 0 and the fact that the
Toda bracket h�; �; �i contains 0. This also shows that �2 2 �13.B/ is 2–torsion.
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Remark 3.2.24 The element �2 2 �13.B.2// defined in Example 3.2.23 in fact lifts to an element
of �13.B/, because the relations �� D 0, �� D 0 and 0 2 h�; �; �i are all true integrally and not
just 2–locally. An alternative construction of this map S13 ! B is the following: The Hopf map
�12 W S

13 ! S12 (which lives in the stable range) defines a map S13 ! S12 ! �S13. Moreover,
the composite S13 ! �S13 ! S9 is null, since it detects an element of �13.S

9/ D 0; choosing a
nullhomotopy of this composite defines a lift S13!N. (In fact, this comes from a map S14!BN.) The
composite S13!N !BString is null (since �13.BString/D 0). Upon Thomification, we obtain a map
S13! B whose composite with B!MString is null; the map S13! B is the element �2 2 �13.B/.

The following theorem packages some information contained in this section:

Theorem 3.2.25 Let R denote any of the spectra in Table 2, and let n denote its “height”. If RD T .n/,
y.n/ or yZ.n/, then there is a map T .n/ ! R and , if R D A (resp. B), then there is a map from
R to T .1/ (resp. T .2/). In the first three cases , there is an element �n 2 �jvnC1j�1R coming from
�n 2 �jvnC1j�1T .n/ and , in the cases R D A and B, there are elements �1 2 �5.A/ and �2 2 �13.B/

mapping to the corresponding elements in T .1/.2/ and T .2/.2/, respectively. Moreover , �n is p–torsion
in ��R; similarly, �1 and �2 are 2–torsion in ��A.2/ and ��B.2/.

Proof The existence statement for T .n/ is contained in Theorem 3.1.5, while the torsion statement is
the content of Lemma 3.1.16. The claims for y.n/ and yZ.n/ now follow from Proposition 3.2.6. The
existence and torsion statements for A and B are contained in Examples 3.2.16 and 3.2.23.

The elements in Theorem 3.2.25 can in fact be extended to infinite families; this is discussed in Section 5.4.

3.3 Centers of Thom spectra

In this section, we review some of the theory of Ek–centers and state Conjecture E. We begin with the
following important result, and refer to [40; 66, Section 5.5.4] for proofs:

Theorem 3.3.1 [66, Example 5.5.4.16; 40, Definition 2.5] Let C be a symmetric monoidal presentable
1–category and let A be an Ek–algebra in C. Then the category of Ek–A–modules is equivalent to the
category of left modules over the factorization homology U.A/D

R
Sk�1�R A (known as the enveloping

algebra of A), which is an E1–algebra in C.

Definition 3.3.2 The EkC1–center Z.A/ of an Ek–algebra A in C is the (EkC1–)Hochschild cohomology
EndU.A/.A/, where A is regarded as a left module over its enveloping algebra via Theorem 3.3.1.

Remark 3.3.3 We are using slightly different terminology than that used by Lurie [66, Section 5.3]: our
EkC1–center is his Ek–center. In other words, Lurie’s terminology expresses the structure on the input,
while our terminology expresses the structure on the output.
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The following proposition summarizes some results from [40; 66, Section 5.3]:

Proposition 3.3.4 [66, Theorem 5.3.2.5; 40, Theorem 1.1] The EkC1–center Z.A/ of an Ek–algebra
A in a symmetric monoidal presentable1–category C exists , and satisfies the following properties:

(a) Z.A/ is the universal Ek–algebra of C which fits into a commutative diagram

A // A˝Z.A/

��

A

in AlgEk
.C/.

(b) The Ek–algebra Z.A/ of C defined via this universal property in fact admits the structure of an
EkC1–algebra in C.

(c) There is a fiber sequence

GL1.Z.A//! GL1.A/!�k�1 EndAlgEk
.C/.A/

of k–fold loop spaces.

In the sequel, we will need a more general notion:

Definition 3.3.5 Let m�1. The EkCm–center ZkCm.A/ of an Ek–algebra A in a presentable symmetric
monoidal1–category C with all limits is defined inductively as the EkCm–center of the EkCm�1–center
ZkCm�1.A/. In other words, it is the universal EkCm–algebra of C which fits into a commutative diagram

ZkCm�1.A/ // ZkCm�1.A/˝ZkCm.A/

��

ZkCm�1.A/

in AlgEkCm�1
.C/.

Proposition 3.3.4 gives:

Corollary 3.3.6 Let m� 1. The EkCm�1–algebra ZkCm.A/ associated to an Ek–algebra object A of
C exists and , in fact , admits the structure of an EkCm–algebra in C.

We can now finally state Conjecture E:

Conjecture E Let n� 0 be an integer. Let R denote X.pnC1� 1/.p/, A (in which case nD 1) or B (in
which case nD 2). Then the element �n 2 �j�njR lifts to the E3–center Z3.R/ of R, and is p–torsion in
��Z3.R/ if RDX.pnC1� 1/.p/, and is 2–torsion in ��Z3.R/ if RDA or B.
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Remark 3.3.7 If R is A or B, then Z3.R/ is the E3–center of the E2–center of R. This is a rather
unwieldy object, so it would be quite useful to show that the E1–structure on A or B admits an extension
to an E2–structure; we do not know if such extensions exist. Since neither �S5 nor N admits the
structure of a double loop space, such an E2–structure would not arise from their structure as Thom
spectra. In any case, if such extensions do exist, then Z3.R/ in Conjecture E should be interpreted as the
E3–center of the E2–ring R. However, we showed in [35, Theorem 4.2] that .tmf^A/Œx2� admits an
E2–algebra structure, where jx2j D 2.

Remark 3.3.8 In the introduction, we stated Conjecture 1.1.4, which instead asked about whether
vn 2 �jvnjX.p

n/ lifts to ��Z3.X.p
n//. It is natural to ask about the connection between Conjectures E

and 1.1.4. Proposition 3.1.17 implies that, if Z3.X.p
n// admitted an X.pn�1/–orientation factoring the

canonical X.pn�1/–orientation X.pn� 1/!X.pn/, and �n�1 2 �jvnj�1X.pn� 1/ was killed by the
map X.pn� 1/! Z3.X.p

n//, then Conjecture E would imply Conjecture 1.1.4. However, we do not
believe that either of these statements are true.

Remark 3.3.9 One of the main results of [56] implies that the E3–center of X.n/— which, recall, is
the Thom spectrum of a bundle over �2BSU.n/— is HomSU.n/C.S;X.n//'X.n/hSU.n/, where SU.n/
acts on X.n/ by a Thomification of the conjugation action on �SU.n/.

Remark 3.3.10 The conjugation action of SU.n/ on X.n/ can be described very explicitly, via a
concrete model for �SU.n/. As explained in [83; 96], if G is a reductive linear algebraic group
over C, the loop space �G.C/ of its complex points (viewed as a complex Lie group) is equivalent to the
homogeneous space G.C..t///=G.CŒŒt ��/; this is also commonly studied as the complex points of the affine
Grassmannian GrG of G. The conjugation action of G.C/ on �G.C/ arises by restricting the descent (to
G.C..t///=G.CŒŒt ��/) of the translation action by G.CŒŒt ��/ on G.C..t/// to the subgroup G.C/�G.CŒŒt ��/.
Setting G D SLn gives a description of the conjugation action of SU.n/ on �SU.n/. In light of its
connections to geometric representation theory, we believe that there may be an algebrogeometric
approach to proving that �n is SU.n/–trivial in X.n/ and in �SU.n/.

Example 3.3.11 The element �2 2 �3X.2/ is central. To see this, note that ˛ 2 ��R (where R is an
Ek–ring) is in the EkC1–center of R if and only if ˛ is in the EkC1–center of R.p/ for all primes p � 0.
It therefore suffices to show that �2 is central after p–localizing for all p. First, note that �2 is torsion,
so it is nullhomotopic (and therefore central) after rationalization. Next, if p > 2, then X.2/.p/ splits as a
wedge of suspensions of spheres. If �2 is detected in �3 of a sphere living in dimension 3, then it could
not be torsion, so it must be detected in �3 of a sphere living in dimension 3� k for some 0 � k � 2.
If k D 1 or 2, then �3.S

3�k/ is either �1.S
0/ or �2.S

0/, but both of these groups vanish for p > 2.
Therefore, �2 must be detected in �3 of the sphere in dimension 0, ie in �3X.1/. This group vanishes
for p > 3, and when p D 3, it is isomorphic to Z=3 (generated by ˛1). Since X.1/D S0 is an E1–ring,
we conclude that �2 is central in X.2/.p/ for all p > 2.
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At pD 2, we know the cell structure of X.2/ in the bottom few dimensions (see Example 3.1.14; note that
�1 is not �2). In dimensions� 3, it is equivalent to C�, so �3X.2/Š�3C�. However, it is easy to see that
the canonical map �3S' Z=8f�g ! �3C� is surjective and exhibits an isomorphism �3C�Š Z=4f�g.
Therefore, �2 is in the image of the unit S! X.2/, and is therefore vacuously central. We conclude
from the above discussion that �2 is indeed central in X.2/.

4 Review of some unstable homotopy theory

4.1 Charming and Gray maps

A major milestone in unstable homotopy theory was Cohen, Moore and Neisendorfer’s result on the
p–exponent of unstable homotopy groups of spheres from [29; 30; 81]. They defined for all p > 2

and k � 1 a map �n W �
2S2nC1! S2n�1 (the integer k is assumed implicit) such that the composite

of �n with the double suspension E2 W S2n�1!�2S2nC1 is homotopic to the .pk/th power map. By
induction on n, they concluded via a result of Selick’s (see [89]) that pn kills the p–primary component
of the homotopy of S2nC1. Such maps will be important in the rest of this article, so we will isolate
their desired properties in the definition of a charming map, inspired by [90]. (Our choice of terminology
is nonstandard, and admittedly horrible, but it does not seem like the literature has chosen any naming
convention for the sort of maps we desire.)

Definition 4.1.1 A p–local map f W�2S2npC1! S2np�1 is called a Gray map if the composite of f
with the double suspension E2 is the degree p map, and the composite

�2S2nC1 �H
��!�2S2npC1 f

�! S2np�1

is nullhomotopic. Moreover, a p–local map f W�2S2npC1! S2np�1 is called a charming map if the
composite of f with the double suspension E2 is the degree p map, the fiber of f admits the structure
of a Q1–space, and there is a space BK which sits in a fiber sequence

S2np�1
! BK!�S2npC1

such that the boundary map �2S2npC1! S2np�1 is homotopic to f.

Remark 4.1.2 If f is a charming map, then the fiber of f is a loop space. Indeed, fib.f /'�BK.

Example 4.1.3 Let f denote the Cohen–Moore–Neisendorfer map with k D 1. Anick proved (see
[14; 45]) that the fiber of f admits a delooping, ie there is a space T 2npC1.p/ (now known as an Anick
space) which sits in a fiber sequence

S2np�1
! T 2npC1.p/!�S2npC1:

It follows that f is a charming map.
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Remark 4.1.4 We claim that T 2pC1.p/D�S3h3i, where S3h3i is the 3–connected cover of S3. To
prove this, we will construct a p–local fiber sequence

S2p�1
!�S3

h3i !�S2pC1:

This fiber sequence was originally constructed by Toda [93]. To construct this fiber sequence, we first
note that there is a p–local fiber sequence

S2p�1
! Jp�1.S

2/!CP1;

where the first map is the factorization of ˛1 W S
2p�1 ! �S3 through the 2.p�1/–skeleton of �S3,

and the second map is the composite Jp�1.S
2/! �S3 ! CP1. This fiber sequence is simply an

odd primary version of the Hopf fibration S3! S2!CP1; the identification of the fiber of the map
Jp�1.S

2/!CP1 is a simple exercise with the Serre spectral sequence. Next, we have the EHP sequence

Jp�1.S
2/!�S3

!�S2pC1:

Since �S3h3i is the fiber of the map �S3! CP1, the desired fiber sequence is obtained by taking
vertical fibers in the map of fiber sequences

Jp�1.S
2/ //

��

�S3 //

��

�S2pC1

��

CP1 CP1 // �

Example 4.1.5 Let Wn denote the fiber of the double suspension S2n�1!�2S2nC1. Gray [44; 42]
proved that Wn admits a delooping BWn, and that, after p–localization, there is a fiber sequence

BWn!�2S2npC1 f
�! S2np�1

for some map f. As suggested by the naming convention, f is a Gray map.

As proved in [90], Gray maps satisfy an important rigidity property:

Proposition 4.1.6 (Selick and Theriault) The fiber of any Gray map admits an H–space structure , and
is H–equivalent to BWn.

Remark 4.1.7 It has been conjectured by Cohen, Moore, Neisendorfer and Gray in the papers cited above
that there is an equivalence BWn '�T 2npC1.p/, and that �T 2npC1.p/ retracts off of �2P2npC1.p/

as an H–space, where Pk.p/ is the mod p Moore space Sk�1[p ek with top cell in dimension k. For our
purposes, we shall require something slightly stronger; namely, the retraction should be one of Q1–spaces.
The first part of this conjecture would follow from Proposition 4.1.6 if the Cohen–Moore–Neisendorfer
map were a Gray map. In [3], it is shown that the existence of p–primary elements of Kervaire invariant
one would imply equivalences of the form BWpn�1 '�T 2pnC1.p/.
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Motivated by Remark 4.1.7 and Proposition 4.1.6, we state the following conjecture; it is slightly weaker
than the conjecture mentioned in Remark 4.1.7, and is an amalgamation of slight modifications of
conjectures of Cohen, Moore, Neisendorfer, Gray and Mahowald in unstable homotopy theory, as well as
an analogue of Proposition 4.1.6. (For instance, we strengthen having an H–space retraction to having a
Q1–space retraction.)

Conjecture D The following statements are true:

(a) The homotopy fiber of any charming map is equivalent as a loop space to the loop space on an
Anick space.

(b) There exists a p–local charming map f W�2S2pnC1! S2pn�1 whose homotopy fiber admits a
Q1–space retraction off of �2P2pnC1.p/. There are also integrally defined maps �2S9! S7

and �2S17! S15 whose composite with the double suspension on S7 and S15, respectively, is
the degree 2 map , whose homotopy fibers K2 and K3 (respectively) admit deloopings , and which
admits a Q1–space retraction off of �2P9.2/ and �2P17.2/ (respectively).

Remark 4.1.8 Conjecture D is already not known when nD1. In this case, it asserts that�2S3h3i retracts
off of �2P2pC1.p/. A theorem of Selick’s states that �2S3h3i retracts off of �2S2pC1fpg for p odd,
where�2S2pC1fpg is the fiber of the degree p map on�2S2pC1. This implies that�2S3h3i retracts off
of�3P2pC2.p/. In [28, Observation 9.2], the question of whether�2S3h3i retracts off of�2P2pC1.p/

was shown to be equivalent to the question of whether there is a map †2�2S3h3i ! P2pC1.p/ which
is onto in homology. Some recent results regarding Conjecture D for nD 1 can be found in [23].

