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The generalized slices of Hermitian K-theory

Tom Bachmann

Abstract

We compute the generalized slices (as defined by Spitzweck–Østvær) of the motivic spectrum KO
(representing Hermitian K-theory) in terms of motivic cohomology and (a version of) generalized
motivic cohomology, obtaining good agreement with the situation in classical topology and the
results predicted by Markett–Schlichting. As an application, we compute the homotopy sheaves
of (this version of) generalized motivic cohomology, which establishes a version of a conjecture
of Morel.

1. Introduction

K-theory was invented by algebraic geometers and taken up by topologists. As a result of
Bott periodicity, the homotopy groups of the (topological) complex K-theory spectrum KU
are alternatingly Z and 0. Consequently, the (sped up) Postnikov tower yields a filtration
of KU with layers all equal to the Eilenberg–MacLane spectrum HZ (which is also the
zeroth Postnikov layer of the topological sphere spectrum). From this one obtains the
Atiyah–Hirzebruch spectral sequence, which has the singular cohomology of a space X on
the E2 page and converges to the (higher) topological K-theory of X.

Much research has been put into replicating this picture in algebraic geometry. In its earliest
form, this meant trying to find a cohomology theory for algebraic varieties called motivic
cohomology which is related via a spectral sequence to higher algebraic K-theory. There is now
a very satisfactory version of this picture. The motivic analog of the stable homotopy category
SH is the motivic stable homotopy category SH(k) [13, Section 5]. Following Voevodsky
[27, Section 2], this category is filtered by effectivity, yielding a kind of Gm-Postnikov tower
called the slice filtration and denoted

· · · → fn+1E → fnE → fn−1E → · · · → E.

The cofibres fn+1E → fnE → snE are called the slices of E, and should be thought of as
one kind of replacement of the (stable) homotopy groups from classical topology in motivic
homotopy theory.

In SH(k) there are (at least) two special objects (for us): the sphere spectrum S ∈ SH(k)
which is the unit of the symmetric monoidal structure, and the algebraic K-theory spectrum
KGL ∈ SH(k) representing algebraic K-theory. One may show that up to twisting, all the
slices of KGL are isomorphic, and in fact isomorphic to the zero-slice of S [9, Sections 6.4 and
9]. Putting HμZ = s0S, this spectrum can be used to define motivic cohomology, and then the
sought-after picture is complete.

Nonetheless there are some indications that the slice filtration is not quite right in certain
situations. We give three examples. (1) We have said before that the homotopy groups of KU
are alternatingly given by Z and 0. Thus in order to obtain a filtration in which all the layers
are given by HZ, one has to ‘speed up’ the Postnikov filtration by slicing ‘with respect to S2

instead of S1’. Since the slice filtration is manifestly obtained by slicing with respect to Gm
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1125

which is (at best) considered an analog of S1, and yet the layers are already given at double
speed, something seems amiss. (2) In classical topology there is another version of K-theory,
namely the K-theory of real (not complex) vector bundles, denoted KO. There is also Bott
periodicity, this time resulting in the computation that the homotopy groups of KO are given
by Z,Z/2,Z/2, 0,Z, 0, 0, 0 and then repeating periodically. There is an analog of topological
KO in algebraic geometry, namely Hermitian K-theory [6] and (also) denoted KO ∈ SH(k).
It satisfies an appropriate form of Bott periodicity, but this is not captured accurately by its
slices, which are also very different from the topological analog [21]. (3) The slice filtration
does not always converge. Thus just considering slices is not enough, for example, to determine
if a morphism of spectra is an isomorphism.

Problem (3) has lead Spitzweck–Østvær [25] to define a refined version of the effectivity
condition yielding the slice filtration which they call being ‘very effective’. In this article we
will argue that their filtration also solves issues (1) and (2).

To explain the ideas, recall that the category SH(k)eff is the localizing (so triangulated!)
subcategory generated by objects of the form Σ∞X+ for X ∈ Sm(k) (that is, no desuspension
by Gm). Then one defines SH(k)eff(n) = SH(k) ∧ T∧n and for E ∈ SH(k) the n-effective
cover fnE ∈ SH(k)eff(n) is the universal object mapping to E. (Note that since SH(k)eff

is triangulated, we have SH(k)eff ∧ T∧n = SH(k)eff ∧ G
∧n
m .) In contrast, Spitzweck–Østvær

define the subcategory of very effective spectra SH(k)veff to be the subcategory generated
under homotopy colimits and extensions by Σ∞X+ ∧ Sn where X ∈ Sm(k) and n � 0. This
subcategory is not triangulated! As before we put SH(k)veff(n) = SH(k)veff ∧ T∧n. (Note that
now, crucially, SH(k)veff ∧ T∧n �= SH(k)veff ∧ G

∧n
m .) Then as before the very n-effective cover

f̃nE ∈ SH(k)veff(n) is the universal object mapping to E. The cofibres f̃n+1E → f̃nE → s̃nE
are called the generalized slices of E.

As pointed out by Spitzweck–Østvær, the connectivity of f̃nE in the homotopy t-structure
increases with n, so the generalized slice filtration automatically converges. Moreover, it is
easy to see that f̃nKGL = fnKGL (that is, the n-effective cover of KGL is ‘accidentally’
already very n-effective) and thus s̃nKGL = sn(KGL). This explains how the generalized slice
filtration solves problem (1): we see that the ‘Gm-slices’ (that is, ordinary slices) of KGL agree
‘by accident’ with the ‘T -slices’ (that is, generalized slices). But note that T is an analog of
S2, explaining the double-speed convergence.

The main point of this article is that the generalized slices of KO can be computed, and have
a form which is very similar to the classical analog, thus solving problem (2). Of course this
leads to Atiyah–Hirzebruch type spectral sequences for Hermitian K-theory. Heuristically, the
generalized slices of KO are (supposed to be) like the S2-Postnikov layers of the topological
spectrum KO. We thus expect that they are 4-periodic (up to twist). Moreover, we expect
that s̃i for i ≡ 1, 2, 3 (mod 4) should just ‘accidentally’ be ordinary zero-slices (corresponding
to the fact that πiKO = 0 for i = 3, 5, 7), whereas s̃0KO should be an extension of two objects
(corresponding to π1KO �= 0 �= π0KO). This is indeed the case:

Theorem (see Theorem 16). The generalized slices of Hermitian K-theory are given as
follows:

s̃nKO � T∧n ∧

⎧⎪⎨⎪⎩
s̃0(KO) n ≡ 0 (mod 4)
HμZ/2 n ≡ 1 (mod 4)
HμZ n ≡ 2 (mod 4)
0 n ≡ 3 (mod 4).

What about the ‘conglomerate’ s̃0KO? We offer two ways of decomposing it, either using
the effectivity (slice) filtration or using the homotopy t-structure. The relevant triangles are

HμZ/2[1] → s̃0KO → H̃Z

HWZ ∧ Gm → s̃0KO → HμZ.
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1126 TOM BACHMANN

See Lemma 11 and Theorem 16 again. Here H̃Z is a spectrum which we call generalized motivic
cohomology, and HWZ is a spectrum which we call Witt-motivic cohomology. They can be
characterized abstractly as the effective covers of certain objects in the heart of the homotopy
t-structure on SH(k).

The boundary maps in the above two triangles are very interesting and will be subject
of further investigation. Also the computation of generalized slices of other spectra is an
interesting topic which we will take up in future work.

Relationship to other works. All our computations are done abstractly in the motivic
homotopy category. This is not really satisfactory, since in general it is essentially impossible
to compute cohomology with coefficients in some abstract spectrum. For the motivic spectral
sequence, there is a parallel and much more computational story to the one we have
outlined above: Voevodsky has defined motivic cohomology via a category DM(k) which
is reasonably computable [11], and in fact motivic cohomology in this sense coincides with
motivic cohomology in the sense of higher Chow groups [11, Theorem 19.1] which is certainly
very explicit. Grayson has defined an explicit spectral sequence converging to algebraic K-
theory [5, Section 5]. Work of Voevodsky [30] and Levine [9] shows that the explicit definitions
of motivic cohomology mentioned above agree with the abstract definition HμZ = s0S. Work
of Suslin [26] shows that the Grayson spectral sequence has layers given by the explicit form
of motivic cohomology, which by what we just said is the same as the abstract form. Work of
Garkusha–Panin [3] shows that the abstract and explicit motivic spectral sequences agree.

A similar picture is expected for Hermitian K-theory. Calmès–Fasel [2] have defined a
variant D̃M(k) of DM(k) and an associated theory H̃ ′

Z which they call generalized motivic
cohomology. Markett–Schlichting [in preparation] have defined a version of the Grayson
filtration for Hermitian K-theory and they hope to show that the layers are of the same form
as in our Theorem 16, with H̃Z replaced by H̃ ′

Z. The author contends that it will eventually
be shown that H̃Z = H̃ ′

Z and that the Market–Schlichting spectral sequence coincides with
the generalized slice spectral sequence†.

We note that an obvious modification of the Calmés–Fasel construction yields a spectrum
H ′

WZ. Again the author contends that H ′
WZ = HWZ, but this is not currently known.

