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Abstract
We develop a general theory of higher semiadditive Fourier transforms that includes both

the classical discrete Fourier transform for finite abelian groups at height n = 0, as well as a
certain duality for the En-(co)homology of π-finite spectra, established by Hopkins and Lurie,
at heights n ≥ 1. We use this theory to generalize said duality in three different directions.
First, we extend it from Z-module spectra to all (suitably finite) spectra and use it to compute
the discrepancy spectrum of En. Second, we lift it to the telescopic setting by replacing En with
T (n)-local higher cyclotomic extensions, from which we deduce various results on affineness,
Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify
their result into an equivalence of two symmetric monoidal ∞-categories of local systems of
K(n)-local En-modules, and relate it to (semiadditive) redshift phenomena.
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1 Introduction

Background & overview

The classical m-dimensional Discrete Fourier Transform (DFT) is a linear isomorphism

Fω : Cm ∼−−! Cm,

associated to a primitive m-th root of unity ω ∈ C, whose characteristic property is transforming
the convolution product on the source to the pointwise product on the target. More generally, one
can associate to every commutative ring R with an m-th root of unity ω : Z/m ! R×, a natural
transformation of R-algebras,

Fω : R[M ] −! RM
∗
,

from the group R-algebra of an m-torsion abelian group M to the algebra of R-valued functions
on its Pontryagin dual M∗ = hom(M,Q/Z). Furthermore, Fω is an isomorphism if and only if the
image of ω is primitive in every residue field of R. The classical case is recovered by taking R = C
and M = Z/m.
Passing from the ordinary category of abelian groups to the ∞-category of spectra, i.e., from
classical commutative algebra to stable homotopy theory, introduces new “characteristics”. The
Morava K-theory ring spectra of heights n = 0, . . . ,∞ at an (implicit) prime p,

Q = K(0) , K(1) , K(2) , . . . , K(n) , . . . , K(∞) = Fp,

are in a precise sense the prime fields in the world of spectra, and can be thought of as providing an
interpolation between the classical characteristics 0 and p; see [HS98]. A central tool in the study of
these intermediate characteristics is Lubin–Tate spectra. For each 0 < n <∞, this is a K(n)-local
commutative algebra En that can be realized as the algebraic closure of the K(n)-local sphere,
and which has deep connections to the algebraic geometry of formal groups making it amenable
to computations. For example, in [HL13], Hopkins and Lurie prove the following theorem, which
resembles the discrete Fourier transform, only in higher chromatic heights:

Theorem 1.1 ([HL13, Corollary 5.3.26]). For all integers n ≥ 1, there is a natural isomorphism of
K(n)-local commutative En-algebras

En[M ] ∼−−! EΩ∞−nM∗
n ,

where M is a connective π-finite (i.e., having only finitely many non-vanishing homotopy groups,
all of which are finite) p-local Z-module and M∗ is its Pontryagin dual.

Furthermore, they deduce from this result several fundamental structural properties of local systems
ofK(n)-local algebras on π-finite spaces, reproving among other things the convergence of theK(n)-
based Eilenberg–Moore spectral sequence from [Bau08].
In this paper, we develop a general theory that formalizes and substantiates the analogy between
Theorem 1.1 and the classical Fourier transform. In particular, we reinterpret both in terms of a
unified notion of a chromatic Fourier transform isomorphism for all finite chromatic heights, and
show that it shares many of the formal properties of the classical Fourier transform. We then apply
this theory to generalize Theorem 1.1 in three different directions:
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(1) We lift it to the telescopic world, by replacing En with certain faithful Galois extensions of
the T (n)-local sphere (Theorem A). By analogy with the K(n)-local case, we deduce several
structural results for local systems of T (n)-local algebras over π-finite spaces (Theorem B).
We also obtain an analogue of Kummer theory at heights n ≥ 1 (Theorem C).

(2) We extend it over En to all (i.e., not just Z-module) connective π-finite p-local spectra (The-
orem D), and deduce from this the conjectured description of the discrepancy spectrum of
Ando–Hopkins–Rezk in terms of the Brown–Comenetz spectrum (Theorem E). As another
application, we construct a certain K(n)-local pro-π-finite Galois extension, which is a strong
analogue of the classical p-typical cyclotomic extension (Theorem F).

(3) We categorify it into a symmetric monoidal equivalence between∞-categories of local systems
of K(n)-local En-modules on the underlying spaces of two dual π-finite spectra. Among other
things, this generalizes the weight space decomposition of representations of finite abelian
groups in characteristic zero (Theorem G). We also explain how this categorification accords
with semiadditive redshift phenomena.

We shall now discuss each of these sets of results in some more detail, and outline along the way
some of the key aspects of the general theory.

Telescopic lift

Recall that the telescopic localization SpT (n) is the Bousfield localization of Sp with respect to
T (n) = F (n)[v−1], where F (n) is (any) finite spectrum of type n with a vn-self map of the form
v : ΣdF (n) ! F (n). It is a classical fact that SpK(n) ⊆ SpT (n), and a long standing conjecture
of Ravenel, known as the telescope conjecture, states that the two localizations are in fact equal.
While proven to be true in heights n = 0, 1, the telescope conjecture is widely believed to be
false for all n ≥ 2 and all primes p. In recent years, the telescopic localizations gained new
interest (independently of the status of the telescope conjecture) due to their pivotal role in several
remarkable developments, of which we mention two. First, the work [Heu21] of Heuts on unstable
chromatic homotopy theory, which generalizes Quillen’s classical rational homotopy theory to higher
chromatic heights. And second, the works [LMMT20, CMNN20], which made a major progress on
establishing the conjectural chromatic redshift philosophy pioneered by Rognes (see, e.g., [Rog14]).
The T (n)-localizations are considerably less amenable to computations than the corresponding
K(n)-localizations, largely due to the lack of a (faithful) telescopic lift of En. Nevertheless, we
show that the isomorphism of Theorem 1.1 descends from En to a deeper base, which does admit
a faithful telescopic lift and over to which the chromatic Fourier transform lifts as well. To explain
this in more detail, we first note that while the classical Fourier transform is not defined over Q,
one does not need to go all the way up to C or even Q. Instead, for Z/m-modules, it suffices to
have a primitive m-th root of unity ωm, so one can construct the Fourier transform already over
the cyclotomic field Q(ωm), which is a finite Galois extension of Q. In the same spirit, we observe
that natural transformations as in Theorem 1.1 are in a canonical bijection with higher roots of
unity ΣnZ/pr ! E×n of En. Moreover, the natural isomorphisms are in a canonical bijection with
those higher roots of unity that are primitive in the sense of [CSY21b, Definition 4.2].

Remark 1.2. In [HL13], the isomorphism of Theorem 1.1 is constructed from a normalization of
the p-divisible group G associated with En, namely, an isomorphism of the top alternating power
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Altn(G) with the constant p-divisible group Qp/Zp. It can be verified directly, that such data are
equivalent to compatible systems of primitive higher roots of unity of En,

ΣnQp/Zp ' lim−!ΣnZ/pr −! E×n .

We then proceed to show that, as in the classical case, the chromatic Fourier isomorphism exists
already over the higher cyclotomic extensions Rn,r, which are certain faithful (Z/pr)×-Galois exten-
sions of the K(n)-local sphere classifying primitive higher roots of unity in the sense of [CSY21b].
The key point now is that, by [CSY21b, Theorem A], the Rn,r-s admit faithful T (n)-local lifts
Rfn,r, the corresponding T (n)-local higher cyclotomic extensions. Consequently, the general theory
developed in this paper, combined with the nilpotence theorem, allows us to lift the chromatic
Fourier transform to the telescopic world.

Theorem A (7.33). For every n, r ≥ 1, there exists a faithful (Z/pr)×-Galois extension Rfn,r of
the T (n)-local sphere and a natural isomorphism of T (n)-local commutative Rfn,r-algebras

Fω : R
f
n,r[M ] ∼−−! (Rfn,r)Ω∞−nM∗ ,

where M is a connective π-finite Z/pr-module and M∗ is its Pontryagin dual.

The natural isomorphisms of Theorem A are compatible with varying r. Thus, if we replace the
individual Rfn,r-s with the colimit Rfn := lim−!Rfn,r, we obtain a telescopic Fourier transform for all
connective π-finite Z(p)-module (or equivalently, p-local Z-module) spectra as in Theorem 1.1. The
commutative ring spectrum Rfn can be viewed as the infinite p-typical higher cyclotomic extension
and is a telescopic lift of Westerland’s K(n)-local commutative ring spectrum Rn (see [Wes17]).
However, in contrast with Rn, it is not known whether Rfn is faithful. This subtle point might also
shed some new light on (the failure of) the telescope conjecture. Localizing SpT (n) with respect
to Rfn forms an interesting intermediate localization between SpK(n) and SpT (n). In particular, if
one speculates that Rfn is in fact K(n)-local, the telescope conjecture becomes equivalent to the
faithfulness of Rfn.
As in [HL13], we deduce from Theorem A several structural properties of local systems of T (n)-local
algebras over π-finite spaces.

Theorem B. Let A be a π-finite space such that π1(A, a) is a p-group and πn+1(A, a) is of order
prime to p, for all a ∈ A.

(1) (7.29) For every R ∈ Alg(SpT (n))A, the global sections functor induces a symmetric monoidal
equivalence

ModR(SpT (n))A ∼−−! ModA∗R(SpT (n)).

(2) (7.30) For every R ∈ Alg(SpT (n)) and spaces B and C mapping to A, one of which is π-finite,
the canonical Eilenberg–Moore map is an isomorphism:

RB ⊗RA RC ∼−−! RB×AC .

(3) (7.31) Assuming A is connected, every R ∈ CAlg(SpT (n))A is ΩA-Galois, in the sense of
Rognes, over the global sections (i.e., ΩA-homotopy fixed points) algebraA∗R ∈ CAlg(SpT (n)).
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Remark 1.3. The assumptions on π1 and πn+1 are necessary. The spaces Bn+1Cp and BCq for
q 6= p are counterexamples to all three claims. On the other hand, for n ≥ 1, Theorem B is
interesting already for A = BG, where G is a finite p-group.

We think of the first claim as an affineness property (cf. [MM15]), and study it in a general
context by abstracting the K(n)-local arguments of [HL13, §5.4]. In particular, in an ambidextrous
setting, it both implies and is implied by (a very special case of) the second claim regarding
the Eilenberg–Moore isomorphism. Roughly speaking, the affineness of A reduces the Eilenberg–
Moore isomorphism to the Künneth isomorphism for the fibers of B and C over A, which in an
ambidextrous setting is guaranteed by the π-finiteness assumptions. The suitable special case of
the Eilenberg–Moore isomorphism is then deduced from the chromatic Fourier transform, replacing
“cohomology” with “homology”, for which the analogous claim holds for formal reasons. The third
claim, which we learned from Dustin Clausen, that the Galois condition is automatically satisfied,
is also a rather formal consequence of affineness, and might have been known to other experts (in
the K(n)-local case), though we are not aware that it has appeared in the literature.
As a further corollary of the above, we obtain an analogue of Kummer theory at higher chromatic
heights n ≥ 1.

Theorem C. (7.34) Let R be a T (n)-local commutative algebra admitting a primitive higher
pr-th root of unity, and let M be a connected n-finite Z/pr-module spectrum. Then,

{ΩM -Galois extensions of R } ' Map(ΣnM∗, R×).