It follows that a retraction of �2S3h3i off of �2P2pC1.p/ will be compatible with the canonical map
�2S3h3i ! �2S3 in the following manner. The p–torsion element ˛1 2 �2p.S

3/ defines a map
P2p�1.p/!�2S3, which extends to an E2–map �2P2pC1.p/!�2S3. We will abusively denote
this extension by ˛1. The resulting composite

�2S3
h3i !�2P2pC1.p/

˛1
�!�2S3

is homotopic to the canonical map �2S3h3i !�2S3.

The element ˛1 2 �2p�3.S.p// defines a map S2p�2 ! BGL1.S.p// and, since it is p–torsion, ad-
mits an extension to a map P2p�1.p/ ! BGL1.S.p//. (This extension is in fact unique, because
�2p�1.BGL1.S.p///Š �2p�2.S.p// vanishes.) Since BGL1.S.p// is an infinite loop space, this map
further extends to a map �2P2pC1.p/!BGL1.S.p//. The discussion in the previous paragraph implies
that, if Conjecture D is true for nD 1, then the map � W�2S3h3i!BGL1.S.p// from Corollary 2.2.2 is
homotopic to the composite

�2S3
h3i !�2P2pC1.p/! BGL1.S.p//:
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4.2 Fibers of charming maps

We shall need the following proposition:

Proposition 4.2.1 Let f W�2S2pnC1! S2pn�1 be a charming map. Then there are isomorphisms of
coalgebras

H�.fib.f /IFp/Š

�
F2Œx

2
2nC1�1

�˝
N

k>1 F2Œx2nCk�1� if p D 2;N
k>0 Fp Œy2.pnCk�1/�˝

N
j>0ƒFp

Œx2pnCj�1� if p > 2:

Proof This is an easy consequence of the Serre spectral sequence coupled with the well-known coalgebra
isomorphisms

H�.�
2S2nC1

IFp/Š

�N
k>0 F2Œx2kn�1� if p D 2;N
k>0 Fp Œy2.npk�1/�˝

N
j�0ƒFp

Œx2npj�1� if p > 2;

where these classes are generated by the one in dimension 2n� 1 via the single Dyer–Lashof operation
(coming already from the cup-1 operad; see Remark 2.2.8).

Remark 4.2.2 The Anick spaces T 2npC1.p/ from Example 4.1.3 sit in fiber sequences

S2np�1
! T 2npC1.p/!�S2npC1

and are homotopy commutative H–spaces. A Serre spectral sequence calculation gives an identification
of coalgebras

H�.T
2npC1.p/IFp/Š Fp Œa2np �˝ƒFp

Œb2np�1�

with ˇ.a2np/D b2np�1, where ˇ is the Bockstein homomorphism. An argument with the bar spectral
sequence recovers the result of Proposition 4.2.1 in this particular case.

Remark 4.2.3 Suppose that X is a space which sits in a fiber sequence

S2np�1
!X !�S2npC1

such that the boundary map �2S2npC1! S2np�1 has degree pj on the bottom cell of the source. The
Serre spectral sequence then only has a differential on the E2np�1–page, and

Hi.BKIZ/Š

8<:
Z if i D 0;

Z=pj k if i D 2npk � 1;

0 otherwise:

We conclude this section by investigating Thom spectra of bundles defined over fibers of charming maps.
Let R be a p–local E1–ring and let � WK! BGL1.R/ denote a map from the fiber K of a charming
map f W�2S2npC1! S2np�1. There is a fiber sequence �S2np�1!K!�2S2npC1 of loop spaces,
so we obtain a map �S2np�1! BGL1.R/. Such a map gives an element ˛ 2 �2np�3R via the effect
on the bottom cell S2np�2.
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Theorem 2.1.7 implies that the Thom spectrum of the map �S2np�1! BGL1.R/ should be thought
of as the E1–quotient R==˛, although this may not make sense if R is not at least E2. However,
in many cases (such as the ones we are considering here), the Thom R–module R==˛ is in fact an
E1–ring such that the map R! R==˛ is an E1–map. By Proposition 2.1.6, there is an induced map
� W�2S2npC1! BGL1.R==˛/ whose Thom spectrum is equivalent as an E1–ring to K�. We would
like to determine the element2 of ��R==˛ detected by the restriction to the bottom cell S2np�1 of the
source of �. First, we note:

Lemma 4.2.4 The element ˛ 2 �2np�3R is p–torsion.

Proof Since f is a charming map, the composite S2np�1!�2S2np�1 f
�! S2np�1 is the degree p

map. Therefore, the element p˛ 2 �2np�3R is detected by the composite

S2np�2
!�S2np�1

!�3S2np�1 �f
�!�S2np�1

!K
�
�! BGL1.R/:

But there is a fiber sequence �2S2np�1 f
�! S2np�1! BK by the definition of a charming map, so the

composite detecting p˛ is null, as desired.

There is now a square
S2np�2=p //

��

S2np�1

��

K //

˛

��

�2S2npC1

��

BGL1.R/ // BGL1.R==˛/

and the following result is a consequence of the lemma and the definition of Toda brackets:

Lemma 4.2.5 The element in �2np�2.R==˛/ detected by the vertical map S2np�1 ! BGL1.R==˛/

lives in the Toda bracket hp; ˛; 1R==˛i.

The upshot of this discussion is the following:

Proposition 4.2.6 Let R be a p–local E1–ring and let � WK! BGL1.R/ denote a map from the fiber
K of a charming map f W �2S2npC1 ! S2np�1, providing an element ˛ 2 �2np�3R. Assume that
the Thom spectrum R==˛ of the map �S2np�1 ! BGL1.R/ is an E1–R–algebra. Then there is an
element v 2 hp; ˛; 1R==˛i such that K� is equivalent to the Thom spectrum of the map �2S2npC1 v

�!

BGL1.R==˛/.

2Technically, this is bad terminology: there are multiple possibilities for the map �, and each gives rise to a map S2np�1!

BGL1.R==˛/. The elements in �2np�2.R==˛/ determined in this way need not agree, but they are the same modulo the
indeterminacy of the Toda bracket hp; ˛; 1R==˛i.
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Remark 4.2.7 Let R be an E1–ring and let ˛ 2 �dR. Then ˛ defines a map SdC1! BGL1.R/, and
it is natural to ask when ˛ extends along SdC1 ! �SdC2, or at least along SdC1 ! Jk.S

dC1/ for
some k. This is automatic if R is an E2–ring, but not necessarily so if R is only an E1–ring. Recall that
there is a cofiber sequence

S .kC1/.dC1/�1
! Jk.S

dC1/! JkC1.S
dC1/;

where the first map is the .kC1/–fold iterated Whitehead product Œ�dC1; Œ : : : ; Œ�dC1; �dC1��; : : : �. In
particular, the map SdC1!BGL1.R/ extends along the map SdC1! Jk.S

dC1/ if and only if there are
compatible nullhomotopies of the n–fold iterated Whitehead products Œ˛; Œ : : : ; Œ˛; ˛��; : : : �2��BGL1.R/

for n � k. These amount to properties of Toda brackets in the homotopy of R. We note, for instance,
that the Whitehead bracket Œ˛; ˛� 2 �2dC1BGL1.R/ Š �2dR is the element 2˛2; therefore, the map
SdC1! BGL1.R/ extends to J2.S

dC1/ if and only if 2˛2 D 0.

Remark 4.2.8 Let R be a p–local E2–ring and let ˛ 2 �d .R/ with d even. Then ˛ defines an element
˛ 2 �dC2B2GL1.R/. The p–fold iterated Whitehead product Œ˛; : : : ; ˛� 2 �p.dC2/�.p�1/B

2GL1.R/Š

�pdC.p�1/R is given by p!Q1.˛/ modulo decomposables. This is in fact true more generally. Let R

be an En–ring and suppose ˛ 2 �d .R/. Let i < n, so ˛ defines an element ˛ 2 �dCiB
iGL1.R/. The

p–fold iterated Whitehead product Œ˛; : : : ; ˛� 2 �p.dCi/�.p�1/B
iGL1.R/Š �pdC.i�1/.p�1/R is given

by p!Qi�1.˛/ modulo decomposables.

We will describe this in detail in forthcoming work; the basic idea is to reduce to the universal example
of an En–ring, and relate Whitehead products on ��.Sn/ to the Ed –Browder bracket on �dSn

C (where
d � n). Recall the isomorphism �j Sn Š �j�d�

dSn. If ˛ 2 �iS
n and ˇ 2 �j Sn, then we will show

in future work that the stabilization of the Whitehead product Œ˛; ˇ� 2 �iCj�1Sn Š �iCj�d�
dSn is

closely related to the Ed –Browder bracket Œ˛; ˇ�Ed
.

5 Chromatic Thom spectra

5.1 Statement of the theorem

To state the main theorem of this section, we set some notation. Fix an integer n � 1 and work in the
p–complete stable category. For each Thom spectrum R of height n� 1 in Table 1, let �n�1 W S

j�n�1j!

BGL1.R/ denote a map detecting �n�12�j�n�1j
.R/ (which exists by Theorem 3.2.25). Let Kn denote the

fiber of a p–local charming map�2S2pnC1!S2pn�1 satisfying the hypotheses of Conjecture D, and let
K2 (resp. K3) denote the fiber of an integrally defined charming map �2S9! S7 (resp. �2S17! S15)
satisfying the hypotheses of Conjecture D.

Then:
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Theorem A Let R be a height n�1 spectrum as in the second line of Table 1. Then Conjectures D and E
imply that there is a map Kn! BGL1.R/ such that the mod p homology of the Thom spectrum K

�
n is

isomorphic to the mod p homology of the associated designer chromatic spectrum ‚.R/ as a Steenrod
comodule.

If R is any base spectrum other than B, the Thom spectrum K
�
n is equivalent to‚.R/ upon p–completion

for every prime p. If Conjecture F is true , then the same is true for B: the Thom spectrum K
�
n is

equivalent to ‚.B/D tmf upon 2–completion.

We emphasize again that naively making sense of Theorem A relies on knowing that T .n/ admits the
structure of an E1–ring; we shall interpret this phrase as in Remark 3.1.6.

Remark 5.1.1 Theorem A is proved independently of the nilpotence theorem. (In fact, it is even
independent of Quillen’s identification of ��MU with the Lazard ring provided one regards the existence
of designer chromatic spectra as being independent of Quillen’s identification.) We shall elaborate on
the connection between Theorem A and the nilpotence theorem in future work; a sketch is provided in
Remark 5.4.7.

Remark 5.1.2 Theorem A is true unconditionally when nD 1, since that case is simply Corollary 2.2.2.

Remark 5.1.3 Table 2 implies that the homology of each of the Thom spectra in Table 1 are given by the
Q0–Margolis homology of their associated designer chromatic spectra. In particular, the map R!‚.R/

is a rational equivalence.

Before we proceed with the proof of Theorem A, we observe some consequences.

Corollary B Conjectures D and E imply Conjecture 1.1.3.

Proof This follows from Theorem A and Propositions 4.2.6 and 3.1.17.

Remark 5.1.4 Corollary B is true unconditionally when nD 1, since Theorem A is true unconditionally
in that case by Remark 5.1.2. See also Remark 4.1.4.

Remark 5.1.5 We can attempt to apply Theorem A for RDA in conjunction with Proposition 4.2.6.
Theorem A states that Conjectures D and E imply that there is a map K2! BGL1.A/ whose Thom
spectrum is equivalent to bo. There is a fiber sequence

�S7
!K2!�2S9;

so we obtain a map � W�S7!K2!BGL1.A/. The proof of Theorem A shows that the bottom cell S6

of the source detects �1 2 �5.A/. A slight variation of the argument used to establish Proposition 4.2.6
supplies a map �2S9!BAut..�S7/�/ whose Thom spectrum is bo. The spectrum .�S7/� has mod 2

homology F2Œ�
4
1
; �2

2
�. However, unlike A, it does not naturally arise an E1–Thom spectrum over the

sphere spectrum; this makes it unamenable to study via techniques of unstable homotopy.
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More precisely, .�S7/� is not the Thom spectrum of an E1–map X ! BGL1.S/ from a loop space X

which sits in a fiber sequence
�S5

!X !�S7

of loop spaces. Indeed, BX would be a S5–bundle over S7, which, by [71, Lemma 4], implies that X is
then equivalent as a loop space to �S5 ��S7. The resulting E1–map �S7! BGL1.S/ is specified
by an element of �5.S/ Š 0, so .�S7/� must then be equivalent as an E1–ring to A^†1C�S7. In
particular, �1 2 �5.A/ would map nontrivially to .�S7/�, which is a contradiction.

The proof of Theorem A will also show:

Corollary 5.1.6 Let R be a height n�1 spectrum as in the second line of Table 1, and assume Conjecture F
if RD B. Let M be an E3–R–algebra. Conjectures D and E imply that if

(a) the composite Z3.R/!R!M is an E3–algebra map ,

(b) the element �n�1 in ��M is nullhomotopic , and

(c) the bracket hp; �n�1; 1M i contains zero ,

then there is a unital map ‚.R/!M.

5.2 The proof of Theorem A

This section is devoted to giving a proof of Theorem A, dependent on Conjectures D and E. The proof of
Theorem A will be broken down into multiple steps. The result for y.n/ and yZ.n/ follow from the result
for T .n/ by Proposition 3.2.6, so we shall restrict ourselves to the cases of R being T .n/, A and B.

Fix n � 1. If R is A or B, we will restrict to p D 2, and let K2 and K3 denote the integrally defined
spaces from Conjecture D. By Remarks 3.2.17 and 3.2.24, the elements �1 2 �5.A/ and �2 2 �13.B/

are defined integrally. We will write �n�1 to generically denote this element, and will write it as living
in degree j�n�1j. We shall also write R to denote X.pn� 1/ and not T .n/; this will be so that we can
apply Conjecture D. We apologize for the inconvenience, but hope that this is worth circumventing the
task of having to read through essentially the same proofs for these slightly different cases.

Step 1 We begin by constructing a map � WKn!BGL1.R/ as required by the statement of Theorem A;
the construction in the case nD 1 follows Remark 4.1.8. By Conjecture D, the space Kn splits off of
�2P j�n�1jC4.p/ (if RD T .n/, then j�n�1jC 4D jvnjC 3). We are therefore reduced to constructing a
map �2P j�n�1jC4.p/! BGL1.R/. Theorem 3.2.25 shows that the element �n�1 2 ��R is p–torsion,
so the map S j�n�1jC1! BGL1.R/ detecting �n�1 extends to a map

(5-1) S j�n�1jC1=p D P j�n�1jC2.p/! BGL1.R/:

Since �2P j�n�1jC4.p/ ' �2†2P j�n�1jC2.p/, we would obtain an extension z� of this map through
�2P j�n�1jC4.p/ if R admits an E3–structure.
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Unfortunately, this is not true; but this is where Conjecture E comes in: it says that the element �n�1 2

�j�n�1j
R lifts to the E3–center Z3.R/, where it has the same torsion order as in R. (Here, we are abusively

writing Z3.T .n� 1// to denote the E3–center of X.pn � 1/.p/.) The lifting of �n�1 to �j�n�1j
Z3.R/

provided by Conjecture E gives a factorization of the map from (5-1) as

S j�n�1jC1=p D P j�n�1jC2.p/! BGL1.Z3.R//! BGL1.R/:

Since Z3.R/ is an E3–ring, BGL1.Z3.R// admits the structure of an E2–space. In particular, the
map P j�n�1jC2.p/! BGL1.Z3.R// factors through �2P j�n�1jC4.p/, as desired. We let z� denote the
resulting composite

z� W�2P j�n�1jC4.p/! BGL1.Z3.R//! BGL1.R/:

Step 2 Theorem A asserts that there is an identification between the Thom spectrum of the induced
map � WKn! BGL1.R/ and the associated designer chromatic spectrum ‚.R/ via Table 1. We shall
identify the Steenrod comodule structure on the mod p homology of K

�
n , and show that it agrees with

the mod p homology of ‚.R/.