More about H̃Z and HWZ. In the meantime, we propose to study the spectra H̃Z and HWZ

abstractly. Taking intuition from classical topology, that is, comparing the two decompositions
of s̃0KO with (π1KO,π0KO) = (Z/2,Z) we see that H̃Z should be a ‘variant’ of Z and HWZ

should be a ‘variant’ of Z/2. This is a familiar game in motivic homotopy theory: the standard
unoriented variant of Z is the homotopy module KMW

∗ of Milnor–Witt K-theory, that is, π0S∗,
and the standard unoriented variant of Z/2 is the homotopy module KW

∗ = KMW
∗ /h of Witt

K-theory [17, Chapter 3]. (The standard oriented variants are Milnor K-theory KM
∗ and its

mod-2 version.) Thus the following result confirms a very optimistic guess.

Theorem (Morel’s structure conjecture; see Theorem 17). The homotopy sheaves of H̃Z

and HWZ are given as follows:

πi(H̃Z)∗ =

{
KMW

∗ i = 0
πi(HμZ)∗ i �= 0

πi(HWZ)∗ =

{
KW

∗ i = 0
πi(HμZ/2)∗ i �= 0.

Organization of this article. In the preliminary Section 2 we recall some basic facts about
stable motivic homotopy theory, and in particular the homotopy t-structures.

†Added later: the isomorphism H̃Z � H̃′Z has now been established and will appear in forthcoming joint
work of the author and Jean Fasel.
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1127

In Section 3 we collect some results about the category SH(k)eff of effective spectra.
In particular we show that it carries a t-structure, show that the effectivization functor
r : SH(k) → SH(k)eff is exact, and provide some results about the heart SH(k)eff,♥. Note
that by definition SH(k)veff = SH(k)eff�0.

In Section 4 we define the generalized slice filtration and establish some basic results. In
particular we show that there are two canonical ways of decomposing a generalized slice, similar
to how we decomposed s̃0KO. We also give precise definitions of the spectra HμZ, HμZ/2, H̃Z

and HWZ we use.
In Section 5 we prove our main theorem computing the generalized slices of the Hermitian

K-theory spectrum KO. This uses crucially a lemma of Voevodsky [28, Proposition 4.4], the
detailed study of the geometry of quaternionic Grassmannians by Panin–Walter [20] and the
geometric representability of symplectic K-theory by Quaternionic Grassmannians, as proved
by Panin–Walter [19] and Schlichting–Tripathi [24].

Finally in Section 6 we compute the homotopy sheaves of H̃Z and HWZ. The computation
of πi(H̃Z)j and πi(HWZ)j for i � 0 or j � 0 is a rather formal consequence of results in
Section 3. Thus the main work is in computing the higher homotopy sheaves in positive weights.
The basic idea is to play off the two triangles HμZ/2[1] → s̃0KO → H̃Z and HWZ ∧ Gm →
s̃0KO → HμZ against each other. For example, an immediate consequence of the first triangle
is that πi(s̃0KO)0 is given by GW if i = 0, by Z/2 if i = 1, and by 0 else. This implies that
π1(HWZ)1 = Z/2, which is a very special case of Theorem 17. The general case proceeds along
the same lines. We should mention that this pulls in many more dependencies than the previous
sections, including the resolution of the Milnor conjectures and the computation of the motivic
Steenrod algebra.

Conventions. Throughout, k is perfect base field. This is because we will make heavy use of
the homotopy t-structure on SH(k), the heart of which is the category of homotopy modules
[12, Section 5.2]. We denote unit of the symmetric monoidal structure on SH(k) by S, this is
also known as the motivic sphere spectrum.

We denote by Sm(k) the category of smooth k-schemes. If X ∈ Sm(k) we write X+ ∈ Sm(k)∗
for the pointed smooth scheme obtained by adding a disjoint base point.

We use homological grading for our t-structures, see for example [10, Definition 1.2.1.1].
Whenever we say ‘triangle’, we actually mean ‘distinguished triangle’.

2. Recollections on motivic stable homotopy theory

We write SHS1
(k) for the S1-stable motivic homotopy category [12, Section 4.1] and SH(k) for

the P
1-stable motivic homotopy category [12, Section 5.1]. We let Σ∞

S1 : Sm(k)∗ → SHS1
(k)

and Σ∞ : Sm(k)∗ → SH(k) denote the infinite suspension spectrum functors. Note that there
exists an essentially unique adjunction

Σ∞
s : SHS1

(k) � SH(k) : Ω∞
s

such that Σ∞
s ◦ Σ∞

S1
∼= Σ∞.

For E ∈ SHS1
(k) and i ∈ Z we define πi(E) to be the Nisnevich sheaf on Sm(k)

associated with the presheaf X 
→ [Σ∞
S1X+ ∧ Si, E]. For E ∈ SH(k) and i, j ∈ Z we put

πi(E)j = πi(Ω
∞
s (E ∧ G

∧j
m ). We define

SHS1
(k)�0 = {E ∈ SHS1

(k)|πi(E) = 0 for all i < 0}
SHS1

(k)�0 = {E ∈ SHS1
(k)|πi(E) = 0 for all i > 0}

SH(k)�0 = {E ∈ SH(k)|πi(E)j = 0 for all i < 0, j ∈ Z}
SH(k)�0 = {E ∈ SH(k)|πi(E)j = 0 for all i > 0, j ∈ Z}.
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1128 TOM BACHMANN

As was known already to Voevodsky, this defines t-structures on SHS1
(k),SH(k) [12,

Theorems 4.3.4 and 5.2.6], called the homotopy t-structures. The most important ingredient in
the proof of this fact is the stable connectivity theorem. The unstable proof in [12, Lemma 3.3.9]
is incorrect; this has been fixed in [15, Theorem 6.1.8]. It implies that if X ∈ Sm(k) then
Σ∞X+ ∈ SH(k)�0 and Σ∞

S1X+ ∈ SHS1
(k)�0 [12, Examples 4.1.16 and 5.2.1]. If E ∈ SH(k)

then we denote its truncations by E�0 ∈ SH(k)�0, E�0 ∈ SH(k)�0 and so on. We will not
explicitly use the truncation functors of SHS1

(k), and so do not introduce a notation.
The hearts SHS1

(k)♥, SH(k)♥ can be described explicitly. Indeed SHS1
(k)♥ is equivalent to

the category of Nisnevich sheaves of abelian groups which are strictly homotopy invariant (that
is, sheaves F such that the map Hp

Nis(X,F ) → Hp
Nis(X × A

1, F ) obtained by pullback along
the projection X × A

1 → X is an isomorphism, for every X ∈ Sm(k)) [12, Lemma 4.3.7(2)]. On
the other hand SH(k)♥ is equivalent to the category of homotopy modules [12, Theorem 5.2.6].
Let us recall that a homotopy module F∗ consists of a sequence of sheaves Fi ∈ Shv(Sm(k)Nis)
which are strictly homotopy invariant, and isomorphisms Fi → (Fi+1)−1. Here for a sheaf F
the contraction F−1 is as usual defined as F−1(X) = F (X × (A1 \ 0))/F (X). The morphisms
of homotopy modules are the evident compatible systems of morphisms. One then shows that
in fact for E ∈ SH(k), the homotopy sheaves πi(E)∗ form (for each i) a homotopy module in
a natural way [12, Lemma 5.2.5].

We will mostly not distinguish the category SH(k)♥ from the (equivalent) category of
homotopy modules, and so may write things like ‘let F∗ ∈ SH(k)♥ be a homotopy module’.

Because there can be some confusion about the meaning of epimorphism and so on when
several abelian categories are being used at once, let us include the following observation. It
implies in particular that not much harm will come from confusing for E ∈ SH(k) the homotopy
module πi(E)∗ ∈ SH(k)♥ with the family of Nisnevich sheaves (i 
→ πi(E)i).

Lemma 1. Write Ab(Shv(Sm(k)Nis)) for the category of Nisnevich sheaves of abelian groups
on Sm(k), and Ab(Shv(Sm(k)Nis))Z for the category of Z-graded families of sheaves of abelian
groups.

(1) The category SHS1
(k)♥ has all limits and colimits and the functor SHS1

(k)♥ →
Ab(Shv(Sm(k)Nis)), E 
→ π0(E) is fully faithful and preserves limits and colimits.

(2) The category SH(k)♥ has all limits and colimits and the functor SH(k)♥ →
Ab(Shv(Sm(k)Nis))Z, E 
→ (Z � i 
→ π0(E)i) is conservative and preserves limits and colimits.

In particular, both functors are exact and detect epimorphisms. Let us also note that a
conservative exact functor is faithful (two morphisms are equal if and only if their equalizer
maps isomorphically to the source).

Before the proof we have two lemmas, which surely must be well known.

Lemma 2. Let C be a t-category and write j : C♥ → C for the inclusion of the heart.
Let {Ei ∈ C}i∈I be a family of objects. If

⊕
i j(Ei) ∈ C exists then

⊕
i Ei ∈ C♥ exists and

is given by (
⊕

i j(Ei))�0. Similarly, if
∏

i j(Ei) ∈ C exists then
∏

i Ei ∈ C♥ exists and is given
by (

∏
i j(Ei))�0.

