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NORMS FOR COMPACT LIE GROUPS IN EQUIVARIANT

STABLE HOMOTOPY THEORY

ANDREW J. BLUMBERG, MICHAEL A. HILL, AND MICHAEL A. MANDELL

Abstract. We propose a construction of an analogue of the Hill-Hopkins-
Ravenel relative norm NG

H
in the context of a positive dimensional compact

Lie group G and closed subgroup H. We explore expected properties of the
construction. We show that in the case when G is the circle group (the unit
complex numbers), the proposed construction here agrees with the relative
norm constructed by Angeltveit, Gerhardt, Lawson, and the authors using the
cyclic bar construction. Our construction is based on a new perspective on
equivariant factorization homology, using framings to convert from actions of
one group to another.

Introduction

The work of Hill-Hopkins-Ravenel on the Kervaire invariant problem has rein-
vigorated interest in the foundations of equivariant stable homotopy theory. In
particular, the multiplicative norm construction, a key technical tool in their work,
provides a spectral version of the Evens transfer from group cohomology.

The theory of the norm now seems to complete our understanding of the mul-
tiplicative structure on the (genuine) equivariant stable category when G is finite:
additively, the equivariant stable category is characterized by the existence of trans-
fers, or equivalently, the Wirthmuller isomorphism; the multiplicative structure is
similarly characterized by the presence of compatible systems of multiplicative norm
functors. The combinatorics of the transfers and norms are controlled by the struc-
ture of the G-E∞ operad, and the additive and multiplicative structures are linked
by the (Σ∞

+ , gl1) adjunction.
When G is a compact Lie group, the situation is significantly more subtle and

less well-understood. The additive structure of the G-stable category is still con-
trolled by transfers, or equivalently, Wirthmuller isomorphisms. However, the clas-
sical multiplicative structures appear to be different. Specifically, the multiplicative
structure of a commutative ring G-spectrum (= G-E∞ ring spectrum) can be de-
scribed in terms of an operad, but we know that the additive structure cannot be
described in this way. Moreover, the theory of the norm in this setting is incom-
plete, insofar as the construction appears to only make sense for subgroups of finite
index in G.

This raises the question of what the norm for compact Lie groups should mean
in general. A first clue is provided by the defining adjunction for the norm on
commutative ring G-spectra; in this setting, the norm NG

H is the left adjoint to the
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forgetful functor from G-spectra to H-spectra. These adjoints exist and are homo-
topically meaningful for any subgroup H in G. Therefore, we have norm functors
for at least commutative ring G-spectra. To explore this further, we consider the
simplest possible example: G = S1 and the subgroup is the trivial subgroup. In

this case, we recover a familiar object: NS1

e R is precisely THH(R) [2]. This de-
scription now makes sense not just for commutative ring spectra but more generally
for associative ring spectra.

While THH(R) admits several constructions, its identification in terms of fac-
torization homology of S1 with values in R suggests an approach to the construction
of more general norms using factorization homology. In the case of norms of the
form NG

e , it suggests a construction in terms of a genuine equivariant structure on
the factorization homology of G; it also indicates the type of algebras that could
admit such a norm. The construction of a norm NG

H requires an equivariant version
of a factorization homology construction.

The purpose of this paper is to propose and outline an approach to equivariant
norms in terms of factorization homology. Specifically, we describe a factorization
homology style construction of positive dimensional norms. We discuss aspects of
its expected homotopy type in terms of geometric fixed point data and lay out a
series of conjectures about the properties of such norms. In the case of the circle
group, we show that the proposed definition here agrees with the definition in [2];
the conjectures that pertain to this context are theorems, proved ibid. Moreover,
whereas [2] only treated the homotopy type of THH(R) as well-defined in the F -
model structure (where weak equivalences are detected on passage to fixed points
for finite subgroups of G), the work here identifies the full genuine equivariant
homotopy type in the context of the norm.

The factorization homology we use to construct the norm is not equivariant
factorization homology as it is usually construed. Our use of factorization homology
and its design in Section 3 has the goal of using G-equivariant H-framed manifolds
to mediate a conversion of H-equivariant orthogonal spectra (with extra structure)
to G-equivariant orthogonal spectra. We are not constructing a general theory of G-
equivariant factorization homology here. Nevertheless, our construction appears to
reproduce the standard versions of genuine G-equivariant factorization homology
for V -framed G-manifolds in the literature. To illustrate this, we show how to
obtain a version of G-equivariant factorization homology of V -framed G-manifolds
in Section 6 as a special case of the theory of Section 3.

The work here on the norm depends on current work in progress of some subsets
of the authors which breaks into two projects. The first, which we cite as [CFH]
studies non-equivariant factorization homology from the perspective of making as
much of the structure as possible covariant with compact Lie group actions. A
mostly complete draft exists but is not publicly available; we state the results that
depend on it here as theorems (but we acknowledge that they should more properly
be labeled as conjectures). The second project, which we refer to as [PMI] will
study generalizations of the norm construction for finite groups of the form

I ′(A ∧Σq≀H IX(q))

where is a genuine equivariant H-spectrum, A is a G × (Σq ≀ H)-space, and I, I ′

are certain point-set change of universe functors (for some compact Lie groups
H,G). In the case when H is a subgroup of a finite group G and A is the set
of (numbered) coset representatives of H in G (plus a disjoint base point), this
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construction is precisely the norm NG
HX , but for other H , G, and A, it produces

more general functors from H-spectra to G-spectra. The purpose of [PMI] is to
study the equivariant homotopy theory of such functors and specifically to verify
the expected formulas for geometric fixed point spectra (generalizing the norm
diagonal formulas). A basic result we will use is the following generalization of [6,
B.104,B.146]:

Let G be a compact Lie group, A a Σq-free G×Σq-CW complex, U a complete
G-universe, X ′ a cofibrant orthogonal spectrum and X either a cofibrant
orthogonal spectrum or a cofibrant commutative ring orthogonal spectrum.
If X ′ → X is a weak equivalence of orthogonal spectra, then

IUUG(A ∧Σq
X ′(q)) −→ IUUG(A ∧Σq

X(q))

is a weak equivalence of orthogonal G-spectra indexed on U .

Most of the work of [PMI] beyond the statement above is preliminary, and anything
discussed below that depends on more complicated results or more complicated
constructions of this type is labeled as a “conjecture”.

Only the work in Sections 2–4 depend on the unpublished work [CFH] and [PMI].
Sections 5 and 6 depend only on Construction 3.19; they are completely independent
of the work in progress and non-conjectural.

Acknowledgments. The authors were supported in part by NSF grants DMS-
2104348, DMS-2104420, and DMS-2105019. This material is based upon work sup-
ported by the National Science Foundation under Grant No. 1440140, while some
of the authors were in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Fall semester of 2022. The authors would like
to thank Mike Hopkins as well as their frequent collaborators Vigleik Angeltveit,
Teena Gerhardt, and Tyler Lawson for many useful conversations on these topics
spanning many years. The authors also thank Inbar Klang and Charles Rezk for
helpful comments.

1. Universes in equivariant stable homotopy theory

The purpose of this section is to review the role that “universes” play in the
orthogonal spectrum models of equivariant stable homotopy theory. Although con-
structions like the Hill-Hopkins-Ravenel norm were anticipated for many years [5,
§3–4], [10, 1.5], it took a surprisingly long time for the precise definition to appear
because describing the correct derived functor requires playing off two distinct per-
spectives on the role of the universe. This phenomenon permeates our work here,
and we use this section to carefully explain the situation and our perspective and
terminology. We make no particular claim to originality in this section.

Let G be a compact Lie group. A G-universe is a countably infinite dimensional
vector space with linear G-action and a G-invariant inner product satisfying the
following properties: (i) U contains a copy of the trivial representation, and (ii) if a
given finite dimensional representation occurs in U as a G-stable vector subspace,
then U contains a countable direct sum of copies of that representation. The inner
product space R∞ =

⋃
Rn with the usual inner product and trivial action is a

G-universe, and up to isomorphism, every G-universe contains it as a sub inner
product space. We use the notation V < U to mean that V is a G-stable finite
dimensional vector subspace of U (which then inherits the structure of a G-invariant
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inner product space), and for W < U , we write V < W to mean that V is a G-
stable vector subspace of W (not necessarily proper). In that case, we write W −V
for the orthogonal complement of V in W , and for any V < U , we write SV for the
one-point compactification of V and ΣV (−) for the V -suspension (−) ∧ SV .

The classical view is that given a universe, we get a category of spectra (or “pre-
spectra” for some authors) indexed on U : a spectrum T indexed on U consists of a
based G-space T (V ) for every V < U and a structure G-map σV,W : ΣW−V T (V )→
T (W ) for every V < W < U such that σV,V = id and when V < W < X < U ,
ΣV,X = ΣW,X ◦ ΣX−WΣV,W , that is, the diagram

ΣX−WΣW−V T (V )
ΣX−W σV,W

// ΣX−WT (W )

σW,X
��

ΣX−V T (V )

∼=
OO

σV,X

// T (X)

commutes. We then define homotopy groups and weak equivalences (for example
as in [12, III§3]), and inverting these weak equivalences gives the U -universe G-
equivariant stable category. In fact, the U -universe G-equivariant stable category
is the homotopy category of a (G-topological) model structure on the category of
spectra indexed on U ; we do not need the details but they can be found for example
in [12, III§4].

Various universes lead to different equivariant stable categories. The role of the
universe is to provide G-vector spaces that compact G-manifolds M (e.g., orbits)
can embed in; which orbits equivariantly embed in the universe precisely determine
the equivariant stable homotopy theory. Put another way, the universe controls
which equivariant transfers exist. In the two extreme cases, when U contains only
the trivial representation (a trivial universe), e.g., U = R∞, and when U contains
every representation (a complete universe), the equivariant stable categories are
inequivalent whenever G is not the trivial (one point) group. The U -universe equi-
variant stable category is often called the naive equivariant stable category when
U is a trivial universe and the genuine equivariant stable category when U is a
complete universe. More generally, the adjective naive means indexed on a trivial
universe and the adjective genuine means indexed on a complete universe.

The same approach applies to G-equivariant orthogonal spectra. Given a G-
universe U , we define a G-equivariant orthogonal spectra indexed on U to consist
of:

(i) For every V < U , a based G-space T (V );
(ii) For every V,W < U , a G-map αV,W : O(V,W )+ ∧ T (V ) → T (W ), where

O(V,W ) denotes the G-space of (non-equivariant) isometric isomorphisms
from V to W ; and

(iii) For every V < W < U , a G-map σV,W : ΣW−V T (V )→ T (W )

satisfying the obvious compatibility relations: the data of (ii) make T a G-topo-
logically enriched functor on the G-topological category with objects V < U and
maps O(−,−), the data of (iii) makes T into a spectrum indexed on U , and the
maps in (iii) are O(V, V ) × O(W,W )-equivariant. (This formulation is slightly
different from the formulation in the standard reference [12, II§2], but gives an
equivalent category.) We define the weak equivalences to be the weak equivalences
of the underlying G-equivariant prespectra indexed on U ; inverting these weak
equivalences, the forgetful functor to the U -universe G-equivariant stable category
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is an equivalence. Thus, we can treat the U -universe G-equivariant stable category
as the localization of the category of G-equivariant orthogonal spectra indexed on
U at its natural weak equivalences.

The category of G-equivariant orthogonal spectra indexed on U has a (G-topo-
logical) model structure with fibrations and weak equivalences created by the for-
getful functor to G-equivariant spectra indexed on U . We use the existence of this
structure, but not the details, which can be found for example in [12, III§4].

The theory of G-equivariant orthogonal spectra admits another interpretation
first articulated by Mandell-May in [12, V§1] and popularized by Schwede in [16,
§2]. Let S denote the category of (non-equivariant) orthogonal spectra indexed on
R∞, and let S G

U be the category of G-equivariant orthogonal spectra indexed on U .
Let S BG be the category of G-objects in S : an object in S BG consists of an object
T of S and an associative and unital action map G+∧T → T ; then S BG and S G

R∞

are essentially the same categories and are certainly at least canonically isomorphic.
The observation of [12, V.1.5] is that even though the point-set categories S G

U and
S BG are not isomorphic for a non-trivial universe U , they are equivalent: given a
spectrum T indexed on R∞ with G-action and any n-dimensional G-inner product
space V , let

T (V ) = O(Rn, V )+ ∧O(n) T (R
n).

Then T (V ) is a based G-space and the collection {T (V ) | V < U} has the canonical
structure of a G-equivariant orthogonal spectrum indexed on U ; we write IU

R∞T for
this object. We can also go the other way, if T is a G-equivariant orthogonal
spectrum indexed on U and V is any n-dimensional G-stable subspace of U , the
G-spaces

O(V,Rn)+ ∧O(V ) T (V )

(where O(V ) = O(V, V )) are all canonically isomorphic: any non-equivariant iso-
metric isomorphism f : V → V ′ induces the same isomorphism

O(V,Rn)+ ∧O(V ) T (V ) −→ O(V ′,Rn)+ ∧O(V ′) T (V
′).

This gives a functor IR
∞

U from S G
U to S G

R∞ or S BG. The functors IU
R∞ and IR

∞

U are
inverse equivalences of categories. More generally, for any pair of G-universes U ,
U ′, formulas of this type define inverse equivalences IU

′

U , IUU ′ between the point-set
categories S G

U and S G
U ′ . We call these point-set change of universe functors.

Since the point-set change of universe functor IR
∞

U is an equivalences of cate-
gories, we can use it to transport the model structure on G-equivariant orthogonal
spectra indexed on U (S G

U ) to G-equivariant orthogonal spectra indexed on R∞

(S G
R∞) or G-objects in orthogonal spectra S BG. If U is a trivial universe, then

this agrees with the intrinsic model structure on S G
R∞ ; if U is non-trivial, then this

model structure is different and the homotopy category is inequivalent. When we
view S G

R∞ as G-objects in orthogonal spectra (S BG), none of these model struc-
tures are the “usual” model structure, which would have as its weak equivalences
the weak equivalences of the underlying orthogonal spectra. (These are commonly
called the Borel equivalences and they are the weak equivalences of a Borel model
structure; we never use these weak equivalences or this model structure in this
paper.)

Each universe U therefore produces on S BG a model structure that we call the
U -universe model structure. We call its weak equivalences the U -universe weak
equivalences. The U -universe model structure on S BG is Quillen equivalent (via
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IU
R∞ and IR

∞

U ) to the category of G-equivariant orthogonal spectra indexed on
U , and in particular the homotopy category of the U -universe model structure
is equivalent to the U -universe G-equivariant stable category. One can take the
perspective then that there is (up to equivalence) only one point-set category of
G-equivariant orthogonal spectra and that the role of universes is to define the weak
equivalences, or more rigidly, the model structure.