That is, we obtain a classification of abelian Galois extensions of a commutative algebra in terms
of its units, in the presence of enough primitive (higher) roots of unity.1

Spherical orientations

Generalizing Theorem 1.1 in another direction, we show that when one does work K(n)-locally and
over En, the chromatic Fourier transform extends to all connective π-finite p-local spectra (i.e., not
just Z-modules), provided that we replace Pontryagin duality by Brown–Comenetz duality.

Theorem D (7.8). There is a natural isomorphism of K(n)-local commutative En-algebras

En[M ] ∼−−! EΩ∞−nIM
n ,

where M is a connective π-finite p-local spectrum and IM is its Brown–Comenetz dual.

Theorem D generalizes Theorem 1.1, as for Z-module spectra, the Brown–Comenetz dual identifies
canonically with the Pontryagin dual. Conversely, it can be obtained from Theorem 1.1 by a
bootstrap procedure. To begin with, for a K(n)-local commutative algebra R, a compatible system
of primitive higher pr-th roots of unity defines a map

ΣnQp/Zp ' lim−!ΣnZ/pr −! R×.

Denoting by IQp/Zp the Brown–Comenetz spectrum, we show that extensions of the chromatic
Fourier transformation over R to non-Z-module spectra are in a natural bijection with solutions to
the following extension problem:

1For a more precise relation to classical Kummer theory in height n = 0, see Remark 4.34.
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ΣnQp/Zp ΣnIQp/Zp

R×.

We call such extensions spherical orientations of R, and think of them as spherical analogues of
(compatible systems of) primitive higher roots of unity of R. Using a devissage argument, we
show that the Fourier transform associated to a spherical orientation is an isomorphism for all
connective π-finite p-local spectra. By studying the obstructions for extending higher roots of unity
to spherical orientations, we construct a universal R with a spherical orientation, the spherical
cyclotomic extension, and prove that it is K(n)-locally faithful. In fact, we even construct it T (n)-
locally, and show that it is faithful over the intermediate localization,

SpK(n) ⊆ (SpT (n))Rfn ⊆ SpT (n).

We further introduce a natural higher connectedness property for commutative algebras, which guar-
antees the canonical vanishing of said obstructions, providing a practical criterion for extending the
chromatic Fourier transform to non-Z-module spectra for specific choices of R. As a consequence of
the “chromatic nullstellensatz” of the third author with Burklund and Yuan [BSY22], this criterion
is satisfied for R = En, thus yielding Theorem D.

Remark 1.4. More specifically, the required ingredient is [BSY22, Proposition 8.14],

MapSp(Cp,pic(En)) ' Bn+1Cp.

Looping this isomorphism once yields

MapSp(Cp, E×n ) ' BnCp,

which was conjectured, and subsequently proven, by Hopkins and Lurie (see [HL13, Conjecture
5.4.14]), though we are not aware of a written account of their proof. We note that the second
isomorphism suffices for establishing Theorem D for all connective π-finite p-local spectra whose
n-truncation admits a module structure over the (n− 1)-truncated sphere spectrum.

As a further consequence of Theorem D, we deduce that a spherical orientation of En identifies
the connective cover of ΣnIQp/Zp with the universal right approximation of E×n by an ind-π-finite
connective p-local spectrum. We denote the latter by µS(p)(En) as a “spherical” analogue of the
spectrum of ordinary p-typical roots of unity of En. We then reinterpret µS(p)(En) as the p-local
part of the connective cover of the so-called discrepancy spectrum of En, which was defined by
Ando, Hopkins and Rezk to be the fiber of the localization map E×n ! LnE

×
n . To summarize, we

obtain the following result, originally announced by Hopkins and Lurie:

Theorem E. (7.23) The p-localization of the connective cover of the discrepancy spectrum of En
is isomorphic to the connective cover of ΣnIQp/Zp .

As the discrepancy spectrum is constructed from K(n)-local ingredients, it is somewhat remarkable
that one can read off of it the first n stable homotopy groups of spheres, which are a “global”
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invariant. This relation also ties the chromatic filtration with the Postnikov filtration, which are
generally speaking two quite “orthogonal” filtrations in stable homotopy theory.
To systematize the study of the various flavours of the chromatic Fourier transform, and to facilitate
dévissage arguments, we introduce a general notion of an R-orientation of height n for every
connective p-local commutative ring spectrum R. This is the type of data from which one can
construct the chromatic Fourier transform for connective π-finite R-module spectra. The case
R = Z/pr recovers primitive height n roots of unity, while the case R = S(p) recovers spherical
orientations. Furthermore, we show that if R is itself n-truncated and π-finite, then the associated
R-cyclotomic extension, classifying R-orientations, is R×-Galois. Note that in general, R× is not a
finite discrete group, but a π-finite group in the homotopical sense. We deduce from this that the
spherical cyclotomic extension is a pro-π-finite Galois extension.

Theorem F (7.7). The K(n)-local spherical cyclotomic extension is pro-G-Galois for G = τ≤nS×p ,
viewed as a pro-π-finite group.

The classical p-typical cyclotomic extension Qp(ωp∞), and the corresponding p-typical cyclotomic
character classifying it

χ : Gal(Qp/Qp) −! Z×p = τ≤0S×p ,

plays a fundamental role in number theory, in the formulation of various arithmetic duality theo-
rems, via the construction of Tate twists. In [CSY21b], it is shown that Westerland’s ring spectrum
Rn, which is a Z×p -Galois extension of SK(n), can be similarly viewed as a p-typical higher cyclo-
tomic extension. As the pro-finite Galois extensions of SK(n) are classified by the Morava stabilizer
group Gn, associated to Rn is the higher cyclotomic character

χ : Gn := Gal(En/SK(n)) −! Z×p ,

which is essentially the determinant map. This higher cyclotomic character plays a similarly funda-
mental role in chromatic homotopy theory, via the construction of the determinant sphere featuring
in Gross-Hopkins duality. Theorem F, together with the theory developed in this paper, suggests
that the spherical cyclotomic extension should assume a similarly pivotal role in K(n)-local higher
Galois theory, which deals with pro-π-finite Galois extensions of SK(n). A more systematic account
of this circle of ideas and their applications is a subject for a future work.

Categorification

Finally, we also extend Theorem 1.1 by way of categorification. The key feature of SpK(n), that
allows the chromatic Fourier transform to be an isomorphism, is higher semiadditivity in the sense
of [HL13, Definition 4.4.2]. Moreover, the chromatic height n, which appears as the “shift” in
the chromatic Fourier transform, can be interpreted as the semiadditive height of SpK(n) in the
sense of [CSY21a]. Similarly, our telescopic lift of Theorem 1.1 relies on the higher semiadditivity
of SpT (n), which is the maximal higher semiadditive localization of Sp of height n (see [CSY22]).
We therefore construct and study the higher Fourier natural transformation in the general setting
of higher semiadditive symmetric monoidal ∞-categories of a given semiadditive height n (at an
implicit prime p). However, it is not easy to determine, in this abstract setting, when the Fourier
transform is an isomorphism, and a large portion of this paper is devoted to developing tools for
answering this question.
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One interesting source of examples of higher semiadditive∞-categories, outside of the stable realm,
is higher category theory itself. As already observed in [HL13], the∞-category Pr of presentable∞-
categories is ∞-semiadditive. More generally, for any presentably symmetric monoidal ∞-category
C , the∞-category ModC of C -linear presentable∞-categories is∞-semiadditive. Regarding roots
of unity, a height n root of unity ω : ΣnZ/m ! R× of a commutative algebra R in C deloops
uniquely to a height n+ 1 root of unity

ω : Σn+1Z/m −! pic(R) := Mod×R

of ModR, viewed as a commutative algebra in ModC . Note that the “shift by one” in the height
is consistent with the semiadditive redshift phenomenon from [CSY21a]. Namely, if C happens to
be itself ∞-semiadditive and R is of semiadditive height n in C , then ModR is of semiadditive
height n+ 1 in ModC . As the semiadditive height generalizes the chromatic height, this is strongly
related to the chromatic redshift philosophy. Now, given ω as above, our theory provides a Fourier
transform of commutative R-algebras in C

Fω : R[M ] −! RΩ∞−nM∗ ,

and also a “categorified” Fourier transform of symmetric monoidal ModR-linear presentable ∞-
categories

Fω : ModR[M ] −! ModΩ∞−(n+1)M∗

R .

Unpacking the definitions, the right hand side is the ∞-category of ModR-valued local systems on
Ω∞−(n+1)M∗ with the pointwise symmetric monoidal structure, while the source is the∞-category
of ModR-valued local systems on Ω∞M with the Day convolution symmetric monoidal structure.
Our main result regarding this situation is that Fω is an isomorphism if and only if Fω is an
isomorphism.
Categorification of spherical orientations is more subtle. In general, there can be an obstruction for
delooping a height n spherical orientation ΣnIQp/Zp ! R× of R to a height n+1 spherical orientation
Σn+1IQp/Zp ! pic(R) of ModR. However, it does give an R-orientation for the truncated p-local
sphere spectrum R = τ≤nS(p). In the case of the ∞-category Mod∧En of K(n)-local En-modules,
this partial result reads as follows:

Theorem G (7.9). For every n ≥ 0, there is a natural equivalence of symmetric monoidal ∞-
categories:

Fun(Ω∞M,Mod∧En)Day
∼−−! Fun(Ω∞−(n+1)IM,Mod∧En)Ptw,

for M a connective π-finite p-local spectrum, assuming the vanishing of the canonical map

πn+1S⊗ π0M −! πn+1M.

Remark 1.5. For a connective M , the induced isomorphism on the endomorphism objects of the
respective monoidal units in the equivalence of Theorem G recovers Theorem D.

The technical assumption on M is equivalent to the (n+ 1)-truncation of M having a (necessarily
unique) module structure over the n-truncated sphere spectrum. This happens, for example, if
M admits a Z-module structure, as in the original statement of Theorem 1.1, in which case the
equivalence exists already over Rn (or even Rfn). We conjecture however that this hypothesis is
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unnecessary, namely, that the spherical orientation of En can be delooped to a spherical orientation
of Mod∧En . This would happen if, for example,

Map(Cp,br(En)) ' Bn+2Cp,

where br stands for the Brauer spectrum (cf. Remark 1.4).
The height n = 0 case of Theorem G recovers a classical fact. For a finite abelian group A
and M = A∗, we get Ω∞M = A∗ and Ω∞−1IM = BA. We therefore obtain an equivalence
between the symmetric monoidal (derived) categories of Q-representations of A, and of A∗-graded
Q-vector spaces. This equivalence is provided, unsurprisingly, by decomposition into weight spaces.
Assuming A is a p-group, for a general height n and M = A∗, we get a similar “weight space
decomposition” of the symmetric monoidal ∞-category of Mod∧En -representations of the higher
group G = BnA,

Fun(Bn+1A,Mod∧En) '
∏
ϕ∈A∗

Mod∧En .

For an example of a different flavor, in height n = 1 with M = ΣA, we get an equivalence between
Mod∧E1

-representations of A and of A∗, but with different symmetric monoidal structures. A similar
(non-monoidal) equivalence, was considered by Treumann in [Tre15].

