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RELATIVE CYCLOTOMIC STRUCTURES AND EQUIVARIANT

COMPLEX COBORDISM

ANDREW J. BLUMBERG, MICHAEL A. MANDELL, AND ALLEN YUAN

Abstract. We describe a structure on a commutative ring (pre)cyclotomic
spectrum R that gives rise to a (pre)cyclotomic structure on topological Hochschild

homology (THH) relative to its underlying commutative ring spectrum. This

lets us construct TC relative to R, denoted TC
R, and we prove some descent

results relating TC
R and TC. We explore several examples of this structure

on familiar T-equivariant commutative ring spectra including the periodic T-
equivariant complex cobordism spectrum MUPT and a new (connective) equi-
variant version of the complex cobordism spectrum MU .
This is a preliminary version that depends on the work in progress
[Cyc23].

1. Introduction

The remarkable success of trace methods over the past 30 years derives from the
relationship between algebraic K-theory and topological cyclic homology (TC). In
contrast to algebraic constructions of cyclic homology, TC intrinsically depends
on topology, namely the cyclotomic structure on topological Hochschild homology
(THH). The cyclotomic structure ultimately depends on working over the sphere
spectrum S; this structure does not exist in algebra, working over the integers Z.
Moreover, the surprising use of THH and TC in recent seminal work of Bhatt-
Morrow-Scholze [3, 4] on p-adic Hodge theory reveals another fundamental role of
the cyclotomic structure in modern geometry.

The construction of THH makes sense relative to any commutative ring orthog-
onal spectrum R, but the cyclotomic structure does not. The search for cyclotomic
structures on relative THH goes back to the 1990’s. From the perspective of trace
methods, relative cyclotomic constructions were supposed to give descent spectral
sequences computing the absolute construction for further algebraicK-theory com-
putations. More recently, [4] constructed cyclotomic structures relative to the group
ring S[t] and used them to build Breuil-Kisin modules. New work in Floer homotopy
theory shows that spectral Fukaya categories will often come with enrichments over
some form of complex cobordism; relative cyclotomic structures here are hoped to
correspond to interesting and effective structure on symplectic cohomology.

Previous work of the first and second author and collaborators [1, §7] studies the
problem of constructing cyclotomic structures on relative THH . Recall from [7,
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4.1] that a p-precyclotomic structure on a T-equivariant orthogonal spectrum X
consists of a T-equivariant map

ρ∗ΦCpX −→ X

where ρ∗ is change of groups along the pth root isomorphism ρ : T
∼=
−→ T/Cp and

ΦCp denotes the point-set multiplicative geometric fixed point functor of [15, V.4.3].
The p-precyclotomic spectrum is p-cyclotomic if the induced map from the derived
geometric fixed points to X is an Fp-equivalence where Fp is the family of p-
groups Cpn < T. (We review these and related structures, including associative
and commutative ring p-(pre)cyclotomic structures, in Section 4.) In this paper,
we typically denote a p-precyclotomic spectrum with a double underlined symbol,
e.g., R, and use the notational shorthand of the single underlined symbol R to

denote its underlying equivariant spectrum (for the group T or sometimes Cp) and
the non-underlined symbol R for the underlying non-equivariant spectrum.

Cyclotomic structures have been the main focus in the literature on trace meth-
ods because (absolute) THH naturally can be endowed with such a structure.
However, p-precyclotomic spectra provide a minimal structure sufficient for con-
structing (p-typical) TC (e.g., see [7, 6.7]). We focus on precyclotomic spectra
in this paper because most of the structures we describe on examples of interest
are not p-cyclotomic but only p-precyclotomic. (See Section 8 for a discussion on
converting p-precyclotomic to p-cyclotomic spectra with equivalent TC.)

Given a commutative ring p-(pre)cyclotomic spectrum R, we then have a canon-

ical counit map THH(R)→ R of T-equivariant commutative ring orthogonal spec-
tra. If this map is p-(pre)cyclotomic, then the R-relative topological Hochschild
homology THHR(−) has a natural p-(pre)cyclotomic structure. This condition is
not formal (see [1, p. 2146]) and it is not a priori clear when to expect it to hold.

The purpose of this paper is to give a new framework for constructing p-pre-
cyclotomic structures on relative THH , which implies the criterion of [1, 7.6] and
which we can check in some interesting examples. Our framework depends on a
new self map associated to a commutative ring p-precyclotomic R. In Section 4, we
construct a self map Ψ: R→ R in the homotopy category of non-equivariant com-
mutative ring orthogonal spectra. The map Ψ is the composite of the multiplicative
transfer

R −→ ΦCpR

(see also Definition 4.7) and the non-equivariant map underlying the p-precyclotomic
structure map

ρ∗ΦCpR −→ R.

We refer to Ψ as the p-cyclotomic power operation and prove the following theorem,
which we state jointly in the p-cyclotomic and p-precyclotomic cases.

Theorem A. Let R be a commutative ring p-(pre)cyclotomic spectrum, let R de-
note its underlying non-equivariant commutative ring orthogonal spectrum, and as-
sume that Ψ: R→ R is the identity in the homotopy category of commutative ring
orthogonal spectra. Then R-relative topological Hochschild homology THHR(−) can

be given the structure of a p-(pre)cyclotomic R-module.

We then get TC relative to R, TCR, by applying to THHR the classic p-typical

topological cyclic homology construction TC(−; p) (see for example [7, 6.3]). For
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R = S with its canonical cyclotomic structure TCS(A) is the usual (p-typical)

TC(A).
In the case when R = THH(A) for some commutative ring orthogonal spectrum

A, the p-cyclotomic power operation is the Adams operation ψp of [1, §10], which
is typically not the identity for A 6≃ S. (See Proposition 4.10.)

We call a commutative ring p-precyclotomic spectrum along with a choice of
homotopy from Ψ to the identity a p-(pre)cyclotomic base. Not all T-equivariant
commutative ring spectra admit such a structure: the standard equivariant struc-
ture on complex K-theory cannot be a p-(pre)cyclotomic base (see Example 7.5);
however, in Section 7, we show that a number of interesting spectra do. Notably, we
show that S[t], Fp, and MUP (with given p-(pre)cyclotomic structures explained
there) all admit the structure of a p-(pre)cyclotomic base. In addition, we con-
struct such a structure on MU for a new precyclotomic structure, which we denote
mu. (Note: the underlying T-equivariant spectrum mu of mu is not homotopical
or geometric T-equivariant complex cobordism, but is a new equivariant connective
Thom spectrum with underlying non-equivariant Thom spectrum MU .)

Theorem B. The genuine T-equivariant commutative ring orthogonal spectrum
MUP = MUPT admits the structure of a p-precyclotomic base. The commutative
ring spectrum MU admits the structure of a p-precyclotomic base (with a new T-
equivariant structure).

Finally, we state a descent theorem (proved as Theorem 9.1 in Section 9) relating
relative TC to absolute TC for a connective p-precyclotomic base R and connective
R-algebra A. In the statement, we use the commutative R-algebra structure on A
to get a commutative R(n+1)-algebra structure on A (for all n ≥ −1) by restriction
along the iterated multiplication R(n+1) → R. We argue in Section 9 that the
Adams resolution of S with respect to R, R(•+1), has the canonical structure of

a cosimplicial object in the category of p-precyclotomic bases, R(•+1), and using

TC(−) as a functor of the p-precyclotomic base, we get an augmented cosimplicial
spectrum

TCR(•+1)

(A)

(where for • = −1, R(•+1) = S).

Theorem C. Let R be a Fp-connective p-precyclotomic base, whose underlying
commutative ring p-precyclotomic spectrum is cofibrant. Let A be a connective
cofibrant commutative R-algebra. The canonical map

TC(A) −→ Tot(TCR(•+1)

(A))

is a weak equivalence.

Acknowledgments. The authors would like to thank Jeremy Hahn and Inbar
Klang for useful discussions. They thank Mohammed Abouzaid for insisting that
MUP should have some kind of cyclotomic structure and helpful conversations.
This work owes a lot to the previous collaboration of the first two authors with
Vigleik Angeltveit, Teena Gerhardt, Mike Hill, and Tyler Lawson on cyclotomic
structures via the norm; we thank them for years of productive conversations.
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2. Equivariant preliminaries

In this section, we review the prerequisites in equivariant stable homotopy the-
ory needed for defining and working with precyclotomic and cyclotomic spectra.
Although modern treatments of cyclotomic spectra minimize the explicit use of
genuine equivariant stable homotopy theory in the setup and require none for end-
users, no such simplification can exist for precyclotomic spectra, especially in the
nonconnective setting. Our main examples of interest, the cobordism spectraMUP
and mu, have precyclotomic structures that are not cyclotomic structures.

We take as our model for the equivariant stable category the point-set category
of T-equivariant orthogonal spectra indexed on the complete universe

U =
⊕

n∈Z

C(n)∞

where C(0) denotes the complex numbers with the trivial T-action, C(1) denotes
the complex numbers with its natural T-action (as the unit complex numbers), and
in general, for any n, the element ζ ∈ T acts on C(n) as multiplication by ζn. For
such a spectrum T , homotopy groups are defined by

πH
q T = colim

V <U
colim
n≥−q

πn+q((Ω
V T (V ⊕ R

n))H)

for H < T a closed subgroup. We work with the family Ffin of finite subgroups
of T and the family Fp ⊂ Ffin of p-subgroups of T. For any family F , an F -
equivalence is a map that induces an isomorphism on πH

∗ for H ∈ F (but not
necessarily for H /∈ F ). The F -equivalences are the weak equivalences in a model
structure called the F -model structure, defined in [15, IV.6.5]. Technically, we
want to use the F -model structures in [Cyc23], which are more convenient for
the work below. The forgetful functor from T-equivariant associative ring and
commutative ring orthogonal spectra to T-equivariant orthogonal spectra creates
the weak equivalences and fibrations for the F -model structures on the categories
of T-equivariant associative and commutative ring orthogonal spectra.

We will often take a T-equivariant orthogonal spectrum (indexed on U) and
look at its underlying non-equivariant spectrum indexed in R∞. As indicated in
the introduction, we will typically denote an equivariant object with an underlined
symbol (e.g., R) and its underlying non-equivariant object with the non-underlined
symbol (R in the case of R). When we need to explicitly denote the forgetful
functor, we use the following notation.

Notation 2.1. Let i denote the forgetful functor from T-equivariant orthogonal
spectrum (indexed on U) to non-equivariant spectra (indexed on R∞), and its
structured variants for categories of commutative ring orthogonal spectra, asso-
ciative ring orthogonal spectra, and modules over commutative or associative ring
orthogonal spectra.

We write Φ for the endofunctor on T-equivariant orthogonal spectra obtained as
the composite of the (point-set multiplicative) Cp geometric fixed point functor ΦCp

of [15, V.4.3] followed by change of group functor along the pth root isomorphism
ρ : T ∼= T/Cp:

Notation 2.2. Let ΦX := ρ∗(ΦCpX).

The change of group functor ρ∗ implicitly involves a change of universe functor,
using the isomorphism ρ∗UCp ∼= U that comes from the standard isomorphisms
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ρ∗C(pn) ∼= C(n). The functor Φ comes with a lax symmetric monoidal structure:
a map

ι : S −→ ΦS

and a natural transformation

λ : ΦX ∧ΦY −→ Φ(X ∧ Y )

that is coherently associative, commutative, and unital (in the point-set category
of T-equivariant orthogonal spectra). The map ι is an isomorphism and λ is of-
ten an isomorphism: the paper [Cyc23] studies this question and identifies a large
class of orthogonal spectra with the property that when X is in this class, λ is an
isomorphism for any Y . In this paper, we denote the class of spectra with this prop-
erty as E . In this notation, [Cyc23] proves that the class E contains the cofibrant
T-equivariant orthogonal spectra (and therefore the cofibrant T-equivariant asso-
ciative ring orthogonal spectra), the cofibrant T-equivariant commutative ring or-
thogonal spectra, and the cofibrant T-equivariant A-modules for any T-equivariant
associative ring orthogonal spectrum whose underlying T-equivariant orthogonal
spectrum is in E . (It is expected that λ may not be an isomorphism in general, but
no counterexample is currently known to the authors.)

We also have a non-equivariant version of the class E that consists of the cofibrant
objects in the “extended” model structure of [20, 3.2]. When A is an associative
ring orthogonal spectrum whose underlying orthogonal spectrum is in the non-
equivariant class E , then THH(A) is in the equivariant class E . This happens in
particular when A is a cofibrant R-algebra for R a commutative ring orthogonal
spectrum that is cofibrant in the standard model structure or the model structure
of [Cyc23]. Moreover, when the underlying orthogonal spectrum of A is in the class
E , the diagonal map THH(A)→ ΦTHH(A) of [1, 2.19] is an isomorphism [Cyc23],
and this endows THH(A) with a cyclotomic structure as in [1, 1.5].

Using the lax symmetric monoidal structure, Φ refines to an endofunctor on
various categories of structured spectra, including the category of T-equivariant
associative ring orthogonal spectra and the category of T-equivariant commutative
ring orthogonal spectra. For a T-equivariant associative ring orthogonal spectrum
A, Φ refines to a functor from A-modules to ΦA-modules.

The endofunctor Φ on T-equivariant orthogonal spectra has a left derived func-
tor, LΦ, which can be computed by applying Φ to a cofibrant approximation (in the
standard stable model structure, the Ffin-model structure, or the Fp-model struc-
ture of [15, III§4–5,IV§6] or its variants in [Cyc23]). This also works to construct
the derived functor on the category of T-equivariant associative ring orthogonal
spectra. For the category of T-equivariant commutative ring orthogonal spectra,
the functor Φ does not preserve weak equivalences between objects cofibrant in the
standard model structure, but a main result of [Cyc23] is to construct a model
structure on T-equivariant commutative ring orthogonal spectra, with the identity
functor a left Quillen equivalence with the standard model structure, but having
the property that Φ preserves weak equivalences between cofibrant objects. In ad-
dition [Cyc23] constructs another model structure (right Quillen equivalent to this
one via the identity functor) with the property that Φ preserves cofibrations and
acyclic cofibrations. Moreover, [Cyc23] shows that the derived functor of Φ for
T-equivariant commutative ring orthogonal spectra agrees with the derived functor
of Φ on the underlying T-equivariant orthogonal spectra.
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We write N
Cp
e for the Hill-Hopkins-Ravenel norm [12, §2.2.3], [1, §2.2] from (non-

equivariant) orthogonal spectra to Cp-equivariant orthogonal spectra (indexed on
U restricted to Cp). This functor is defined on all orthogonal spectra but when
restricted to commutative ring orthogonal spectra it gives the free functor from the
category of commutative ring orthogonal spectra to the category of Cp-equivariant
commutative ring orthogonal spectra

C omCp(NCp
e A,B) ∼= C om(A,B)

(for any commutative ring orthogonal spectrum A and Cp-equivariant commutative
ring orthogonal spectrum B). As such, a Cp-equivariant commutative ring orthog-
onal spectrum R comes with a canonical map of Cp-equivariant commutative ring
orthogonal spectra

(2.3) NCp
e R −→ R

given by the counit of the adjunction.
As explained in [1], THH(−) as a functor from associative ring orthogonal spec-

tra to T-equivariant orthogonal spectra is the norm NT
e (−). On commutative ring

orthogonal spectra, THH is the free functor to T-equivariant commutative ring
orthogonal spectra. (This refines a 1997 theorem of McClure-Schwänzl-Vogt [17].)
As a consequence, for R a T-equivariant commutative ring orthogonal spectrum
and A a commutative ring orthogonal spectrum, we have an adjunction

C omT(THH(A), R) ∼= C om(A,R)

(homeomorphism of mapping spaces) relating maps of commutative ring orthogonal
spectra to maps of T-equivariant commutative ring orthogonal spectra. The derived
functor of THH represents the derived functor of the free functor, and we have the
analogous adjunction in the homotopy category. We summarize the situation in
the following proposition.