The construction of norms intrinsically uses the perspective that the point-set
category of G-equivariant orthogonal spectra indexed on a complete universe is just
the category of G-objects in orthogonal spectra. This paper contains a number of
point-set constructions that only make sense forG-objects in orthogonal spectra but
that we argue (or conjecture) are homotopically meaningful in U -universe model
structures for a complete universe U . We have chosen to indicate this by using point-
set change of universe functors to specify inside a point-set construction what our
homotopical perspective on the weak equivalences is. We start in spectra indexed
on a universe U , use the point-set change of universe functor IR

∞

U to R∞, do a
point-set construction, and finally do the point-set change of universe functor IU

R∞

to index on a universe U ′; this indicates that we expect the overall construction to
convert U -universe weak equivalences to U ′-universe weak equivalences at least for
nice (e.g., U -universe cofibrant) input.

Remark 1.1. Although the point-set change of universe functor IR
∞

U admits a right
derived functor, the construction of the Hill-Hopkins-Ravenel norm (and our con-
structions here) use it in a rhetorical and non-homotopical way. As such, it is
amazing that the overall construction results in a functor that has a homotopical
interpretation, admitting a left derived functor.

2. The absolute case

We begin with the absolute case of the norm NG
e X which takes non-equivariant

input and produces a genuine equivariant G-spectrum. Fix a compact Lie group G
with manifold dimension d and fix a complete G-universe U satisfying UG = R

∞.
We also fix a basis of the tangent space of G at the identity and use left invariant
vector fields to specify a basis for the tangent space at every point, specifying
a parallelization of G. The left action of G on itself is then through maps of
parallelized manifolds and embeds G as a subgroup of the topological group of
automorphisms of G as a parallelized manifold (see Example 3.6).

We assume a continuous point-set factorization homology functor
∫

: Ee ×S [Dd] −→ S ,

where Ee is the (topological) category of parallelized d-manifolds (with maps the
parallelized embeddings; see Definition 3.3), S is (as indicated in Section 1) the
(topological) category of orthogonal spectra, Dd is the Boardman-Vogt little d-disk
operad, and S [Dd] is the (topological) category of Dd-algebras in S . Given such
a functor, we can make the following point-set definition. In it, (as indicated in
Section 1) S G

U denotes the category of G-equivariant orthogonal spectra indexed
on the universe U .

Definition 2.1. Define a point-set functor NG
e : S [Dd]→ S G

U by

NG
e X = IUUG

∫

G

X
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where we regard
∫

G
X as a G-object in S by the natural left G-action on G. As

indicated in Section 1, IUUG denotes the point-set change of universe functor from

R∞ = UG to U .

Definition 2.1 is a point-set definition that depends inherently on the point-set
construction

∫
. It is not clear nor do we claim that this has any homotopical

properties for an arbitrary functor
∫
. However, bar constructions for factorization

homology tend to have good (non-equivariant) homotopical properties that can be
leveraged to study the homotopical properties of the construction NG

e . In particu-
lar, the construction we consider in [CFH] results in a functor NG

e that has many
of the properties expected of an equivariant norm, as we now begin to explain.

Before starting an in depth discussion, we need to address a particular subtlety
that arises in the equivariant theory for compact Lie groups that does not arise
in the non-equivariant theory or the equivariant theory for finite groups. We can
work with unital Dd-algebras or non-unital Dd-algebras. Standard constructions
of factorization homology can take as input a unital Dd-algebra or a non-unital
Dd-algebra (an algebra over the non-unital little d-disk operad, where we replace
Dd(0) = 0 with Dd(0) = ∅). For a unital Dd-algebra X , there is a natural map
from the non-unital construction

∫ nu

M
X to the unital construction

∫

M
X that is

always a homotopy equivalence non-equivariantly (but the homotopy inverse and
homotopy data are not natural in M). This map is generally not an equivariant
weak equivalence for G positive dimensional: when X is the sphere spectrum S,
∫

M
S is G-equivariantly homotopy equivalent to the sphere spectrum, but

∫ nu

M
S

is G-equivariantly homotopy equivalent to Σ∞
+ Ran(M) for the Ran space of M

(the space of finite non-empty subsets of M). Non-equivariantly, the Ran space is
contractible and this is a model of S, but equivariantly, when we take M = G (as
for the norm above) and we take H < G a positive dimensional closed subgroup,
the geometric fixed points satisfy

(Σ∞
+ Ran(G))ΦH ∼= Σ∞

+ (Ran(G)H) = ∗.

This is the wrong answer because factorization homology should take smash prod-
ucts to smash products in the X variable, and so the empty smash product S

should go to the empty smash product S. But this essentially the only thing that
goes wrong: technology of [BHM1] appears sufficient to prove that (under mild
hypotheses on X , e.g., the inclusion of the unit S → X is a Hurewicz cofibration)
the unital construction fits into a homotopy pushout square

∫ nu

M
S //

��

∫ nu
X

��

S ≃
∫

M
S //

∫

M
X.

Ayala and Francis [3, 2.1.4] define a filtration on non-unital factorization homol-
ogy that they call the “cardinality filtration” and they identify the homotopy type
of the cofiber in filtration level q as

Filq
∫ nu

M

X

/

Filq−1

∫ nu

M

X ≃ Cnu(q,M)+ ∧Σq
X(q)

(in the case of a compact parallelized manifoldM), where Cnu denotes the subspace
of components of the configuration space where at least one point of the configura-
tion lies in each component of M . Here (−)+ denotes one-point compactification,
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and (−)(q) denotes qth smash power. In [CFH], the authors construct a point-set
version of this map with enough naturality in the map and the homotopies1 that
in the case of NG

e X , we get an equivariant homotopy equivalence

Filq
∫ nu

G

X

/

Filq−1

∫ nu

G

X ≃ Cnu(q,G)+ ∧Σq
X(q).

The point-set change of universe functor preservesG-homotopy equivalences. More-
over, as indicated in the introduction, in the case when the underlying orthogonal
spectrum of X is cofibrant, the genuine G-equivariant homotopy type of

IUUG(C(q,G)
+ ∧Σq

X(q))

is invariant under weak equivalences in X ; this happens in particular in the case
when X is cofibrant as a Dd-algebra and the result holds also in the case when X is
a cofibrant commutative ring orthogonal spectrum. This gives the following result.

Theorem 2.2. Let X ′ be a Dd-algebra whose underlying orthogonal spectrum is
cofibrant (e.g., cofibrant Dd-algebras) and let X be either a Dd-algebra whose under-
lying orthogonal spectrum is cofibrant or a cofibrant commutative ring orthogonal
spectrum. For the point-set construction of

∫
in [CFH], a weak equivalence X ′ → X

induces a weak equivalence NG
e X

′ → NG
e X.

Corollary 2.3. The left derived functor of NG
e exists. Moreover, the composite with

the derived functor of the forgetful functor ι : Com→ S [Dd] from commutative ring
orthogonal spectra to Dd-algebras is the derived functor of the composite NG

e ι.

In the case when X = R is a cofibrant commutative algebra, we have another
interpretation of the homotopy type ofNG

e R, which aligns with the finite theory. To
start, the category of commutative ring orthogonal spectra admits indexed colimits
over topological spaces; in particular this means that for a space M , we have a
commutative orthogonal spectrum R⊗M with the universal property that the space
of maps from R⊗M to a commutative ring orthogonal spectrum A is homeomorphic
to the space of maps from M to the space of maps from R to A

T (M,S [Com](R,A)) ∼= S [Com](R ⊗M,A).

In the case M = G, this means that (−)⊗G is the free functor from the category
of commutative ring orthogonal spectra to the category of left G-objects in com-
mutative ring orthogonal spectra. The point-set change of universe IUUG is the free
functor from the category of left G-objects in commutative ring orthogonal spectra
to the category of commutative ring orthogonal G-spectra indexed on U . Thus,
IUUG(− ⊗G) is the free functor from the category of commutative ring orthogonal
spectra to commutative ring orthogonal G-spectra indexed on U (and as such it is
clearly a Quillen left adjoint, and in particular preserves weak equivalences between
cofibrant objects). In the case when G is a finite group, the tensor R ⊗ G is just
the smash power of R indexed on the elements of G and the change of universe
IUUG(R⊗G) is precisely the norm NG

e R [2, 2.17–18], [6, A.52,A.56].
The tensor R⊗G also has a cardinality filtration, but in this case the associated

graded cofibers look like

Filq(R ⊗G)
/
Filq−1(R⊗G) ≃ C(q,G)+ ∧Σq

(R/S)(q).

1Specifically, we can make naturality work for a compact Lie group of automorphisms, and we
claim no more generality than that.
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If the unit map S→ R is a Hurewicz cofibration of the underlying orthogonal spec-
tra, then the maps in the filtration are Hurewicz cofibrations and the display above
is a G-equivariant homotopy equivalence. The construction of

∫
in [CFH] admits

a corresponding filtration and a filtration preserving map
∫

GR → R ⊗ G, which
induces a homotopy equivalence on associated graded cofibers; the constructions
are natural enough that the comparison is G-equivariant, but in this case we have
less sharp results on the covariance of the homotopies and do not know that we can
make the homotopies G-equivariant. This is not good enough to directly conclude
that the map after point-set change of universe IUUG is a weak equivalence. Never-
theless, the goal of [PMI] is to study geometric fixed points of constructions of the
form

IUUG(C(q,G)
+ ∧Σq

X(q)).

Let K < G be a closed subgroup. We note that C(q,G)K is empty unless K
is a finite group whose cardinality divides q, in which case we have a canonical
identification

C(q,X)K ∼= C(q/#K,K\G)

(where K\G is the left quotient orbit space). We therefore expect that for reason-
able X , we will have

(IUUG(C(q,G)
+ ∧Σq

X(q)))ΦK ≃ ∗

if K is positive dimensional or K is finite and #K does not divide q, and

(IUUG(C(q,G)+ ∧Σq
X(q)))ΦK ≃ C(p,G)+ ∧Σp

X(p)

when p = q/#K is an integer. A careful study of the comparison map NG
e R →

IUUG(R⊗G) should prove that it is a homotopy equivalence on each geometric fixed
point spectrum, which would then prove the following as a result.

Conjecture 2.4. Let R be a cofibrant commutative algebra. Then there is a natural
weak equivalence of genuine G-spectra

NG
e R ≃ I

U
UG (R⊗G)

where IUUG(−⊗G) is the left adjoint of the forgetful functor from commutative ring
orthogonal G-spectra indexed on U to commutative ring spectra.

We can use the same ideas as in the discussion preceding the previous conjecture
to study the geometric fixed points of the construction NG

e for more general Dd-
algebras. In the case when K < G is positive dimensional, the following should
hold.

Conjecture 2.5. Let K < G be a closed subgroup of positive dimension. If X is
a Dd-algebra whose underlying orthogonal spectrum is cofibrant or X is a cofibrant
commutative ring orthogonal spectrum, then the inclusion of the unit S→ X induces
a weak equivalence of derived geometric K-fixed point spectra

(NG
e X)ΦK ≃ S.

The previous result gives further justification for the identification of NG
e as a

norm, as its analogue is known to hold for the functor IUUG (R⊗G).

Theorem 2.6 (Hill-Hopkins [7]). Let R be a cofibrant commutative ring orthogonal
spectrum, and let K < G be a closed subgroup of positive dimension. Then the
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inclusion of the unit S in R induces a weak equivalence of derived geometric K-
fixed point spectra

(IUUG (R⊗G))ΦK ≃ S

Proof. (Compare [7, 8.5].) For notational convenience, let A = IUUG(R⊗G). With-
out loss of generality, we can assume that R is a cell commutative orthogonal spec-
trum; then A is a cell commutative G-spectrum built from attaching a commutative
ring cell of the form

PG(G+ ∧ Σ∞
Rm(Bn, ∂Bn)+)

for each cell of the form

P(Σ∞
Rm(Bn, ∂Bn)+)

building R (where P and PG are the free functors from orthogonal spectra to com-
mutative ring orthogonal spectra and from orthogonal G-spectra to commutative
ring orthogonal G-spectra, respectively, and Σ∞

Rm denotes the left adjoint to the Rm

space functor in either category). The underlying orthogonal G-spectrum of A is
then built from S by attaching orthogonal spectrum cells of the form

C = Gq ∧H Σ∞
V (B(W ), ∂B(W ))+

where q > 0, H is a subgroup of Σq, V and W are finite dimensional inner product
spaces with orthogonal H-actions, and B(W ) denotes the unit ball (or more natu-
rally, B(W ) is a polydisk Bn1 ×· · ·×Bnq with H acting by permuting the factors).
Precisely, for Z ⊂ U a finite dimensional G-stable subspace, the Z space pair of the
orthogonal G-spectrum pair C is

C(Z) = Gq
+ ∧H (J (V, Z) ∧ (B(W ), ∂B(W ))+)

(where J is the Thom space of [12, II.4.1]). Because H is finite and K is not,
neither space in the pair C(Z) can have any K-fixed points other than the base
point, and so both genuine G-spectra in the pair C have trivial derived geometric
K fixed point spectra, for example, by [12, V.4.8.(ii), V.4.8.12]. It follows that cell
attachment by C does not change derived geometric K-fixed points, and that the
map S→ A induces an equivalence on derived geometric K-fixed points. �

Given the discussion of geometric fixed points above, we would expect that for
K finite,

(R⊗G)ΦK ≃ R⊗ (K\G)

as an NK/K-spectrum. The analogous formula

(NG
e X)ΦK ≃

∫

K\G

X

does not always make sense because K\G is not always parallelizable: K\G inherits
a parallelization from G if and only if the Ad action of K on the tangent space of
G at the identity TeG is trivial. In this case, we make the following conjecture.

Conjecture 2.7. Let K < G be a finite subgroup and assume the Ad action of K
on TeG is trivial. For composite of derived functors ΦKNG

e , there is a natural weak
equivalence in the non-equivariant stable category

(NG
e X)ΦK ≃

∫

K\G

X.
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If K is normal, then the Ad action is automatically trivial, and we can identify

the righthand side as N
G/K
e X ; in this case, we further conjecture that the above

weak equivalence refines to a weak equivalence in the stable category of genuine
G/K-spectra. When K\G is not parallelizable, a Dd-algebra does not have enough
structure to make sense of

∫

K\G
. Instead, the weak equivalence should take the

following form.

