
ON THE K-THEORY OF REGULAR COCONNECTIVE RINGS

ROBERT BURKLUND AND ISHAN LEVY

Abstract. We show that for a coconnective ring spectrum satisfying regularity and
flatness assumptions, its algebraic K-theory agrees with that of its π0. We prove this as a
consequence of a more general devissage result for stable infinity categories. Applications
of our result include giving general conditions under which K-theory preserves pushouts,
generalizations of An-invariance of K-theory, and an understanding of the K-theory of
categories of unipotent local systems.
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1. Introduction

In this paper, we examine the relationship between coconnectivity, regularity, and alge-
braic K-theory. We identify the K-theory of a large collection of coconnective rings with
that of their π0.

Theorem 1.1. Given a coconnective E1-algebra R such that
(1) π0R is left regular coherent and
(2) τ≤−1R has tor amplitude in [−∞,−1] as a right π0R module,

the natural map in connective K-theory

K(π0R)→ K(R)

is an equivalence and both π0R and R have vanishing K−1.

Although not immediately clear, Theorem 1.1 is a devissage theorem. The core step in
the proof is an application of Quillen’s devissage theorem [Qui73, Theorem 4] and condition
(1) is exactly what is needed for the category of perfect π0R-modules to have a t-structure
with heart finitely presented π0R-modules. The essential novelty in Theorem 1.1 comes from
condition (2) as a simple condition, easily checked in practice1, which allows us to conclude.
As a demonstration we work through the prototypical example of devissage.

Date: December 30, 2021.
The second author is supported by the NSF Graduate Research Fellowship under Grant No. 1745302.
1Condition (2) is satisfied if π−iR has tor dimension < −i as a right π0R-module.
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2 ROBERT BURKLUND AND ISHAN LEVY

Example 1.2. From the localization sequence

Mod(Z)p−nil ↪→ Mod(Z)� Mod(Z[1/p])

we obtain a cofiber sequence of noncommutative motives

Uloc

(
Mod(Z)p−nil

)
→ Uloc(Mod(Z))→ Uloc(Mod(Z[1/p])).

Identifying Fp as a generator of Mod(Z)p−nil we have an identification

Mod(Z)p−nil ' Mod(EndZ(Fp)).
Devissage can then be phrased as the assertion that K(EndZ(Fp)) ' K(Fp), from which we
obtain a cofiber sequence on algebraic K-theory

K(Fp)→ K(Z)→ K(Z[1/p]).

In order to prove this using Theorem 1.1 we compute the homotopy groups of EndZ(Fp),
which are

πs EndZ(Fp) ∼=

{
Fp s = 0,−1

0 otherwise
and observe that conditions (1) and (2) are satisfied. /

In this example we entirely avoided descending into the category of modules to check
the existence of filtrations, instead operating at the level of categories, motives and rings
throughout. This change represents a considerably gain in practical usability. Before moving
on, let us point out that this example also highlights another key feature of devissage which
is sometimes overlooked. While localization sequences occur at the level of noncommutative
motives, devissage is specific to K-theory2.

We prove Theorem 1.1 as a corollary of our main result Theorem 1.3, which is a more
general devissage result taking place at the level of stable categories:

Theorem 1.3. Let F : C → D be an exact functor between small, stable, idempotent
complete categories and let (C≥0, C≤0) be a bounded t-structure on C. If we assume that

(A) the image of F generates D and
(B) F is fully faithful when restricted to C♥

then there is a corresponding bounded t-structure on D for which F is t-exact. Moreover,
the induced maps on connective K-theory

K(C♥) K(D♥)

K(C) K(D)

are all equivalences and both C and D have vanishing K−1.

We prove Theorem 1.3 in Section 2 where the key step is constructing a bounded t-
structure on D for which F is t-exact. This is the most technical point in the proof and
it uses all of the conditions of the theorem in an essential way. In fact, as a byproduct
of this argument we obtain relatively fine-grained control over the abelian category D♥.
Specifically, C♥ sits inside D♥ as a full subcategory and every object of D♥ has a finite
length filtration with associated graded in C♥. At this point we apply Barwick’s theorem
of the heart [Bar15] to identify the K-theory of C with that of C♥ and the K-theory of D

2For example THH(EndZ(Fp)) is the fiber of the map THH(Z) → THH(Z[1/p]), which doesn’t agree
with THH(Fp).
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with that of D♥. The proof ends by applying Quillen’s devissage [Qui73, Theorem 4] to the
inclusion of abelian categories C♥ → D♥.

Examining the relation between C♥ and D♥ we see that conditions (A) and (B) together
can be thought of as asking that D behave like a category of unipotent local systems with
coefficients in C. Indeed, (B) is analogous to the fact that maps between trivial represen-
tations can be computed on underlying and (A) is analogous to the fact that unipotent
representations are generated from trivial representations under extensions. For this reason
we say that a map is unipotent if it satisfies these conditions. With this reformulation we
can now introduce the key slogan of this paper:

Devissage is the invariance of K-theory under unipotent maps.

In Section 3 we deduce Theorem 1.1 from Theorem 1.3 and discuss several points which
are complementary to Theorem 1.3. A subtlety worth noting here is that up to this point we
have been working entirely with connective K-theory as this is the setting where Barwick’s
theorem of the heart and Quillen’s devissage are applicable. Since we are not aware of any
examples where these results fail in negative K-theory we are led to ask:

Question 1.4. Do the theorem of the heart and devissage hold for negative K-theory?

In Sections 4 and 5 we turn to applications of our main theorem. Combining our work
with the work of Land–Tamme on the K-theory of pullbacks we provide general conditions
under which K-theory preserves pushouts.

Theorem 1.5. Suppose C g←− A
f−→ B is a span of discrete rings where A is left regular

coherent and both f and g are right faithfully flat. Then connective K-theory preserves the
pushout of this span.

This generalizes Waldhausen’s results about the K-theory of generalized free products
[Wal78a]. Using similar techniques, we then obtain an An-invariance result for K-theory.

Theorem 1.6 (An-invariance of algebraic K-theory). Let C be a small, stable, idempotent
complete category equipped with a bounded t-structure. Then Ki(C) ∼= Ki(C[x1, . . . , xn]) for
i ≥ n− 1.

In the n = 1 case, for a regular, Noetherian ring this recovers Quillen’s fundamental
theorem of algebraic K-theory [Qui73, Theorem 8]. An alternative proof extending the
result to regular coherent rings was given by Waldhausen, again in the n = 1 case [Wal78a].
The case of non-Noetherian regular coherent rings and n > 1 is more difficult, because R[x]
may not even be coherent, so one cannot induct on n in the obvious way. Nevertheless, the
n > 1 case was already known for example when R is a discrete ring by the Ferrell-Jones
conjecture for the groups Zn. See for example [Dav08, Corollary 2], which along with the
n = 1 case of Theorem 1.6 implies the general case. The degree bounds in the above theorem
ultimately come from our use of connective K-theory and a positive answer to Question 1.4
would allow us to remove these restrictions.

In Section 5.2 we examine the category of unipotent local systems on a connected space
X with coefficients in a category C with a bounded t-structure. As one might expect, we find
that the K-theory of unipotent local systems agrees with the K-theory of C, generalizing
[AGH19, Theorem 4.8]. In the final pair of subsections we work through a collection of
examples which demonstrate that the conditions in Theorem 1.1 cannot be weakened.

Notations and Conventions.
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In order to preserve the brevity of this paper we assume the reader is generally familiar
with higher algebra and algebraic K-theory. We also make use of the following notations
and conventions throughout.

