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Abstract In this article, we give a combinatorial approach to the exponents ofMoore spaces.
Our result states that the projection of the pr+1-power map of the loop space of the (2n+1)-
dimensional mod pr Moore space to its atomic piece containing the bottom cell T 2n+1{pr }
is null homotopic for n > 1, p > 3 and r > 1. This result strengthens the classical result
that �T 2n+1{pr } has an exponent pr+1.
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1 Introduction

The purpose of this article is to give a combinatorial approach to the exponents of Moore
spaces. The exponent problem has been studied by various people with fruitful results
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[1,3,5,10,13–15,20,21] by using traditional methods. Our approach to the exponents of
Moore spaces will be given by studying the combinatorics of the Cohen groups introduced
in [2] together with minimal geometric information such as the classical Cohen–Moore–
Neisendorfer decompositions and basic properties on the mod pr homotopy groups of mod
pr Moore spaces [3–5].

Let us begin with a brief review on the Cohen groups. Let X be a pointed space.
Recall that the James construction J (X) is a free monoid generated by X subject to the
single relation the basepoint ∗ ∼ 1, with weak topology. The James filtration Jn(X) is
given by the word length filtration of J (X). Thus Jn(X) is a quotient space of the n-fold
Cartesian product X×n as the coequalizer of the coordinate inclusions di : Xn−1 → Xn ,
(y1, . . . , yn−1) �→ (y1, . . . , yi−1, ∗, yi , . . . , xy−1) for 1 ≤ i ≤ n. An important property of
the James construction is that J (X) is weakly homotopy equivalent to��X, provided that X
is path-connected [9]. By using the James construction, one can get a combinatorial approach
to the study of self-maps of loop suspensions in the following way. Let Fn = 〈x1, . . . , xn〉 be
the free group of rank nwith a fixed choice of basis x1, . . . , xn . Observe that themultiplication
of ��X induces a group structure on [X×n,��X ]. Consider the naive representation

ẽX : Fn −→ [X×n,��X ]
as a group homomorphism, which sends xi to the homotopy class of the composite

X×n πi� X ⊂ E� ��X,

where πi is the i-th coordinate projection and E is the canonical inclusion. It was discovered
in [2] that, for any co-H -space X ,

ẽX ([[xi1 , xi2 ], . . . , xit ]) = 1

if i p = iq for some 1 ≤ p < q ≤ t . The group Kn = Kn(x1, . . . , xn) was introduced as
the quotient group of Fn subject to the above relations, with the property that ẽX induces a
representation

eX : Kn −→ [X×n,��X ]
for any co-H -space X . In order to obtain self-maps of��X , the suspension splitting theorem
of the James construction gives a good property that the quotient map qn : X×n → Jn(X)

induces a group monomorphism q∗
n : [Jn(X),��X ] → [X×n,��X ] and its image is given

by the equalizer of the group homomorphisms di∗ : [X×n−1,��X ] → [X×n,��X ] for
1 ≤ i ≤ n. Moreover, for any path-connected space X ,

[��X,��X ] ∼= [J (X),��X ] = lim
n

[Jn(X),��X ].

One can interpret the morphism di∗ in the Cohen group Kn as the projection homomorphism

di : Kn −→ Kn−1

with di (x j ) = x j for j < i , di (xi ) = 1 and di (x j ) = x j−1 for j > i . Let Hn be the
subgroup of Kn given as the equalizer of the group homomorphisms di for 1 ≤ i ≤ n. For
any co-H -space X , the restriction of eX on the subgroup Hn gives a representation

eX : Hn −→ [Jn(X),��X ].
With taking the inverse limit, let H = limn Hn , one gets a representation

eX : H −→ [J (X),��X ] ∼= [��X,��X ]
for any path-connected co-H -space X .
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We should point out that the group Kn is isomorphic to Milnor’s reduced free group,
introduced in his fundamental work on homotopy link theory [11]. A recent application of
the group Kn in the theory of 4-manifolds is given in [6]. Recall one important point of the
Cohen group H . The group H is a subgroup of the group of self natural transformations of
the functor �� on path-connected co-H -spaces, the algebraic version of which is given by
taking the Hurewicz homomorphism, and it equals the group of natural self-transformations
of the tensor algebra functor taking free abelian groups to coalgebras [16,17,22]. In particular,
some fundamental objects in unstable homotopy theory—the Hopf invariants, theWhitehead
product, the power maps and the loop of degree maps—are controlled by the group H .

Suppose that the inclusion map E : X → ��X has a finite order pr in the group
[X,��X ]. Then the representation eX : Kn → [X×n,��X ] factors through the group
KZ/pr
n = KZ/pr

n (x1, . . . , xn), which is the quotient group of Kn given by requiring x
pr

i = 1,

for 1 ≤ i ≤ n. Similarly to the integral version, the equalizer of the operations di on KZ/pr
n

defines the subgroup HZ/pr
n . The Cohen group KZ/pr

n is valuable for studying the expo-
nent problem, which is under exploration of this article. Observe that the particular element
αn = x1x2 . . . xn ∈ HZ/pr

n ≤ KZ/pr
n has a geometric interpretation as the homotopy class

of the inclusion map Jn(X) → ��X . Suppose that α pt
n = 1 in KZ/pr

n . Then geometrically
it means that the inclusion map Jn(X) → ��X has an order bounded by pt in the group
[Jn(X),��X ]. In particular, the homotopy groups π∗(��X) = π∗+1(�X) have exponents
bounded by pt up to the range controlled by Jn(X), namely below (n+ 1) times the connec-
tivity of X .When n = 1, α pr

1 = 1, which is the starting point.When n increases, the exponent
of αn also increases. For understanding the growth of αn , it is important and fundamental to

understand the element α pr
n and the difference between α

pr+1

n+1 and α
pr+1

n . By using techniques

from group theory, Lemma 2.6 presents a description of the element α pr
n and Proposition 2.7

gives a description of the difference between α
pr+1

n+1 and α
pr+1

n . Here, we should make a
comment that the Stirling numbers appear naturally in this topic by Lemma 2.2.