Conjecture 2.8. Let K < G be finite. There is a natural non-equivariant weak
equivalence

(NG
e X)ΦK ≃

∫

N\G

∫

K\N×Te(N\G)

X

where N is the normalizer of K in G.

Interpreting the formula in the preceding conjecture takes some work. The mani-
foldN\G is not generally parallelizable but its tangent bundle admits a canonical re-
duction of structure to N for the N -representation given by the action on Te(N\G);
factorization homology

∫

N\G
admits as input N -framed little Te(N\G)-disk alge-

bras (see Definition 3.10). The inner factorization homology
∫

K\N×Te(N\G)X comes

with a canonical such structure. In the case when K acts trivially on TeG, N con-
tains the identity component Ge, and

∫

N\G
is a finite smash power, so the two

conjectures agree.

3. Factorization homology of H-framed manifolds

The construction of relative norms NG
H requires factorization homology for non-

parallelizable manifolds; we use this section to review framings of smooth manifolds
and how the framing fits into factorization homology. We take a somewhat different
approach from most other treatments of factorization homology in that we work in
terms of a reduction of structure group for the tangent bundle rather than working
with reduction of structure on the classifying space level. The work in this section
is fundamentally non-equivariant, though it intrinsically involves a structure group
H for the framings. We construct a point-set factorization homology functor in this
context, which we use in the next section to define relative norms.

Before starting, we fix the following convention. The first condition ensures that
the categories we consider are small. The second condition, while undesirable in
some contexts, is convenient in the context of factorization homology constructions.

Convention 3.1. When we use the term manifold, we will always understand that
its underlying topological space is a subspace of R∞ and that it has finitely many
components.

We begin by fixing some terminology and notation. ForM a smooth d-manifold,
let FM →M denote the frame bundle, a principal GL(d)-bundle: a point consists
of an element m of M and a basis for the tangent space TmM . The frame bundle
used Rd as the standard model vector space, but in our most important examples,
G and G/H , using the tangent space at the identity TeG or at the identity coset
TeHG/H is more natural (choice-free) and so we formulate framings in terms of
an arbitrary d-dimensional vector space V . A smooth d-manifold has a V -frame
bundle FVM → M , where a point in FVM consists of an element of m of M and
a linear isomorphism from V to TmM . The V -frame bundle has the canonical
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structure of a principal GL(V )-bundle and there is a tautological isomorphism of
GL(V )-bundles

FVM ∼= FM ×GL(d) Iso(V,R
d),

where Iso(V,Rd) denotes the space of linear isomorphisms from V to Rd.

Terminology 3.2. Let H be a topological group with a given linear action on V ,
i.e., a homomorphism ρ : H → GL(V ). A tangential H,V -structure on a smooth
d-manifold M (or tangential H-structure, when V , ρ is understood) consists of a
principal H-bundle P →M and an isomorphism of principal GL(V )-bundles

φ : P ×H GL(V ) −→ FVM.

An H-framed manifold is a smooth d-manifold together with a choice of tangential
H-structure; we use the notation FHM →M for its structural principal H-bundle
written P →M above and φM for the structural isomorphism written φ above.

When H is the trivial group and V = Rd, we use parallelized as a synonym for
H-framed.

There is an obvious definition of maps of H-framed manifold in terms of lifts
of derivatives that we call H-framed local isometry, but it is too constrained for
many purposes. The looser definition of H-framed immersion is the right one for
factorization homology.

Definition 3.3. Let L and M be H-framed manifolds (for fixed ρ : H → GL(V )).
An H-framed immersion L→M consists of a smooth immersion (i.e., local diffeo-
morphism) f : L→M , a map of principal H-bundles

Ff : FHL −→ f∗FHM,

and a principal GL(V )-bundle homotopy

If : FV L× I −→ f∗FVM

such that If ends at the derivative viewed as a map of frame bundles FV L →
f∗FVM and begins at the map

FV L
φ−1
L−−−→ FHL×H GL(V )

Ff
−−→ f∗FHM ×H GL(V )

f∗φM
−−−−→ f∗FM.

induced by Ff . An H-framed embedding is an H-framed immersion whose under-
lying map is an open embedding (i.e., diffeomorphism onto an open subset). An
H-framed diffeomorphism is a surjective H-framed embedding, or equivalently, an
H-framed embedding that has an inverse, which is also an H-framed embedding.
An H-framed local isometry is an H-framed immersion where the homotopy If is
constant, i.e., the map of principal H-bundles Ff is a lift of the derivative.

Notation 3.4. Let EH (or EH,V when specifying V is needed for clarity) denote
the category whose objects are the H-framed manifolds and whose maps are the
H-framed embeddings. We topologize the mapping spaces using the (k-ification of)
the smooth compact open topology on the space of smooth embeddings.

When V admits anH-invariant inner product, H-framed local isometries are true
local isometries for the resulting Riemmannian structure; if not, the terminology
fits less well.
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Example 3.5. Let V = Rd, H = O(d), with ρ the standard inclusion. An H-framing
on a d-manifoldM then consists of a continuous (inm ∈M) choice of the orthogonal
frames in TmM , and so is equivalent to the choice of a continuous Riemmannian
metric on M . Given H-framed manifolds L,M , an H-framed local isometry from
L to M consists of a smooth map f : L→M such that the derivative at each point
sends orthogonal frames to orthogonal frames, i.e., it is precisely a local isometry in
the usual sense. AnH-framed immersion consists of a smooth immersion f : L→M
and a GL(d)-equivariant homotopy Ifx : FLx → FMf(x), continuous in x ∈ L, that
starts at a map that takes orthogonal frames to orthogonal frames and ends at Dfx.
Any other such homotopy I ′fx can be obtained by pointwise multiplication by a
path in GL(d) that starts at an element of O(d) and ends at the identity, that is
to say, an element of the homotopy fiber of ρ. It follows that for fixed f , the space
of lifts of f to an H-framed immersion is the space of sections of a locally trivial
principal hofib(ρ)-bundle. Since hofib(ρ) is contractible, so is this space of sections.

The work of the previous section implicitly used the following example.

Example 3.6. A Lie group G has two canonical H-framings for H the trivial group
and V = TeG the tangent space at the identity: one given by left-invariant vector
fields and the other given by right-invariant vector fields. Choosing an isomorphism
Rd ∼= TeG gives G a parallelization. Consider the left-invariant framing or paral-
lelization. For this framing, left multiplication by an element of G is an H-framed
local isometry; moreover, it is easy to see that when G is connected, all H-framed
local isometries are of this form. The inclusion of G into the space of H-framed
local isometries and into the space of H-framed embeddings is continuous.

We will always use the convention of left invariant vector fields. The following
generalization will form the basis for the relative norm.

Example 3.7. Let G be a Lie group and H < G a closed subgroup. The orbit space
G/H has a canonical H,TeHG/H-tangential structure with H-frame bundle the
quotient map G → G/H : given g ∈ G, the derivative DLg|eH of left multiplica-
tion by g gives an isomorphism of TeH(G/H) with the tangent space of gH . Left
multiplication by elements of G give H-framed local isometries.

Another important example is the vector space V itself.

Example 3.8. The vector space V viewed as an d-manifold has the canonical struc-
ture of an H-framed manifold: the canonical identification of V with the tangent
space TvV at every point v ∈ V induces a splitting of the V -frame bundle

FV V ∼= V ×GL(V )

and we use the split H-frame bundle

FHV := V ×H

with the map FHV → FV V induced by ρ : H → GL(V ). For an H-framed manifold
M and an open embedding f : V → M , a map of H-principal bundles FHV →
f∗FHM is determined by the section

V ∼= V × {e} ⊂ V ×H = FHV −→ f∗FHM

and an arbitrary section V → f∗FHM induces a map of H-principal bundles
FHV → f∗FHM . Similar observations apply to homotopies of maps of principal
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GL(V )-bundles FV V → f∗FVM . It follows that a lift of f to an H-framed embed-
ding determines and is determined by a section s of f∗FHM and a homotopy over
V starting from the composite of s with the map f∗FHM → FVM induced by ρ
and ending at the derivative, viewed as a map V → f∗FHM . Similar remarks apply
to maps out of any d-manifold that has a given splitting of its V -frame bundle.

Convention 3.9. For the rest of the section, we now fix the vector space V ,
the topological group H , which we assume to be a Lie group, the homomorphism
ρ : H → GL(V ), and anH-invariant inner product structure on V , which we assume
exists. (This in particular factors ρ through O(V ), the linear isometries of V .)

In this context, factorization homology is built from the space of H-framed
embeddings of copies of V in H-framed manifolds. In the case where the target is
V itself, the H-framed little disks operad gives a small rigid model.

Definition 3.10. Write D for the open unit disk in V . The H-framed little V -disk
operad DV

H has nth space defined as follows: DV
H(0) consists of a single point. An

element of DV
H(1) consists of a ordered pair (λ, h) where h ∈ H and λ is a affine

transformation λ : V → V of the form

λ(v) = v0 + rhv

for some v0 ∈ D, r ∈ (0, 1] (and the given element h ∈ H) that takes D into
D; (λ, h) is then completely determined by v0, r, h, and we topologize DV

H(1) as a
subspace of D×(0, 1]×H . For n > 1, DV

H(n) is the subspace of DV
H(1)×· · ·×DV

H(1)
where the images of D under the affine transformations are disjoint. The identity
affine transformation and identity element of H give an identity element in DV

H(1).
We have a right action of the symmetric group Σn on D(n) by permuting the copies
of DV

H(1), and we have an operadic composition defined by composing maps and
multiplying group elements: the composition

DV
H(n)×DV

H(j1)× · · · × D
V
H(jn) −→ D

V
H(j)

(for j = j1 + · · ·+ jn) is defined by








((λ1, h1), . . . , (λn, hn)),

((µ1,1, g1,1), . . . , (µ1,j1 , g1,j1)),

. . . ,

((µn,1, gn,1), . . . , (µn,jn , gn,jn))







7→











(λ1 ◦ µ1,1, h1g1,1), . . . ,

(λ1 ◦ µ1,j1 , h1g1,j1),

. . . ,

(λn ◦ µn,1, hngn,1), . . . ,

(λn ◦ µn,jn , hngn,jn)











.

We emphasize that the operad DV
H depends on the action ρ of H on V and not just

the abstract topological group H and vector space V .

Remark 3.11. When the kernel of ρ : H → O(V ) is trivial, the element h of H in
the ordered pair in the definition of DV

H (1) (and DV
H (n)) is completely determined

by the affine transformation λ and we can more concisely define DV
H(1) as the space

of affine transformations λ : V → V of the form x 7→ v0 + rhv that send the unit
disk into the unit disk (DV

H remains the subspace of DV
H(1)n where the images of

the D under the affine transformations are disjoint).

We contrast the H-framed little V -disk operad with the following H-equivariant
little V -disk operad often used in equivariant factorization homology.
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Definition 3.12. The H-equivariant little V -disk operad DV has nth space DV (n)
the space of those ordered n-tuples of affine transformations of the form

v 7→ v0 + rv

that send the closed unit disk into the closed unit disk where (for n > 1) the images
overlap only possibly on the boundary. The identity element is the identity map
in DV (1) and the operadic composition is induced by composing affine transforma-
tions. The action of H on V induces an action of H on the embedding spaces by
conjugation: (h ·λ)(v) = hλ(h−1v). The identity element id ∈ DV (1) is fixed under
this action, and the operadic composition maps

DV (n)×DV (j1)× · · · × DV (jn) −→ DV (j)

(for j = j1 + · · ·+ jn) are H-equivariant, making DV an operad in the category of
H-spaces.

Non-equivariantly DV is DV
e where e denotes the trivial group, but DV and DV

H

are related equivariantly as follows. Let H be the operad with H(n) = Hn, where
composition is induced by diagonal maps and the group multiplication:








(h1, . . . , hn),

(k1,1, . . . , k1,j1),

. . . ,

(kn,1, . . . , kn,jn







7→






h1k1,1, . . . , h1k1,j1

. . . ,

hnk1,jn , . . . , hnkn,jn




 .

The H-framed little V -disks operad DV
H is then isomorphic to the semidirect prod-

uct DV ⋊H of the H-equivariant little V -disks operad DV and the operad H(n) =
Hn, with composition on the DV factor twisted by the action of H on D(ji): the
isomorphism DV ⋊H → DV

H is given on the n-ary part by the formula

(3.13) ((λ1, . . . , λn), (h1, . . . , hn)) ∈ DV (n)×H
n = (DV ⋊H)(n)

7→ ((λ1 ◦ h1, h1), . . . , (λn ◦ hn, hn)) ∈ D
V
H(n).

The relationship between the operads is given by the following proposition, which
is purely formal and holds in any suitable topological category (see, for example,
[15, 2.3]). In it, we understand an H-equivariant DV -algebra to be an object X
with an action of both the operad DV and the topological group H such that the
algebra structure maps are H-equivariant.

Proposition 3.14. The point-set category of H-equivariant DV -algebras is iso-
morphic to the point-set category of DV

H-algebras.

The difference between the two categories is then purely structural or philosoph-
ical. We use DV

H when we need to work in a non-equivariant context and DV when
we need to work in an equivariant context. In terms of homotopy categories or
∞-categories, viewing DV

H merely as an operad, the natural notion of weak equiv-
alence on DV

H -algebras would correspond to Borel equivalence of H-equivariant
DV -algebras, which is never what we want here. As a category of H-equivariant or-
thogonal spectra with extra structure, the category of H-equivariant DV -algebras,
we have U -universe homotopy theories for all H-universes.

As indicated above its definition, the H-framed little V -disk operad models H-
framed embeddings of copies of V into V . To make this precise, we first note
that the open disk D is H-framed diffeomorphic to V where we used the canonical
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splitting of the V -frame bundle of D to define the H-framed structure. Choosing
and fixing an H-framed diffeomorphism, it suffices to discuss H-framed embeddings
of copies of D. We have a continuous map

DV
H(n) −→ EH(D × {1, . . . , n}, D)

defined as follows. We can specify the H-framed structure on a smooth map as in
Example 3.8. For an element (λ, h) of DV

H(1), the underlying smooth map D → D
is λ, the element h, viewed as a constant section

D −→ f∗FHD ∼= D ×H

induces the lift of frame bundles, and we use t 7→ rtρ(h) as the homotopy over D

D × I −→ f∗FVD ∼= D ×GL(V )

from the image of the lift to the derivative (where r is as in the notation of
Definition 3.10, λ(v) = v0 + rhv). This specifies a continuous map DV

H(1) →
EH(D × {1}, D), and for n > 1, the element ((λ1, h1), . . . , (λn, hn)) goes to the
H-framed map D × {1, . . . , n} → D that does the lift of (λi, hi) just described on
the ith copy. Taken together, the collection EH(D × {1, . . . , n}, D) (as n varies)
forms an operad, a version of the endomorphism operad End∐(D) in EH (for the
symmetric monoidal product given by disjoint union). The following observation is
clear by construction.