• The term category will refer to an ∞-category as developed by Joyal and Lurie.
• Map(a, b) will denote the space of maps from a to b (in some ambient category).
• In a stable category map(a, b) will denotes the mapping spectrum between a and b.
• For an E1-algebra R, Mod(R) will refer to its category of left modules.
• We use C,D to denote small, idempotent complete stable categories, and use Catperf

to denote the category of such categories and exact functors.
• Given an exact functor F : C → D in Catperf , F ∗ : Ind(C)→ Ind(D) denotes Ind(F ),

and F∗ : Ind(D)→ Ind(C) denotes the right adjoint of F ∗.
• We use Uloc for the noncommutative motive (or just nc motive for short) functor of

Blumberg–Gepner–Tabuada [BGT13].
• We use K(−) for connective K-theory and Knc(−) for non-connective K-theory.
• We use xn for a polynomial generator in degree n and εn for an exterior generator

in degree n. As an example, S[xn] is the free E1-algebra on a class in degree n.
• We use C[xn] as notation for C ⊗Mod(S[xn]) and similarly for exterior generators.

Acknowledgments.
We would like to thank Andrew Blumberg, Jeremy Hahn, Mike Hopkins, Haynes Miller,

Piotr Pstragowski, and Lucy Yang for helpful conversations related to this work. We would
also like to thank Andrew Blumberg for helpful comments on a draft of this paper.

Our deepest thanks go to Markus Land and Georg Tamme for many discussions about
this work and its applications. It was they who first asked us when the connective cover map
of a coconnective E1-algebra induces a K-equivalence, which was the origin of this work.

2. The Main Theorem

In this section we prove our main theorem.

Theorem 2.1. Let F : C → D be an exact functor between small, stable, idempotent
complete categories and let (C≥0, C≤0) be a bounded t-structure on C. If we assume that

(A) the image of F generates D and
(B) F is fully faithful when restricted to C♥

then there is a corresponding bounded t-structure on D for which F is t-exact. Moreover,
the induced maps on connective K-theory

K(C♥) K(D♥)

K(C) K(D)

are all equivalences and both C and D have vanishing K−1.

Before proceeding, we give a sketch of the strategy we follow in proving this theorem.
The final step is applying Barwick’s theorem of the heart and Quillen’s devissage theorem
to produce K-theory equivalences. In order to apply these results we need to produce
a bounded t-structure on D which is relatively well behaved. The key idea is that after
passing to categories of ind-objects it is in fact quite easy to produce such a t-structure.
Condition (B) is then rigged so that we have the control necessary to restrict this t-structure
to compact objects in Ind(D) (i.e. D). For the remainder of this section the notation from
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the statement of Theorem 1.3 will remain in place and we assume F satisfies conditions (A)
and (B).

Passing to ind-completions gives us an induced diagram

C D

Ind(C) Ind(D)

F

F∗

where the vertical arrows are each the inclusion of the full subcategory of compact objects3.
As promised, we begin by producing a t-structure on the level of ind-objects. This is

rather easy since the category of ind-objects is presentable.

Lemma 2.2 ([Lur17, Proposition 1.4.4.11]). Let A be a presentable, stable category. If {Xα}
is a small collection of objects in A, then there is an accessible t-structure, (A≥0,A≤0), on
A such that A≥0 is the smallest full subcategory of A containing each Xα and closed under
colimits and extensions. The full subcategory of coconnective objects is characterized by the
condition Y ∈ A≤0 if and only if Map(ΣXα, Y ) = 0 for each Xα.

We equip Ind(C) with the t-structure whose connective part is generated by C≥0 and we
equip Ind(D) with the t-structure whose connective part is generated by F (C≥0).

Lemma 2.3. F ∗ is t-exact.

Proof. F ∗ sends connective objects to connective objects by construction. To show that
F ∗ preserves coconnectivity we need to check that for every c ∈ C≥1 and x ∈ Ind(C)≤0 the
mapping space Map(F ∗(c), F ∗(x)) is contractible. Since the t-structure on Ind(C) restricts
to compact objects we can write x as a filtered colimit of compact, coconnective objects.
This implies (since F ∗ is a left adjoint) that it suffices to prove Map(F ∗(c), F ∗(x)) = 0 when
x is compact. Via the boundedness of the t-structure on C this follows from condition (B).

�

At this point are now ready to prove that the t-structure on Ind(D) restricts to a bounded
t-structure on D. The main idea in proving this is that on the one hand, (A) guarantees
that every object in D is only finitely many steps away from being in the image of F , while
on the other hand, the t-structure on C can be used to produce a rich collection of compact
objects in Ind(D)♥.

Proposition 2.4. The t-structure on Ind(D) restricts to a bounded t-structure on D. Each
d ∈ D♥ has a finite filtration with associated graded in the image of F |C♥ : C♥ → D♥.

Proof. Consider the subcategory of D of objects d which satisfies the following condition,
(∗) d is bounded and each π♥i (d) has a finite filtration whose associated graded lies in
C♥ ⊆ Ind(D)♥.

Note that if (∗) is satisfied, then because compact objects are closed under extensions and
the image of C♥ is compact, each π♥i (d) as well as d itself is compact. In order to prove
the proposition it will suffice to show that the every object in D satisfies (∗). We begin by
observing that for c ∈ C♥ its image under F satisfies (∗). Using hypothesis (A) it will now
suffice to show that full subcategory of objects of D satisfying (∗) is thick.

3We will suppress any further mention of these inclusions.
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Now, since the condition (∗) is stated entirely in terms of homotopy groups, it will suffice
to show that the corresponding condition (∗∗) on the level of the heart cuts out a subcategory
closed under kernels, cokernels and extensions4.

(∗∗) d ∈ Ind(D)♥ has a finite filtration whose associated graded lies in C♥.
Since filtrations can be pasted, the collection of objects satisfying (∗∗) is closed under

extensions. We will handle kernels and cokernels simultaneously. Suppose A,B ∈ Ind(D)♥

satisfy (∗∗) and r is a map between them. We can paste the filtrations on A and B to
form a filtration on the cofiber, cof(r), whose associated spectral sequence converges to (an
associated graded of) π♥∗ cof(x) and has E1-page given by the associated graded of A on
the 0-line and the associated graded of B on the 1-line. By hypothesis, the E1-page of this
spectral sequence involves only objects of C♥. Now, since F is t-exact and fully faithful on
C♥, kernels and cokernels of maps between objects in the image of F |C♥ remain in the image
of F |C♥ . Consequently, as we run the differentials in this spectral sequence we will not leave
C♥. Since the spectral sequence has only finitely many pages we learn that it abuts to a
filtration of the desired type on the kernel and cokernel of r (which appears as π♥1 (cof(r))

and π♥0 (cof(r)) respectively). �

We now recall Quillen’s devissage and the theorem of the heart, which we use to finish
the proof of the main theorem.

Theorem 2.5 ([Bar15] Barwick’s theorem of the heart). Let C be a stable category with
bounded t-structure. Then the inclusion C♥ → C induces an equivalence on connective K-
theory.

Theorem 2.6 ([Qui73, Theorem 4] Quillen’s devissage). Let A ⊂ B be an exact fully faithful
inclusion of abelian categories with A closed in B under subobjects, and such that every object
of B has a finite filtration with associated graded in A. Then the inclusion A → B induces
an equivalence on connective K-theory.

Proof (of Theorem 1.3). At this point we have already shown that D admits a bounded
t-structure (Proposition 2.4) for which F is t-exact (Lemma 2.3). This allows us to examine
the square on K-theory,

K(C♥) K(D♥)

K(C) K(D).
K(F )

Because the t-structures on C and D are bounded, we can use Theorem 2.5 to see that the
vertical maps are equivalences.