Proposition 2.4 ([1, 4.3], [17]). Restricted to the category of commutative ring or-
thogonal spectra, THH is the free functor from commutative ring orthogonal spectra
to T-equivariant commutative ring orthogonal spectra,

C omT(THH(−),−) ∼= C om(−, i(−)).

3. Relative THH

The idea of THH relative to a commutative ring orthogonal spectrum R is to
use the smash product of R-modules ∧R in place of the smash product of spectra in
the cyclic bar construction. In this section, we review and clarify the T-equivariant
structures on relative THH , particularly in the case when R has the extra structure
of being the underlying non-equivariant commutative ring orthogonal spectrum of
a T-equivariant commutative ring orthogonal spectrum R.

We start with R a commutative ring orthogonal spectrum and A an associative
R-algebra. We then have a cyclic bar constructionN cy

R constructed using the smash
product over R, ∧R:

N cy
R (A) = |q 7→ A ∧R · · · ∧R A︸ ︷︷ ︸

q+1 factors

|.

This is the geometric realization of a cyclic spectrum, and that structure endows
it with a natural T-action. We do point-set change of universe IU

R∞ to get a T-
equivariant orthogonal spectrum indexed on U .
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Definition 3.1. For a commutative ring orthogonal spectrum R, define the point-
set functor THHǫR from the category of associative R-algebras to the category of
T-equivariant orthogonal spectra as the composite of the cyclic bar construction
with respect to ∧R and change of universe:

THHǫR(A) := IUR∞N
cy
R (A).

(The reason for the ǫ in the notation will become clear in Proposition 3.4 and
Definition 3.6 below.)

The previous definition does not capture all the structure: N cy
R (A) has the struc-

ture of an R-module, but we have defined THHǫR(A) only as an equivariant spec-
trum. To describe the equivariant module structure, we use the following notation.

Notation 3.2. For a non-equivariant orthogonal spectrum X , let ǫX = IU
R∞X

denote the T-equivariant orthogonal spectrum (indexed on U) obtained from change
of universe by X with the trivial T-action.

We emphasize that in the previous notation, ǫ denotes a point-set functor. It
preserves associative ring and commutative ring structures. It also preserves weak
equivalences between cofibrant orthogonal spectra and between cofibrant associative
ring orthogonal spectra (even for maps of orthogonal spectra that are not ring
maps). It preserves ring map weak equivalences between cofibrant commutative
ring orthogonal spectra (in the standard model structures or the model structures
of [Cyc23]; see [Cyc23]); however, we repeat the warning of [1, 6.1].

Warning 3.3. The functor ǫ preserves weak equivalences between cofibrant objects
in the category of commutative ring orthogonal spectra, and so admits a left derived
functor ǫL from the homotopy category of commutative ring orthogonal spectra
to the homotopy category of T-equivariant commutative ring orthogonal spectra.
However, the composite with the derived forgetful functor to the equivariant stable
category is not the left derived functor of ǫ from orthogonal spectra to T-equivariant
orthogonal spectra.

HoC om
ǫL //

��
×

HoC omT

��

HoS
ǫL

// HoS T

Specifically, let R be a cofibrant commutative ring orthogonal spectrum and let
X → R be a cofibrant approximation in the category of orthogonal spectra. Then
the underlying non-equivariant spectrum of the derived geometric fixed point func-
tor LΦCpǫX is equivalent to X , whereas by [Cyc23], the underlying non-equivariant
spectrum of LΦCpǫR is equivalent to R⊗ (∗∐BCp) (tensor in the category of com-
mutative ring orthogonal spectra).

We lift THHǫR as a functor to T-equivariant ǫR-modules using the following
result of [1, 1.8]. In it, the THH(R)-module structure on ǫR comes from the
map of T-equivariant commutative ring orthogonal spectra THH(R)→ ǫR adjoint
under Proposition 2.4 to the canonical isomorphism R ∼= iǫR.

Proposition 3.4 ([1, 1.8]). Let R be a commutative ring orthogonal spectrum
and A an associative R-algebra. There is a natural isomorphism of T-equivariant
orthogonal spectra

THHǫR(A) ∼= THH(A) ∧THH(R) ǫR.



8 ANDREW J. BLUMBERG, MICHAEL A. MANDELL, AND ALLEN YUAN

Moreover, if R is cofibrant as a commutative ring orthogonal spectrum (in the stan-
dard model structure or the model structure of [Cyc23]), and A is a cofibrant asso-
ciative R-algebra or a cofibrant commutative R-algebra, then THHǫR(A) represents
the derived smash product

THHǫR(A) ≃ THH(A) ∧LTHH(R) ǫR.

The left derived functor (−)∧LTHH(R)ǫR from T-equivariant THH(R)-modules to

T-equivariant orthogonal spectra factors as the composite of the derived forgetful
functor and the derived functor (−) ∧LTHH(R) ǫR from T-equivariant THH(R)-

modules to T-equivariant ǫR-modules.

HoModTTHH(R)

(−)∧L

THH(R)ǫR
//

(−)∧L

THH(R)ǫR

66HoModTǫR // HoS T

The previous result also implies the following homotopical property of THHR.

Proposition 3.5. Let R′ → R be a weak equivalence of cofibrant commutative
ring orthogonal spectra, let A′ be a cofibrant associative R′-algebra and let A be
either a cofibrant associative R-algebra or a cofibrant commutative R-algebra. A
weak equivalence of R′-algebras A′ → A then induces an Ffin-equivalence of T-
equivariant ǫR′-modules THHǫR′

(A)→ THHǫR(A).

Now let R be a T-equivariant commutative ring orthogonal spectra and let R =
iR. We then get a map of T-equivariant commutative ring orthogonal spectra
THH(R) → R adjoint under Proposition 2.4 to the identity map R → iR. This
endows relative THH with a different equivariant structure that incorporates the
equivariance on R.

Definition 3.6. Let R be a T-equivariant commutative ring orthogonal spectrum
and let R = iR be the underlying non-equivariant commutative ring orthogonal
spectrum. Let

THH(R) −→ R

be the map of T-equivariant commutative ring orthogonal spectra adjoint under
Proposition 2.4 to the identity map R → iR. Define the functor THHR from
the category of (non-equivariant) R-algebras to the category of T-equivariant R-
modules by

THHR(A) := THH(A) ∧THH(R) R.

The same argument as Proposition 3.4 proves the following results.

Proposition 3.7. Let R be a cofibrant T-equivariant commutative ring orthogonal
spectrum (in the standard model structure or the model structure of [Cyc23]) and let
R = iR be the underlying non-equivariant commutative ring orthogonal spectrum.
Let A a cofibrant associative R-algebra or a cofibrant commutative R-algebra (in
the standard model structures or the model structures of [Cyc23]). Then THHR(A)
represents the derived smash product

THHR(A) ≃ THH(A) ∧LTHH(R) R.
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Proposition 3.8. Let R′ → R be an F -equivalence of cofibrant T-equivariant
commutative ring orthogonal spectra (in either the standard model structure or the
model structure of [Cyc23]) for any family of proper subgroups of T. Let A′ be
a cofibrant associative R′-algebra and let A be either a cofibrant associative R-
algebra or a cofibrant commutative R-algebra. A weak equivalence of R′-algebras
A′ → A then induces an F -equivalence of T-equivariant R′-modules THHR′

(A)→
THHR(A).

When we discuss the derived functor of relative THHR(A), we mean the derived
functor of both variables R and A, which exists by the previous proposition. The
following definition makes this precise.

Definition 3.9.

(i) Let PairA lg be the category where an object consists of a pair (R,A)
with R a T-equivariant commutative ring orthogonal spectrum and A an
associative R-algebra, and a map (R′, A′) → (R,A) consists of a map of
T-equivariant commutative ring orthogonal spectra R′ → R and a map of
associative R′-algebras A′ → A (relative to the given map R′ → R).

(ii) Let PairMod be the category of pairs (R,M) with R a T-equivariant
commutative ring orthogonal spectrum and M a T-equivariant R-module
with the evident maps (analogous to the definition of PairA lg).

(iii) For F a family of subgroups of T, we let the F -equivalences in PairA lg

be the maps (R′, A′) → (R,A) where R′ → R is an F -equivalence and
A′ → A is a weak equivalence; we let the F -equivalences in PairMod

be the maps (R′,M ′) → (R,M) where R′ → R and M ′ → M are F -
equivalences.

Terminology 3.10. By the derived functor of relative THH , we mean the total
left derived functor of (R,A) 7→ THHR(A) as a functor from PairA lg to PairMod

with the Fp-equivalences, and we denote it as LTHH .

Since a weak equivalence of T-equivariant commutative ring orthogonal spectra
R′ → R induces an equivalence of Fp-homotopy categories of modules, for a fixed
T-equivariant commutative ring orthogonal spectrum R, LTHHR(−) restricts to
give a functor from the homotopy category of associative R-algebras to the Fp-
homotopy category of T-equivariant R-modules. When R is cofibrant in either the
standard model structure on T-equivariant commutative ring orthogonal spectra or
the model structure of [Cyc23], this restriction LTHHR(−) agrees with the total
left derived functor of THHR(−) from associative R-algebras to T-equivariant R-
modules (with the Fp-equivalences). To preclude any confusion, we will usually
take R to be cofibrant in statements involving the derived functor of relative THH .

4. Cyclotomic and precyclotomic structures

In this section, we review the definitions of p-cyclotomic and p-precyclotomic
structures on T-equivariant orthogonal spectra. We review the theory of commu-
tative ring objects in these categories and the universal property of THH in this
setting. We define the p-cyclotomic power operation Ψ for commutative ring p-
precyclotomic spectra and compare it to the Adams operation ψp on THH .

Definition 4.1. A p-precyclotomic spectrum X consists of a T-equivariant orthog-
onal spectrum X and a map of T-equivariant orthogonal spectra r : ΦX → X . A
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p-cyclotomic spectrum is a p-precyclotomic spectrum where the induced map

LΦX −→ ΦX
r
−→ X

in the T-equivariant stable category is an Fp-equivalence. A map of p-precyclotomic
spectraX → Y consists of a map of the underlying T-equivariant orthogonal spectra
f : X → Y that makes the p-precyclotomic structure maps commute.

ΦX
rX

//

Φf

��

X

f

��

ΦY
rY

// Y

A map of p-cyclotomic spectra is a map of p-precyclotomic spectra.

The papers [7] and [1] consider the more sophisticated structure of precyclotomic
spectra; however, we work exclusively in the p-precyclotomic setting and therefore
simplify terminology:

Terminology 4.2. For the purposes of this paper, we write precyclotomic for
p-precyclotomic and cyclotomic for p-cyclotomic. We write (pre)cyclotomic to
handle both cases together, with an implicit “respectively”.

Because the lax symmetric monoidal structure on Φ is not (known to be) strong,
we do not have a symmetric monoidal structure on precyclotomic spectra that
refines the usual smash product on T-equivariant orthogonal spectra. As a con-
sequence, we cannot do the usual thing and define associative ring precyclotomic
spectra as monoids for the smash product. Instead we follow [Cyc23] to define ring
structures as follows. For the following definition we note that for a T-equivariant
associative ring orthogonal spectrum A, ΦA inherits the structure of a T-equivariant
associative ring orthogonal spectrum using the lax symmetric monoidal structure
maps for Φ: it has unit and product

S
ι
−→ ΦS

Φη
−−→ ΦA, ΦA ∧ ΦA

λ
−→ Φ(A ∧ A)

Φµ
−−→ ΦA

where η and µ are the unit and product for A.

Definition 4.3 ([Cyc23]).

(i) An associative ring precyclotomic spectrum consists of a precyclotomic
spectrum A together with a T-equivariant associative ring orthogonal spec-
trum structure on A such that the structure map is a map of T-equivariant
associative ring orthogonal spectra. A map of associative ring precyclo-
tomic spectra is a map of precyclotomic spectra that on the underlying
T-equivariant orthogonal spectra is a map of T-equivariant associative ring
orthogonal spectra.

(ii) A commutative ring precyclotomic spectrum is an associative ring precy-
clotomic spectrum whose underlying T-equivariant associative ring orthog-
onal spectrum is commutative. The category of commutative ring precy-
clotomic spectra is a full subcategory of the category of associative ring
precyclotomic spectra.

(iii) Commutative and associative ring cyclotomic spectra are commutative
and associative ring precyclotomic spectra (respectively) whose underly-
ing precyclotomic spectra are cyclotomic. The categories of associative



RELATIVE CYCLOTOMIC STRUCTURES 11

ring cyclotomic spectra, and commutative ring cyclotomic spectra are full
subcategories of the category of associative ring precyclotomic spectra.

(iv) In any of the categories above, a weak equivalence is a map that is an
Fp-equivalence of the underlying T-equivariant orthogonal spectra.

For an associative or commutative ring precyclotomic spectrum A, we have cor-

responding notions of (pre)cyclotomic A-modules. When M is an A-module, ΦM
obtains a canonical ΦA-modules structure; we use this in the following definition.

Definition 4.4. Let A be an associative ring precyclotomic spectrum. A (pre)-

cyclotomic A-module is a (pre)cyclotomic spectrumM , together with the structure
of an A-module on M making the following action diagram commute.

ΦA ∧ ΦM

rA∧rM

��

// ΦM

rM

��

A ∧M // M.