Organization

In Section 2, we study the notion of affineness. We begin in 2.1, by introducing it in the general
setting of monoidal functors. We establish equivalent characterisations for affine functors and
certain closure and monoidal properties thereof. Then, in 2.2, we specialize to functors arising
as pullbacks for local systems, and relate the property of affineness to the behavior of Eilenberg–
Moore maps and Galois extensions. We end this section, in 2.3, by studying the interaction of
affineness with ambidexterity and semiadditive height, establishing among other things the mutual
implications of affineness and the Eilenberg–Moore isomorphism.
In Section 3, we lay down the foundations of the abstract theory of Fourier transforms. In 3.1,
we define R-pre-orientations of height n for a connective p-local commutative ring spectrum R,
and the corresponding notion of Brown–Comenetz duality for R-modules. In 3.2, we proceed to
construct the Fourier (not necessarily invertible) transformation associated to an R-pre-orientation
and discuss its functoriality and duality invariance. We conclude, in 3.3, by promoting the Fourier
transform to a map of Hopf algebras, and deducing an analogue of the classical translation invariance
property.
In Section 4, we study R-orientations, which are R-pre-orientations such that the associated Fourier
transform is an isomorphism for all suitably finite R-modules. In 4.1, after presenting the relevant
definitions and functorialities, we establish for a givenR-pre-orientation various closure properties of
the class of oriented modules (those for which the Fourier transform is an isomorphism). Next, in 4.2,
we introduce the universalR-oriented algebras, theR-cyclotomic extensions, and show that they are
R×-Galois under certain finiteness hypotheses. Then, in 4.3, we discuss virtual orientability, which
is the property of admitting an R-orientation after a faithful extension of scalars, or equivalently,
that the R-cyclotomic extension is faithful. We show that under the assumption of virtual R-
orientability, the underlying space of a suitably finite R-module is affine and deduce a general form
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of higher Kummer theory. Finally, in 4.4, we focus on local rings R, and show that an R-pre-
orientation can be checked to be an orientation after pushforward to the residue field of R. This
result is essential in lifting primitive (higher) p-th roots of unity to spherical orientations.
In Section 5, we investigate the interaction of the Fourier transform with categorification. In the
preliminary subsection 5.1, we review the categorification-decategorification adjunction taking, in
one direction, an En-algebra to its En−1-monoidal category of modules, and in the other, an En−1-
monoidal∞-category to the En-algebra of (enriched) endomorphisms of the unit. We reinterpret the
property of affineness in terms of this adjunction and address certain set-theoretical issues related to
Pr not being itself presentable. In 5.2, we initiate the study of the “categorified” Fourier transform,
by describing its source and target in explicit terms, and explaining how the “decategorified” Fourier
transform can be recovered from it. We continue, in 5.3, to show that orientations categorify to
orientations and that the categorical R-cyclotomic extension is the categorification of the usual
R-cyclotomic extension.
In Section 6, we concentrate on R-(pre)-orientations for local ring spectra R with residue field Fp,
paying special attention to the following tower of rings:

S(p) ! · · ·! τ≤dS(p) ! · · ·! Z(p) ! · · ·! Z/pr ! · · ·! Fp.

In 6.1, we study the consequences of virtual Fp-orientability (at height n). In particular, we show
that it implies affineness for all π-finite spaces as in Theorem B. We also show that it implies
virtual R-orientability for all connective π-finite commutative ring spectra with residue field Fp,
such as R = Z/pr. In 6.2, we relate Z/pr-orientations in the stable setting to primitive higher pr-th
roots of unity in the sense of [CSY21b], and deduce that virtual Fp-orientability is detected by
nil-conservative functors. We also characterise virtual Fp-orientability in terms of the affineness of
certain spaces and the Galois condition for the higher cyclotomic extensions. We proceed, in 6.3,
to study the consequences of virtual Z(p)-orientability. First, we show that it implies virtual R-
orientability for all local ring spectra R with residue field Fp, and so in particular that the spherical
cyclotomic extension is faithful (the case R = S(p)). Second, we show that in the stable setting, it
implies that the localization with respect to the infinite p-typical higher cyclotomic extension (or
equivalently, the spherical cyclotomic extension) is a smashing localization, and provide a formula
for its unit. Finally, in 6.4, we study truncated spherical orientations, i.e., R-orientations for
R = τ≤dS(p). Observing that the case d = n is already equivalent to an S(p)-orientation, we study
the obstructions for lifting a τ≤d−1S(p)-orientation to a τ≤dS(p)-orientation for d = 1, . . . , n. To this
end, we introduce the notion of d-connectedness, which ensures that the said obstructions vanish
up to d, and relate this property to the connectedness of the (ordinary) roots of unity µp and
“spherical” roots of unity µSp spectra. The last step d = n requires a categorification argument
from section 5, and accordingly involves the Picard spectrum. We conclude with a discussion of
the spherical cyclotomic extension, showing it is pro-Galois.
In Section 7, we apply the abstract theory developed in the previous sections to chromatic homotopy
theory. In the preliminary subsection 7.1, we briefly recall some material on the monochromatic
∞-categories SpK(n) and SpT (n), the Lubin–Tate spectra En, and the higher cyclotomic extensions
Rn,r and Rfn,r. In 7.2, we study the Fourier theory over En. First, we interpret Theorem 1.1 as the
existence of a Z(p)-orientation on En and bootstrap it to an S(p)-orientation, proving Theorem D.
By the general theory, this readily implies Theorem F on the K(n)-local spherical cyclotomic
extension, and Theorem G on the categorified spherical Fourier transform. We conclude with the
study of the discrepancy spectrum, proving Theorem E. Finally, in 7.3, we apply the theory of
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orientations and the Fourier transform to the telescopic setting. We first prove that SpT (n) is
virtually Z/pr-orientable and deduce Theorem A. From the general theory we immediately deduce
all the properties of local systems of K(n)-local algebras on π-finite spaces stated in Theorem B and
the higher Kummer theory as formulated in Theorem C. We conclude with a short discussion about
the universal T (n)-local virtually spherically oriented localization and its relation to the properties
of Rfn and the telescope conjecture.

Notation and conventions

Throughout the paper, we work in the framework of ∞-categories (a.k.a. quasi-categories) as de-
veloped in [Lur09] and [Lur]. We generally follow the terminology and notation therein. For all
concepts related to semiadditivity, semiadditive height, and higher cyclotomic extensions we refer
the reader to [CSY21a] and [CSY21b]; precise references are given in the main body of the text.
In addition, we employ the following notation:

(1) The underlying space of a spectrum X will be denoted by bXc := Ω∞X. More generally, for
an object X in a monoidal ∞-category C , we write bXc = MapC (1, X).

(2) A square in an ∞-category is called exact if it is both a pullback and a pushout square.

(3) In our applications, we usually fix a prime p and work p-locally. We usually indicate the prime
through a subscript; for instance, we write Sp(p) for the category of p-local spectra.

(4) A p-local spectrum X is said to be π-finite if it is connective and
⊕

n πnX is a finite abelian
group. We write Spπ-tor

(p) for the category of p-local π-torsion spectra (Definition 6.52), i.e.,
those connective spectra which can be written as filtered colimits of p-local π-finite spectra.
The p-local π-torsion torsion part of a p-local spectrum X is denoted by (X)π-tor

(p) .
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2 Affineness and Eilenberg–Moore

In algebraic geometry, affine schemes are those which can be canonically recovered from their algebra
of global regular functions. In this section, we study an analogous notion in homotopy theory and
its interaction with Eilenberg–Moore type properties, Galois extensions and ambidexterity. Much
of the material in this section is inspired by, and is an abstraction of, the results and arguments in
[HL13, §5.4] for K(n)-local spectra.
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2.1 Affine functors

We begin the study of affineness in the abstract generality of presentably monoidal ∞-categories.
For f∗ : D ! C in Alg(Pr), i.e., a monoidal, colimit preserving functor between presentably
monoidal ∞-categories, write f∗ : C ! D for the right adjoint to f∗, which exists by the ad-
joint functor theorem. By [Lur, Corollary 7.3.2.7], f∗ has a canonical structure of a lax monoidal
functor. Hence, for every R ∈ Alg(C ), we have f∗R ∈ Alg(D) and an induced functor

f] : LModR(C ) −! LModf∗R(D),

taking X ∈ LModR(C ) to f∗X, endowed with its canonical f∗R-module structure. This functor
admits a left adjoint

f ] : LModf∗R(D) −! LModR(C ),
taking Y ∈ LModf∗R(D) to

f ]X := R⊗f∗f∗R f∗X,

using the algebra map f∗f∗R ! R provided by the counit of the adjunction f∗ a f∗ (as in the
proof of [HL13, Theorem 5.4.3]).

Definition 2.1. A functor f∗ : D ! C in Alg(Pr) is called affine, if the functor

f] : C ' LMod1C (C ) −! LModf∗1C (D)

is an equivalence.

This definition generalizes the usual notion of affineness from algebraic geometry in the following
sense:

Example 2.2. Consider a morphism of commutative rings g : R ! S, write g∗ : ModR ! ModS
for the extension of scalars functor between the associated module categories, and let g∗ be its
forgetful right adjoint. Then g∗ is affine. More generally, let f : X ! Y be a morphism of schemes,
and f∗ : QCoh(Y )! QCoh(X) the functor of pullback of (ordinary) quasi-coherent sheaves along
f . Then, f∗ is affine if and only if f is an affine morphism of schemes.

Characterization

Our first goal is to characterize affineness in terms of the intrinsic properties of f∗, or rather its
right adjoint f∗. A functor f∗ : D ! C in Alg(Pr) endows C with a D-linear structure, by which we
mean a structure of a right D-module in the symmetric monoidal ∞-category Pr, and f∗ becomes
canonically a D-linear functor. Furthermore, we get a projection formula map

ϕ : f∗(X)⊗ Y ! f∗(X ⊗ f∗Y ) ∈ D ,

which for every X ∈ C and Y ∈ D is given by the composition

f∗(X)⊗ Y u
−! f∗f

∗(f∗(X)⊗ Y ) ' f∗(f∗f∗X ⊗ f∗Y ) c
−! f∗(X ⊗ f∗Y ),

with u and c the unit and counit maps respectively of the adjunction f∗ a f∗. If ϕ happens to be
a natural isomorphism, then f∗ is D-linear as well, and the whole adjunction f∗ a f∗ promotes to
the world of D-linear categories (see [Lur, Remark 7.3.2.9]).
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Lemma 2.3. Let f∗ : D ! C in Alg(Pr). If f∗ is affine, then f∗ is D-linear, colimit preserving
and conservative.

Proof. If f∗ is affine, then up to isomorphism, the functor f∗ identifies with the forgetful functor
LModf∗1C (D) ! D . Such functors are D-linear, colimit preserving, and conservative by [Lur,
Remark 4.8.4.11, Corollary 4.2.3.7, and Corollary 4.2.3.2].

We shall show that the converse of Lemma 2.3 holds as well, giving a characterization of affine
functors in terms of the properties of their right adjoint. We begin with the following more general
fact:

Proposition 2.4. Let f∗ : D ! C in Alg(Pr). If f∗ is D-linear and colimit preserving, then for
every algebra R ∈ Alg(C ), the functor f ] : LModf∗R(D)! LModR(C ) is fully faithful.