Proposition 3.15. The map DV
H(n) → EH(D × {1, . . . , n}, D) is compatible with

the symmetric group action and composition, giving a map of operads DV
H →

End∐(D).

It well-known and well-documented in the literature that the map DV
H(n) →

EH(D × {1, . . . , n}, D) is a homotopy equivalence. In fact, we can say more than
this. There is an obvious inclusion of the wreath product group Σn ≀ H in the
H-framed self-diffeomorphisms of D × {1, . . . , n}, where Σn permutes the factors
and elements of H act by the H-isometries on each summand (an element h of
H has underlying smooth map ρ(h), lift specified by the constant section h, and
the homotopy over D also constant). This induces a natural action of Σn ≀ H on
EH(D×{1, . . . , n},M) (for any H-framed manifoldM), and forM = D, it restricts
to a compatible action on DV

H(n). In [CFH], we prove the following theorem about
this Σn ≀H-action.

Theorem 3.16.

(i) For any H-framed manifold M , the Σn ≀ H-space EH(D × {1, . . . , n},M)
is equivariantly homotopy equivalent to a free Σn ≀H-CW complex.

(ii) The map DV
H(n)→ EH(D×{1, . . . , n}, D) is a Σn ≀H-equivariant homotopy

equivalence.

We construct factorization homology as a homotopy coend for the (left) action
of the operad DV

H on an spectrum and the right action of DV
H on the following

embedding spaces.

Notation 3.17. For anH-framed manifoldM , let EM (n) = EH(D×{1, . . . , n},M).

We have a map

EM (n)× (DV
H(j1, 1)× · · · × D

V
H(jn, 1)) −→ EM (j)
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(for j = j1+ · · ·+jn) obtained by composing H-framed embeddings. The collection
EM (n) forms a symmetric sequence (which is just to say that each EM (n) comes
with an action of Σn), and the map above can be re-interpreted in the category of
symmetric sequences as a right action of DV

H on EM for the plethysm product. This
is simpler to explain in terms of associated functors: consider the endofunctors EM

and D on orthogonal spectra defined by

EMX =
∨

n≥0

EM (n)+ ∧Σn
X(n), DX =

∨

n≥0

DV
H(n)+ ∧Σn

X(n).

Then D is the monad associated to the operad DV
H , and the composition maps

above define a right action of D on EM

EM ◦ D −→ EM

in the category of endofunctors of orthogonal spectra (in terms of composition). In
this setting, we have the monadic bar construction of May [13, §9]:

Construction 3.18. Let M be an H-framed manifold and let A be a DV
H -algebra

in the category of orthogonal spectra. Define the simplicial object B•(M ;A) to be
the monadic bar construction B•(EM ,D, A):

Bq(M ;A) := Bq(EM ,D, A) = EM D · · ·D
︸ ︷︷ ︸

n factors

A

where the face maps di are induced by the monadic composition DD → D (for
0 < i < q), the action of DV

H on A, DA → A (for i = 0), and the right action of
DV

H on EM , EMD → EM (for i = q). The degeneracy maps si are induced by the
monadic unit maps Id → D. We write B(M ;A) for the geometric realization, or
BH(M ;A) when it is necessary to denote or emphasize the structure group H

The previous construction B(M ;A) is a standard formulation of factorization
homology

∫

M
A in the context of H-framed manifolds, at least under some cofi-

brancy hypotheses on A; see, for example, [1, IX.1.5], [11, 5.5.2.6], [14, §2.3], [9,
Def. 35], [17, 3.14]. Indeed, because EM (n) and DV

H(n) are Σn-equivariantly ho-
motopic to free ΣnCW complexes, B(M ;−) preserves weak equivalences in DV

H -
algebras A whose underlying orthogonal spectra are “flat” in the sense that the
point-set smash product functor A ∧ (−) preserves weak equivalences. It even suf-
fices for the underlying orthogonal spectra just to have the right smash powers in
the sense that the map in the stable category from the derived smash power to the
point-set smash power is a weak equivalence. B(M ;A) correctly computes

∫

M
A

just under this kind of minimal hypothesis on A.
When a topological group G acts on M through H-framed diffeomorphisms,

B(M ;A) obtains a natural G-action. When H is the trivial group, this gives the
point-set construction of factorization homology from [CFH] with the properties
we asserted in the previous section. When H is non-trivial, the construction is too
flabby to have the correct G-equivariant homotopy type. We correct this with the
following “compressed” bar construction.

Construction 3.19. Let D̄ be the free H-equivariant DV -algebra monad on H-
equivariant orthogonal spectra

D̄X :=
∨

n≥0

DV (n)×Σn
X(n)
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and for an H-framed manifold M , let ĒM denote the functor from H-equivariant
orthogonal spectra to orthogonal spectra defined by

ĒMX :=
∨

n≥0

EM (n)×Σn≀H X(n).

For a DV
H -algebra A (viewed as an H-equivariant DV -algebra), define the simplicial

object B̄•(M ;A) to be the monadic bar construction B•(ĒM , D̄, A):

B̄q(M ;A) := Bq(ĒM , D̄, A) = ĒM D̄ · · · D̄
︸ ︷︷ ︸

n factors

A

with the usual face and degeneracy maps (see Construction 3.18). Write B̄(M ;A)
for the geometric realization, or B̄H(M ;A) when it is necessary to denote or em-
phasize the structure group H .

In terms of the H-framed little V -disk operad, the monad D̄ is naturally isomor-
phic to the monad (on H-equivariant orthogonal spectra)

∨

n≥0

DV
H(n)+ ∧Σn≀H X(n)

where the resulting H-action is the H-action from the DV
H -algebra structure. In

concrete terms, the H-action on the nth summand is induced by the left H-action
on DV

H(n) coming from the H-action on D in the category of H-framed mani-
folds. (Specifically, h ∈ H sends ((λ1, h1), . . . , (λn, hn)) to ((h ◦ λ1, hh1), . . . , (h ◦
λn, hhn)).) Under the isomorphism DV

H(n) ∼= DV (n) × Hn of (3.13), this action
corresponds to the diagonal action on

DV (n)+ ∧Σn
X(n)

used in Construction 3.19. This makes clear the relationship between B(M ;A)
and B̄(M ;A): expanding out the definitions in terms of the spaces EM (n) and
DV

H(n), B(M ;A) is formed from products of these smashed with smash powers of
A by coequalizing symmetric group actions and B̄(M ;A) is formed by the same
products and smash powers by coequalizing the action of the corresponding wreath
product with H .

The quotient map

B(M ;A) −→ B̄(M ;A)

is natural in both the H-framed manifoldM and the DV
H -algebra A, and a straight-

forward “Quillen Theorem A” argument (plus Theorem 3.16.(i)) proves that it is
always a homotopy equivalence. In particular, this is a natural weak equivalence,
but the homotopy inverse and homotopy data cannot be made natural in M .

4. The relative case

We now consider the case when H < G is a closed subgroup of a positive di-
mensional compact Lie group G and discuss the relative norm NG

H . In the case
when H < G is finite index, we already know how to construct this norm as an
equivariant smash power [7, 8.1]; the more interesting case is when H < G is pos-
itive codimension. In the finite index case, the relative norm makes sense for any
genuine H-spectrum; in the positive codimension case, we need additional structure
of precisely the kind introduced in the previous section.



NORMS FOR COMPACT LIE GROUPS 19

Let G be a compact Lie group and H < G a closed subgroup. Let V = TeHG/H
with its natural H-action. We then have a canonical tangential H,V structure (q.v.
Terminology 3.2 and Example 3.7) on G/H and the left multiplication action of
G on G/H is an action in the category of H-framed manifolds. Our setup in the
previous section assumed an H-invariant inner product on V ; as the space of such
inner products is contractible and our constructions are continuous, we can choose
one arbitrarily (but a uniform way to choose the inner product for all H < G at
once is to choose a G-invariant inner product on TeG). As in general for norms, we
work with complete universes: we fix a complete G universe U , which we assume
(wlog) contains R∞ and also a complete H-universe UH , which contains R∞. (We
can as in Section 2 also assume that UG = R∞ and (UH)H = R∞ if we so choose,
but this is not necessary, and without this requirement, a uniform way to choose
UH for all H < G at once is to use U with action restricted to H .)

Definition 4.1. For X an H-equivariant DV -algebra indexed on UH , we define the
relative norm NG

HX as the point-set functor

NG
HX = IUR∞B̄(G/H ; IR

∞

UH
X)

using the construction B̄ of 3.19 and point set change of universe functors I. Here
the G-action on B̄(G/H ;−) comes from topological functoriality of B̄ and the
action of G on G/H in the category of H-framed manifolds.

Just as in the absolute case, the relative norm comes with a cardinality fil-
tration from the Ayala-Francis cardinality filtration on (non-unital) factorization
homology. In this case, the associated graded cofiber at filtration level q looks
(non-equivariantly) like

Cnu
H (q,G/H)+ ∧Σq ≀H X(q)

where CH(q,M) denotes the H-framed version of the configuration space: an ele-
ment consists of a q-tuple of elements of FHM whose image in M is a configuration
(and Cnu

H is the subspace where the configuration in M is surjective on π0). Equiv-
ariantly, we expect this piece to be weakly equivalent to

IU
R∞(Cnu

H (q,G/H)+ ∧Σq ≀H (IR
∞

UH
X)(q)

at least under the hypothesis that the underlying H-equivariant orthogonal spec-
trum of X is cofibrant in the UH -universe model structure or X is an H-equivariant
commutative ring orthogonal spectrum and cofibrant in the commutative ring UH -
universe model structure. If this is the case, expected results from [PMI] would
then imply that the following conjecture holds.

Conjecture 4.2. Let X ′ and X satisfy the Cofibrancy Hypothesis 4.3 below. For
the point-set construction of Definition 4.1, a UH-universe weak equivalence X ′ →
X induces a U -universe weak equivalence NG

HX
′ → NG

HX.

Hypothesis 4.3. For the purposes of this section, we say that an H-equivariant
DV -algebra satisfies the “Cofibrancy Hypothesis” if one of the following holds:

• Its underlying H-equivariant orthogonal spectrum is cofibrant in the UH -
universe model structure
• It inherits itsH-equivariantDV -algebra by virtue of being anH-equivariant
commutative ring orthogonal spectrum, and it is cofibrant in the UH -
universe model structure on commutative ring orthogonal spectra.
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Restricting to the second case in the hypothesis, the following is an immediate
corollary of the conjecture.

Corollary 4.4 (Conjectural). The left derived functor of NG
H exists. Moreover,

the composite with the derived functor (for the UH-universe homotopy categories)
of the forgetful functor ι from H-equivariant commutative ring orthogonal spectra
to H-equivariant DV -algebras is the derived functor of the composite NG

H ι.

When X is an H-equivariant commutative ring orthogonal spectrum, we would
like to compare NG

HX to the left adjoint functor of the forgetful functor from G-
equivariant commutative ring orthogonal spectra to H-equivariant commutative
ring orthogonal spectra. Denote this left adjoint as (−)⊗HG. The point-set model,
up to isomorphism, does not depend on the indexing universe, and indexing on R∞,
we can identify (IR

∞

UH
X)⊗H G as a quotient of the free G-equivariant commutative

ring orthogonal spectrum on (IR
∞

UH
X) ∧H G+. Filtering this with the qth level the

image of ((IR
∞

UH
X)∧HG+)

(q)/Σq, the associated graded point-set quotients are then
given by the orthogonal G-spectra

CH(q,G/H)+ ∧Σq ≀H (IR
∞

UH
(X/S))(q)

which we can re-index to U using the point-set change of universe IU
R∞ . When

the inclusion of S in X is a Hurewicz cofibration of orthogonal H-spectra, the
maps in the filtration are Hurewicz cofibrations of orthogonal G-spectra, and we
can use this filtration to analyze X ⊗H G homotopically. Just as in the absolute
case, factorization homology of unital algebras has a unital version of the cardinal-
ity filtration, with the q-level associated graded cofiber expected (under suitable
cofibrancy hypotheses) to be U -universe weakly equivalent to

IU
R∞(CH(q,G/H)+ ∧Σq ≀H (IR

∞

UH
(X/S))(q)),

that is, the U -re-indexed associated graded quotient above. If this all works, it
would then establish the following conjecture.

Conjecture 4.5. Let R be a cofibrant H-equivariant commutative ring orthogonal
spectrum in the UH-universe model structure. Then there is a natural U -universe
weak equivalence

NG
HR ≃ R⊗H G

where (−) ⊗H G is the left adjoint of the (point-set) forgetful functor from G-
equivariant commutative ring orthogonal spectra to H-equivariant commutative ring
orthogonal spectra.

Analyzing the cardinality filtration gives conjectures for the geometric fixed
points:

Conjecture 4.6. Let X be an H-equivariant DV -algebra satisfying the Cofibrancy
Hypothesis 4.3 above. If K is a normal subgroup of G and H is finite index in
HK, then H ∩ K acts trivially on V , the map of H-equivariant inner product
spaces V = TeHG/H → TeHKG/HK is an isomorphism, and there exists a natural
UK-universe G/K-equivariant weak equivalence

(NG
HX)ΦK ≃ N

G/K
(G/K)/(HK/K)(X

Φ(H∩K)).