A map of (pre)cyclotomic A-modules is a map of precyclotomic spectra that is also
a map of A-modules.

When the underlying T-equivariant orthogonal spectrum of A is in the class E

of Section 2 (for example, when A is cofibrant as a T-equivariant commutative or
associative ring spectrum in any of the model categories we consider), the smash
product with A monad A∧(−) on T-equivariant orthogonal spectra lifts to a monad
A ∧ (−) on precyclotomic spectra, and a precyclotomic A-module is precisely an
algebra over this monad as usual.

We concentrate on the case of commutative ring precyclotomic spectra and we re-
call from [Cyc23] a “shortcut” for describing (up to weak equivalence) the mapping
space in this category in terms of mapping spaces in T-equivariant commutative
ring orthogonal spectra. Given commutative ring precyclotomic spectra A and B,

the space of maps of commutative ring precyclotomic spectra C omCyc(A,B) can
be identified as the equalizer of

C omT(A,B) //
//
C omT(ΦA,B)

where one map in the system takes the map f : A → B to f ◦ rA and the other

takes it to rB ◦ Φf .

To translate this into a homotopical result, we use the model structure on the
category of commutative ring precyclotomic spectra of [Cyc23]. The fibrations and
weak equivalences in this structure are created by the forgetful functor to precy-
clotomic spectra, which in turn are created by the forgetful functor to a variant
Fp-model structure on T-equivariant orthogonal spectra. For a cofibrant commu-
tative ring precyclotomic spectrum A, the underlying T-equivariant commutative
ring spectra A and ΦA are cofibrant. When in addition B is fibrant, the map from
the equalizer above to the corresponding homotopy equalizer is a weak equivalence
and [Cyc23] gives the following shortcut to computing the derived mapping spaces.

Proposition 4.5 ([Cyc23]). Let A, B be commutative ring precyclotomic spectra,
and assume that for A the underlying T-equivariant commutative ring orthogonal
spectrum is cofibrant and for B the underlying T-equivariant commutative ring or-

thogonal spectrum is fibrant in the model structure of [Cyc23]. Then the derived
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mapping space RC omCyc(A,B) of commutative ring precyclotomic spectra maps
from A to B is represented by the homotopy equalizer of the maps

r∗A, rB∗ ◦ Φ: C omT(A,B) //
//
C omT(ΦA,B)

Specializing to the case when A = THH(R) for a cofibrant commutative ring or-
thogonal spectrum R, not only is the underlying T-equivariant commutative ring or-
thogonal spectrum A cofibrant, but the precyclotomic structure map ΦA→ A is an
isomorphism. Using this isomorphism, the derived mapping space RC omCyc(A,B)
is represented by the homotopy equalizer of the maps

id, r∗−1
A ◦ (rB∗ ◦ Φ): C omT(A,B) //

//
C omT(A,B).

The universal property of Proposition 2.4 lets us identify the derived mapping space
RC omCyc(A,B) in this case as a homotopy equalizer

(4.6) id, ς : C om(R,B) //
//
C om(R,B)

for some map ς , which we now describe. It requires a structure on commutative
ring precyclotomic spectra that we call the cyclotomic power operation.

Definition 4.7. Let B be a commutative ring precyclotomic spectrum. The cy-
clotomic power operation is the composite

Ψ: B −→ ΦCpNCp
e B −→ ΦCpB

rB
−−→ B,

where the first map is the diagonal, the second map is ΦCp applied to the map (2.3),
and the third map is the precyclotomic structure map.

Proposition 4.8. The map ς in (4.6) is the map Ψ∗ given by post-composition
with the cyclotomic power operation on B.

Proof. Given a map f ∈ C om(R,B), consider the diagram in (non-equivariant)
commutative ring orthogonal spectra

(4.9)

R //

��

∼= //

f

""

ΦCp(N
Cp
e R)

�� ((

THH(R)
∼= //

f̃

��

ΦCp(N
Cp
e THH(R))

ΦCpN
Cp
e f̃

��

// ΦCpTHH(R)

ΦCp f̃

��

B // ΦCp(N
Cp
e B) // ΦCpB

where f̃ is the underlying non-equivariant map of the map THH(R)→ B adjoint
to f under Proposition 2.4 and in the bottom two rows, the maps are the first
two maps in the definition of Ψ. In the top row the isomorphism is the diagonal.
The solid part of the diagram then commutes, and if we fill in the dotted map

R→ ΦCpTHH(R) as the map induced on ΦCp by the inclusionN
Cp
e R→ THH(R),

the whole diagram commutes. When we interpret the top isomorphism followed by
the dotted map as a (non-equivariant) map R→ ΦTHH(R), the adjoint map

THH(R) −→ ΦTHH(R)
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under Proposition 2.4 is the map r−1
A . Viewing the overall composite map R →

ΦCpB as a (non-equivariant) map R→ ΦB, the adjoint map

THH(R) −→ ΦB

is then r−1
A ◦Φf̃ . �

The diagram in the proof above also identifies the cyclotomic power operation
Ψ on THH(R).

Proposition 4.10. Let R be a cofibrant commutative ring orthogonal spectrum.
Then Ψ: THH(R)→ THH(R) is the Adams operation given by tensoring R with
the p-fold covering map on T (see, for example, [1, §10]).

Proof. The proof of Proposition 4.8 presents a diagram (4.9) with the compos-
ite map R → ΦCpTHH(R) in it the map adjoint (under Proposition 2.4) to
r−1
THH(R), the inverse of the cyclotomic structure map for THH(R). The operation

Ψ on THH(R) is the composite of the middle row of that diagram THH(R) →
ΦCpTHH(R) with the cyclotomic structure map rTHH(R) . It follows that the com-
posite of the inclusion R → THH(R) with the operation Ψ is again the inclusion
R → THH(R). If the operation Ψ were equivariant, the adjunction of Proposi-
tion 2.4 would identify it as the identity map; however, it is not equivariant for the
usual T-action on THH . The proof of the statement is essentially a careful check
that it is equivariant when the target is given the T-action pulled back from the
p-fold covering map T→ T.

Working on the point-set level, T-equivariantly, THH(R) is given by the cyclic
bar construction followed by change of universe

THH(R) = IUR∞N cy(R) = IUR∞(R⊗ T).

(As functors from commutative ring orthogonal spectra to T-equivariant orthogonal
spectra indexed on R∞, we can identify the cyclic bar construction as the tensor
with T, and we use these descriptions interchangeably.) Working non-equivariantly
is in particular working in the universe R∞; keeping track of universes, the first
map in Ψ, the diagonal map is

N cy(R)
∼=
−→ ΦCp(NCp

e N cy(R)).

We recall that N
Cp
e is a continuous point-set functor from non-equivariant orthog-

onal spectra indexed on R∞ to Cp-equivariant orthogonal spectra indexed on the
complete universe UCp

(obtained by restricting the T-action on U to Cp), and ΦCp

is a continuous point-set functor on the same categories in the opposite direction.
The map above is natural in maps on N cy(R) in (non-equivariant) orthogonal spec-
tra and so is a map of T-equivariant orthogonal spectra indexed on R∞ (using the
T-action on N cy(R)). For the next map in Ψ, written

ΦCpNCp
e THH(R) −→ ΦCpTHH(R),

we are looking at THH(R) on the right as a Cp-equivariant orthogonal spectrum
indexed on UCp

. This map is ΦCp applied to the map

NCp
e N cy(R) −→ I

UCp

R∞ N cy(R)

of Cp-equivariant orthogonal spectra indexed on UCp
. Again by naturality, using

the action of T on N cy(R) in the category of non-equivariant orthogonal spectra,
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the displayed map is T-equivariant in the category of Cp-equivariant orthogonal
spectra indexed on UCp

. The composite

(4.11) N cy(R)
∼=
−→ ΦCp(NCp

e N cy(R)) −→ ΦCp(I
UCp

R∞ N cy(R))

is a map of T-equivariant orthogonal spectra indexed on R∞ and so is determined by
the restriction of its underlying map of non-equivariant spectra along the inclusion
R → N cy(R), which was analyzed in (4.9). Rewritten to emphasize the universes,
it is the map

(4.12) R
∼=
−→ ΦCp(NCp

e R) −→ ΦCp(I
UCp

R∞ N cy(R))

induced by the map

NCp
e R = I

UCp

R∞ (R ⊗ Cp) −→ I
UCp

R∞ (R ⊗ T) = I
UCp

R∞ N cy(R).

Because the target of (4.12) is Cp-fixed, we can treat it as a T/Cp-equivariant
orthogonal spectrum indexed on R∞ and the identification of (4.12) above shows
that under the isomorphism ρ : T ∼= T/Cp, the adjoint map

R⊗ (T/Cp) −→ ΦCp(I
UCp

R∞ N cy(R))

becomes the underlying non-equivariant map of r−1
THH(R) . It follows that the

map (4.11) is the composite of the p-fold cover map T → T and r−1
THH(R) . Thus,

composing with the underlying non-equivariant map of rTHH(R) , Ψ is the map
induced by the p-fold cover. �

5. Relative cyclotomic structures

The purpose of this section is to explain our new framework for the existence of
cyclotomic structures on relative THH . The work of [1] shows that for a commu-
tative ring (pre)cyclotomic spectrum R and an R-algebra A, THHR(A) obtains a

natural (pre)cyclotomic structure precisely when the canonical map of T-equivariant
commutative ring spectra THH(R)→ R is a (pre)cyclotomic map on the point-set
level. In this section, we generalize this to the case when the map THH(R)→ R
lifts to a map of commutative ring (pre)cyclotomic spectra in the homotopy cat-
egory. Our framework depends on the characterization in the previous section of
derived mapping spaces by allowing us to specify in terms of the cyclotomic power
operation when the canonical map THH(R)→ R lifts.

Specifically, let R be a commutative ring precyclotomic spectrum, and assume
without loss of generality that R is cofibrant and fibrant in that category for the

model structure of [Cyc23]. Then the underlying non-equivariant commutative ring
orthogonal spectrum R is cofibrant and fibrant in the model structure of [Cyc23]
(by [Cyc23]). In this case, Proposition 4.8 specializes to the following result.

Proposition 5.1. Let R be a cofibrant-fibrant commutative ring precyclotomic spec-

trum. Then the derived mapping space RC omCyc(THH(R), R) is modeled by the
homotopy equalizer of the self-maps

id,Ψ∗ : C om(R,R) −→ C om(R,R).

In particular, the canonical map of T-equivariant commutative ring orthogonal
spectra THH(R)→ R lifts (up to homotopy) to a map of commutative ring precy-
clotomic spectra from THH(R)→ R exactly when Ψ is homotopic to the identity.
We encapsulate this in the following definition.
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Definition 5.2. A (pre)cyclotomic base is a commutative ring (pre)cyclotomic
spectrum R together with a choice of homotopy from Ψ to the identity in the
category of commutative ring orthogonal spectra.

The following is the main foundational theorem of the paper and gives a more
specific formulation of Theorem A of the introduction.

Theorem 5.3. Let R be a (pre)cyclotomic base, whose underlying T-equivariant

commutative ring orthogonal spectrum is cofibrant in the model structure of [Cyc23]
(for example, when R is cofibrant in the model structure of [Cyc23] on commutative

ring (pre)cyclotomic spectra). Then the derived relative THH functor LTHHR

lifts to a functor from associative R-algebras to (pre)cyclotomic R-modules.

Proof. Replacing R by a weakly equivalent commutative ring (pre)cyclotomic spec-
trum if necessary, we can assume without loss of generality that R is fibrant in the

model structure of [Cyc23]. By Proposition 3.8, for A cofibrant as an associative

R-algebra, LTHHR(A) is represented by the point set construction

THHR(A) = THH(A) ∧THH(R) R ≃ THH(A) ∧LTHH(R) R.

By the hypothesis on Ψ and Proposition 4.8, the discussion around (4.6) implies
that the diagram in the category of T-equivariant commutative ring orthogonal
spectra

ΦTHH(R) //

rTHH(R)

��

ΦR

rR

��

THH(R) // R

commutes up to (the given) homotopy. (This specifies an element of the homotopy
equalizer in Proposition 4.5 for A = THH(R) and B = R.) While THH(R) is
cofibrant in the category of T-equivariant commutative ring orthogonal spectra, it
is generally not cofibrant in the category of commutative ring cyclotomic spectra.
Let T → THH(R) be a cofibrant approximation in the latter category; the cor-

responding diagram in T and R then also commutes up to (the restriction of the
given) homotopy, specifying an element of the homotopy equalizer in Proposition 4.5
(for A = T and B = R). Since T is cofibrant and R is fibrant, Proposition 4.5 im-
plies that the composite map of T-equivariant commutative ring orthogonal spectra
T → R is homotopic to a precyclotomic map g : T → R: the map from the equalizer
to the homotopy equalizer in Proposition 4.5 is a weak equivalence. The space of
choices of such a g together with a path H in the homotopy equalizer from g to
the point specified above is weakly contractible, and we choose an element (g,H).
As a component of the path H , we get a homotopy G from the composite map
T → THH(R)→ R to g. We write g∗R for R with the T-equivariant commutative
T -algebra structure from the map of T-equivariant commutative ring orthogonal
spectra g, and we use G to give R a T-equivariant T ⊗ I-module structure. We
then have a zigzag of weak equivalences

THH(A)∧LTHH(R)R
≃
←− THH(A)∧LTR

≃
−→ THH(A)∧LT⊗IR

≃
←− THH(A)∧LT g

∗R.

LetM be a cofibrant approximation of g∗R in the model structure on (pre)cyclotomic

T -modules of [Cyc23]. Then (−) ∧T M represents the derived functor (−) ∧LT g
∗R

and THH(−) ∧T M is another point-set model for LTHHR(−).
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By construction, T is in the class of objects E discussed in Section 2 on which
Φ and the smash product behave. By [Cyc23], for any T-equivariant T -module N ,
the canonical map

ΦN ∧ΦT ΦM −→ Φ(N ∧T M)

is an isomorphism. For N = THH(A), using the precyclotomic structure maps on
THH(A), T , and M , we get a precyclotomic structure map

Φ(THH(A) ∧T M) ∼= ΦTHH(A) ∧ΦT ΦM −→ THH(A) ∧T M.

For any family F of proper subgroups of T, the composite map

LΦ(THH(A) ∧T M) −→ THH(A) ∧T M

is an F -equivalence whenever the precyclotomic structure map of M is. �

As a consequence, we can define relative topological cyclic homology in this
context. Since we are concentrating on p-(pre)cyclotomic spectra, the relevant
version of topological cyclic homology is p-typical TC, denoted as TC(−; p) in [7]
(and elsewhere). To avoid ambiguity between TC of a precyclotomic object and
TC of a ring spectrum, we use the following notation.