Proof. To prove that f ] is fully faithful, we have to show that the unit morphism u : X ! f]f
]X is

an isomorphism for every X ∈ LModf∗S(D). First, note that f] is colimit preserving. Indeed, we
have a commutative diagram

LModR(C )

��

f] // LModf∗R(D)

��
C

f∗ // D ,

where the vertical maps are the conservative and colimit preserving forgetful functors, and the lower
horizontal functor is colimit preserving by assumption. Therefore, the upper horizontal functor is
colimit preserving as well. We get that the source and the target of u : Id ! f]f

] are colimit
preserving functors. Since LModf∗R(D) is generated under colimits by the modules of the form
f∗R ⊗ Y for Y ∈ D , it suffices to show that u is an isomorphism at such modules. The image of
f]f

](f∗R⊗ Y ) under the forgetful functor LModf∗R(D)! D is given by

f∗(R⊗f∗f∗R f∗(f∗R⊗ Y )) ' f∗(R⊗f∗f∗R f∗f∗R⊗ f∗Y ) ' f∗(R⊗ f∗Y ).

Via this identification, the map u : f∗R⊗Y ! f]f
](f∗R⊗Y ) corresponds to the projection morphism

ϕ : f∗R⊗ Y ! f∗(R⊗ f∗Y ),

which is an isomorphism by our assumption that f∗ is D-linear. Since the forgetful functor is
conservative, we deduce that u is an isomorphism at f∗R⊗ Y and the result follows.

We deduce the following characterization and consequence of affineness (cf. [MM15, Corollary 3.7]):

Proposition 2.5. Let f∗ : D ! C in Alg(Pr). The functor f∗ is affine if and only if its right
adjoint f∗ : C ! D is D-linear, colimit preserving and conservative. Moreover, in such a case, for
every R ∈ Alg(C ), the functor

f] : LModR(C )! LModf∗R(D)

is an equivalence.
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Proof. The ‘only if’ part is given by Lemma 2.3. Now, if f∗ is D-linear, colimit preserving and
conservative, then by Proposition 2.4, the functor f] : LModR(C ) ! LModf∗R(D) admits a fully
faithful left adjoint. To show that f] is an equivalence it therefore suffices to show that it is
conservative. Note that the composition of f] with the forgetful functor LModf∗R(D) ! D is the
functor f∗, which is conservative by assumption. Thus, f] is conservative as well, and hence an
equivalence. In particular, the ‘if’ part follows by taking R = 1C .

Remark 2.6. Proposition 2.5 above is closely related to the Barr–Beck–Lurie monadicity theorem
[Lur, Theorem 4.7.3.5] and could have been proved using it. Namely, the fact that f∗ is colimit
preserving and conservative implies that the adjunction f∗ a f∗ is monadic. The condition that it
is also D-linear identifies the monad f∗f∗ on D with the monad of tensoring with f∗1C ∈ Alg(D),
so that we can identify C with the category of left modules over f∗1C in D .

In view of Proposition 2.5, we adopt the following definition:

Definition 2.7. Let f∗ : D ! C in Alg(Pr). We say that f∗ is semi-affine2 if f∗ is colimit
preserving and D-linear.

As an immediate consequence of Proposition 2.5, f∗ is affine if and only if it is semi-affine and f∗
is conservative.

Closure properties

We now describe some of the closure properties enjoyed by the collection of affine functors. First,
affine functors are closed under composition and satisfy cancellation from the left.

Proposition 2.8. Let f∗ : D ! C and g∗ : E ! D be morphisms in Alg(Pr). If g∗ is affine, then
f∗ is affine if and only if f∗g∗ is affine.

Proof. Let h∗ = f∗g∗. The functor h] : C ! LModh∗1C (E ) can be identified with the composition

C
f]
−−! LModf∗1C (D) g]

−−! LModg∗f∗1C (E ).

The first functor f] is an equivalence if and only if f∗ is affine by definition, and the second functor
g] is an equivalence if g∗ is affine by Proposition 2.5. Hence, the result follows by 2-out-of-3.

Our next goal is to study the closure properties of affine functors under limits in Alg(Pr). Let
I be a small ∞-category and let C(−) and D(−) be two functors from I to Alg(Pr). Given a
natural transformation f∗(−) : D(−) ! C(−) which is level-wise affine, we would like to know when
the induced map on the limits over I is affine as well. While we do not expect this to always be
the case, we can show this under the assumption that f∗(−) is right adjointable, in the sense of [Lur,
Definition 4.7.4.16]. Namely, we need the lax natural transformation C(−) ! D(−) assembled from
the right adjoints of the f∗a -s to be a (strict) natural transformation.

Proposition 2.9. Let f∗(−) : D(−) ! C(−) be a natural transformation of I-shaped diagrams in
Alg(Pr). Assume that,

2This notion has appeared in various guises in the literature before; for instance, it is sometimes referred to as
twisted ambidextrous.
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(1) For every a ∈ I, the functor f∗a : Da ! Ca is affine.

(2) f∗(−) is right adjointable.

Then, the induced functor on the limits

f∗ : lim −−a∈IDa −! lim −−a∈ICa

is affine.

Proof. Since f∗(−) is right adjointable, the right adjoint of f∗ is given by the limit of the right
adjoints

f∗ ' lim −−a∈I(fa)∗ : lim −−a∈ICa −! lim −−a∈IDa,

see, e.g., [ACS19, Proposition 2.1.7]. By Proposition 2.5, it suffices to show that f∗ is conservative,
colimit preserving and D-linear. For the conservativity, since the projections D ! Da are jointly
conservative, it suffices to show that the compositions

C
f∗−−! D −! Da

are jointly conservative. But this follows from the facts that these composites identify with

C −! Ca
(fa)∗
−−−! Da

and that the (fa)∗-s are all conservative.
To see that f∗ is colimit preserving, note that, since all the transition functors in the diagrams
C(−) and D(−) are colimit preserving functors, the projections C ! Ca and D ! Da jointly detect
(and preserve) colimits in C and D respectively. Hence, the result follows once again from the
assumption that (fa)∗ is colimit preserving.
It remains to show that f∗ is D-linear. Let X = {Xa}a∈I ∈ C and Y = {Ya}a∈I ∈ D . Then, the
a-th component of the projection morphism

f∗X ⊗ Y −! f∗(X ⊗ f∗Y )

is the projection morphism
(fa)∗Xa ⊗ Ya −! (fa)∗(Xa ⊗ f∗aY )

which is an isomorphism by the assumption that all the f∗a -s are affine. We deduce that f∗ is
D-linear and hence that f∗ is affine.

Corollary 2.10. Affine functors are closed under limits over spaces in Alg(Pr).

Proof. For a space A, since all morphisms in A are invertible, all natural transformations of A-
shaped diagrams in Pr are right-adjointable. Hence, the result follows from Proposition 2.9.
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Monoidal structure

By Proposition 2.5, for an algebra R ∈ Alg(C ) and an affine functor f∗ : D ! C , we can identify
R-modules in C with f∗R-modules in D . We shall show that this identification is compatible with
the formation of relative tensor products of (left and right) modules. We first observe that for
all N ∈ RModR(C ) and M ∈ LModR(C ), the lax monoidal structure on f∗ provides a canonical
comparison map

ν : (f∗N)⊗f∗R (f∗M) −! f∗(N ⊗RM) ∈ D ,

given by the composition

f∗N ⊗f∗R f∗M
u
−! f∗f

∗(f∗N ⊗f∗R f∗M) ' f∗(f∗f∗N ⊗f∗f∗R f∗f∗M)! f∗(N ⊗RM),

where the last map is the one induced on the relative tensor product from the counit f∗f∗ ! Id.

Proposition 2.11. Let f∗ : D ! C in Alg(Pr) and let R ∈ Alg(C ). If f∗ is affine, then for every
M ∈ LModR(C ) and N ∈ RModR(C ), the map

ν : (f∗N)⊗f∗R (f∗M) −! f∗(N ⊗RM)

is an isomorphism.

Proof. Since f∗ is colimit preserving, the source and target of ν preserve colimits in theM -variable.
The ∞-category LModR(C ) is generated under colimits by modules of the from R ⊗ X for X ∈
C . Also, since f∗ is conservative, C is generated under colimits from the essential image of f∗.
Consequently, it suffices to show that ν is an isomorphism at modules of the form N = R ⊗ f∗Y
for Y ∈ D . Hence, it suffices to show that the natural transformation

ν : (f∗N)⊗f∗R f∗(R⊗ f∗Y ) −! f∗(N ⊗R (R⊗ f∗Y ))

obtained from ν via composing with the functor R ⊗ f∗(−) : D ! LModR(C ) in the Y -variable is
a natural isomorphism. The assumption that f∗ is D-linear shows that the source and target of ν
are D-linear functors, and ν is hence a natural transformation of D-linear functors. Thus, we are
reduced to the case Y = 1D , where we get the canonical isomorphism

(f∗N)⊗f∗R (f∗R) ∼−−! f∗N.

When dealing with symmetric monoidal ∞-categories and commutative algebras, the above has a
very clean interpretation.

Proposition 2.12. Let f∗ : C ! D in CAlg(Pr). If f∗ is affine, then for every R ∈ CAlg(C ) we
have a natural symmetric monoidal equivalence

f] : ModR(C ) ∼−−! Modf∗R(D).

In particular, it induces an equivalence

CAlgR(C ) ∼−−! CAlgf∗R(D).
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Proof. Since the tensor product in the ∞-category of modules over a commutative algebra is given
by the relative tensor product, the first claim is a consequence of Proposition 2.11. The second
claim follows by taking commutative algebra objects and using the natural identification

CAlg(ModR(C )) ' CAlgR(C ).

For C ∈ CAlg(Pr), pushouts in CAlg(C ) are computed via the relative tensor product. Hence,
for a symmetric monoidal functor f∗ : D ! C in CAlg(Pr), Proposition 2.12 implies that if f∗ is
affine, then the functor f∗ : CAlg(C )! CAlg(D) preserves pushout squares. We shall now discuss
a generalization of this property to the context of non-commutative algebras. Let C ∈ Alg(Pr) and
let

R0 //

��

R1

��
S0 // S1

be a commutative square in Alg(C ). The right map R1 ! S1 is a map of left R0-modules. The R0-
module structure of S1 comes from restricting the S0-module structure along the left map. Hence,
the restriction-extension of scalars adjunction along R0 ! S0 induces a map of left S0-modules:

S0 ⊗R0 R1 −! S1.

Definition 2.13. We say that a square of algebras as above is a relative tensor square if the above
map S0 ⊗R0 R1 ! S1 is an isomorphism.

Every sifted colimit preserving monoidal functor preserves relative tensor squares, as the relative
tensor product can be realized via the geometric realization of a bar construction. For an affine
functor, the same holds for its right adjoint.

Proposition 2.14. Let f∗ : D ! C in Alg(Pr). If f∗ is affine, then a commutative square in
Alg(C ) is a relative tensor square if and only if its image under f∗ : C ! D is a relative tensor
square in Alg(D).

Proof. Assume that f∗ is affine and let

R0 //

��

R1

��
S0 // S1

be a commutative square in Alg(C ). By Proposition 2.11, we have a canonical isomorphism

(f∗R1)⊗f∗R0 (f∗S0) ' f∗(R1 ⊗R0 S0).

Via this isomorphism, we can identity the map (f∗R1)⊗f∗R0 (f∗S0)! f∗S1 with the image under
f∗ of the corresponding map R1⊗R0S0 ! S1. Hence, if the map R1⊗R0S0 ! S1 is an isomorphism,
so is the map (f∗R1) ⊗f∗R0 (f∗S0) ! f∗S1. By Proposition 2.5 the functor f∗ is conservative, so
the converse of the above implication holds as well.
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2.2 Affineness for local systems

We now specialize our discussion of affineness to the setting we are mostly interested in, that of
local systems.

