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Abstract

In this paper, we provide a new proof of the stable Adams conjecture.

Our proof constructs a canonical null-homotopy of the stable J-homo-

morphism composed with a virtual Adams operation, by applying the

K-theory functor to a multinatural transformation. We also point out that

the original proof of the stable Adams conjecture is incorrect and present

a correction. This correction is crucial to our main application. We settle

the question on the height of higher associative structures on the mod pk

Moore spectrum Mp(k) at odd primes. More precisely, for any odd prime p,

we show that Mp(k) admits a Thomified An-structure if and only if n < pk.

We also prove a weaker result for p = 2.
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1. Introduction

The celebrated result commonly referred to as “the Adams conjecture”

establishes the fact that for a given odd prime p, and for any integer q serving
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as a topological generator of the p-adic units Ẑ×p , the following composite map

of spaces is null homotopic (when localized at p):

(1.1) J ◦ (ψq − 1) : BU BU BSL1(S),

where ψq represents the corresponding Adams operation, and J represents the

complex J-homomorphism from the classifying space of infinite unitary group

to the classifying space of the group-like E∞-space of stable self homotopy

equivalences of degree 1 of the sphere. A similar statement holds for the prime

p = 2 with BU replaced by BO, BSL1(S) replaced by BGL1(S), J replaced by

the real J-homomorphism and q = 3.

A host of important consequences ensuing from this result are well known

to any practitioner of algebraic topology; see [Ada63] and subsequent articles.

Notice that all the spaces and maps involved in the statement of the

Adams conjecture (1.1) are infinite loop spaces and infinite loop maps (when

localized at a prime p). However, the original conjecture did not demand that

the composite be null as an infinite loop map. Demanding that the composite

be null as an infinite loop map is known as the infinite loop Adams conjecture or

the stable Adams conjecture. This stable enhancement of the Adams conjecture

has its own set of important consequences [MP78], [May78a], [CLM76, II.10].

The Adams conjecture was solved by Quillen [Qui71] and Sullivan [Sul74]

using different techniques. Quillen made use of modular character theory to

approximate the p-completion of BU (or BO at the prime 2) using classifying

spaces of discrete groups Gln(Fq), where Fq is the algebraic closure of the field

of order q and q is prime to p. On the other hand, Sullivan’s key idea was to

use étale homotopy theory to interpret Adams operations as elements of the

absolute Galois group Aut(C/Q) acting on the profinite completion of BU.

In 1977, Friedlander and R. Seymour [FS77] announced two solutions to

the stable Adams conjecture. However, the paper was later retracted due to

a fatal flaw in the arguments of one of the proofs. The other solution was

later elaborated in [Fri80] and remains the only accepted proof of the stable

Adams conjecture to this date. Unfortunately, however, Friedlander’s proof

now also appears to be incorrect, leaving the literature with an awkward gap;

see Appendix A.

In this paper, we provide two different solutions to the stable Adams con-

jecture. In our first solution we realize the Adams operation as a map of per-

mutative categories. We then realize the J-homomorphism as a multifunctor

and produce a canonical null-homotopy refining the stable Adams conjecture.

In fact, this null-homotopy is constructed in the form of a multinatural trans-

formation exploiting the important work of Elmendorf and Mandell [EM06],

[EM09]. This approach avoids results from [Fri80]. Our second proof can be

regarded as a correction to [Fri80] as it uses the classification theorem [Fri80,

Th. 6.1] that Friedlander devised to resolve the stable Adams conjecture.
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Our correction to the stable Adams conjecture is critical to our main

application — detecting homotopy coherence of associativity (in the sense of

Stasheff [Sta63a], [Sta63b]) of multiplicative structures on the mod pi Moore

spectrum Mp(i), a problem that is at least 50 years old!

Remark 1.2. The stable enhancement of the Adams conjecture is not true

if in (1.1), we replace BU by BO, choose J to be the real J-homomorphism and

localize at the prime 2. This was proven by Madsen [Mad75] by studying the

Dyer-Lashof algebra structures.

Notation 1.3. We use the following notation through out the paper:

• Sp – the category of symmetric spectra.

• ku – the (−1)-connected cover of the periodic complex K-theory KU.

• bu – the 0-connected cover of ku.

• ku(p) – the fiber of the composite map ku(p) → HZ(p) � H(Z(p)/Z), where

the first map is the zeroth Postnikov approximation of ku(p). Thus, π2iku(p)
∼= π2iku(p)

∼= Z(p) for all i > 0, and π0ku(p)
∼= Z.

• pic(R) – the Picard spectrum of an E∞-ring R.

• picev(S(p)) – the even Picard spectrum of the p-local sphere, i.e., the spec-

trum associated to the order 2 subgroup of π0pic(S(p)) ∼= Z (see Examples 2.7

and 2.8).

• picev(Ŝp) – The even Picard spectrum of the p-complete sphere Ŝp.
• GL1(R) – The space of units of the ring spectrum R.

• SL1(R) – The identity component of GL1(R).

• bgl1(R) – The spectrum obtained by delooping BGL1(R) for an E∞-ring R.

• bsl1(R) – The 1-connected cover of bgl1(R).

• J : ku(p) → picev(S(p)) – The stable J-homomorphism (defined in Section 5).

Notation 1.4. For the rest of the paper, p will be used to denote any prime.

For a fixed p, let q denote another prime such that

q ≡

{
l mod p2 if p is odd,

−1 mod 4 if p = 2,

where l is a generator of (Z/p2Z)×. By Dirichlet’s theorem there exists infin-

itely many choices for q for a given p. With these properties, q is a topological

generator of Ẑ×p , when p is odd. If p = 2, q is a topological generator of an

infinite subgroup of Ẑ×2 ∼= Z/2× Ẑ2 isomorphic to Ẑ2.

The bulk of the work in this paper is to prove the following theorem.

Theorem 1.5 (Unreduced stable Adams conjecture). The composite map

(1.6) ku(p) ku(p) picev(S(p))
ψq−1 J

is null-homotopic, where ψq denotes the corresponding Adams operation.
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The above null-homotopy can be chosen canonically giving rise to an ex-

tension
J̃ : Cof(ψq − 1) picev(S(p)).

In Section 6, we prove that

Theorem 1.7. The map induced by J̃ on π1(−),

π1(J̃) : Z ∼= π1(Cof(ψq − 1)) π1(picev(S(p))) ∼= Z×(p),

sends 1 to q.

Theorem 1.7 embodies a crucial fact that contradicts [Fri80]. We address

the matter in more detail in Appendix A.

We also study a reduced version of the stable Adams conjecture, which is

exactly the stable enhancement of the Adams conjecture in its original form

(1.1). The statement of the reduced version of the stable Adams conjecture

remains unchanged (see [Fri80, p. 109]) regardless of the modifications (in par-

ticular Theorem 1.7) in the statement of unreduced Adams conjecture proposed

in this paper.

Theorem 1.8 (Reduced stable Adams conjecture). The composition of

the maps

bu(p) bu(p) bsl1(S)(p)
ψ
q
0−1 J0

is null-homotopic.

As an application of Theorem 1.7 we study the problem of higher associa-

tivity of Moore spectra. Let Mp(i) denote the Moore spectrum given by the

cofiber of the degree pi-map on the sphere spectrum S. Here is a brief histor-

ical account regarding the development of this problem of higher associative

multiplication on Mp(i).

By 1960, it was well known to the experts that M2(1) cannot support a

unital multiplication, i.e., an A2-structure. This is an easy application of the

Cartan’s formula for Steenrod operations. Perhaps the first non-trivial result

was due to Toda [Tod68] when he proved that the multiplication on M3(1) is

not homotopy associative, i.e., M3(1) does not admit an A3-structure. Soon

after it was noticed that the work of Kraines [Kra66] and Kochmann [Koc72]

can be combined to generalize Toda’s result to show that Mp(1) admits an

Ap−1-structure that does not extend to an Ap-structure. In 1982, Oka [Oka84]

showed that M2(i) admits an A3-structure for i > 1. Aside from these sporadic

results, the question of An-structures on Mp(i) has proved to be intractable and

remained open until the recent work in [Bha20].

Now we summarize the key idea in [Bha20] with minor modifications.

Notice that Mp(i) is the Thom spectrum associated to a map

fp,i : S1 BGL1(Ŝp)
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representing the class 1 + piu ∈ π1(Ŝp) ∼= Ẑp, where u ∈ Ẑ×p . If the map fp,i
is an An-map, then Mp(i) inherits an An-structure. Motivated by this fact, we

make the following definition.

Definition 1.9. A Thomified An-structure on the Moore spectrum Mp(i)

is an An-structure induced by an An-map

fp,i : S1 BGL1(Ŝp)

of degree 1 + piu ∈ π1(Ŝp) ∼= Ẑp for some u ∈ Ẑ×p .

A result of Stasheff [Sta63a], [Sta63b] implies fp,i is an An-map if and only

if there exists a stable lift (up to homotopy) in the diagram

(1.10)

ΣS bgl1(Ŝp).

Σ−1CPn

fp,i

f
(n)
p,i

In [Bha20], the author studied an Atiyah-Hirzebruch spectral sequence and

obtained a lower bound on i, dependent on p and n, which guaranteed an

An-structure on Mp(i).

In this paper, we resolve [Bha20, Conj. 4.12], which predicts that fp,i
factors through the J-homomorphism. Indeed, by Theorem 1.7 we get fp,i as

the composite

(1.11) fp,i : ΣS Cof(ψq − 1) bgl1(S(p)) bgl1(Ŝp),
εp(i) J̃

where

(1.12) εp(i) =

®
(p− 1)pi−1 if p is odd,

2i−2 if p = 2.

This leads to a sharp answer to the problem of higher associativity of Moore

spectra, at least at odd primes. In Section 7, we prove

Theorem 1.13. When p is an odd prime, Mp(i) admits a Thomified An-

structure if and only if n < pi. For i > 1, M2(i+ 1) admits a Thomified

A2i−1-structure that does not extend to a Thomified A2i+1-structure.

Remark 1.14. At an odd prime, the obstruction to extending the Thomi-

fied Api−1-structure on Mp(i) to a Thomified Api-structure is an element in

π2pi−3(Mp(i)) represented by a generator of the same degree in the image of J.

Convention 1. Throughout the paper, p-completion, p-localization and

Q-localization of spectra will refer to the Bousfield localization [Bou79] at

Mp(1), S(p) and HQ respectively. In the context of spaces, we will prefer to work

with Bousfield-Kan localization [BK72] since the constructions needed in this
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paper require explicit point-set/simplicial models. These constructions make

use of the natural map (3.11) of simplicial sets whose existence is guaranteed

for Bousfield-Kan localization (see [Goe98]).

Convention 2. Since we have made essential use of étale homotopy theory

in Section 3, that section, and the first part of Section 4, is developed in the

language of simplicial sets and simplicial schemes. However, our applications

are most naturally described in the category of topological spaces. Therefore,

after Section 4.3 we switch from simplicial sets to topological spaces.