Notation 5.4. We write TCcyc for the composite functor TC(R(−); p) from precy-
clotomic spectra to spectra, where TC(−; p) is the p-typical TC-construction of [7,
6.3] (for example) and R is a fibrant approximation functor in the category of pre-
cyclotomic spectra. We write TC for the functor TCcyc(THH(−)) from associative
or commutative ring orthogonal spectra to orthogonal spectra.

The construction of TC(−; p) in the previous paragraph uses the maps between
categorical fixed points

R,F: XC
pn+1 −→ XCpn

where F is the inclusion and R is the composite of the canonical map

XC
pn+1 ∼= (ρ∗(XCp))Cpn −→ (ΦX)Cpn −→ XCpn

where the middle map is the map of [15, 4.4] from the categorical fixed points to the
geometric fixed points and the last map is the Cpn fixed points of the precyclotomic
structure map rX . We note that the construction only requires a precyclotomic

structure and not a cyclotomic structure. For the homotopically correct construc-
tion of p-typical TC, we need the homotopically correct categorical fixed points,
which we ensure by fibrant approximation of X in the category of precyclotomic
spectra in the definition of TCcyc.

In the case when the underlying T-equivariant spectrum X is p-complete (i.e.,
all of the categorical fixed point spectra are p-complete as non-equivariant spectra),
TCcyc(X) is just the derived mapping spectrum of maps out of the sphere spectrum

in the category of (pre)cyclotomic spectra [7, 6.8]:

TCcyc(X) ∼= RFCyc(S, X).

Returning to the case of relative THH , we use the following notation for TC of
these (pre)cyclotomic spectra.

Notation 5.5. Let R be a (pre)cyclotomic base. Write TCR for derived TCcyc of

derived THHR with the (pre)cyclotomic structure of Theorem 5.3.
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While this adequately constructs a derived functor TCR (from the homotopy
category of R-algebras to the stable category), the constructions in Section 9 require
a point-set model that is functorial in R as well as A. We describe such a model in
Section 10.

The construction in Theorem 5.3 of the precyclotomic structure depended on
the choice of homotopy in the precyclotomic base structure on R. We observe that
homotopic homotopies construct weakly equivalent precyclotomic structures. In
the following proposition, let D denote the 2-disk obtained as the (unreduced) cone
on two copies of [0, 1] with corresponding endpoints identified.

Proposition 5.6. Let R′, R′′ be precyclotomic bases with the same underlying
commutative ring precyclotomic spectrum R. A map of commutative ring orthogonal

spectra R⊗D → R which restricts on each copy of [0, 1] to the homotopy intrinsic
to the precyclotomic base structures on R′ and R′′ induces a natural isomorphism
in the homotopy category of precyclotomic spectra

LTHHR′

(−) ≃ LTHHR′′

(−).

6. Precyclotomic bases, equivariant factorization homology, and

global commutative ring spectra with multiplicative deflations

The purpose of this section is give a conceptual explanation of the motivation
behind the definition of a precyclotomic base. The discussion is purely motivational
and should not be regarded as rigorously justified. The material here was inspired
by a October 2021 talk given by Asaf Horev at MIT. Horev discussed the structure of
equivariant factorization homology and its relationship to the cyclotomic structure
on THH . Extending these observations from spectra to categories of R-modules
and examining the required structure on R leads to the framework of precyclotomic
bases, as we explain below. Abstracting the categorical framework using ideas of
Bachmann-Hoyois [2, §9] (see also the third author’s work in [22, §2]) gives rise
to the notion of global commutative ring spectrum with multiplicative deflations
(Definition 6.4). This structure arises in nature on the global equivariant Thom
spectrum MUP and on a new global equivariant structure on MU , motivating the
key examples of cyclotomic bases that we discuss in more detail in the next section.

As we progress in this section, we will require ∞-categorical constructions, and
statements should be read in ∞-categorical terms. In particular, functors in this
section should be read in their homotopical rather than point-set forms.

We begin by recalling the relevant parts of standard structure of genuine equi-
variant factorization homology. Let G be a finite group and for simplicity, let A
be a genuine G-equivariant commutative ring orthogonal spectrum with underly-
ing (non-equivariant) commutative ring orthogonal spectrum A. Then equivariant
factorization homology associates to each G-manifold M a genuine G-equivariant
orthogonal spectrum

∫
M
A with the following features (among others):

(i) When M = G/H is a transitive G-set, there is a canonical equivalence∫
M
A ≃ NG

H resGH A. In particular,
∫
G/e

A ≃ NG
e A depends only on the

underlying non-equivariant commutative ring A.
(ii) When M has a free action of G, there is a natural equivalence

ΦG

∫

M

A ≃

∫

M/G

A.
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(In the more general case when A is some kind of equivariant disk algebra, repre-
sentation tubes of the form G×H V should replace orbits in (i).)

Two remarks are in order regarding the features above: first, in the special
case M = G/e, the equivalence in (ii) extends the diagonal identity ΦGNG

e A ≃ A,
which is the caseM = G. Second, the observation about restriction in (i) generalizes
to (ii): whenM is free,

∫
M
A depends only on the non-equivariant commutative ring

orthogonal spectrum A. Indeed, features (i) and (ii) are closely related, with (ii)
deriving from (i).

The above features relate to the cyclotomic structure on THH in the following
way. We take the manifold M to be T and G to be a finite subgroup Cn of T.
The genuine Cn-equivariant orthogonal spectrum

∫
T
M comes with a compatible

T-action extending the inherent Cn-action. As the subgroups Cn vary, they fit to-
gether to produce a genuine T-equivariant Ffin-colocal orthogonal spectrum. Since
T is a free Cn-manifold, we also have (non-equivariant) equivalences

ΦCn

∫

T

A ≃

∫

T/Cn

A,

natural in Cn-equivariant self-maps of T, and in particular natural in the T/Cn-
action on both sides. Applying the Borel equivariant version of ρ∗n for ρn : T ∼= T/Cn

the nth root map, we can view the above map as a Borel equivalence of T-spectra

ρ∗nΦ
Cn

∫

T

A ≃ ρ∗n

∫

T/Cn

A ∼=

∫

T

A.

Looking at all the Cn together (assuming the equivalences are appropriately com-
patible with inclusions of subgroups), we deduce a genuine T-equivariant Ffin-
equivalence

Φ

∫

T

A ≃

∫

T

A.

Thus, the cyclotomic structure on THH is a consequence of the basic features of
equivariant factorization homology.

In order to apply this observation to THH relative to a commutative ring or-
thogonal spectrum R, we would replace (equivariant) spectra with (equivariant)
R-modules for some equivariant structure R on R. To start, we need the category
of R-modules to admit norm functors RN

G
e from (non-equivariant)R-modules to G-

equivariant R-modules, and geometric fixed point functors RΦ
G from G-equivariant

R-modules to (non-equivariant) R-modules, related by a natural equivalence

Id
≃
−→ RΦ

G
RN

G
e ,

which is symmetric monoidal and appropriately compatible with restrictions to
subgroups (as encapsulated below).

Applying the norm NG
e in spectra to an R-module X naturally yields an NG

e R-
module NG

e X . To convert this to a R-module, a norm multiplication NG
e R → R

suffices, and we can set

RN
G
e X := NG

e X ∧NG
e R R.

If we also assume these norm multiplications satisfy the usual compatibilities of
these norm multiplications, by [5, 6.11] the resulting structure essentially amounts
to a genuine G-equivariant commutative ring orthogonal spectrum structure on R
with underlying non-equivariant commutative ring orthogonal spectrum R.
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Analogously, applying the geometric fixed point functor ΦG in spectra to an R-
module X naturally yields a ΦGR-module ΦGX. To convert this to a R-module,
it suffices to have a map of commutative ring orthogonal spectra ΦGR→ R. That
is, we define

RΦ
GX := ΦGX ∧ΦGR R.

We say more below about making these fit together along restriction maps, which
leads to equivariance considerations, but for now we note that for G = Cp, this is
the underlying non-equivariant map of a precyclotomic structure map.

Now consider the existence of a diagonal map X
≃
−→ RΦ

G
e RN

G
e X . By definition,

the target functor is the composite

RΦ
G
RN

G
e X = ΦG(NG

e X ∧NG
e R R) ∧ΦGR R ≃ (ΦGNG

e X) ∧ΦGNG
e R ΦGR ∧ΦGR R.

Using the diagonal equivalence for ΦG and NG
e in spectra, this functor is naturally

equivalent to the extension of scalars X ∧R R for the self-map of R given by the
composite

Ψ: R
≃
−→ ΦGNG

e R −→ ΦGR −→ R.

An identification of the composite as the identity in the∞-category of commutative
ring orthogonal spectra then constructs a natural diagonal equivalence

X
≃
−→ RΦ

G
e RN

G
e X

for R-modules. For G = Cp, the operation Ψ is precisely the operation in the defi-
nition of cyclotomic base, and (for R a precyclotomic spectrum) the identification
in the ∞-category is essentially a choice of homotopy that gives the structure of a
cyclotomic base.

All this was a discussion of norms functors and geometric fixed point functors
in R-modules; we now turn to equivariant factorization homology. As in our sim-
plification in the discussion of the features of equivariant factorization homology in
spectra, we restrict to the commutative case. In this case, equivariant factorization
homology extends to a functor on all G-spaces given by prolongation of norms. To
make this work, extending norms to all finite G-sets by smash product, we need
norms to be functorial in maps of G-sets. Assuming enough structure on R (in-
cluding at least the structure above, more about which below), we can do this for
commutative R-algebras: for a commutative R-algebra A,

G/H1 ∐ · · · ∐G/Hn 7→ (RN
G
H1

resGH1
A) ∧R · · · ∧R (RN

G
Hn

resGHn
A)

extends to a functor RNA from finite G-sets to R-modules (or commutative R-
algebras). We then define

M 7→

∫ R

M

A

to be the functor (in M) from G-spaces to R-modules (or commutative R-algebras)
given by the left Kan extension of RNA under the inclusion of finite G-sets in
all G-spaces. (Because disjoint unions of G-sets go to coproducts of commutative
R-algebras, using commutative R-algebras as the target and then forgetting to R-

modules gives a naturally equivalent functor.) The diagonal equivalence A
≃
−→

RΦ
GNG

e A extends to a natural diagonal equivalence

RNA(S/G)
≃
−→ RΦ

G(RNA(S))
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for free G-sets S and prolongs to a natural diagonal equivalence
∫ R

M/G

A
≃
−→ RΦ

G

(∫ R

M

A

)

for free G-spacesM , with both
∫ R

M/GA and
∫ R

M A depending only on the underlying

non-equivariant commutative R-algebra structure on A. In other words, this theory
has the features (i) and (ii) of equivariant factorization homology discussed above.
In the case when M = T and we let G range over the finite subgroups Cn < T as
above, with some good will and an extension of the structure of R to T-equivariant
commutative orthogonal spectra, the observations above on

∫
T
now generalize to∫ R

T
: for a commutative R-algebra A, the Ffin-colocal T-equivariant R-module

∫ R

T
A

comes with an equivalence

ρ∗

(
RΦ

Cp

∫ R

T

A

)
≃

∫ R

T

A.

We note that this is not necessarily a cyclotomic structure map but does induce a
precyclotomic structure map

Φ

∫ R

T

A = ρ∗

(
ΦCp

∫ R

T

A

)
−→ ρ∗

(
RΦ

Cp

∫ R

T

A

)
≃

∫ R

T

A.

The discussion above took a direct and streamlined approach to connect the
ideas behind equivariant factorization homology in the category of R-modules and
precyclotomic bases. One way to fill in some of the missing structure is to use the
formulation of global equivariant E∞ ring spectra in [2, §1.4, 9] and [22, §2]. Let
Span(Gpd) denote the∞-category whose objects are finite groupoids (that is, finite
π1 and finitely many components) X and where morphisms between X and Y are
given by the space of spans X ← Z → Y , with composition of spans evidenced by
homotopy cartesian squares.

Definition 6.1. A (multiplicative) global equivariant context is a functor C (−) :
Span(Gpd)→ Cat∞ which sends disjoint unions to products.

Although we will not give details, global equivariant stable homotopy theory
fits into this framework: there is a global equivariant context Sp where Sp(BG) is
equivalent to the∞-category of genuine G-equivariant orthogonal spectra. We note
that every map in Span(Gpd) is equivalent to a disjoint union of composites of maps
of the form BG← BH , BK ← BG, BH → BG, and BG→ BK for inclusions of
subgroupsH → G and quotient maps of quotient groupsG→ K. These component
pieces have classical interpretations in equivariant stable homotopy theory:

Notation 6.2. Given a global equivariant context C and a short exact sequence
of groups 0→ H →֒ G։ K → 0, we denote:

C resGH := C (BG← BH → BH) : C (BG) −→ C (BH)

C infGK := C (BK ← BG→ BG) : C (BK) −→ C (BG)

CN
G
H := C (BH ← BH → BG) : C (BH) −→ C (BG)

CΦH := C (BG← BG→ BK) : C (BG) −→ C (BK).
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Proposition 6.3. There is a global equivariant context Sp(−) : Span(Gpd) →

Cat∞ which sends BG to the∞-category SpG of G-spectra and the functors of 6.2 to
the corresponding familiar functors in genuine equivariant stable homotopy theory.

As the full subcategory Span(Fin) ⊂ Span(Gpd) spanned by the finite sets is
the free symmetric monoidal ∞-category on a point, the restriction of any global
equivariant context C to Span(Fin) exhibits C (∗) as a symmetric monoidal ∞-
category. More generally, each of the C (X) are endowed with a natural symmetric
monoidal structure, and the functors of 6.2 are naturally symmetric monoidal.

Definition 6.4. Let Ξ: S̃p → Span(Gpd) denote the coCartesian fibration corre-
sponding to the multiplicative global equivariant context Sp of Proposition 6.3 and
let res ⊂ Mor(Span(Gpd)) be the subset of spans of the form

X
f
←− Y

=
−→ Y

where f is a finite cover of the classifying spaces (up to weak equivalence). Then
a global commutative ring spectrum with multiplicative deflations is a section of Ξ
which is coCartesian over res.

Remark 6.5. The notion of a global commutative ring spectrum with mulitplica-
tive deflations is closely related to notions appearing in work of Schwede [19] (where
it might be called an ultracommutative monoid with multiplicative deflations),
Bachmann-Hoyois [2], and the third author [22].