Proof. The second statement is dual to the first (under passing to opposite
categories), so we need only prove the latter. Note first that

⊕
i j(Ei) ∈ C�0. Indeed if

E ∈ C<0 then [
⊕

i j(Ei), E] =
∏

i[j(Ei), E] = 0. Consequently if E ∈ C♥ then
[(
⊕

i j(Ei))�0, E] = [
⊕

i j(Ei), jE] =
∏

i[Ei, E], since jE ∈ C�0 and j is fully faithful.
This concludes the proof. �

Let C,D be provided with subcategories C�0, C�0,D�0,D�0; for example, C,D could be
t-categories. A functor F : C → D is called right (respectively, left) t-exact if F (C�0) ⊂
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1129

D�0 (respectively, F (C�0) ⊂ D�0). It is called t-exact if it is both left and right
t-exact.

Lemma 3. Let F : C � D : U be an adjunction of t-categories, and assume that U is t-exact.
Then the induced functor U♥ : D♥ → C♥ preserves limits and finite colimits. If C is compactly
generated, F preserves compact objects, and D has arbitrary coproducts, then U♥ preserves
all colimits.

Proof. There is an induced adjunction F♥ : C♥ � D♥ : U♥, cf. [1, Proposition 1.3.17(iii)].
It follows that U♥ preserves all limits. Since U is right t-exact, U♥ is right exact, that is,
preserves finite colimits [1, Proposition 1.3.17(i)].

Under the additional assumptions, U preserves arbitrary coproducts, and so Lemma 2 implies
that D♥ has arbitrary coproducts and that U♥ preserves them. The result follows since all
colimits can be built from coproducts and finite colimits. �

Proof of Lemma 1. The category SH(k) is compactly generated [7, Proposition 6.4(3)], and
hence has all products and coproducts. It follows from Lemma 2 that SH(k)♥ has all products
and coproducts, and hence all limits and colimits. The same argument applies to SHS1

(k)♥.
Let SHS1

s (k) denote the stable Nisnevich-local homotopy category, built in the same way
as SHS1

(k), but without performing A
1-localization. It is also compactly generated. Then for

E ∈ SHS1

s (k) we may define πi(E) in just the same way as before, and we may also define
SHS1

s (k)�0,SHS1

s (k)�0 in the same way as before. Then SHS1

s (k) is a t-category with heart
Shv(Sm(k)Nis) [15, Proposition 3.3.2]. We have the localization adjunction L : SHS1

s (k) �
SHS1

(k) : i. By construction i is fully faithful and t-exact. The functor from (1) is given by
i♥, so in particular is fully faithful. It preserves all limits and colimits by Lemma 3.

To prove (2), denote the functor by u. Consider for d ∈ Z the adjunction Σ∞+d
s : SHS1

(k) �
SH(k) : Ω∞+d

s given by Σ∞+d
s (E) = Σ∞

s (E) ∧ G
∧d
m , Ω∞+d

s (F ) = Ω∞
s (F ∧ G

∧−d
m ). Then Ω∞+d

is t-exact by construction, and so Lemma 3 applies. Note that for E ∈ SH(k)♥ we have u(E)d =
i♥(Ω∞−d

s )♥(E), where i♥ is the functor from (1). It follows that E 
→ u(E)d preserves all limits
and colimits, and hence so does u. Note also that u detects zero objects [12, Proposition 5.1.14],
and hence is conservative (since it detects vanishing of kernel and cokernel of a morphism).

3. The category of effective spectra

We write SH(k)eff for the localizing subcategory of SH(k) generated by the objects Σ∞X+,
with X ∈ Sm(k). By Neeman’s version of Brown representability, the inclusion i : SH(k)eff →
SH(k) has a right adjoint which we denote by r.

For E ∈ SH(k)eff we let πi(E)0 ∈ Shv(Sm(k)Nis) denote πi(E)0 := πi(iE)0. In general we
may drop application of the functor i when no confusion seems likely. We define

SH(k)eff�0 = {E ∈ SH(k)eff|πi(E)0 = 0 for all i < 0}
SH(k)eff�0 = {E ∈ SH(k)eff|πi(E)0 = 0 for all i > 0}.

Some or all of the following was already known to Spitzweck–Østvær [25, paragraph before
Lemma 5.6].

Proposition 4. (1) The functors πi(•)0 : SH(k)eff → Shv(Sm(k)Nis) form a conservative
collection.

(2) The category SH(k)eff�0 is generated under homotopy colimits and extensions by
Σ∞X+ ∧ Sn, where n � 0, X ∈ Sm(k).
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1130 TOM BACHMANN

(3) The functor r is t-exact and i is right-t-exact.
(4) The subcategories SH(k)eff�0,SH(k)eff�0 constitute a non-degenerate t-structure on

SH(k)eff.

Proof. For X ∈ Sm(k) and E ∈ SH(k) we have the strongly convergent Nisnevich descent
spectral sequence Hp

Nis(X,π−q(E)0) ⇒ [Σ∞X+, E[p + q]]. Consequently if E ∈ SH(k)eff and
πi(E)0 = 0 for all i then [Σ∞X+, E[n]] = 0 for all X ∈ Sm(k) and all n. It follows that E = 0,
since the Σ∞X+ generate SH(k)eff as a localizing subcategory (by definition). Thus the πi(•)0
form a conservative collection, that is, we have proved (1).

As recalled in the previous section, we have Σ∞X+ ∧ Sn ∈ SH(k)eff�n for n � 0. Thus if
E ∈ SH(k)eff�0, then the homotopy sheaves πi(E)0 can be killed off by attaching cells of the
form Σ∞X+ ∧ Sn for n � 0, X ∈ Sm(k). Consequently SH(k)eff�0 is generated under homotopy
colimits and extensions by objects of the form claimed in (2). We give more details on this
standard argument at the end of the proof.

It follows from adjunction that for E ∈ SH(k) we have πi(r(E))0 = πi(E)0. Conse-
quently r is t-exact. Since i is a left adjoint it commutes with homotopy colimits and so
i(SH(k)eff�0) ⊂ SH(k)�0 by (2), that is, i is right-t-exact. Thus we have shown (3).

It remains to show (4), that is, that we have a non-degenerate t-structure. If E ∈ SH(k)eff

then riE � E. Since r is t-exact, the triangle r[(iE)�0] → riE � E → r[(iE)<0] coming from
the decomposition of iE in the homotopy t-structure is a decomposition of E into non-negative
and negative part as required for a t-structure.

Next we need to show that if E ∈ SH(k)eff>0 and F ∈ SH(k)eff�0 then [E,F ] = 0. The
natural map F → r[(iF )�0] induces an isomorphism on all πi(•)0, so is a weak equivalence
(by the conservativity result (1)). Thus [E,F ] = [E, r[(iF )�0]] = [iE, (iF )�0] = 0 since i is
right-t-exact and so iE ∈ SH(k)>0.

We have thus shown that SH(k)eff�0,SH(k)eff<0 form a t-structure. It is non-degenerate by (1).
This concludes the proof. �

Details on killing cells. We explain in more detail how to prove (2). Let C be the subcategory
of SH(k)eff generated under homotopy colimits and extensions by Σ∞X+ ∧ Sn, where n �
0, X ∈ Sm(k). We wish to show that SH(k)eff�0 ⊂ C. As a first step, we claim that if E ∈
SH(k)eff�n (with n � 0) there exists R(E) ∈ C ∩ SH(k)eff�n together with R(E) → E inducing a
surjection on πi(•)0 for all i � 0. Indeed, just let R(E) be the sum

⊕
Σ∞X+∧Sk→E Σ∞X+ ∧ Sk,

where the sum is over k � n, a suitably large set of varieties X, and all maps in SH(k) as
indicated.

Now let E ∈ SH(k)eff�0. We will construct a diagram E0 → E1 → · · · → E with Ei ∈ C and
Ei → E inducing an isomorphism on πj(•)0 for all j < i. Clearly then hocolimi Ei → E is an
equivalence, showing that E ∈ C, and concluding the proof.

We will also arrange that πj(Ei)0 → πj(E)0 is surjective for all j and i. Take E0 = R(E).
Suppose that Ei has been constructed and let us construct Ei+1. Consider the homotopy fibre
F → Ei → E. Then F ∈ SH(k)eff�i and πi(F )0 → πi(Ei)0 → πi(E)0 → 0 is an exact sequence
(∗). Let Ei+1 be a cone on the composite R(F ) → F → Ei. Since the composite R(F ) → F →
Ei → E is zero, the map Ei → E factors through Ei → Ei+1. It is now easy to see, using (∗),
that Ei+1 has the desired properties.

Remark. The paragraph on killing cells in fact shows that SH(k)veff is generated by
Σ∞

+ Sm(k) under homotopy colimits; no extensions are needed. We will not use this observation.

Terminology. In order to distinguish the t-structure on SH(k)eff from the t-structure of
SH(k), we will sometimes call the former the effective (homotopy) t-structure. We denote
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1131

the truncations of E ∈ SH(k)eff by E�e0 ∈ SH(k)eff�0, E�e0 ∈ SH(k)eff�0 and so on. For E ∈
SH(k)eff, we denote by πeff

i (E) ∈ SH(k)eff,♥ the homotopy objects. We prove below that the
functor π0(•)0 : SH(k)eff,♥ → Ab(Shv(Sm(k)Nis)) is conservative and preserves all limits and
colimits. It is thus usually no problem to confuse πeff

i (E) and πi(E)0.