A sketch-proof of Theorem 1.5. Our first and the most important step

(also see (1.17)) is to construct a family of ψq-equivariant p-local spherical

fibrations

(1.15) {πi : SBGli BGli : i ∈ N}

such that πi is equivalent to the p-localization of the fibration B(∗,Gli(C),S2i)

→ BGli(C). Therefore, the fiber of πi is equivalent to S2i
(p).

Using the Moore loop space of BGli as a model for Gli(C)(p), we construct

a permutative category GlC,p and a monoidal functor

Ψq : GlC,p GlC,p

with the property that on applying the K-theory functor, we get

(i) K(GlC,p) ' ku(p), and

(ii) K(Ψq) ' ψq, the q-th Adams operation.

There also exists a permutative category GlS2
(p)

such that K(GlS2
(p)

)'picev(S(p)).

The family of fibrations {πi : i ≥ 1} produces a functor J : GlC,p → GlS2
(p)

,

but unfortunately, it is not guaranteed to be a monoidal functor (see (5.5)).

However, the family of fibrations {πi : i ≥ 1} constructs for us a multifunctor

Ĵ : υGlC,p υGlS2
(p)
,

where υ denotes the forgetful functor from the category of permutative cate-

gories to the category of multicategories (see (2.3)). The K-theory functor of

[EM09] (denoted by KEM), which constructs spectra starting from multicate-

gories, then produces the stable J-homomorphism J (as in Theorem 1.5).

The ψq-equivariance of πi leads to a weak-equivalence

ψ̂
q
i : S2i

(p) ' Fib(πi) Fib(πi) ' S2i
(p),

which is a degree qi map (Corollary 4.39). The family of maps {ψ̂qi : i ∈ N}
can be assembled to form a multinatural transformation

(1.16) η : Ĵ ' Ĵ ◦ υΨq.

Thus, we get an explicit null-homotopy of Theorem 1.5 by applying the func-

tor KEM (see Theorem 2.13) or the functor K ◦ φ (see Theorem 2.12 and

Remark 5.7).
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In Appendix A, we provide another proof of Theorem 1.5, using a classi-

fication theory of X-fibrations in F-T op [Fri80, Th. 6.1].

Remark 1.17. The family of fibrations (1.15) that we construct in this

paper is the p-local analog of a p-completed family considered in [Fri80]. This

construction allows us to avoid various technical issues arising from the fact

that p-completions are not closed under smash product.

Organization of the paper. In Section 2, we review the construction of the

K-theory functor. In Section 3, we summarize some of the fundamental results

in étale homotopy theory that we use in this paper.

In Section 4 we construct a p-local spherical fibration which is the key

to the proof of Theorem 1.5 — the unreduced stable Adams conjecture. In

Section 5, we prove Theorems 1.5 and 1.8.

In Section 6, we prove Theorem 1.7, a result which is crucial, not only to

the study of An-structures on Mp(i), but also to the comparison of our solution

to that in [Fri80]. In Section 7, we study Thomified An-structures on Mp(i)

and prove Theorem 1.13.

In Appendix A, we discuss [Fri80] and the errors therein. Using [Fri80,

Th. 6.1], we provide another solution to the stable Adams conjecture.
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2. Permutative categories, multicategories and K-theory

In this section, we review the construction of the K-theory functor, start-

ing with the work of Segal [Seg74] and ending with the work of Elmendorf and

Mandell [EM06], [EM09].

Let F denote the category of finite pointed sets. For any category C, let

F-C be the category of functors from F to C. In [Seg74], Segal constructed a

functor

Φ : F- T op Ho(Sp),
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where Ho(−) stands for the associated homotopy category, and he showed that

many interesting spectra (such as ku , ko, S among others) can be constructed

using the functor Φ.

A few years later, J.P. May [May78b] showed that one can construct spec-

tra starting from permutative categories (see definition below). More precisely,

J.P. May constructed a sequence of functors

(2.1) PC F-PC F- T op,
µ B

where PC is the category of small permutative categories and B is the usual

bar construction of categories.

In [EM06], authors refined the functor Φ to obtain a K-theory functor

Kseg : PC Sp,

where Sp is the modern pointset category of symmetric spectra. The work in

[EM06], [EM09] resulted in a new K-theory functor

K : PC Mult Spυ KEM

that factors through the category of small multicategories. They showed

Theorem 2.2 (Elmendorf-Mandell). For any small permutative category

P, Kseg(P) and K(P) are weakly equivalent.

A permutative category P is a symmetric monoidal category in which

associativity (including unitality) holds strictly. A multicategory M consists

of a set of objects, the data of n-morphisms Mn(a1, . . . , an; b) that admits an

action of Σn, a multiproduct structure

Mn(b1, . . . , bn; c)×Mk1(a11, . . . , a1k1 ; b1)× · · · ×Mk1(a11, . . . , a1k1 ; b1)

Mk1+···+kn(a11, . . . , ankn ; c)

Γ

and a unit 0M, which satisfy the conditions listed in [EM06, Def. 2.1]. An

n-morphism in Mn(a1, . . . , an; b) should be interpreted as a map whose source

is the n-tuple of objects (a1, . . . , an) and target is the object b. There is a

forgetful functor

(2.3) υ : PC Mult

that assigns to every permutative category P its underlying multicategory υP

where

υPn(a1, . . . , an; b) := P(a1 ⊕ · · · ⊕ an; b).

Its left adjoint, i.e., the free functor

φ :Mult PC,
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constructs a permutative category φM from the multicategory M. The cate-

gory φM has as its objects the free monoid on objects of M. Explicit descrip-

tion of morphism sets can be found in the proof of [EM09, Th. 4.2]. The φ-υ

adjunction is comonadic [EM09, Th. 4.3].

Example 2.4. Let GlC be the permutative category whose objects are

{Cn : n ∈ N} ∼= N and morphisms are

GlC(Cn,Cm) =

{
Gln(C) if m = n,

∅ otherwise.

The monoidal product is the “block-diagonal sum.” Upon applying the

K-theory functor we obtain the spectrum ku. By changing the coefficients to

real numbers, one can construct GlR ∈ PC whose K-theory is the spectrum ko.

In the following examples, we let G(X,X′) denote the space of weak-

equivalences between X and X′ with the assumption that G(X,X′) = ∅ if

X 6' X′.

Example 2.5. Let X be a pointed topological space. Let GlX denote the

permutative category whose objects are pairs

{(n,Y) : n ∈ N and Y is weakly equivalent to X∧n }

and morphisms are

GlX((n,Y), (m,Y′)) =

{
G(Y,Y′) if m = n,

∅ otherwise.

The monoidal structure is induced by the smash product in T op∗.

Remark 2.6. Let N denote the permutative category with objects (N,+)

whose morphism set consists of identity maps only. Note that K(N) ' HZ.

There is a monoidal functor

GlX N

that is identity on objects and trivial projection on morphisms. This map

induces an isomorphism on the zeroth homotopy groups and thus π0(K(GlX))
∼= Z.

Example 2.7. Note that K(GlS1) is the Picard spectrum pic(S). The spec-

trum K(GlS2) is the even Picard spectrum picev(S). The K-theory functor

applied to the obvious monoidal functor

GlS2 GlS1 ,
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which sends (S2)∧n to (S1)∧2n, results in a map

picev(S) pic(S),

which is multiplication by 2 on the zeroth homotopy. The 0-connected cover

of both picev(S) and pic(S) are equivalent to the spectrum bgl1(S).

Example 2.8. Similar to the above example, we also have K(GlS1
(p)

) '
pic(S(p)) and K(GlS2

(p)
) ' picev(S(p)).

Example 2.9. We denote by SG(X∧n,X∧n) the identity component of

G(X∧n,X∧n).

Let SlX denote the category with objects {X∧n : n ∈ N} ∼= N and mor-

phisms

SlX(X∧n,X∧m) =

{
SG(X∧n,X∧n) if m = n,

∅ otherwise.

Then SlX can be given a structure of a permutative category using the smash

product provided all coordinate-wise permutations λσ : X∧n → X∧n (where

σ ∈ Σn) is an element of SG(X∧n,X∧n).

Remark 2.10. When X = S1, SlX is not a permutative category. This is

because the non-trivial permutation of the two-fold smash product S1 ∧ S1 is

of degree −1. However, SlS2 is a permutative category.

Remark 2.11. Whenever SlX is a permutative category, there is an evident

monoidal functor from SlX → GlX. In fact, K(SlX) is equivalent to the fiber of

a map K(GlX)→ ΣH(π1K(GlX)) that induces an isomorphism on fundamental

groups.

The category PC of small permutative categories can be given a multi-

category structure that is enriched over Cat (the category of small categories).

LikewiseMult, the category of small multicategories, is a symmetric monodial

category. Let KEM be a lax monodial functor, and let K be a multifunctor.

Combining the main results of [EM06] and [EM09] we get, among other things,

that both KEM and K admit enrichment over simplicial sets. In particular, we

have

Theorem 2.12 (Elmendorf-Mandell). Let F,G : P → Q be two lax

monoidal functors that are strict on units. Then a lax monoidal natural trans-

formation η : F→ G produces a homotopy

K(η) : K(F) ' K(G)

on applying the K-theory functor.
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Theorem 2.13 (Elmendorf-Mandell). Let F,G : M → N be two multi-

functors. Then a multinatural transformation η : F→ G produces a homotopy

KEM(η) : KEM(F) ' KEM(G)

on applying the K-theory functor.

Since we use Theorem 2.13 to resolve the stable Adams conjecture, we

quickly review the definition of a multifunctor and a multinatural transforma-

tion. A multifunctor between two multicategories F : M→ N consists of

• a function from the objects of M to the objects of N such that F(0M) = 0N,

and

• for all objects b and a tuple (a1, . . . , an), a function

Mn(a1, . . . , an; b) M′
n(F(a1), . . . ,F(an); F(b))

that preserves Σn-action, units and multiproduct structures.

Given two multifunctors F,G : M → N, a multinatural transformation η :

F→ G consists of a collection of maps

ηa : F(a)→ G(a)

for every object a ∈M so that the diagram

M(a1, . . . , an; b)

G
��

F // N(F(a1), . . . ,F(an); F(b))

(ηb)∗
��

N(G(a1), . . . ,G(an); G(b))
(ηa1 ,...,ηan )∗

// N(F(a1), . . . ,F(an); G(b))

commutes for all tuples (a1, . . . , an) and all objects b of M.

The functor Kseg has the advantage that it constructs an Ω-spectrum, i.e.,

for a permutative category P and all n ∈ N, we have an equivalence

B(Kseg(P))[n]
'−→ Kseg(P)[n+1],

where (Kseg(P))[n] is the n-th space of the spectrum Kseg(P). This particular

property of the functor Kseg allows us to track the homotopy type of the resul-

tant spectrum. On the other hand, KEM has the advantage that it constructs

spectra out of multicategories (which are arguably less restrictive than permu-

tative categories), but it does not necessarily produce an Ω-spectrum, making

it difficult to track the homotopy type of the constructed spectrum. However,

if a multicategory is the underlying multicategory of a permutative category,

then from the φ-υ adjunction we get

(2.14) K(P) = KEM(υP) ' K(φυP).