Let R : Span(Gpd) → S̃p be a global commutative ring spectrum with multi-

plicative deflations. Then we have R(BG) ∈ SpG, as SpG is the fiber of Ξ over BG.
We think of R(BG) as the underlying G-equivariant commutative ring spectrum of
R. It admits natural maps (with reference to 6.2):

resGH R(BG) ≃ R(BH)

infGKR(BK)) −→ R(BG)

NG
HR(BH) −→ R(BG)

ΦHR(BG) −→ R(BK).

In particular, looking at the last two maps with H and K the trivial group (using
the trivial group as both a subgroup and quotient group of G), R has the structure
maps needed in the factorization homology discussion. The identity

(BG← BG→ ∗) ◦ (∗ ← ∗ → BG) = (∗ ← ∗ → ∗)

shows that the composition in Sp = C (∗)

ΦGNG
e R(B) −→ ΦGR(BG) −→ R(∗)

is equivalent to the identity map R(∗) = R(∗), which is the condition on these maps
that we identified above in the factorization homology discussion and which formed
the underlying condition in the definition of precyclotomic base.

We note that treatment of the equivariance of geometric fixed points requires
consideration of quotient groups for general G; for finite subgroups of T, the root
isomorphisms ρn : T ∼= T/Cn provides a way around this. For G = Cpn, the struc-

ture on R gives maps in SpCpn/Cp ,

ΦCpR(BCpn) −→ R(B(Cpn/Cp))
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which forget under restriction to the map

ΦCpR(BCp) −→ R(∗).

Recalling that ρ∗ denotes the functor SpCpn/Cp
≃
−→ SpCn coming from the pth root

isomorphism ρ : Cn
∼= Cpn/Cp and the convention Φ = ρ∗ΦCp , the previous maps

take the form

ΦR(BCpn) −→ R(BCn)

in SpCn , and they are compatible under restriction with the system of finite sub-
groups Cn of T.

When R is a global commutative ring spectrum with multiplicative deflations,
then the above discussion suggests that there should be a genuine equivariant con-
text ModR(−) with

ModR(BG) ≃ ModR
G
(SpG),

restriction given by the forgetful functors, the norm functor given by RN
G
H , and the

geometric fixed point functor given by RΦ
H . Then, one should be able to define

equivariant factorization homology relative to R as equivariant factorization homol-
ogy internal to the global equivariant context ModR(−), at least in the simplified
form discussed above, i.e., in terms of prolonging a norm functor from finite G-sets
to all G-spaces.

In general, one does not expect naturally occuring global ring spectra R to admit
“multiplicative deflation” maps ΦGR→ R. For instance, for global equivariant K-
theory, we have that p is invertible in ΦCpKU but not in KU , so it cannot admit
such structure. Nevertheless, in addition to the sphere spectrum S, we have the
following example of interest, which we discuss in more detail in the following
section.

Example 6.6. The complex cobordism ring spectrumMU and its periodic variant
MUP extend to global commutative ring spectra with multiplicative deflations. To
see this, let VectC denote the topological category of finite dimensional complex
vector spaces and consider the functor

ku : Span(Gpd) −→ Sp

which sends X to the underlying spectrum of the symmetric monoidal topological

category Fun(X,VectC) and sends a span X
f
←− Z

g
−→ Y to the functor given by

restriction along f followed by left Kan extension along g. There should be a natural
global J-homomorphism

ku −→ pic(Sp)

(essentially given by sending V ∈ Fun(X,VectC) to the invertible equivariant spec-
trum SV ), and the global Thom spectrum of this would be a global commutative
ring spectrum with multiplicative deflations lifting the usual global equivariant
structure on MUP . One can also expect to obtain MU as the underlying commu-
tative ring spectrum of an global commutative ring spectrum with multiplicative
deflations using a variant of this procedure, by taking the global Thom spectrum
of bu = τ≥2ku instead of ku. We note that this is not the usual global equivariant
structure on MU for equivariant homotopical bordism nor for geometric equivari-
ant bordism. We denote this global equivariant spectrum as mu. We explain these
examples carefully in Example 7.4.
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7. Examples

In this section, we observe that many examples of interest fit into our framework.
The original example of a cyclotomic base is the sphere spectrum, where the opera-
tion Ψ is the identity map on the point-set level. Work of Bhatt-Morrow-Scholze [4,
§11.1] on relative TC suggests that the spherical monoid ring S[t] = Σ∞

+ N should
have such a structure. The other examples we discuss were not previously known.

7.1. Example: S[G] and S[N].

Let G be an abelian group. We consider the opposite constant T-Mackey func-
tor on G, which we denote as Gop: specifically, for a closed subgroup H < T,
Gop(T/H) = G, and for a pair of closed subgroups K < H < T, the transfer
Gop(T/K)→ Gop(T/H) is the identity, and the restrictionGop(T/H)→ Gop(T/K)
is multiplication by χ(H/K), that is, multiplication by the index if finite and zero if
not. Associated to Gop is the (genuine) T-equivariant Eilenberg-MacLane spectrum
HGop, and for any model, the derived zeroth space Ω∞HGop has a canonical gen-
uine T-equivariant E∞-space structure, or more concisely, an ET

∞-space structure.
Fixing a model, Ω∞HGop, the underlying non-equivariant grouplike E∞ space is
equivalent to G, and we regard Ω∞HGop as a T-equivariant version of G.

We see from the concrete description ofGop that the T-Mackey functor π0(ρ
∗((HGop)Cp))

is again Gop. We then get a weak equivalence

ρ∗((HGop)Cp) −→ HGop.

Applying the derived zeroth space functor, we get an E∞
T
-space map

(7.1.1) ρ∗((Ω∞HGop)Cp) −→ Ω∞HGop

that is a weak equivalence.
Let R = S[Ω∞HGop], the equivariant spherical group ring on Ω∞HGop: as

genuine G-spectrum, R is the unreduced suspension spectrum on Ω∞HGop,

R = Σ∞
+ (Ω∞HGop),

but the ET
∞-space structure on Ω∞HGop endows R with the structure of an ET

∞

ring spectrum. Using cofibrant replacement, we can find a weakly equivalent ET
∞

ring spectrum which is a T-equivariant commutative ring orthogonal spectrum.

Notation 7.1.2. Let ST[G] denote a T-equivariant commutative ring orthogonal
spectrum model of S[Ω∞HGop].

The point-set multiplicative geometric fixed point functor satisfies

ΦCpR = ΦCp(Σ∞
+ (Ω∞HGop)) = Σ∞

+ ((Ω∞HGop)Cp),

and the map (7.1.1) gives a map of ET
∞ ring spectra

r : ΦR −→ R,

which we use as the cyclotomic structure map for R, giving a cyclotomic struc-

ture map for ST[G], which is a map of T-equivariant commutative ring orthogonal
spectra.

Theorem 7.1.3. ST[G] ≃ S[Ω∞Gop] with the cyclotomic structure above admits
the structure of a cyclotomic base.
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Proof. We need to show that the operation

Ψ: ST[G] −→ ST[G],

is the identity in the homotopy category of commutative ring orthogonal spectra.
Recall that this operation is the composite of the norm diagonal followed by mul-
tiplication

ST[G] −→ ΦCpNCp
e ST[G] −→ ΦCpST[G]

and (the non-equivariant map underlying) the cyclotomic structure map ΦST[G]→
ST[G]. We can understand the displayed map in terms of the spherical group ring
S[Ω∞Gop]: it is just the induced map on S[−] of the transfer

Ω∞Gop −→ (Ω∞Gop)Cp ,

which is just Ω∞ applied to the transfer

HGop −→ (HGop)Cp ,

which by definition of Gop is homotopic to the identity, under the identification
(HGop)Cp ≃ HGop defining the cyclotomic structure map. �

Technically the definition of cyclotomic base requires a choice of point-set homo-
topy. When the model ST[G] is cofibrant and fibrant in the model structure on com-
mutative ring cyclotomic spectra of [Cyc23], the underlying (non-equivariant) com-
mutative ring orthogonal spectrum is cofibrant and fibrant in the model structure
of [Cyc23], and the argument above constructs a contractible space of homotopies.
Any choices produce weakly equivalent cyclotomic bases, as per Proposition 5.6 in
Section 5.

We can calculate TC of this example (up to p-completion), using the original
method of Bökstedt-Hsiang-Madsen [8]. The exposition of Madsen in [14, 4.4.3]
simplifies the argument of [8] and it is clear that it applies to any cyclotomic spec-
trumX where the map from the categorical to geometric fixed pointsXCp → ΦCpX
is T/Cp-equivariantly split. (Nikolaus-Scholze [18, IV.3.4] make an analogous obser-
vation in their setting, in terms of the notion of a Frobenius lift.) Madsen’s splitting
always happens for suspension spectra. In this case, the statement specializes to
the following.

Proposition 7.1.4. For ST[G] as above, TCcyc(ST[G])
∧
p fits into a homotopy fiber

square

TCcyc(ST[G])
∧
p

//

��

((ΣS[G])hT)
∧
p

tr
��

S[G]∧p [p]−id
// S[G]∧p .

where [p] denotes the map on S[G] induced by the multiplication by p-map (the
p-power map) on the abelian group G.

The above discussion in terms of groups can in be extended to monoids that
inject into their group completion; we treat in detail only the case of the natural
numbers 0, 1, 2, 3 · · · . Starting with G = Z, we get an ET

∞-space Ω∞HZ
op. Non-

equivariantly, the components of Ω∞HZ
op are canonically in one-to-one correspon-

dence with the integers; let (Ω∞HZ
op)≥0 be the subspace of those components

corresponding to the natural numbers 0, 1, 2, . . . . The T-action and ET
∞ structure

on Ω∞HZ
op restrict to (Ω∞HZ

op)≥0. The spherical monoid ring S[(Ω∞HZ
op)≥0]
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then obtains a ET
∞ ring structure. This is the appropriate equivariant version of

the E∞ ring spectrum S[t] for the cyclotomic structure studied by Bhatt-Morrow-
Scholze in [4, 11.1].

Notation 7.1.5. Write ST[t] for a commutative ring orthogonal spectrum model
for the ET

∞ ring spectrum S[(Ω∞HZ
op)≥0].

The map (7.1.1) restricts to a weak equivalence of ET
∞ spaces

ρ∗(((Ω∞HZ
op)≥0)

Cp) −→ (Ω∞HZ
op)≥0.

We use this to give ST[t] the structure of a commutative ring cyclotomic spectrum.

Remark 7.1.6. It is easy to see that the cyclotomic structure above is the (classic)
cyclotomic structure on S[t] described by Bhatt-Morrow-Sholze in [4, 11.5]: the
composite

S[t] := S[N] ≃ ST[t]
≃
←− Φ(ST[t]) −→ ρ∗((ST[t])

tCp) ≃ ρ∗((S[N])tCp)

is induced by the multiplication by p map N → N. (In the display “≃” denotes
T-equivariant Borel equivalence and S[N] has the trivial T-action.)

Bhatt-Morrow-Sholze [4, §11.1] study cyclotomic structures relative to S[t]; our
theory also gives such structures:

Theorem 7.1.7. ST[t] ≃ S[(Ω∞HZ
op)≥0] with the cyclotomic structure above ad-

mits the structure of a cyclotomic base, i.e., Ψ: ST[t]→ ST[t] is the identity in the
homotopy category of ET

∞ ring spectra.

The proof follows from the corresponding proof above for Z
op, noting that the

transfer
Ω∞HZ

op −→ (Ω∞HZ
op)Cp

restricts to
(Ω∞HZ

op)≥0 −→ ((Ω∞HZ
op)≥0)

Cp .

7.2. Example: The multiplicative Borel precyclotomic structure.

Given a (non-equivariant) cofibrant commutative ring orthogonal spectrum R,
we can apply the functor ǫ of Notation 3.2 to get a T-equivariant commutative ring
orthogonal spectrum ǫR; we then tensor in the category of T-equivariant commu-
tative ring orthogonal spectra with the T-space ET to form a new T-equivariant
commutative ring orthogonal spectrum ǫR⊗ET. We have the following identifica-
tion of its geometric fixed points.

Proposition 7.2.1. Let R be a cofibrant non-equivariant commutative ring orthog-
onal spectrum. There exists a natural isomorphism of T-equivariant commutative
ring orthogonal spectra

Φ(ǫR⊗ ET) ∼= ǫR⊗ ρ∗(ET/Cp).

Proof. Working with the commutative ring orthogonal spectrum R⊗X for a space

X , the diagonal map N
T/Cp
e → ΦCpNT

e of [1, 4.6] induces a T-equivariant map

δ : ǫR⊗ ρ∗(X × T/Cp) −→ Φ(ǫR⊗ (X × T)),

natural in the commutative ring orthogonal spectrum R and the space X , which
is an isomorphism when R is cofibrant and X is a cell complex. Moreover, since
R is cofibrant as a commutative ring orthogonal spectrum, ǫR is cofibrant as a
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T-equivariant commutative ring orthogonal spectrum, and the above generalized

diagonal map is an isomorphism. Moreover, by the universal property of N
T/Cp
e

(the T/Cp analogue of Proposition 2.4), any equivariant map

ǫR⊗ ρ∗(X × T/Cp) −→ Φ(ǫR⊗ (X × T))

is uniquely characterized by the composite map of non-equivariant commutative
ring orthogonal spectra

R⊗X −→ i(ǫR⊗ ρ∗(X × T/Cp)) −→ i(Φ(ǫR⊗ (X × T))).

Now consider the diagram

ǫR⊗ ρ∗(T× T/Cp)
δ //

��

Φ(ǫR⊗ (T× T))

��

ǫR⊗ ρ∗(T/Cp)
δ

// Φ(ǫR⊗ T)

where the vertical maps are induced by the action map T × T/Cp → T/Cp and
T×T→ T. Looking at the underlying non-equivariant diagram and precomposing
with the non-equivariant map

R⊗ T −→ i(ǫR⊗ ρ∗(T × T/Cp))

both composite maps

R⊗ T −→ i(Φ(ǫR⊗ T)) ∼= R⊗ T

are the identity map, so the diagram commutes. Applying these observations to
X = T defined in terms of the bar construction

ET = |B•(∗,T,T)| = |T× · · · × T× T|,

we see that δ then induces a natural isomorphism of simplicial T/Cp-equivariant
commutative ring orthogonal spectra

ǫR⊗ ρ∗B•(∗,T,T)/Cp −→ Φ(ǫR⊗B•(∗,T,T)).

Taking geometric realization, we get the natural isomorphism of the statement. �

We observe that the T-space ρ∗(ET/Cp) is a free T-CW complex non-equivariantly
homotopy equivalent to BCp; we choose and fix a T-equivariant homotopy equiva-
lence ρ∗(ET/Cp)→ BCp × ET.