Remark. By Proposition 4(3), we have SH(k)eff�0 ⊂ SH(k)�0 ∩ SH(k)eff. Since the reverse
inclusion is clear by definition, we conclude that SH(k)eff�0 = SH(k)�0 ∩ SH(k)eff.

Remark. We call the heart SH(k)eff,♥ the category of effective homotopy modules. We
show below that i♥ : SH(k)eff,♥ → SH(k)♥ is fully faithful, justifying this terminology. Note,
however, that this is not the same category as SH(k)♥ ∩ SH(k)eff. It follows from work of
Garkusha–Panin [4] that SH(k)eff,♥ is equivalent to the category of homotopy invariant, quasi-
stable, Nisnevich sheaves of abelian groups with linear framed transfers. We contend that this
category is equivalent to the category of homotopy invariant Nisnevich sheaves with generalized
transfers in the sense of Calmès–Fasel [2] and also in the sense of Morel [16, Definition 5.7].

Except for Proposition 5(3), the remainder of this section is not used in the computation of
the generalized slices of Hermitian K-theory, only in the last section.

Proposition 5. (1) For E ∈ SH(k)eff�0 we have π0(iE)∗ = i♥πeff
0 (E), where i♥ :

SH(k)eff,♥ → SH(k)♥ is the induced functor i♥(M) = (iM)�0.
(2) The functor i♥ : SH(k)eff,♥ → SH(k)♥ is fully faithful.
(3) The category SH(k)eff,♥ has all limits and colimits, and functor SH(k)eff,♥ →

Ab(Shv(Sm(k)Nis)), E 
→ πi(E)0 is conservative and preserves limits and colimits.

Proof. If E ∈ SH(k)eff�0 then we have the triangle E�e1 → E → πeff
0 E and consequently get

the triangle i(E�e1) → iE → iπeff
0 E. But i is right-t-exact, so the end of the associated long

exact sequence of homotopy shaves is 0 = π0(iE�e1)∗ → π0(iE)∗ → π0(iπ
eff
0 (E))∗ = i♥πeff

0 E →
π−1(i(E�e1))∗ = 0, whence the claimed isomorphism of (1).

Let us now prove (2). If E ∈ SH(k)eff,♥ then E = riE ∼= (riE)�e0
∼= r[(iE)�0] = ri♥(E),

where the last equality holds by definition, and the second to last one by t-exactness of r.
Thus ri♥ ∼= id. Consequently if E,F ∈ SH(k)eff,♥ then [i♥E, i♥F ] = [E, ri♥F ] ∼= [E,F ], so i♥

is fully faithful as claimed. Here we have used the well-known fact that a t-exact adjunction
between triangulated categories induces an adjunction of the hearts [1, Proposition 1.3.17(iii)].

Now we prove (3). Since SH(k)eff is compactly generated, existence of limits and colimits in
SH(k)eff,♥ follows from Lemma 2. Consider the adjunction Σ∞

s : SHS1
(k) � SH(k)eff : Ω∞

s .
Then Lemma 3 applies and we find that SH(k)eff,♥ → SHS1

(k)♥ preserves limits and colimits.
Since SHS1

(k)♥ → Ab(Shv(Sm(k)Nis)) preserves limits and colimits by Lemma 1, we conclude
that SH(k)eff,♥ → Ab(Shv(Sm(k)Nis)) also preserves limits and colimits. Since the functor also
detects zero objects by Proposition 4(1), we conclude that it is conservative. �

Remark. Parts (1) and (2) of the above proof do not use any special properties of SH(k) and
in fact show more generally the following: If C,D are presentable stable ∞-categories provided
with t-structures and C → D is a right-t-exact, fully faithful functor, then the induced functor
C♥ → D♥ is fully faithful (in fact a colocalization). This was pointed out to the author by
Benjamin Antieau.

Thus the functor i♥ embeds SH(k)eff,♥ into SH(k)♥, explaining our choice of the name
‘effective homotopy module’. We will call a homotopy module F∗ ∈ SH(k)♥ effective if it is in
the essential image of i♥, that is, if there exists E ∈ SH(k)eff,♥ such that i♥E ∼= F .

If F∗ is a homotopy module then we denote by F∗〈i〉 the homotopy module π0(F ∧ G
∧i
m )∗,

which satisfies F 〈i〉∗ = F∗+i and has the same structure maps (just shifted by i places).
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1132 TOM BACHMANN

Lemma 6. The homotopy module KMW
∗ of Milnor–Witt K-theory is effective. Moreover,

if F∗ is an effective homotopy module then so are F∗〈i〉 for all i � 0. Also cokernels of
morphisms of effective homotopy modules are effective, as are (more generally) colimits of
effective homotopy modules.

In particular, the following homotopy modules are effective: KM
∗ = coker(η : KMW

∗ 〈1〉 →
KMW

∗ ), KW
∗ = coker(h : KMW

∗ → KMW
∗ ) as are, for example, KM

∗ /p,KMW
∗ [1/p], etc.

Proof. The sphere spectrum S is effective, non-negative and satisfies π0(S)∗ = KMW
∗ . Hence

Milnor–Witt K-theory is effective by Proposition 5 part (1).
Now let E in SH(k)eff,♥. Then for i � 0 we have i(E ∧ G

∧i
m ) ∈ SH(k)�0 and so E ∧ G

∧i
m ∈

SH(k)eff�0. Consequently (i♥E)〈i〉 = E�0 ∧ G
∧i
m = (E ∧ G

∧i
m )�0 = i♥[(E ∧ G

∧i
m )�e0] is effective.

Here the last equality is by Proposition 5(1).
Let E → F ∈ SH(k)eff,♥ be a morphism and form the right exact sequence E → F → C → 0.

Since i♥ has a right adjoint it is right exact, whence i♥E → i♥F → i♥C → 0 is right exact. It
follows that the cokernel of i♥(E) → i♥(F ) is i♥(C), which is effective.

Finally i♥ preserves colimits, again since it has a right adjoint, so colimits of effective
homotopy modules are effective by a similar argument. �

4. The generalized slice filtration

We put SH(k)veff = SH(k)eff�0 and for n ∈ Z, SH(k)eff(n) = SH(k)eff ∧ T∧n, SH(k)veff(n) =
SH(k)veff ∧ T∧n. Here T = A

1/Gm � (P1,∞) � S1 ∧ Gm denotes the Tate object. These are
the categories of (very) n-effective spectra (we just say ‘(very) effective’ if n = 0).

Write in : SH(k)eff(n) → SH(k) for the inclusion, rn : SH(k) → SH(k)eff(n) for the right
adjoint, put fn = inrn and define sn as the cofibre fn+1E → fnE → snE. This is of course the
slice filtration [27, Section 2].

Similarly we write ĩn : SH(k)veff(n) → SH(k) for the inclusion. There is a right adjoint r̃n
(see for example the proof of Lemma 10), and we put f̃n = ĩnr̃n. This is the generalized slice
filtration [25, Definition 5.5]. We denote by s̃n(E) a cone on f̃n+1E → f̃nE. This depends
functorially on E.

Lemma 7. There exist a functor s̃0 : SH(k) → SH(k) and natural transformations p : id ⇒
s̃0 and ∂ : s̃0 ⇒ f̃1[1], all determined up to unique isomorphism, such that for each E ∈ SH(k)
the following triangle is distinguished: f̃1(E) → f̃0(E)

pE−−→ s̃0(E) ∂E−−→ f̃1E[1].
Moreover, for E,F ∈ SH(k) we have [f̃1(E)[1], s̃0F ] = 0.

Proof. By [1, Proposition 1.1.9] it suffices to show the ‘moreover’ part. We may as well show
that if E ∈ SH(k)veff(1), F ∈ SH(k) then [E[1], s̃0F ] = 0. Considering the long exact sequence

[E[1], f̃1F ] α−→ [E[1], f̃0F ] → [E[1], s̃0F ] → [E, f̃1F ]
β−→ [E, f̃0F ]

it is enough to show that α and β are isomorphisms. This is clear since E,E[1] ∈ SH(k)veff(1)
and f̃1f̃0F � f̃1F . �

The following lemmas will feature ubiquitously in the sequel. Recall that the fi are
triangulated functors.

Lemma 8. For E ∈ SH(k) we have

T ∧ fn(E) � fn+1(T ∧ E)
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1133

and

T ∧ f̃n(E) � f̃n+1(T ∧ E).

Proof. We have SH(k)eff(n + 1) = SH(k)eff(n) ∧ T . Now for X ∈ SH(k)eff(n) we compute

[X ∧ T, T ∧ fnE] ∼= [X, fnE] ∼= [X,E] ∼= [X ∧ T,E ∧ T ] ∼= [X ∧ T, fn+1(E ∧ T )].

Thus T ∧ fnE � fn+1(T ∧ E) by the Yoneda lemma.
The proof for f̃n is exactly the same, with SH(k)eff replaced by SH(k)veff and f• replaced

by f̃•. �

We obtain a t-structure on SH(k)eff(n) by ‘shifting’ the t-structure on SH(k)eff by G
∧n
m .

In other words, if E ∈ SH(k)eff(n) then E ∈ SH(k)eff(n)�0 if and only if πi(E)−n = 0 for all
i < 0. Since ∧G

∧n
m : SH(k)eff → SH(k)eff(n) is an equivalence of categories, all the properties

established in the previous section apply to SH(k)eff(n) as well, suitably reformulated. In
particular, SH(k)eff(n)�0 is the non-negative part of a t-structure. We denote the associated
truncation by E 
→ E�e,n0 ∈ SH(k)eff(n)�0, and so on.