Definition 2.15. Let C ∈ Alg(Pr). A map of spaces f : A ! B is said to be C -(semi-)affine, if
the pullback functor f∗ : CB ! CA is (semi-)affine in the sense of Definition 2.1 and Definition 2.7.

Basic properties

Given a map of spaces f : A ! B, and writing q : B ! pt for the terminal map, the unit of the
adjunction f∗ a f∗ induces a map

1B = q∗q
∗1 −! q∗f∗f

∗q∗1 = 1A ∈ Alg(C ).

We now show that f∗ : CB ! CA is compatible with the functor LMod1B (C )! LMod1A(C ) given
by extending scalars along the above map.

Proposition 2.16. Let C ∈ Alg(Pr) and let f : A ! B be a map of spaces with q : B ! pt the
terminal map. We have a commutative square of ∞-categories

LMod1B (C ) LMod1A(C )

CB CA.
f∗

q]

1A⊗
1B (−)

(qf)]

In particular, when A and B are C -affine, the top and bottom functors are isomorphic.

Proof. It suffices to show that the square comprising from the right adjoints of all the functors
commutes. As above, let q : B ! pt be the terminal map. The composition

CA f∗−−−! CB q]
−−−! LMod1B C

is the functor that takes X ∈ C to q∗f∗X ∈ C with the induced 1B = q∗q
∗1-module structure.

This is evidently the same as restricting the 1A = f∗q∗q
∗f∗1-module structure on q∗f∗X ∈ C along

the map
1B = q∗q

∗1 −! q∗f∗f
∗q∗1 = 1A,

which is the second composition

CA (qf)]
−−−−! LMod1A C ! LMod1B C .

The last claim follows from the fact that if A and B are C -affine, then the vertical functors are
equivalences.

For every point b ∈ B, let 1b be the 1B algebra structure on 1 given by evaluation at b.
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Corollary 2.17. Let C ∈ Alg(Pr) and let B be a space with q : B ! pt the terminal map. For
every b ∈ B, we have a commutative diagram,

Mod1B (C ) CB

C .

1b⊗1B (−)

q]

evb

Proof. This is a special case of Proposition 2.16, with A = pt and f the inclusion pt b
−! B.

We next observe that the closure properties of affine functors imply corresponding closure properties
for C -affine maps of spaces.

Proposition 2.18. Let C ∈ Alg(Pr) and let f : A ! B, f ′ : A′ ! B′ and g : B ! C be maps of
spaces.

(1) If f is an isomorphism, then it is C -affine.

(2) If g is C -affine, then f is C -affine if and only if g ◦ f is C -affine.

(3) If all the fibers of f are C -affine, then f is C -affine.

(4) If f and f ′ are C -affine, then f t f ′ : A tA′ ! B tB′ is C -affine.

Proof. (1) is clear and (2) is an immediate consequence of Proposition 2.8. For (3), we observe that
the functor f∗ : CB ! CA can be written as a limit over b ∈ B of the functors f∗b : C ! C f−1(b),
where fb : f−1(b)! pt is the terminal map. By assumption, each f∗b is affine, and by Corollary 2.10,
affine functors are closed under limits over spaces, so the result follows. The proof of (4) is similar
to that of (3). It follows from the isomorphism (f t f ′)∗ ' f∗ × f ′∗ and Corollary 2.10.

Warning 2.19. Claim (3) can not be promoted to an ‘if and only if’ statement. Namely, a C -affine
map of spaces need not have C -affine fibers. Indeed, if A is a C -affine space, then the projection
π1 : A × A ! A is C -affine by (3). Since the composition A

∆
−! A × A π1−! A is the identity, we

deduce by (2) and (1) that the diagonal ∆: A ! A × A is C -affine as well. As the fibers of ∆
are the loop-spaces ΩA, if the converse of (3) were to be true, it would have implied that if A is
C -affine, then ΩA is C -affine as well. However, for all n ≥ 0, we have that Bn+2Cp is SpK(n)-affine
while Bn+1Cp = ΩBn+2Cp is not (Proposition 2.40).

Eilenberg–Moore

Our next goal is to show that affineness is strongly related to Eilenberg–Moore type formulas for
the cohomology of pullbacks of spaces. Given a pullback square of spaces

B′ ×B A

��

// A

��
B′ // B
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and a ring R ∈ Alg(C ), we can form the square in Alg(C ),

RB

��

// RA

��
RB

′ // RB
′×BA.

In some cases, this square turns out to be a relative tensor square. For C = Sp, this implies the
existence of a spectral sequence computing the R-cohomology of B′×B A from the R-cohomologies
of B,B′ and A, known as the Eilenberg–Moore spectral sequence. This motivates the following
definition:

Definition 2.20. Let C ∈ Alg(Pr) and let R ∈ Alg(C ). A map of spaces f : A! B is said to be
Eilenberg–Moore with respect to R ∈ Alg(C ), if for every map g : B′ ! B, the canonical morphism

RB
′
⊗RB RA −! RB

′×BA

is an isomorphism.

In the special case where B = pt, the Eilenberg–Moore property degenerates to the Künneth
isomorphism, for which the following is a useful criterion.

Proposition 2.21. Let C ∈ Alg(Pr), let R ∈ Alg(C ) and let A be a space. If R[A] ∈ LMod(R) is
left dualizable, then A has the Eilenberg–Moore property with respect to R. That is, for every space
B, we have a Künneth isomorphism

RA ⊗R RB ∼−−! RA×B .

In particular, if 1[A] ∈ C is left dualizable, the above holds for every R ∈ Alg(C ).

Proof. Under the assumption that R[A] ∈ LMod(R) is left dualizable, the module RA ∈ RModR(C )
is its left dual. Unwinding the definitions, the canonical comparison map

RA ⊗R RB −! (RA ⊗R R)B = RA×B ,

identifies with the assembly map for the functor

G := RA ⊗R (−) : LModR(C )! C

and the constant B-shaped limit. Now, by [Lur, Proposition 4.6.2.1], the functor G is a right
adjoint and hence preserves limits, so the claim follows. The last part follows from the fact that if
1[A] ∈ C is left dualizable, then R[A] = R⊗1[A] ∈ LModR(C ) is left dualizable, by [Lur, Example
4.6.2.5].

Example 2.22. Let C = Sp and let R = F be an ordinary field considered as a ring spectrum.
Proposition 2.21 then recovers the classical fact, that if a space A has finite-dimensional homology
with coefficients in F, then for every space B we have a Künneth isomorphism for the cohomology
of A×B with coefficients in F.
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Using affineness we can reduce the general case of the Eilenberg–Moore property to the existence
of Künneth isomorphisms for the fibers.

Proposition 2.23. Let C ∈ Alg(Pr), let R ∈ Alg(C ), and let f : A! B be a map of spaces. If B
is C -affine, and all the fibers of f are Eilenberg–Moore with respect to R, then f is Eilenberg–Moore
with respect to R.

Proof. Let q : B ! pt denote the projection, so that by our assumption q is C -affine. For a map
g : B′ ! B, the square

RB //

��

RA

��
RB

′ // RA×BB
′

in Alg(C ) is obtained from the square

q∗R //

��

f∗f
∗(q∗R)

��
g∗g
∗(q∗R) // (f ×B g)∗(f ×B g)∗(q∗R)

in Alg(CB) by applying the functor q∗. Since q∗ is affine, by Proposition 2.14 it would suffice to
show that the latter square is a relative tensor square. We can verify this after applying the functors
b∗ for all b : pt ! B. Using the Beck–Chevalley isomorphism for local systems, this reduces the
claim to the case B = pt, and A = f−1(b), which holds by assumption.

Remark 2.24. We can informally summerize Proposition 2.23 by the slogan:

“Affineness (of the base) + Künneth (for the fibers) =⇒ Eilenberg–Moore”.

Galois extensions

We shall now discuss the implications of affineness to Galois theory in the sense of Rognes. Our
main result is that if the classifying space BG of a group G is affine, then every commutative
algebra with a G-action is faithful Galois over its G-fixed points. We refer the reader to [Rog08]
and [Mat16] for a discussion of Galois extensions in the context of stable homotopy theory.
To make the connection with affineness more transparent, we shall rephrase Rognes’s notion of a
Galois extension in terms of the space BG rather than the group G. For a space A and a presentably
symmetric monoidal ∞-category C , we denote by

∆: A −! A×A , q : A −! pt

the diagonal and terminal maps of A, respectively. For an A-local system of commutative algebras
R ∈ CAlg(C )A, the unit map q∗1! R has a mate 1! q∗R with respect to the q∗ a q∗ adjunction.
Considering the external product R�R ∈ CAlg(C )A×A, the multiplication map

R⊗R ' ∆∗(R�R) −! R ∈ CAlg(C )A
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has a mate
R�R −! ∆∗R ∈ CAlg(C )A×A

with respect to the adjunction ∆∗ a ∆∗.

Definition 2.25. Let C ∈ CAlg(Pr) and let A be a space. A local system R ∈ CAlg(C )A is called
an A-Galois extension (of the unit object 1) if it satisfies the following two properties:

(G1) The mate 1! q∗R of the unit map is an isomorphism in CAlg(C ).

(G2) The mate R�R! ∆∗R of the multiplication map is an isomorphism in CAlg(C )A×A.

We say that a Galois extension is faithful if the functor R⊗ (−) : C ! CA is conservative.

When A is connected, by choosing a basepoint for A, we get a grouplike E1-space G = ΩA. Then,
by definition, an A-local system of commutative algebras in C is a commutative algebra endowed
with a G-action. Via this identification, q∗R, which is the limit of R over A, identifies with the
fixed points RhG of the G-action on R. Similarly, ∆∗R identifies with the algebra of functions RG,
with a suitable G × G-action. Under these identifications, the maps appearing in conditions (G1)
and (G2) are easily seen to correspond to the maps 1 ! RhG and R ⊗ R ! RG appearing in
Rognes’s definition of a Galois extension, see e.g., [Mat16, Definition 6.12]. Thus, Definition 2.25
is a base-point free reformulation of Rognes’s notion of a Galois extension. Furthermore, allowing
non-connected spaces A provides a natural extension of this Galois theory “downwards”.

Example 2.26. For C ∈ CAlg(Pr) and a finite discrete space A, it is easy to check that an A-Galois
extension is a collection of idempotent rings {Ra | a ∈ A} in CAlg(C ), such that

∏
a∈ARa ' 1

and Ra ⊗Rb ' pt for all a 6= b. In particular, if we denote by π0(C ) the pro-finite set of connected
components of 1, then A-Galois extensions of C are classified by continuous maps π0(C )! A. In
the stable case, this fits naturally into Akhil’s Galois theory developed in [Mat16].

The somewhat surprising observation is that if A is C -affine, then it suffices to check only the
condition (G1) to ensure that we have a faithful A-Galois extension.

Proposition 2.27. Let C ∈ CAlg(Pr) and let A be a C -affine space. A local system R ∈ CAlg(C )A
is a faithful Galois extension if and only if the map 1! q∗R is an isomorphism.

Proof. If R is Galois then by condition (G1), the unit map 1! q∗R is an isomorphism. To prove
the converse, we have to show that

(1) The functor R⊗ (−) : C ! CA is conservative.

(2) The map ϕ : R�R! ∆∗R, which is the mate of the multiplication, is an isomorphism.