Definition 7.2.2. The multiplicative Borel precyclotomic structure on a cofibrant
(non-equivariant) commutative ring orthogonal spectrum R consists of the genuine
T-equivariant commutative ring orthogonal spectrum ǫR⊗ ET, with the precyclo-
tomic structure map

Φ(ǫR⊗ ET) ∼= ǫR⊗ ρ∗(ET/Cp) −→ ǫR⊗ (BCp × ET) −→ ǫR⊗ (ET)

induced by the isomorphism of the proposition above, the homotopy equivalence
chosen above, and the collapse map BCp → ∗.

Proposition 7.2.3. For R a cofibrant (non-equivariant) commutative ring orthog-
onal spectrum, the multiplicative Borel precyclotomic spectrum R = ǫR⊗ET admits
the natural structure of a precyclotomic base.
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Proof. It is clear from the construction of the isomorphism of Proposition 7.2.1 that
the map

R −→ ΦCpNCp
e R −→ ΦCpR

is the map ǫR⊗ET→ ǫR⊗ (ET/Cp) induced by the quotient map ET→ ET/Cp.
The composite of this and the precyclotomic structure map is then the self-map of
ǫR⊗ ET induced by the map

ET −→ ET/Cp −→ BCp × ET −→ ET,

which is evidently (non-equivariantly) homotopic to the identity. �

We have a variant of this cyclotomic base structure using ǫR without first tensor-
ing with ET: the multiplicative tom Dieck splitting of [Cyc23] identifies ΦǫR (up
to weak equivalence) as R∧ (R⊗BCp) with the multiplicative transfer R→ ΦCpR
the map

R ∼= R⊗ ∗ −→ R⊗BCp −→ R ∧ (R⊗ BCp)

induced by the inclusion of the base point in BCp. If we give ǫR the precyclotomic
structure

ΦǫR ≃ R ∧ (R⊗BCp) −→ R

which is the identity on the R factor and the map

R⊗BCp −→ R ⊗ ∗ ∼= R

on the other factor, then Ψ: R→ R is homotopic to the identity.
As a particular example, we get two T-equivariant versions of HZ with precy-

clotomic base structures. This does not contradict Hesselholt’s observation [1, 7.1]
on the non-existence of a cyclotomic structure on relative THHHZ, because the
structures induced on THHHZ are precyclotomic and not cyclotomic.

7.3. Example: HFp.

Let HFp be a cofibrant model for the T-equivariant commutative ring spectrum
specified by the Eilenberg-MacLane spectrum on the constant Mackey functor on
Fp (with constant restriction maps and zero transfer maps). In this case the geo-
metric fixed points ΦCpHFp is the connective cover of the Tate fixed point spectrum

HF
tCp
p . In particular, it is a connective T/Cp-equivariant commutative ring orthog-

onal spectrum with π0
∼= Fp as a Green functor. It follows that there exists a unique

map in the homotopy category of T-equivariant commutative orthogonal spectra
ΦHFp → HFp and a unique homotopy type in commutative ring precyclotomic
spectra with this map as the structure map. The cyclotomic power map Ψ is a map
of commutative ring orthogonal spectra HFp → HFp and is therefore homotopic
to the identity, with a contractible space of choices for the homotopy.

In this example, it is easy to compute relative TC:

Proposition 7.3.1. There exists a weak equivalence of commutative ring spectra

TCHFp(HFp) ≃ HF
S1

p ≃ HFp ∧DS
1.

Proof. We can compute TC (as a commutative ring spectrum) as the homotopy
equalizer of the maps R and F on

TFHF
p(HFp) := holimnHF

Cpn

p

where the limit is taken along the inclusion of fixed point maps F (see for exam-
ple [14, §2.5] for this fact and the definition of R and F ). The maps F are maps
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of commutative ring spectra HFp → HFp and so are homotopic to the identity
(as maps of commutative ring spectra) in an essentially unique way. This gives us

a weak equivalence of commutative ring spectra TFHFp(HFp) ≃ HFp. The self-

maps R and F of TFHF
p(HFp) are maps of commutative ring spectra and so also

homotopic to the identity in an essentially unique way. �

Although the underlying non-equivariant spectra of both THHHFp(HA) and
THHǫHFp(HA) are equivalent to HHFp(A) (for any Fp-algebra A), we note that
these are quite different equivariant spectra. For example, non-equivariantly

LΦ(THHFp(HFp)) ≃ Φ(Fp) ≃ τ≥0HF
tCp
p ,

which has as its homotopy groups a single copy of Fp in each non-negative degree,
whereas

LΦ(THHǫHFp(HFp)) ≃ HFp ∧ (HFp ⊗BCp)

(see Warning 3.3), which has as its homotopy groups a free module over the dual
Steenrod algebra. For more on ǫ∗HFp (and a precyclotomic base structure on it),
see the example on multiplicative Borel precyclotomic structures above.

7.4. Example: connective homotopical and periodic equivariant complex

cobordism.

Given an equivariant map of EG
∞-spaces α : X → Ω∞KU , we get a G-equivariant

EG
∞ ring Thom spectrum M(α) [13, X.3], which is usually denoted MX by abuse

of notation. M(id) is the equivariant Thom spectrum MUP , periodic equivariant
complex cobordism. The inclusion of BU in Ω∞KU as the zero component (non-
equivariantly: on fixed points it includes as the components of virtual dimension
zero in the representation ring) produces the equivariant Thom spectrum MU ,
homotopical equivariant complex cobordism. In this section, we introduce a new
G-equivariant EG

∞ ring Thom spectrum mu which we call connective homotopical
equivariant complex cobordism, which is the Thom spectrum of a map of EG

∞-
spaces Ω∞bu→ Ω∞KU , where on each fixed point subspace Ω∞bu includes as the
zero component. We emphasize that despite similar notation mu is more related
to equivariant homotopical cobordism than equivariant geometric cobordism. (The
Thom spectrum model of the geometric theory for equivariant unoriented cobordism
(for groups satisfying Wasserman’s condition) is now generally denoted mO [19],
but in older literature was denoted mo [16, §XV].)

The equivariant space Ω∞bu and map Ω∞bu→ Ω∞KU , without further struc-
ture, are easily constructed by Elmendorf’s theorem: working with the orbit dia-
gram for Ω∞KU , we take the subdiagram that at the orbit G/H consists of the
zero component. Non-equivariantly, the zero component is a product of copies of
BU indexed on the irreducible representations of H . The fact that these subspaces
should be closed under transfers suggests that there should exist an EG

∞-model. To
construct this, we note that as an EG

∞-space

Ω∞KU ≃ Ω∞τ≥0KU,

where τ≥0KU is the genuine G-equivariant spectrum characterized (up to weak
equivalence) by πH

q = 0 for q < 0 and having the extra structure of a map to KU
which is an isomorphism of (Z-graded) homotopy groups in non-negative degrees.
There is an essentially unique map of genuine G-equivariant spectra from τ≥0KU



RELATIVE CYCLOTOMIC STRUCTURES 29

to HRU that is the identity on π0, where RU is the complex representation ring
Mackey functor. We then get a map of EG

∞-spaces,

Ω∞KU −→ Ω∞HRU

and we obtain an EG
∞-space model of Ω∞bu as the homotopy fiber.

Notation 7.4.1. Let mu be the EG
∞ Thom spectrum associated to the EG

∞-space
map Ω∞bu→ Ω∞KU .

The geometric fixed point functor commutes with the Thom spectrum functor
in the following sense. For clarity, we add a subscript to denote the group of
equivariance, as in Ω∞KUG (for the EG

∞-space Ω∞KU). For a subgroup H < G,
let WH denote its Weyl group. We have a map of EWH

∞ spaces

(7.4.2) φH : (Ω∞KUG)
H −→ Ω∞KUWH

induced by replacing an H-equivariant complex vector space with its H-fixed point
subspace. Starting with a G-equivariant map

α : X −→ Ω∞KU

defining a genuine G-equivariant Thom spectrum MX , taking H-fixed points, we
get a map of WH-spaces

αH : XH −→ (Ω∞KU)H ≃ BUWH ×R(H).

Let

φHαH : XH −→ Ω∞KUWH

be the composite of αH with φH . Then the geometric fixed points ΦHMX is
weakly equivalent to the genuine WH-equivariant Thom spectrum M(XH) for the
map φHαH . When α is a EG

∞ map, αH is an EWH
∞ map, M(XH) = M(φHαH)

is an EWH
∞ ring spectrum, and we get a weak equivalence of EWH

∞ ring spectra
(MX)ΦH ≃M(XH).

We now discuss precyclotomic structures and set G = T. In the case of MUP ,
the existence of such a structure was originally observed by Brun [10, 8.3]. In our

notation, the map (7.4.2) for H = Cp induces a map of E
T/C
∞ ring spectra

ΦCp(MUP T) −→MUPT/Cp
.

Applying the functor ρ∗, we then get a map of ET
∞ ring spectra

r : ΦMUP −→MUP,

which we take as the precyclotomic structure map. We note that this map is not
a weak equivalence as the domain and codomain are not even abstractly weakly
equivalent; see [21, 4.10].

In the case of mu, the diagram of genuine T/Cp-equivariant spectra

(τ≥0KUT)
Cp

��

// HRUCp

��

τ≥0KUT/Cp
// HRU

commutes up to homotopy where the lefthand vertical map is the spectrum-level
analogue of (7.4.2) and the righthand vertical map is induced by the map of
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Mackey functors that at level (T/Cp)/(K/Cp) is the unique (abelian group) homo-
morphism R(K) → R(K/Cp) that sends a Cp-trivial irreducible K-representation
to the corresponding K/Cp-representation and sends Cp-non-trivial irreducible K-
representations to 0. The map r therefore lifts up to homotopy to a map of ET

∞

ring spectra
r : Φmu −→ mu,

which we use for the precyclotomic structure. Again this map is not a weak
equivalence: non-equivariantly, the left-hand side is equivalent to MU (p) ≃ MU ∧
(BU+)

(p−1) while the right-hand side is MU .
We observe that the trick above does not work to define a precyclotomic structure

on MU . Non-equivariantly, MU is the Thom spectrum of BU × {0} → BU × Z

and ΦCpMU is the Thom spectrum of

BU × I(R(Cp)) −→ BU ×R(Cp) −→ BU × Z.

The map V 7→ V H does not send the augmentation ideal I(R(Cp)) to 0 ∈ Z, so the
map r : ΦMUP →MUP does not restrict to a map ΦMU →MU .

Theorem 7.4.3. Commutative ring precyclotomic spectrum models for MUP and
mu admit the structure of a cyclotomic base.

Proof. Let R be a commutative ring precyclotomic spectrum models for MUP or
mu and let X = Ω∞KU or Ω∞bu, respectively. The first part of operation Ψ,

R −→ ΦCpNCp
e R −→ ΦCpR

is the map of Thom spectra induced by the transfer X → XH [Cyc23], and the
second part is r, which is the map of Thom spectra induced by the map XH → X
described above. Both maps are Ω∞ of spectrum-level maps, and the composite on
the spectrum level is the identity in the stable category. �

7.5. Non-example: KU .

Although the geometric construction of the precyclotomic structure map on
MUP suggests that the equivariant complex K-theory spectrumKU might provide
another example of a precyclotomic base, in fact, it cannot even be a precyclotomic
spectrum. By [11, 3.1], the integer p is a unit in π0(Φ

CpKU), and so there are no
maps of ring spectra ΦKU → KU .

8. Precyclotomic spectra and Nikolaus-Scholze TC(−; p)

Nikolaus-Scholze [18] describes a shortcut for calculating TCcyc of connective
cyclotomic spectra. The purpose of this section is to convert a connective precyclo-
tomic spectrum to a cyclotomic spectrum with equivalent TCcyc, which can then
be calculated by the Nikolaus-Scholze formula. This amounts to describing con-
cretely the restriction to connective objects of the right adjoint from the homotopy
category of precyclotomic spectra to the homotopy category of cyclotomic spectra.

The idea for the functor is to take the homotopy inverse limit of iterates of Φ.
This is complicated by the fact that to preserve weak equivalences, we need both
the left derived functor of Φ and the right derived functor of inverse limit; implic-
itly this involves both cofibrant and fibrant approximation. We use L and R for
cofibrant and fibrant approximation functors, respectively, in the category of precy-
clotomic spectra. In our main construction that follows, the fibrant approximation
functor R is only applied to cofibrant objects, and in the case of a commutative
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ring precyclotomic spectrum, we have a variant construction using cofibrant and
fibrant approximation in the category of commutative ring precyclotomic spectra
(q.v. [Cyc23]). The construction is a homotopy inverse limit in the category of
precyclotomic spectra: for fibrant objects this may be constructed as the spacewise
homotopy inverse limit (either using the Bousfield-Kan cobar construction or the
mapping microscope construction) in orthogonal spectra, given the evident precy-
clotomic structure map.

Construction 8.1. For a precyclotomic spectrum X with structure map r, we

note that ΦX has the canonical structure of a precyclotomic spectrum (that we
denote ΦX) with structure map Φr, and that the map r : ΦX → X is a map
of precyclotomic spectra. Writing Φn for the nth iterate of Φ, we get an inverse
system of precyclotomic spectra ΦnX . Let Φ∞X be the homotopy inverse limit of
the inverse system of precyclotomic spectra RΦnLX.

By construction, Φ∞ preserves weak equivalences of precyclotomic spectra. More-
over, Φ∞X comes with a point-set map of precyclotomic spectra Φ∞X → RLX and

a map in the homotopy category Φ∞X → X , induced by the identity RΦ0LX =
RLX. These maps are weak equivalences of precyclotomic spectra when X is cy-
clotomic, and in particular Φ∞X is itself cyclotomic in this case. We also have the
following observation:

Proposition 8.2. Let X be a precyclotomic spectrum that is Fp-connective (i.e.,

XCpn is connective for all n ≥ 0). Then Φ∞X is a cyclotomic spectrum.