In order to finish the proof it suffices to show that the top horizontal map is an equivalence,
which we show by applying Theorem 2.6. The map f : C♥ → D♥ is fully faithful and exact
by construction, and we showed that the filtration condition is satisfied in Proposition 2.4.

It remains to check that if d ∈ D♥ is a subobject of c ∈ C♥, then d ∈ C♥. Using
the exactness of the inclusion it will suffice to instead show that coker(d → c) ∈ C♥.
Using Proposition 2.4 we can equip d with a finite filtration with associated graded in C♥.
The cokernel coker(d → c) can be produced by successively quotienting c by the pieces in
the associated graded of the filtration on d, thus we only need to know that quotients by

4This uses that fact that these operations suffice to describe how homotopy groups change under cofiber
sequences and idempotents
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subobjects coming from C♥ stay in C♥. This last statement follows from the fact that f is
fully faithful and exact.

�

Remark 2.7. We end this section by observing that the following converse to Theorem 1.3
holds: if we have F : C → D a map which we can use the theorem of the heart and Quillen’s
devissage to prove is a K-equivalence, then (A) and (B) must hold.

To see this, first note that to apply the theorem of the heart we need bounded t-structures
on C and D so that F is t-exact. To apply Quillen’s devissage, the induced functor on hearts
should by fully faithful and its image should generate D♥ under extensions. The condition
on generating D♥ implies (A). The t-exactness of F , plus fully faithfulness on the heart
implies (B).

Simply put, this is saying that Theorem 1.3 is essentially equivalent to the combination
of Quillen’s devissage and the theorem of the heart. /

3. Complements

In this section we discuss a couple points which are complementary to Theorem 1.3.
We begin by introducing some ideas from noncommutative geometry which provide a con-
venient language for thinking about our main theorem. Then, we discuss variants of the
main theorem and prove Theorem 1.1 from the introduction. In the third subsection we
briefly consider the simplifications and extensions to Theorem 1.3 we can make when C♥ is
Noetherian. We end the section by briefly discussing negative K-groups.

3.1. Some nc geometry.
For us noncommutative geometry refers to thinking about small idempotent complete

stable categories equipped with a “positive half” closed under finite colimits and extensions.
This is quite close to established notions of noncommutative geometry such as in [Orl16],
with the notable difference being that we work relative to the sphere rather than relative to
a discrete base ring k. We explore this setting in some depth in [BL22] and in this section
we build on the groundwork from that paper5. Before proceeding we remind the reader of
the main definitions.

Definition 3.1. We use Catperf to denote the category of small idempotent complete stable
categories. Our main objects of study are objects of Catperf

≥0 . This is the category of
C ∈ Catperf equipped with an idempotent complete prestable6 full subcategory C≥0 that
generates it. Being prestable amounts to asking that C≥0 be closed under finite colimits
and extensions. Often, we abuse notation by writing C ∈ Catperf

≥0 , leaving the subcategory
of positive objects, C≥0, implicit.

Example 3.2. Given an E1-algebra R, the category compact R-modules, Mod(R)ω, nat-
urally lives in Catperf

≥0 . The positive objects are those built from R via extensions, finite
colimits and retracts. /

Given C ∈ Catperf
≥0 , the subcatgory Ind(C≥0) ⊂ Ind(C) determines a t-structure on Ind(C)

(see Lemma 2.2). In fact, C≥0 can be recovered from the data of this t-structure.

5Even though we cite results in [BL22], we do not use anything particularly difficult from there, and so
the results here can be considered independent of that paper.

6As introduced in [Lur18, Appendix C]
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Example 3.3. In the t-structure associated to Example 3.2, a connective object is one built
out of copies of R under colimits and extensions, and a coconnective object is one whose
underlying spectrum is coconnective. /

Definition 3.4. Given C ∈ Catperf
≥0 ,

• C is regular if the t-structure on Ind(C) restricts to C,
• C is bounded if each c ∈ C is bounded as an object of Ind(C),
• a functor C → D is quasi-affine if its image generates D under finite colimits and

retracts and
• a quasi-affine functor C → D is unipotent if it is fully faithful on Ind(C)♥. /

Example 3.5. If R is a discrete ring then, as a result of well-known arguments, Mod(R)ω

is regular iff R is left regular coherent. For a proof that states things in this way see [BL22,
Proposition 2.4]. /

Example 3.6. We show in [BL22, Proposition 2.16] that if C is regular, and n 6= 0, then
C[xn] is regular. /

Remark 3.7. If we think in terms of categories of quasicoherent sheaves, the reasoning
behind the term quasi-affine is relatively transparent.

The term unipotent bears more explanation. The key identifying features of a unipotent
group are that maps between trivial representations can be computed on underlying and
every representation is built out of extensions of trivial reps. Our definition takes these
properties as the definition of unipotent.

Note that conditions (A) and (B) of Theorem 1.3 are equivalent to saying that F is
unipotent. This lets us reinterpret Theorem 1.3 as saying that regularity can be transferred
along unipotent maps. /

3.2. Other forms of the main theorem.
In practice unipotence can be difficult to check so we recall an equivalent condition which

is often more transparent. The functor F ∗ : Ind(C)→ Ind(D) has a right adjoint F∗, which
is colimit preserving since F ∗ preserves compact objects.

Lemma 3.8 ([BL22, Corollary 4.12]). For a map F : C → D as in Theorem 1.3 condition
(B) is equivalent to:

(B′) For every c ∈ C♥, the cofiber of the unit map c→ F∗F
∗(c) is ≤ −1 in the t-structure

on Ind(C).

Proof sketch. Unraveling (B′) gives the statement that the cofiber of map(d, c)→ map(Fd, Fc)
is coconnected for all c ∈ C♥ and d ∈ C≥0. This visibly implies (B). The key point in proving
the reverse implication is using the fact that C♥ is closed under extensions7. �

We now provide a version of Theorem 1.3 for categories of modules over an E1-algebra
from which Theorem 1.1 will follow.

Proposition 3.9. Let f : A→ B be a map of E1-algebras such that
(1) Mod(A)ω is bounded and regular and
(2) cof(f) has tor amplitude in [−∞,−1] as a right A-module,

then Mod(B)ω is bounded and regular, the base-change functor (−)⊗A B is t-exact and the
map K(A)→ K(B) is an equivalence.

7In this paper we only use that (B′) implies (B) and not the reverse implication.
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Proof. We apply Theorem 1.3 to the base-change functor

B ⊗A − : Mod(A)ω → Mod(B)ω.

This functor is quasi-affine since A is sent to B which is a generator. Condition (B′) of
Lemma 3.8 asks that for every N ∈ Mod♥A the A-module cof(f)⊗AN be coconnected. This
is equivalent to the given tor amplitude bound on cof(f). �

Proof (of Theorem 1.1). We apply Proposition 3.9 to the connective cover map f : π0R →
R. From Example 3.5 we know that π0R is left regular coherent iff Mod(π0R)ω is regular.
Boundedness is automatic. Since τ<0R ' cof(f), the tor amplitude bounds in Proposi-
tion 3.9 and Theorem 1.1 match up. �

Remark 3.10. Amplifying Remark 2.7, we note that the conditions of Theorem 1.1 are
actually equivalent to (A) and (B′) for the connective cover map, implying a converse to
this theorem. /

Remark 3.11. The reader might wonder when the the abelian categories C♥ and D♥
appearing in Theorem 1.3 are equivalent. We remark that this will be the case as soon as
F satisfies:

(C) for every c ∈ C♥, the cofiber of the unit map c→ F∗F
∗(c) is ≤ −2 in the t-structure

on Ind(C)8.
/

3.3. The Noetherian case.
In situation of Theorem 1.3 if we further assume that the heart of C is Noetherian, then

we can draw stronger conclusions about K-theory and the induced t-structure on D.
Lemma 3.12. In situation of Theorem 1.3, if C♥ is Noetherian, then the heart of the
induced t-structure on D is Noetherian as well.