If K is a normal subgroup of G and H is not finite index in HK, then the unit
map induces a UK-universe G/K-equivariant weak equivalence S→ (NG

HX)ΦK .
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Having formulated a relative construction, it is now possible to try to iterate
norms. For K < H < G, we expect an equivalence between NG

KX and an iterated
construction along the lines of NG

HN
H
KX . The first issue that arises is that the

inputs for NG
K and NH

K do not match: the former wants a K-equivariant little
TeK(G/K)-disk algebra whereas the latter wants a K-equivariant little TeK(H/K)-
disk algebra. This is minor because (having chosen a G-invariant inner product on
TeG), we have a decomposition of K-equivariant inner product spaces

(4.7) TeK(G/K) ∼= TeK(H/K)⊕ TeH(G/H),

and this gives a forgetful functor from the input for NG
K to the input for NH

K at
least on the level of homotopy categories. A more serious issue is that even when
we use a K-equivariant little TeK(G/K)-disk algebra X as the input, the output
of NH

K does not obviously have the structure of a H-equivariant little TeHG/H-
disk algebra, which is what is needed as the input to NG

H . On the other hand,
when X is a K-equivariant little TeK(G/K)-disk algebra, we can make sense of the
factorization homology

B̄(H/K ×D(TeH(G/H));X)

where D denotes the open unit disk and we understand H/K×D(TeH(G/H)) as a
K,TeK(G/K)-framed manifold using the isomorphism (4.7) again. We expect the
following to hold:

Conjecture 4.8. Let K < H < G and let X be a K-equivariant little TeK(G/K)-
disk algebra. There is a natural zigzag of H-equivariant homotopy equivalence

B̄(H/K ×D(TeH(G/H));X) ≃ B(H/K, i∗X)

where i∗ denotes a functor to K-equivariant little TeK(G/K)-disk algebras modeling
the homotopical forgetful functor for the decomposition in (4.7).

In particular, IUH

R∞ B̄(H/K × D(TeH(G/H)); IR
∞

UK
X) should be an acceptable

stand-in for NH
K (i∗X).

The advantage of B̄(H/K ×D(TeH(G/H));X) is that the K-framed manifold

H/K × D(TeH(G/H)) comes with the structure of a D
TeH (G/H)
H -algebra in the

category EK , as we now explain. The key observation is that the (diagonal) (left)
multiplication by H on H/K × D(TeHG/H) is a K-framed local isometry. The
tangential K,TeK(G/K)-structure on H/K × D(TeHG/H) has K-frame bundle
H×D(TeHG/H) with K acting on the right ofH (acting trivially on D(TeHG/H)).
The identification of

(H ×D(TeHG/H))×K TeK(G/K)

with the tangent bundle of H/K ×D(TeHG/H) sends an element

((h, u), v ⊕ w) ∈ (H ×D(TeHG/H))×K (TeK(H/K)⊕ TeH(G/H))

∼= (H ×D(TeHG/H))×K TeK(G/K)

to ((h, u), DLh|eKv ⊕ h · w), where DLh|eK denotes the derivative of left multi-
plication by h on H/K. For an element g ∈ H , multiplication by g on H/K ×
D(TeHG/H) then clearly sends K-frames to K-frames. Given an element

((λ, h1), . . . , (λn, hn)) ∈ D
TeH (G/H)
H (n)
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of the H-framed little TeK(G/H)-disk operad, we then get a K-framed embedding

(H/K ×D(TeHG/H)) ∐ · · · ∐ (H/K ×D(TeHG/H)) −→ (H/K ×D(TeHG/H))

using the group elements hi diagonally and the affine transformations λ on the disks
D(TeHG/H).

A fundamental property of factorization homology is that it is symmetric monoidal
in both variables. In particular, our construction B̄ is strong symmetric monoidal
on the point-set level in the manifold variable: it takes disjoint unions of manifolds
to smash products of orthogonal spectra up to coherent natural isomorphism. It
follows that an operadic algebra structure on the manifold M (for disjoint union in
the category EK) induces the same kind of operadic algebra structure on B̄(M ;X)
for fixed X . In the present context, this discussion proves the following observation.

Proposition 4.9. Let K < H < G and let X be a K-equivariant little TeK(G/K)-
disk algebra. The orthogonal spectrum B̄(H/K×D(TeH(G/H));X) has the canon-

ical structure of a D
TeH (G/H)
H -algebra.

This allows us to make sense of the iterated norm construction. We conjecture
the following relationship.

Conjecture 4.10. Let K < H < G and let X be a K-equivariant little TeK(G/K)-
disk algebra whose underlying K-equivariant orthogonal spectrum is cofibrant in the
UK-universe. There is a natural U -universe G-equivariant weak equivalence

NG
KX ≃ N

G
HI

UH

R∞ B̄(H/K ×D(TeH(G/H)); IR
∞

UK
X).

As mentioned above, factorization homology is symmetric monoidal in both vari-
ables. Symmetric monoidality in the algebra variable should imply this expected
property of norms.

Conjecture 4.11. Let X and Y be H-equivariant DV -algebras whose underlying
H-equivariant orthogonal spectra are cofibrant in the UH-universe model structure.
There is a natural U -universe G-equivariant weak equivalence

NG
HX ∧N

G
HY ≃ N

G
H (X ∧ Y ).

5. The case of the circle group

The paper [2] defines norms and relative norms for the circle group S1 in terms
of cyclic bar constructions. In this section, we compare the point-set construction
of the norms in [2, 1.1,8.2] to the point-set construction of the norms in the previous
section in the case G = S1; see Theorem 5.1 for a precise statement. This section
is independent of the work of [CFH] and [PMI], and depends on the rest of this
paper only in its use of the notation, terminology, and definitions.

We fix the positive integer m and consider the subgroup Cm < S1. To avoid no-
tational confusion in what follows, we consistently write Zn for the cyclic subgroup
of Σn generated by the cyclic permutation (1 · · ·n).

Let U denote a complete S1-universe; we write UCm
for U regarded as a complete

Cm-universe. The point-set [2, 8.2] norm is a functor from Cm-equivariant associa-
tive ring spectra indexed on UCm

to S1-equivariant orthogonal spectra indexed on
U built as a composite

IUR∞N
cyc,Cm

∧ IR
∞

UCn
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using a Cm relative cyclic bar construction (which we review starting after Theo-
rem 5.14 below) and point-set change of universe functors. For the point-set norm
of Definition 4.1, we note that the action of Cm on the tangent space TeCm

S1/Cm

is trivial, and (to simplify notation) we identify this tangent space with R using the
standard metric and orientation on S1 (with total length 2π, giving S1/Cm length
2π/m). The norm

IU
R∞B̄Cm

(S1/C, IR
∞

UCn
(−))

is then a functor from Cm-equivariant DR-algebras (little 1-disk algebras) in or-
thogonal spectra indexed on UCm

to S1-equivariant orthogonal spectra indexed
on U . The inputs for these functors differ, but we have a forgetful functor from
Cm-equivariant associative ring orthogonal spectra to Cm-equivariant DR-algebras
(which is an equivalence on homotopy categories), so we state the comparison in
the associative case. The following is the main result of this section.

Theorem 5.1. Let R be a Cm-equivariant associative ring orthogonal spectrum in-
dexed on R∞. There is a natural zigzag of natural S1-equivariant homotopy equiv-
alences

B̄Cm
(S1/Cm, R)←− B(Ē, D̄, R) −→ B(Ēc, D̄c, R)←− B(C̄c,T, R)

and a natural isomorphism

B(C̄c,T, R) ∼= N cyc,Cm

∧ B(T,T, R)

of S1-equivariant orthogonal spectra indexed on R
∞.

The functors of the form B(−,−, R) are all monadic bar constructions, which we
explain in detal below. In the first display, all the maps are geometric realizations of
maps that are natural S1-equivariant homotopy equivalences on each simplicial level
(the homotopy inverses and homotopy data is natural in R). See Propositions 5.6,
5.11, 5.12 below. In both displays, T denotes the free associative algebra monad
(in the category of Cm-equivariant orthogonal spectra) and in the second display,
B(T,T, R) is the geometric realization of the “standard construction” or the two-
sided bar construction. The Cm-equivariant associative ring spectrum B(T,T, R)
comes with a natural map in the category of Cm-equivariant associative ring spectra

B(T,T, R) −→ R

which is a natural Cm-equivariant homotopy equivalence of the underlying orthogo-
nal spectra. Because point-set change of universe functors are topologically enriched
and therefore preserve homotopy equivalences, we get the following norm compar-
ison as a corollary (applying the previous theorem to IR

∞

Cm
A and applying IU

R∞ to
the resulting zigzag).

Corollary 5.2. Let A be a Cm-equivariant associative ring orthogonal spectrum

indexed on UCm
. The relative norm NS1

Cm
A of Definition 4.1 is naturally S1-

equivariantly homotopy equivalent to the relative norm NS1

Cm
B(T,T, A) of [2, 8.2].

The relative norm of [2, 8.2] is known to preserve the weak equivalences used
there (the “F -equivalences”) under mild hypotheses on its input. For example, it
is good enough if the underlying Cm-equivariant orthogonal spectrum indexed on
UCm

is cofibrant, and we note that if A satisfies this, then so does B(T,T, A). In
this case then, we get a weak equivalence between both relative norms on A.
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We note that in the case m = 1, the theorem and corollary above give an
equivariant comparison between factorization homology and THH .

We now begin the proof of the theorem. For the first display, the argument
amounts to little more than defining terms. The functor Ē in the statement is a
simplification of ĒS1/Cm

along the lines that the little disk operad is a simplification
of the disk embedding spaces.

Construction 5.3. Let E(1) be the set of ordered pairs (ζ, r) with ζ ∈ S1 and
r ∈ (0, π/m]. Such an ordered pair specifies an element of ES1/Cm

(1) where

• The embedding f : D → S1/Cm is the map t 7→ [eirtζ] (writing [α] for
the image in S1/Cm of an element α ∈ S1, and thinking of S1 as the unit
complex numbers).
• The map of Cm-frame bundles FCm

D → f∗FCm
S1/Cm is determined by

the section t 7→ eirtζ.
• The map of Cm-frame bundles lies over the map of frame bundles that is
the identity (under the identification of the tangent space of S1/Cm with
R given above) and the derivative is multiplication by r in the fiber of each
point t ∈ D; we use the homotopy s 7→ rs.

We let E(n) be the subspace of E(1)n where the images of the embeddings do not
overlap. We then get an inclusion E(n)→ ES1/Cm

(n). We write E for the collection
E(n), n ≥ 0.

The following is clear from construction.

Proposition 5.4. The right DR

Cm
-action on ES1/Cm

restricts to define a right DR

Cm
-

action on E.

The map E(n)→ ES1/Cm
(n) is S1×(Σn ≀Cm)op-equivariant (equivariant for both

the left action of S1 and the right action of Σn ≀ Cm). Since Cn → GL(R) is the
trivial map, all embeddings in ES1/Cm

(n) are oriented. The exponential map from
R to the oriented transformations in GL(R) is an isomorphism, and the following
proposition is then easy using linear homotopies.

Proposition 5.5. For each n, the inclusion of E(n) in ES1/Cm
(n) is a S1 × (Σn ≀

Cm)op-equivariant homotopy equivalence.

We define the functor Ē from Cm-equivariant orthogonal spectra to S1-equivariant
orthogonal spectra as in Construction 3.19: let

ĒX =
∨

n≥0

E(n)+ ∧Σn≀Cm
X(n).

We then get a monadic bar construction B(Ē, D̄,−) with input Cm-equivariant DR-
algebras in orthogonal spectra and output S1-equivariant orthogonal spectra. The
map of right DR

Cm
-spaces E → ES1/Cm

induces a map of bar constructions, and
Proposition 5.5 then implies the following proposition.

Proposition 5.6. For any Cm-equivariant DR-algebra X, the map of monadic bar
constructions

B•(Ē, D̄, X) −→ B•(ES1/Cm
, D̄, X)

is on each level a natural S1-equivariant homotopy equivalence.
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The idea for Ēc and D̄c is to expand E and DR to allow the radius of the disk
images to go to zero, while retaining the correct overall homotopy type for these
embedding spaces. This is easiest to first define in the non-symmetric context and
then put the symmetries back in. To do this, let uDR(n) be the subspace of DR(n)
consisting of those n-tuples (λ1, . . . , λn) such that

λ1(0) < · · · < λn(0);

then DR(n) ∼= uDR × Σn. The operadic composition map preserves these compo-
nents (making uDR a “non-Σ operad”) and the isomorphismDR(−) ∼= uDR(−)×Σ−

is an isomorphism of operads where the operadic composition (and permutation
action) on the symmetric groups is the standard one, defining the operad for asso-
ciative monoids A. We extend this operad as follows.

Construction 5.7. Let uDc(1) be the subspace of points (v, r) ∈ R × [0, 1] such
that the affine transformation

λ : t 7→ v + rt

sends D = [−1, 1] ⊂ R into D. Let uDc(n) be the subset of (uDc(1))n consisting
of those n-tuples ((v1, r1), . . . , (vn, rn)) that satisfy

v1 ≤ · · · ≤ vn

and whenever vj + rj > vj+1 − rj+1 we have rj = rj+1 = 0; in terms of the affine
transformations, whenever the images of two overlap, they are both constant to the
same point. Let Dc(n) = uDc(n) × Σn, with the operadic multiplication induced
by diagonal composition and block sum of permutations: composition takes the
element corresponding to

(((λ1, . . . , λn), σ), ((µ1,1, . . . ), τ1), . . . , ((. . . , µn,jn), τn))

in Dc(n)× Dc(j1)× · · · × Dc(jn) to the element corresponding to

((λ1 ◦ µσ−1(1),1, . . . , λ1 ◦ µσ−1(1),j
σ−1(1)

, . . . , λn ◦ µσ−1(n),j
σ−1(n)

), σ ◦ (τ1 ⊕ · · · ⊕ τn))

in Dc(j).

The inclusion of DR in Dc is a map of operads, and we also get a map of operads
A → Dc from the operad A for associative monoids: the map

A(n) = Σn −→ uDc(n)× Σn = Dc(n)

sends σ ∈ Σn to ((0, 0), . . . , (0, 0), σ). Because uDR(n) and uD
c(n) are contractible

for all n, we get the following proposition.

Proposition 5.8. The maps of operads DR → Dc ← A induce Σn-equivariant
homotopy equivalences

DR(n) −→ D
c(n)←− A(n)

for all n.