For (1), by Proposition 2.5, the functor q∗ : CA ! C is C -linear. Consequently, the composition

F : C
R⊗(−)
−−−−! CA q∗−−! C

is a C -linear functor from C to C , which is therefore given by tensoring with F (1) ' q∗R. By
our assumption this is the identity functor, so that R ⊗ (−) is left-invertible and in particular
conservative.
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For (2), let π1, π2 : A×A! A be the projections on the two factors. By Proposition 2.18, the map
π1 is C -affine, and hence, by Proposition 2.5, the functor (π1)∗ is C -linear and conservative. Using
the conservativity, it suffices to show that the map

(π1)∗ϕ : (π1)∗(R�R) −! (π1)∗∆∗R ' R

is an isomorphism. By the projection formula for (π1)∗ and the Beck–Chevalley isomorphism, we
have

(π1)∗(R�R) ' (π1)∗(π∗2R⊗ π∗1R) ' ((π1)∗π∗2R)⊗R ' (q∗q∗R)⊗R.
Unwinding the definition of ϕ, the map (π1)∗ϕ corresponds via this identification to the composition

q∗q∗R⊗R
c⊗1
−−! R⊗R m

−−! R,

where c is the counit of the adjunction q∗ a q∗ and m is the multiplication map. By the assumption
that q∗R ' 1C , we have an isomorphism q∗q∗R ' 1CA , so that this composite is an isomorphism
and the result follows.

More generally, we define an A-Galois extension of any S ∈ CAlg(C ), to be an A-Galois extension
in the ∞-category ModS(C ). That is, an object R ∈ CAlgS(C )A satisfying the analogues of (G1)
and (G2) relative to S. From Proposition 2.27 we deduce the following:
Corollary 2.28. Let C ∈ CAlg(Pr) and let A be a C -affine space. Every R ∈ CAlg(C )A is a
faithful Galois extension of q∗R ∈ CAlg(C ) for q : A! pt the terminal map.

Proof. Let S = q∗R. By construction, the map S ! q∗R is an isomorphism and hence the claim
follows from Proposition 2.27.

Example 2.29. The constant A-local system on 1 ∈ CAlg(C ), i.e., q∗1 ∈ CAlg(C )A, is Galois
over 1A = q∗q

∗1.

In fact, the above example is universal. Let CAlgA−gal
S (C ) ⊆ CAlgS(C )A denote the space of

faithful A-Galois extensions of S ∈ CAlg(C ).
Proposition 2.30. Let C ∈ CAlg(Pr) and let A be a C -affine space. For every S ∈ CAlg(C ),
there is a natural isomorphism

CAlgA−gal
S (C ) ' MapCAlg(C )(1A, S).

In other words, the object 1A corepresents A-Galois extensions of commutative algebras in C .

Proof. By Proposition 2.12, we have an equivalence of ∞-categories CAlg(CA) ' CAlg1A(C ),
under which the global sections functor q∗ : CAlg(CA) ! CAlg(C ) corresponds to the forgetful
functor CAlg1A(C ) ! CAlg(C ). This is further isomorphic to the canonical projection functor
CAlg(C )1A/ ! CAlg(C ). The latter is a left fibration whose fiber over S ∈ CAlg(C ) is the space
MapCAlg(C )(1A, S). Thus, this space is also isomorphic to the fiber of q∗. Namely, the space of ob-
jects R ∈ CAlg(CA) with an isomorphism of commutative algebras q∗R ' S. By Proposition 2.27,
it is isomorphic to CAlgA−gal

S (C ).

Remark 2.31. Rognes develops the theory of A-Galois extensions under the additional assumption
that G = ΩA is dualizable in C . This occurs, for example, when A is weakly C -ambidextrous (see
[CSY22, Corollary 3.3.10]).

24



2.3 Affineness and ambidexterity

Semi-affineness and ambidexterity

For truncated maps of spaces, (semi-)affineness turns out to be closely related to ambidexterity.

Proposition 2.32. Let C ∈ Alg(Pr). A truncated map of spaces f : A ! B is C -ambidextrous if
and only if f and all of its iterated diagonals are C -semi-affine.

Proof. We prove the claim by induction on the truncatedness level of f . For m = −2, the map
f is an isomorphism and the claim holds trivially. For m ≥ −1, the diagonal of f is (m − 1)-
truncated, so the claim holds for it by the inductive hypothesis. We are thus reduced to showing
that if f is weakly ambidextrous, then it is ambidextrous if and only if it is semi-affine. Recall
that f is C -semi-affine if and only if f∗ is colimit preserving and CA-linear. By [HL13, Proposition
4.3.9], since f is weakly ambidextrous, it is C -ambidextrous if and only if f∗ is colimit preserving.
Hence, semi-affineness implies ambidexterity. Conversely, if f is ambidextrous, then by [CSY22,
Proposition 3.3.1], the functor f∗ ' f! is CA-linear, and hence f is semi-affine.

Corollary 2.33. Let C ∈ Alg(Pr) be semiadditive and let p be a prime. The ∞-category C is
p-typically m-semiadditive if and only if the spaces BCp, B2Cp, . . . , B

mCp are all C -semi-affine.

Proof. By [CSY21a, Proposition 3.1.2], it suffices to show that the spaces BCp, B2Cp, . . . , B
mCp

are all C -ambidextrous. This follows from Proposition 2.32 and Proposition 2.18, as the diagonal
map BkCp ! BkCp ×BkCp has fiber Bk−1Cp.

Under the assumption of ambidexterity, affineness reduces to the conservativity of the global sections
functor.

Corollary 2.34. Let C ∈ Alg(Pr) and let f : A! B be a C -ambidextrous map of spaces. Then, f
is C -semi-affine. Furthermore, f is C -affine if and only if f∗ : CA ! CB is conservative.

Proof. This follows from Proposition 2.32 and the characterization of affine functors given in Propo-
sition 2.5.

Example 2.35. For C ∈ Alg(Pr) semiadditive, every map of spaces f : A! B with finite discrete
fibers is C -affine. Indeed, by Proposition 2.18 it suffices to show this when B = pt and by the above
Corollary 2.34 we only need to show that the functor f∗ : CA ! C is conservative. This functor
takes an A-indexed collection of objects (Xa)a∈A to their product

∏
a∈AXa. The conservativity

now follows from the fact that each projection a∗ : CA ! C for a ∈ A is a retract of f∗.

Remark 2.36. For f : A ! pt, the right adjoint f∗ : CA ! C is conservative if and only if the
image of the left adjoint f∗ : C ! CA generates CA under colimits. That is if and only if every
C -valued local system on A can be constructed from constant ones by colimits. By analogy with
representation theory, one might call such local systems unipotent. Thus, we can rephrase the
second part of Corollary 2.34, by saying that a C -ambidextrous space A is C -affine if and only if
all C -local systems on A are unipotent.
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Ambidexterity and Eilenberg–Moore

Under the assumption of ambidexterity, the relationship between affineness and the Eilenberg–
Moore property can be further tightened. First, we have the following criterion for Künneth iso-
morphisms:

Proposition 2.37. Let C ∈ Alg(Pr), and let A be a space. If A is C -ambidextrous, then A has the
Eilenberg–Moore property with respect to every R ∈ Alg(C ). That is, for every space B, we have a
Künneth isomorphism

RA ⊗R RB ∼−−! RA×B .

Proof. Since A is C -ambidextrous, 1[A] ∈ C is dualizable by [CSY22, Corollary 3.3.10]. Hence, the
claim follows from Proposition 2.21.

The combination of Proposition 2.37 and Proposition 2.23 shows that if B is C -ambidextrous, then
the C -affineness of B implies the Eilenberg–Moore property for a large class of maps A ! B. In
fact, the ambidexterity assumption guarantees that affineness is also implied by a very special case
of the Eilenberg–Moore property. The situation can be summerized as follows:

Theorem 2.38. Let C ∈ Alg(Pr), and let B be a C -ambidextrous space. The following are
equivalent:

(1) The space B is C -affine.

(2) Every C -ambidextrous map f : A! B is Eilenberg–Moore with respect to every R ∈ Alg(C ).

(3) For every pair of points a, b ∈ B, the canonical map 1⊗1B 1! 1{a}×B{b} is an isomorphism.

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1). For every C -ambidextrous map f : A ! B,
the fibers are Eilenberg–Moore with respect to every R ∈ Alg(C ) by Proposition 2.37. Thus, if
B is C -affine, then f is Eilenberg–Moore with respect to every R ∈ Alg(C ) by Proposition 2.23.
That is, we have shown that (1) implies (2). Now, (3) follows from (2) by taking f : {a}! B and
g : {b}! B.
It remains to show that (3) implies (1). To show that B is C -affine, we need to show that the
functor

q] : CB −! LMod1B (C )

is an equivalence, where q : B ! pt is the terminal map. By Corollary 2.34, the map q is C -semi-
affine and hence by Proposition 2.4, the left adjoint q] of q] is fully faithful. Hence, it remains to
show that the counit map

ε : q]q]X = q∗1⊗q∗q∗1 q∗q∗X −! X (∗)

is an isomorphism for all X ∈ CB . By [HL13, Lemma 4.3.8], the category CB is generated under
colimits by objects of the form b!Y for Y ∈ C and b : pt ! B. By the C -ambidexterity of q, both
sides of (∗) preserve colimits and it therefore suffices to show that ε is an isomorphism at local
systems of the form X = b!Y . Using the C -ambidexterity of the map b : pt ! B, we can also
identify b!Y with b∗Y .
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Next, to show that ε is an isomorphism at b∗Y , it suffices to show that for every a : pt ! B, the
map a∗ε is an isomorphism at b∗Y . Using the identities b∗q∗ = Id and q∗a∗ = Id, the map

a∗ε : a∗q]q](b∗Y ) −! a∗(b∗Y )

assumes the form
1⊗1B Y ' 1⊗q∗1 Y −! b∗a∗Y ' Y {a}×B{b}.

Both the domain and the range of this map, when considered as functors in the Y -variable, are
colimit preserving and C -linear. Indeed, for the domain it follows from the colimit preservation and
C -linearity of the relative tensor product, and for the target by Corollary 2.34 applied to the C -
ambidextrous space {a} ×B {b}. Moreover, a∗ε is canonically a natural transformation of C -linear
functors. Hence, it suffices to show that the above map is an isomorphism for Y = 1. In this case,
we obtain precisely the map from condition (3)

1⊗1B 1 −! 1{a}×B{b},

which is an equivalence by assumption.

Theorem 2.38(3) provides a very practical criterion for checking affineness, which we shall use
repeatedly. For now, we demonstrate its utility by deducing that affineness behaves well with
respect to monoidal functors.

Proposition 2.39. Let F : C ! D be a functor in Alg(Pr) and let B be a C -ambidextruous space.
If B is C -affine then it is D-affine. Conversely, if B is D-affine and F is conservative, then B is
C -affine.

Proof. Since F is monoidal and colimit preserving, B is also D-ambidextrous, see [CSY22, Corollary
3.3.2]. Moreover, F preserves B-shaped limits as well as {a}×B {b}-shaped limits for every a, b ∈ B,
see [CSY22, Corollary 3.2.4]. It follows that for all a, b ∈ B the square

1BD
//

��

1D

��
1D

// 1{a}×B{b}D

is the image under F of the square

1BC
//

��

1C

��
1C

// 1{a}×B{b}C

.

Since F is is colimit preserving and monoidal, the latter is a relative tensor square if the former is
a relative tensor square, and the converse holds if F is conservative.
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Affineness and height

In Corollary 2.34, we have seen that C -semi-affineness is closely related to C -ambidexterity. In
particular, the C -semi-affineness of the Eilenberg–Maclane spaces BkCp is closely related to the
p-typical higher semiadditivity of C (Corollary 2.33). We shall now see that C -affineness of these
spaces is closely related to the semiadditive height of C in the sense of [CSY21a, §3].