One should be careful about the fact that KEM(M) may not be equivalent to

K(φM) without the hypothesis M ∼= υP for some P ∈ PC.
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3. A brief review of étale homotopy theory

Étale homotopy theory began with the work of Artin and Mazur [AM69],

where they constructed a functor

ÉtAM : Sch Pro-Ho(sSet)

from the category of schemes to the procategory of the homotopy category of

simplicial sets, which assigns a scheme to its étale homotopy type. Friedlan-

der [Fri82] developed the notion of rigid étale cover for simplicial schemes to

produce a refinement

Ét : sSch Pro-sSet

such that ÉtAM is the composite

ÉtAM : Sch sSch Pro-sSet Pro-Ho(sSet).Ét

Remark 3.1. Note that any simplicial set can be viewed as a constant pro-

simplicial set by virtue of a fully faithful functor c : sSet Pro-sSet.

The étale cohomology of a scheme V with constant coefficients coincides

with the singular cohomology of Ét(V) (which is computed as the direct limit of

singular cohomology groups induced by an inverse system representing Ét(V)).

More precisely,

H∗ét(V,CA) ∼= H∗(Ét(V); A)

for any finite abelian group A. If the absolute Galois group Gal(F/F) of a field

F is finite, then the étale homotopy type of Spec(F) is the classifying space of

its absolute Galois group, i.e.,

Ét(SpecF) ' BGal(F/F)

as pro-simplicial sets. In general, Ét(SpecF) is contractible with an action of

Gal(F/F). If K is a field extension of F, VF
• is a simplicial scheme over F and

VK
• := VF

• ×
SpecF

SpecK,

then Ét(VK
• ) admits an action of Aut(K/F).

For a scheme VF and a field extension K of F, we let

V(K) := HomSch|K(SpecK,VK)

denote the set of K-points. The action of Gal(K/F) on V(K) is by conjugation

(3.2) σ∗f(−) := σf(σ−1(−)).

Likewise, for a simplicial scheme VF
• , we let V(K)• ∈ sSet denote the simplicial

set obtained by taking the K-points levelwise.
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By applying the étale homotopy functor Ét, we get a natural Gal(F/F)-

invariant map of pro-simplicial sets

(3.3) ν : V(F)• HomPro-sSet(Ét(SpecF), Ét(VF
• )).

Notation 3.4. For any field K, we let

ÉtK(−) := HomPro-sSet(Ét(SpecK), Ét(−)).

Remark 3.5. When K is algebraically closed, the functor ÉtK can replace

Ét because Ét(SpecK) is contractible and there is a natural equivalence

(3.6) Ét(VK
• ) ÉtK(VK

• ).'

Further, when K = F and VF
• is defined over F, then the natural equivalence

(3.6) is also a Gal(F/F)-equivariant map.

Given an algebraic group GF over F, its bar complex BGF is a simplicial

scheme. The General Isomorphism Conjecture (GIC) of Friedlander and Mislin

[FM84] asserts that (3.3) will induce an isomorphism

(3.7) H∗et(BGF,CZ/nZ) ∼= H∗(BG(F);Z/nZ)

for any connected linear algebraic group scheme when F is algebraically closed

and n is invertible in F. They prove GIC when F = Fq, the algebraic closure

of the field of order q (see [FM84, Prop. 2.3, Proposition 2.4]).

Theorem 3.8 (Friedlander-Mislin). A connected linear algebraic group

GFq satisfies GIC.

When F = C with the usual topology, then the isomorphism of (3.7) is

known to be true for a larger class of simplicial schemes. It should be noted

that if C is given the usual topology, then V(C)• is a simplicial space and not a

simplicial set. However, we obtain a simplicial set by considering the singular

simplex of the geometric realization of V(C)•

V(C)top := Sing|V(C)•|.

The generalized Riemann existence theorem [AM69, Th. 12.9] as exposed by

Friedlander in the context of simplicial schemes [Fri82, Th. 8.4], says that

Theorem 3.9 (Generalized Riemann Existence Theorem). Let (VC
• , v) be

a pointed, connected simplicial scheme over C of finite type. Then there is a

weak equivalence

(3.10) V(C)top ' ÉtC(VC
• , v)

in Pro-sSet∗.
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A weak equivalence, as in (3.10), is equivalent to saying ÉtC(VC
• , v) is the

pro-finite completion of V(C)top
• . The pro-finite completion functor

(̂·) : sSet Pro-sSet

is the left adjoint of the limit functor

‖ · ‖ : Pro-sSet sSet

that sends a pro-simplicial set to its limiting simplicial set. Morel [Mor96]

constructed the p-pro-finite completion (·)p (a functorial p-completion within

Pro-sSet) such that the composite functor

(̂·)p : sSet Pro-sSet Pro-sSet(̂·) (·)p

can be compared with the p-completion functor of Bousfield and Kan [BK72].

For any Y ∈ sSet, we get a natural map

(3.11) µ : Y ˆ
p ‖Ŷp‖,

which is an equivalence if Hk(Y;Z/pZ) is finite for all k (see [Goe98, Cor. 3.16]).

Thus, we may conclude

Theorem 3.12. Let (VC
• , v) be a pointed, connected simplicial scheme

over C of finite type. Further, if H∗(V(C)top,Z/pZ) is of finite type, then

(1) (V(C)top) ˆ
p ' ‖ÉtC(VC

• )p‖, and

(2) H∗(V(C)top;Z/pZ) ∼= H ∗
et (VC

• ,CZ/pZ).

Let WFq denote the ring of Witt vectors over Fq. Then we have a zigzag

of ring maps

(3.13) Fq WFq C,π ι

where π is the quotient map that annihilates the unique maximal ideal of

WFq and ι is a choice of Brauer embedding. Friedlander [Fri82, §8] expressed

the comparison results of Artin and Mazur [AM69, §12] in terms of simplicial

schemes to obtain the following result: If V
WFq
• is a smooth proper connected

simplicial scheme over SpecWFq, then the maps in the zigzag induced by (3.13)

and (3.6),

ÉtFq(V
Fq
• )p Ét(V

Fq
• )p Ét(V

WFq
• )p Ét(VC

• )p ÉtC(VC
• )p,

'' ' '

are weak equivalences in Pro-sSet. Combining this with Theorems 3.8 and 3.12,

Friedlander and Mislin proved



STABLE ADAMS CONJECTURE AND HIGHER ASSOCIATIVE STRUCTURES 389

Theorem 3.14 ([FM84, Th. 1.4]). When G is an integral group scheme

such that G(C)top is a reductive complex Lie group, then

(3.15) BG(Fq) ˆ
p ' (BG(C)top) ˆ

p.

Example 3.16. The general linear group Gli(C) and its maximal torus

Ti(C) := Gl1(C)×i ⊂ Gli(C)

are examples of complex reductive Lie groups and defined over Spec(Z). Thus

(3.15) holds when G is chosen to be GlZi and TiZ.

Remark 3.17. The Teichmüller lift results in a group homomorphism

e : F×q WF×q C×ι×

sending elements of F×q within roots of unity. Therefore, we have a map of

groups

Ti(e) : Ti(Fq) Ti(C) Ti(C)top.

It is known that the induced map on the p-completion of the classifying space

B(Ti(e)) ˆ
p is a weak equivalence. Thus when G = Ti, the weak equivalence es-

tablished by (3.15) can also be obtained by an explicit map, namely, B(Ti(e)) ˆ
p.

A proof can be found in [FM84].

Proposition 3.18. Let NZ
i = Σi n TiZ denote the discrete extension of

the torus TiZ. Then

BNi(e) : BNi(Fq) BNi(C)top

is an equivalence after p-completion.

Proof. Note that the spaces BNi(Fq) and BNi(C)top map to BΣi,

BNi(Fq) BNi(C)top

BΣi,

BNi(e)

with fibers BTi(Fq) and BTi(C)top respectively. Thus, using Remark 3.17 and

a Serre spectral sequence argument, we conclude that the map BNi(e) induces

an isomorphism in HFp-coefficients, and hence, by [BK72, I.5.5] we get the

result. �
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4. A family of ψq-equivariant spherical fibrations

The main goal of this section is to construct the family (1.15) of ψq-equi-

variant p-local spherical fibrations and explore some of its properties. Our

construction of the fibration πi can be broken down into three steps:

(i) Construct a ψq-equivariant p-completed spherical fibration

π̂i : SBGl ˆ
i BGl ˆ

i

with fiber equivalent to the p-completed sphere Ŝ2i
p .

(ii) Construct ψq-equivariant spherical fibration

νi : SBNi BNi

so that we have a ψq-equivariant map

(νi)Q (π̂i)Q

of fibrations.

(iii) Use ψq-equivariant arithmetic fracture squares, in the sense of [BK72,

VI.8.1], to construct πi.

The first two steps make use of étale homotopy theory.

4.1. Constructing p-complete spherical fibrations. Let ? := Spec0 denote

the empty scheme. For any ring R, let AiR − 0 denote the scheme representing

the i-plane without the origin. Define the simplicial scheme

S2i
R := ? ∪ (AiR − 0)×∆[1] ∪ ?,

where we choose and fix one of the two copies of ? as the basepoint (see

Remarks 4.2 and 4.3), and let

SBGlCi,• := B(?,GlCi ,S
2i
C).

There is a natural map of simplicial schemes

(4.1) αi : SBGlCi,• BGlCi,•

that admits a section σi, i.e., αi ◦ σi is the identity map on BGlCi,•.

Remark 4.2. For a group scheme G, and schemes X and Y that are paired

with G appropriately, the two-sided bar construction B(X,G,Y) is a simplicial

scheme. If X (or Y) is the empty-scheme ?, one should interpret B(?,G,Y)

(likewise B(X,G, ?)) as the simplicial scheme obtained by deleting X (likewise

Y) in the resolution of B(X,G,Y) (see [Fri82, Exam. 1.2]). With this conven-

tion, BG• is indeed B(?,G, ?).
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Remark 4.3. The simplicial scheme B(?,GlRi , S
2i
R) should be interpreted

as the pushout in the diagram

B(?,GlRi , (AiR − 0)× ∂∆[1]) B(?,GlRi , ∂∆[1])

B(?,GlRi , (AiR − 0)×∆[1]) B(?,GlRi ,S
2i
R).

A choice of basepoint ?→ S2i
R is really a choice of section

σi : BGlRi,• SBGlCi,•

of αi.

Remark 4.4. There is a natural map

τZi,j : S2i
Z × S2i

Z S2i+2j
Z

induced by

(1) the usual map of schemes τi,j : (AiZ− 0) ×
SpecZ

(AjZ− 0) −→ (Ai+jZ − 0), and

(2) a map of simplicial sets c : ∆[1]×∆[1] −→ ∆[1], which we described below.