It should bepointedout that, for any connected space X with a nontrivial reducedhomology
with coefficients in p-local integers, any power map pt : ��X → ��X is essential by [5,
Theorem 3.10]. This property seems to discourage the study on the exponents of the single
loop spaces. However, with taking the observation that ��X has various decompositions,
one can ask the following question. Let T be the atomic retract of ��X containing the
bottom cell. Is it possible that there is a choice of the projection map π : ��X → T such
that the composite

��X
pt� ��X

π� T

is null homotopic for some t?
By using a combinatorial approach, we give a positive answer to this question for Moore

spaces. Our result is as follows. Recall [5, Corollary 1.9] that there is a homotopy decompo-
sition

�P2n+1(pr ) � T 2n+1{pr } × �P(n, pr )

for p > 2 and n ≥ 2, where Pm(pr ) = Sm−1 ∪pr em is the m-dimensional mod pr Moore
space, P(n, pr ) is a wedge of mod pr Moore spaces, and T 2n+1{pr } is the atomic retract of
�P2n+1(pr ).
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Theorem 1.1 There is a choice of the projection ∂ : �P2n+1(pr ) → T 2n+1{pr } such that
the composite

�P2n+1(pr )
pr+1� �P2n+1(pr )

∂� T 2n+1{pr }
is null homotopic for p > 3, n > 1 and r > 1.

In this theorem, The hypothesis n > 1 is used so that P2n(pr ) is a co-H -space, the
hypothesis p > 3 is used so that the mod pr homotopy groups π∗(�P2n+1(pr ); Z/pr ) form
a Lie algebra [3, Proposition 6.2], and the hypothesis r > 1 is used so that Corollary 2.8 on
the combinatorics of the Cohen groups can be applied. This theorem strengthens the classical
result [13] that �T 2n+1{pr } has exponent pr+1 in the following sense: An H -space X is
said to have a relative exponent less than or equal to pt if there exist a homotopy associative
H -space Y and a retraction map r : Y → X such that r ◦ pt is null homotopic.1 Having this
notion, Theorem 1.1 states that T 2n+1{pr } already has relative exponent pr+1.

The article is organized as follows. In Sect. 2, we explore the combinatorics of the Cohen
groups. We give some remarks for potential applications for general spaces in Sect. 3. In
Sect. 4, we give the applications to the Moore spaces. Theorem 1.1 is Theorem 4.1. In
Sect. 5, we give the applications to the Anick spaces.

2 Combinatorics of the Cohen groups

In this section, p is an odd prime and r ≥ 1. For elements x, y, g1, . . . , gk of a group, we
will use the standard commutator and left-normalized notation:

[x, y] := x−1y−1xy, x y := y−1xy, [g1, . . . , gk] := [[g1, . . . , gk−1], gk].
For i ≥ 1, we will use the following notation for the left-Engel brackets

[x,1 y] := [x, y], [x,i y] = [[x,i−1 y], y].
For n ≥ 1, the Cohen group KZ/pr

n = KZ/pr
n (x1, . . . , xn) is the quotient of a free group

F(x1, . . . , xn) of rank n by all left-normalized commutators

[xi1 , . . . , xik ], such that is = it for some 1 ≤ s, t ≤ n, s �= t

together with pr th powers of generators x pr

i , i = 1, . . . , n. The group KZ/pr
n is nilpotent of

class n.
In this paper, we will consider also the following subgroup of KZ/pr

n . Let Bn be the
subgroup of KZ/p

n generated by all brackets

[xi1 , . . . , xik ], k �= pt , t ≥ 0.

For any configuration of brackets [[...], [[...]...]...], a commutator of length k whose entries
are generators {x1, . . . , xn} only, can be written as a product of left-normalized commutators
of length k with generators as entries. This follows from the definition of KZ/pr

n and the Hall-
Witt identity. Therefore, any commutator of length �= pt , t ≥ 0 whose entries are generators,
is in Bn . Obviously, Bn is not normal in KZ/p

n .
The commutator calculus in groups KZ/pr

n is much simpler than in free nilpotent groups.
We will need the following standard relations.

1 The notion of relative exponent is suggested by the referee.
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Lemma 2.1 Let x be an element from the generating set {x1, . . . , xn} and g any element of

KZ/pr
n . Then, for k ≥ 1,

[x, gk] =
k∏

i=1

[x,i g](ki); (2.1)

(gx)k = gkxk
k−1∏

i=1

[x,i g](
k

i+1). (2.2)

Proof First we prove (2.1). For k = 1, this is obvious. Suppose that the formula is proved
for a given k. Then, using the property of the group, that for all elements h1, h2, [x, h1] and
[x, h2] commute, we get

[x, gk+1] = [x, g][x, gk]g = [x, g][x, gk][x, gk, g]

= [x, g]k+1[x,k+1 g]
k∏

i=2

[x,i g](
k
i)+( k

i−1) =
k+1∏

i=1

[x,i g](k+1
i ).