Proof. We would like to show that every d ∈ D♥ is Noetherian. By Proposition 2.4, d has
a finite filtration with associated graded in F (C♥), so since Noetherian objects are closed
under extensions, it suffices to show that f(c) is Noetherian for each c ∈ C♥. As argued in
the proof of Theorem 1.3, f is fully faithful with image closed under passing to subobjects.
This implies that the lattice of subobjects of f(c) agrees with that of c, so f(c) is Noetherian
since c is. �

As a consequence of the vanishing theorems of [Sch06] and [AGH19] the negative K-
groups of categories with a bounded t-structure with Noetherian heart vanish. In our setting
this lets us upgrade the equivalence of K-theory spectra to one of non-connective K-theory
spectra

Knc(C) '−→ Knc(D).

Next we examine the interpretation of condition (B) as “unipotence” more closely. At the
moment we know that

(1) f : C♥ → D♥ is fully faithful.
(2) Each d ∈ D♥ has a finite filtration with associated graded in the image of f .
(3) Every subobject of f(c) comes from a subobject of c.
Note that the finite filtrations are not guaranteed to be functorial9, but when D is Noe-

therian, functoriality comes for free in the form of the socle filtration:

8See [BL22, Proposition 7.2] for details.
9Quillen’s devissage, doesn’t require a functorial filtration, but merely an object-wise one.
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Construction 3.13. At the level of Ind-categories the functor f has right adjoint given by
g := τ≥0G(−). Since f is a fully faithful left adjoint it exhibits Ind(C)♥ as a coreflective
subcategory of Ind(D)♥. We let soc0(M) denote fg(M), which sits as a subobject of M via
the counit map.

We define socn(−) inductively via the pullback

socn soc0(Id/socn−1)

socn−1 Id Id/socn−1.

y

The key property of the socle filtration is that socn/socn−1 is in the image of f for every n.
Since the maps Id/socn−1 → Id/socn become zero after applying g and since g = τ≥0G and
G detects coconnectivity we learn that

colim
n

socn → Id

is an equivalence, i.e. the socle filtration is exhaustive.
Now, using our Noetherian-ness hypothesis we know that arbitrary subobjects of compact

objects are compact in Ind(D)♥, therefore the socle filtration restricts to a socle filtration
on D♥. /

Remark 3.14. The construction of a bounded t-structure together with socle filtrations can
be interpreted as a generalization of [KN13, Theorem 8.1] where a similar result is proven
for dg-algebras with strong finiteness assumptions. /

It is important to note that outside of the Noetherian setting the socle filtration need not
restrict to compact objects.

Example 3.15. Let C denote the category of pairs (V0, V1) where V0 is a k[x1, . . . ]-module
and V1 is a k-module. Since the infinite dimensional affine space is regular coherent, C has
a bounded t-structure. Let D denote the category of triples (V0, V1, V0 ⊗k[x1,... ] k → V1).

The natural functor C → D which uses the zero map is fully faithful on the heart, therefore
the hypotheses of Theorem 1.3 are satisfied. On the other hand, the socle of

(k[x1, . . . ], k, k[x1, . . . ]� k)

is (I, k) and the augmentation ideal of k[x1, . . . ] is not compact. /

3.4. Negative K-theory.
It would be desirable to extend Theorem 1.3 to negative K-theory, however both the

theorem of the heart and Quillen’s devissage only apply to connective K-theory in their
current form. For that reason we ask the following question (which we hope has a positive
answer):

Question 3.16. Do the theorem of the heart and devissage hold for negative K-theory?

As discussed above, if C♥ is Noetherian, then D♥ is Noetherian as well and the negative
K-theory of both categories vanishes by [AGH19]. This might suggest that one should
approach this question by proving a vanishing statement for negative K-theory. However,
the example from [Nee21] shows that in general regularity does not imply the vanishing of
negative K-groups.

In order to probe question of this type more closely we examine the relation between stable
coherence and the vanishing of negative K-theory in [BL22, Section 3.2]10. We reproduce

10see also [AGH19, Section 3.5] for a similar discussion
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the statements proved therein for the convenience of the reader interested in thinking about
Question 3.16.

Definition 3.17. Given a category C with bounded t-structure we say that C is An-coherent
if the finitely presented Z[t1, . . . , tn]-modules in Ind(C♥) form an abelian category11. If C is
An-coherent for all n, then we say it is stably coherent. /

Example 3.18. In [Gla89, Example 7.3.13], it is shown that an infinite product of copies
of the ring Q[[x, y]] is regular coherent, but this ring is not A1-coherent (demonstrating that
this is a non-trivial condition on a regular coherent ring). /

The following lemma uses the vanishing results of [AGH19].

Lemma 3.19 ([BL22, Corollary 3.14, Lemma 3.17]). If C is regular and An-coherent, then
the first n+ 1 negative K-groups of C vanish.

Proposition 3.20 ([BL22, Proposition 3.18]). If we are given a functor F : C → D ∈
Catperf and a bounded An-coherent t-structure on C such that the conditions of Theorem 1.3
are satisfied, then the induced t-structure on D is An-coherent as well.

4. K-theory of pushouts

In this section we prove Theorem 4.11 (a corollary of which is Theorem 1.5 from the intro-
duction) which says that K-theory preserves pushouts of (well-behaved) regular prestable
categories. This theorem arises from the examining the interaction of our main theorem
with the Land–Tamme �-product. In fact, the idea that a result like Theorem 1.1 should
be true was suggested to the authors by Markus Land and Georg Tamme with the intention
of using such a result to compute the K-theory of pushouts.

4.1. A review on the �-product.
The Land–Tamme �-product is a relatively new operation on E1-algebras (and categories

more generally) first introduced in [LT19], with generalizations appearing in [BKRS20] and
the forthcoming [LT22]. Here we roughly follow [LT22] in our formulation of this operation.

Construction 4.1. Given a pair of categories B and C in Catperf and an arrow f ∈
FunL(Ind(C), Ind(B) we can form the oplax limit of f , which we denote B~×fC ∈ Catperf .
This is the category of triples (b, c, r), where b ∈ B, c ∈ C, and r : b → f(c) is a map. For
our purposes, the key observation about B~×fC is that the forgetful map B~×fC → B × C
induces an equivalence at the level of nc motives

Uloc(B~×fC) ∼= Uloc(B × C) ∼= Uloc(B)⊕ Uloc(C).
Adding another layer, associated to each square

A C

B Ind(B).

f

we have an induced map A → B~×fC in Catperf and we define the Land–Tamme �-product
B �fA C to be the cofiber of this map. This cofiber sequence in Catperf provides a pushout
in nc motives

11If C is the category of perfect R-modules for R a discrete ring, then this is equivalent to asking that
R[t1, . . . , tn] be left coherent.
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Uloc(imA) Uloc(C)

Uloc(B) Uloc(B �fA C)
p

where imA denotes the image of A inside B~×fC. /

Remark 4.2. If we specialize to the case where A, B and C are module categories of
E1-algebras A, B and C, then we can move down a categorical level:

(1) The category FunL(Mod(C),Mod(B)) can be identified with Mod(B⊗Cop), mean-
ing the bonding map is just a choice of (B, C)-bimodule M .