Note that the n-th set of ∆[1]n is hom∆(n,1), where

n := {0 < 1 < · · · < n}

is the totally ordered set with n+ 1 elements and can be viewed as a category.

The map c is induced by the functor

1× 1 1,

which sends (0, 0), (1, 0), (0, 1) to 0 and (1, 1) to 1. Therefore, the restriction

of τZi,j to either S2i
Z or S2j

Z is a trivial map.

Notation 4.5. Set SBGl ˆ
i := ‖ÉtC(SBGlCi,•)p‖, BGl ˆ

i := ‖ÉtC(BGlCi,•)p‖ and

π̂i := ‖ÉtC(αi)p‖.

Lemma 4.6. The fiber of the map

π̂i : SBGl ˆ
i BGl ˆ

i

is weakly equivalent to Ŝ2i
p , the p-completion of 2i-sphere.

Proof. By definition, the map αi of (4.1) at the level of complex points

gives rise to a spherical fibration over BGli(C) with fiber S2i. By [BK72,

II.4.8], p-completing the map αi on the level of complex points also gives rise

to a fibration with fiber being Ŝ2i
p . By Theorem 3.12, we may identify this

fibration with the étale homotopy type as stated in the lemma. �
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Now we would like to discuss the “ψq-equivariance” of the map π̂i. Since

α̂i is induced by a map of simplicial schemes over Z, π̂i is equivariant with

respect to the action of Aut(C/Q) on SBGl ˆ
i and BGl ˆ

i . Any element

σ ∈ Aut(C/Q),

whose cyclotomic character is 1
q , can be regarded as the q-th Adams operation;

see [Sul74] as well as (4.7). Therefore, π̂i is a “ψq-equivariant map.”

Remark 4.7. For the multiplicative group scheme GlZ1 := SpecZ[x±] and

any field F, the action of σ ∈ Gal(K/F) (as defined in (3.2)) on

Gl1(K) ∼= K×

is given by σ∗(z)=σ−1(z). If σ∈Aut(C/Q) has cyclotomic character χ(σ)= 1
q ,

then χ(σ−1) = q and it sends a root of unity ζ to its q-th power ζq. Therefore,

σ∗ : C× C×

agree with the Frobenius automorphism Frq : Fq → Fq under the map

e : F×q WF×q C×.ι×

This fact will play a crucial role in the construction of (1.15) as in Section ??.

4.2. Constructing p-local spherical fibrations. The space BNi(C)top is ra-

tionally equivalent to BGli(C)top, and the q-th Adams operation

ψ
q
i : BNi(C)top BNi(C)top

is induced by the q-th power map on Ctop. However, Aut(C/Q) may not

act continuously on BNi(C)top (as it acts discontinuously on C with the usual

topology). Thus, BNi(C)top may not necessarily admit a “ψq-equivariant map”

to BGl ˆ
i . Therefore, we define

Definition 4.8. Let BNi be the pullback in the diagram

(4.9)

BNi BNi(Fq) ˆ
p

RBNi(C)top (BNi(C)top) ˆ
p,

γi

BNi(e) ˆ
p'

ρi

where ρi : RBNi(C) → BNi(C) ˆ
p denotes the functorial fibrant replacement of

the natural map from BNi(C)top to its p-completion.

Note that the automorphism of BNi(Fq) induced by the Frobenius Frq
agree with the automorphism ψ

q
i under BNi(e). Thus, Frq and ψqi together
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induce an automorphism of BNi which, due to a lack of a better name, will

also be denoted by

ψ
q
i : BNi BNi

and will be referred to as “the q-th Adams operation” on BNi. By construction

BNi ' BNi(C)top

and there is a natural map

(4.10)

γ̃i : BNi BNi(Fq) ˆ
p

BNi(C) ˆ
p BGli(C) ˆ

p

‖ ̂BGli(C)p‖ BGl ˆ
i ,

γi

BNi(e) ˆ
p

µ

where the last map is induced by the universal property of pro-finite comple-

tions.

Remark 4.11. The action of any element σ ∈ Gal(C/Q) of cyclotomic

character 1
q on BGl ˆ

i agrees with the action of ψqi on BNi along the map γ̃i;

also see (4.7).

Notation 4.12. For the rest of the paper we choose and fix an element

σ ∈ Gal(C/Q)

of cyclotomic character 1
q .

Definition 4.13. Define BGli as the pullback in the diagram

(4.14)

BGli BGl ˆ
i

R(BNi)Q (BGl ˆ
i)Q,

R(γ̃i)Q

where R(γ̃i)Q : R(BNi)Q → (BGl ˆ
i)Q is the functorial fibrant replacement of

the map (γ̃i)Q.

It is immediate from the construction that BGli is weakly equivalent to

BGli(C)top
(p) . It follows from Remark 4.11 that the automorphism ψ

q
i of BNi

together with the action of σ on BGl ˆ
i , induces an automorphism of BGli which

we also denote by

(4.15) ψ
q
i : BGli BGli.

We refer to it as the “q-th Adams operation” on BGli.
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Our next goal is to construct the total space SBGli using an arithmetic

fracture square similar to (4.14). Therefore, we consider the simplicial scheme

SBNR
i,• := B(?,NR

i,•, (S
2
R)∧i).

Proposition 4.16. The natural map induced by e : F×q → C× defined in

Remark 3.17

SBNi(e) : SBNi(Fq) SBNi(C)top

is an isomorphism after p-completion.

Proof. Both the groups Ni(Fq) and Ni(C)top map to Σi with kernels Ti(Fq)
and Ti(C)top respectively. Hence, both the spaces SBNi(Fq) and SBNi(C)top

map to BΣi

SBNi(Fq) SBNi(C)top

BΣi

SBNi(e)

with fibers B(?,Ti(Fq), S2
Fq

(Fq)∧i) and B(?,Ti(C),S2
C(C)∧i)top. Therefore, by

[BK72, I.5.5], it is enough to show that the map

B(?,Ti(Fq),S2i
Fq

(Fq)) B(?,Ti(C),S2i
C(C))top

induces an isomorphism in HFp-homology.

Since GlR1
∼= A1

R − 0 as a GlR1 -torsor over SpecR, the Gl1(R)-equivariant

cellular structure of S2
R(R) is given by the pushout diagram

Gl1(R)× ∂∆[1] ∂∆[1]

Gl1(R)×∆[1] S2
R(R)

for any ring R. Thus, the equivariant cells of (S2
Fq

(Fq))∧i and (S2
C(C))∧i are

in bijection and the isotropy subgroup of a cell in S2
Fq

(Fq)∧i includes in the

isotropy subgroup of the corresponding cell in S2
C(C)∧i as an approximation of

the form Tj(Fq)→ Tj(C) for some j ≤ i. Taking the bar construction converts

this to the inclusion on the level of classifying spaces that is an isomorphism in

HFp-homology; see (3.15) and Remark 3.17. Thus, if we filter both SBNi(Fq)
and SBNi(C)top using the Ti(·)-equivariant cellular filtration of S2

(·)(·)
∧i, then

the map induced by SBNi(e) on each filtration quotient is an isomorphism in

HFp-homology. Since, (S2
R(R))∧i consists of finitely many Ti(R)-equivariant

cells, an inductive argument proves the result. �
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Definition 4.17. Define the space SBNi as the pullback along in the dia-

gram

(4.18)

SBNi SBNi(Fq) ˆ
p

RSBNi(C)top (SBNi(C)top) ˆ
p,

Sγi

SBNi(e) ˆ
p

Sρi

where Sρi : RSBNi(C)top → (SBNi(C)top) ˆ
p denotes a functorial fibrant re-

placement of the natural map from SBNi(C)top to its p-completion.

The automorphism of RSBNi(C)top induced by the q-th power map and

the automorphism of SBNi(Fq) induced by the Frobenius map Frq agree along

SBNi(C)top. Let the common automorphism be denoted by

ψ
q
i : SBNi SBNi,

and refer to it as the “q-th Adams operation” on SBNi. Straightforward from

the construction, we get a ψq-equivariant map

νi : SBNi BNi

whose fiber is weakly equivalent to S2i. Now, we have a map

(4.19)

Sγ̃i : SBNi SBNi(Fq) ˆ
p

SBNi(C) ˆ
p SBGli(C) ˆ

p

‖ ̂SBGli(C)p‖ SBGl ˆ
i ,

Sγi

SBNi(e) ˆ
p

µ

where the last map is induced by the universal property of pro-finite comple-

tions.

Definition 4.20. Define the space SBGli as the pullback along the diagram

(4.21)

SBGli SBGl ˆ
i

R(SBNi)Q (SBGl ˆ
i)Q,

R(Sγ̃i)Q

where R(Sγ̃i)Q : R(SBNi)Q → (SBGl ˆ
i)Q is the functorial fibrant replacement

of (Sγ̃i)Q.



396 PRASIT BHATTACHARYA and NITU KITCHLOO

Since the automorphism ψq of SBNi commutes with the action of σ on

SBGl ˆ
i along the composite (4.10), SBGli is also equipped with an automor-

phism

ψ
q
i : SBGli SBGli,

which we refer to as the “q-th Adams operation” on SBGli. It follows from the

construction of SBGli and BGli that there is a ψq-equivariant map

(4.22) πi : SBGli BGli.

The map πi admits a ψq-equivariant section, i.e., a map

σi : BGli SBGli,

such that πi ◦ σi = 1BGli , for reasons that are explained in Remark ??.

Lemma 4.23. The fiber of the map πi is equivalent to the p-local 2i-sphere.

Proof. From Definition 4.20, Fib(πi) fits into the homotopy pullback square

Fib(πi) Fib(π ˆ
i )

Fib((νi)Q) Fib((π ˆ
i )Q).

It is easy to see Fib((νi)Q) ' S2i
Q . From Lemma 4.6, Fib(π ˆ

i ) ' Ŝ2i
p , further

Fib((π ˆ
i )Q) ' Fib(π ˆ

i )Q ' (Ŝ2i
p )Q,

and hence, Fib(πi) ' S2i
(p). �

We end this subsection proving the following result.

Theorem 4.24. For all i, j ≥ 0, there exists a ψq-equivariant commuta-

tive diagram

(4.25)

SBGli × SBGlj SBGli+j

BGli × BGlj BGli+j

ωi,j

πi×πj πi+j

µi,j

induced by the block-diagonal sum map. Further, the families {µi,j : i≥0, j≥0}
and {ωi,j : i ≥ 0, j ≥ 0} satisfy the external associativity condition

µi+j,k ◦ (µi,j × 1BGlk,p) = µi,j+k ◦ (1BGli,p × µj,k),
ωi+j,k ◦ (ωi,j × 1BGlk,p) = ωi,j+k ◦ (1BGli,p ×ωj,k).
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Proof. Notice that the maps τi,j and c of Remark 4.4 satisfy the external

associativity condition

τi+j,k ◦ (τi,j ×
SpecZ

1(AkZ−0)) = τi,j+k ◦ (1(AiZ−0) ×
SpecZ

τj,k),

c ◦ (c× 1∆[1]) = c ◦ (1∆[1] × c).