The needed relation is proved.
To prove (2.2), we also use the induction on k. For k = 1 it is obvious. Suppose that (2.2)

is proved for a given k. Then, using the relation [xk, g] = [x, g]k , we obtain

(gx)k+1 = (gx)k(gx) = gkxk
(
k−1∏

i=1

[x,i g]
)
gx

= gk+1xk+1[xk, g]
(
k−1∏

i=1

[x,i g](
k

i+1)

)
k−1∏

i=1

[x,i+1 g](
k

i+1)

= gk+1xk+1[x, g](k+1
2 )

(
k−1∏

i=2

[x,i g](
k

i+1)+(ki)

)
[x,k g]

= gk+1xk+1
k∏

i=1

[x,i g](
k+1
i+1).

The inductive step is done. ��

For convenience, we will work now in the group KZ/pr

n+1 = KZ/pr

n+1 (x1, . . . , xn+1).Observe
that, for l > n,

[xn+1,l (x1 . . . xn)] = 1.

This follows from the simple observation that KZ/pr

n+1 is nilpotent of class n+1. To describe
the commutator [xn+1,l (x1 . . . xn)] for n ≥ l, wewill need some special sets of permutations.

For a given 1 ≤ l ≤ n, consider the set of permutations of {1, . . . , n}
�n
l = {(i1, . . . , ik1 , ik1+1, . . . , ik2 , . . . , ikl−1+1, . . . , ikl ) |

iki+1 < · · · < iki+1 , k0 = 0, i = 1, . . . , l − 1}
That is,�n

l consists of permutations on n letters such that they can be divided into lmonotonic
blocks. Some permutations can be divided into l monotonic blocks in different ways, for a
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permutation σ , the number of such divisions we denote by dl(σ ). For example, here is the
list of permutations from �3

2 with values of d2:

permutation d2

(1, 2, 3) 2

(2, 1, 3) 1

(2, 3, 1) 1

(3, 1, 2) 1

(1, 3, 2) 1

(3, 2, 1) 0

The following proposition follows immediately from the definition of the set �n
l .

Lemma 2.2
∑

σ∈�n
l
dl(σ ) = l!{nl

}
. Here

{n
l

}
is the second Stirling number. ��

Indeed, the Stirling number
{n
l

}
is the number of ways to divide the set {1, . . . , n} into l

non-empty subsets. In each of l subsets we order the elements in the monotonic way. In this
partition we can permute all l monotonic blocks. Each permutation σ appears in this way
exactly dl(σ ) times.

We will use later one more notation. For 1 ≤ i ≤ n, denote

�n
l (i) = {(i1, . . . , in) ∈ �n

l | i1 = i}.
Lemma 2.3 For any i ,

∑
σ∈�n

l (i) dl(σ ) is divided by (l − 1)!.
Lemma 2.3 follows immediately from the definition of the set �n

l (i). If we consider some
permutation from�n

l (i), we can fix the first monotonic block which starts with i and permute
other (l − 1) monotonic blocks. One can easily prove explicit values of the above sum for
some i-s. For example,

∑

σ∈�n
l (1)

dl(σ ) =
{
n

l

}
(l − 1)!,

∑

σ∈�n
l (n)

dl(σ ) =
{
n − 1

l − 1

}
(l − 1)!

We will naturally extend the notation �n
l for permutations on n (ordered) symbols, for

example, for N > n, σ ⊂ {1, . . . , N }, we say that σ ∈ �n
l if it can be divided into l

monotonic blocks. In a natural way, for these extended cases, one can define dl(σ ).
Now we are able to describe the commutators [xn+1,l x1 . . . xn].

Lemma 2.4 For any l ≥ 1 and n ≥ l,

[xn+1,l x1 . . . xn] =
n∏

i=l

∏

σ∈�i
l ,σ⊆{1,...,n}

[xn+1, xσ(1), . . . , xσ(i)]dl (σ ). (2.3)

Proof The proof is straightforward, by induction on l. For l = 1, we have

[xn+1, x1 . . . xn] =
n∏

i=1

∏

j1<···< ji

[xn+1, x j1 , . . . , x ji ].

The sets �i
1 have a single permutation (1, . . . , i). In the notation used in the formulation of

lemma, the product over such sets means exactly the product over ordered sets of i elements
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from {1, . . . , n}. That is, we have the needed formula for l = 1. Now assume that it is proved
for a given l. We have

[xn+1,l+1 (x1 . . . xn)] = [[xn+1,l (x1 . . . xn)], x1 . . . xn]

=
n∏

i=l

∏

σ∈�i
l ,σ⊆{1,...,n}

[[xn+1, xσ(1), . . . , xσ(i)], x1 . . . xn]dl (σ ).