In Table 3, we have recorded the mod p homology of the designer chromatic spectra in Table 1 (see [63,
Theorem 4.3] for BPhn� 1i). It follows from Proposition 4.2.1 that there is an isomorphism

H�.K
�
n /Š

�
H�.R/˝F2Œx

2
2nC1�1

�˝
N

k>1 F2Œx2nCk�1� if p D 2;

H�.R/˝
N

k>0 Fp Œy2.pnCk�1/�˝
N

j>0ƒFp
Œx2pnCj�1� if p > 2:

Combining this isomorphism with Theorem 3.1.5 and Corollaries 3.2.4, 3.2.15 and 3.2.22, we find that
there is an abstract equivalence between the mod p homology of K

�
n and the mod p homology of ‚.R/.

We shall now work at p D 2 for the remainder of the proof; the same argument goes through with
slight modifications at odd primes. We now identify the Steenrod comodule structure on H�.K

�
n /.

Recall that z� is the map �2P j�n�1jC4.p/! BGL1.R/ from Step 1. By construction, there is a map
K
�
n ! �2P j�n�1jC4.p/z�. The map ˆ factors through a map ẑ W �2P j�n�1jC4.p/z� ! ‚.R/. The

Thom spectrum �2P j�n�1jC4.p/z� admits the structure of a Q1–ring. Indeed, it is the smash product
�2P j�n�1jC4.p/�^Z3.R/R, where � W�2P j�n�1jC4.p/!BGL1.Z3.R//; it therefore suffices to observe
that the Thom spectrum �2P j�n�1jC4.p/� admits the structure of an E1˝Q1–ring. (Here, E1 ˝ Q1

denotes the Boardman–Vogt tensor product of the E1– and Q1–operads.) Since there is a map Q1!E2

of 1–operads, this is a consequence of the fact that � is a double loop map, and hence an E1˝Q1–
algebra map. Moreover, the image of H�.K

�
n / in H�.�

2P j�n�1jC4.p/z�/ is generated under the single
Dyer–Lashof operation (arising from the cup-1 operad; see Remark 2.2.8) by the indecomposables in the
image of the map H�.R/!H�.�

2P j�n�1jC4.p/z�/.

The Postnikov truncation map �2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/ is one of Q1–rings. Since

�2P j�n�1jC4.p/ is highly connected, �0.�
2P j�n�1jC4.p/z�/Š �0.R/. In particular, there is an E1–

map H�0.�
2P j�n�1jC4.p/z�/!HFp. The composite

�2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/!HFp
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designer chromatic spectrum mod p homology

BPhn� 1i
p D 2 F2Œ�

2
1
; : : : ; �2

n�1
; �2

n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�n; �nC1; : : : /

k.n� 1/
p D 2 F2Œ�1; : : : ; �n�1; �

2
n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�0; : : : ; �n�2; �n; �nC1; : : : /

kZ.n� 1/
p D 2 F2Œ�

2
1
; �2; : : : ; �n�1; �

2
n ; �nC1; : : : �

p > 2 Fp Œ�1; �2; : : : �˝ƒFp .�1; : : : ; �n�2; �n; �nC1; : : : /

bo
p D 2 F2Œ�

4
1 ; �

2
2 ; �3; : : : �

p > 2 Fp Œx4�=v1˝Fp Œ�1; �2; : : : �˝ƒFp .�2; �3; : : : /

p D 2 F2Œ�
8
1 ; �

4
2 ; �

2
3 ; �4; : : : �

tmf p D 3 ƒF3
.b4/˝F3Œ�

3
1 ; �2; : : : �˝ƒF3

.�3; �4; : : : /

p � 5 Fp Œc4; c6�=.v1; v2/˝Fp Œ�1; �2; : : : �˝ƒFp .�3; �4; : : : /

Table 3: The mod p homology of designer chromatic spectra. See [63, Theorem 4.3], as well as
[94, Proposition 1.7; 13, Proposition 5.3] for a proof of the statement for H�.BPhn� 1iIFp/; this
implies the calculations of H�.k.n�1/IFp/ and H�.kZ.n�1/IFp/. See [13, Proposition 6.1] for a
proof of the statements for H�.boIF2/ and H�.tmfIF2/, and [87, Theorem 21.5] for H�.tmfIFp/

for any p. For odd p, bo.p/ is a sum of shifts of BPh1i, which implies the statement about
H�.boIFp/.

is therefore a Q1–algebra map. Moreover, the composite

R!�2P j�n�1jC4.p/z�!H�0.�
2P j�n�1jC4.p/z�/!HFp

is simply the Postnikov truncation for R. It follows that the indecomposables in H�.�
2P j�n�1jC4.p/z�/

which come from the indecomposables in H�.R/ are sent to the indecomposables in H�.HFp/. Using
the discussion in the previous paragraph, Steinberger’s calculation (Theorem 2.2.4) and the Dyer–Lashof
hopping argument of Remark 2.2.9, we may conclude that the Steenrod comodule structure on H�.K

�
n /

(which, recall, is abstractly isomorphic to H�.‚.R//) agrees with the Steenrod comodule structure on
H�.‚.R//.

Step 3 By Step 2, the mod p homology of the Thom spectrum K
�
n is isomorphic to the mod p homology

of the associated designer chromatic spectrum ‚.R/ as a Steenrod comodule. The main results of
[12; 2, Theorem 1.1] now imply that, unless RDB, the Thom spectrum K

�
n is equivalent to ‚.R/ upon

p–completion for every prime p. Finally, if Conjecture F is true, then the same conclusion can be drawn
for B: the Thom spectrum K

�
n is equivalent to ‚.B/D tmf upon p–completion for every prime p.

This concludes the proof of Theorem A.
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5.3 Remark on the proof

Before proceeding, we note the following consequence of the proof of Theorem A:

Proposition 5.3.1 Let p be an odd prime. Assume Conjectures D and E. Then the composite

g2 W�
2S j�n�1jC3

!�2P j�n�1jC4.p/
z�
�! BGL1.X.p

n
� 1//! BGL1.BPhn� 1i/

is null.

Proof Let RDX.pn� 1/ and ‚.R/D BPhn� 1i. The map g2 is the composite of BGL1.Z3.R//!

BGL1.‚.R// with the extension of the map

�n�1 W S
j�n�1jC1

! BGL1.Z3.R//

along the double suspension S j�n�1jC1!�2S j�n�1jC3. Since �n�1 is null in ��‚.R/, we would be
done if g2 were homotopic to the dotted extension

S j�n�1jC1 �n�1
//

��

BGL1.‚.R//

�2S j�n�1jC3

g0
2

66

The potential failure of these maps to be homotopic stems from the fact that the composite Z3.R/!

R!‚.R/ need not be a map of E3–rings. It is, however, a map of E2–rings; therefore, the maps

g1 W�S j�n�1jC2
! BGL1.Z3.R//! BGL1.‚.R// and g01 W�S j�n�1jC2

! BGL1.‚.R//

obtained by extending along the suspension S j�n�1jC1!�S j�n�1jC2 are homotopic. We now utilize
the following result of Serre’s:

Proposition 5.3.2 (Serre [91, page 281]) Let p be an odd prime. Then the suspension S2n�1!�S2n

splits upon p–localization: there is a p–local equivalence

E ��Œ�2n; �2n� W S
2n�1

��S4n�1
!�S2n:

This implies that the suspension map �S j�n�1jC2!�2S j�n�1jC3 admits a splitting as loop spaces. In
particular, this implies that the map g2 is homotopic to the composite

�2S j�n�1jC3
!�S j�n�1jC2 g1

�! BGL1.Z3.R//! BGL1.‚.R//;

and similarly for g0
2
. Since g1 and g0

1
are homotopic and g0

1
(and hence g0

2
) is null, we find that g2 is

also null, as desired.

5.4 Infinite families and the nilpotence theorem

We now briefly discuss the relationship between Theorem A and the nilpotence theorem. We begin by
describing a special case of this connection. Recall from Remark 2.2.3 that Theorem 2.2.1 implies that, if
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R is an E2–ring spectrum and x 2 ��R is a simple p–torsion element which has trivial MU –Hurewicz
image, then x is nilpotent. A similar argument implies the following:

Proposition 5.4.1 Assume Conjecture D when nD 1. Then Corollary 2.2.2 (ie Theorem A when nD 1)
implies that , if R is a p–local E3–ring spectrum and x 2 ��R is a class with trivial HZp–Hurewicz
image such that

� ˛1x D 0 in ��R, and

� the Toda bracket hp; ˛1;xi contains zero ,

then x is nilpotent.

Proof We claim that the composite

(5-2) �2S3
h3i ! BGL1.S.p//! BGL1.RŒ1=x�/

is null. Remark 4.1.8 implies that Conjecture D for nD 1 reduces us to showing that the composite

�2P2pC1.p/
˛1
�! BGL1.S.p//! BGL1.RŒ1=x�/

is null. Since this composite is one of double loop spaces, it further suffices to show that the composite

(5-3) P2p�1.p/! BGL1.S.p//! BGL1.RŒ1=x�/

is null. The bottom cell S2p�2 of P2p�1.p/ maps trivially to BGL1.RŒ1=x�/, because the bottom cell
detects ˛1 (by Remark 4.1.8) and ˛1 is nullhomotopic in RŒ1=x�. Therefore, the map (5-3) factors through
the top cell S2p�1 of P2p�1.p/. The resulting map

S2p�1
! BGL1.S.p//! BGL1.RŒ1=x�/

detects an element of the Toda bracket hp; ˛1;xi, but this contains zero by hypothesis, so is nullhomotopic.

Since the map (5-2) is null, Corollary 2.2.2 and Theorem 2.1.7 imply that there is a ring map HZp!

RŒ1=x�. In particular, the composite of the map x W†jxjR!R with the unit R!RŒ1=x� factors as

†jxjR
x

//

��

R //

��

RŒ1=x�

HZp ^†
jxjR

x
// HZp ^R

99

The bottom map, however, is null, because x has zero HZp–Hurewicz image. Therefore, the element
x 2 ��RŒ1=x� is null, and hence RŒ1=x� is contractible.

Remark 5.4.2 One can prove by a different argument that Proposition 5.4.1 is true without the assumption
that Conjecture D holds when nD 1. At p D 2, this was shown by Astey [18, Theorem 1.1].
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To discuss the relationship between Theorem A for general n and the nilpotence theorem (which we will
expand upon in future work), we embark on a slight digression. The following proposition describes the
construction of some infinite families:

Proposition 5.4.3 Let R be a height n � 1 spectrum as in the second line of Table 2, and assume
Conjecture E if RDA or B. Then there is an infinite family �n�1;pk 2�pk jvnj�1.R/. Conjecture E implies
that �n�1;pk lifts to �pk jvnj�1.Z3.R//, where Z3.R/ abusively denotes the E3–center of X.pn � 1/ if
RD T .n� 1/.

Proof We construct this family by induction on k. The element �n�1;1 is just �n�1, so assume that
we have defined �n�1;pk . The element �n�1;pk 2 �pk jvnj�1R defines a map �n�1;pk W Spk jvnj !

BGL1.R/. When R D T .n� 1/, Lemma 3.1.12 (and the inductive hypothesis) implies that the map
defined by �n factors through the map BGL1.X.p

n � 1//! BGL1.T .n� 1//. When R D A or B,
Conjecture E (and the inductive hypothesis) implies that the map defined by �n factors through the map
BGL1.Z3.R// ! BGL1.R/. This implies that, for all R as in the second line of Table 2, the map
�n�1;pk W Spk jvnj! BGL1.R/ factors through an E1–space, which we shall just denote by ZR for the
purpose of this proof. If we assume Conjecture E, then we may take ZR D BGL1.Z3.R//.

Therefore, we get a map �n�1;pk W�Spk jvnjC1! BGL1.R/ via the composite

�Spk jvnjC1
! ZR! BGL1.R/:

Since ZR is an E1–space, the map �Spk jvnjC1! ZR is adjoint to a mapW
j�1 Sjpk jvnjC1

'†�Spk jvnjC1
! BZRI

the source splits as indicated via the James splitting. These splittings are given by Whitehead products;
in particular, the map SpkC1jvnjC1 D Sp.pk jvnjC1/�.p�1/! BZR is given by the p–fold Whitehead
product Œ�n�1;pk ; : : : ; �n�1;pk �. This is divisible by p, so it yields a map SpkC1jvnj! ZR, and hence
a map SpkC1jvnj ! BGL1.R/ given by composing with the map ZR ! BGL1.R/. This defines the
desired element �n�1;pkC1 2 �pkC1jvnj�1.R/. As the construction makes clear, assuming Conjecture E
and taking ZR D BGL1.Z3.R// implies that �n�1;pk lifts to �pk jvnj�1.Z3.R//.

Remark 5.4.4 This infinite family is detected in the 1–line of the ANSS for R by ı.vk
n /, where ı is the

boundary map induced by the map †�1R=p! R. This is a consequence of the geometric boundary
theorem (see [85, Theorem 2.3.4]) applied to the cofiber sequence R

p
�!R!R=p.

Remark 5.4.5 The element �n�1;1 2 �2pn�3.R/ is precisely �n�1.

Remark 5.4.6 When nD 1, the ring R is the (p–local) sphere spectrum. The infinite family �n�1;pk

is the Adams–Toda ˛–family; namely, p̨k 2 �2pk.p�1/�1.S/ maps to �0;pk 2 �2pk.p�1/�1X.p � 1/

under the unit map S!X.p� 1/.
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We now briefly sketch an argument relating Theorem A to the proof of the nilpotence theorem; we shall
elaborate on this discussion in forthcoming work.

Remark 5.4.7 The heart of the nilpotence theorem is what is called Step III in [38]; this step amounts
to showing that certain self-maps of T .n�1/–module skeleta (denoted by Gk in [38]) of T .n/ are
nilpotent. Let us assume that p > 2 for simplicity. Then these self-maps are given by multiplication
by the p–fold Toda bracket bn;k D h�n�1;pk ; : : : ; �n�1;pk i at an odd prime p; this lives in degree
pj�n�1;pk jCp� 2D 2pk.pn� 1/� 2. (When p D 2, the desired element �n�1;pk is denoted by h in
[51, Theorem 3].) It therefore suffices to establish the nilpotency of the bn;k .