This, along with the commutative diagram

Gli ×
SpecZ

Glj ×
SpecZ

(AiZ − 0) ×
SpecZ

(AjZ − 0) Gli+j ×
SpecZ

(Ai+jZ − 0)

(AiZ − 0) ×
SpecZ

(AjZ − 0) (Ai+jZ − 0)

implies the commutative diagram of simplicial schemes

(4.26)

SBGlZi,• × SBGlZj,• SBGlZi+j,•

BGlZi,• × BGlZj,• BGlZi+j,•

ωZ
i,j

πZi×πZj πZi+j

µZi,j

such that the families {ωZ
i,j : i, j ≥ 1} and {µZi,j : i, j ≥ 1} satisfy external

associativity conditions. Applying the functor ‖ÉtC((·) ×
SpecZ

SpecC)p‖ to the

above diagram one constructs a p-completed version of the diagram in (4.25).

An easy diagram chase leads to the commutative diagram

SBNi × SBNj SBNi+j

BNi × BNj BNi+j

such that its Q-localization maps to the diagram obtained by applying ‖Ét(·)p‖Q
to (4.26). Thus we can form an arithmetic fracture square of the diagram (4.26)

and the result follows. �

4.3. Some properties of the fiber of πi. We now discuss some of the im-

portant consequences of Theorem 4.24. An explicit point-set definition for the

fiber of a map is important for the completeness of our arguments.

Convention 3. For the sake of simplicity of arguments, henceforth we work

only in T op and avoid sSet.

Recall that the Moore path space of a space B ∈ T op∗ is defined as

P(B) := {(t, f : R≥0 → B) : t ≥ 0, f(0) = ∗ and f(s) = f(t) for all s ≥ t},
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where ∗ is the base-point. There is a natural evaluation map

ev : P(B) B

such that (t, f) 7→ f(t). For the rest of the paper, we let Ω(B) denote the

Moore loop space

Ω(B) := ev−1(∗).

Definition 4.27. For B ∈ T op∗ and a map π : E → B in T op, define the

fiber Fib(π) ∈ T op as the pullback

Fib(π) E

P(B) B.

π

Explicitly, Fib(π) := {(e, (t, f)) : π(e) = f(t)} ⊂ E × P(B). If π admits a

section, i.e., a map s : B → E such that π ◦ s = 1B, then its reduced fiber

F̃ib(π) ∈ T op∗ is defined as the cofiber

F̃ib(π) := Cof(s′ : P(B)→ Fib(π)),

where s′(t, f) = ((s ◦ ev)(t, f), (t, f)) and the collapsed image of P(B) is set as

the basepoint.

A straightforward consequence of Definition 4.27 is the following lemma.

Lemma 4.28. Let B be a pointed topological space, and let π : E → B be

a sectioned map. Then there exists a strictly associative map of monoids

a : Ω(B) G(F̃ib(π), F̃ib(π))

induced by the concatenation of paths, which is a map P(B)× P(B)→ P(B).

Notation 4.29. For the rest of the paper we let S̃2i
(p) denote the fiber

F̃ib(|πi|) when i ≥ 1. The q-th Adams operation on S̃2i
(p) induced by the

ψq-invariance of the map πi will be denoted by

(4.30) ψ̂
q
i : S̃2i

(p) S̃2i
(p).

When i = 0, we set S̃0
(p) := S0 and declare ψ̂q0 = 1S0 .

Notation 4.31. For i ≥ 1, we abbreviate Ω|BGli| to G̃li, let

µ̃i,j := Ω(|µi,j |) : G̃li × G̃lj G̃li+j

denote the “block-diagonal sum,” and let

ψ̃
q
i := Ω(|ψq|) : G̃li G̃li
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denote the q-th Adams operation on G̃li. When i = 0, we designate G̃l0 as the

trivial group, µ̃i,0 and µ̃0,j as the identity maps, and ψ̃q0 as the unique self-map

of G̃l0.

Immediate from Lemma 4.28, we have a map

ιi : G̃li G(S̃2i
(p), S̃

2i
(p))

of strictly associative H-spaces with strict units. Let ι̃i : G̃li × S̃2i
(p) −→ S̃2i

(p)

denote the adjoint of ιi. Clearly, the map ι̃i is ψq-equivariant:

(4.32)

G̃li × S̃2i
(p) S̃2i

(p)

G̃li × S̃2i
(p) S̃2i

(p).

ι̃i

ψ̃
q
i×ψ̂

q
i ψ̂

q
i

ι̃i

Furthermore, Theorem 4.24 implies that for all i ≥ 0 and j ≥ 0, we have maps

(4.33) ρ̃i,j : S̃2i
(p) × S̃2j

(p) S̃2i+2j
(p)

that are ψq-equivariant,

(4.34)

S̃2i
(p) × S̃2j

(p) S̃2i+2j
(p)

S̃2i
(p) × S̃2j

(p) S̃2i+2j
(p) ,

ρ̃i,j

ψ̂
q
i×ψ̂

q
j ψ̂

q
i+j

ρ̃i,j

externally associative,

(4.35) ρ̃i+j,k ◦ (ρ̃i,j × 1S̃2k
(p)

) = ρ̃i,j+k ◦ (1S̃2i
(p)
× ρ̃j,k),

and satisfy the ψq-equivariant diagram

(4.36)

G̃li × G̃lj × S̃2i
(p) × S̃2j

(p) S̃2i
(p) × S̃2j

(p)

G̃li+j × S̃2i+2j
(p) S̃2i+2j

(p) .

µ̃i,j×ρ̃i+j

ι̃i×ι̃j

ρ̃i+j

ι̃i+j

It will follow, essentially from Remark 4.4, that the maps ρ̃i,j can be extended

ψq-equivariantly to S̃2i
(p) ∧ S̃2j

(p), which also satisfies (4.34), (4.35) and (4.36)

with obvious modifications. More precisely, we prove

Lemma 4.37. There exists a family of ψq-equivariant maps

Fam := {ρi,j : S̃2i
(p) ∧ S̃2j

(p) → S̃2i+2j
(p) : i ≥ 0, j ≥ 0}

such that



400 PRASIT BHATTACHARYA and NITU KITCHLOO

(1) ρi,0 = ρ0,i = 1S̃2i
(p)

,

(2) ρi,j is a weak equivalence for all i, j ≥ 0,

(3) ρi+j,k ◦ (ρi,j ∧ 1S̃2k
(p)

) = ρi,j+k ◦ (1S̃2i
(p)
∧ ρj,k), and

(4) the diagram

G̃li × G̃lj × S̃2i
(p) ∧ S̃2j

(p) S̃2i
(p) ∧ S̃2j

(p)

G̃li+j × S̃2i+2j
(p) S̃2i+2j

(p)

ι̃i∧ι̃j

µi,j×ρi,j ρi,j

ι̃i+j

commutes.

Proof. In the commutative diagram of ψq-equivariant sectioned maps

(4.38)

SBGlε SBGli × SBGlj SBGli+j

BGlε BGli × BGlj BGli+j ,

λ̃ε

πε

ωi,j

πi×πj πi+j

λε

σε

µi,j

σi×σj σi+j

where ε ∈ {i, j}, the composite ωi,j ◦ λ̃ε factors through σi+j (see Remark 4.4).

Consequently, the right commutative square in (4.38) satisfies (4.41). By set-

ting

(π1, π2, π3, π1,2, π2,3, π1,2,3) = (πi,πj ,πk,πi+j ,πj+k,πi+j+k)

in (4.40), we get (1), (2) and (3). Since all the maps in (4.38) are ψq-equi-

variant, the maps ρi,j is also a ψq-equivariant map.

It follows from (4.38) and Lemma 4.28 that the composite

S̃2i
(p) ∨ S̃2j

(p) S̃2i
(p) × S̃2j

(p) S̃2i+2j
(p)

is equivariantly contractible with respect to the action of G̃li× G̃lj , and hence

the condition (4). �

Corollary 4.39. The q-th Adams operation ψ̂qi : S̃2i
(p) → S̃2i

(p) is a map

of degree qi, hence a weak equivalence.

Proof. The case i = 1 follows from the formal property that the q-th

Adams operation converts a line bundle L to its q-th tensor power L⊗q. This

is encoded in the fact that the q-th Adams operation on BGl1(C)top is induced
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by the q-th power map of Gl1(C)top. The general case follows from the ψq-equi-

variance of the map ρi,j (see Lemma 4.37),

S̃2i
(p) ∧ S̃2j

(p) S̃2i+2j
(p)

S̃2i
(p) ∧ S̃2j

(p) S̃2i+2j
(p) ,

ρi,j

ψ̂
q
i∧ψ̂

q
j ψ̂

q
i+j

ρi,j

and an inductive argument. �

Proposition 4.40. Suppose that there exists a commutative diagram of

sectioned maps

E1 × E2 E1,2

B1 × B2 B1,2

π1×π2

ω1,2

π1,2

µ1,2

s1×s2 s1,2

such that

(4.41) ω(π−1
1 (b1)× s2(b2) ∪ s1(b1)× π−1

2 (b2)) = s(µ(b1, b2)).

Then there exists a natural map

ω̂1,2 : F̃ib(π1) ∧ F̃ib(π2) F̃ib(π1,2).

Further, if there are commutative diagrams of sectioned maps

E2 × E3 E2,3

B2 × B3 B2,3

π2×π3

ω2,3

π2,3

µ2,3

s2×s3 s2,3

E1,2 × E3 E1,2,3

B1,2 × B2 B1,2,3

π1,2×π3

ω(1,2),3

π1,2,3

µ(1,2),3
s1,2×s3 s1,2,3

E1 × E2,3 E1,2,3

B1 × B2,3 B1,2,3

π1×π2,3

ω1,(2,3)

π1,2,3

µ1,(2,3)
s1×s2,3 s1,2,3

that satisfy (4.41) and

ω(1,2),3 ◦ (ω1,2 × 1E3) = ω1,(2,3) ◦ (1E1 × ω2,3),

µ(1,2),3 ◦ (µ1,2 × 1B3) = µ1,(2,3) ◦ (1B1 × µ2,3),

then

ω̂(1,2),3 ◦ (ω̂1,2 ∧ 1F̃ib(π3)
) = ω̂1,(2,3) ◦ (1

F̃ib(π1)
∧ ω̂2,3).
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Proof. By assumption, we obtain a commutative diagram

Fib(π1)× Fib(π2) Fib(π)

P(B1)× P(B2) P(B)

π′1×π′2

ω′

π′

µ′

s′1×s′2 s′

such that

ω′((π′1)−1(x1)× s′2(x2) ∪ s′1(x1)× (π′2)−1(x2)) = s′(µ′(x1, x2)).