Lemma 9. Denote by jn : SH(k)eff(n + 1) → SH(k)eff(n) the canonical inclusion. The
restricted functor fn+1 : SH(k)eff(n) → SH(k)eff(n + 1) right adjoint to jn and is t-exact, and
jn is right t-exact.

Proof. Adjointness is clear. Let E ∈ SH(k)eff(n). We have πi(fn+1E)−n−1 = πi(E)−n−1 =
(πi(E)−n)−1. In particular if πi(E)−n = 0 then πi(fn+1E)−n−1 = 0, which proves that fn+1

is t-exact. Then jn is right t-exact, being left adjoint to a left t-exact functor. �

Lemma 10. Let E ∈ SH(k). Then

f̃nE � in(rn(E)�e,nn) � fn(E�n).

Proof. Note that ∧T : SH(k)eff(n) → SH(k)eff(n + 1) induces equivalences
SH(k)eff(n)�n → SH(k)eff(n + 1)�n+1 and similarly for the non-negative parts. It follows
that for E ∈ SH(k)eff(n) we have E�e,nn ∧ T � (E ∧ T )�e,n+1n+1. Similarly we find that for
E ∈ SH(k) we have (E ∧ T )�n+1 � E�n ∧ T . Together with Lemma 8 this implies that the
current lemma holds for some n if and only if it holds for n + 1 (and all E). We may thus
assume that n = 0.

We have a factorization of inclusions SH(k)veff(0) → SH(k)eff(0) → SH(k) and hence the
right adjoint factors similarly. But the right adjoint to SH(k)veff(0) → SH(k)eff(0) is truncation
in the effective t-structure by definition, whence the first equivalence. The second equivalence
follows from t-exactness of r, that is, Proposition 4 part (3). �

From now on, we will write fnE�m when convenient. This will always mean fn(E�m) and
never fn(E)�m. This is the same as in(rn(E)�e,nm). In particular in calculations, we will
similarly write snE�m to mean sn(E�m), never sn(E)�m. We will also from now on mostly
write f0 in place of r0; whenever we make statements like ‘f0 is t-exact’ we really mean that
f0 : SH(k) → SH(k)eff is t-exact.

Lemma 11. For E ∈ SH(k) there exist natural triangles

s0(E�1) → s̃0(E) → f0(π0(E)∗) (1)

and

f1(π0(E)∗) → s̃0(E) → s0(E�0). (2)
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1134 TOM BACHMANN

Of course, there are variants of this lemma for s̃n, obtained, for example, using s̃n(E) �
s̃0(E ∧ T−∧n) ∧ T∧n.

Proof. We claim that there are canonical isomorphisms (1) s0(E�1) � s̃0(E)�e1, (2)
f0(π0(E)∗) � πeff

0 (s̃0E), (3) f1(π0(E)∗) � f1s̃0(E) and (4) s0(E�0) � s0s̃0(E). Since s̃0(E) ∈
SH(k)eff�0, the two purported triangles are thus the functorial triangles s̃0(E)�e1 → s̃0(E) �
s̃0(E)�e0 → πeff

0 s̃0(E) and f1s̃0(E) → s̃0(E) � f0s̃0(E) → s0s̃0(E).

(1) We have s0(E�1) � s0f0(E�1) � s0f̃0(E)�e1, since f0 is t-exact. In particular, we may
assume that E ∈ SH(k)veff. Consider the following commutative diagram

Here the rows are triangles and the maps p and p′ are the canonical ones. The map h is
induced. Using that [f1(E�e1)[1], s̃0E] by Lemma 7 and [1, Proposition 1.1.9], we see that h is in
fact the unique morphism rendering the diagram commutative. We have f1(E�e1) ∈ SH(k)eff�1,
by Lemma 9. It follows that s0(E�e1) ∈ SH(k)eff�1. Of course also s̃0(E)�e1 ∈ SH(k)eff�1. Let

T ∈ SH(k)eff�1. Then p′ induces [T, s̃0(E)�e1]
∼=−→ [T, s0(E�e1)]. Hence by Yoneda, it suffices

to show that h induces [T, s0(E�e1)]
∼=−→ [T, s̃0E]. By the 5-lemma it suffices to show that

[T,E�e1]
∼=−→ [T,E] which is clear by definition, and that [T,E�e1[1]] → [T,E[1]] is injective.

This follows from the exact sequence 0 = [T,E�e0] → [T,E�e1[1]] → [T,E[1]].
(2) We have πeff

0 (s̃0E) � πeff
0 (f̃0E) � πeff

0 (f0E), since πeff
0 (f̃1E) = 0 = πeff

−1(f̃1(E)), again by
Lemma 9. We conclude since f0 : SH(k) → SH(k)eff is t-exact by Proposition 4(3).

(3) We have the two canonical triangles f̃0(E)�e1 → f̃0E → πeff
0 (f0E) � f0π0(E)∗ (using

t-exactness of f0) and f̃1E → f̃0E → s̃0E. The middle terms are canonically isomorphic,
and the left terms become canonically isomorphic after applying f1. There is thus an
induced isomorphism f1π0(E)∗ → f1s̃0(E), which is in fact unique by [1, Proposition 1.1.9],
provided we show that [f̃1(E)[1], f1s̃0(E)] = 0. This follows from the exact sequence
[f̃1(E)[1], s0(s̃0(E))[1]] → [f̃1(E)[1], f1s̃0(E)] → [f̃1(E)[1], s̃0(E)], Lemma 7, and the analog
of Lemma 7 for ordinary slices. We can quickly prove this analog: if E ∈ SH(k)eff(1) and
F ∈ SH(k), then [E, s0(F )] = 0, since [E, f1F [i]] ∼= [E, f0F [i]] for all i.

(4) We have s0(E�0) � s0f0(E�0) � s0(f0(E)�e0) � s0f̃0(E). Since s0 is a triangulated
functor, we have a canonical triangle s0f̃1E → s0f̃0E → s0s̃0E. Since f̃1E ∈ SH(k)eff(1) we
have s0f̃1E � 0, and hence we obtain the required isomorphism. �

Notation. We define spectra for (generalized) motivic cohomology theory as effective
covers:

HμZ := f0K
M
∗

HμZ/2 := f0K
M
∗ /2

H̃Z := f0K
MW
∗

HWZ = f0K
W
∗ .
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1135

Here KMW
∗ ∈ SH(k)♥ denotes the homotopy module of Milnor–Witt K-theory [17, Chapter 3],

that is, π0(S)∗, where S is the sphere spectrum [17, Theorem 6.40]. Also KW
∗ := KMW

∗ /h is
the homotopy module of Witt K-theory [17, Example 3.33]. Similarly for the other right-hand
sides. This terminology is justified by the following result.

Lemma 12. Let S → KM
∗ denote the composite S → π0(S)∗ � KMW

∗ → KM
∗ . Then the

canonical maps s0(S) → s0(KM
∗ ) ← f0K

M
∗ are equivalences. Moreover, there is a canonical

equivalence f0(KM
∗ )/2 � f0(KM

∗ /2), where on the left-hand side we mean a cone on a morphism
in SH(k) and on the right-hand side KM

∗ /2 ∈ SH(k)♥ denotes the cokernel.

In particular, the spectra HμZ and HμZ/2 represent motivic cohomology in the sense of
Bloch’s higher Chow groups [9, Theorems 6.5.1 and 9.0.3]. This agrees with Voevodsky’s
definition of motivic cohomology [11, Theorem 19.1] (recall that our base field is perfect).
Note that if C is a cone on KM

∗
2−→ KM

∗ , then f0(C) is a cone on HμZ
2−→ HμZ, that is, also

canonically isomorphic to HμZ/2. In other words in the notation f0K
M
∗ /2 it does not matter

if we view KM
∗ /2 as a cone or cokernel.

Proof. Since KM
−1 = 0 we have f1K

M
∗ = 0 and so f0K

M
∗ → s0K

M
∗ is an equivalence. The

spectrum s0S represents motivic cohomology [9, Theorems 6.5.1 and 9.0.3; 11, Theorem 19.1]
and hence π0(s0S)0 = Z, whereas πi(s0S)0 = 0 for i �= 0. Similarly we have just from the
definitions that π0(f0K

M
∗ )0 = Z and πi(f0K

M
∗ )0 = 0 for i �= 0. Thus the map s0S → s0K

M
∗ �

f0K
M
∗ induces an isomorphism on all πi(•)0, provided that [S, s0S] → [S, s0K

M
∗ ] is an

epimorphism. But [S, S] → [S, s0S] and [S, S] → [S,KM
∗ ] = [S, f0K

M
∗ ] = [S, s0K

M
∗ ] are both

epimorphisms, so this is true. The first claim now follows from Proposition 4(1).
For the second claim, note that it follows from Propositions 5(3) and Lemma 1 that f0 :

SH(k)♥ → SH(k)eff,♥ is exact. Thus f0(KM
∗ /2) is the cokernel of α : f0(KM

∗ ) 2−→ f0(KM
∗ ) ∈

SH(k)eff,♥ and it remains to show that this cokernel is isomorphic to the cone of α. This
happens if and only if α is injective, which is clear since under the conservative exact functor
from Proposition 5(3), α just corresponds to Z

2−→ Z. �

Philosophy. The complex realization of Gm is S1 and the complex realization of T is S2.
We propose to think of the generalized slices as some kind of ‘motivic (stable) 1-types’. Note
that ordinary slices, as well as objects of SH(k)♥ and SH(k)eff,♥ would all be reasonable
candidates for ‘motivic 0-types’. Triangle (1) shows that every motivic 1-type can be canonically
decomposed into an element of SH(k)eff,♥ and a zero-slice (that is, a birational motive) — both
of which we think of as different kinds motivic 0-types. Thus in triangle (1) we think of f0π0(E)∗
as the π0 part of the motivic 1-type s̃0E and of s0(E�1) as the π1 part of the motivic 1-type.
Of course, triangle (2) shows that every motivic 1-type can be canonically decomposed into an
element of SH(k)eff,♥ ∧ Gm and a zero-slice, which are again motivic 0-types. Thus in triangle
(2) we think of s0E�0 as the π0-part of the motivic 1-type and of f1π0(E)∗ as the π1-part.