We can do something similar for E(n): let uE(n) be the subspace of E(n) of
those n-tuples ((ζ1, r1), . . . , (ζn, rn)) such that for each i, the counterclockwise path
from [ζj ] to [ζj+1] does not pass though any of the other [ζk], that is, starting with
[ζ1], the points [ζj ] are numbered in strictly counterclockwise order. This has a
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canonical action of Zn < Σn (for Zn = 〈(1 · · ·n)〉) and uE(n) is an S1×(Zn ≀Cm)op-
subspace of E(n). Moreover, E(n) is isomorphic as an S1 × (Σn ≀ Cm)op-space to
uE(n)×Cn

Σn. The right action of DR

Cm
on E restricts to give maps of the form

uE(n)× uDR(j1)× · · · × uDR(jn) −→ uE(j)

which are S1 × (Cn
m)op-equivariant where Cn

m acts by diagonal blocks on the right.
Writing uDR

Cm
for the non-Σ version of DR

Cm
, uDR ⋊Cm, the corresponding action

map
uE(n)× uDR

Cm
(j1)× · · · × uD

R

Cm
(jn) −→ uE(j)

is S1× (Cj
m)op-equivariant. We have a further cyclic Zn invariance of the following

form: for

(f, g1, . . . , gn) ∈ uE(n)× uDR(j1)× · · · × uDR(jn) −→ uE(j),

α ∈ Zn, and αj1,...,jn ∈ Σj the permutation that cycles the blocks j1, . . . , jn by α,
the following compositions are equal:

(fα) ◦ (g1, . . . , gn) = (f ◦ (gα−1(1), . . . , gα−1(n)))αj1,...,jn ∈ uE(j)

We note that αj1,...,jn ∈ Zj < Σj ; for example, if α is the cycle (1 · · ·n) then
αj1,...,jn is (1 · · · j)jn . Adding the full symmetric group symmetries back in, these
action maps induce the DR

Cm
-action maps.

The Zn-action on uE(n) adds an extra complication to constructing the exten-
sion uEc(n). Since Z1 is the trivial group, no issues arise at the 1-ary level, and
we can take uEc(1) = Ec(1) to be the set or ordered pairs (ζ, r) with ζ ∈ S1 and
r ∈ [0, π/m]. The problem arises at the 2-level: consider the elements

((1, r), (e2ir , r)), ((e2ir , r), (1, r)) ∈ uE(2).

As r goes to zero, these need to converge to different elements of uEc(2), and so
we cannot just take uEc(2) to be the obvious subspace of uEc(1)2. Instead, we
note that when r is small, the center points 1 and e2ir are close together and we
can interpret the point 1 as being “first” in the counter-clockwise order; we can
identify it as first because traveling only counter-clockwise, most of the circle has
to be traversed to reach it from the other point. We use this idea to redefine uE(n)
in a way that we extends to allow the size of the disk images to be zero.

Define θj : C(n, S
1/Cm)→ (0, 2π/m) to be the (continuous) function that takes

a configuration (x1, . . . , xn) to the length of the counter-clockwise arc from xj
to xj+1 (for j < n) or from xn to x1 (for j = n). We define θj on E(n) and
uE(n) using the center point map E(n) → C(n, S1/Cm) that takes an element
((ζ1, r1), . . . , (ζn, rn)) to the configuration given by the center points of the disk
images ([ζ1], . . . , [ζn]). Since for elements of uE(n), the center points occur cyclically
in the counter-clockwise direction, we have that the sum of the lengths always adds
up to the circumference of the circle,

θ1|uE(n) + · · ·+ θn|uE(n) ≡ 2π/m.

Now let uE′(n) be the subspace of E(1)n × (0, 2π/m)n consisting of the points

((ζ1, r1), . . . , (ζn, rn)), (φ1, . . . , φn))

such that

• Starting at [ζ1], the points [ζ1], . . . , [ζn] occur in counter-clockwise order;
• The intervals t 7→ [eπirjtζj ], t ∈ (−1, 1) do not overlap;
• [ζj+1] = [eπiφj ζj ] for j = 0, . . . , n− 1 where ζ0 := ζn and φ0 := φn; and
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• φ1 + · · ·+ φn = 2π/m.

Then the projection uE′(n) → uE(n) and the map uE(n) → uE′(n) given by
the inclusion and θ1, . . . , θn are inverse homeomorphisms. Moreover, if we let Zn

act on (0, 2π/m)n by permuting coordinates (and let S1 and Cm act trivially on
(0, 2π/m)n), then these homeomorphisms are S1 × (Zn ≀ Cm)op-equivariant. The
effect of the action of uDR on the new φ coordinates is straight-forward but tedious
to describe; to avoid unnecessary redundancy, we just write it out for the extension
uEc below.

Construction 5.9. Let uEc(0) be a point and uEc(1) the set or ordered pairs
(ζ, r) with ζ ∈ S1 and r ∈ [0, π/m]. For n > 1, let uE′(n) be the subspace of
Ec(1)n × [0, 2π/m]n consisting of the points

((ζ1, r1), . . . , (ζn, rn)), (φ1, . . . , φn))

such that

• Starting at [ζ1], the points [ζ1], . . . , [ζn] occur in counter-clockwise order;
• If for some j < k ∈ {1, . . . , n} the intervals t 7→ [eπirjtζj ] and t 7→ [eπirktζk],
t ∈ (−1, 1) overlap, then rj = rk = 0;
• [ζj+1] = [eπiφj ζj ] for j = 0, . . . , n− 1 where ζ0 := ζn and φ0 := φn; and
• φ1 + · · ·+ φn = 2π/m.

We have an S1×(Zn ≀Cm)op-action with the left S1 action diagonally on the ζj , the
right Cm actions individually on the ζj , and the Zn action permuting the indexes
on the ζj , rj , and φj .

We define the action map

uEc(n)× uDc(j1)× · · · × uD
c(jn) −→ uEc(j)

(j = j1 + · · ·+ jn) as follows. For

((ζ1, r1), . . . , (ζn, rn), (φ1, . . . , φn)) ∈ uE
c,

((vi,1, si,1), . . . , (vi,ji , si,ji)) ∈ uD
c(ji),

the resulting element of uEc(j),

((ξ1, t1), . . . , (ξj , tj), (ψ1, . . . , ψj))

is given as follows. For ℓ ∈ {1, . . . , j} define j(ℓ) to be the smallest integer such
that

j1 + · · ·+ jj(ℓ) ≥ ℓ

(so j(ℓ) = 1 for ℓ ∈ {1, . . . , j1}, j(ℓ) = 2 for ℓ ∈ {j1 + 1, . . . , j1 + j2}, etc.), and
define

k(ℓ) = ℓ− (j1 + · · ·+ jj(ℓ)−1)

(where we understand the parenthetical sum as 0 when j(ℓ) = 1). We have made
this definition so that the ℓ index in the codomain corresponds to the j(ℓ), k(ℓ)
index in the domain, and we take

ξℓ = eirj(ℓ)vj(ℓ),k(ℓ)ζj(ℓ)

tℓ = rj(ℓ)sj(ℓ),k(ℓ);
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in other words, in terms of the corresponding maps of the interval, we do the usual
diagonal composition. For the parameters ψℓ, we take

ψℓ =







rj(ℓ)(vj(ℓ),k(ℓ)+1 − vj(ℓ),k(ℓ)) if ℓ < j and j(ℓ+ 1) = j(ℓ)

φj(ℓ) − rj(ℓ)vj(ℓ),k(ℓ) + rj(ℓ)+1vj(ℓ)+1,1 if ℓ < j and j(ℓ+ 1) = j(ℓ) + 1

φn − rnvn,jn + r1v1,1 if ℓ = j;

an easy check shows that this defines an element of uEc(j).
We define Ec(n) to be the S1 × (Σn ≀ Cm)op-space Ec(n) ×Zn

Σn. The cyclic
permutation action on the uEc(n) has the same compatibility with composition
as on the uE(n), and we get a right action of Dc on Ec generalizing the formulas
above for the right action of DR on E.

As discussed above, the functions θj on uE(n) fill in parameters φj to define a
map uE(n) → uEc(n) and hence a map E(n) → Ec(n), which are easily seen to
be inclusions. The latter map is S1 × (Σn ≀ Cm)op-equivariant; we show it is an
S1 × (Σn ≀ Cm)op-equivariant homotopy equivalence.

Proposition 5.10. The map E(n) → Ec(n) is an S1 × (Σn ≀ Cm)op-equivariant
homotopy equivalence.

Proof. There is nothing to show in the case n = 0 and the case n = 1 is clear.
For n ≥ 2, we can identify E(n) with its homeomorphic image, which consists
of the elements where (in our usual notation) none of the rj ’s are zero. Let X
denote the subspace of Ec(n) where all the rj ’s are zero. We have an obvious
equivariant deformation retraction of E(n) on to X , which induces an equivariant
homotopy equivalence between E(n) and the subspace X0 of Xc where the [ζj ]
are all distinct elements of S1/Cm. (The center point map gives an equivariant
homeomorphism from X to the Cm-framed configuration space CCm

(n, S1/Cm)
described in the paragraph following Definition 4.1, with the functions θ above
inducing the inverse.) We can equivalently describe X0 as the subspace where all
the φj are positive; let Xk ⊂ X be the subspace where at most k of the φj are zero.
Then X = Xn. Consider the equivariant self-homotopy of X that at time t sends
the element represented by

((((ζ1, 0), . . . , (ζn, 0)), (φ1, . . . , φn)), σ)

to the element represented by

((((eitφ1/2ζ1, 0), . . . , (e
itφn/2ζn, 0)), (φ1(1−t/2)+φ2t/2, . . . , φn(1−t/2)+φ1t/2)), σ).

This starts at the identity and ends at an endomorphism f ofX . The endomorphism
f sends Xk into Xk−1 for k > 0. The nth iterate then sends X into X0 and is
evidently an equivariant homotopy inverse to the inclusion. �

Let Ēc be the functor from Cm-equivariant orthogonal spectra to S1-equivariant
orthogonal spectra defined by

ĒcX =
∨

n≥0

Ec(n)+ ∧Σn≀Cm
X(n) ∼=

∨

n≥0

uEc(n)+ ∧Zn≀Cm
X(n)

and let D̄c be the monad in Cn-equivariant orthogonal spectra associated to the
Cn-equivariant operad Dc,

D
cX =

∨

n≥0

Dc(n)+ ∧X
(n).
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The right action of Dc on Ec descends to give a right action of the monad Dc on
Ēc, and the inclusion of E in Ec is compatible with the actions in the sense that
the diagram

ĒD̄ //

��

Ē

��

ĒcD̄c // Ēc

of functors from Cm-equivariant orthogonal spectra to S1-equivariant orthogonal
spectra precisely commutes. This induces a map of monadic bar constructions

B(Ē, D̄,−) −→ B(Ēc, D̄c,−).

Propositions 5.8 and 5.10 now prove the following proposition.

Proposition 5.11. For any Cm-equivariant DR-algebra X, the map of monadic
bar constructions

B•(Ē, D̄, X) −→ B•(Ē
c, D̄c, X)

is on each level a natural S1-equivariant homotopy equivalence.

For the last zigzag, let uCc(n) be the subspace of uEc(n) where the rj ’s are
all zero, and let Cc(n) = uCc ×Zn

Σn. Viewing Cc(n) as a subspace of Ec(n),
it inherits a S1 × (Σn ≀ Cm)op-action and the inclusion of Cc(n) in Ec(n) is an
equivariant homotopy equivalence. The right Dc-action on Ec restricts to Cc, and
using the map of operads A → Dc, we get a right action of A on Cc, making the
following diagram precisely commute

C̄cT //

��

C̄c

��

ĒcD̄c // Ēc

where T is the free associative algebra monad (the monad associated to the operad
A) and C̄c denotes the functor from Cm-equivariant orthogonal spectra to S1-
equivariant orthogonal spectra

C̄cX =
∨

n≥0

Cc(n)+ ∧Σn≀Cm
X(n) ∼=

∨

n≥0

uCc(n)+ ∧Zn≀Cm
X(n)

We get a corresponding map of bar constructions and the following proposition is
now clear.

Proposition 5.12. For any Cm-equivariant associative ring orthogonal spectrum
R, the map of monadic bar constructions

B•(C̄
c,T, R) −→ B•(Ē

c, D̄c, R)

is on each level a natural S1-equivariant homotopy equivalence.

This completes the proof of the assertion about the first display in Theorem 5.1.
For the isomorphism in the second display, we use the following construction.

Construction 5.13. For R a Cm-equivariant associative ring orthogonal spectrum.
Define the S1-equivariant orthogonal spectrum C̄c ⊗T X to be the (point-set) co-
equalizer

C̄cTR //
// C̄cR // C̄c ⊗T R

with one map C̄cTR → C̄cR induced by the right T-action on C̄c and the other
induced by the left T-action on R.



30 ANDREW J. BLUMBERG, MICHAEL A. HILL, AND MICHAEL A. MANDELL

Since the functors C̄c and T commute with geometric realization, we have a
natural isomorphism

C̄c ⊗T B(T,T, R) ∼= B(C̄c,T, R).

The proof of Theorem 5.1 is therefore completed by the verification of the following
theorem.

Theorem 5.14. There is a natural isomorphism

C̄c ⊗T (−) ∼= N cyc,Cm

∧ (−)

of functors from Cm-equivariant associative ring orthogonal spectra to S1-equivariant
orthogonal spectra.

Before explaining the isomorphism, we begin with a brief review of the functor

N cyc,Cm

∧ from Cm-equivariant associative ring orthogonal spectra to S1-equivariant

orthogonal spectra. Non-equivariantly, N cyc,Cm

∧ is a variant of the cyclic bar con-
struction: it is the geometric realization of the simplicial object with qth object the
(q + 1)th smash power

N cyc,Cm

∧,q R = R(q+1)

with degeneracy si induced by the inclusion of the identity in the (i+1)th position
and face map di for i = 0, . . . , q− 1, the multiplication in positions i+ 1 and i+ 2.
The last face map dq+1 cycles the last position around to the front acts on it by

the generator e2πi/m ∈ Cm < S1 < C× and then multiplies the (new) 1st and 2nd
positions. Then dq+1 = d0 ◦ τq where τq is the operation on R(q+1) that cycles

the factors and then applies e2πi/m in the first factor. The face, degeneracy, and τ
operators satisfy the relations

(5.15)

τm(q+1)
q = id

d0τq = dq s0τq = τ2q+1sq

diτq = τq−1di−1 siτq = τq+1si−1 (1 ≤ i ≤ q)

(in addition to the simplicial identities relating just the faces and degeneracies).
As in [4, §1] (but with slightly different indexing conventions), this implicitly de-

fines a category Λop
m , generalizing Connes’ cyclic category, such that N cyc,Cm

∧,• is a
functor from Λop

m to orthogonal spectra. We use the terminology m-cyclic orthogo-
nal spectrum (or m-cyclic space) for a functor from Λop

m to orthogonal spectra (or
spaces).

Let Λm[q] denote the geometric realization of the representable object

Λm[q]• = Λm(•, q).

As q, varies Λm[q] is a functor from Λm to spaces. Then (as in [4, 1.8]), for
any Λop

m -object X• (in spaces or orthogonal spectra), the inclusion of the simplex
category ∆ in Λm induces an isomorphism from usual geometric realization of X•

to an m-cylic realization given as the coend over Λm of X• ∧ Λm[•]+ (in the case
of orthogonal spectra). The spaces Λm[q] have a natural (in q ∈ Λop

m ) action of
the circle S1; see [4, 1.6]. This gives the geometric realization of any m-cyclic
orthogonal spectrum (or space) a natural S1-action.