Consequently, the continuous map

ω̂1,2 : F̃ib(π1) ∧ F̃ib(π2) F̃ib(π)

which sends ([f1, t1], [f2, t2]) to [ω′(f1, f2),max{t1 + t2, 1}], where 0 ≤ ti ≤ 1 is

the cone coordinate with the basepoint at ti = 1, is well-defined. Rest of the

assertions can be easily verified from the above formula. �

5. A canonical solution to the stable Adams conjecture

We first construct a new permutative category GlC,p equipped with a

monoidal functor
Ψq : GlC,p GlC,p

such that K(GlC,p) ' ku(p) and K(Ψq) is equivalent to the q-th Adams opera-

tion on ku(p). Then we construct a multifunctor

(5.1) Ĵ : υGlC,p υGlS2
(p)

and declare KEM(Ĵ) to be the map J of Theorem 1.5. Finally, we observe

that the collection of maps {ψ̂i : i ∈ N} of (4.31) produces the multinatural

transformation of (1.16). Thus, invoking Theorem 2.13 we produce a canon-

ical null-homotopy that resolves Theorem 1.5 — the unreduced stable Adams

conjecture.

Definition 5.2. Let GlC,p denote the permutative category whose objects

are the natural numbers (N,+) and morphisms are

MorGlC,p(i, j) :=

{
G̃li if i = j,

∅ otherwise,

with µ̃i,j (see (4.31)) as the monoidal product on morphisms.

Lemma 5.3. There is a strict monoidal functor Ψq : GlC,p → GlC,p such

that

K(Ψq) : ku(p) ku(p)

is the q-th Adams operation.
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Proof. Define Ψq as the map that is identity on objects and maps f ∈
MorGlC,p(i, i) = G̃li to ψ̃qi (f) for all i ∈ N, where ψ̃qi is the map defined in

(4.31). It can be readily checked that Ψq(1i) = 1i. Further, the map µi,j (see

(4.25)) is ψq-equivariant, so we have

µ̃i,j ◦ (ψ̃qi × ψ̃
q
j) = ψ̃

q
i+j ◦ µ̃i,j .

Hence, the functor Ψq is strictly monoidal.

The fact that K(Ψq) induces the q-th Adams operation is essentially a

well-known observation of Sullivan [Sul74]. �

Although one would ideally like to construct the stable J-homomorphism

J : ku(p) picev(S(p)).

by applying the K-theory functor to a monoidal functor J : GlC,p → GlS2
(p)

of

permutative categories, the obvious functor J, which sends i to S̃2i
(p) on objects

and

(5.4) ιi : G̃li G(S̃2i
(p), S̃

2i
(p))

on morphisms, may not be a monoidal functor; see (5.5). Therefore, we forget

down to Mult.

Remark 5.5. In order for J to be monoidal, we need a family of maps

{ρi,j : S̃2i
(p) ∧ S̃2j

(p) → S̃2i+2j
(p) : i, j ≥ 0}

that satisfy

(A) ρi,j is invertible, i.e., it is a homeomorphism;

(B) ρi,0 = ρ0,i = 1S̃2i
(p)

; and

(C) ρi,j+k ◦ (1S̃2i
(p)
∧ ρi,j) = ρi+j,k ◦ (ρi,j ∧ 1S̃2k

(p)
).

While the family Fam of Lemma 4.37 satisfies (B) and (C), it may not sat-

isfy (A).

Lemma 4.37 immediately gives rise to the multifunctor Ĵ of formula (5.1),

which maps the object i to S̃2i
(p), and on n-morphisms, sends x ∈ G̃li =

υGlC,p(i1, . . . , in; i) to the composite map

S̃2i1
(p) ∧ · · · ∧ S̃2in

(p) S̃2i
(p) S̃2i

(p).
ρi1,...,in ιi(x)

Let (i1, . . . , in) ∈ N×k, and define ρi1,...,ik inductively using the formula

ρi1,...,in := ρi1,i2+···+in ◦ (1
S̃
2i1
(p)

∧ ρi2,...,in).
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Likewise, define the map µ̃i1,...,in : G̃li1 × · · · × G̃lin → G̃li1+···+in using the

formula

µ̃i1,...,in := µ̃i1,i2+···+in ◦ (1
G̃li1
∧ µ̃i2,...,in).

The fact that Ĵ is a multifunctor follows from the observations that

(i) the map ρi1,...,in is a weak equivalence with ρi = 1S̃2i
(p)

,

(ii) ρi1,...,in◦(ρi11,...i1k1∧· · ·∧ρin1,...inkn ) = ρi11,...,inkn whenever ij1+· · ·+ijkj =

ij for all 1 ≤ j ≤ n; and

(iii) there is a commutative diagram

G̃li1 × · · · × G̃lin × S̃2i1
(p) ∧ · · · ∧ S̃2i2

(p) S̃2i1
(p) ∧ · · · ∧ S̃2i2

(p)

G̃li1+···+in × S̃2i1+···+2in
(p) S̃2i1+···+2in

(p) .

ι̃i1∧...∧ι̃in

µi1,...,in×ρi1,...,in ρi1,...,in

ι̃i1+···+in

Proof of Theorem 1.5 (Unreduced stable Adams conjecture). Theorem 2.12

implies that it is enough to produce a multinatural transformation η : Ĵ →
Ĵ ◦ υΨq. We declare

ηi := ψ̂
q
i : Ĵ(i) = S̃2i

(p) → (Ĵ ◦ υΨq)(i) = S̃2i
(p).

In order for η to be a multinatural transformation, the diagram

(5.6)

G̃li G(S̃2i1
(p) ∧ · · · ∧ S̃2ik

(p) , S̃
2i
(p))

G(S̃2i1
(p) ∧ · · · ∧ S̃2ik

(p) , S̃
2i
(p)) G(S̃2i1

(p) ∧ · · · ∧ S̃2ik
(p) , S̃

2i
(p))

ρ∗i1,...,ik
(ιi)

ρ∗i1,...,ik
(ιi◦ψ̃qi ) (ηi)∗

(ηi1∧···∧ηik )∗

must commute. Assume i = i1 + · · ·+ ik; otherwise the spaces involved in the

diagram (5.6) are empty. From the ψq-equivariance of the map ρi,j we get

S̃2i
(p) ∧ S̃2j

(p) S̃2i+2j
(p)

S̃2i
(p) ∧ S̃2j

(p) S̃2i+2j
(p) ,

ρi,j

ηi∧ηj ηi+j

ρi,j

and therefore,

ρi1,...,ik ◦ (ηi1 ∧ · · · ∧ ηin) = ηi ◦ ρi1,...,ik .
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Further, from the commutative diagram

G̃li × S̃2i
(p) S̃2i

(p)

G̃li × S̃2i
(p) S̃2i

(p),

ι̃i

ψ̃q×ηi ηi

ι̃i

we conclude

ιi(ψ
q
i (·))(ηi(··)) = ηi(ιi(·))(··).

Thus (5.6) commutes:

(ιi(ψ̃
q(·)) ◦ ρi1,...,ik ◦ (ηi1 ∧ · · · ∧ ηik))(··) = (ιi(ψ̃

q(·)) ◦ ηi ◦ ρi1,...,ik)(··)

= (ιi(ψ̃
q(·)) ◦ ηi)(ρi1,...,ik(··))

= ηi(ιi(·))(ρi1,...,ik(··)). �

Remark 5.7. By choosing

ku(p) := Kseg(φυGlC), picev(S(p)) := Kseg(φυGlS2
(p)

),

ψq := Kseg(φυΨq), J := Kseg(φĴ),

we can make sure that the maps

ψq : ku(p) ku(p)

J : ku(p) picev(S(p))

are maps of Ω-spectrum; see Theorem 2.2 and (2.14). Then Kseg(φ(η)) is a

homotopy J ' J ◦ψq that solves Theorem 1.5.

Proof of Theorem 1.8. By definition, bu(p) is the fiber of a ring map

ku(p) HZ

representing a generator of HZ0ku(p). Likewise, bgl1(S(p)) is the fiber of a map

picev(S(p)) HZ.

Since ψq induces the identity map on π0, we have a lift

ψ
q
0 : bu(p) bu(p)
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by an argument using the five lemma. An identical argument lifts J to a map

J′0 : bu(p) → bgl1(S(p)). Thus we have a homotopy commutative diagram

bu(p) bu(p) bgl1(S(p))

ku(p) ku(p) picev(S(p))

ψ
q
0−1 J′0

ι

ψq−1 J

and consequently ι ◦ J′0 ◦ (ψq0 − 1) ' ∗. In fact, J′0 ◦ (ψq0 − 1) ' ∗; if not, then

it must factor through the fiber

Fib(ι) ' Σ−1HZ

via an essential map. This contradicts the fact that HZ−1bu(p) = 0.

Note that bsl1(S)(p) is the fiber of bgl1(S(p)) → ΣHZ×(p). Thus we have a

lift of J′0, namely J0,

bsl1(S)(p)

bu(p) bu(p) bgl1(S(p)) ΣHZ×(p),ψ
q
0−1 J′0

J0

as (HZ×(p))
1bu(p)

∼= 0. Further, J0 ◦ (ψq0 − 1) ' ∗ as (HZ×(p))
0bu(p)

∼= 0. �

6. The J-homomorphism and fundamental groups

Note π0(ψq) : π0ku(p) → π0ku(p) is the identity map as Adams operations

on vector bundles do not change the virtual dimension of the bundle. Thus by

running the long exact sequence

0 0 Z

π1ku(p) π1ku(p) π1(Cof(ψq − 1))

π0ku(p) π0ku(p) π0(Cof(ψq − 1))

Z Z Z

∼= ∼= ∼=

ψq−1

ψq−1

∼=

∼ = ∼ = ∼ =

associated to the cofiber sequence ku(p) → ku(p) → Cof(ψq − 1), we get

π1(Cof(ψq − 1)) ∼= Z.
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By Theorem 1.5, J ◦ (ψq − 1) ' ∗ and thus we have an extension

J̃ : Cof(ψq − 1) picev(S(p)).

The main purpose of this section is to understand the effect of J̃ on the fun-

damental groups and prove Theorem 1.7.

By Remark 5.7, we may assume that ku(p) and picev(S(p)) are Ω-spectrum.

By construction, there is a map in Ho(T op) from BG̃li to the i-th component

of the zeroth space K(GlC,p)[0]. Thus we get a map (in Ho(Sp))

ri : Σ∞(BG̃li)+ ku(p),

such that π0(ri) : Z→ Z sends 1 to i. Similarly, we also have a map

si : Σ∞BG(S̃2i
(p))+ picev(S(p))

such that π0(si) : Z → Z sends 1 to i and π1(si) : Z×(p) → Z×(p) is an isomor-

phism. Let

Cyl(ψq,BG̃li) := hocolim

{
BG̃li BG̃li

1
B›Gli

Bψ̃qi

}
denote the mapping cylinder. By construction, we have a commutative diagram

Σ∞(BG̃li)+ Σ∞(BG̃li)+ Σ∞Cyl(ψq,BG̃li)+

ku(p) ku(p) Cof(ψq − 1),

Σ∞+ (Bψ̃qi−1)

ri ri r̃i

ψq−1

where the rows are cofiber sequences. By comparing the long exact sequences

of homotopy groups associated to each row above, we deduce that

(6.1)

π1(r̃i) : Z ∼= π1(Σ∞Cyl(ψq,BG̃li)+) π1(Cof(ψq − 1)) ∼= Z(p)

sends 1 to i.