Proposition 2.40. Let p be a prime and let C ∈ Alg(Pr) be p-typically n-semiadditive.

(1) If C is of height ≤ n, then every (n+ 1)-connected π-finite p-space is C -affine.

(2) If C is of height ≤ n and Bn+1Cp is C -affine, then C is of height ≤ (n− 1).3

(3) If the spaces BkCp are C -affine for k = 0, . . . , n, then C is of height ≥ n.

Proof. For (1), let A be an (n + 1)-connected π-finite p-space and let q : A ! pt be the terminal
map. Since C is of height ≤ n, we get by [CSY21a, Proposition 3.2.3], that q∗ : C ! CA is an
equivalence and hence clearly affine.
For (2), assuming Bn+1Cp is C -affine, we get by Theorem 2.38, an isomorphism

1⊗
1B

n+1Cp 1
∼−−! 1B

nCp .

Since C is of height ≤ n, by [CSY21a, Proposition 3.2.1] we also have an isomorphism 1 ' 1B
n+1Cp .

Combining the two isomorphisms we get

1 ' 1⊗1 1 ' 1⊗
1B

n+1Cp 1 ' 1B
nCp .

By [CSY21a, Proposition 3.2.1] again, this implies that Bn−1Cp is C -amenable. Namely that C is
of height ≤ n− 1.
For (3), let C≤n−1 ⊆ C be the full subcategory spanned by the objects of height ≤ n − 1, so that
C is of height ≥ n if and only if C≤n−1 ' pt. By [CSY21a, Proposition 5.2.16], the inclusion of
C≤n−1 into C admits a symmetric monoidal reflection C ! C≤n−1. Hence, the ∞-category C≤n−1
is itself p-typically n-semiadditive and the space BkCp for k = 0, . . . , n are also C≤n−1-affine, by
Proposition 2.39. Now, applying (2) inductively, we find that C≤n−1 is of height −1 and hence
trivial.

For C of height ≤ n, we can roughly summarize the content of Proposition 2.40 regarding C -
affineness of π-finite p-spaces as follows:

(1) We have affineness above level n+ 1 for trivial reasons.

(2) To have affineness below level n+ 1, the height of C must be exactly n, in which case,

(3) There is no affineness at level exactly n+ 1.
3By convention, an ∞-category is of height ≤ −1 if and only if it is the zero category.
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This sill leaves open, however, the question of whether for C of height exactly n we actually have
affineness below level n+ 1. In the chromatic world, Hopkins and Lurie proved in [HL13, Theorem
5.4.3], that this is indeed the case for C = SpK(n). Their argument is rather specific though,
as it relies on explicit computations with the Lubin–Tate spectrum En. One of the goals of this
paper is to bootstrap [HL13, Theorem 5.4.3] to the telescopic localizations C = SpT (n). We achieve
this by placing the approach of Hopkins and Lurie in the context of a higher semiadditive Fourier
transform, which we develop in the next section.

3 The Higher Fourier Transform
Let R be a connective p-local commutative ring spectrum and C a symmetric monoidal∞-category.
In this section, we study natural transformations

1[M ] −! 1bΣ
nIQp/ZpMc ∈ CAlg(C ),

from the group algebra of a suitably finite connective R-module spectrum M to the algebra of
functions on its n-suspended Brown–Comenetz dual. We show that such natural transformations
can be viewed as a generalization of the classical discrete Fourier transform and share many of its
basic properties. In particular, we show that such maps are parameterized by a certain datum of an
R-pre-orientation on C , which generalizes roots of unity of 1C in the case R = Z/pr, and satisfy
familiar relations with respect to augmentations, translation and duality.

3.1 Pre-orientations

Shifted Brown–Comenetz duality

The first ingredient in the construction of the higher Fourier transform is a spectral lift of Pontryagin
duality for abelian groups, known as Brown–Comenetz duality. We shall work throughout with
the p-local variant of this theory with respect to a fixed prime p. By Brown representability, the
contravariant functor homAb(π−∗(−),Qp/Zp), from spectra to graded abelian groups, is represented
by a spectrum IQp/Zp , the p-local Brown–Comenetz dual (of the sphere). It is characterized by the
following property: There is a natural isomorphism

π∗(homSp(M, IQp/Zp)) ' homAb(π−∗(M),Qp/Zp)

for allM ∈ Sp. Mapping into IQp/Zp gives a contravariant endofunctor on Sp. For our applications,
it will be useful to introduce a certain connective shifted version of it.

Definition 3.1. For n ∈ N and M ∈ Spcn, we define the n-shifted Brown–Comenetz dual of M by

I(n)
p M := τ≥0 hom(M,ΣnIQp/Zp) ∈ Spcn.

For a connective commutative p-local ring spectrum R and a connective R-moduleM , the n-shifted
Brown–Comenetz dual I(n)

p M admits a canonical R-module structure via the action of R on the
source of the mapping spectrum hom(M,ΣnIQp/Zp). In particular, I(n)

p R itself is a connective R-
module. In fact, it represents the functor I(n)

p internally to connective R-modules. In the following,
homcn

R stands for the internal hom functor in connective R-modules.
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Lemma 3.2. Let R ∈ CAlg(Spcn
(p)). For every M ∈ Modcn

R , we have

I(n)
p M ' homcn

R (M, I(n)
p R) ∈ Modcn

R .

Proof. We compute using the fact that M is connective,

homcn
R (M, I(n)

p R) ' τ≥0 homR(M, I(n)
p R) ' τ≥0 homR(M, τ≥0 hom(R,ΣnIQp/Zp)) '

τ≥0 homR(M,hom(R,ΣnIQp/Zp)) ' τ≥0 hom(M,ΣnIQp/Zp) ' I(n)
p M.

Terminology 3.3. With notation as above, we will refer to maps M ! I
(n)
p R as characters of M .

Next, we observe that I(n)
p M is always n-truncated and depends only on the n-truncation of M .

Thus, it makes sense to restrict I(n)
p to the full subcategory Mod[0,n]

R ⊆ Modcn
R of n-truncated

(connective) R-modules, on which it is characterized by the property

πk(I(n)
p M) ' homAb(πn−kM,Qp/Zp), k = 0, . . . , n.

Remark 3.4. For R ∈ CAlg(Spcn
(p)), both the spectrum I

(n)
p R and the∞-category Mod[0,n]

R depend
only on the n-truncation of R, so we might as well assume that R is n-truncated whenever it is
convenient to do so.

When further restricting to the full subcategory Mod[0,n]-fin
R ⊆ Mod[0,n]

R of [0, n]-finite R-modules
(i.e., connective n-truncated π-finite R-modules), the functor I(n)

p becomes a contravariant self-
equivalence

I(n)
p : Mod[0,n]-fin

R
∼−−! (Mod[0,n]-fin

R )op.

Indeed, every module in Mod[0,n]-fin
R is π-finite and p-local, hence its homotopy groups are finite

p-groups, and the claim follows from the corresponding claim for the functor hom(−,Qp/Zp).

Remark 3.5. In principle, we could work with the non-p-local Pontryagin dual hom(−,Q/Z) and
general (i.e., not necessarily p-local) connective ring spectra R. However, in practice, the choice
of the shift n will match the semiadditive height of a given higher semiadditive ∞-category C , at
the prime p (introduced in [CSY21a]). As C will usually have different heights at different primes,
it will not make much sense to have a fixed shift n. instead, we observe that a connective π-finite
spectrum M decomposes as a direct sum of its p-localizations M '

⊕
p primeM(p). So for every

vector ~n = (np) of integers, we can define the ~n-shifted Brown–Comenetz dual of M ∈ Modπ-fin
R by

I(~n)
p M :=

⊕
p prime

I(np)
p M(p) ∈ Modπ-fin

R .

We chose to work p-locally in this paper to make things easier, but essentially everything can be
generalized to this “global” setting. We note that for a stable ∞-category, the semiadditive height
can be non-zero for at most one prime. On the other hand, there are interesting non-stable ∞-
categories, such as those arising via categorification, for which the vector of semiadditive heights
can be more complicated.
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Pre-orientations

Recall that the construction of the discrete Fourier transform for an m-torsion abelian group M
depends on a choice of an m-th root of unity. We can view the condition thatM is m-torsion as the
existence of a (necessarily unique) structure of Z/m-module on M . Analogously, for a connective
ring spectrum R, the higher Fourier transform in an ∞-category C , for connective R-modules,
requires a choice of auxiliary data.

Definition 3.6. Let C ∈ CAlg(Cat∞) and R ∈ CAlg(Spcn
(p)). For every S ∈ CAlg(C ), the space

of R-pre-orientations of height n of S is defined and denoted as follows:

POr(n)
R (S; C ) := MapSpcn(I(n)

p R, S×),

where S× denotes the spectrum of units of S. An R pre-orientation of C is a pre-orientation of 1C

and the space of such is denoted by POr(n)
R (C ). If R is clear from contect, we will also refer to this

data simply as a pre-orientation of C .

Example 3.7. We have a canonical identification I
(n)
p Z/pr ' ΣnZ/pr. Hence, the notion of a

Z/pr-pre-orientation of height n identifies with that of a height n root of unity of order pr, in the
sense of [CSY21b, Defnition 4.2]. More precisely, for C ∈ CAlg(Cat∞) and S ∈ CAlg(C ) we have

POr(n)
Z/pr (S; C ) ' MapSp(ΣnZ/pr, S×) ' µ(n)

pr (S),

where µ(n)
pr (S) denotes the spectrum of height n roots of unity of order pr in S. Note that, in

particular, Z/pr-pre-orientations of height 0 of a field F correspond to pr-th roots of unity in F.

Remark 3.8. For a p-divisible group G over an E∞-ring spectrum R, Lurie [Lur18b, Definition
2.1.4] defines a pre-orientation of G as a map of Z-modules ΣQp/Zp ! G(R). Since for the
multiplicative group Gm we have Gm(E) ' hom(Z, R×), a pre-orientation of Gm is the same thing
as a map of spectra

ΣIZ(p) ' ΣQp/Zp ! R×.

Thus, we can identify the space of Z(p)-pre-orientations of height 1 of R, with the space of pre-
orientations of the p-divisible group Gm over R. In general, we can view POr(n)

R (C ) as an “R-linear,
higher height analogue” of pre-orientations for the multiplicative p-divisible group over the unit 1.

There is an adjoint way of viewing pre-orientations. When C is presentable, the functor

(−)× : CAlg(C ) −! Spcn

admits a left adjoint
1[−] : Spcn −! CAlg(C ),

which takes a connective spectrum M to its group-algebra 1[M ]. Hence, we can identify a pre-
orientation ω : I(n)

p R! 1× with an augmentation

εω : 1[I(n)
p R] −! 1 ∈ CAlg(C ).

Thus, R-pre-orientations of height n for commutative algebras in C are corepresented by 1[I(n)
p R].
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Example 3.9. Let C be the category of complex vector spaces and let R = Z/pr. For an m-th
root of unity ω ∈ C×, the augmentation εω : C[Z/pr]! C is given by

εω

 ∑
k∈Z/pr

ak[k]

 =
∑

k∈Z/pr
akω

k ∈ C.

Hence, we can view εω in general as the map which gives 1-valued “exponential sums”.