(2) imA is generated by the image of A, meaning im(A) ∼= Mod(imA)ω where imA is
the endomorphism algebra of the image of A.

(3) If the functors A → B and A → C came from E1-algebra maps A→ B and A→ C,
then B �fA C is generated by the image of B (which is equivalent to the image of
C). We let B �MA C denote the ring of endomorphisms of this object where M is
the bimodule used as the bonding map.

/

Speaking practically, the fundamental difficulty in working with the �-product lies in
identifying the categories im(A) and B�fA C. A fundamental insight of Land and Tamme is
that in many cases of interest these categories are surprisingly computationally accessible.

Example 4.3. In [LT19], where the �-product was introduced, the following example of
Construction 4.1 is analyzed. Suppose we are given a pullback square of E1-algebras

A C

B D.

y

Using D as our (B,C)-bimodule, Mod(A) for A and the map B → D of (B, A)-bimodules
for the natural transformation, we can construct a �-product B �DA C. In this situation
they prove that im(A) ∼= A and the spectrum underlying B�DA C is equivalent to B⊗AC as
a (B,C)-bimodule. Furthermore, they show in [LT19, Proposition 1.13] that the underlying
C-bimodule of B �DA C is the cofiber of the map I ⊗A C → C, where I is the fiber of
C → D. /

In the forthcoming [LT22] another, somewhat dual, situation is analyzed.

Theorem 4.4 ([LT22]). Given a span B b←− A c−→ C in Catperf there is a square

A C

B Ind(B)

c

b b∗c∗
b∗ηc

and an equivalence of the associated �-product with the pushout of the span,

B �b
∗c∗
A C ' B

∐
A
C.
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Corollary 4.5 ([LT22]). Given a span B ← A→ C of E1-algebras we have an equivalence

B �B⊗AC
A C ' B

∐
A

C

of the �-product with the pushout of the span in E1-algebras.

Remark 4.6. In Corollary 4.5 if we have a span of commutative algebras instead, then the
base-change equivalence B⊗AC⊗C − ∼= B⊗A− allows us to recognize that we are actually
in the situation of Example 4.3 for the cospan B → B ⊗A C ← C. The benefit of making
this identification is that we can identify im(A) as the pullback of this cospan. /

Lemma 4.7. The �-product is compatible with base-change, i.e.

(B �fA C)⊗D ∼= (B ⊗D)�f⊗DA⊗D (C ⊗ D).

Proof. This follows from the fact that − ⊗ B preserves fully faithful maps and localiza-
tion sequences (see for example [AGH19, Lemma 3.3, Corollary 3.5]) and commutes with
pullbacks, lax pullbacks and oplax limits of arrows. �

The �-product allows us to produce examples of equivalences of nc motives which do not
arise from equivalences of categories. We end our recollection by working through a pair of
examples which illustrate this flexibility phenomenon.

Definition 4.8. Let S[xn] denote the polynomial algebra on a generator in degree n. We
let niln denote the cofiber

niln := cof (Uloc(S)→ Uloc(S[xn]))

and use nil to mean nil0. /

If we think about nil as a homology theory on nc motives it is the nil-K-theory of Bass
which measures the failure of A1-invariance.

Example 4.9. Consider the span of commutative algebras S ← S[xn] → S. Applying
Corollary 4.5 we obtain a pullback of nc motives

Uloc(imS[xn]) Uloc(S)

Uloc(S) Uloc(S[xn+1]).

y

Using Remark 4.6 we can identify im(S[xn]) as S[εn] (the exterior algebra on a class in degree
n) since S⊗S[xn] S ' S[εn+1] and the pullback moves the exterior generator down a degree.
Since the diagram above is diagonally symmetric we have a splitting

Uloc(S[εn]) ' 1⊕ Σ−1niln+1.

/

We learned of next example, which allows us to turn a copy of the coordinate axes in the
plane into a polynomial algebra, from Markus Land and Georg Tamme.

Example 4.10. Consider the algebra R := S[xa, xb]/(xaxb) which is built from the pullback
square on the left below (where xa is in degree a and xb is in degree b).
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S[xa, xb]/(xaxb) S[xa] Uloc(S[xa, xb]/(xaxb)) Uloc(S[xa])

S[xb] S Uloc(S[xb]) Uloc

(
S[xa]

∐
S[xa,xb] S[xb]

)y y

Applying Corollary 4.5 and Remark 4.6 we then obtain the pullback of nc motives on the
right. In fact, we can simplify this by exhibiting an equivalence of E1-algebras

S[xa]
∐

S[xa,xb]

S[xb] ' S[xa+b+2].

To show this, suppose first that a, b > 0. Then using the fact that

S∗
k⊗Σ∞+ Ω−
−−−−−−→ Algk

is a left adjoint and so preserves pushouts, we reduce to the pushout square

Sa+1 × Sb+1 Sa+1

Sb+1 Sa+b+3.
p

In order to extend this equivalence to the case where a, b are not strictly positive we
use a trick. First, we lift the pushout above to a pushout in graded rings where xa and
xb are in grading 1. Since the forgetful functor preserves colimits it will suffice to compute
the pushout in the graded setting. Next we use the E2-monoidal shearing functor which
suspends by 2n in grading n constructed in [Lur15] to reduce to the case where a, b are
positive.

In the graded setting the generator xa+b+2 is in grading 2 and as a consequence of the fact
that S[xa] is the free graded algebra on the class xa in grading 1 we obtain a factorization
S[xa]→ S→ S[xa+b+2]. With control over the maps in the square above we now obtain an
equivalence of nc motives

Uloc(S[xa, xb]/(xaxb)) ' 1⊕ nila ⊕ nilb ⊕ Σ−1nila+b+2.

/

4.2. K-theory of pushouts.
There is a sharp contrast between the ideas behind the Land–Tamme �-product and our

main theorem. The �-product arises from 2-categorical maneuvers and essentially operates
at the level categories and nc motives. Meanwhile our main theorem is specific to K-theory,
exploiting additive but non-exact operations (such as truncation) in an essential way. The
complementary nature of these approaches allows us to combine them to surprising effect.

Theorem 4.11. Suppose we are given a span B b←− A c−→ C in Catperf where A is equipped
with a bounded t-structure. If we assume that

(D) the induced functor A♥ → B~×b∗c∗C is fully faithful,

then connective K-theory preserves the pushout of the span, i.e the diagram below is a
pushout square.
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K(A) K(C)

K(B) K (B
∐
A C)

p

Proof. From Theorem 4.4, we have a pushout square

Knc(imA) Knc(C)

Knc(B) Knc (B
∐
A C) .

p

Condition (D) implies that the functor A → im(A) satisfies the hypotheses of Theorem 1.3,
so we have an equivalence K(A) ' K(imA). Moreover, since A and imA each have a
bounded t-structure [AGH19, Theorem 1.1] implies that K−1(A) = 0 = K−1(imA). This
implies that the square above remains a pushout when we take connected covers and replace
K(imA) by K(A). �

In order to make this theorem easier to apply we give a simpler condition which implies
(D) and is more natural to check in practice.

Lemma 4.12. In the situation of Theorem 4.11 condition (D) is implied by
(D′) The functors A♥ → B and A♥ → C are faithful.