If we view G̃li as well as G(S̃2i
(p), S̃

2i
(p)) as categories with one object, then

the map ιi of (5.4) (which defines the J-homomorphism) is a functor and the

map ηi = ψ̂
q
i is a natural transformation between ιi and ιi ◦ ψ̃qi . Thus we have

a homotopy Bιi ' Bιi ◦ Bψ̃qi , and consequently, an induced map

ιi : Cyl(ψq,BG̃li) BG(S̃2i
(p), S̃

2i
(p))
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such that the diagram

(6.2)

Σ∞Cyl(ψq,BG̃li)+ Σ∞BG(S̃2i
(p), S̃

2i
(p))+

Cof(ψq − 1) picev(S(p))

Σ∞+ ιi

ri si

J̃

commutes in Ho(Sp).

Lemma 6.3. The map induced by ιi on the fundamental groups

π1(ιi) : Z ∼= π1Cyl(ψq,BG̃li) π1BG(S̃2i
(p), S̃

2i
(p))
∼= Z×(p)

sends n to deg(ψ̂qi )
n.

Proof. The Hurewicz theorem implies

HZ1Cyl(ψq,BG̃li) ∼= π1Cyl(ψq,BG̃li) ∼= Z

and

HZ1BG(S̃2i
(p), S̃

2i
(p))
∼= π1BG(S̃2i

(p), S̃
2i
(p))
∼= Z×(p).

Thus it is enough to show the result for HZ1(ιi).

Let 1 be the unit interval category, with objects {0, 1} and α : 0 → 1

denoting the only non-trivial morphism. As a simplicial set, Cyl(ψq,BG̃li) is

a quotient of B(1× G̃li). More explicitly, its n-th space is the set

Ln = {[0 g1→ · · · gi−1→ 0
α→ 1

gi+1→ · · · gn→ 1] : gi ∈ G̃li}/ ∼,

where the equivalence relation is generated by

[0
ψ̃
q
i (g)→ 0

α→ 1] ∼ [0
α→ 1

g→ 1].

The homology of the chain-complex Z[L∗] is isomorphic to HZ∗Cyl(ψq,BG̃li)),

and HZ1Cyl(ψq,BG̃li)) is generated by the class [α].

The n-th space of the simplicial set BG(S̃2i
(p), S̃

2i
(p)) is

Wn = {S̃2i
(p)

f1→ · · · fn→ S̃2i
(p) : fi ∈ G(S̃2i

(p), S̃
2i
(p))},

and homology of the chain complex Z[W∗] is isomorphic to HZ∗BG(S̃2i
(p), S̃

2i
(p)).

The map ιi on the n-th space is given by

[0
g1→ · · · gi−1→ 0

α→ 1
gi+1→ · · · gn→ 1]

[S̃2i
(p)

ιi(ψ̃
q
i (g1))
−→ · · ·

ιi(ψ̃
q
i (gi−1))
→ S̃2i

(p)

ψ̂
q
i−→ S̃2i

(p)

ιi(gi+1)−→ · · · ιi(gn)−→ S̃2i
(p)].

In particular, [α] 7→ [ψ̂qi ], and hence the result. �
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Proof of Theorem 1.7. As a consequence of Corollary 4.39, Lemma 6.3

and (6.1), we get the following diagram when we hit (6.2) by π1(−):

(6.4)

Z Z×(p)

Z(p) Z×(p).

1 7→qi

17→i

π1(J̃)

It follows that π1(J̃) must send 1 to q. �

6.1. The indeterminacy of π1(J̃). Note that Theorem 1.7 depends on the

explicit null-homotopy, namely, Kseg(φ(η)) (see Remark 5.7), as it is needed

in the construction of the extension J̃. Therefore, a different null-homotopy

η′ : J ' J ◦ψq

can result in an extension

J̃′ : Cof(ψq − 1) picev(S(p))

different from J̃ (in Ho(Sp)). Thus, as in Theorem 1.7, π1(J̃′) may not send 1

to q. Our next goal is to prove the following theorem.

Theorem 6.5. If J̃′ fits into the homotopy commutative diagram

(6.6)

ku(p) ku(p) Cof(ψq − 1)

picev(S(p)),

ψq−1

J
J̃′

then π1(J′)(1) = ±q ∈ Z×(p) if p is odd, and π1(J′)(1) = q if p = 2.

By Remark 2.11 there exists a map

δ : picev(S(p)) ΣHZ×(p)

that induces isomorphism on fundamental groups. Now notice that in the

following sequence of maps,

(6.7) ku(p) ku(p) picev(S(p)) ΣHZ×(p),
ψq−1 J δ

J ◦ (ψq − 1) ' ∗ by Theorem 1.5, and δ ◦ J ' ∗ as HZ1ku(p)
∼= 0. Thus, the

Toda bracket

〈δ, J,ψq − 1〉 ⊂ [Σku(p),ΣHZ×(p)] ∼= Z×(p)
is well defined.
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Lemma 6.8. Let ρ : Cof(ψq − 1) → Σku(p) denote the connecting map.

There exists a map J̃′ satisfying the diagram (6.6) and the equation

π1(δ ◦ J̃′)(1) = k

if and only if there exists an element γ ∈ 〈δ, J,ψq−1〉 such that π1(γ◦ρ)(1) = k.

Proof. It follows from the definition of Toda bracket that for any choice

of J̃′, there exists an element γ ∈ 〈δ, J,ψq − 1〉, and vice versa, that fits in a

diagram

ku(p) ku(p) picev(S(p)) ΣHZ×(p),

Cof(ψq − 1)

Σku(p)

ψq−1 J δ

J̃′

ρ

γ

and hence the result. �

From the above lemma and Theorem 1.7, we get the following corollary.

Corollary 6.9. The Toda bracket 〈δ, J,ψq − 1〉 ⊂ Z×(p) contains q.

Proof of Theorem 6.5. By Lemma 6.8, it is enough to show that the inde-

terminacy of the bracket 〈δ, J,ψq − 1〉, which is the double coset

δ ◦ [Σku(p), pic
ev(S(p))] + [Σku(p),ΣHZ×(p)] ◦Σ(ψq − 1) ⊂ [Σku(p),ΣHZ×(p)] ∼= Z×(p)

lies in the torsion subgroup {±1} ⊂ Z×(p). Since ψq acts as the identity map on

π0(ku(p)), it follows that

[Σku(p),ΣHZ×(p)] ◦ Σ(ψq − 1) = {0}.

Notice that [Σku(p), pic
ev(S(p))] ∼= [Σku(p), bgl1(S(p))] and that the composition

(6.10)

Σku(p) Σku(p) bgl1(S(p))

Σ gl1(S(p)) Σ gl1(KU ˆ
p) ΣKU ˆ

p,

Σ(ψq−1) γ

'

`

where ` is logarithm map of [Rez06], must be trivial. This is because the

composite induces zero-map on πk for k > 1 as the higher homotopy groups of

bgl1(S(p)) are torsion and the homotopy groups of ΣKU ˆ
p are torsion free and

periodic. Thus π1 of the composition map in (6.10) factors through ker(π1(`)),
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which is isomorphic to the torsion subgroup in Z×p (because ` is an equivalence

after K(1)-localization). Since the map

bgl1(S(p)) Σ gl1(KU ˆ
p)

is injective on π1, it follows that

δ ◦ [Σku(p), pic
ev(S(p))] ⊂ {±1} = (TorZ×p ) ∩ Z×(p).

When p = 2, the indeterminacy is in fact the trivial group: If there is a map

γ : Σku(2) → bgl1(S(2)) such that

π1(γ)(1) = −1 ∈ π1(bgl1(S(2))),

then the composite

S2 S1 bgl1(S(2))
Ση −1

must factor through Σku(2), and therefore, must be trivial. This is a contra-

diction to the fact that 0 6= η ∈ π2(bgl1(S(2))). �

Remark 6.11. If we consider the p-complete version of the diagram (6.7),

k̂up k̂up picev(Ŝp) ˆ
p (ΣHZ×p ) ˆ

p,
ψ̂q−1 J ˆ

p δ ˆ
p

then an argument identical to that in the proof of Theorem 6.5 shows that

there is no indeterminacy in this case, i.e.,

〈δ ˆ
p, J

ˆ
p, ψ̂

q − 1〉 = {q}.

7. Thomified An-structure of Moore spectra

Having established the unreduced stable Adams conjecture, let us turn

our attention to our main application — detecting Thomified An-structures of

Mp(i). The goal of this section is to prove Theorem 1.13.

By (1.10) and (1.11), we obtain an An-structure on Mp(i) if the diagram

(7.1)

S Σ−1Cof(ψq − 1)

Σ−2CPn

εp(i)

admits a solution in Ho(Sp); see [Bha20, §4].

Theorem 7.2. A map f : S → Σ−1Cof(ψq − 1) representing the class

pi−1k, where k is prime to p, extends to a map from Σ−2CPpi−1 but does not

extend to a map from Σ−2CPpi .
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Proof. Let KU(p) := β−1ku(p), where β is the Bott class in degree 2. Recall

that

[CPn+,KU(p)]∗ ∼= Z(p)JeK[β±]/(en+1),

where e = γ − 1 is a class in degree 0 and γ is the tautological line bundle

over CPn. Under the natural map induced by ku(p) −→ KU(p), the elements of

ku 2
(p)CP

n ∼= ku 2
(p)CP

n
+ can be identified with a subgroup

Wn ⊂ KU 2
(p)CP

n
+
∼= Z(p)JeK/(en+1){β−1}

such that KU 2
(p)CP

n
+/Wn is isomorphic to Z(p)[e]/(e

2,Z{e}). Thus, we may

write an element in ku 2
(p)CP

n
+ as

y := β−1f(e)

such that f(0) = 0 and f ′(0) ∈ Z.

Now consider the cofiber sequence of spectra:

Σ−1Cof(ψq − 1) ku(p) ku(p).

Mapping Σ−2CPn into this sequence gives rise to a long exact sequence, re-

ducing the question to finding a class y ∈ ku 2
(p)CP

n that restricts to pi−1k ∈
ku 2

(p)CP
1 and is fixed under ψq. Since ψqβ = qβ and

ψq(e) = ψq(γ− 1) = γq − 1 = (1 + e)q − 1,

f(e) must satisfy

f((1 + e)q − 1) = qf(e).

By Lemma 7.3, we know that rationally f must be of the form

f(e) = c
n∑
k=1

(−1)j+1

j
ej ∈ QJeK/(en+1).

Moreover, c = pi−1k as y must restrict to pi−1k ∈ ku 2
(p)CP

1 ∼= Z. From the

above formula, it is clear that f ∈Wn ⊂ Z(p)JeK/(en+1) if and only if n < pi.