This can be proven through Theorem A via induction on k; we shall assume Conjectures D and E for
the remainder of this discussion. The motivation for this approach stems from the observation that, if R

is any E3–F2–algebra and x 2 ��.R/, then there is a relation Q1.x/
2 DQ2.x

2/ (at odd primes, one
has a relation involving the p–fold Toda bracket hQ1.x/; : : : ;Q1.x/i). In our setting, Proposition 5.4.3
implies that the elements �n�1;k lift to ��Z3.X.p

n�1//. At pD 2, one can prove (in the same way that
the Cartan relation Q1.x/

2 DQ2.x
2/ is proven) that the construction of this infinite family implies that

�2
n�1;pkC1 can be described in terms of Q2.�

2
n�1;pk /. At odd primes, there is a similar relation involving

the p–fold Toda bracket defining bn;k . In particular, induction on k implies that the bn;k are all nilpotent
in ��Z3.X.p

n� 1// if bn;1 is nilpotent. Note that jbn;1j D 2pnC1� 2p� 2.

To argue that bn;1 is nilpotent, one first observes that �n�1b
p
n;1
D 0 in ��Z3.X.p

n � 1//; when nD 0,
this follows from the statement that ˛1ˇ

p
1
D 0 in the sphere. To show that bn;1 is nilpotent, it suffices

to establish that Z3.X.p
n� 1//Œ1=b

p
n;1
� is contractible; when nD 1, this follows from Proposition 5.4.1.

We give a very brief sketch of this nilpotence for general n, by arguing as in Proposition 5.4.1, and with a
generous lack of precision which will be remedied in forthcoming work.

For notational convenience, we now write dn;1 D b
p
n;1

, so that jdn;1j D 2pnC2� 2p2� 2p. It suffices to
show that the multiplication-by-dn;1 map

dn;1 W†
jdn;1jZ3.X.p

n
� 1//! Z3.X.p

n
� 1//Œ1=dn;1�

is nullhomotopic. Since �n�1 kills dn;1, we know that �n�1 is nullhomotopic in Z3.X.p
n� 1//Œ1=dn;1�.

Moreover, the bracket hp; �n�1; 1Z3.X .pn�1//Œ1=dn;1�i contains zero. By arguing as in Proposition 5.4.1,
we can conclude that the composite

Kn!�2P j�n�1jC4 �
�! BGL1

�
Z3.X.p

n
� 1//

�
! BGL1

�
Z3.X.p

n
� 1//Œ1=dn0

�
�

is nullhomotopic, where the map � is as constructed in Step 1 of the proof of Theorem A. (Recall that
the proof of Theorem A shows that the Thom spectrum .�2P j�n�1jC4/� is an E1˝Q1–Z3.X.p

n�1//–
algebra such that BPhn� 1i splits off its base change along the map Z3.X.p

n � 1//! T .n� 1/.) It
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follows from Theorem 2.1.7 that the multiplication-by-dn;1 map factors as

†jdn;1jZ3.X.p
n� 1//

dn;1 //

��

Z3.X.p
n� 1// //

��

Z3.X.p
n� 1//Œ1=dn;1�

†jdn;1j.�2P j�n�1jC4/�
dn;1 // .�2P j�n�1jC4/�

55

To show that the top composite is null, it therefore suffices to show that the self-map of K
�
n defined

by dn;1 is nullhomotopic. This essentially follows from the fact that .�2P j�n�1jC4/� is an E1˝Q1–
Z3.X.p

n�1//–algebra: multiplication by dn;1 is therefore null on K
�
n , because dn;1 is built from �n�1

(which is null in .�2P j�n�1jC4/�) via E1–power operations.

6 Applications

6.1 Splittings of cobordism spectra

The goal of this section is to prove the following:

Theorem C Assume that the composite Z3.B/!B!MString.2/ is an E3–map. Then Conjectures D,
E and F imply that there is a unital splitting of the Ando–Hopkins–Rezk orientation MString.2/! tmf.2/.

Remark 6.1.1 We believe that the assumption that the composite Z3.B/! B ! MString.2/ is an
E3–map is too strong: we believe that it can be removed using special properties of fibers of charming
maps, and we will return to this in future work.

We only construct unstructured splittings; it seems unlikely that they can be refined to structured splittings.
A slight modification of our arguments should work at any prime.

Remark 6.1.2 In fact, the same argument used to prove Theorem C shows that, if the composite Z3.A/!

A!MSpin.2/ is an E3–map, then Conjectures D and E imply that there are unital splittings of the
Atiyah–Bott–Shapiro orientation MSpin.2/! bo.2/. This splitting was originally proved unconditionally
(ie without assuming Conjecture D or Conjecture E) by Anderson, Brown and Peterson [4] via a calculation
with the Adams spectral sequence.

Remark 6.1.3 The inclusion of the cusp on Mell defines an E1–map c W tmf!bo as in [63, Theorem 1.2].
The resulting diagram

MString.2/ //

��

MSpin.2/

��

tmf.2/
c

// bo.2/
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commutes (see eg [34, Lemma 6.4]). The splitting s W tmf.2/ ! MString.2/ of Theorem C defines a
composite

tmf.2/
s
�!MString.2/!MSpin.2/! bo.2/

which agrees with c.

Remark 6.1.4 The Anderson–Brown–Peterson splitting implies that, if X is any compact space, then the
Atiyah–Bott–Shapiro yA–genus (ie the index of the Dirac operator in families) MSpin�.X /! bo�.X / is
surjective. Similarly, if the composite Z3.B/!B!MString is an E3–map, then Conjectures D, E and F
imply that the Ando–Hopkins–Rezk orientation (ie the Witten genus in families) MString�.X /! tmf�.X /
is also surjective.

Remark 6.1.5 In [34], we proved (unconditionally) that the map ��MString! ��tmf is surjective.
Our proof proceeds by showing that the map ��B! ��tmf is surjective via arguments with the Adams–
Novikov spectral sequence and by exploiting the E1–ring structure on B to lift the powers of � living
in ��tmf.

The discussion preceding [75, Remark 7.3] implies that, for a particular model of tmf0.3/, we have:

Corollary 6.1.6 Assume that the composite Z3.B/! B.2/!MString.2/ is an E3–map. Then Conjec-
tures D, E and F imply that †16tmf0.3/

^
2

is a summand of MString^2 .

We now turn to the proof of Theorem C.

Proof of Theorem C First, note that such a splitting exists after rationalization. Indeed, it suffices to
check that this is true on rational homotopy; since the orientations under considerations are E1–ring
maps, the induced map on homotopy is one of rings. It therefore suffices to lift the generators.

We now show that the generators of ��tmf˝QŠQŒc4; c6� lift to ��MString˝Q. Although one can
argue this by explicitly constructing manifold representatives (as is done for c4 in [34, Corollary 6.3]), it
is also possible to provide a more homotopy-theoretic proof: The elements c4 and c6 live in dimensions 8

and 12, respectively, and the map MString! tmf is known to be an equivalence in dimensions � 15 by
[49, Theorem 2.1]. It follows that the same is true rationally, so c4 and c6 indeed lift to ��MString˝Q,
as desired.

We will now construct a splitting after p–completion, where p D 2. By Corollary 5.1.6, we obtain a
unital map tmf'‚.B/!MString upon p–completion which splits the orientation MString!‚.B/

because

(a) the map Z3.B/! B!MString is an E3–ring map (by assumption),

(b) the element �2 vanishes in �13MString.2/ (because �13MString.2/ Š �13tmf.2/ Š 0), and

(c) the Toda bracket h2; �2; 1MString.2/i � ��MString.2/ contains zero because �14MString.2/ Š
�14tmf.2/, and the corresponding bracket h2; �2; 1MString.2/i � �14tmf.2/ detects v3, and hence
contains zero.
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To obtain a map tmf.p/!MString.p/, we need to show that the induced map tmf˝Q! tmf^p ˝Q!

MString^p ˝Q agrees with the rational splitting constructed in the previous paragraph. However, this
is immediate from the fact that the splittings tmf^p !MString^p are constructed to be equivalences in
dimensions � 15, and the fact that the map out of tmf˝Q is determined by its effect on the generators
c4 and c6.

Remark 6.1.7 The proof recalled in Remark 1.1.2 of Thom’s splitting of MO proceeded essentially
unstably: there is an E2–map �2S3! BO of spaces over BGL1.S/, whose Thomification yields the
desired E2–map HF2!MO. This argument also works for MSO: there is an E2–map�2S3h3i!BSO
of spaces over BGL1.S/, whose Thomification yields the desired E2–map HZ!MSO. One might
hope for the existence of a similar unstable map which would yield Theorem C. We do not know how to
construct such a map. To illustrate the difficulty, let us examine how such a proof would work; we will
specialize to the case of MString, but the discussion is the same for MSpin.

According to Theorem A, Conjectures D and E imply that there is a map K3! BGL1.B/ whose Thom
spectrum is equivalent to tmf. There is a map BN ! B2String, whose fiber we will denote by Q. Then
there is a fiber sequence

N ! BString!Q;

and so Proposition 2.1.6 implies that there is a map Q! BGL1.B/ whose Thom spectrum is MString.
Theorem C would follow if there was a map f WK3!Q of spaces over BGL1.B/, since Thomification
would produce a map tmf!MString.

Conjecture D reduces the construction of f to the construction of a map �2P17.2/! Q. This map
would in particular imply the existence of a map P15.2/!Q (and would be equivalent to the existence
of such a map if Q was a double loop space), which in turn stems from a 2–torsion element of �14.Q/.
The long exact sequence on homotopy runs

� � � ! �14.BString/! �14.Q/! �13.N /! �13.BString/! � � � :

Bott periodicity states that �13BStringŠ�14BStringŠ0, so we find that �14.Q/Š�13.N /. The desired
2–torsion element of �14.Q/ is precisely the element of �13.N / described in Remark 3.2.24. Choosing
a particular nullhomotopy of twice this 2–torsion element of �14.Q/ produces a map g W P15.2/!Q.
To extend this map over the double suspension P15.2/!�2P17.2/, it would suffice to show that there
is a double loop space zQ with a map zQ!Q such that g factors through zQ.

Unfortunately, we do not know how to prove such a result; this is the unstable analogue of Conjecture E.
In fact, such an unstable statement would bypass the need for Conjecture E in Theorem A. (One runs
into the same obstruction for MSpin, except with the fiber of the map S5! B2Spin.) These statements
are reminiscent of the conjecture (see Section 4.1) that the fiber Wn D fib.S2n�1!�2S2nC1/ of the
double suspension admits the structure of a double loop space.
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Remark 6.1.8 The following application of Theorem C was suggested by Mike Hopkins. In [53], the
Anderson–Brown–Peterson splitting is used to show that the Atiyah–Bott–Shapiro orientation MSpin!
KO induces an isomorphism

MSpin�.X /˝MSpin� KO�
Š�!KO�.X /

of KO�–modules for all spectra X. In future work, we shall show that Theorem C can be used to prove
the following height 2 analogue of this result: Conjectures D, E and F imply that the Ando–Hopkins–Rezk
orientation MString! Tmf induces an isomorphism

(6-1) MString�.X /˝MString� Tmf� Š�! Tmf�.X /

of Tmf�–modules for all spectra X. The K.1/–analogue of this isomorphism was obtained by Laures [60].

6.2 Wood equivalences

The Wood equivalence states that bo^C�' bu. There are generalizations of this equivalence to tmf
(see [78]); for instance, there is a 2–local 8–cell complex DA1 whose cohomology is isomorphic to the
double of A.1/ as an A.2/–module such that tmf.2/^DA1 ' tmf1.3/' BPh2i. Similarly, if X3 denotes
the 3–local 3–cell complex S0 [˛1

e4 [2˛1
e8, then tmf.3/ ^X3 ' tmf1.2/ ' BPh2i _†8BPh2i. We

will use the umbrella term “Wood equivalence” to refer to equivalences of this kind.

Our goal in this section is to revisit these Wood equivalences using the point of view stemming from
Theorem A. In particular, we propose that these equivalences are suggested by the existence of certain
EHP sequences; we will greatly expand on this in a forthcoming document. We find this to be a rather
beautiful connection between stable and unstable homotopy theory.

The first Wood-style result was proved in Proposition 3.2.6. The next result, originally proved in [67,
Section 2.5; 31, Theorem 3.7], is the simplest example of a Wood-style equivalence which is related to
the existence of certain EHP sequences.

Proposition 6.2.1 Let S==� D X.2/ (resp. S==2) denote the E1–quotient of S by � (resp. 2). If Y D

C�^S=2 and A1 is a spectrum whose cohomology is isomorphic to A.1/ as a module over the Steenrod
algebra , then there are equivalences

A^C�' S==�; A^Y ' S==2; A^A1 ' y.1/=v1

of A–modules.

Remark 6.2.2 Proposition 6.2.1 implies the Wood equivalence bo^C�' bu. Although this implication
is already true before 2–completion, we will work in the 2–complete category for convenience. Recall
that Theorem A states that Conjectures D and E imply that there is a map � WK2! BGL1.A/ whose
Thom spectrum is equivalent to bo (as left A–modules). Moreover, the Thom spectrum of the composite
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K2
�
�!BGL1.A/!BGL1.T .1// is equivalent to BPh1i. Since this Thom spectrum is the base change

K
�
2
^A T .1/, and Proposition 6.2.1 implies that T .1/DX.2/'A^C�, we find that

BPh1i 'K
�
2
^A .A^C�/'K

�
2
^C�' bo^C�;

as desired. Similarly, noting that S==2D y.1/, we find that Proposition 6.2.1 also proves the equivalence
bo^Y ' k.1/.

Remark 6.2.3 The argument of Remark 6.2.2 in fact proves that Theorem A for A implies Theorem A
for T .1/, yZ.1/ and y.1/.

Proof of Proposition 6.2.1 For the first two equivalences, it suffices to show that A^C�' S==� and
that S==�^S=2' S==2. We will prove the first statement; the proof of the second statement is exactly
the same. There is a map C�! S==� given by the inclusion of the 2–skeleton. There is also an E1–ring
map A! S==� given as follows. The multiplication on S==� defines a unital map C�^ C�! S==�.
But, since the Toda bracket h�; 2; �i contains �, there is a unital map C�! C�^C�. This supplies a
unital map C�! S==�, which, by the universal property of AD S==� (via Theorem 2.1.7), extends to an
E1–ring map A! S==�.

For the final equivalence, it suffices to construct a map A1 ! y.1/=v1 for which the induced map
A^A1! y.1/=v1 gives an isomorphism on mod 2 homology. Since A1 may be obtained as the cofiber
of a v1–self-map †2Y ! Y, it suffices to observe that the diagram

†2Y

v1

��

// †2y.1/

v1

��

Y // y.1/

commutes; our desired map is the induced map on vertical cofibers.

Remark 6.2.4 There are EHP sequences

S1
!�S2

!�S3; S2
!�S3

!�S5:

Recall that S=2, C�, S==2, S==� D X.2/ and A are Thom spectra over S1, S2, �S2, �S3 and �S5,
respectively. Proposition 2.1.6 therefore implies that there are maps f W�S3!BAut.S=2/ and g W�S5!