Proof. Let F denote the functor A → B~×b∗c∗C. Using Lemma 3.8 it suffices to show that
cof(a→ F∗F

∗(a)) is ≤ −1 for each a ∈ A♥. In order to proceed we’ll need to give a formula
for F∗F ∗. From the pullback square

MapB~×b∗c∗C
(F ∗x, F ∗y) MapB(b∗x, b∗x)

MapC(c
∗x, c∗y) MapB(b∗c∗c

∗x, b∗c∗c
∗y) MapB(b∗x, b∗c∗c

∗y)

y

b∗c∗ b∗ηc◦−

natural in both x and y we learn that F∗F ∗ sits in a pullback square

F∗F
∗ b∗b

∗

c∗c
∗ b∗b

∗c∗c
∗.

y
b∗b
∗◦ηc

ηb◦c∗c∗

We can then read off that

cof(Id→ F∗F
∗) ' Σ−1 cof(Id→ b∗b

∗) ◦ cof(Id→ c∗c
∗)

where ◦ is the composition monoidal structure on FunL(Mod(A),Mod(A)). Using [BL22,
Remark 4.9] (which is a variant of Lemma 3.8) and compatibility with colimits we can
reformulate the faithfulness hypothesis as saying that cof(Id → c∗c

∗) and cof(Id → b∗b
∗)

preserve coconnectivity. Composing and desuspending we obtain the desired coconnectivity
bound on cof(Id→ F∗F

∗). �

For discrete rings condition (D′) has a simple interpretation: A map A→ B is fully faith-
ful on the heart exactly when B is right faithfully flat as an A-module (see [BL22, Lemma
4.7]). Consequently, we obtain the following corollary, which appeared in the introduction
as Theorem 1.5.
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Corollary 4.13. Suppose B f←− A
g−→ C is a span of discrete rings where A is left regular

coherent and both f and g are right faithfully flat. Then connective K-theory preserves the
pushout of this span.

Remark 4.14. Note that (D) does not imply (D′). For example if X and Y are (well-
behaved) smooth varieties which form a Zariski covering of Z, then (D) is satisfied for the
span

QCoh(X)← QCoh(Z)→ QCoh(Y )

while (D′) need not be satisfied. /

Remark 4.15. Corollary 4.13 (and in turn Lemma 4.12 and Theorem 4.11) can be viewed as
a generalization of [Wal78a, Theorems 1 and 4] where the stronger condition that f : A→ B
and g : A→ C are pure inclusions12 was imposed. /

5. Applications and Examples

In this section we work through a collection of applications and examples which use
Theorem 1.1. Of particular note are

(Prop.5.1) which proves A1-invariance for regular categories.
(Prop.5.2) which proves An-invariance for regular categories in high degrees.
(Prop.5.10) which analyzes the K-theory of unipotent local systems.
(Exm.5.13, 5.15 and 5.16) which show that the conditions of Theorem 1.1 are sharp.

5.1. Invariance theorems.
We give a short proof of A1-invariance of K-theory for categories with a bounded t-

structure. This result was first proven for regular Noetherian rings by Quillen in his foun-
dational paper [Qui73]. Building on this we then prove that Kj(−) is An-invariant once
j ≥ n − 1 (again for categories with a bounded t-structure). Using Theorem 4.11 we then
extend A1-invariance to the case of adjoining free variables generalizing the main results of
[Ger74].

Proposition 5.1 (A1-invariance for regular categories).
If C ∈ Catperf admits a bounded t-structure, then K(C) ' K(C[x0]).

Proof. In order to prove this we must show that Knc(nil ⊗ C) vanishes in non-negative
degrees. Applying Theorem 1.3 to the map C → C[ε−1] and moving to the other side of the
equivalence from Example 4.9 we learn that Knc(nil ⊗ C) vanishes in non-negative degrees
as desired13. �

Just as nil controls A1-invariance, An-invariance is controlled by tensor-powers of nil.
Using the same ideas we can show that K-theory is An-invariant in sufficiently large degrees
as well.

Proposition 5.2 (An-invariance for regular categories). Suppose C ∈ Catperf admits a
bounded t-structure. Then τ≥n−1K(C) ' τ≥n−1K(C[x1, . . . , xn]), where |xi| = 0.

Proof. From the equivalence

Uloc(S[x1, . . . , xn]) ' Uloc(S[x]⊗n) ' (Uloc(S[x]))⊗n ' (1⊕ nil)⊗n

12This asks that B have a splitting B ∼= f(A)⊕I as an A-bimodule where I is a projective right A-module.
13In degree zero this uses that K−1 of C and C[ε−1] both vanish.
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we can read off that the obstructions to An-invariance in degree j are Kj(nil⊗k ⊗ C) for
1 ≤ k ≤ n. Using Example 4.9 we can find Σ−knil⊗k⊗C as a summand in Uloc(C[ε1, . . . , εk])
(where each exterior generator is in degree −1). Applying Theorem 1.3 to the map C →
C[ε1, . . . , εk] we learn that Knc(Σ−knil⊗k ⊗ C) vanishes in degrees ≥ −1, which lets us
conclude. �

Corollary 5.3. Let R be a left regular coherent ring. Then Ki(R) = Ki(R[x1, . . . , xn]) for
i ≥ n− 1.

As mentioned in the introduction, the above corollary, which is more subtle for n > 1, was
already known when R is a discrete ring, where it follows from the Farrell–Jones conjecture
for the groups Zn.

Proposition 5.4 (Free generator invariance). Let C ∈ Catperf have a bounded t-structure.
Then K(C) ' K(C{x1, . . . , xn}), where |xi| = 0.

Proof. We proceed by induction on n with base-case given by Proposition 5.1. If we consider
the pushout of categories

C C{x1, . . . , xn−1}

C[x] C{x1, . . . , xn}.

i

j

p

then condition (D′) holds since the arrows labeled i and j each have a section (sending all
the x’s to zero). As a consequence we can apply Theorem 4.11 and conclude.

�

Corollary 5.5. Let R be a left regular coherent ring, then K(R) = K(R{x1, . . . , xn}).

In fact, Corollary 5.5 is a special case of the next example, which allows for a more general
module in place of the indeterminants x1, . . . , xn.

Example 5.6. Suppose that R is a discrete, left regular coherent ring and M is a discrete,
right flat R-bimodule. We would like to apply Theorem 4.11 to the span of rings

R← R{Σ−1M} → R

whose pushout is R{M} and conclude that K(R) ' K(R{M}).
In order to check that the functor Mod(R{Σ−1M}) → Mod(R) is faithful on the heart

we argue as follows: Apply Theorem 1.1 to the map R → R{Σ−1M}, as a consequence of
proof of this theorem any object in the heart is an extension of induced objects. Examining
long exact sequences it suffices to prove faithfulness on the heart for these induced objects.
This follows from noting that the composite, R→ R{Σ−1M} → R is just the identity. /

There are many more invariance-type results that can be proven using a combination
of Theorem 1.3 and the Land-Tamme �-product and we end this subsection with a more
generic example.

Example 5.7. Suppose we are given a map of discrete rings R → S with R left regular
coherent and an S-bimodule M which is right flat over R. We can form the pullback of
E1-algebras



18 ROBERT BURKLUND AND ISHAN LEVY

R⊕ Σ−1M S

R S ⊕M
where S⊕M is a square-zero extension of S byM and R⊕Σ−1M is the square-zero extension
of R by Σ−1M . From Theorem 1.1 we know that K(R⊕ Σ−1M) ' K(R) and therefore

K(S) ' K
(
R�S⊕MR⊕Σ−1M S

)
.