5. The generalized slices of Hermitian K-theory

We will now compute s̃n(KO). Recall that there exist motivic spaces GW [n] ∈ Spc∗(k) which
represent Hermitian K-theory and come with a canonical weak equivalence ΩTGW [n] �
GW [n−1]. Thus they can be assembled into a motivic T -spectrum KO = (GW [0], GW [1], . . . ) ∈
SH(k) also representing Hermitian K-theory [6]. We remind that this spectrum is not

connective. We will write KO[n] := KO ∧ T∧n. Observe that under the adjunction Σ∞ :
Ho(Spc∗(k)) � SH(k) : Ω∞ we have Ω∞(KO[n]) � GW [n].
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1136 TOM BACHMANN

Table 1. Low degree Hermitian
K-groups as strictly homotopy
invariant Nisnevich sheaves.

n π0(GW [n])

0 GW
1 0
2 Z

3 Z/2

By Bott periodicity, we have GW [n+4] � GW [n] and so KO[n+4] � KO[n] [22, Proposition 7].
Also recall the low-degree Hermitian K-groups from Table 1. This table can be deduced for
example from the identification of GW

[n]
0 with the Balmer–Walter Grothendieck–Witt groups

[23, Lemma 8.2; 31, Theorem 10.1].

Lemma 13. We have f0π0(KO[2])∗ � HμZ, and the natural induced map s0KO
[2]
�0 =

s0f0KO
[2]
�0 → s0f0π0(KO[2])∗ � s0HμZ � HμZ is an isomorphism.

Proof. Consider the map S → KO[2] corresponding to 1 ∈ Z = [S,KO[2]]. It induces
α : H̃Z = f0π0(S)∗ → f0π0(KO[2])∗ ∈ SH(k)eff,♥. We also have the canonical map β : H̃Z →
HμZ ∈ SH(k)eff,♥. We claim that α and β are surjections with equal kernels. Indeed this may be
checked after applying the conservative exact functor from Proposition 5(3), where both maps
correspond to the canonical map GW → Z. It follows that there is a canonical isomorphism
f0π0KO[2] � HμZ. (The point of this elaboration is that even though we know that f0π0KO[2]

and HμZ are objects of SH(k)eff,♥ which have the same underlying homotopy sheaf, a priori
the transfers could be different.)

The rest of the proof essentially uses an argument of Voevodsky [28, Section 4]. Write

Σ∞
s SHS1

(k) � SH(k) : Ω∞
s

for the canonical adjunction. Note that one may define a slice filtration for SHS1
(k) in just

the same way as for SH(k): Let SHS1
(k)(n) ⊂ SHS1

(k) denote the localizing subcategory
generated by Tn ∧ E for E ∈ SHS1

(k). Then the inclusion i′n : SHS1
(k)(n) → SHS1

(k) has a
right adjoint r′n, one puts f ′

n = i′nr
′
n, and s′nE is defined to be the cofiber of f ′

n+1E → f ′
nE [9,

Section 7.1].
It is enough to show that f0(KO

[2]
�1) ∈ SH(k)eff(1), that is, that s0(KO

[2]
�1) � 0. The functor

Ω∞
s : SH(k)eff → SHS1

(k) is conservative [28, Lemma 3.3] and commutes with taking slices
[9, Theorems 9.0.3 and 7.1.1]. Since also Ω∞

s HμZ = Z we find that it is enough to show
that sS

1

0 (Ω∞
s KO

[2]
�0) � Z. (This is precisely how Voevodsky computes s0KGL, but since his

conjectures have been proved by Levine our result is unconditional.)
We claim that Ω∞KO

[2]
�0 � Ω∞KO[2] � GW [2] ∈ Spc∗(k). To see this, note that for any

E ∈ SH(k) and U ∈ Spc∗(k) we have [U,Ω∞E] = [Σ∞U,E] = [Σ∞U,E�0] = [U,Ω∞E�0],
where for the middle equality we have used that Σ∞U ∈ SH(k)�0. Indeed as explained in
Section 2 this holds for U = X+ with X ∈ Sm(k), the category Spc∗(k) is generated under
homotopy colimits by spaces of the form X+, the functor Σ∞ preserves homotopy colimits,
and SH(k)�0 is closed under homotopy colimits.

The geometric representability theorem of Panin–Walter [19] (for the case of symplectic
K-theory, which is all we need here) and Schlichting–Tripathi [24] (for the general case) implies
that GW [2] � Z ×HGr. Thus by [28, Proposition 4.4 and proof of Lemma 4.6] the required
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1137

computation sS
1

0 (Ω∞KO
[2]
�0) � Z follows from the next result (which is completely analogous

to [28, Lemma 4.7]). �

Lemma 14. Let HGr(m,n) denote the quaternionic Grassmannian of [20], with its canonical

base point. Then Σ∞
s HGr(m,n) ∈ SHS1

(k)(1); in other words there exists E ∈ SHS1
(k) such

that Σ∞
s HGr(m,n) � E ∧ T .

Proof. If X is a smooth scheme, U an open subscheme and Z the closed complement which
also happens to be smooth, then by homotopy purity [18, Theorem 3.2.23] there is a triangle

Σ∞
s U+ → Σ∞

s X+ → Σ∞
s Th(NZ/X),

where NZ/X denotes the normal bundle and Th the Thom space (which is canonically pointed).
It follows from the octahedral axiom (for example) that we may also use a base point inside
U ⊂ X, that is, that there is a triangle

Σ∞
s U → Σ∞

s X → Σ∞
s Th(NZ/X)

(provided that U is pointed, of course).
As a next step, if E is a trivial vector bundle (of positive rank r) on Z then Σ∞

s Th(E) �
T∧r ∧ Σ∞Z+ ∈ SHS1

(k) ∧ T is 1-effective. Since all vector bundles are Zariski-locally trivial
and SHS1

(k) ∧ T is closed under homotopy colimits, the same holds for an arbitrary vector
bundle (of everywhere positive rank). Consequently Th(NZ/X) ∈ SHS1

(k) ∧ T and so Σ∞
s X ∈

SHS1
(k) ∧ T if and only if Σ∞

s U ∈ SHS1
(k) ∧ T .

We finally come to quaternionic Grassmannians. The space HGr(m,n) has a closed
subscheme N+(m,n), with open complement Y (m,n) everywhere of positive codimension [20,
Introduction]. The space N+(m,n) is a vector bundle over HGr(m,n− 1) [20, Theorem 4.1(a)]
and so smooth. The open complement Y (m,n) is A

1-weakly equivalent to HGr(m− 1, n− 1)
[20, Theorem 5.1].

Consequently Σ∞
s HGr(m,n) ∈ SHS1

(k) ∧ T if and only if Σ∞
s HGr(m− 1, n− 1) ∈

SHS1
(k) ∧ T . The claim is clear if m = 0, so the general case follows. �

We will use the following result, which is surely well known.

Lemma 15. Let C be a non-degenerate t-category and

Z[−1] ∂−→ X → Y → Z

a triangle. If πC
0 (Y ) → πC

0 (Z) is an epimorphism in C♥, then there is a unique map
∂′ : Z�0[−1] → X�0 such that the following diagram commutes, where all the unlabelled maps
are the canonical ones

Moreover, the top row is also a triangle.

Proof. Let F be a homotopy fibre of Y�0 → Z�0. Since πC
0Y → πC

0Z is epi we have πC
−1F = 0

and F ∈ C�0. We will show that F � X�0.
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1138 TOM BACHMANN

By TR3, there is a commutative diagram

The composite F
α−→ X → X<0 is zero because F ∈ C�0 and consequently α factors as F

α′
−→

X�0 → X. By the five lemma, α′ induces isomorphisms on all homotopy objects, so is an
isomorphism by non-degeneracy. This shows that in the above diagram, we may replace F by
X�0 in such a way that α becomes the canonical map. We need to show that then β is also
the canonical map. But since X�0 ∈ C�0 we have [X�0, Y�0] ∼= [X�0, Y ], and the image of β
in this latter group is the canonical map, since the diagram commutes. This proves existence.