BAut.C�/ whose Thom spectra are equivalent to S==2 and S==�, respectively. The maps f and g define
local systems of spectra over �S3 and �S5 whose fibers are equivalent to S=2 and C� (respectively),
and one interpretation of Proposition 6.2.1 is that these local systems in fact factor as

�S3 �
�! BGL1.S/! BAut.S=2/; �S5 �

�! BGL1.S/! BAut.C�/:

Proposition 6.2.1 is an immediate consequence of these factorizations. We argue this for the first case in
Remark 6.2.5, and for the second in Remark 6.2.6, thereby giving an alternative EHP-based argument for
Proposition 6.2.1.
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Remark 6.2.5 The first EHP sequence in Remark 6.2.4 splits via the Hopf map S3! S2. The map
f W�S3! BAut.S=2/ in fact factors through the dotted map in the diagram

S2 // �S2

��

// �S3

��ww

BGL1.S/ // BAut.S=2/

Indeed, the composite �S3 ! �S2 ! BGL1.S/ is a loop map and, therefore, is determined by the
composite � WS3!S2!B2GL1.S/. Since the map S2!B2GL1.S/ detects the element �12�0.S/

�,
the map � does in fact determine a unit multiple of �. This implies the desired claim.

Remark 6.2.6 The map g W�S5! BAut.C�/ from Remark 6.2.4 factors through BGL1.S/. To see
this, let us begin with the following observation: View BU and BSU as H–spaces via the tensor product
of vector bundles. Then the map BSU�CP1!BU classifying V�L, with V the universal SU–bundle
over BSU and L the universal line bundle over BU, is an equivalence of H–spaces. In particular, there is
a fiber sequence

CP1! BU ! BSU:

The map �S3! BGL1.S/ defining T .1/ factors as

�S3
! BU J

�! BGL1.S/I

similarly, the map �S5! BGL1.S/ defining A factors as

�S5
! BSU J

�! BGL1.S/:

These factorizations make the following diagram of fiber sequences commute:

S2 //

��

�S3 //

��

�S5

��

CP1 // BU // BSU

The map �S5! BAut.C�/ was defined using Proposition 2.1.6. It then follows from the splitting of
the bottom fiber sequence in the above diagram that the dotted map exists in the diagram

S2 //

��

�S3 //

��

�S5

��

CP1 //

%%

BU //

J

��

BSU

��Jww

BGL1.S/ // BAut.C�/
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The composite
�S5

! BSU J
�! BGL1.S/! BAut.C�/

is g, giving our desired factorization.

Next, we have the following result at height 2:

Proposition 6.2.7 Let DA1 denote the double of A1 (see [78]). There are 2–complete equivalences

B ^DA1 ' T .2/; B ^Z ' y.2/; B ^A2 ' y.2/=v2;

where Z is the spectrum “1
2
A2” from [76; 25]3 and A2 is a spectrum whose cohomology is isomorphic to

A.2/ as a module over the Steenrod algebra.

Remark 6.2.8 Arguing as in Remark 6.2.2 shows that Proposition 6.2.7 and Theorem A imply the Wood
equivalences

tmf^DA1 ' tmf1.3/D BPh2i; tmf^Z ' k.2/; tmf^A2 'HF2:

Remark 6.2.9 Exactly as in Remark 6.2.3, the argument of Remark 6.2.8 in fact proves that Theorem A
for B implies Theorem A for T .2/, yZ.2/ and y.2/.

Remark 6.2.10 The telescope conjecture [84, Conjecture 10.5], which we interpret as stating that
Ln–localization is the same as L

f
n –localization, is known to be true at height 1. For odd primes, it was

proved by Miller [80], and at p D 2 it was proved by Mahowald [68; 70]. Mahowald’s approach was
to calculate the telescopic homotopy of the type 1 spectrum Y. In [73], Mahowald, Ravenel and Shick
proposed an approach to disproving the telescope conjecture at height 2: they suggest that, for n � 2,
the Ln–localization and the vn–telescopic localization of y.n/ have different homotopy groups. They
show, however, that the L1–localization and the v1–telescopic localization of y.1/ agree, so this approach
(thankfully) does not give a counterexample to the telescope conjecture at height 1.

Motivated by Mahowald’s approach to the telescope conjecture, Behrens, Beaudry, Bhattacharya, Culver
and Xu study the v2–telescopic homotopy of Z in [22], with inspiration from the Mahowald–Ravenel–
Shick approach. Propositions 6.2.1 and 6.2.7 can be used to relate these two (namely, the finite spectrum
and the Thom spectrum) approaches to the telescope conjecture. As in Section 6.1, we will let R denote
A or B. Moreover, let F denote Y or Z (depending on what R is) and let R0 denote y.1/ or y.2/ (again
depending on what R is), so that R^F DR0 by Propositions 6.2.1 and 6.2.7. Then:

Corollary 6.2.11 If the telescope conjecture is true for F (and hence any type 1 or 2 spectrum) or R,
then it is true for R0.
3In the former source, Z is denoted by M.

Algebraic & Geometric Topology, Volume 24 (2024)



96 Sanath K Devalapurkar

Proof Since Ln– and L
f
n –localizations are smashing, we find that, if the telescope conjecture is true for

F or R, then Propositions 6.2.1 and 6.2.7 yield equivalences

Lfn R0 'R^Lfn F 'R^LnF 'LnR0:

Finally, we prove Proposition 6.2.7.

Proof of Proposition 6.2.7 We first construct maps B ! T .2/ and DA1 ! T .2/. The top cell of
DA1 is in dimension 12, and the map T .2/! BP is an equivalence in dimensions � 12. It follows that
constructing a map DA1! T .2/ is equivalent to constructing a map DA1! BP. However, both BP and
DA1 are concentrated in even degrees, so the Atiyah–Hirzebruch spectral sequence collapses, and we
find that BP�.DA1/ŠH�.DA1IBP�/. The generator in bidegree .0; 0/ produces a map DA1! T .2/;
its effect on homology is the additive inclusion F2Œ�

2
1
; �2

2
�=.�8

1
; �4

2
/! F2Œ�

2
1
; �2

2
�.

The map B! T .2/ may be defined via the universal property of Thom spectra from Section 2.1 and
Remark 3.2.20. Its effect on homology is the inclusion F2Œ�

8
1
; �4

2
� ! F2Œ�

2
1
; �2

2
�. We obtain a map

B ^DA1! T .2/ via the multiplication on T .2/, and this induces an isomorphism in mod 2 homology.

For the second equivalence, we argue similarly: The map B! T .2/ defines a map B! T .2/! y.2/.
Next, recall that Z is built through iterated cofiber sequences:

†2Y
v1
�! Y !A1; †5A1 ^C�

�1
�!A1 ^C�!Z:

As an aside, we note that the element �1 is intimately related to the element discussed in Example 3.1.14;
namely, it is given by the self-map of A1 ^C� given by smashing A1 with the diagram

†5C�

�1

++

// †5A
�1^id

// A^A // A

C�

OO

Using these cofiber sequences and Proposition 3.2.6, one obtains a map Z ! y.2/, which induces
the additive inclusion F2Œ�1; �2�=.�

8
1
; �4

2
/! F2Œ�1; �2� on mod 2 homology. The multiplication on y.2/

defines a map B ^Z! y.2/, which induces an isomorphism on mod 2 homology.

For the final equivalence, it suffices to construct a map A2 ! y.2/=v2 for which the induced map
B ^A2! y.2/=v2 gives an isomorphism on mod 2 homology. Since A2 may be obtained as the cofiber
of a v2–self-map †6Z!Z, it suffices to observe that the diagram

†6Z

v2

��

// †6y.2/

v2

��

Z // y.2/

commutes; our desired map is the induced map on vertical cofibers.
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Arguing exactly as in the proof of Proposition 6.2.7 shows the following result at the prime 3:

Proposition 6.2.12 Let X3 denote the 8–skeleton of T .1/D S==˛1. There are 3–complete equivalences

B ^X3 ' T .2/_†8T .2/; B ^X3 ^S=.3; v1/' y.2/_†8y.2/:

In forthcoming work, we will discuss the relation between Proposition 6.2.7 and EHP sequences, along
the lines of Remark 6.2.4.

7 C2–equivariant analogue of Corollary B

Our goal in this section is to study a C2–equivariant analogue of Corollary B at height 1. The odd primary
analogue of this result is deferred to the future; it is considerably more subtle.

7.1 C2–equivariant analogues of Ravenel’s spectra

In this section, we construct the C2–equivariant analogue of T .n/ for all n. We 2–localize everywhere until
mentioned otherwise. There is a C2–action on �SU.n/ given by complex conjugation, and the resulting
C2–space is denoted by �SU.n/R. Real Bott periodicity gives a C2–equivariant map �SU.n/R!BUR

whose Thom spectrum is the (genuine) C2–spectrum X.n/R. This admits the structure of an E�–ring,
since it is the Thom spectrum of an E�–map ��B�SU.n/R ! ��B�BUR ' ��BSUR. As in the
nonequivariant case, the equivariant Quillen idempotent on MUR restricts to one on X.m/R, and therefore
defines a summand T .n/R of X.m/R for 2n �m� 2nC1� 1. Again, this summand admits the structure
of an E1–ring.

Construction 7.1.1 There is an equivariant fiber sequence

�SU.n/R!�SU.nC 1/R!�Sn�C1;

where � is the regular representation of C2; the equivariant analogue of Proposition 2.1.6 then shows
that there is a map �Sn�C1! BGL1.X.n/R/ (detecting an element �n 2 �n��1X.n/R) whose Thom
spectrum is X.nC 1/R. Here, BGL1.X.n/R/ is the delooping of the E�–space GL1.X.n/R/, and the
C2–equivariant notion of Thom spectrum is taken in the sense of [46, Theorem 3.2]. (The constructions
from loc. cit. can be verified to go through for equivariant maps to BGL1.X.n/R/; for example, when
nD1, the idea of taking Thom spectra for an equivariant map to BGL1.MUR/ was already used in
[47, Section 3].)

If z�n denotes the image of the element �2nC1��1 in �.2nC1�1/��1T .n/R, then we have a C2–equivariant
analogue of Lemma 3.1.12:

Lemma 7.1.2 The Thom spectrum of the map

�S .2
nC1�1/�C1

! BGL1.X.2
nC1
� 1/R/

detecting z�n is a direct sum of shifts of T .nC 1/R.
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Example 7.1.3 For instance, T .1/R DX.2/R is the Thom spectrum of the map �S�C1!BUR; upon
composing with the equivariant J–homomorphism BUR! BGL1.S/, this detects the element z� 2 ��S,
and the extension of the map S�! BGL1.S/ to �S�C1 uses the E1–structure on BGL1.S/. The case
of X.2/R exhibits a curious property: S�C1 is the loop space ��HP1R , and there are equivalences (see
[48, Propositions 3.4 and 3.6])

�S�C1
'��C1HP1R '�

� .�HP1R /:

However, �HP1R ' S�C� , so �S�C1 D ��S�C� . The map ��S�C� ! BGL1.S/ still detects the
element z� 2 ��S on the bottom cell, but the extension of the map S�! BGL1.S/ to ��S�C� is now
defined via the E�–structure on BGL1.S/. The upshot of this discussion is that X.2/R is not only the
free E1–ring with a nullhomotopy of z�, but also the free E�–algebra with a nullhomotopy of z�.

Warning 7.1.4 Unlike the nonequivariant setting, the element z� 2 ��S is neither torsion nor nilpotent.
This is because its geometric fixed points is ˆC2z�D 22�0S; see [39, Proposition C.5], although note that
the orientations chosen there are the opposite of ours. Briefly, the map z� is obtained by �–desuspending
the unstable equivariant Hopf map S�C� D C2 � f0g ! CP1 D S�, whose homotopy fiber is S� . In
other words, there is a fiber sequence S� ! S�C�

z�
�! S�. On geometric fixed points, this produces the

fiber sequence S0 D C2! S1! S1, which forces the map ˆC2z� to have degree 2 (or �2, depending
on the choice of orientation).

Example 7.1.5 Consider the element z�1 2 �3��1T .1/R. The underlying nonequivariant element of
�5T .1/R is simply �1. To determine ˆC2z�1 2 �2ˆ

C2T .1/R, we first note that ˆC2T .1/R is the Thom
spectrum of the map ˆC2z� W ˆC2�S�C1! BGL1.S/. Since ˆC2�S�C1 D �S2 and ˆC2z� D 2, we
find that ˆC2T .1/R is the E1–quotient S==2. The element ˆC2z�1 2 �2S==2Š �2S=2 is simply a map
S2! S=2 which is � on the top cell. Such a map exists because 2�D 0.

As an aside, we mention that there is a C2–equivariant lift of the spectrum A:

Definition 7.1.6 Let AC2
denote the Thom spectrum of the map �S2�C1! BGL1.S/ defined by the

extension of the map S2�! BGL1.S/ which detects the equivariant Hopf map z� 2 �2��1S.

Remark 7.1.7 The underlying spectrum of AC2
is A. To determine the geometric fixed points of AC2

,
ˆC2AC2

is the Thom spectrum of the map ˆC2z� WˆC2�S2�C1! BGL1.S/. We claim that ẑC2z� D �;
indeed, the map z� is obtained by 2�–desuspending the unstable equivariant map S4��1 DH2�f0g !

HP1 D S2�. The homotopy fiber of this map is S2��1 D S�C� , so that there is an equivariant fiber
sequence S�C�!S4��1!S2�. On geometric fixed points, we obtain a fiber sequence S1!S3!S2,
which implies thatˆC2z� be identified with the Hopf fibration S3!S2. Now, sinceˆC2�S2�C1D�S3,
we find that ˆC2AC2

D T .1/. In particular, AC2
may be thought of as the free C2–equivariant E1–ring

with a nullhomotopy of z�.
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Example 7.1.8 The element z�1 lifts to �3��1AC2
. Indeed, Remark 3.2.17 works equivariantly too: the

equivariant Hopf map S3��1! S2� defines a composite S3��1! S2� ! �S2�C1. The composite
S3��1 ! �S2�C1 ! BSUR is null, since �3��1BSUR D 0. It follows that, upon Thomification,
the map S3��1 ! �S2�C1 defines an element z� 0

1
of �3��1AC2

. In order to show that this element
indeed deserves to be called z�1, we use Proposition 7.1.9. The map AC2

! T .1/R from the proposition
induces a map �3��1AC2

! �3��1T .1/R, and we need to show that the image of z� 0
1
2 �3��1AC2

is in
fact z�1. By Example 7.1.5, it suffices to observe that the underlying nonequivariant map corresponding to
z� 0

1
2 �3��1T .1/R is �1, and that the geometric fixed point ˆC2

z� 0
1
2 �2S==2 is the lift of � appearing in

Example 7.1.5.

We now prove the proposition used above.

Proposition 7.1.9 There is a genuine C2–equivariant E1–map AC2
! T .1/R.

Proof By Remark 7.1.7, it suffices to show that z� D 0 2 �3��1T .1/R. The underlying map is null,
because � D 0 2 �5T .1/. The geometric fixed points are also null, because ˆC2z� D � is null in
�2ˆ

C2T .1/R D �2S==2. Therefore, z� is null in �3��1T .1/R.

In fact, it is easy to prove the following analogue of Proposition 6.2.1:

Proposition 7.1.10 There is a C2–equivariant equivalence AC2
^C z�' T .1/R.