For a fixed σ ∈ �i
l on letters j1, . . . , ji , consider the commutator

[xn+1, xσ(1), . . . , xσ(i), x1 . . . xn].
Opening this commutator, we get

[xn+1, xσ(1), . . . , xσ(i), x1 . . . xn] =
∏

q1<···<qt

[xn+1, xσ(1), . . . , xσ(i), xq1 , . . . , xqt ]. (2.4)

We can assume that

{q1, . . . , qt } ∩ { j1, . . . , ji } = ∅

Otherwise, the bracket is trivial. Observe that, the permutation

{σ(1), . . . , σ (i), q1, . . . , qt }
is from �i+t

l+1 on the set { j1, . . . , ji ; q1, . . . , qt }, i.e. it is divided into l + 1 monotonic
blocks. The number dl(σ ) is the number of divisions of {σ(1), . . . , σ (i), q1, . . . , qt },
which fixes the last monotonic block (q1, . . . , qt ). Observe that, the number of appear-
ances of the bracket [xn+1, xσ(1), . . . , xσ(i), xq1 , . . . , xqt ] in the full product (2.4) is exactly
dl+1({σ(1), . . . , σ (i), q1, . . . , qt }). The needed expression for the case l + 1 follows. ��

Note that, one can present the product from (2.3) in terms of shuffles as follows
∏

σ∈�i
l ,σ⊆{1,...,n}

[xn+1, xσ(1), . . . , xσ(i)]dl (σ ) =
∏

i1+···+il=i, σ∈[i1,...,il ]−shuffles

×[xn+1, xσ(1), . . . , xσ(i)].
Denote K := KZ/pr

n+1 . For a group G, let γ1(G) = G and γk(G) = [γk−1(G),G] for
k ≥ 2.

Lemma 2.5 For l ≥ 2,

[xn+1,l x1 . . . xn] ∈ γ2(K )(l−1)!γ2γ2(K ).

Proof Denote τi (q) = ∑
σ∈�i

l (q) dl(σ ). Since, modulo γ2γ2(K ), we can permute all letters
in the brackets in (2.3) except first two, we have

[xn+1,l x1 . . . xn] ≡
n∏

i=l

∏

j1<···< js<q< js+1<···< jl

[xn+1, xq , x j1 , . . . , x jl ]τi (s+1) mod γ2γ2(K )

(2.5)

By Lemma 2.3, all numbers τi (s + 1) are divided by (l − 1)! and the result follows. ��

Lemma 2.6 For any n ≥ 1, and r > 1, (x1 . . . xn)p
r ∈ γ2(K

Z/pr
n )p

r−1
γ2γ2(K

Z/pr
n ).
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Proof We prove by induction on n. For n = 1, x pr

1 = 1. Assume that the needed property
holds for a given n and prove it for n + 1. By lemma 2.1,

(x1 . . . xn+1)
pr = (x1 . . . xn)

pr x pr

n+1

∏

i

[xn+1,i−1 (x1 . . . xn)](p
r

i )

= (x1 . . . xn)
pr

∏

p|i
[xn+1,i−1 (x1 . . . xn)](p

r

i ). (2.6)

Using the equality (2.6), for the inductive step, it is enough to prove that

∏

p|i
[xn+1,i−1 (x1 . . . xn)](p

r

i ) ∈ γ2(K )p
r−1

γ2γ2(K )

Given i , present it as i = pze, (e, p) = 1. Moreover, we can assume that z ≥ 1, since
otherwise the whole bracket vanishes. It remains to show that

[xn+1,i−1 (x1 . . . xn)] ∈ γ2(K )p
z−1

γ2γ2(K ). (2.7)

This follows from lemma 2.5, since (i−1)! is divisible by pz−1. This proves (2.7) and finishes
the inductive step. ��

For a subgroup H of K , we denote by [xn+1, H ] the subgroup of K , generated by elements
[xn+1, h], h ∈ H .

Proposition 2.7 For n ≥ 1 and r > 1,

(x1 . . . xn+1)
pr+1 = (x1 . . . xn)

pr+1
γ,

where
γ ∈ γ2γ2γ2(K )[γ2(K )p, γ2γ2(K )](γ2γ2(K ))p (2.8)

as well as
γ ∈ Bn+1[Bn+1, γ2(K )p][Bn+1, γ2γ2(K )]. (2.9)

One of the key points of the proof of this proposition is the possibility to permute the
elements from [xn+1, K ]. This possibility covers the problems which appear due to non-
normality of the subgroup Bn+1.

Proof of Proposition 2.7 It follows from (2.6) and the proof of the previous lemma that

(x1 . . . xn+1)
pr = (x1 . . . xn)

pr α,

where α ∈ [xn+1, K
Z/pr
n ]pr−1

(γ2γ2(K
Z/pr
n ) ∩ [xn+1, K ]). Taking the pth power of

(x1 . . . xn)p
r
α, we get

(x1 . . . xn+1)
pr+1 = (x1 . . . xn)

pr+1
α pβ,

where

β ∈
[
[xn+1, K ]pr−1

(
γ2γ2

(
KZ/pr
n

)
∩ [xn+1, K ]

)
, γ2

(
KZ/pr
n

)pr−1

γ2γ2

(
KZ/pr
n

)]
.

(2.10)
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The needed element γ is α pβ. Present α as α = α1α2, where

α1 ∈ [xn+1, K ]pr−1
,

α2 ∈
(
γ2γ2

(
KZ/pr
n

)
∩ [xn+1, K ]

)
.

The elements α1 and α2 commute, since they lie in [xn+1, K ]. Observe that α p
1 = 1, since

[xn+1, K ]pr = 1.

For an element α2, we have α2 ∈ γ2γ2(K ), therefore,

α p ∈ γ2γ2(K )pγ2γ2γ2(K ).