The underlying (R,S)-bimdoule of the �-product is given by R ⊗R⊕Σ−1M S which is
equivalent to R{M}⊗R S. The free algebra R{M} is discrete and right flat as an R-module
since M is, so R{M} ⊗R S is discrete as well. By the previous example, which is the case
R = S, the �-product receives ring maps from both R{M} and S. It remains then to
determine the left multiplication of an element of S by one of M . This can be read off using
Example 4.3, which gives a cofiber sequence of S-bimodules

S → R�S⊕MR⊕Σ−1M S →M ⊗R⊕Σ−1M S,

showing that the left multiplication of S on M is the one coming from the left S-module
structure. /

Note that in Example 5.7 the ring S is not required to be regular! For example, we can
let R = k be a field, take S = k[ε]/ε2 and let M be k thought of as an S-bimodule via the
augmentation. In this case we obtain an equivalence

K(k[ε]/ε2) ' K(k{ε, y}/(ε2, εy)).

5.2. K-theory of unipotent representations.
Next we analyze the K-theory of categories of local systems with values in a regular

category. The following generalizes the discussion in [AGH19, Section 4.3], in which they
analyze the K-theory of cochain algebras of finite, connected spaces with coefficients in
commutative Noetherian rings using the Koszul dual description of the module categories
in [Mat16, Proposition 7.8] as ind-unipotent representations of the loopspace.

Definition 5.8. Given C ∈ Catperf and an X ∈ S, let Rep(X; C) denote the category of
local systems on X with values in C (this is just Fun(X, C))14. Pullback along the map
X → ∗ provides a functor

(−)triv : C → Rep(X; C)
which associates to c ∈ C the constant local system at c. Let Rep(X; C)uni denote im((−)triv).
We refer to this as the category of unipotent local systems valued in C. /

Remark 5.9. One can make similar definitions for A a small abelian category. Namely, we
let Rep(X;A) denote Fun(X,A), and let Rep(X,A)uni denote unipotent representations, i.e
the category generated under extensions, kernels and cokernels by the image of (−)triv. /

Proposition 5.10. If C ∈ Catperf
≥0 is bounded and regular, and X is connected, then

(1) Truncation on C provides Rep(X; C) a bounded t-structure with heart Rep(Bπ1X, C♥).
(2) The t-structure on Rep(X; C) restricts to Rep(X; C)uni, with heart Rep(Bπ1X, C♥)uni.
(3) (−)triv induces an equivalence K(C) ' K(Rep(−; C)uni).

14There is a subtlety here, which is that in general Rep(X; C) and Fun(X, Ind(C))ω differ. It is this which
motivated us to use Rep as notation when Fun would appear to suffice.
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Proof. For (1), in order to check that τ≥0 and τ<0 determine a t-structure on Rep(X; C) we
just need to check that the space of maps from τ≥0c to τ<0d is contractible. To do this we
use the formula

MapRep(X;C)(τ≥0c, τ<0d) ' MapC(τ≥0c, τ<0d)hΩX

where ΩX acts on the space of maps in C by conjugation. Since MapC(τ≥0c, τ<0d) is con-
tractible, so is the limit under the action. Boundedness is inherited from C since the un-
derlying object functor Rep(X; C) → C is t-exact and conservative. The heart is clearly
Rep(X; C♥), and since C is a 1-category, this is the same as Rep(τ≤1X; C♥). We conclude
since τ≤1X ∼= Bπ1X.

For (2) and (3), we check that the functor (−)triv is unipotent (see Definition 3.4), so
that we can apply Theorem 1.3 to conclude. Quasi-affineness follows from construction, and
fully faithfulness on the heart follows from the fact that equivariant maps between objects
in C♥ with trivial π1(X)-action are just given by the underlying maps in C♥ since it is a
1-category. �

Remark 5.11. If R is an E1-algebra, then the R-module R (with trivial action) is a gener-
ator of Rep(X; Mod(R))uni, therefore we may identify this category with Mod(C∗(X;R)),
the category of modules over the cochain algebra of X with values in R. Proposition 5.10(3)
provides an equivalence

K(R) ' K(C∗(X;R)).

When X is additionally compact and R Noetherian and commutative, the above result
combined with Lemma 3.12 and vanishing of negative K-theory coincides with [AGH19,
Theorem 4.8]. However, as pointed out to us by Markus Land, their proof is not quite
correct, since they claim that the heart of the t-structure on C∗(X;R) agrees with that of
R, which is not true if for example X = S1. Despite this, the hearts are sufficiently similar
that Quillen’s devissage provides an equivalence on K-theory. /

5.3. Testing the limits of Theorem 1.1.
In the next sequence of examples we probe the limits of Theorem 1.1. Summarizing what

we find: the conditions of Theorem 1.1 are sharp. To see that regularity of π0R is necessary
we look at an example where A1-invariance fails.

Example 5.12. We consider the exterior algebra k[ε0, ε−1] over a field k. From Example 4.9
we have an equivalence of non-connective K-theories

Knc(k[ε0, ε−1]) ' Knc(k[ε0])⊕ Σ−1Knc(nil0 ⊗ k[ε0]).

Since A1-invariance fails for k[ε0] (see [HM01]), both terms in the sum are non-trivial. On
the other hand Theorem 1.1 predicts only the first term. /

Now we turn to the tor condition of Theorem 1.1. Essentially the simplest example of an
algebra which violates it is the trivial square zero extension S := Fp[x]⊕Σ−1Fp where x is in
degree zero and acts by zero on Fp. In a conversation with Markus Land and Georg Tamme
we determined that K1(S) differs from K1 of Fp[x] by using the �-product to reduce to a
connective ring and then using trace methods15.

Example 5.13. The algebra S fits into the pullback square on the left.

15A similar analysis also works for S = Z⊕ Σ−1Fp



20 ROBERT BURKLUND AND ISHAN LEVY

S Fp[x] Knc(S) Knc(Fp[x])

Fp[x] Fp[x]⊕ Fp Knc(Fp[x]) Knc (Fp[x]{Fp})

y y

Writing the Fp[x]-bimodule Fp[x]⊕ Fp as the tensor product16 Fp[x]⊗Fp[x]{Σ−1Fp} Fp[x] we
can apply Corollary 4.5 to identify Fp[x] �Fp[x]⊕Fp

Fp[x]{Σ−1Fp} Fp[x] with Fp[x]{Fp}. From this we
obtain the pullback square of K-theories on the right.

Using A1-invariance we have an isomorphism of relative K-theories

cof(Knc(Fp)→ Knc(S)) ' Σ−1 cof(Knc(Fp)→ Knc(Fp{Fp})

To conclude that K1(S) differs from K1(Fp) we will argue that K2(Fp{Fp}) is not even
finitely generated.

Let R := Fp{Fp}. We can construct a DGA model for R which is Fp[x]{y, z} with
|y| = 0, |z| = 1, d(z) = xy. From this we can compute that

• π0R ∼= Fp[x, y]/xy,
• x acts by zero on π1R and
• π1R is a free Fp-vector space on the classes ya0 [z, y]ya1 with a0, a1 ≥ 0.

As a consequence of Waldhausen’s calculation of the first nonzero vanishing homotopy
group of the fiber of K(A) → K(π0A) for a connective simplicial ring A ([Wal78b, Propo-
sition 1.2]), we learn that the fiber of K(R) → K(π0R) is 1-connected, and has second
homotopy group given by

HH0(Fp[x, y]/xy;π1R) ∼= Fp{ya[z, y] | a ≥ 0}.

Since K3(Fp[x, y]/xy) is finitely generated (see [Hes07]) we learn that K2(R) is not finitely
generated as promised. /

In the example above, although the K-theory differs from that of the connective cover,
if we think in terms of Theorem 1.3 it is not immediately clear at what point things broke
down. Possibilities include:

• The ring failed to be regular (in the sense of Definition 3.4).
• The base-change functor from the connective cover has failed to be t-exact.
• The base-change failed to be fully faithful on the heart.