Proof There are maps AC2
! T .1/R and C z�! T .1/R, which define a map AC2

^C z�! T .1/R via
the multiplication on T .1/R. This map is an equivalence on underlying spaces by Proposition 6.2.1, and
on geometric fixed points induces the map T .1/^S=2! S==2. This was also proved in the course of
Proposition 6.2.1.

Remark 7.1.11 As in Remark 6.2.2, one might hope that this implies the C2–equivariant Wood equiva-
lence boC2

^C z�' buR via some equivariant analogue of Theorem A.

Remark 7.1.12 The equivariant analogue of Remark 6.2.4 remains true: the equivariant Wood equivalence
of Proposition 7.1.10 stems from the EHP sequence S�!�S�C1!�S2�C1. To prove the existence
of such a fiber sequence, we use [37, Construction 4.26] to get the Hopf map h W�S�C1!�S2�C1, as
well as a nullhomotopy of the composite S�!�S�C1!�S2�C1. In particular, if F D fib.h/, there is
an equivariant map S�! F. We claim that this map is an equivalence: it suffices to prove that S�! F

is an equivalence on underlying and on geometric fixed points, since these functors preserve homotopy
limits and colimits, and these functors are jointly conservative. The desired equivalence on underlying
spaces follows from the classical EHP sequence S2!�S3!�S5, and the equivalence on geometric
fixed points follows from the splitting �S2 ' S1 ��S3.
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7.2 The C2–equivariant analogue of Corollary B at n D 1

Recall (see [55]) that there are indecomposable classes Nvn 2 �.2n�1/�BPR; as in Theorem 3.1.5, these lift
to classes in �?T .m/R if m� n. The main result of this section is the following:

Theorem 7.2.1 There is a map ��S2�C1! BGL1.T .1/R/ detecting an indecomposable in ��T .1/R
on the bottom cell , whose Thom spectrum is HZ.

Note that, as with Corollary B at nD 1, this result is unconditional. The argument is exactly as in the
proof of Corollary B at n D 1, with practically no modifications. We need the following analogue of
Theorem 2.2.1, originally proved in [24; 48]:

Proposition 7.2.2 (Behrens and Wilson; Hahn and Wilson) Let p be any prime , and let � denote the 2–
dimensional standard representation of Cp on C. The Thom spectrum of the map��S�C1!BGL1.S

0/

extending the map 1�p WS1!BGL1.S
0/ is equivalent to HFp as an E�–ring. Moreover , if S�C1h�C1i

denotes the .�C1/–connected cover of S�C1 (ie the fiber of the map S�C1!�1†�C1HZ), then the
Thom spectrum of the induced map ��S�C1h�C 1i ! BGL1.S

0/ is equivalent to HZ as an E�–ring.

Proof of Theorem 7.2.1 In [48], the authors prove that there is an equivalence of C2–spaces between
��S�C1 and ��S�C1, and that HF2 is in fact the Thom spectrum of the induced map ��S�C1 !

BGL1.S
0/ detecting �1. Since both ��S�C1h�C 1i and ��S�C1h�C 1i are defined as fibers of maps

to S1 which are degree one on the bottom cell, Hahn and Wilson’s equivalence lifts to a C2–equivariant
equivalence ��S�C1h�C 1i '��S�C1h�C 1i, and we find that HZ is the Thom spectrum of the map
��S�C1h�C 1i ! BGL1.S

0/.

Since T .1/R is the Thom spectrum of the composite map �S�C1!��S�C1h�C 1i !BGL1.S
0/ de-

tecting z� on the bottom cell of the source, it follows from the C2–equivariant analogue of Proposition 2.1.6
and the above discussion that it is sufficient to define a fiber sequence

�S�C1
!��S�C1

h�C 1i !��S2�C1;

and check that the induced map ��S2�C1 ! BGL1.T .1/R/ detects an indecomposable element of
��T .1/R. See Remark 4.1.4 for the nonequivariant analogue of this fiber sequence.

Since there is an equivalence �S�C1 '��S�C� , it suffices to prove that there is a fiber sequence

(7-1) S�C� !�S�C1
h�C 1i !�S2�C1

I

taking �–loops produces the desired fiber sequence. The fiber sequence (7-1) can be obtained by taking
vertical fibers in the map of fiber sequences

S� //

��

�S�C1 //

��

�S2�C1

��

CP1R CP1R
// �
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Here, the top horizontal fiber sequence is the EHP fiber sequence

S�!�S�C1
!�S2�C1:

To identify the fibers, note that there is the Hopf fiber sequence

S�C�
z�
�! S�!CP1R :

The fiber of the middle vertical map is �S�C1h�C1i via the definition of S�C1h�C1i as the homotopy
fiber of the map S�C1! BCP1R .

It remains to show that the map ��S2�C1 ! BGL1.T .1/R/ detects an indecomposable element of
��T .1/R. Indecomposability in ��T .1/R Š ��BPR is the same as not being divisible by 2, so we just
need to show that the dotted map in the following diagram does not exist:

S�C1

E2

��

2

&&

��S2�C1 //

��

S�C1

xx

BGL1.T .1/R/

If this factorization existed, there would be an orientation HZ! T .1/R, which is absurd.

We now explain why we do not know how to prove the equivariant analogue of Corollary B at higher
heights. One could propose an equivariant analogue of Conjecture D, and such a conjecture would
obviously be closely tied with the existence of some equivariant analogue of the work of Cohen, Moore
and Neisendorfer. We do not know if any such result exists, but it would certainly be extremely interesting.

Suppose that one wanted to prove a result like Corollary B, stating that the equivariant analogues of
Conjectures D and E imply that there is a map��S2n�C1!BGL1.T .n/R/, detecting an indecomposable
in �.2n�1/�T .n/R on the bottom cell, whose Thom spectrum is BPhn� 1iR. One could then try to run
the same proof as in the nonequivariant case by constructing a map from the fiber of a charming map
��S2n�C1!S .2

n�1/�C1 to BGL1.T .n�1/R/, but the issue comes in replicating Step 1 of Section 5.2:
there is no analogue of Lemma 3.1.16, since the equivariant element z�n 2 �?T .n/ is neither torsion nor
nilpotent. See Warning 7.1.4. This is intimately tied with the failure of an analogue of the nilpotence
theorem in the equivariant setting. In future work, we shall describe a related project connecting the T .n/

spectra to the Andrews–Gheorghe–Miller wn–periodicity in C–motivic homotopy theory (see [7; 41; 57]).

However, since there is a map��S�C1h�C1i!BGL1.S/ as in Proposition 7.2.2, there may nevertheless
be a way to construct a suitable map from the fiber of a charming map ��S2n�C1 ! S .2

n�1/�C1 to
BGL1.T .n� 1/R/. Such a construction would presumably provide a more elegant construction of the
nonequivariant map used in the proof of Theorem A.
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8 Future directions

In this section, we suggest some directions for future investigation. This is certainly not an exhaustive list;
there are numerous questions we do not know how to address that are scattered throughout this document,
but we have tried to condense some of them into the list below. We have tried to order the questions in
order of our interest in them. We have partial progress on many of these questions.

(a) Some obvious avenues for future work are the conjectures studied in this article: Conjectures D, E, F
and 3.1.7. Can the E3–assumption in the statement of Theorem C be removed?

(b) One of the main goals of this project is to rephrase the proof of the nilpotence theorem from [38; 54].
As mentioned in Remark 2.2.3, the Hopkins–Mahowald theorem for HFp immediately implies the
nilpotence theorem for simple p–torsion classes in the homotopy of a homotopy commutative ring
spectrum (see also [50]). We will expand on the relation between the results of this article and the
nilpotence theorem in forthcoming work; see Remark 5.4.7 for a sketch.

From this point of view, Theorem A is very interesting: it connects torsion in the unstable homotopy
groups of spheres (via Cohen, Moore and Neisendorfer) to nilpotence in the stable homotopy groups of
spheres. We are not sure how to do so, but could the Cohen–Moore–Neisendorfer bound for the exponents
of unstable homotopy groups of spheres be used to obtain bounds for the nilpotence exponent of the
stable homotopy groups of spheres?

(c) It is extremely interesting to contemplate the interaction between unstable homotopy theory and
chromatic homotopy theory apparent in this article. Connections between unstable homotopy theory
and the chromatic picture have appeared elsewhere in the literature (eg in [17; 16; 70; 76]), but their
relationship to the content of this project is not clear to me. It would be interesting to have this clarified.
One naive hope is that such a connection could stem from a construction of a charming map (such as the
Cohen–Moore–Neisendorfer map) via Weiss calculus.

(d) Let R denote S or A. The map R!‚.R/ is an equivalence in dimensions < j�nj. Moreover, the
‚.R/–based Adams–Novikov spectral sequence has a vanishing line of slope 1=j�nj (see [68] for the
case RDA). Can another proof of this vanishing line be given using general arguments involving Thom
spectra? We have some results in this direction which we shall address in future work.

(e) The unit maps from each of the Thom spectra in the second line of Table 1 to the corresponding
designer spectrum on the third line are surjective on homotopy. In the case of tmf, this requires some
computational effort to prove, and has been completed in [34]. This behavior is rather unexpected: in
general, the unit map from a structured ring to some structured quotient will not be surjective on homotopy.
Is there a conceptual reason for this surjectivity?

(f) In [22], the tmf resolution of a certain type 2 spectrum Z is studied. Mahowald uses the Thom
spectrum A to study the bo resolution of the sphere in [68], so perhaps the spectrum B could be used to
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study the tmf resolution of Z. This is work in progress. See also Corollary 6.2.11 and the discussion
preceding it.

(g) Is there an equivariant analogue of Theorem A at higher heights and other primes? Currently, we
have such an analogue at height 1 and at p D 2; see Section 7.

(h) The Hopkins–Mahowald theorem may used to define Brown–Gitler spectra. Theorem A produces
“relative” Brown–Gitler spectra for BPhni, bo and tmf. In future work, we will study these spectra
and show how they relate to the Davis–Mahowald nonsplitting of tmf ^ tmf as a wedge of shifts of
bo–Brown–Gitler spectra smashed with tmf from [32].

(i) The story outlined in the introduction above could fit into a general framework of “fp Mahowaldean
spectra” (for “finitely presented Mahowaldean spectrum”, inspired by [74]), of which A, B, T .n/ and y.n/

would be examples. One might then hope for a generalization of Theorem A which relates fp Mahowaldean
spectra to fp spectra. It would also be interesting to prove an analogue of Mahowald–Rezk duality for fp
Mahowaldean spectra which recovers their duality for fp spectra upon taking Thom spectra as above.

(j) One potential approach to the question about surjectivity raised above is as follows. The surjectivity
claim at height 0 is the (trivial) statement that the unit map S! HZ is surjective on homotopy. The
Kahn–Priddy theorem, stating that the transfer � W†1RP1! S is surjective on ���1, can be interpreted
as stating that ��†1RP1 contains those elements of ��S which are not detected by HZ. One is then
led to wonder: for each of the Thom spectra R in the second line of Table 1, is there a spectrum P along
with a map �R W P ! R such that each x 2 ��R in the kernel of the map R! ‚.R/ lifts along �R

to ��P? (The map R!‚.R/ is an equivalence in dimensions < j�nj (if R is of height n), so P would
have bottom cell in dimension j�nj.)

Since †1RP1 ' †�1 Sym2.S/=S, the existence of such a result is very closely tied to an analogue
of the Whitehead conjecture (see [59]; the Whitehead conjecture implies the Kahn–Priddy theorem).
In particular, one might expect the answer to the question posed above to admit some interaction with
Goodwillie calculus.

(k) Let p � 5. Is there a p–primary analogue of B which would provide a Thom spectrum construction
(via Table 1) of the conjectural spectrum eop�1? Such a spectrum would be the Thom spectrum of a
p–complete spherical fibration over a p–local space built via p� 1 fiber sequences from the loop spaces
�S2k.p�1/C1 for 2� k � p.

(l) The spectra T .n/ and y.n/ have algebrogeometric interpretations: the stack MT .n/ (see [52]; this
stack is well defined since T .n/ is homotopy commutative) associated to T .n/ classifies p–typical formal
groups with a coordinate up to degree pnC1� 1, while y.n/ is the closed substack of MT .n/ defined by
the vanishing locus of p; v1; : : : ; vn�1. What are the moduli problems classified by A and B? We do not
know if this question even makes sense at p D 2, since A and B are a priori only E1–rings. Nonetheless,
in [35], we provide a description of tmf^A in terms of the Hodge filtration of the universal elliptic curve
(even at p D 2); we also showed that .tmf^A/Œx2� admits an E2–algebra structure, where jx2j D 2.
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(m) Theorem A shows that the Hopkins–Mahowald theorem for HZp can be generalized to describe
forms of BPhni; at least for small n, these spectra have associated algebrogeometric interpretations
(see [52]). What is the algebrogeometric interpretation of Theorem A?

References
[1] J F Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. .2/ 72 (1960) 20–104

MR Zbl

[2] J F Adams, S B Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1976) 475–509 MR

[3] S Amelotte, The fibre of the degree 3 map, Anick spaces and the double suspension, Proc. Edinb. Math. Soc.
.2/ 63 (2020) 830–843 MR Zbl

[4] D W Anderson, E H Brown, Jr, F P Peterson, The structure of the Spin cobordism ring, Ann. of Math. .2/
86 (1967) 271–298 MR Zbl

[5] M Ando, A J Blumberg, D Gepner, M J Hopkins, C Rezk, An1–categorical approach to R–line bundles,
R–module Thom spectra, and twisted R–homology, J. Topol. 7 (2014) 869–893 MR Zbl

[6] M Ando, M Hopkins, C Rezk, Multiplicative orientations of KO–theory and of the spectrum of topological
modular forms, preprint (2010) Available at https://rezk.web.illinois.edu/koandtmf.pdf

[7] M Andrews, H Miller, Inverting the Hopf map, J. Topol. 10 (2017) 1145–1168 MR Zbl

[8] G Angelini-Knoll, J D Quigley, Chromatic complexity of the algebraic K–theory of y.n/, preprint (2019)
arXiv 1908.09164

[9] G Angelini-Knoll, J D Quigley, The Segal conjecture for topological Hochschild homology of Ravenel
spectra, J. Homotopy Relat. Struct. 16 (2021) 41–60 MR Zbl

[10] V Angeltveit, M A Hill, T Lawson, The spectra ko and ku are not Thom spectra: an approach using THH,
from “New topological contexts for Galois theory and algebraic geometry” (A Baker, B Richter, editors),
Geom. Topol. Monogr. 16, Geom. Topol. Publ., Coventry (2009) 1–8 MR Zbl

[11] V Angeltveit, M A Hill, T Lawson, Topological Hochschild homology of ` and ko, Amer. J. Math. 132
(2010) 297–330 MR Zbl

[12] V Angeltveit, J A Lind, Uniqueness of BPhni, J. Homotopy Relat. Struct. 12 (2017) 17–30 MR Zbl

[13] V Angeltveit, J Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol.
5 (2005) 1223–1290 MR Zbl

[14] D Anick, Differential algebras in topology, Research Notes in Mathematics 3, A K Peters, Wellesley, MA
(1993) MR Zbl

[15] O Antolín-Camarena, T Barthel, A simple universal property of Thom ring spectra, J. Topol. 12 (2019)
56–78 MR Zbl