Together with (2.10), we have a needed result (2.8).
Now we will prove (2.9). First consider the element α2. It was already observed that

α p = α
p
2 . The element α2 is a product of elements of the form (and their inverses)

[[xi1 , . . . , xit ], [x j1 , . . . , x js ]],
where one of the generators in this brackets is xn+1. If t + s is not a power of p, then this
bracket lies in Bn+1, and we can move it to the term Bn+1 in (2.9). If t + s is a power of p,
then one of t or s must not be a power of p, assume it is t . Then,

[[xi1 , . . . , xit ], [x j1 , . . . , x js ]]p = [[xi1 , . . . , xit ],
[x j1 , . . . , x js ]p] ∈ [Bn+1, γ2(K )p] ∩ [xn+1, K ].

Now we consider the element β, which is a product of certain brackets from the subgroup
[xn+1, K ]. These brackets (or their inverses) have one of the following forms:

(a) [β1, β2], where β1 and β2 are of commutators in generators xi -s, β1, β2 ∈ γ2γ2(K );
(b) [β1, β2], where β1 = δ p

r−1
, where δ is some commutator in generators and β2 is some

commutator in generators from γ2γ2(K );
(c) [β1, β2], where βi = δ

pr−1

i , i = 1, 2 and δi are some commutators in generators.

For a commutator in generators ξ , denote by |ξ | its commutator length, i.e. the number of
themaximal term of the lower central serieswhere ξ lies. Consider the case (a). If |β1|+|β2| is
not a power of p, then the bracket [β1, β2] lies inBn+1 ∩[xn+1, K ]. Suppose that |β1|+ |β2|
is a power of p. Then, one at least one of |β1| or |β2| is not a power of p, say β1. Then
β1 ∈ Bn+1 and, therefore, [β1, β2] ∈ [Bn+1, γ2γ2(K )]. The same situation is in the case (b).
If we assume that |β1| is not a power of p, we obtain an element from [Bn+1, γ2γ2(K )], if we
assume that |β2| is not a power of p, we obtain an element from [Bn+1, γ2(K )p

r−1 ]. In the
same way we can handle the case (c). Observe also that, since r > 1, the case (c) becomes
trivial, since

[β1, β2] =
[
δ
pr−1

1 , δ
pr−1

2

]
=

[
δ
pr

1 , δ
pr−2

2

]
= 1.

Since all brackets which we consider lie in [xn+1, K ], we can permute them. This argument
shows that the element γ satisfies the needed property (2.9). ��
Corollary 2.8 For any n ≥ 1 and r > 1,

(x1 . . . xn)
pr+1 ∈ γ2γ2γ2

(
KZ/pr
n

) [
γ2

(
KZ/pr
n

)p
, γ2γ2

(
KZ/pr
n

)] (
γ2γ2

(
KZ/pr
n

))p
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Observe that, for r = 1, the situation is different. In this case,

(x1 . . . xn)
p2 ∈ γ2γ2γ2(K

Z/p
n ), (2.11)

which can be easily proved by induction on n.

3 The geometric candidates for the subgroup Bn of Kn

The candidates for the subgroup Bn of Kn can be obtained from functorial decompositions
of the loop-suspension functor on path-connected p-local co-H -spaces. Let us recall some
results from [16,17]. Let V be a module over the field Z/p. The tensor algebra T (V ) is a
Hopf algebra by saying V primitive. Forgetting the algebra structure, we have the functor
T from modules to coalgebras. According to [16], there are functors Bmax and Amin from
modules to coalgebras with the properties

1. Amin is an indecomposable functor from modules to coalgebras;
2. there is a functorial coalgebra isomorphism

T (V ) ∼= Bmax(V ) ⊗ Amin(V ) (3.1)

with V ⊆ Amin(V ).

Here Bmax(V ) can be chosen a functorial sub Hopf algebra of T (V ) with a left functorial
coalgebra inverse. According to [17, Section 2], the functorial coalgebra decomposition (3.1)
holds over p-local integers. From this, [16, Theorem 1.5] can be extended over p-local
integers and so we have an important property on Lie powers of tensor length n

Ln(V ) ⊆ Bmax(V ) if n is not a power of p (3.2)

for any free module V over p-local integers. (Note. Property (3.2) holds for any choice of
the functor Bmax.)

The algebraic functors Amin and Bmax admit geometric realizations in the sense of [16,17]
that there are homotopy functors Amin and Qmax from path-connected p-local co-H -spaces
to spaces with the following properties

1. Qmax
n (X) is a functorial retract of �X∧n .

2. There is a functorial fibre sequence

Amin(X)
jX�

∞∨

n=2

Qmax
n (X)

πX� �X

with jX � ∗. Here, the map πX is given as a composite

πX : Qmax
n (X) ⊂� �X∧n Wn� �X, (3.3)

where Wn is the Whitehead product.
3. There is a functorial decomposition

��X � Amin(X) × �

( ∞∨

n=2

Qmax
n (X)

)
. (3.4)

4. Let Bmax(X) = �(
∨∞

n=2 Q
max
n (X)). Then the mod p homology

H∗(Amin(X)) ∼= Amin(H̃∗(X)) and H∗(Bmax(X)) ∼= Bmax(H̃∗(X)).

123



A combinatorial approach to the exponents of Moore spaces 299

(Note.The geometric functors Amin and Bmax can be generalized for decomposing any looped
co-H -spaces [18,19]. Here we are only interested in the cases Amin(X) and Bmax(X) for

co-H -spaces X .) The Bmax
n be a subgroup of K

Z(p)
n defined in the following commutative

diagram

[X×n, Bmax(X)] � Bmax
n

∼=� coalg(C( − )⊗n, Bmax( − ))

pull-back

[X×n,��X ]
�

∩

�eX K
Z(p)
n

�

∩

∼= � coalg(C( − )⊗n, T ( − ),

�

∩
(3.5)

where C(V ) = V ⊕ Z(p) with trivial comultiplication as a functor from free Z(p)-modules
to coalgebras, the terms in the right column mean the groups of natural coalgebra transfor-

mations, K
Z(p)
n = K

Z(p)
n (x1, . . . , xn) is the Cohen group over p-local integers [22, Section

1.4] and eX is the representation of the Cohen group on [X×n,��X)] which sends xi to the
homotopy class of the composite

X×n i−th coordinate projection� X ⊂� ��X.