Proof. Let X
n
= RΦnLX. It suffices to show that the natural map

ΦL(holimnRXn
) −→ holimn(RΦLRXn

)

is an Fp-equivalence. Looking at the norm cofiber sequence inside and outside
the holim, and taking Cpk−1 -fixed points, we get a map of cofiber sequences of
non-equivariant spectra

(R((holimnRXn
) ∧ ET))Cpk //

��

(R holimnRXn
)Cpk //

��

(R2ΦL holimnRXn
)Cpk−1

��

R holimn(R(Xn
∧ET))Cpk // R holimn(RXn

)Cpk // R holimn(RΦLRXn
)Cpk−1 ,

and it suffices to observe that the first two vertical maps are weak equivalences. The
second vertical map is weak equivalence without hypotheses on X

n
and the first is

weak equivalence when the underlying non-equivariant spectra of X
n
are connec-

tive. (To see this, let ETq denote the T-equivariant q-skeleton of ET. Because ETq

is a finite T-spectrum, smashing with it commutes up to weak equivalent with ho-
motopy limits. Since both ((holimnXn

)∧ET/ETq)
C

pk and holimn(Xn
∧ETq)

C
pk

are at least q-connected, the first map is a weak equivalence.) �

Proposition 8.3. Let T be a cyclotomic spectrum and X a precyclotomic spectrum.
Then the map Φ∞X → X in the homotopy category of precyclotomic spectra induces
a weak equivalence

RFcyc(T ,Φ
∞X) −→ RFcyc(T ,X)

where RFcyc denotes the derived mapping spectrum of precyclotomic maps.
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Proof. We can assume without loss of generality that T is cofibrant; then since T is
cyclotomic, ΦT is also cyclotomic, and r : ΦT → T is a weak equivalence. Because
Φ, viewed as an endofunctor on precyclotomic spectra, is spectrally enriched, it
follows that the map r : LΦX → X induces an isomorphism in the stable category

RFcyc(T ,LΦX) −→ RFcyc(T ,X),

with the composite

RFcyc(T ,X)
Φ
−→ RFcyc(ΦT ,LΦX)

(r−1)∗
−−−−−→ RFcyc(T ,LΦX)

giving the inverse isomorphism. (This assertion is the tautological observation that
for any precyclotomic map f : T → X, the diagram

ΦT
Φf

//

r
��

ΦX

r
��

T
f

// X

commutes, combined with the definition of rΦX as ΦrX .) By induction, the map

LΦn+1X → LΦnX induces a weak equivalence

RFcyc(T,LΦ
n+1X) −→ RFcyc(T ,LΦ

nX)

for all n ≥ 1. Since Φ∞X is the homotopy limit in precyclotomic spectra, the map
displayed in the statement is also a weak equivalence. �

By the usual corepresentability result for TCcyc [7, 6.8], the previous proposition
implies in particular that Φ∞X → X induces a weak equivalence on p-completed

TCcyc. In fact, the sharper corepresentability result [7, 6.7] implies the following
sharper result. (We remind the reader that TCcyc here means the composite of the
functor denoted TC(−; p) in [7] with fibrant approximation.)

Proposition 8.4. The natural map Φ∞X → X in the homotopy category of pre-
cyclotomic spectra induces a weak equivalence on TCcyc.

9. Descent for TCR

In this section we study descent for TCR. If we assume that the underlying
commutative ring precyclotomic spectrum of R is cofibrant, then any smash power

R(n) of R obtains the canonical structure of a precyclotomic base. Moreover, the

maps R(m) → R(n) induced by (iterated) the inclusions of the unit and (iterated)
multiplication in the various factors are maps of cyclotomic bases. Then the usual
“Adams resolution” cosimplicial spectrum R•+1 is a cosimplicial object in the cat-
egory of cyclotomic bases and we can combine it with TC in various ways.

We have in mind the case when R = HFp (of Example 7.3) or R = mu (of

Example 7.4) and the two theorems stated below apply in particular to these cases.
In the first theorem we need to assume that R is Fp-connective, which means that

for every n, the fixed points RCpn is connective (as a non-equivariant spectrum); by
standard arguments, this is equivalent to the assumption that ΦnR is connective
(as a non-equivariant spectrum) for every n. In the second theorem, in addition to
Fp-connectivity of R, we also need a finite type hypothesis, and a condition on π0
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called “solid” by Bousfield-Kan [9, I.4.5] but (in light of emerging terminology in
the field) we call “core”: we say that π0R is core when the multiplication map

π0R⊗Z π0R −→ π0R

is an isomorphism. More generally, say that π0R is p-adically core when this iso-
morphism becomes an isomorphism after applying the zeroth left derived functor of
p-completion. We need π0R to be p-adically core and also π0(Φ

nR) to be p-adically
core for all n.

In the first descent theorem, we look at a commutative R-algebra A. The multi-
plication R(n) → R makes A a commutative R(n)-algebra for all n. Moreover, the

maps of cyclotomic bases R(m) → R(n) induce maps on TC,

TCR(m)

(A) −→ TCR(n)

(A).

We then have a cosimplicial object

T • = TCR(•+1)

(A)

with cofaces induced by inclusions of units and codegeneracies induced by multi-
plication in the usual way (see the next section for this functoriality of TC). We
prove the following theorem below.

Theorem 9.1. Let R be a Fp-connective precyclotomic base, whose underlying
commutative ring precyclotomic spectrum is cofibrant. Let A be a connective cofi-
brant commutative R-algebra. The canonical map

TC(A) −→ Tot(TCR(•+1)

(A))

is a weak equivalence.

For the second descent theorem, we start with an arbitrary associative ring

orthogonal spectrum A. We can then form THH relative to R(n) of the R(n)-

algebra R(n) ∧A:

THHR(n)

(R(n) ∧ A)

and the TC relative to R(n):

TCR(n)

(R(n) ∧ A).

The iterated unit and multiplication maps R(m) → R(n) induce maps

TCR(m)

(R(m) ∧ A) −→ TCR(n)

(R(n) ∧ A)

and in particular, we have the augmented cosimplicial object

T • = TCR(•+1)

(R(•+1) ∧ A).

In different notation, this construction generalizes to the case when R is just a
commutative ring precyclotomic spectrum and not necessarily a precyclotomic base:
we have an isomorphism of cosimplicial objects

TCR(•+1)

(R(•+1)∧A) := TCcyc(THH
R(•+1)

(R(•+1)∧A)) ∼= TCcyc(R
(•+1)∧THH(A)).

We prove the following theorem.

Theorem 9.2. Let R be an Fp-connective cofibrant commutative ring precyclo-
tomic spectrum such that p is not unit in π0R. We assume that

(i) π0(Φ
nR) is p-adically core for all n ≥ 0 and
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(ii) the underlying non-equivariant spectrum of ΦnR is finite p-type for all n.

Let A be a connective associative ring orthogonal spectrum that is cofibrant as an
associative ring orthogonal spectrum or as a commutative ring orthogonal spectrum.
Then the canonical map

TC(A) −→ Tot(TCcyc(R
(•+1) ∧ THH(A)))

is a p-equivalence. If R is an Fp-connected precyclotomic base, then the canonical
map

TC(A) −→ Tot(TCR(•+1)

(R(•+1) ∧ A))

is a p-equivalence.

Proof of Theorems 9.1 and 9.2. We note that the TCcyc construction is a homotopy
limit of Cpn -fixed points and Cpn -fixed points commute with Tot; thus, it suffices
to show that the maps

THH(A) −→ Tot(THHR(•+1)

(A))

THH(A) −→ Tot(R(•+1) ∧ THH(A))

induce a weak equivalence or p-equivalence on Cpn fixed point spectra for all n ≥ 0
in the respective cases for Theorems 9.1 and 9.2. We argue by induction on n. To
write a uniform argument, we let T • denote either of the cosimplicial objects and
prove “π-local equivalences” where π = Z in the case of Theorem 9.1 and π = Z/p
in the case of Theorem 9.2, so that a π-local equivalence means weak equivalence
in the former case and p-equivalence in the latter case.

For Theorem 9.2, the base case n = 0 follows from standard results on con-
vergence of the Adams spectral sequence. For Theorem 9.1, it is useful to note
that

THHR(q+1)

(A) ∼= THHR(A) ∧THH(A) · · · ∧THH(A) THH
R(A)

= THHR(A)∧THH(A)(q+1)

and the cosimplicial object is the Adams resolution in the category of THH(A)-

modules of THH(A) by the THH(A)-algebra THHR(A). The hypothesis that
R and A are connective (and commutative) implies that the map THH(A) →

THHR(A) is a 1-equivalence and from here the base case n = 0 follows from
standard arguments: the normalized E1-term for the homotopy group spectral
sequence is 2q-connected in cosimplicial degree q, which implies that the qth fiber
of the cosimplicial filtration on Tot is q-connected. This implies that smashing over
THH(A) with THHR(A) commutes with Tot, and the map of cosimplicial objects

THHR(A) ∼= THHR(A) ∧THH(A) THH(A) −→ THHR(A)∧THH(A)(1+•+1)

(for the constant cosimplicial object THHR(A)) is a cosimplicial homotopy equiv-
alence.

The base case shows that the map is a non-equivariant π-local equivalence and
implies that the induced map of homotopy orbits

(9.3) THH(A)hCpn

≃π−−→ Tot(T •)hCpn

is a (non-equivariant) π-local equivalence in the respective cases. Moreover, con-
nectivity of the fibers in the cosimplicial filtration implies that homotopy orbits
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commute with Tot,

Tot
(
T •
)
hCpn

≃
−→ Tot

(
T •
hCpn

)
.

Consider the norm cofiber sequence

(T •)hCpn
−→ (T •)Cpn −→ (ΦT•)

C
pn−1 −→ Σ · · · .

Commuting fixed points and homotopy orbits with Tot, up to weak equivalence,
we get a cofiber sequence

Tot(T •)hCpn
−→ Tot(T •)Cpn −→ Tot(Φ(T •))Cpn−1 −→ Σ · · ·

and compatible maps from the cofiber sequence

THH(A)hCpn
−→ THH(A)Cpn −→ (ΦTHH(A))Cpn−1 −→ Σ · · ·

By (9.3) the map in the first position is a π-local equivalence, and by induction the
map in the third position is a π-local equivalence: we can identify it up to weak
equivalence as the induced map on Cpn−1 fixed points of the corresponding descent
problem with R replaced by ΦR. It follows that the map in the middle position is
a π-local equivalence. This completes the induction. �

10. Functoriality of relative TC in the cyclotomic base

This section is devoted to studying the functoriality of TCR(A) in R as well
as A.

Let R be a precyclotomic base. Then, as observed in the proof of Theorem 5.3,
the precyclotomic base structure gives a homotopy that makes the diagram

ΦTHH(R) //

rTHH(R)

��

ΦR

rR

��

THH(R) // R

commute in the category of T-equivariant commutative ring orthogonal spectra.
We write

f0 : ΦTHH(R) −→ ΦR −→ R

f1 : ΦTHH(R) −→ THH(R) −→ R

F : ΦTHH(R)⊗ I −→ R

for the left-then-down composite, the down-then-right composite, and the homo-
topy, respectively. We write f∗

i R and F ∗R for the T-equivariant commutative
THH(R)- and (THH(R) ⊗ I)-algebra structures on R induced by fi and F . We
use the notation

c : THH(R) −→ R

for the canonical map of Definition 3.6.
For the functoriality used in Theorem 9.1, even when A is cofibrant as an R-

algebra, we cannot expect A to be cofibrant as an R(n)-algebra for all n, and so we
need to use a point-set model for the derived functor of THHR(A) that requires
minimal cofibrancy on A.

First we need to ensure that THH(A) has the right T-equivariant (Ffin-colocal)
homotopy type. For this, it suffices to assume that A is flat for the smash product
in orthogonal spectra (meaning that A ∧ (−) preserves all weak equivalences of
orthogonal spectra); moreover, when A is flat for the smash product in orthogonal
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spectra, THH(A) is flat for the smash product in T-equivariant orthogonal spectra.
To get the cyclotomic structure map on THH(A), the construction of [1, 4.2]
requires an additional hypothesis; for this, it suffices that the underlying orthogonal
spectrum of A be in the (non-equivariant) class E discussed in Section 2. To
ensure both that A is flat for the smash product in orthogonal spectra and that
the underlying orthogonal spectrum of A is in the class E , it is enough that A be
a cofibrant R-algebra for some commutative ring orthogonal spectrum R that is
cofibrant in the standard model structure or the model structure of [Cyc23].

Next we need a point-set model for the derived smash product THH(A)∧THH(R)

R. Let M be a T-equivariant orthogonal spectrum, R be a cofibrant T-equivariant
commutative ring orthogonal spectrum in the model structure of [Cyc23]. If R′ is a
cofibrant commutative R-algebra, the M ∧R R

′ represents the derived smash prod-
uct. The structure of a commutative R-algebra R′ is just a map of T-equivariant
commutative ring orthogonal spectra g : R→ R′ and R′ is a cofibrant commutative
R-algebra exactly when this map is a cofibration. In the case when R′ is not nec-
essarily cofibrant as a commutative R-algebra but is cofibrant as a T-equivariant
commutative ring orthogonal spectra, we can use the mapping cylinder construction
to produce a homotopy equivalent cofibrant commutative R-algebra. Let

Ig = (R ⊗ I) ∪(R⊗{1}) R
′

with the pushout done in the category of T-equivariant commutative ring orthogonal
spectra (i.e., “∪”= ∧), gluing along the given map g:

R⊗ {1} ∼= R
g
−→ R′.

Returning to THHR(A), when R is a cofibrant T-equivariant commutative ring
orthogonal spectrum, Ic → R is a cofibrant approximation in the category of
commutative THH(R)-algebras, and when in addition the underlying orthogonal
spectrum of the R-algebra A is flat for the smash product in orthogonal spectra,
THH(A) ∧THH(R) Ic then represents the derived functor THHR(A).

Assume the underlying orthogonal spectra ofR andA are in the (non-equivariant)
class E of Section 2 so that THH(R) and THH(A) have cyclotomic structures and
consider the following zigzag of maps.

Φ(THH(A)∧THH(R) Ic)
OO

THH(A)∧THH(R) Ic

ΦTHH(A)∧ΦTHH(R) I(Φc)

��

ΦTHH(A)∧ΦTHH(R)⊗I IF

ΦTHH(A)∧ΦTHH(R) If0

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

ΦTHH(A)∧ΦTHH(R) If1

OO✤

✤

✤

✤

✤

✤

✤

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

When R is cofibrant as a T-equivariant commutative ring orthogonal spectrum in
the model structure of [Cyc23]), THH(R), ΦTHH(R), and ΦR are also cofibrant.
By the discussion above, when in addition A is flat for the smash product in or-
thogonal spectra, then the solid arrows are weak equivalences and the dashed arrow
is an Ffin-equivalence. When in addition R is cyclotomic, the dotted arrow is an
Fp-equivalence. This zigzag motivates the following definition.

Definition 10.1. We define the category of zigzag-cyclotomic spectra as follows.
An object consists of T-equivariant orthogonal spectraX,X1, X2, X3 and T-equivariant
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maps

ΦX
r3←−− X3

r2−−→ X2
r1←−− X1

r0−−→ X.

A map of zigzag-cyclotomic spectra f : X → Y consists of maps of T-equivariant

orthogonal spectra f, f1, f2, f3 as pictured, making the following diagram commute.