[16] G Arone, Iterates of the suspension map and Mitchell’s finite spectra with Ak–free cohomology, Math. Res.
Lett. 5 (1998) 485–496 MR Zbl

[17] G Arone, M Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy
of spheres, Invent. Math. 135 (1999) 743–788 MR Zbl

[18] L Astey, Commutative 2–local ring spectra, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 1–10 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.2307/1970147
http://msp.org/idx/mr/141119
http://msp.org/idx/zbl/0096.17404
http://dx.doi.org/10.1017/S0305004100053111
http://msp.org/idx/mr/431152
http://dx.doi.org/10.1017/s001309152000019x
http://msp.org/idx/mr/4163873
http://msp.org/idx/zbl/1453.55010
http://dx.doi.org/10.2307/1970690
http://msp.org/idx/mr/219077
http://msp.org/idx/zbl/0156.21605
http://dx.doi.org/10.1112/jtopol/jtt035
http://dx.doi.org/10.1112/jtopol/jtt035
http://msp.org/idx/mr/3252967
http://msp.org/idx/zbl/1312.55011
https://rezk.web.illinois.edu/koandtmf.pdf
http://dx.doi.org/10.1112/topo.12034
http://msp.org/idx/mr/3743072
http://msp.org/idx/zbl/1422.55034
http://msp.org/idx/arx/1908.09164
http://dx.doi.org/10.1007/s40062-021-00275-7
http://dx.doi.org/10.1007/s40062-021-00275-7
http://msp.org/idx/mr/4225506
http://msp.org/idx/zbl/1467.55007
http://dx.doi.org/10.2140/gtm.2009.16.1
http://msp.org/idx/mr/2544383
http://msp.org/idx/zbl/1177.55009
http://dx.doi.org/10.1353/ajm.0.0105
http://msp.org/idx/mr/2654776
http://msp.org/idx/zbl/1271.55009
http://dx.doi.org/10.1007/s40062-015-0120-0
http://msp.org/idx/mr/3613020
http://msp.org/idx/zbl/1379.55007
http://dx.doi.org/10.2140/agt.2005.5.1223
http://msp.org/idx/mr/2171809
http://msp.org/idx/zbl/1087.55009
http://msp.org/idx/mr/1213682
http://msp.org/idx/zbl/0770.55001
http://dx.doi.org/10.1112/topo.12084
http://msp.org/idx/mr/3875978
http://msp.org/idx/zbl/1417.55007
http://dx.doi.org/10.4310/MRL.1998.v5.n4.a6
http://msp.org/idx/mr/1653316
http://msp.org/idx/zbl/0930.55004
http://dx.doi.org/10.1007/s002220050300
http://dx.doi.org/10.1007/s002220050300
http://msp.org/idx/mr/1669268
http://msp.org/idx/zbl/0997.55016
http://dx.doi.org/10.1017/S0308210500023477
http://msp.org/idx/mr/1433081
http://msp.org/idx/zbl/0873.55004


Higher chromatic Thom spectra via unstable homotopy theory 105

[19] J Beardsley, Relative Thom spectra via operadic Kan extensions, Algebr. Geom. Topol. 17 (2017) 1151–
1162 MR Zbl

[20] J Beardsley, A theorem on multiplicative cell attachments with an application to Ravenel’s X.n/ spectra, J.
Homotopy Relat. Struct. 14 (2019) 611–624 MR Zbl

[21] J Beardsley, T Lawson, Skeleta and categories of algebras, preprint (2021) arXiv 2110.09595

[22] A Beaudry, M Behrens, P Bhattacharya, D Culver, Z Xu, On the tmf-resolution of Z, preprint (2019)
arXiv 1909.13379v1

[23] P Beben, S Theriault, The Kahn–Priddy theorem and the homotopy of the three-sphere, Proc. Amer. Math.
Soc. 141 (2013) 711–723 MR Zbl

[24] M Behrens, D Wilson, A C2–equivariant analog of Mahowald’s Thom spectrum theorem, Proc. Amer.
Math. Soc. 146 (2018) 5003–5012 MR Zbl

[25] P Bhattacharya, P Egger, A class of 2–local finite spectra which admit a v1
2–self-map, Adv. Math. 360

(2020) art. id. 106895 MR Zbl

[26] R R Bruner, J P May, J E McClure, M Steinberger, H1 ring spectra and their applications, Lecture
Notes in Math. 1176, Springer (1986) MR Zbl

[27] H Chatham, Thom complexes and the spectrum tmf, preprint (2019) arXiv 1903.07116

[28] F R Cohen, A course in some aspects of classical homotopy theory, from “Algebraic topology” (H R Miller,
D C Ravenel, editors), Lecture Notes in Math. 1286, Springer (1987) 1–92 MR Zbl

[29] F R Cohen, J C Moore, J A Neisendorfer, The double suspension and exponents of the homotopy groups
of spheres, Ann. of Math. .2/ 110 (1979) 549–565 MR Zbl

[30] F R Cohen, J C Moore, J A Neisendorfer, Torsion in homotopy groups, Ann. of Math. .2/ 109 (1979)
121–168 MR Zbl

[31] D M Davis, M Mahowald, v1- and v2–periodicity in stable homotopy theory, Amer. J. Math. 103 (1981)
615–659 MR Zbl

[32] D M Davis, M Mahowald, Connective versions of TMF.3/, Int. J. Mod. Math. 5 (2010) 223–252 MR Zbl

[33] S Devalapurkar, EHP sequences and Wood equivalences, in preparation

[34] S K Devalapurkar, The Ando–Hopkins–Rezk orientation is surjective, preprint (2019) arXiv 1911.10534

[35] S K Devalapurkar, Hodge theory for elliptic curves and the Hopf element �, Bull. Lond. Math. Soc. 55
(2023) 826–842 MR Zbl

[36] S Devalapurkar, Topological Hochschild homology, truncated Brown–Peterson spectra, and the Sen opera-
tor, preprint (2023) Available at https://sanathdevalapurkar.github.io/files/thh-Xn.pdf

[37] S Devalapurkar, P Haine, On the James and Hilton–Milnor splittings, and the metastable EHP sequence,
Doc. Math. 26 (2021) 1423–1464 MR Zbl

[38] E S Devinatz, M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, I, Ann. of Math. .2/ 128
(1988) 207–241 MR Zbl

[39] D Dugger, D C Isaksen, Motivic Hopf elements and relations, New York J. Math. 19 (2013) 823–871 MR
Zbl

[40] J Francis, The tangent complex and Hochschild cohomology of En–rings, Compos. Math. 149 (2013)
430–480 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.2140/agt.2017.17.1151
http://msp.org/idx/mr/3623685
http://msp.org/idx/zbl/1420.55010
http://dx.doi.org/10.1007/s40062-018-0222-6
http://msp.org/idx/mr/3987551
http://msp.org/idx/zbl/1431.55009
http://msp.org/idx/arx/2110.09595
http://msp.org/idx/arx/1909.13379v1
http://dx.doi.org/10.1090/S0002-9939-2012-11337-1
http://msp.org/idx/mr/2996976
http://msp.org/idx/zbl/1262.55004
http://dx.doi.org/10.1090/proc/14175
http://msp.org/idx/mr/3856165
http://msp.org/idx/zbl/1409.55010
http://dx.doi.org/10.1016/j.aim.2019.106895
http://msp.org/idx/mr/4031119
http://msp.org/idx/zbl/1468.55005
http://dx.doi.org/10.1007/BFb0075405
http://msp.org/idx/mr/836132
http://msp.org/idx/zbl/0585.55016
http://msp.org/idx/arx/1903.07116
http://dx.doi.org/10.1007/BFb0078738
http://msp.org/idx/mr/922923
http://msp.org/idx/zbl/0638.55003
http://dx.doi.org/10.2307/1971238
http://dx.doi.org/10.2307/1971238
http://msp.org/idx/mr/554384
http://msp.org/idx/zbl/0443.55009
http://dx.doi.org/10.2307/1971269
http://msp.org/idx/mr/519355
http://msp.org/idx/zbl/0405.55018
http://dx.doi.org/10.2307/2374044
http://msp.org/idx/mr/623131
http://msp.org/idx/zbl/0481.55008
http://msp.org/idx/mr/2779050
http://msp.org/idx/zbl/1244.55005
http://msp.org/idx/arx/1911.10534
http://dx.doi.org/10.1112/blms.12759
http://msp.org/idx/mr/4581326
http://msp.org/idx/zbl/07738021
https://sanathdevalapurkar.github.io/files/thh-Xn.pdf
http://dx.doi.org/10.4171/dm/845
http://msp.org/idx/mr/4334846
http://msp.org/idx/zbl/1476.55023
http://dx.doi.org/10.2307/1971440
http://msp.org/idx/mr/960945
http://msp.org/idx/zbl/0673.55008
http://nyjm.albany.edu:8000/j/2013/19_823.html
http://msp.org/idx/mr/3141814
http://msp.org/idx/zbl/1361.14019
http://dx.doi.org/10.1112/S0010437X12000140
http://msp.org/idx/mr/3040746
http://msp.org/idx/zbl/1276.18008


106 Sanath K Devalapurkar

[41] B Gheorghe, The motivic cofiber of tau and exotic periodicities, PhD thesis, Wayne State University (2017)
MR Available at https://www.proquest.com/docview/1957433147

[42] B Gray, On the iterated suspension, Topology 27 (1988) 301–310 MR Zbl

[43] B Gray, Homotopy commutativity and the EHP sequence, from “Algebraic topology” (M Mahowald, S
Priddy, editors), Contemp. Math. 96, Amer. Math. Soc., Providence, RI (1989) 181–188 MR Zbl

[44] B Gray, On the double suspension, from “Algebraic topology” (G Carlsson, R L Cohen, H R Miller, D C
Ravenel, editors), Lecture Notes in Math. 1370, Springer (1989) 150–162 MR Zbl

[45] B Gray, S Theriault, An elementary construction of Anick’s fibration, Geom. Topol. 14 (2010) 243–275
MR Zbl

[46] J Hahn, A Horev, I Klang, D Wilson, F Zou, Equivariant nonabelian Poincaré duality and equivariant
factorization homology of Thom spectra, preprint (2020) arXiv 2006.13348

[47] J Hahn, X D Shi, Real orientations of Lubin–Tate spectra, Invent. Math. 221 (2020) 731–776 MR Zbl

[48] J Hahn, D Wilson, Eilenberg–Mac Lane spectra as equivariant Thom spectra, Geom. Topol. 24 (2020)
2709–2748 MR Zbl

[49] M A Hill, The String bordism of BE8 and BE8 �BE8 through dimension 14, Illinois J. Math. 53 (2009)
183–196 MR Zbl

[50] M J Hopkins, Stable decompositions of certain loop spaces, PhD thesis, Northwestern University (1984)
MR Available at https://www.proquest.com/docview/303306354

[51] M J Hopkins, Global methods in homotopy theory, from “Homotopy theory” (E Rees, J D S Jones, editors),
London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 73–96 MR Zbl

[52] M J Hopkins, From spectra to stacks, from “Topological modular forms” (C L Douglas, J Francis, A G
Henriques, M A Hill, editors), Mathematical Surveys and Monographs 201, Amer. Math. Soc., Providence,
RI (2014) xxxii+318 MR

[53] M J Hopkins, M A Hovey, Spin cobordism determines real K–theory, Math. Z. 210 (1992) 181–196 MR
Zbl

[54] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. .2/ 148 (1998) 1–49
MR Zbl

[55] P Hu, I Kriz, Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence,
Topology 40 (2001) 317–399 MR Zbl

[56] I Klang, The factorization theory of Thom spectra and twisted nonabelian Poincaré duality, Algebr. Geom.
Topol. 18 (2018) 2541–2592 MR Zbl

[57] A Krause, Periodicity in motivic homotopy theory and over BP�BP, PhD thesis, University of Bonn
(2017) Available at https://www.uni-muenster.de/IVV5WS/WebHop/user/krauseac/files/
thesis_krause.pdf

[58] A Krause, T Nikolaus, Bökstedt periodicity and quotients of DVRs, Compos. Math. 158 (2022) 1683–1712
MR Zbl

[59] N J Kuhn, A Kahn–Priddy sequence and a conjecture of G W Whitehead, Math. Proc. Cambridge Philos.
Soc. 92 (1982) 467–483 MR Zbl

[60] G Laures, K.1/–local topological modular forms, Invent. Math. 157 (2004) 371–403 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://msp.org/idx/mr/3732063
https://www.proquest.com/docview/1957433147
http://dx.doi.org/10.1016/0040-9383(88)90011-0
http://msp.org/idx/mr/963632
http://msp.org/idx/zbl/0668.55005
http://dx.doi.org/10.1090/conm/096/1022680
http://msp.org/idx/mr/1022680
http://msp.org/idx/zbl/0698.55011
http://dx.doi.org/10.1007/BFb0085226
http://msp.org/idx/mr/1000375
http://msp.org/idx/zbl/0674.55011
http://dx.doi.org/10.2140/gt.2010.14.243
http://msp.org/idx/mr/2578305
http://msp.org/idx/zbl/1185.55011
http://msp.org/idx/arx/2006.13348
http://dx.doi.org/10.1007/s00222-020-00960-z
http://msp.org/idx/mr/4132956
http://msp.org/idx/zbl/1447.55011
http://dx.doi.org/10.2140/gt.2020.24.2709
http://msp.org/idx/mr/4194302
http://msp.org/idx/zbl/1459.55008
http://projecteuclid.org/euclid.ijm/1264170845
http://msp.org/idx/mr/2584941
http://msp.org/idx/zbl/1200.57024
http://msp.org/idx/mr/2633919
https://www.proquest.com/docview/303306354
http://dx.doi.org/10.1017/CBO9781107325746.005
http://msp.org/idx/mr/932260
http://msp.org/idx/zbl/0657.55008
http://dx.doi.org/10.1090/surv/201/09
http://msp.org/idx/mr/3223024
http://dx.doi.org/10.1007/BF02571790
http://msp.org/idx/mr/1166518
http://msp.org/idx/zbl/0770.55008
http://dx.doi.org/10.2307/120991
http://msp.org/idx/mr/1652975
http://msp.org/idx/zbl/0927.55015
http://dx.doi.org/10.1016/S0040-9383(99)00065-8
http://msp.org/idx/mr/1808224
http://msp.org/idx/zbl/0967.55010
http://dx.doi.org/10.2140/agt.2018.18.2541
http://msp.org/idx/mr/3848394
http://msp.org/idx/zbl/1402.55003
https://www.uni-muenster.de/IVV5WS/WebHop/user/krauseac/files/thesis_krause.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/krauseac/files/thesis_krause.pdf
http://dx.doi.org/10.1112/s0010437x22007655
http://msp.org/idx/mr/4490929
http://msp.org/idx/zbl/1505.13023
http://dx.doi.org/10.1017/S0305004100060175
http://msp.org/idx/mr/677471
http://msp.org/idx/zbl/0515.55005
http://dx.doi.org/10.1007/s00222-003-0355-y
http://msp.org/idx/mr/2076927
http://msp.org/idx/zbl/1078.55010


Higher chromatic Thom spectra via unstable homotopy theory 107

[61] G Laures, B Schuster, Towards a splitting of the K.2/–local string bordism spectrum, Proc. Amer. Math.
Soc. 147 (2019) 399–410 MR Zbl