In view of this we now proceed to give several more geometric examples where we have
better control over how things break down.

Example 5.14. Consider the quasi-affine variety X := Ank \ {0} over a field k. Since this
scheme is quasi-affine, its category of quasicoherent sheaves is equivalent to the category
of modules over the ring of global sections, R. This is a commutative k-algebra whose
homotopy groups are the coherent cohomology groups of Ank \ {0}.

In this case we have

πsR ∼=


k[x1, . . . , xn] s = 0

(
∏
i x
−1
i )k[x−1

1 , . . . , x−1
n ] s = 1− n

0 otherwise
.

16(Here {M} denotes the free algebra on a bimodule.
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The divisible module which shows in degree 1−n has tor dimension n and therefore violates
condition (2) in Theorem 1.1. Applying excision to the scissor congruence ∗ → Ank ←
(Ank − 0) allows us to conclude that

K(R) ' K(Ank )⊕ ΣK(k)

with the comparison map π0R→ R inducing the inclusion of the left summand. /

In Example 5.14, the tor condition fails and theK-theories differ, but R is regular anyway.
What happens here is that the map Mod(π0R)♥ → Mod(R)♥ isn’t faithful because the
module k supported at the origin is sent to zero. This example also exhibits another more
subtle behavior. In [Wal78b, Proposition 1.1] (which is extended to general connective ring
spectra by [LT19, Lemma 2.4]), Waldhausen shows that an n-connective map of connective
algebras induces an (n + 1)-connective map on K-theory. A similar phenomenon does not
occur our setting. In Example 5.14 the first degree where R differs from its π0R is 1 − n
while the K-theory first differs in degree 1, which is independent of the parameter n.

Since Example 5.14 isn’t tight with respect to the tor condition we now provide another
family of examples which, although more geometrically degenerate, do show that the tor
condition is tight.

Example 5.15. Consider An with a doubled origin over the same field k, that is to say we
look at the pullback below

R Γ(An)

Γ(An) Γ(An − 0).

y

From our examination of Γ(An− 0) in Example 5.14 we know that π−nR has tor dimension
n. Since Γ(An)→ Γ(An − 0) is a localization the induced square on K-theory is a pullback
(see [Tam18]). From this we can read off that

K(R) ∼= K(Ank )⊕K(k)

where again the comparison map π0R→ R induces the inclusion of the left summand. /

In the previous two examples the K-theory of R and its connective cover differed, but
R was still regular (in the sense of Definition 3.4). Our next example will show that it is
possible for π0R to be regular while R is non-regular. To do this we use an affine nodal
cubic curve C over a field k, which has non-vanishing K−1 (see [Wei13, III.4.4]). The main
result of [AGH19] then implies that the category of perfect coherent sheaves on C is not
regular.

Example 5.16. Consider the nodal cubic curve C := Spec(k[x, y]/y2 − x2(x − 1)) and let
R denote the pullback below

R k[x±1]

C C[x−1].

y

Geometrically, the bottom horizontal arrow corresponds to removing the nodal point from
Spec(C) and the right vertical arrow corresponds to the quotient of C minus the node by
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the C2 action that sends y to −y. The homotopy groups of R are

πsR =


k[x] s = 0

(yx−1)k[x−1] s = −1

0 otherwise
.

As in the previous example, since the top horizontal arrow is a localization the induced
square on K-theory is a pullback [Tam18]. Since C[x−1] is regular and Noetherian its
negative K-groups vanish. This implies that K−1(R) ∼= K−1(C) 6= 0. On the other hand
π0R = k[x] has vanishing K−1. Since K−1(R) is non-zero, the category of compact R-
modules cannot be regular. /

This example demonstrates that when the tor condition is violated, Mod(R)ω can fail to
be regular in addition to the K-theories of R and π0R differing. In essence what we have
done in Example 5.16 is taken a singularity and hidden it in degree −1. The fact that this
can be done implies that the tor condition in Theorem 1.1 and the condition that π0R be left
regular coherent cannot be disentangled—an idea we explore further in the next example.

Example 5.17. Suppose that R is a regular, discrete, Noetherian, commutative algebra.
Using Theorem 1.3, Example 4.9, Example 4.10 and Proposition 5.1 we obtain K-theory
equivalences

K(R[x0, x−1]/(x0x−1)) ' K(R)⊕K(nil0 ⊗R)⊕K(nil−1 ⊗R)⊕ Σ−1K(nil1 ⊗R)

' K(R[x0])⊕K(R[ε0]) ' K(R[ε0]).

/

What distinguishes this example is that R[x0, x−1]/(x0x−1) is coconnective, has Noether-
ian, regular π0, but violates the tor condition, while R[ε0] is discrete (and therefore satisfies
the tor condition), but is non-regular. This suggests that at the level of nc motives regular-
ity of π0R and the tor condition are not individually particularly meaningful. Instead we
should think of the combination of these two conditions, i.e. unipotence, as a meaningful
single condition.

5.4. An example we do not cover.
We end the paper by giving a simple example of a ring R such that the connective cover

map π0R→ R induces an equivalence on nc motives, but R does not satisfy the hypotheses
of Theorem 1.1.

Example 5.18. Let R be the ring EndFp[x,y]((x, y))op. As a module over Fp[x, y], (x, y)
has three cells, two in degree 0, and one in degree 1 with attaching maps x and y. From
this we can compute the homotopy groups of R

πsR ∼=


k[x, y] s = 0

(x, y)/(x, y)2 s = −1

0 otherwise
.

Fp[x, y] is regular, but (x, y)/(x, y)2 has tor dimension 2 over Fp[x, y], so R does not satisfy
the conditions of Theorem 1.1.

Now we proceed to show that R is regular and the connective cover map induces an
equivalence of nc motives. In working with perfect R-modules we identify this category
with the thick subcategory of Mod(Fp[x, y])ω generated by (x, y). To see that R is regular,
first observe that Fp is connective in the standard t-structure for R since it is a retract
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of (x, y) ⊗Fp[x,y] Fp. From the extension (x, y) → Fp[x, y] → Fp we can then conclude
that Fp[x, y] is connective in this t-structure as well. This then implies that Mod(R)ω≥0 is
equivalent to Mod(Fp[x, y])ω≥0. Since (x, y) represents the class 1 inK0(Fp[x, y]), base-change
along the map π0R = Fp[x, y]→ R, which can be identified with the functor ⊗Fp[x,y](x, y),
induces multiplication by 1 on the nc motive of Fp[x, y]. /

In this example the natural map K(π0R)→ K(R) is an equivalence despite the fact that
R doesn’t satisfy the conditions of Theorem 1.1. The essential issue here is that (x, y) is not
flat, i.e. the base-change functor π0R → R is not t-exact. Since, at its core Theorem 1.1
operates using Quillen’s devissage theorem it cannot be used for examples of this type.
The equivalence of K-theories in this example arises because R is Morita equivalent to its
connective cover, which is a different (and less interesting) reason for them to agree. As
noted above, this implies that the connective cover map induces an equivalence of nc motives
in this case, something which rarely happens for rings to which one can apply Theorem 1.1.

Another point contrasting with Theorem 1.1 is the fact that the equivalence K(π0R) ∼=
K(R) is not visible at the level of the homotopy ring of R. Indeed, if R′ is the trivial
square zero extension of Fp[x, y] by Σ−1(x, y)/(x, y)2, then its homotopy ring agrees with
R, but K(π0R

′) → K(R′) is not an equivalence, because the map π0R
′ → R′ has the map

Fp[x]→ Fp[x]⊕Σ−1Fp as a retract, which was shown in Example 5.13 to not be a K-theory
equivalence.
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