Proposition 3.1 Let X be any path-connected p-local co-H-space. Then there is a homotopy
commutative diagram

Bmax(X)
�πX� ��X

X∧n

�
Sn

�

for n not a power of p, where Sn is the n-fold Samelson product.

Proof The assertion follows from Property (3.2) and Diagram (3.5). ��
The groups Bmax

n defined as above are the candidates for the subgroup Bn of the Cohen
group Kn over Z(p) or Z/pr with the desired property that any commutator of length �= pt ,
t ≥ 0, whose entries are generators, is in Bn . For a given co-H -space X , the Bmax(X)

can be a starting candidate for producing the subgroups Bn . The derived series discussed
in Sect. 2 occurs naturally for resolutions of co-H -spaces by fibrations into H -spaces with
the following observation. Let Y be an H -space. Let f : �X → Y be a map with a fibre

sequence Ff
j� �X

f� Y , where Ff is the homotopy fibre of f . Then γ2([Z ,��X ]) ≤
Im(� j∗ : [Z ,�Ff ] → [Z ,��X ] for any space Z . By taking another map f1 from Ff

to an H -space Y1 with the homotopy fibre Ff1 , γ2γ2([Z ,��X ]) lies in the image from
[Z ,�F1]. Since the H -space resolutions for co-H -spaces seem out of control under current
technology, we concentrate on the discussions on Moore spaces for highlighting the ideas of
combinatorial approach in homotopy theory in next sections.

4 Applications to the Moore spaces

Let us consider the Moore space P2n+1(pr ) with n > 1 and p > 3. The hypothesis n > 1
is used so that P2n(pr ) is a co-H -space, and the hypothesis p > 3 is used so that the mod
pr homotopy groups π∗(�P2n+1(pr ); Z/pr ) form a Lie algebra [3, Proposition 6.2]. Recall
from [5] that there is a fibre sequence
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T 2n+1{pr } j� P(n, pr )
π̃� P2n+1(pr ), (4.1)

where T 2n+1{pr } is the atomic piece of �P2n+1(pr ) containing the bottom cell for n > 1,
the map j is null homotopic, P(n, pr ) is a wedge of mod pr Moore spaces given as a retract
of

∨∞
k=2 �(P2n(pr ))∧k and the map π̃ is given as a composite

π̃ : P(n, pr ) ⊂�
∞∨

k=2

�(P2n(pr ))∧k
∞∨
k=2

Wk

� P2n+1(pr ) (4.2)

withWk the iterated Whitehead product. Let ∂ : �P2n+1(pr ) → T 2n+1{pr } be the connect-
ing map of the fibre sequence (4.1). Since j is null homotopic, the map

μ ◦ (s × �π̃) : T 2n+1{pr } × �P(n, pr ) −→ �P2n+1(pr )

is a homotopy equivalence, where s is a right homotopy inverse of ∂ and μ is the loop space
multiplication.

Theorem 4.1 The composite

�P2n+1(pr )
pr+1� �P2n+1(pr )

∂� T 2n+1{pr }
is null homotopic for p > 3, n > 1 and r > 1.

Some preliminary settings are required before we prove this theorem. Recall that the mod
p homology H∗(�P2n+1(pr )) = T (V ) as a Hopf algebra, where V = H̃∗(P2k(pr )), has
a basis {u, v} with |v| = 2n, |u| = 2n − 1 and the r -th Bockstein βrv = u. Under the
hypothesis that n > 1, H∗(�P2n+1(pr )) = T (u, v) is a primitively generated Hopf algebra.
In any Lie algebra L with x, y ∈ L , ad0(y)(x) = x and adk(y)(x) = [x, adk−1(y)(x)] for
k ≥ 1. Let

τk = adpk−1(v)(u) and σk =
pk−1∑

j=1

1

2p

(
pk

j

)
[ad j (v)(u), adpk− j (v)(u)].

By [5], the mod p homology H∗(T 2n+1{pr }) is isomorphic to the free graded commutative
algebra generated by u, v, τk, σk with k ≥ 1 as a graded coalgebra. Let L(V ) ⊆ T (V ) be
the free graded Lie algebra generated by V . From the fibre sequence

�P(n, pr )
�π̃� �P2n+1(pr )

∂� T 2n+1{pr },
the sub Lie algebra

L(P(n, pr )) = L(V ) ∩ Im(�π̃∗ : H∗(�P(n, pr )) → H∗(�P2n+1(pr )))

can be described by the following diagram

L(P(n, pr ))