To be precise, Λm[q] is isomorphic to the space

R/mZ×∆[q].
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Writing an element as (r+mZ, t0, . . . , tq) where r ∈ R and ti ≥ 0, t0+ · · ·+ tq = 1,
the circle acts by

eiθ · (r +mZ, t0, . . . , tq) = (r + θ/(2π/m) +mZ, t0, . . . , tq).

As a functor of Λm, the face and degeneracy maps act in the usual manner on the
simplices and the twist τq acts by

τq(r +mZ, t0, . . . , tq) = (r − tq +mZ, tq, t0, . . . , tq−1).

(This is [4, 1.6] adjusted for our indexing convention.)
The spaces Λm[q] are closely related to the spaces uCc(n). To simplify notation,

we write a typical element of uCc(n) as

(ζ1, . . . , ζn, φ1, . . . , φn)

for ζi ∈ S1, φi ∈ [0, 2π/m] (dropping the rj = 0 from the notation we used above
and flattening parentheses). Let υm,n ∈ Zn ≀ Cm denote the element

((1 · · ·n); 1, . . . , 1, e−2πi/m) ∈ Zn ⋉ Cn
m = Zn ≀ Cm.

Then υm,n generates a cyclic subgroup of order mn in Zn ≀ Cm that acts on X(n)

(for a Cm-equivariant orthogonal spectrum X) by acting by e−2πi/m on the last
factor and then cycling it to the first position. The precise relationship between
the spaces Λm[q] and uCc(n) is as follows.

Proposition 5.16. The map Λm[q] → uCc(q + 1) that sends (r +mZ, t0, . . . , tq)
to

(e(2π/m)ir, e(2π/m)i(r+t0), . . . , e(2π/m)i(r+t0+···+tq−1), (2π/m)t0, . . . , (2π/m)tq)

induces a S1 × (Zq+1 ≀ Cm)op-equivariant isomorphism

Λm[q]×Cm(q+1)
(Zq+1 ≀ Cm) −→ uCc(q + 1)

(where on the left, we are using the isomorphism Cm(q+1)
∼= 〈um,q+1〉 ⊂ Zq+1 ≀ Cm

sending the generator e2πi/(m(q+1)) to υm,q+1).

Proof. The displayed formula for the map Λm[q]→ uCc(q+1) is clearly well-defined
and S1-equivariant; moreover, it is equivariant for the right action of Cm(q+1) on
Λm[q] and the 〈υm,q+1〉 action on uCc(q + 1) under the given isomorphism since

e−2πi/me(2π/m)i(r+t0+···+tq−1) = e(2π/m)i(r−tq)

(−1 + t0 + . . . tq−1 = −tq). The map Λm[q] ×Cm(q+1)
(Zq+1 ≀ Cm) → uCc(q + 1)

is therefore well-defined and S1 × (Zq+1 ≀ Cm)op-equivariant. It is a continuous
bijection of compact Hausdorff spaces and therefore an isomorphism. �

Using the isomorphism above, we get a well defined map

(5.17) C̄cR ∼=
∨

n≥0

uCc(n)+ ∧Zn≀Cm
R(n)

−→ N cyc,Cm

∧ (R) ∼=

(
∨

q≥0

Λm[q]+ ∧R
(q+1)

)/

∼
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sending the n = 0 summand uCc(0)+ ∧ R(0) ∼= S by the inclusion of {1}+ ∧ S in
Λm[0] ∧ R(0) ∼= S1

+ ∧ S, and for n > 0, sending the nth summand through the
q = n− 1 summand using the isomorphism

uCc(q + 1)+ ∧Zq+1≀Cm
R(q+1) ∼= Λm[q]+ ∧Cm(q+1)

R(q+1)

implied by the previous proposition. This is well defined because on the right hand
side, the Cm(q+1)-actions on Λm[q]+ ∧R(q+1) are coequalized as part of the coend.

It is obvious that this map is S1-equivariant on the nth summand for n > 0, but
it is also S1-equivariant on the 0th summand (as a consequence of the fact that on

the image of S in N cyc,Cm

∧,0 , τ1s0 = s0).

For the coequalizer forming C̄c ⊗T R from C̄cR,

C̄c ⊗T R ∼=

(
∨

n≥0

uCc(n)+ ∧Zn≀Cm
R(n)

)/

∼,

the equivalence relation induced by the action of A on Cc and R can be written in

terms of faces, degeneracies, and twists in them-cyclic object N cyc,Cm

∧,• and relations

involving the the unit S→ R. As a consequence, the map C̄cR→ N cyc,Cm

∧ R induces

a map C̄c ⊗T R→ N cyc,Cm

∧ R and we get the following proposition.

Proposition 5.18. The map of (5.17) induces a natural transformation

C̄c ⊗T (−) −→ N cyc,Cm

∧ (−)

of functors from Cm-equivariant associative ring orthogonal spectra to S1-equivariant
orthogonal spectra.

A more careful analysis of the equivalence relation forming C̄c ⊗T R from C̄cR
should show that the natural transformation is an isomorphism, but we take a
different approach. Consider the case when R = TX for some Cm-equivariant
orthogonal spectrum X . Then the inclusion of X in TX induces an isomorphism

C̄cX
∼=
−→ C̄c ⊗T TX.

In this case, the m-cyclic object N cyc,Cm

∧,• (TX) breaks up into a wedge sum of m-
cyclic objects

N cyc,Cm

∧,• (TX) = N(0)• ∨N(1)• ∨ · · ·

where N(n)• consists of the X(n) summands in N cyc,Cm

∧,• (TX). Then N(0) is the

constant m-cyclic object on S, and for n > 0, the inclusion of X(n) in (TX)(n) =

N cyc,Cm

∧,n−1 (TX) induces an isomorphism of Cm-cyclic objects

N(n)•
∼=
←− (Λm[n− 1]•)+ ∧Cmn

X(n).

The map

C̄cX −→ C̄c ⊗T TX −→ N cyc,Cm

∧ (TX)

respects homogeneous degree and induces an isomorphism

uCc(n)+ ∧Zn≀Cm
X(n) −→ Λm[n− 1]+ ∧Cmn

X(n) = N(n)

for each n. This proves the following proposition.

Proposition 5.19. Let R = TX for X a Cm-equivariant orthogonal spectrum.

The natural S1-equivariant map C̄c ⊗T TX → N cyc,Cm

∧ (TX) of Proposition 5.18 is
an isomorphism.
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We can now prove Theorem 5.14 (which completed the proof of Theorem 5.1).

Proof of Theorem 5.14. Proposition 5.18 constructs the natural transformation. Be-

cause smash powers preserve reflexive coequalizers, both C̄c⊗T (−) and N
cyc,Cm

∧ (−)
preserve reflexive coequalizers. Any Cm-equivariant associative ring orthogonal
spectrum is the reflexive coequalizer

TTR //
//
TR // R

where the maps TTR → TR are given by the monadic product TT → T and T

applied to the action map TR → R. The previous proposition implies that the
natural transformation is an isomorphism for TTR and TR, and so we conclude
that it is an isomorphism for R. �

6. Factorization homology of V -framed G-manifolds (equivariant
theory)

In this section, we show how to obtain a version of G-equivariant factorization
homology of V -framed G-manifolds as a special case of the factorization homology
discussed in Section 3. We start with a review of genuine equivariant factorization
homology for V -framedG-manifolds. We then compare the category of V -framedG-
manifolds to a category of (rigid)G-objects in a category ofG-framed embeddings as
defined in Section 3. Finally, we compare the bar construction defining factorization
homology of V -framed G-manifolds with the bar construction of Construction 3.19.
Convention 3.1 is in effect in this section.

We begin by reviewing the definition of V -framed G-manifolds and their fac-
torization homology as defined by Horev [8] and Zou [17] in the case of a finite
group G. We follow the latter precisely, but work in the context of G-equivariant
orthogonal spectra rather than G-spaces (see also Remark 6.4 below); we expect
that this agrees with the genuine equivariant factorization homology of the former
(which has an axiomatic characterization) but make no justification for that here.

Definition 6.1. Let V be finite dimensional vector space with linear G-action and
G-invariant inner product. A V -framed G-manifold M is a smooth manifold with
smooth G-action together with an isomorphism of G-equivariant vector bundles

θM : TM ∼=M × V.

We write θM,V : TM → V for the composite of θM with the projection to V . Given
V -framed G-manifolds L and M , a V -framed embedding L → M consists of a
smooth embedding f : L→M , a map

α : TL× [0,∞) −→ V

that is a linear isomorphism TxL→ V on each fiber, and a locally constant function
ℓ : L→ [0,∞) such that

• for all ξ ∈ TL, α(ξ, 0) = θL,V (ξ); and
• for all ξ ∈ TLx and t ≥ ℓ(x), α(ξ, t) = θM,V (Df(ξ)).

We write EmbV for the G-space of such maps with its intrinsic topology and con-
jugation G-action. The composition of V -framed embeddings

EmbV (L,N)× EmbV (M,N) −→ EmbV (L,M)
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is defined by treating ℓ as the length for Moore path composition: given (f, α, ℓ) ∈
EmbV (L,M) and (f ′, α′, ℓ′) ∈ EmbV (M,N), the composite map (f ′′, α′′, ℓ′′) ∈
EmbV (L,N) is defined by

f ′′ = f ′ ◦ f, ℓ′′ = ℓ′ + ℓ

α′′(ξ, t) =

{

α(ξ, t) 0 ≤ t ≤ ℓ(x)

α′(Df(ξ), t− ℓ(x)) t ≥ ℓ(x)

(where ξ ∈ TxL). This makes EmbV a G-topological category (morphisms are G-
spaces, composition is G-equivariant, identity maps are G-fixed points) with the
identity map in EmbV (M,M) given by (id, α, 0) with α(ξ, t) = θM,V (ξ).

The topological category agrees with the Definition 3.6 of [17] (with the minor
correction to ℓ to make Remark 3.9, ibid. work). For n ≥ 0, let V (n) = V ×
{1, . . . , n} with V (0) the empty set. We note that V (n) has a canonical V -framed
G-manifold structure with θ the usual identification TV ∼= V × V .

Notation 6.2. For n ≥ 0, let RM (n) = EmbV (V (n),M), and let R̄M denote the
functor from G-equivariant orthogonal spectra to G-equivariant orthogonal spectra
defined by

R̄MX =
∨

n≥0

RM (n)+ ∧Σn
X(n)

with the diagonal G-action.

In the case when M = V , composition gives RV the structure of an operad
in G-spaces, and R̄V is the free RV -algebra monad on G-equivariant orthogonal
spectra. We then get a right R̄V action on R̄M , and we can form the monadic bar
construction.

Construction 6.3. For a V -framed G-manifold M and a RV -algebra in G-equi-
variant orthogonal spectra X , define

B̄V (M ;X) := B(R̄M , R̄V , X).

For X an RV -algebra in G-equivariant orthogonal spectra indexed on a complete
universe U , define G-equivariant factorization homology by

∫

M

X := IUR∞B̄V (M ; IR
∞

U X).

Remark 6.4. The analogue for spaces obviously does not use point-set change of
universe, and should take

R̄MX =
∐

n≥0

RM (n)×Σn
X(n).

Zou [17, 3.14] uses the reduced constructions that glue along the inclusion of units
Xn → Xn+1 and the operad degeneracies (operadic composition with RV (0)).
A straight-forward Quillen A argument shows that the bar construction for the
reduced and the unreduced functors are G-equivariantly homotopy equivalent.

To compare this to the theory of Section 3, we note that Definition 6.1 uses path
composition of homotopies whereas Definition 3.3 uses pointwise multiplication of
homotopies. This is easy to fix by enlarging EmbV to use both.
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Definition 6.5. Let Emb�V be the G-topological category whose objects are the V -
framed G-manifolds and where a map from L toM consists of a smooth embedding
f : L→M , a map

α : TL× [0,∞)× [0, 1] −→ V

that is a linear isomorphism TxL→ V in each fiber, and a locally constant function
ℓ : L→ [0,∞) such that

• for all ξ ∈ TL, α(ξ, 0, 0) = θL,V (ξ);
• for all ξ ∈ TLx, α(ξ, ℓ(x), 1) = θM,V (Df(ξ));
• for all ξ ∈ TLx, s ≥ ℓ(x), and t ∈ [0, 1], α(ξ, s, t) = α(ξ, ℓ(x), t).

We topologize Emb�V with its intrinsic topology and use conjugation for the G-
action. The composition

Emb�V (M,N)× Emb�V (L,M) −→ Emb�V (L,N)

is defined by treating ℓ as the length for Moore path composition and doing
pointwise multiplication (of linear isomorphisms) on the overlap: given (f, α, ℓ) ∈

Emb�V (L,M) and (f ′, α′, ℓ′) ∈ Emb�V (M,N), the composite map (f ′′, α′′, ℓ′′) ∈

Emb�V (L,N) is given by

f ′′ = f ′ ◦ f, ℓ′′ = ℓ′ + ℓ

α′′(ξ, s, t) =

{

α′(α̃(ξ, s, t), 0, t) 0 ≤ s ≤ ℓ(x)

α′(α̃(ξ, s, t), s− ℓ′(x), t) s ≥ ℓ(x)

where ξ ∈ TLx and α̃ : TL× [0, 1]× [0,∞)→ TM is defined by

θM (α̃(ξ, s, t)) = (f(x), α(ξ, s, t)) ∈M × V.

With this definition EmbV includes (isomorphically) as the subcategory Emb−V
of maps where α is constant in the [0, 1] direction. The inclusion of Emb−V (L,M)

in Emb�V (L,M) is always a G-equivariant homotopy equivalence. We can define

an analogue of R�
M of RM using Emb�V in place of EmbV . With this, we get

a corresponding monadic bar construction B�
V (M ;−), and for any G-equivariant

R�
V -algebra X , we get a map

(6.6) B̄V (M ;X) −→ B̄�

V (M ;X)

which is evidently a natural G-equivariant homotopy equivalence. Let Emb
|
V be

the subcategory where ℓ = 0; the inclusion of Emb
|
V (L,M) in Emb�V (L,M) is

always a G-equivariant homotopy equivalence. We get an analogue R
|
M of R�

M

and a corresponding monadic bar construction B
|
V (M ;−); for any G-equivariant

R�
V -algebra X , the induced map

(6.7) B̄
|
V (M ;X) −→ B̄�

V (M ;X)

is a natural G-equivariant homotopy equivalence. It is therefore harmless to use

Emb
|
V in place of EmbV .