ΦX oo
r3

Φf

��

X3

r2 //

f3

��

X2
oo

r1

f2

��

X1

r0 //

f1

��

X

f

��

ΦY oo
r3

Y 3 r2
// Y 2

oo
r1

Y 1 r0
// Y

For F any family of subgroups of T, an F -equivalence is a map where each of
f, f1, f2, f3 is an F -equivalence.

In order to do a TC construction, we need an Ω-spectrum replacement functor
in this category. For this is suffices to have an Ω-spectrum replacement functor R
(or more precisely, functor R and natural transformation η : Id → R) in the cate-
gory of T-equivariant orthogonal spectra that comes with a natural transformation
θ : ΦR→ RΦ that makes the following diagram commute.

ΦX
ΦηX

����
��
��
� ηΦX

��
❃❃

❃❃
❃❃

❃

ΦRX
θX

// RΦX

We call such a structure a Φ-compatible Ω-spectrum replacement functor. The-
orem 4.7 of [6] and its proof assert the existence of such functors (and construct
two). We now choose and fix a Φ-compatible Ω-spectrum replacement functor R.

We construct a functor TCz from zigzag-cyclotomic spectra to orthogonal spectra
as follows.

Construction 10.2. For a zigzag-cyclotomic spectrumX, define TRz(X) to be the

homotopy limit (constructed via the Bousfield-Kan cobar construction or mapping
microscope) of the following diagram.

(RX3)
Cpn

(Rr2)
Cpn

❑❑
❑❑

❑❑

%%❑
❑❑

❑❑
❑

(RX1)
Cpn

(Rr0)
Cpn

❏❏
❏❏

❏❏

%%❏
❏❏

❏❏
❏

· · ·

· · · // (RΦX)Cpn

��

(Rr3)
Cpn

(RX2)
Cpn

��

(Rr1)
Cpn

(RX)Cpn // (RΦX)
C

pn−1

��

(Rr3)
C
pn−1

where the unlabeled map (RX)Cpn → (RΦX)Cpn−1 (for each n ≥ 1) is the com-
posite

(RX)Cpn ∼= (ρ∗(RX)Cp)Cpn−1 −→ (ΦRX)Cpn−1 −→ (RΦX)Cpn−1

induced by the canonical map from the fixed point to the geometric fixed points
and the Φ-compatibility structure of R. Naturality of the inclusion of fixed points
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map F implies that the diagrams

(RΦX)Cpn oo
(Rr3)

Cpn

F

��

(RX3)
Cpn

(Rr2)
Cpn

//

F

��

(RX2)
Cpn oo

(Rr1)
Cpn

F

��

(RX1)
Cpn

(Rr0)
Cpn

//

F

��

(RX)Cpn

F

��

(RΦX)
C

pn−1 oo

(Rr3)
C
pn−1
(RX3)

C
pn−1

(Rr2)
C
pn−1

// (RX2)
C

pn−1 oo

(Rr1)
C
pn−1
(RX1)

C
pn−1

(Rr0)
C
pn−1

// (RX)
C

pn−1

and

(RX)
C

pn+1 //

F

��

(RΦX)Cpn

F

��

(RX)Cpn // (RΦX)
C

pn−1

commute and so F induces a self-map F of TRz(X). Define TCz(X) to be the

homotopy equalizer of F and the identity on TRz(X).

The following is clear from construction.

Proposition 10.3. If X → Y is an Fp-equivalence of zigzag cyclotomic spectra,
then the induced maps on TRz and TCz are weak equivalences.

To compare TCcyc and TCz, we use the following functor from precyclotomic
spectra to zigzag cyclotomic spectra.

Definition 10.4. Given a precyclotomic spectrum X, let zX be the zigzag cyclo-
tomic spectrum

ΦX
=
←− ΦX

rX
−−→ X

=
←− X

=
−→ X.

Theorem 10.5. There is a zigzag of natural weak equivalences connecting TCcyc(X)

and TCz(zX).

Proof. Let TRcyc(X) be the homotopy limit of (RX)Cpn under the R maps

R: (RX)Cpn ∼= (ρ∗(RX)Cp)Cpn−1 −→ (ΦRX)Cpn−1

θ
C
pn−1

−−−−−→ (RΦX)Cpn−1
Rr

C
pn−1

X

−−−−−−→ (RX)Cpn−1 .

Then TCcyc(X) is naturally weakly equivalent to the homotopy equalizer of the

self-maps induced by F and R on TRcyc(X), and since the self-map of TRcyc(X)
induced by R is naturally homotopic to the identity, TCcyc is naturally weakly
equivalent to the homotopy equalizer of the identity and the self-map induced by F
on TRcyc(X). We defined TCz(zX) as the homotopy equalizer of the identity and

the self-map induced by F on TRz(zX), and so it suffices to construct a natural

weak equivalence TRcyc(X)→ TRz(zX) that is compatible up to natural homotopy
with F.

For the diagram defining TRz, consider the subdiagram that consists of (RX)Cpn

and everything to the right of it as displayed above

(RX1)
Cpn

''❖
❖❖

❖❖
❖

(RX3)
C

pn−1

�� ((❘❘
❘❘❘

❘❘
(RX1)

C
pn−1

��
%%▲

▲▲
▲▲

▲▲

(RX)Cpn // (RΦX)
C

pn−1 (RX2)
C

pn−1
· · ·
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The homotopy limit of this diagram can be constructed as an iterated homotopy
pullback and the point-set limit is an iterated point-set pullback. In the particular
case of zX, all the vertical non-diagonal maps are the identity, and so the point-set

limit maps to (RX)Cpn by an isomorphism, and this maps to the homotopy limit
by a homotopy equivalence. Under these isomorphisms (for n varying), the maps
induced on the limits by inclusion of subdiagrams are the iterated maps

Rn−m : (RX)Cpn −→ (RX)Cpm .

The map from the sequential homotopy limit of point-set inverse limits to the homo-
topy inverse limit of the whole diagram then induces a weak equivalence TRcyc(X)

to TRz(zX) that is compatible with the F self-maps (without needing a homo-
topy). �

We now return to the problem of constructing TCR(A) as a point-set functor.
We require a functor of R and A in the following sense.

Definition 10.6. Let Pairpb denote the category where

• the objects are ordered pairs (R,A) with R a precyclotomic base and A an
associative R-algebra, where R is cofibrant in the category of T-equivariant
commutative ring orthogonal spectra (for the standard model structure or
the model structure of [Cyc23]) and the underlying orthogonal spectrum
of A is in the (non-equivariant) class E of Section 2 and is flat for the
smash product in orthogonal spectra.
• the set of maps in Pairpb from (R,A) → (R′, A′) consists of the set

of ordered pairs of maps f : R → R′ and g : A → A′ where f is a map

of precyclotomic bases and g is a map of R-algebras for the R-algebra
structure f∗A′ on A′ induced by the map f : R→ R′ underlying f .

We say that a map (f, g) in Pairpb is a weak equivalence when the map f is a weak

equivalence of precyclotomic spectra (i.e., f is an Fp-equivalence of the underlying

T-equivariant orthogonal spectra) and g is a weak equivalence.

As motivated by the discussion above, we have the following functor from Pairpb
to zigzag cyclotomic spectra.

Construction 10.7. Let (R,A) be an object in Pairpb. Define the zigzag cyclo-

tomic object THH
R
z (A) by

X3 := ΦTHH(A) ∧ΦTHH(R) I(Φc)

X2 := ΦTHH(A) ∧ΦTHH(R)⊗I IF

X1 := ΦTHH(A) ∧ΦTHH(R) If1

X := THH(A) ∧THH(R) Ic

where the maps are as described at the start of the section. We note that this is
functorial for (R,A) in Pairpb and sends weak equivalences to Fp-equivalences.

If we fix a cyclotomic base R whose underlying T-equivariant commutative ring
orthogonal spectrum is cofibrant (in either the standard model structure or the
model structure of [Cyc23]), then we get a functor from cofibrant R-algebras to
Pairpb (sending A to (R,A)). The essence of the following theorem is that the
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construction TCz(THH
R
z (A)) gives a point-set model of TCR(A) functorial in both

R and A.

Theorem 10.8. For R a fixed cyclotomic base whose underlying T-equivariant com-

mutative ring orthogonal spectrum is cofibrant in the model structure of [Cyc23]),

then the composite functor TCz(THH
R
z (−)) viewed as a functor from cofibrant

R-algebras to the stable category is naturally isomorphic to the functor TCR(−).

The proof of the theorem fills the remainder of this section.
As per the statement R is fixed, and as in Section 5 we fix a cofibrant approxima-

tion q : T → THH(R) in the category of commutative ring precyclotomic spectra,
a map of commutative ring precyclotomic spectra g : T → R and a path H from
the image of g in the homotopy equalizer

r∗T , rR∗ ◦ Φ: C omT(T ,R) //
//
C omT(ΦT ,R)

to the element specified by c ◦ q and F ◦ q. Such a path is adjoint to a map of
T-equivariant commutative ring orthogonal spectra

ΦT ⊗ I2 −→ R

which by abuse of notation, we will also denote by H . The four faces of the square
I2 are the following homotopies ΦT ⊗ I → R:

[0, 1]× {0} : F ◦ q

[0, 1]× {1} : K = constant homotopy g ◦ rT = rR ◦ Φg

{0} × [0, 1] : rR ◦ ΦG

{1} × [0, 1] : G ◦ rT

where G is the homotopy from g to c ◦ q, as in the notation in the proof of The-
orem 5.3. Since R is cofibrant as a T-equivariant commutative ring orthogonal
spectrum, the derived functor THH(A) ∧LT g∗R in that proof is represented by

THH(A) ∧T I(g) (when A is a cofibrant R-algebra as in the hypothesis of Theo-
rem 10.8), where the action of T on THH(A) is always via q : T → THH(R).

To prove Theorem 10.8, it suffices to construct a natural zigzag of Fp-equivalences

of zigzag cyclotomic spectra relating X = THH
R
z (−) and Z = z(THH(−)∧T I(g)).

Let Y be the functor from cofibrant R-algebras to zigzag precyclotomic spectra de-
fined by

Y 3 = ΦTHH(−) ∧ΦT I(Φg)

Y 2 = ΦTHH(−) ∧ΦT⊗I IK

Y 1 = ΦTHH(−) ∧ΦT I(rR ◦ Φg)

Y = THH(−) ∧T Ig

with maps

• ΦY ← Y 3 induced by the lax symmetric monoidal structure map for Φ
• Y 3 → Y 2 the composite

ΦTHH(−) ∧ΦT I(Φg) −→ ΦTHH(−) ∧ΦT I(rR ◦ Φg)

−→ ΦTHH(−) ∧ΦT⊗I IK
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where the second map is induced by the inclusion of T ⊗ {0} in T ⊗ I
and the first map is induced by the map I(Φg)→ I(rR ◦ Φg) (induced by

rR : ΦR→ R);

• Y 2 ← Y 1 induced by the inclusion of T ⊗ {1} in T ⊗ I; and
• Y 1 → Y induced by the precyclotomic structure maps rTHH(−) and rT
(using the precyclotomic equation rR ◦ Φg = g ◦ rT ).

We then have a natural map of zigzag cyclotomic spectra Y → Z = z(THH(−)∧T
I(g)) with component maps

Y 3 = ΦTHH(−) ∧ΦT I(Φg) −→ Φ(THH(−) ∧T Ig) = Z3

induced by the lax symmetric monoidal structure map of Φ;

Y 2 = ΦTHH(−) ∧ΦT⊗I IK −→ THH(−) ∧T Ig = Z2

induced by rTHH(−), rT , and the collapse map T ⊗ I → T ;

Y 1 = ΦTHH(−) ∧ΦT I(rR ◦ Φg) −→ THH(−) ∧T Ig = Z1

the map induced by rTHH(−) and rT ; and

Y = THH(−) ∧T Ig = Z

the identity. Because THH(A) and T are cyclotomic, each of these maps is an
Fp-equivalence.

We construct the natural map of zigzag cyclotomic spectra Y → X = THH
R
z (−)

as follows. The map

Y 3 = ΦTHH(−) ∧ΦT I(Φg) −→ ΦTHH(−) ∧ΦTHH(R) I(Φc) = X3

is induced by the map q : T → THH(R) and a map of commutative T -algebras
I(Φg) → (Φq)∗I(Φc) we now define. Using the multiplication by 2 isomorphism
[0, 1] ∼= [0, 2], I(Φg) is isomorphic to

(ΦT ⊗ [0, 1]) ∪ΦT⊗{1} (ΦT ⊗ [1, 2]) ∪ΦT⊗{2} (Φg)
∗R

(where the pushout is done in T-equivariant commutative ring orthogonal spectra,
i.e.,“∪”= ∧). The ΦT ⊗ [0, 1] piece maps by Φq ⊗ [0, 1], and the ΦT ⊗ [1, 2] piece
maps using the subtract 1 isomorphism [1, 2]→ [0, 1] and the homotopy ΦG (which
starts at Φc ◦ Φq and ends at Φg). The map

Y 2 = ΦTHH(−) ∧ΦT⊗I IK −→ ΦTHH(−) ∧ΦTHH(R)⊗I IF = X2

is induced by the map of commutative (T ⊗ I)-algebras

IK ∼= (ΦT ⊗ I ⊗ [0, 1]) ∪ΦT⊗{1} (ΦT ⊗ I ⊗ [1, 2]) ∪ΦT⊗{2} K
∗R −→ (Φq ⊗ I)∗IF

that sends ΦT ⊗ I⊗ [0, 1] by Φq⊗ I⊗ [0, 1] and maps ΦT ⊗ I⊗ [0, 1] using H (which
can be viewed as a homotopy from F ◦ q to K : ΦT ⊗ I → R). The maps

Y 1 = ΦTHH(−) ∧ΦT I(rR ◦Φg) −→ ΦTHH(−) ∧ΦTHH(R) I(f1) = X1

Y = ΦTHH(−) ∧T Ig −→ ΦTHH(−) ∧THH(R) Ic = X1

are defined in the same way as the maps above but with Y 1 → X1 using Φq ⊗ I
and G ◦ rT and Y → X using q ⊗ I and G. A straightforward check of diagrams

(using the precyclotomic equations q ◦ rT = rTHH(R) ◦ Φq and g ◦ rT = rR ◦ Φg)

shows that these maps construct a map of zigzag cyclotomic spectra. Because the
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map T → THH(R) is by definition an Fp-equivalence, the resulting map Y → X
is a Fp-equivalence of zigzag cyclotomic spectra.

Work in Progress

[Cyc23] Andrew J. Blumberg and Michael A. Mandell. The homotopy theory of cyclotomic spec-
tra: 10 years later. In preparation.
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