[L(V ), L(V )]
�

∩

⊂ � L(V ) ��

⊂

�

L(V )ab

∞∑

k=1

L(τk, σk)
ab,

��

(4.3)
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where the row and the column are short exact sequences of graded Lie algebras and∑∞
k=1 L(τk, σk)

ab is the product of the abelian graded Lie algebras. The mod p homology

H̃∗(P(n, pr )) ∼= �L(P(n, pr ))ab,

the suspension of the module L(P(n, pr ))ab, and

H∗(�P(n, pr )) ∼= U (L(P(n, pr ))) ∼= T (L(P(n, pr ))ab),

where U (L) is the universal enveloping algebra of a Lie algebra L .
Let Kk(P) be the subgroup of [(P2n(pr ))×k,�P2n+1(pr )] generated by the homotopy

classes of the composites

xi (P) : (P2n(pr ))×k πi� P2n(pr ) ⊂� �P2n+1(pr ),

where πi is the i-th coordinate projection. Let

Bk(P) = Kk(P) ∩ Im(�π̃∗ : [(P2n(pr ))×k,�P(n, pr )] → [(P2n(pr ))×k,�P2n+1(pr )]).
(4.4)

Lemma 4.2 With the notations as above, γ2(γ2(Kk(P)) ≤ Bk(P) for each k ≥ 2.

Proof Let f : Ps(pr ) → �X and g : Pt (pr ) → �X . According to [14, (5.8) and (5.9)], the
usual Samelson product [ f, g] : Ps(pr ) ∧ Pt (pr ) → �X decomposes as two maps

[ f, g] : Ps+t (pr ) → Ps+t (pr ) ∨ Ps+t−1(pr ) � Ps(pr ) ∧ Pt (pr )
[ f,g]� �X, (4.5)

which is called the mod pr Samelson product, and

{ f, g} : Ps+t−1(pr ) → Ps+t−1(pr ) ∨ Ps+t−1(pr ) � Ps(pr ) ∧ Pt (pr )
[ f,g]� �X (4.6)

with { f, g} = [βr f, g] + (−1)a+1[ f, βr g], where βr is the Bockstein operation in the sense
of [12]. Observe that the mod pr homology H∗(�P2n+1; Z/pr ) is a free Z/p-module with
H∗(�P2n+1; Z/pr ) = T (ur , vr ) as a Hopf algebra with |ur | = 2n − 1 and |vr | = 2n.
Following [3], let μ ∈ π2n−1(�P2n+1; Z/pr ) and ν ∈ π2n(�P2n+1; Z/pr ) be the elements
in mod pr homotopy groups whose Hurewicz image are given by ur and vr , respectively.
Since the Hurewicz homomorphism

H : π∗(�P2n+1(pr ); Z/pr ) −→ H∗(�P2n+1(pr ); Z/pr )

is a morphism of graded Lie algebras, the sub Lie algebra of π∗(�P2n+1(pr ); Z/pr ) gener-
ated by μ, ν is a free Lie algebra L(μ, ν), which embeds into mod pr homology under the
Hurewicz homomorphism. By formulae (4.5) and (4.6), the iterated Samelson product

St : (P2n(pr ))∧t −→ �P2n+1(pr )

decomposes as a linear combination of Lie elements in L(μ, ν) for t ≥ 1. Let

π̃ ′ : �−1P(n, pr ) −→ �P2n+1(pr )

be the adjoint map of π̃ . By definition (4.2), the homotopy class of the map π̃ ′ restricted to
each factor of mod pr Moore spaces in �−1P(n, pr ) is given by an element in L(μ, ν). Let
L̃(P(n, pr )) be the sub Lie algebra of π∗(�P2n+1(pr ); Z/pr ) generated by the homotopy
classes of the map π̃ ′ restricted to each factor of mod pr Moore spaces in �−1P(n, pr ).
Then

L̃(P(n, pr )) ⊆ Im(�π̃∗ : π∗(�P(n, pr ); Z/pr ) → π∗(�P2n+1(pr ); Z/pr )). (4.7)
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By using the property that the Hurewicz homomorphism to the mod pr homology restricted
to L(μ, ν) is injective, the sub Lie algebra L̃(P(n, pr )) of L(μ, ν) can be described by
diagram (4.3) with L(V ) replaced by L(μ, ν), L(P(n, pr )) replaced by L̃(P(n, pr )), and
τk, σk replaced by their corresponding Lie elements in L(μ, ν). It follows that

[[L(μ, ν), L(μ, ν)], [L(μ, ν), L(μ, ν)]] ≤ L̃(P(n, pr )) (4.8)

Observe that the subgroup γ2(γ2(Kk(P))) is generated by the commutators

xI,J = [[[xi1(P), xi2(P)], . . . , xis (P)], [[x j1(P), x j2(P)], . . . , x jt (P)]
for 1 ≤ i1, . . . , is, j1, . . . , jt ≤ k. Note that the geometric interpretation of the commutator
[[xi1(P), xi2(P)], . . . , xis (P)] is the homotopy class of the composite

(P2n(pr ))×q πI� (P2n(pr ))∧s Ss� �P2n+1(pr ),

where πI is given as a composite of a coordinate projection (P2n(pr ))×k → (P2n(pr ))×s

followed by the pinch map (P2n(pr ))×s → (P2n(pr ))∧s . By using the property that Ss
decomposes as a linear combination of Lie elements in L(μ, ν) together with properties
(4.7) and (4.8), we have

xI,J ∈ Im(�π̃∗ : [(P2n(pr )×k,�P(n, pr )] → [(P2n(pr )×k,�P2n+1(pr )]).
The assertion follows. ��
Proof of Theorem 4.1 Let J (X) be the James construction on a pointed space X with the
James filtration Jk(X). Let qk : X×k → Jk(X) be the projection map and let

di : X×k−1 → X×k, (x1, . . . , xk−1) �→ (x1, . . . , xi−1, ∗, xi , . . . , xk−1)