In the context of Section 3, we will take H = G, but the group G will play two
different roles here, and will retain the notation H for G as the structure group as
in that section when needed to avoid confusion between the different roles. (The
following definition still makes sense for H 6= G provided it is H that acts on V .)
We are then considering the category EH,V of H-framed embeddings of manifolds
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with tangentialH,V -structure as in Definition 3.3 and we define a G-equivariantH-
framed G-manifold to consist of an H-framed manifold M together with an action
of G on M in EH,V where each element g of G acts by an H-framed local isometry.
We view this as a G-topological category with G-space of maps given by the space
of maps in EH,V with G acting by conjugation; we denote this category as EH,V ;G.

A V -framed G-manifold M gives an object in EG,V ;G as follows: we take the
G = H-frame bundle to be the projection map M ×G→M , and we then have an
isomorphism FGM ×G V → TM

FGM ×G V = (M ×G)×G V ∼=M × V
θ−1
M−−−→ TM

which induces an isomorphism of GL(V )-principal bundles from FGM ×G GL(V )
to the V -frame bundle of M . (More concretely, the adjoint to θ−1

M gives a section
of M into the V -frame bundle, and the G-action on V then gives the reduction of
structure to M ×G.) This defines the tangential G, V -structure. Since for g ∈ G,
the diagram

TM
Dg

//

θM
��

TM

θM
��

M × V
(g,g)

// M × V

commutes, the diagonal action of G onM×G gives a map of G = H-frame bundles
lifting the derivative on the V -frame bundle. In other words, lifting g to the diagonal
g-action on FGM endows g with the structure of a G = H-framed local isometry.

The resulting object of EG,V ;G comes with the extra structure of a section sM of
the G-frame bundle, namely the section at the identity element of G. This section
is compatible with the group action on M (in EG,V ;G) and on V in the sense that
for all x ∈M and all g ∈ G, the equation

g · sM (x) = sM (gx) · g ∈ (FGM)gx,

where the action on the lefthand side denotes the action of g on the H-frame bundle
of M as an H-framed local isometry and the action on the righthand side denotes
the right action of g ∈ G on the G = H-principal bundle. (Using the section to
identify the G-frames at each point as G, this equation reads g ·e = e·g ∈ G.) For an
arbitrary objectM of EG,V ;G, we call a section sM of the G-frame bundle satisfying
the equation above G, V -compatible. We can now state the precise relationship

between the categories Emb
|
V and EG,V ;G.

Theorem 6.8. The G-topological category Emb
|
V is equivalent to the G-topological

category P where an objects is an ordered pair (M, sM ) with M an object of EG,V ;G

and sM is a G, V -compatible section of its G-frame bundle and where the G-space
of maps (L, sL) → (M, sM ) is the subspace of EG,V (L,M) of maps whose induced
map of G-frame bundles takes sL to the pullback of sM .

Proof. We have already described the functor in the forward direction on objects.

On maps, it takes (f, α, 0) ∈ Emb
|
V (L,M) as above to the map (f, Ff, If) ∈

EG,V (L,M) defined as follows. The map

Ff : FGL = L×G −→ f∗FGM ∼= L×G
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is f × id : L×G→ L×G, which takes the section sL of FGL to the section f∗sM
of f∗FGM as required. We note that for x ∈ L, the element sL(x) ∈ (FGL)x
maps to the V -frame θ−1

L,x in (FV L)x = Iso(V, TxL), where θ
−1
L,x : V

∼= TxL denotes

the restriction of the bundle map θ−1
L : L × V ∼= TL to the point x. The GL(V )-

principal bundle homotopy If needs to start at the GL(V )-principal bundle map
that sends θ−1

L,x to θ−1
M,f(x) and end at the map that takes θ−1

L,x to Dfx ◦ θ
−1
L,x. Define

If fiberwise by

Ifx : Iso(V, TxL)× [0, 1] −→ Iso(V, Tf(x)M)

Ifx(φ, t) = θ−1
M,f(x) ◦ α((x,−), 0, t) ◦ φ,

where we understand α((x,−), 0, t) as a linear isomorphism TxL→ V in the com-
position formula. The formula is clearly right GL(V )-equivariant and specifies a
homotopy of maps of GL(V )-principal bundles. Then since α((x,−), 0, 0) = θL,x,
we have

Ifx(θ
−1
L,x, 0) = θ−1

M,f(x) ◦ θL,x ◦ θ
−1
L,x = θ−1

M,f(x),

and since α((x,−), 0, 1) = θM,x ◦Dfx, we have

Ifx(θ
−1
L,x, 1) = θ−1

M,f(x) ◦ θM,x ◦Dfx ◦ θ
−1
L,x = Dfx ◦ θ

−1
L,x,

as required.
Now given M, sM , we get a V -framed G-manifold structure on M using the

given G action on M and the isomorphism θ−1
M : M × V ∼= TM adjoint to the

section sM ; the G, V -compatibility precisely implies that this isomorphism is G-
equivariant. Given (L, sL), (M, sM ), and a map (f, Ff, If) ∈ EG,V (L,M) that on

G-frame bundles sends sL to f∗sM , we produce a map (f, α, 0) ∈ Emb
|
V (L,M), by

defining

α((x,−), 0, t) = θM,f(x) ◦ Ifx(θ
−1
L,x, t) ◦ θL,x.

Since by hypothesis Ff sends sL to f∗sM , we have that Ifx(θ
−1
L,x, 0) = θ−1

M,f(x), and

we see that α((x,−), 0, 0) = θL,x, as required. Since by definition Ifx(θ
−1
L,x, 1) =

Dfx ◦ θ
−1
L,x, we see that α((x,−), 0, 1) = θM,f(x)Dfx, as also required.

It is straight-forward to check that these formulas define functors, that the com-

posite functor on Emb
|
V is the identity, and that the composite functor on the pair

category is naturally isomorphic to the identity. �

We note that both Emb
|
V and EG,V ;G have a coproduct, given on the underly-

ing G-manifolds by disjoint union, and that the functor in the previous definition
preserves the coproduct.

For a V -framed G-manifolds, the main difference (philosophically) between maps

in Emb
|
V and maps in EG,V ;G is that for g ∈ G, the self-map g : M →M in EG,V ;G

is never in the image of the maps in Emb
|
V unless g = e (even if G acts trivially on

both the vector space V and the underlying smooth manifold of M). We can put

this action back in with the following extension of Emb
|
V .

Definition 6.9. Let Emb
|⋊G
V be the topological category where the objects are the

V -framed G-manifolds and where the maps are defined by

Emb
|⋊G
V (L,M) = Emb

|
V (L,M)×Gπ0L,
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where Gπ0L denotes the space of locally constant maps from L to G. Using the
observation about coproducts above, writing L = L1∐ · · · ∐Lp for the components
of L, we have

Emb
|⋊G
V (L,M) ∼= Emb

|⋊G
V (L1,M)× · · · × Emb

|⋊G
V (Lp,M);

moreover, writing M =M1 ∐ · · · ∐Mq for the components of M , we also have

Emb
|⋊G
V (Li,M) ∼= Emb

|⋊G
V (Li,M1) ∐ · · · ∐ Emb

|⋊G
V (Li,Mq),

and so it suffices to describe compositions

Emb
|⋊G
V (M,N)× Emb

|⋊G
V (L,M) −→ Emb

|⋊G
V (L,N)

when all of L, M , and N are connected. For

(φ, g) ∈ Emb
|
V (L,M)×G = Emb

|⋊G
V (L,M),

(φ′, g′) ∈ Emb
|
V (M,N)×G = Emb

|⋊G
V (L,M),

the composite in Emb
|⋊G
V (L,N) is given by (φ′ ◦ g′

φ, g′g) where the superscript g′

denotes the G-action on Emb
|
V (L,M).

We then have a functor Emb
|⋊G
V → EG,V ;G which sends (φ, g) ∈ Emb

|⋊G
V (L,M)

to the composite of the self-map of L given by g and the image of the map φ under

the functor of Theorem 6.8. Composition in Emb
|⋊G
V is defined precisely to make

this functorial. For V -framed G-manifolds L,M , every map in EG,V ;G(L,M) comes
with an associated continuous map L→ G given by the inherent map on G-frame
bundles and canonical sections; when G is finite the map is locally constant and

decomposes the element of EG,V ;G(L,M) as an element of Emb
|⋊G
V . This proves

the following, which we regard as a corollary of Theorem 6.8.

Corollary 6.10. If G is a finite group, then the topologically enriched functor

Emb
|⋊G
V → EG,V ;G is full and faithful: for all L,M in Emb

|⋊G
V , the map

Emb
|⋊G
V (L,M) −→ EG,V ;G(L,M)

is a homeomorphism.

The relationship is not so tight when G is a positive dimensional compact Lie
group; however, for the purposes of factorization homology, it suffices to understand
the relationship for the disjoint union of copies of V . In that case we can study
EG,V ;G(V (n),M) in terms of configurations; looking at the center point of the disk
(in M and in the G-frame bundle map), we get a commutative diagram

Emb
|⋊G
V (V (n),M)

%%❑
❑❑

❑❑
❑❑

❑❑
❑

// EG,V ;G(V (n),M)

zztt
tt
tt
tt
tt

C(n,M)×Gn

and well-known arguments show that the downward maps are homotopy equiva-
lences. Keeping track of equivariance, we have a left G-action onM and a left Σn ≀G
action on V (n) that the mapping spaces converts to a right Σn ≀G-action, which is
compatible with the right Σn ≀ G action on Gn. An equivariant elaboration of the
usual argument shows that the maps are in fact equivariant homotopy equivalences:
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Proposition 6.11. For an arbitrary compact Lie group G, and a V -framed G-
manifold M , the map

Emb
|⋊G
V (V (n),M) −→ EG,V ;G(V (n),M)

is a G× (Σn ≀G)op-equivariant homotopy equivalence.

Unlike in the category EmbV , in the category Emb
|
V , the vector space V and its

unit disk D are isomorphic: choosing a smooth diffeomorphism ψ : [0, 1) → [0,∞)
that is the identity near 0, we can use ψ radially to get a diffeomorphism of G-
manifolds Ψ: D → V . We take α to be

α((x, v), 0, t) = (ψ′(|x|))tvx + (ψ(|x|)/|x|)tv⊥x

where vx denotes orthogonal projection in the x direction and v⊥x denotes the
orthogonal complement; for fixed x, v, this is a homotopy from the identity to the
derivative of Ψ. (For points x near 0, we have ψ′(|x|) = 1 and ψ(|x|)/|x| = 1, so
α is the constant homotopy, and we understand the formula this way also at the
point x = 0.)

Writing R
|D
M (n) = Emb

|
V (D(n),M) for D(n) = D × {1, . . . , n} and

R̄
|D
MX =

∨

n≥0

R
|D
M (n)+ ∧Σn

X(n)

(with the diagonal G-action), we then get a monadic bar construction

B̄
|D
V (M ;−) := B(R̄

|D
M , R̄

|D
D ,−),

and the isomorphism Ψ above induces a G-equivariant isomorphism

(6.12) B̄
|D
V (M ;−) ∼= B̄

|
V (M ;−)

where we also use Ψ to translate between the inputs.
The little V -disk operad DV admits an obvious map of G-equivariant operads

DV →R
|D
D , where we interpret an affine transformation λ(v) = v0+rv as the map in

Emb
|
V given by λ and the homotopy α((x, v), 0, t) = rtv. Looking at configuration

spaces, we see that the maps

DV (n) −→ R
|D
D (n)

areG×Σop
n -equivariant homotopy equivalences, and so the induced map on monadic

bar constructions

(6.13) B(R̄
|D
M , D̄,−) −→ B(R̄

|D
M , R̄

|D
D ,−) = B̄

|D
V (M ;−)

is a natural G-equivarant homotopy equivalence.

To compare the monadic bar construction B(R̄
|D
M , D̄,−) to the monadic bar con-

struction
B̄(M ;−) = B(ĒM , D̄,−)

of Section 3, we observe that as functors from G-equivariant orthogonal spectra to
itself, the functor

R̄
|D
M =

∨

n≥0

Emb
|
V (D(n),M)+ ∧Σn

X(n)

with the diagonal G-action is naturally isomorphic to the functor
∨

n≥0

Emb
|⋊G
V (D(n),M)+ ∧Σn≀G X

(n)
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with the G-action given by the left G-action on Emb
|⋊G
V (D(n),M). The functor in

Corollary 6.10 then gives a natural transformation

R̄
|D
M (X) −→ ĒM (X) =

∨

n≥0

EG,V (D(n),M)+ ∧Σn≀G X
(n),

which is a natural G-equivariant homotopy equivalence (an isomorphism when G

is finite). Moreover, the natural transformation R̄
|D
M → ĒM is a map of right D̄-

functors, and so we get an induced map on bar constructions that is also a natural
G-equivariant homotopy equivalence:

Proposition 6.14. For any G-equivariant DV -algebra X, the natural map

B(R̄
|D
M , D̄, X) −→ B(ĒM , D̄, X) = B̄(M ;X)

is a natural G-equivariant homotopy equivalence.

All together, (6.6), (6.7), (6.12), (6.13), and Proposition 6.14 give a zigzag of
natural G-equivariant homotopy equivalences between genuine equivariant factor-
ization homology for V -framed G-manifolds as defined in Definition 6.3 (inspired
by Horev [8] and Zou [17]) and the theory

IUR∞B̄(M ; IR
∞

U X)

of Section 3.
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[CFH] Andrew J. Blumberg and Michael A. Mandell. Configuration spaces and factorization ho-

mology. In preparation.
[PMI] Andrew J. Blumberg, Michael A. Hill, and Michael A. Mandell. Parametrized multiplicative

induction in equivariant stable homotopy theory. In progress.
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[14] Jeremy Miller. Nonabelian Poincaré duality after stabilizing. Trans. Amer. Math. Soc.,
367(3):1969–1991, 2015.

[15] Paolo Salvatore and Nathalie Wahl. Framed discs operads and Batalin-Vilkovisky algebras.
Q. J. Math., 54(2):213–231, 2003.

[16] Stefan Schwede. Lectures on equivariant stable homotopy theory. Preprint
https://www.math.uni-bonn.de/people/schwede/equivariant.pdf , 2022.

[17] Foling Zou. A geometric approach to equivariant factorization homology and nonabelian
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