For uniqueness, note that the triangle

X<0[−1] → X�0 → X → X<0

induces an exact sequence

0 = Hom(Z�0[−1], X<0[−1]) → Hom(Z�0[−1], X�0) → Hom(Z�0[−1], X),

whence there is indeed at most one map ∂′ making the square commute. �

We now come to the main result.

Theorem 16. The generalized slices of Hermitian K-theory are given as follows:

s̃nKO � T∧n ∧

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s̃0(KO) n ≡ 0 (mod 4)
HμZ/2 n ≡ 1 (mod 4)
HμZ n ≡ 2 (mod 4)
0 n ≡ 3 (mod 4).

Moreover, the canonical decomposition (1) from Lemma 11 of s̃0(KO) is given by

HμZ/2[1] → s̃0(KO) → H̃Z,

and decomposition (2) is given by

Gm ∧HWZ → s̃0KO → HμZ.

Proof. Since KO ∧ T∧4 � KO, the periodicity is clear, and we need only deal with
n ∈ {0, 1, 2, 3}. It follows from Lemma 8 that s̃nKO = T∧n ∧ s̃0(T∧−n ∧KO) = T∧n ∧
s̃0KO[−n], and similarly for sn.

We first deal with n ∈ {1, 2, 3}. Since then π0(KO[−n])−1 = 0 (see again Table 1) we have
f1π0(KO[−n])∗ = 0 and hence by decomposition (2) from Lemma 11 it is enough to show
s0(KO

[−1]
�0 ) = HμZ/2, s0(KO

[−2]
�0 ) = HμZ and s0(KO

[−3]
�0 ) = 0. The case n = 2 is Lemma 13.

We will now use the triangle [21, Theorem 4.4]

Gm ∧KO
η−→ KO

f−→ KGL
h−→ KO ∧ T = KO[1]. (3)

Smashing with T∧2 and applying f0 we get (using that T ∧KGL � KGL)

f0KO[2] f−→ f0KGL
h−→ f0KO[3].

We claim that h : πeff
0 f0KGL → πeff

0 f0KO[3] ∈ SH(k)eff,♥ is epi. By Proposition 5(3), it suffices
to show that the induced map of Nisnevich sheaves h : Z = π0(KGL)0 → π0(KO[3])0 = Z/2
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1139

is an epimorphism. All symplectic forms have even rank, so the map f : π0(KO[2])0 →
π0(KGL)0 = Z has image 2Z and thus non-zero cokernel. This implies the claim. We may
thus apply Lemma 15 to C = SH(k)eff and this triangle. Consequently there is a triangle

s0KO
[2]
�0 → s0KGL�0 → s0KO

[3]
�0.

Note that f0KGL ∈ SH(k)eff�0 since K-theory of smooth schemes is connective. Thus the
triangle is isomorphic to

HμZ
2−→ HμZ → s0KO

[3]
�0

yielding the required computation s0KO
[3]
�0 � HμZ/2.

Throughout the proof we will keep using Proposition 5(3) all the time. To simplify notation
we will no longer talk about πeff

i but only about πi(•)0; any statement about the latter should
be understood to correspond to a statement about the former.

By a similar argument, smashing with T instead of T∧2, and using that Z = π0(KGL)0
h−→

π0(KO[2])0 = Z is an isomorphism, we conclude from

f0KO[1] → f0KGL → f0KO[2]

that s0KO
[1]
�0 = 0.

We have thus handled the cases n ∈ {1, 2, 3}. Consider the triangle

f0KO[3] → f0KGL → f0KO[4],

obtained by smashing triangle (3) with T∧3 and applying f0. We have π0(KO[3])0 = Z/2 and
π0(KGL)0 = Z, whence π0(KO[3])0 → π0(KGL)0 must be the zero map and consequently
π1(KO[4])0 → π0(KO[3])0 must be epi. It follows that we may apply Lemma 15 to the rotated
triangle

f0KGL[−1] → f0KO[4][−1] → f0KO[3].

Now (E[−1])�0 � E�1[−1] and so, rotating back, we get a triangle

s0KO
[3]
�0 → s0KGL�1 → s0KO

[4]
�1.

We claim that s0KGL�1 = 0. Indeed we have a triangle

s0KGL�1 → s0KGL�0 → s0π0(KGL)∗,

and the two terms on the right are isomorphic by what we have already said.
We thus conclude that s0KO

[0]
�1 � s0KO

[4]
�1 � s0KO

[3]
�0[1] � HμZ/2[1]. The unit map S →

KO induces an isomorphism H̃Z = f0π0(S)∗ → f0π0(KO)∗, and hence the decomposition (1)
of s̃0KO follows.

It remains to establish the second decomposition. We first show that s0(KO�0) = HμZ. For
this we consider the triangle

f0KO[0] → f0KGL → f0KO[1]

obtained by applying f0 to triangle (3). Since π0(KO[1])0 = 0, by Lemma 15 we get a triangle

s0KO
[0]
�0 → s0KGL�0 → s0KO

[1]
�0

and we have already seen that s0KO
[1]
�0 = 0 and s0KGL�0 = HμZ. Thus s0(KO�0) = HμZ as

claimed.
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1140 TOM BACHMANN

Finally the map KW
∗ ∧ Gm

η−→ KMW
∗ → π0(KO)∗ (which makes sense since ηh = 0 and so

η : KMW
∗+1 → KMW

∗ factors through KMW
∗+1 /h = KW

∗+1; see also [14]) induces an isomorphism
on π∗(•)−1 and consequently

Gm ∧HWZ � f1(KW
∗ ∧ Gm) � f1K

MW
∗ � f1π0(KO)∗,

where the first equivalence is by Lemma 8. This concludes the proof. �

6. The homotopy sheaves of H̃Z and HWZ

In this section we prove the following result.

Theorem 17 (Morel’s structure conjecture†). Let k be a perfect field of characteristic
different from two.

The natural maps H̃Z = f0K
MW
∗ → KMW

∗ and HWZ = f0K
W
∗ → KW

∗ induce isomorphisms
on π0(•)∗. Moreover, the natural maps H̃Z → HμZ and HWZ → HμZ/2 (obtained by

applying f0 to KMW
∗ → KMW

∗ /η � KM
∗ and KW

∗ → KW
∗ /η � KM

∗ /2, respectively) induce
isomorphisms on πi(•)∗ for i �= 0.

The proof will proceed through a series of lemmas. Note that HWZ, H̃Z ∈ SH(k)�0 by
Proposition 4(3), so in the theorem only i � 0 is interesting.

Throughout this subsection, we fix the perfect field k of characteristic not two. Actually the
only place where we explicitly use the assumption on the characteristic is in Lemma 20.

Lemma 18. We have π0(H̃Z)∗ = KMW
∗ and π0(HWZ)∗ = KW

∗ .

Proof. This follows from the results of the second half of Section 3. Namely the homotopy
modules KMW

∗ and KW
∗ are effective (Lemma 6), so

π0(f0K
MW
∗ )∗ = π0(irK

MW
∗ )∗ ∼= i♥rKMW

∗ ∼= KMW
∗ ,

(where the first equality is by definition, the second is by Proposition 5 part (1), and the third
is by part (2) of that proposition and effectivity of KMW

∗ ) and similarly for KW
∗ . �

Lemma 19. We have

πi(Gm ∧HWZ)0 =

⎧⎨⎩KW
1 i = 0

Z/2 i = 1
0 else.

The canonical map HWZ → HμZ/2 induces an isomorphism on π1(•)1.

Proof. By Theorem 16, triangle (2) from Lemma 11 for s̃0KO reads

Gm ∧HWZ → s̃0KO → HμZ.

We know the πi(s̃0KO)0 from Theorem 16 (use triangle (1) from Lemma 11 for s̃0KO), and
we know πi(HμZ)0 from the definition. We also know π0(Gm ∧HWZ)0 from Lemma 18, and
πi(Gm ∧HWZ)0 = 0 for i < 0 by Proposition 4(3). The claim about the remaining πi(HWZ)0
follows from the long exact sequence of the triangle.

†Morel conjectured a form of this result in personal communication.
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THE GENERALIZED SLICES OF HERMITIAN K-THEORY 1141

To prove the last claim, consider the diagram of homotopy modules

Applying f0, both sequences become exact as sequences in the abelian category SH(k)eff,♥.
Equivalently, by Proposition 5(3), the sequences of sheaves Z → GW → W and Z → Z → Z/2
are exact. Thus we get a morphism of triangles

where c is the canonical map we are interested in. A diagram chase (using Lemma 18) concludes
that π1(c)1 is an isomorphism as claimed. �

Recall that the motivic Hopf map η : A
2 \ 0 → P

1 induces a stable map of the same name
η : Gm → S [12, Section 6.2]. For E ∈ SH(k) we write E/η for a cone on the map id∧η :
E ∧ Gm → E ∧ S � E. We denote by τ : HμZ/2[1] → HμZ/2 ∧ Gm the unique non-zero map
[8, top of p. 33].

Lemma 20. There is an isomorphism HWZ/η � HμZ/2 ⊕HμZ/2[2], such that HWZ →
HμZ/2 is the canonical map, and the boundary map HμZ/2[2] → HWZ ∧ Gm[1] has the
property that the composite

HμZ/2[2] → HWZ ∧ Gm[1] → HμZ/2 ∧ Gm[1]

is τ [1].