be the coordinate inclusion for 1 ≤ i ≤ k. Let Hk(X,�Y ) be the equalizer of the group
homomorphisms

di∗ : [X×k,�Y ] −→ [X×k−1,�Y ]
for 1 ≤ i ≤ k. By [22, Theorem1.1.5], q∗

k : [Jk(X),�Y ] → [X×k,�Y ] is a groupmonomor-
phism with its image given by Hk(X,�Y ). Moreover the inclusion Jk−1(X) → Jk(X)

induces a group epimorphism [Jk(X),�Y ] �� [Jk−1(X),�Y ] with
[J (X),�Y ] ∼= lim

k
[Jk(X),�Y ] ∼= lim

k
Hk(X,�Y )

being given by the inverse limit. We identify the group [Jk(X),�Y ] with its image in
[X×k,�Y ] under group monomorphism q∗

k and the group [J (X),�Y ] with the inverse
limit H(X,�Y ) = limk Hk(X,�Y ).

For any pointed space X , we identify the group [X,�P(n, pr )] with its image in
[X,�P2n+1(pr )] under the group monomorphism

�π̃∗ : [X,�P(n, pr )] ⊂� [X,�P2n+1(pr )].
Let αk = x1(P) · · · xk(P) ∈ Kk(P). By Corollary 2.8 and Lemma 4.2, we have

α
pr+1

k ∈ Bk(P)

for each k. Since α
pr+1

k ∈ Hk(P2n(pr ),�P(n, pr )), we have

α
pr+1

k ∈ Bk(P) ∩ Hk(P
2n(pr ),�P(n, pr )).
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Letting k → ∞, we obtain a map

f : J (P2n(pr )) −→ �P(n, pr )

such that the composite (�π̃) ◦ f represents the homotopy class

α
pr+1

∞ ∈ H(P2n(pr ),�P2n+1(pr )) ∼= [J (P2n(pr ),�P2n+1(pr )]
whose geometric interpretation is the power map

pr+1 : J (P2n(pr )) � �P2n+1(pr ) → �P2n+1(pr ).

Thus there is a homotopy commutative diagram

�P(n, pr )

�P2n+1(pr )
pr+1

�

f

�

�P2n+1(pr ),

�π̃
�

and hence the result follows. ��

5 Applications to the Anick spaces

Let E2n+1{pr } be the homotopy fibre of the inclusion map P2n+1{pr } → S2n+1{pr }, where
S2n+1{pr } is the homotopy fibre of the degree map [pr ] : S2n+1 → S2n+1. Let F2n+1{pr }
be the homotopy fibre of the pinch map P2n+1(pr ) → S2n+1. Then there is a homotopy
commutative diagram of fibre sequences

F2n+1{pr } � P2n+1(pr ) � S2n+1

E2n+1{pr }

�

σ� P2n+1(pr )

������
φ� S2n+1{pr }

�

�2S2n+1

j
�

� ∗

�

� �S2n+1.

�
(5.1)

Let Wn be the homotopy theoretic fibre of the double suspension S2n−1 → �2S2n+1. The
spaceWn is deloopable and its classifying space BWn is an H -space [7] with a fibre sequence

S2n−1 � �2S2n+1 ν� BWn .

By [8, Corollary 3.5], the Gray map ν factors through E2n+1{pr } with a homotopy commu-
tative diagram

E2n+1{pr } νE
� BWn

�2S2n+1.

j
�

ν

�
(5.2)
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Let R0 be the homotopy fibre of νE : E2n+1{pr } → BWn . By [8, Theorem 3.8], there is a
homotopy commutative diagram of fibre sequences

T 2n−1∞ (pr ) � �S2n+1{pr } � BWn

R0

�
σ1� E2n+1{pr }

�
νE
� BWn

�������

P2n+1(pr )

σ ◦ σ1
�

== P2n+1(pr ),

σ
�

where the Anick space T 2n−1∞ (pr ) is denoted as T2n−1 in [8]. The left column gives a fibre
sequence

�R0
�(σ◦σ1)� �P2n+1(pr )

∂� T 2n−1∞ (pr ), (5.3)

where ∂ is the connecting map as in [8, Corollary 3.9].

Theorem 5.1 The composite

�P2n+1(pr )
pr� �P2n+1(pr )

∂� T 2n−1∞ (pr )

is null homotopic for p > 3, n > 1 and r > 1.

Proof The assertion follows by using the same arguments in the proof of Theorem 4.1. Here,
we choose the subgroup

Bk(R0) = Kk(P) ∩ Im(�σ ◦ σ1∗ : [(P2n(pr ))×k,�R0] → [(P2n(pr ))×k,�P2n+1(pr )])
with the property that γ2(Kk(P)) ≤ Bk(R0) by using the same arguments in the proof of
Lemma 4.2. ��

Together with [14, Theorem 1], the map ∂ : �P2n+1(pr ) → T 2n−1∞ (pr ) has a right
homotopy inverse after looping, we have the following.

Corollary 5.2 The space �T 2n−1∞ (pr ) has multiplicative exponent pr . In particular, pr ·
π∗(T 2n−1∞ (pr )) = 0. �

Note. Corollary 5.2 is [14, Theorem 2], where �T 2n−1∞ (pr ) was denoted as D(n, r) in [14].
Theorem 5.1 improves [14, Theorem 2] in the sense that the pr power map of �P2n+1(pr )
already goes trivially to the Anick space up to homotopy before looping.
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