[62] T Lawson, En–spectra and Dyer–Lashof operations, from “Handbook of homotopy theory” (H Miller,
editor), CRC Press, Boca Raton, FL (2020) 793–849 MR Zbl

[63] T Lawson, N Naumann, Strictly commutative realizations of diagrams over the Steenrod algebra and
topological modular forms at the prime 2, Int. Math. Res. Not. 2014 (2014) 2773–2813 MR Zbl

[64] L G J Lewis, The stable category and generalized Thom spectra, PhD thesis, The University of Chicago
(1978) MR Available at https://www.proquest.com/docview/251798616

[65] A Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem.
Amer. Math. Soc. 42, Amer. Math. Soc., Providence, RI (1962) MR Zbl

[66] J Lurie, Higher algebra, book project (2017) Available at https://url.msp.org/Lurie-HA

[67] M Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979) 549–559 MR Zbl

[68] M Mahowald, bo–resolutions, Pacific J. Math. 92 (1981) 365–383 MR Zbl

[69] M Mahowald, The primary v2–periodic family, Math. Z. 177 (1981) 381–393 MR Zbl

[70] M Mahowald, The image of J in the EHP sequence, Ann. of Math. .2/ 116 (1982) 65–112 MR Zbl

[71] M Mahowald, Thom complexes and the spectra bo and bu, from “Algebraic topology” (H R Miller, D C
Ravenel, editors), Lecture Notes in Math. 1286, Springer (1987) 293–297 MR Zbl

[72] M Mahowald, M Hopkins, The structure of 24–dimensional manifolds having normal bundles which lift
to BO Œ8�, from “Recent progress in homotopy theory” (D M Davis, J Morava, G Nishida, W S Wilson, N
Yagita, editors), Contemp. Math. 293, Amer. Math. Soc., Providence, RI (2002) 89–110 MR Zbl

[73] M Mahowald, D Ravenel, P Shick, The triple loop space approach to the telescope conjecture, from
“Homotopy methods in algebraic topology” (J P C Greenlees, R R Bruner, N Kuhn, editors), Contemp. Math.
271, Amer. Math. Soc., Providence, RI (2001) 217–284 MR Zbl

[74] M Mahowald, C Rezk, Brown–Comenetz duality and the Adams spectral sequence, Amer. J. Math. 121
(1999) 1153–1177 MR Zbl

[75] M Mahowald, C Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009) 853–872 MR
Zbl

[76] M Mahowald, R D Thompson, The fiber of the secondary suspension map, Amer. J. Math. 116 (1994)
179–205 MR Zbl

[77] M Mahowald, A Unell, Bott periodicity at the prime 2 in the unstable homotopy of spheres, lecture notes,
Northwestern University (1977) Available at https://sanathdevalapurkar.github.io/files/
mahowald-unell-bott.pdf

[78] A Mathew, The homology of tmf , Homology Homotopy Appl. 18 (2016) 1–29 MR Zbl

[79] A Mathew, N Naumann, J Noel, On a nilpotence conjecture of J P May, J. Topol. 8 (2015) 917–932 MR
Zbl

[80] H R Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of
a Moore space, J. Pure Appl. Algebra 20 (1981) 287–312 MR Zbl

[81] J A Neisendorfer, 3–Primary exponents, Math. Proc. Cambridge Philos. Soc. 90 (1981) 63–83 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.1090/proc/14190
http://msp.org/idx/mr/3876758
http://msp.org/idx/zbl/1404.55008
http://dx.doi.org/10.1201/9781351251624-19
http://msp.org/idx/mr/4197999
http://msp.org/idx/zbl/1476.55028
http://dx.doi.org/10.1093/imrn/rnt010
http://dx.doi.org/10.1093/imrn/rnt010
http://msp.org/idx/mr/3214285
http://msp.org/idx/zbl/1419.55011
http://msp.org/idx/mr/2611772
https://www.proquest.com/docview/251798616
https://www.jstor.org/stable/70759
http://msp.org/idx/mr/182001
http://msp.org/idx/zbl/0131.38101
https://url.msp.org/Lurie-HA
http://projecteuclid.org/euclid.dmj/1077313574
http://msp.org/idx/mr/544245
http://msp.org/idx/zbl/0418.55012
http://dx.doi.org/10.2140/pjm.1981.92.365
http://msp.org/idx/mr/618072
http://msp.org/idx/zbl/0476.55021
http://dx.doi.org/10.1007/BF01162070
http://msp.org/idx/mr/618203
http://msp.org/idx/zbl/0479.55009
http://dx.doi.org/10.2307/2007048
http://msp.org/idx/mr/662118
http://msp.org/idx/zbl/0504.55010
http://dx.doi.org/10.1007/BFb0078747
http://msp.org/idx/mr/922932
http://msp.org/idx/zbl/0632.55003
http://dx.doi.org/10.1090/conm/293/04944
http://dx.doi.org/10.1090/conm/293/04944
http://msp.org/idx/mr/1887530
http://msp.org/idx/zbl/1012.57041
http://dx.doi.org/10.1090/conm/271/04358
http://msp.org/idx/mr/1831355
http://msp.org/idx/zbl/0984.55009
http://dx.doi.org/10.1353/ajm.1999.0043
http://msp.org/idx/mr/1719751
http://msp.org/idx/zbl/0942.55012
http://dx.doi.org/10.4310/PAMQ.2009.v5.n2.a9
http://msp.org/idx/mr/2508904
http://msp.org/idx/zbl/1192.55006
http://dx.doi.org/10.2307/2374985
http://msp.org/idx/mr/1262430
http://msp.org/idx/zbl/0804.55011
https://sanathdevalapurkar.github.io/files/mahowald-unell-bott.pdf
https://sanathdevalapurkar.github.io/files/mahowald-unell-bott.pdf
http://dx.doi.org/10.4310/HHA.2016.v18.n2.a1
http://msp.org/idx/mr/3515195
http://msp.org/idx/zbl/1357.55002
http://dx.doi.org/10.1112/jtopol/jtv021
http://msp.org/idx/mr/3431664
http://msp.org/idx/zbl/1335.55009
http://dx.doi.org/10.1016/0022-4049(81)90064-5
http://dx.doi.org/10.1016/0022-4049(81)90064-5
http://msp.org/idx/mr/604321
http://msp.org/idx/zbl/0459.55012
http://dx.doi.org/10.1017/S0305004100058539
http://msp.org/idx/mr/611286
http://msp.org/idx/zbl/0483.55007


108 Sanath K Devalapurkar

[82] A V Pazhitnov, Y B Rudyak, On commutative ring spectra of characteristic 2, Mat. Sb. (N.S.) 124(166)
(1984) 486–494 MR Zbl In Russian; translated in Math. USSR-Sb. 52 (1985) 471–479

[83] A Pressley, G Segal, Loop groups, Clarendon, New York (1986) MR Zbl

[84] D C Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984)
351–414 MR Zbl

[85] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics
121, Academic, Orlando, FL (1986) MR Zbl

[86] D C Ravenel, The method of infinite descent in stable homotopy theory, I, from “Recent progress in
homotopy theory” (D M Davis, J Morava, G Nishida, W S Wilson, N Yagita, editors), Contemp. Math. 293,
Amer. Math. Soc., Providence, RI (2002) 251–284 MR Zbl

[87] C Rezk, Supplementary notes for Math 512, lecture notes, Northwestern University (2007) Available at
https://rezk.web.illinois.edu/512-spr2001-notes.pdf

[88] Y B Rudyak, The spectra k and kO are not Thom spectra, from “Group representations: cohomology,
group actions and topology” (A Adem, J Carlson, S Priddy, P Webb, editors), Proc. Sympos. Pure Math. 63,
Amer. Math. Soc., Providence, RI (1998) 475–483 MR Zbl

[89] P S Selick, Odd primary torsion in the homotopy groups of spheres, PhD thesis, Princeton University (1977)
MR Available at https://www.proquest.com/docview/302828654

[90] P Selick, S Theriault, New perspectives on the classifying space of the fibre of the double suspension, Proc.
Amer. Math. Soc. 147 (2019) 1325–1333 MR Zbl

[91] J-P Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. .2/ 58 (1953) 258–294 MR
Zbl

[92] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17–86
MR Zbl

[93] H Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies 49, Princeton
Univ. Press (1962) MR Zbl

[94] W S Wilson, The �–spectrum for Brown–Peterson cohomology, II, Amer. J. Math. 97 (1975) 101–123 MR
Zbl

[95] U Würgler, Commutative ring-spectra of characteristic 2, Comment. Math. Helv. 61 (1986) 33–45 MR
Zbl

[96] X Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, from “Geometry of
moduli spaces and representation theory” (R Bezrukavnikov, A Braverman, Z Yun, editors), IAS/Park City
Math. Ser. 24, Amer. Math. Soc., Providence, RI (2017) 59–154 MR Zbl

Department of Mathematics, Harvard University
Cambridge, MA, United States

sdevalapurkar@math.harvard.edu

Received: 14 November 2020 Revised: 22 August 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://mi.mathnet.ru/sm2062
http://msp.org/idx/mr/754472
http://msp.org/idx/zbl/0564.55005
https://doi.org/10.1070/sm1985v052n02abeh002900
http://msp.org/idx/mr/900587
http://msp.org/idx/zbl/0618.22011
http://dx.doi.org/10.2307/2374308
http://msp.org/idx/mr/737778
http://msp.org/idx/zbl/0586.55003
http://msp.org/idx/mr/860042
http://msp.org/idx/zbl/0608.55001
http://dx.doi.org/10.1090/conm/293/04951
http://msp.org/idx/mr/1890739
http://msp.org/idx/zbl/1006.55010
https://rezk.web.illinois.edu/512-spr2001-notes.pdf
https://rezk.web.illinois.edu/512-spr2001-notes.pdf
http://dx.doi.org/10.1090/pspum/063/1603140
http://msp.org/idx/mr/1603140
http://msp.org/idx/zbl/0891.55007
http://msp.org/idx/mr/2627332
https://www.proquest.com/docview/302828654
http://dx.doi.org/10.1090/proc/14303
http://msp.org/idx/mr/3896077
http://msp.org/idx/zbl/1420.55026
http://dx.doi.org/10.2307/1969789
http://msp.org/idx/mr/59548
http://msp.org/idx/zbl/0052.19303
http://dx.doi.org/10.1007/BF02566923
http://msp.org/idx/mr/61823
http://msp.org/idx/zbl/0057.15502
http://dx.doi.org/10.1515/9781400882625
http://msp.org/idx/mr/143217
http://msp.org/idx/zbl/0101.40703
http://dx.doi.org/10.2307/2373662
http://msp.org/idx/mr/383390
http://msp.org/idx/zbl/0303.55003
http://dx.doi.org/10.1007/BF02621900
http://msp.org/idx/mr/847518
http://msp.org/idx/zbl/0622.55003
http://dx.doi.org/10.1090/pcms/024
http://msp.org/idx/mr/3752460
http://msp.org/idx/zbl/1453.14122
mailto:sdevalapurkar@math.harvard.edu
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Nagoya Institute of Technology
nori@nitech.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Thomas Nikolaus University of Münster
nikolaus@uni-muenster.de

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (C$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:nori@nitech.ac.jp
mailto:andres.navas@usach.cl
mailto:nikolaus@uni-muenster.de
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wahl@math.ku.dk
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 24 Issue 1 (pages 1–594) 2024

1Chow–Witt rings of Grassmannians

MATTHIAS WENDT

49Higher chromatic Thom spectra via unstable homotopy theory

SANATH K DEVALAPURKAR

109The deformation space of nonorientable hyperbolic 3–manifolds

JUAN LUIS DURÁN BATALLA and JOAN PORTI

141Realization of Lie algebras and classifying spaces of crossed modules

YVES FÉLIX and DANIEL TANRÉ

159Knot Floer homology, link Floer homology and link detection

FRASER BINNS and GAGE MARTIN

183Models for knot spaces and Atiyah duality

SYUNJI MORIYA

251Automorphismes du groupe des automorphismes d’un groupe de Coxeter universel

YASSINE GUERCH

277The RO.C4/ cohomology of the infinite real projective space

NICK GEORGAKOPOULOS

325Annular Khovanov homology and augmented links

HONGJIAN YANG

341Smith ideals of operadic algebras in monoidal model categories

DAVID WHITE and DONALD YAU

393The persistent topology of optimal transport based metric thickenings

HENRY ADAMS, FACUNDO MÉMOLI, MICHAEL MOY and QINGSONG WANG

449A generalization of moment-angle manifolds with noncontractible orbit spaces

LI YU

493Equivariant Seiberg–Witten–Floer cohomology

DAVID BARAGLIA and PEDRAM HEKMATI

555Constructions stemming from nonseparating planar graphs and their Colin de Verdière invariant

ANDREI PAVELESCU and ELENA PAVELESCU

569Census L–space knots are braid positive, except for one that is not

KENNETH L BAKER and MARC KEGEL

587Branched covers and rational homology balls

CHARLES LIVINGSTON

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2024

Vol.24,
Issue

1
(pages

1–594)

http://dx.doi.org/10.2140/agt.2024.24.1
http://dx.doi.org/10.2140/agt.2024.24.49
http://dx.doi.org/10.2140/agt.2024.24.109
http://dx.doi.org/10.2140/agt.2024.24.141
http://dx.doi.org/10.2140/agt.2024.24.159
http://dx.doi.org/10.2140/agt.2024.24.183
http://dx.doi.org/10.2140/agt.2024.24.251
http://dx.doi.org/10.2140/agt.2024.24.277
http://dx.doi.org/10.2140/agt.2024.24.325
http://dx.doi.org/10.2140/agt.2024.24.341
http://dx.doi.org/10.2140/agt.2024.24.393
http://dx.doi.org/10.2140/agt.2024.24.449
http://dx.doi.org/10.2140/agt.2024.24.493
http://dx.doi.org/10.2140/agt.2024.24.555
http://dx.doi.org/10.2140/agt.2024.24.569
http://dx.doi.org/10.2140/agt.2024.24.587

	1. Introduction
	1.1. Statement of the main results
	1.2. The statements of Conjectures D, E and F
	Outline
	Conventions
	Acknowledgements

	2. Background, and some classical positive and negative results
	2.1. Background on Thom spectra
	2.2. The Hopkins–Mahowald theorem
	2.3. No-go theorems for higher chromatic heights

	3. Some Thom spectra
	3.1. Ravenel's X(n) spectra
	3.2. Related Thom spectra
	3.3. Centers of Thom spectra

	4. Review of some unstable homotopy theory
	4.1. Charming and Gray maps
	4.2. Fibers of charming maps

	5. Chromatic Thom spectra
	5.1. Statement of the theorem
	5.2. The proof of Theorem A
	5.3. Remark on the proof
	5.4. Infinite families and the nilpotence theorem

	6. Applications
	6.1. Splittings of cobordism spectra
	6.2. Wood equivalences

	7. C_2–equivariant analogue of Corollary B
	7.1. C_2–equivariant analogues of Ravenel's spectra
	7.2. The C_2–equivariant analogue of Corollary B at n=1

	8. Future directions
	References
	
	