Proof. It follows from the long exact sequence of homotopy sheaves and Lemma 19 that
πi(HWZ/η)0 is given by Z/2 if i ∈ {0, 2} and is zero otherwise. Consider the triangle

(HWZ/η)�1 → HWZ/η → (HWZ/η)�0.

We have HWZ/η = s0(HWZ) (see also Proposition 23(2)) and so HWZ/η is an effective motive.
We may consider the above triangle as coming from the homotopy t-structure on DMeff.
Since the heart of the category of effective motives can be modeled as homotopy invariant
sheaves with transfers (here we need the assumption on the characteristic), we find that
(HWZ/η)�1 � HμZ/2[2] and (HWZ/η)�0 � HμZ/2. Since HomDMeff(HμZ/2, HμZ/2[3]) = 0
the triangle splits.

The composite α : HμZ/2[2] → HWZ ∧ Gm[1] → HμZ/2 ∧ Gm[1] defines a cohomology oper-
ation of weight (0, 1). By the computation of the motivic Steenrod algebra [8, Theorem 1.1(1)],
this is either τ [1] or 0. Here again we use the assumption that char(k) �= 2. Consider
again the triangle HWZ ∧ Gm → HWZ → HWZ/η � HμZ/2 ⊕HμZ/2[2], and its morphism
to the triangle for HμZ/2/η. Since π1(HWZ)0 = 0 and π1(HWZ ∧ Gm) = Z/2, the boundary
map Z/2 = π2(Z/2[2])0 → π1(HWZ ∧ Gm)0 must be an isomorphism. Since also π1(HWZ ∧
Gm)0 → π1(HμZ/2 ∧ Gm)0 is an isomorphism by the last sentence of Lemma 19, we conclude
that α is not the zero map. This was to be shown. �

We will use the following easy fact about ‘split triangles’.
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1142 TOM BACHMANN

Lemma 21. Let C be a triangulated category and

A → B ⊕ C → D

a triangle. Then A → B is an isomorphism if and only if C → D is an isomorphism.
In particular if 0 → A → B ⊕ C → D → 0 is an exact sequence in an abelian category, then

A → B is an isomorphism if and only if C → D is an isomorphism.

Proof. Since the axioms of triangulated categories are self-dual, it suffices to show one
implication. Thus suppose that C → D is an isomorphism.

Let E ∈ C. Consider the long exact sequence

· · · → [E,D[−1]] ∂−→ [E,A] → [E,B] ⊕ [E,C] → [E,D] ∂−→ [E,A[1]] → · · · .
Since C → D is an isomorphism [E,C[i]] → [E,D[i]] is surjective, and thus ∂ ≡ 0. We hence
get a short exact sequence

0 → [E,A]
(i,j)−−−→ [E,B] ⊕ [E,C]

(p q)−−−→ [E,D] → 0.

But in such a situation surjectivity of q implies surjectivity of i, and injectivity of q implies
injectivity of i. Hence [E,A] → [E,B] is an isomorphism. Since E was arbitrary, we conclude
by the Yoneda lemma. �

Lemma 22. The canonical map HWZ → HμZ/2 induces an isomorphism on πk(•)n for
k � 1 and n ∈ Z.

Proof. Consider the long exact sequence of homotopy sheaves associated with the triangle
HWZ ∧ Gm → HWZ → HμZ/2 ⊕HμZ/2[2]:

· · · → πk+1(HWZ)n → πk+1(HμZ/2)n ⊕ πk−1(HμZ/2)n → πk(HWZ)n+1

→ πk(HWZ)n → πk(HμZ/2)n ⊕ πk−2(HμZ/2)n → · · ·
We will use induction on n. If n = 0 (or n � 0) the claim is clear. We may assume by induction
that πk(HWZ)n → πk(HμZ/2)n is an isomorphism for k � 1. It follows that (still for k � 1)
we get short exact sequences

0 → πk+1(HWZ)n → πk+1(HμZ/2)n ⊕ πk−1(HμZ/2)n → πk(HWZ)n+1 → 0.

Lemma 21 now implies that πk−1(HμZ/2)n → πk(HWZ)n+1 is an isomorphism. By the last
part of Lemma 20 the composite

πk−1(HμZ/2)n → πk(HWZ)n+1 → πk(HμZ/2)n+1

(where the last map is the canonical one) is τ and hence is an isomorphism for k � 1 by
Voevodsky’s resolution of the Milnor conjectures [29] (which implies that H∗,∗(k,Z/2) =
KM

∗ /2[τ ]).
It follows that πk(HWZ)n+1 → πk(HμZ/2)n+1 must also be an isomorphism. This concludes

the induction and hence the proof. �

Proof of Theorem 17. It remains to prove the claim about πi(H̃Z)∗ for i > 0. The exact
sequence 0 → KMW

∗ → KM
∗ ⊕KW

∗ → KM
∗ /2 → 0 [14, Théorème 5.3] induces a triangle

H̃Z → HWZ ⊕HμZ → HμZ/2.

By Lemma 18, the map π0(H̃Z)∗ → π0(HWZ ⊕HμZ)∗ is just the canonical map KMW
∗ →

KM
∗ ⊕KW

∗ and thus injective. Hence by Lemma 15 we get a triangle

(H̃Z)�1 → (HWZ)�1 ⊕ (HμZ)�1 → (HμZ/2)�1.
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Since (HWZ)�1 → (HμZ/2)�1 is an equivalence by Lemma 22, we find that (H̃Z)�1 →
(HμZ)�1 is an equivalence by Lemma 21. This concludes the proof.

The slices of H̃Z and HWZ. A minor extension of part the argument of the above proof
also yields the following.

Proposition 23. (1) The canonical map H̃Z → HWZ induces an isomorphism on fn and
sn for n � 1.

(2) For n � 0 we have fnHWZ � G
∧n
m HWZ.

(3) We have s0H̃Z � HμZ ⊕HμZ/2[2], and for n � 0 we have snHWZ � G
∧n
m (HμZ/2 ⊕

HμZ/2[2]).

Proof. Since πi(H̃Z)−n → πi(HWZ)−n is an isomorphism for n � 1, claim (1) is clear.
For claim (2), it follows from Lemma 8 that fnHWZ � G

∧n
m f0(HWZ ∧ G

∧−n
m ). But ηn :

HWZ → HWZ ∧ Gm−n induces an isomorphism on πi(•)0 for n � 0, so f0(HWZ ∧ G
∧−n
m ) �

f0(HWZ) = HWZ.
To prove (3), using the triangle H̃Z → HWZ ⊕HμZ → HμZ/2 one finds using Lemma 21

that the claim for s0H̃Z reduces to the one for HWZ. By (2), snHWZ � (G∧n+1
m HWZ)/η �

G
∧n+1
m (HWZ/η), and HWZ/η � HμZ/2 ⊕HμZ/2[2] by Lemma 20. �

Acknowledgements. The main impetus for writing this article was a talk by Marco
Schlichting where he presented his results about a Grayson-type spectral sequence for Hermitian
K-theory, and Markus Spitzweck’s question if this spectral sequence can be recovered using
the generalized slice filtration.

I would also like to thank Fabien Morel for teaching me most of the things I know about
motivic homotopy theory, and for encouragement and support during my attempts at proving
these results. Finally I thank Benjamin Antieau for comments on a draft of this article.

References

1. A. A. Beilinson, J. Bernstein and P. Deligne, ‘Faisceaux pervers’, Analysis and topology on singular
spaces, I (Luminy, 1981), Astérisque 100 (Société Mathématique de France, Paris, 1982) 5–171.

2. B. Calmès and J. Fasel, ‘Finite Chow-Witt correspondences’, Preprint, 2017, arXiv:1412.2989.
3. G. Garkusha and I. Panin, ‘On the motivic spectral sequence’, J. Inst. Math. Jussieu (2015),

https://doi.org/10.1017/S1474748015000419.
4. G. Garkusha and I. Panin, ‘Homotopy invariant presheaves with framed transfers’, Preprint, 2015,

arXiv:1504.00884.
5. D. R. Grayson, ‘The motivic spectral sequence’, Handbook of K-theory (Springer, Berlin–New York,

2005) 39–69.
6. J. Hornbostel, ‘A1-representability of Hermitian K-theory and Witt groups’, Topology 44 (2005) 661–687.
7. M. Hoyois, ‘The six operations in equivariant motivic homotopy theory’, Adv. Math. 305 (2017) 197–279.
8. M. Hoyois, S. Kelly and P. Arne Østvær, ‘The motivic Steenrod algebra in positive characteristic’,

J. Eur. Math. Soc., to appear.
9. M. Levine, ‘The homotopy coniveau tower’, J. Topol. 1 (2008) 217–267.

10. J. Lurie, Higher algebra, 2017, http://www.math.harvard.edu/∼lurie/papers/HA.pdf.
11. C. Mazza, V. Voevodsky and C. Weibel, Lecture notes on motivic cohomology (American Mathematical

Society, Providence, RI, 2006).
12. F. Morel, ‘An introduction to A1-homotopy theory’, ICTP Trieste Lecture Note Ser. 15 (2003) 357–441.
13. F. Morel, ‘On the motivic π0 of the sphere spectrum’, Axiomatic, enriched and motivic homotopy theory

(Springer, Berlin, 2004) 219–260.
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