Hence, the result. �

Lemma 7.3. Fix m > 1 and r > 1. If f ∈ QJxK/(xm) satisfies the relation

(7.4) f((1 + x)r − 1) ≡ rf(x) mod xm,

then f(x) ≡ c ln(1 + x) mod xm for some constant c ∈ Q.

Proof. Putting x= 0, we get f(0) = 0. Now let f(x)≡Σm−1
i=1 aix

i modxm

and consider the formal difference

f((1 + x)r − 1)− rf(x) ≡ d1x+ d2x
2 + · · ·+ dmx

m−1 mod xm.

It is easy to see that d1 = 0, d2 = (r2 − r)a2 −
(r

2

)
a1 and in general, dk, for

k < m, is a linear combination of a1, . . . , ak, where coefficient of ak is rk − r.
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When r > 1 and f satisfies (7.4), the value of ak for k > 1 are decided by

the value of a1. Hence, f(x) is uniquely determined by a1, the coefficient of

x. Since a1 ln(1 +x) mod xm satisfies (7.4) with a1 as the coefficient of x, the

result follows. �

An argument almost identical to that of Theorem 7.2 leads to

Theorem 7.5. A map f : S → LK(1)Σ
−1Cof(ψq − 1) representing the

class pi−1λ, where λ ∈ Ẑ×p , extends to a map from Σ−2CPpi−1 but does not

extend to a map from Σ−2CPpi .

Proof of Theorem 1.13. Recall from (1.12) that when p is an odd prime

εp(i) = (p − 1)pi−1 and when p = 2, we have ε2(i + 1) = 2i−1. Theorem 7.2

implies that an extension of (7.1) exists if and only if i < n. Thus, Mp(i)

admits a Thomified Api−1-structure when p odd, and at p = 2, M2(i + 1)

admits a Thomified A2i−1-structure.

The “non-existential part” of Theorem 1.13, at odd primes, follows from

Theorem 7.5 and the fact that LK(1)Σ
−1Cof(ψq − 1) ' LK(1)Ŝp. To see this,

consider the composite

(7.6)

γi : S Σ−1(Cof(ψq − 1)≥1)

Σ−1 bgl1(S(p)) ' gl1(S(p)) gl1(Ŝp)

LK(1) gl1(Ŝp) LK(1)Ŝp,

εp(i)

J̃≥1

`

where Cof(ψq−1)≥1 is the 0-connected cover of Cof(ψq−1) and ` is the Rezk’s

logarithm map. By [Kuh89], ` is a weak equivalence, and therefore the map

γi of (7.6) belongs to the class

piλ ∈ π0LK(1)Ŝp,

for some λ ∈ Ẑ×p . Thus, a Thomified Api-structure on Mp(i), i.e., a solution to

(1.10) with n = pi, would contradict Theorem 7.5.

At p = 2, LK(1)Σ
−1Cof(ψq − 1) is not equivalent to the K(1)-localization

of Ŝ2. Therefore, we do not know if M2(i + 1) supports a Thomified A2i-

structure or not. However, we will show that M2(i + 1) cannot support a

Thomified A2i+1-structure.

By [Kuh89],

LK(1) gl1(Ŝp) LK(1)Ŝp ' Fib(ψqR − 1 : KO ˆ
2 → KO ˆ

2),'
`
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where ψqR is the q-th real Adams operation. Various formulas in [Rez06] imply

that γi+1 composed with

c : LK(1)Ŝp LK(1)Σ
−1Cof(ψq − 1)

belongs to the class 2iλ ∈ π0LK(1)Σ
−1Cof(ψq − 1). Thus, by Theorem 7.5, a

solution to (1.10) does not exist if n = 2i+1. Hence, M2(i+ 1) cannot support

a Thomified A2i+1-structure. �

Remark 7.7. There may exist “exotic” An-structures on Mp(i) that are not

Thomified. Our argument does not address such structures. It will be very

interesting to see if there exist exotic An-structures on Mp(i) and, if possible,

enumerate them.

Appendix A. Comparison with the work of Friedlander

In [Fri80], Friedlander describes an approach to a p-completed version of

the stable Adams conjecture based on the theory of fibrations of Gamma spaces

(F- T op).

In the first part of [Fri80] (Sections 1 through 6), Friedlander develops the

theory of X-fibrations of Gamma spaces (see (A.5)), and his main result is a

classification theorem for X-fibrations [Fri80, Th. 6.1]. This is an elegant idea.

Indeed, assuming the validity of [Fri80, Th. 6.1] (which we have no reason to

doubt) we shall outline a proof below of the p-local stable Adams conjecture,

taking X to be the localization of the 2-sphere X = S2
(p).

Subsequent sections of [Fri80] (Sections 7 through 10) extend the theory of

X-fibrations to the theory of completed X-fibrations and prove a corresponding

classification theory for completed X-fibrations [Fri80, Th. 7.9]. Applying the

classification theorem for p-completed S2-fibrations allows Friedlander to claim

the following p-completed version of the stable Adams conjecture.

Theorem A.1 ([Fri80, Th. 10.4]). The following sequence of maps is null-

homotopic

k̂up k̂up picev
1 (Ŝp),

ψ̂q−1 J1p

where J1
p is the (canonical) lift of J ˆ

p to the fiber picev
1 (Ŝp) of the covering map

δ ˆ
p : picev(Ŝp) ˆ

p (ΣHZ×p ) ˆ
p.

Remark A.2. Notice that (A.1) stands in contradiction to the conclusion

of (6.11). Indeed, the above theorem would imply that

{1} ∈ 〈δ ˆ
p, J

ˆ
p, ψ̂

q − 1〉,
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which clearly contradicts (6.11). We thank the referee for pointing out this

apparent contradiction. In fact, the referee offered us an alternate contradiction

to (A.1) based on the following general fact (we leave the proof of this fact to

the interested reader): Assume p is odd and that one has a map

J̃′p : Cof(ψ̂q − 1) picev(Ŝp),

with the property that the composite of J̃′p with the Rezk logarithm

` : picev(Ŝp) LK(1)S1

is an isomorphism on non-negative even homotopy groups. Then ` ◦ J̃′p is in

fact an isomorphism on all non-negative homotopy groups on p-completion.

Applying this observation to π1 gives rise to another contradiction in Friedlan-

der’s (A.1). We suspect that the orientability assumptions required to develop

the theory of completed X-fibrations are the most likely source of this contra-

diction (based on the fact that completions of fibrations fail to be fibrations in

general).

Remark A.3. It should be noted that Friedlander also states a 0-connected

version of (A.1) (i.e., a reduced p-complete stable Adams conjecture) in the

introduction to [Fri80]. This version does not trigger a contradiction as above,

and it appears to be valid as stated.

In order to show how one may prove Theorem 1.5 using the first six sec-

tions of [Fri80], let us begin by recalling the notion of an X-fibration of Gamma

spaces. Let N denote the permutative category of natural numbers as intro-

duced in Remark 2.6. The n-th space of the Gamma space N := (µ ◦ B)(N)

(where µ and B are functors as in (2.1)) is the discrete space

Nn ∼= N× · · · × N︸ ︷︷ ︸
n-times

,

where the functors µ and B are as in (2.1). Note that if B ∈ F- T op such that

we have a map B → N , then the n-th space of B is a disjoint union

Bn =
⊔

I∈N×n
BI .

Let X be an object in T op∗. An X-fibrations is a map π : E → B over N
such that

πI : EI BI

is a sectioned map such that Fib(πI) ' X∧i1×· · ·×X∧in (where I = (i1, . . . , in)),

along with additional criteria as listed in [Fri80, Def. 3.2].
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Definition A.4. Two X-fibrations π : E → B and π′ : E ′ → B are equivalent

if there is a map f : E → E ′ over B such that

fI : EI → E ′I
are fiberwise weak equivalences.

Friedlander showed that the object BGlX := (B◦µ)(GlX) in F- T op is the

classifying space for X-fibrations [Fri80, Th. 6.1]; i.e., there is an isomorphism

of sets

(A.5) {X-fibrations over B}/(∼) ∼= [B,BGlX],

where [−,−] refers to the homotopy classes of maps in F- T op.

Remark A.6. The universal X-fibration is constructed as follows. Consider

the permutative category UGlX whose objects are pairs (n, y) such that n ∈ N
and y is a point in some Y that is weakly equivalent to X∧n, and morphisms

MorUGlX((n, y), (m, y′)) ⊂ G(Y,Y′)

consist of those maps that send y to y′ if m = n, empty otherwise. Note that

there is a functor

πu : UGlX GlX

such that πu((n, y)) = (n,Y) if y ∈ Y. This functor admits a section that

sends a space (n,Y) to (n, ∗), where ∗ is the basepoint of Y. The object

BUGlX := (B ◦ µ)(UGlX) ∈ F- T op

is the “total space” of the universal X-fibration

πU := B ◦ µ(πu) : BUGlX BGlX.

Note that the πU is a map over N .

Using (A.5), one can construct the J-homorphism in the category F- T op

by constructing an S2
(p)-fibration over (B◦µ)(GlC,p). Consider the permutative

category SGlC,p whose objects are the points of
⊔
i∈N S̃2i

(p) (see (4.30)) and

whose morphisms are those elements

f ∈ MorSGlC,p(x, x
′) ⊂ G̃li

for which ι̃i(f, x) = x′. It is understood that MorSGlC,p(x, x
′) = ∅ if x ∈ S̃2i

(p)

and x′ ∈ S̃2j
(p) where i 6= j. If we declare the monoidal product as

x⊕ x′ = ρ̃i,j(x, x
′)

on objects and

f ⊕ g = µi,j(f, g)

on morphisms, then it follows from (4.35) and (4.36) that SGlC,p ∈ PC.
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There is a functor πC : SGlC,p → GlC,p which sends x 7→ i if x ∈ S̃2i
(p). The

functor πC admits a section sC : GlC,p → SGlC,p that sends i 7→ ∗i, where ∗i
is the basepoint of S̃2i

(p). On applying the functor B ◦µ we get an S̃2
(p)-fibration

BπC : BSGlC,p BGlC,p.

Thus by the classification theorem of Friedlander’s (A.5) we obtain the J-homo-

morphism

J : BGlC,p BGlS̃2
(p)

in Ho(F- T op).

Also note that the maps {ψ̂qi : i ∈ N} produce a monoidal functor

S(Ψq) : SGlC,p SGlC,p

such that we have a commutative diagram

SGlC,p SGlC,p

GlC,p GlC,p

S(Ψq)

πC πC

Ψq

in PC. On applying the functor B ◦ µ, we get a map of X-fibrations

BSGlC,p BSGlC,p BUGlS̃2
(p)

BGlC,p BGlC,p BGlS̃2
(p)
.

BS(Ψq)

BπC BπC
B(Ψq)

J

The map BS(Ψq) is fiberwise a weak equivalence because of Corollary 4.39.

Thus by (A.5),

J ' J ◦ B(Ψq)

in Ho(F- T op). By applying the Segal functor Φ, we obtain another proof of

Theorem 1.5.
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