3.2 The Fourier transform

Construction

Given an R-pre-orientation ω of height n, we now construct for every connective R-module M a
map of commutative algebras Fω : 1[M ]! 1bI

(n)
p Mc. In fact, we show that the space of such maps,

that are natural in M , is parameterized by pre-orientations.

Proposition 3.10. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). The space of natural transforma-

tions 1[−]! 1bI
(n)
p (−)c of functors Mod[0,n]

R ! CAlg(C ) is naturally isomorphic to POr(n)
R (C ).

Proof. The functor that takes an R-module M to the algebra 1bI(n)
p Mc is the right Kan extension

of the functor pt ! CAlg(C ) corresponding to the object 1, along the functor pt ! Mod[0,n]
R

corresponding to the object I(n)
p R:

pt

Mod[0,n]
R CAlg(C ).

1
I(n)
p R

1
bI(n)
p (−)c

It follows that the space of natural transformations of the form 1[−] ! 1bI
(n)
p −c is isomorphic to

the space of augmentations of the algebra 1[I(n)
p R], which is the same as the space POr(n)

R (C ) of
R-pre-orientations of height n.

Definition 3.11. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). For ω ∈ POr(n)

R (C ), the associated
Fourier transform is the natural transformation

Fω : 1[−] −! 1bI
(n)
p (−)c

of functors Mod[0,n]
R ! CAlg(C ) corresponding to ω by Proposition 3.10. We shall occasionally

consider the Fourier transform as a functor Fω : Mod[0,n]
R ! CAlg(C )[1].

A couple of remarks on the definition of the Fourier transform are in order.
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Remark 3.12. By unwinding the definition of the Kan extension, the passage from a pre-orientation
to the associated Fourier transform and vice versa can be made more explicit. First, by evaluat-
ing Fω on M = I

(n)
p R, we recover the augmentation that corresponds to ω : I(n)

p R ! 1×, as the
composition

εω : 1[I(n)
p R] Fω−−! 1bI

(n)
p I(n)

p Rc = 1MapR(I(n)
p R,I(n)

p R) evId−−! 1.

Conversely, let ω : I(n)
p R ! 1× and let M ∈ Mod[0,n]

R . For every character ϕ : M ! I
(n)
p R, the

composition ω ◦ϕ : M ! 1× corresponds to an augmentation εω◦ϕ : 1[M ]! 1. These assemble into
a map

bI(n)
p Mc = MapR(M, I(n)

p R) −! MapCAlg(C )(1[M ],1),

which is the same data as the map Fω : 1[M ]! 1bI
(n)
p Mc.

Remark 3.13. In Proposition 3.10, one could replace Mod[0,n]
R with a larger ∞-category such as

Modcn
R and thus define the Fourier transform for all connective R-modules. Though this might

sometimes be technically convenient, we shall be interested primarily in the Fourier transform only
for n-truncated modules. In fact, eventually, we shall be interested only in the further restriction
of the Fourier transform to the full subcategory Mod[0,n]-fin

R ⊆ Mod[0,n]
R of [0, n]-finite modules.

However, for establishing some of its formal properties, it is useful to use the characterization
provided by Proposition 3.10. Having said that, if R itself happens to be [0, n]-finite (e.g., R =
Z/pr), then I(n)

p R ∈ Mod[0,n]-fin
R and one could also replace Mod[0,n]

R with Mod[0,n]-fin
R .

Definition 3.11 generalizes the classical discrete Fourier transform in the following sense:

Example 3.14. Let C be the category of C-vector spaces. For an m-th root of unity ω ∈ C× and
an m-torsion abelian group M , the map Fω : C[M ]! CM∗ is given on x ∈M ⊆ C[M ] by

Fω(x) : ϕ 7! ωϕ(x).

In particular, if M ' Z/pr and we identify M∗ with M using the generator 1 ∈M , we recover the
classical (inverse) Fourier matrix Fω(k)(`) = ωk·`.

The Fourier transform can be enhanced to take into account a bit more structure. A character
ϕ : M ! I

(n)
p R induces a map ω ◦ ϕ : M ! 1×, which corresponds to an augmentation

εω◦ϕ : 1[M ] −! 1 ∈ CAlg(C ).

On the other hand, thinking of ϕ as a point in bI(n)
p Mc yields an augmentation

evϕ : 1bI
(n)
p Mc −! 1 ∈ CAlg(C ).

The Fourier transform intertwines these augmentations.

Proposition 3.15. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). For every ω ∈ POr(n)

R (C ) and
ϕ : M ! I

(n)
p R in Mod[0,n]

R , the following diagram commutes:

1[M ] 1bI
(n)
p Mc

1.

Fω

εω◦ϕ evϕ
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Moreover, Fω promotes uniquely to a natural transformation of functors

(Mod[0,n]
R )

/I
(n)
p R

−! CAlg(C )/1,

whose component at ϕ : M ! I
(n)
p R is given by the diagram above.

Proof. One the one hand, the Fourier transform Fω : 1[M ] ! 1bI
(n)
p Mc, whiskered by the forgetful

functor (Mod[0,n]
R )

/I
(n)
p R

! Mod[0,n]
R , can be viewed as a functor

(Mod[0,n]
R )

/I
(n)
p R

−! CAlg(C )[1].

On the other hand, the construction taking ϕ : M ! I
(n)
p R to evϕ : 1bI(n)

p Mc ! 1 assembles into a
functor

(Mod[0,n]
R )

/I
(n)
p R

−! CAlg(C )/1.

Since the forgetful functor CAlg(C )/1 ! CAlg(C ) is a right fibration, we have a pullback square
of ∞-categories

(CAlg(C )/1)[1] (CAlg(C ))[1]

(CAlg(C )/1) CAlg(C ).

ev1 ev1
y

It follows that the two functors above, which agree after projecting to CAlg(C ), uniquely lift to a
functor

(Mod[0,n]
R )

/I
(n)
p R

! (CAlg(C )/1)[1].

It remains to show that for every M ∈ Mod[0,n]
R , the map evϕ ◦ Fω is homotopic to εω◦ϕ. By the

naturality of Fω, we have a commutative diagram:

1[M ] 1bI
(n)
p Mc

1[I(n)
p R] 1bI

(n)
p I(n)

p Rc 1.

ϕ ϕ

Fω

Fω evId

evϕ

By Remark 3.12, the composition of the two bottom maps is εω and εω ◦ ϕ = εω◦ϕ, so the claim
follows.

Functoriality

We now explain how the Fourier transform F is functorial in the various arguments it depends on.
First, given a map f : R ! S in CAlg(Spcn

(p)), we can regard an S-module as an R-module by
restriction of scalars along f , which we denote by f∗ : Mod[0,n]

S ! Mod[0,n]
R . Similarly, given an

R-pre-orientation ω : I(n)
p R! 1×, by pre-composition with the R-module map I(n)

p S! I
(n)
p R, we

obtain an S-pre-orientation, which we denote by f∗ω : I(n)
p S! 1×.
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Proposition 3.16. Let C ∈ CAlg(Pr), let f : R ! S in CAlg(Spcn
(p)), and let ω : I(n)

p R ! 1× be
an R-pre-orientation. There is a canonical isomorphism of natural transformations

Ff∗ω ' Fωf∗

of functors Mod[0,n]
S ! CAlg(C ).

Proof. First, observe that for every M ∈ Modcn
S we have

MapR(f∗M, I(n)
p R) ' bI(n)

p Mc ' MapS(M, I(n)
p S).

Hence, both Ff∗ω and Fωf∗ are maps 1[−] ! 1I
(n)
p (−) of functors Mod[0,n]

S ! CAlg(C ). Conse-
quently, by Proposition 3.10, it suffices to show that Fωf∗ is classified by the pre-orientation f∗ω.
For this, it suffices to identify the corresponding augmentations. By Remark 3.12, the augmentation
associated with Fωf∗ is given by

ε : 1[I(n)
p S] Fω−−! 1MapR(I(n)

p S,I(n)
p R) ∼−−! 1MapS(I(n)

p S,I(n)
p S) evId−−! 1.

The isomorphism MapR(I(n)
p S, I

(n)
p R) ∼−−! MapS(I(n)

p S, I
(n)
p S) takes the map I

(n)
p f : I(n)

p S !

I
(n)
p R, dual to f : R ! S, to the identity map of I(n)

p S. Hence, we can identify ε with the
composition

1[I(n)
p S] Fω−−! 1MapR(I(n)

p S,I(n)
p R)

ev
(I(n)
p f)

−−−−−−! 1.

By Proposition 3.15, this composition is homotopic to the composition

1[I(n)
p S]

I(n)
p f
−−−! 1[I(n)

p R] εω−! 1,

which is by definition εf∗ω.

Example 3.17. Let C ∈ CAlg(Pr), and let ω ∈ µ(n)
pr+1(1) = POr(n)

Z/pr+1(C ). The Pontryagin dual
of the quotient map Z/pr+1 � Z/pr identifies with the inclusion Z/pr ↪! Z/pr+1. Hence, if M is a
Z/pr-module, then by Proposition 3.16 we can identify the map

Fωp : 1[M ] −! 1bI
(n)
p Mc,

with the map
Fω : 1[M ] −! 1bI

(n)
p Mc,

obtained by regarding M as a Z/pr+1-module.

Next, we discuss the functoriality of the Fourier transform with respect to the ambient∞-category.
A symmetric monoidal functor F : C ! D induces a functor CAlg(C ) ! CAlg(D). Furthermore,
given a pre-orientation ω : I(n)

p R ! 1×C in C , by post-composition with the map F× : 1×C ! 1×D ,
we obtain a pre-orientation in D , which we denote by F (ω) : I(n)

p R! 1×D .
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Proposition 3.18. Let F : C ! D in CAlg(Pr), let R ∈ CAlg(Spcn
(p)), and let ω : I(n)

p R ! 1×C be
an R-pre-orientation of C . The following diagram commutes

F (1C [M ]) F (1bI
(n)
p Mc

C )

1D [M ] 1
bI(n)
p Mc

D

F (Fω)

FF (ω)

naturally in M ∈ Mod[0,n]
R . Here, the vertical maps are induced by functoriality.

Proof. By Proposition 3.10, it suffices to show that the following diagram commutes:

F (1C [I(n)
p R]) F (1C )

1D [I(n)
p R] 1D

F (εω)

εF (ω)

Namely, that the augmentation εF (ω) is homotopic to the composition

1D [I(n)
p R] ' F (1C [I(n)

p R]) F◦εω−−−−! F (1C ) ' 1D .

Via the adjunction 1D [−] a (−)×, this composition corresponds to the map

I(n)
p R

ω
−−! 1×C

F×
−−! 1×D ,

which is by definition F (ω).

Remark 3.19. In the situation of Proposition 3.18, the left vertical map is always an isomorphism,
since by assumption F preserves colimits. If we additionally require F to preserve bI(n)

p Mc-shaped
limits, then the right vertical map is also an isomorphism and hence F (Fω) identifies with FF (ω).

We have one more type of functoriality to consider, which is given by rescaling the pre-orientation.
For R ∈ CAlg(Spcn

(p)), the underlying space bRc with its multiplicative monoid structure acts
naturally on every R-module M . Thus, given C ∈ CAlg(Pr) and a pre-orientation ω ∈ POr(n)

R (C ),
the naturality of the Fourier transform Fω : 1[−]! 1bI

(n)
p −c makes it bRc-equivariant. In particular,

for every r ∈ bRc, we have a commutative square

1[M ] 1bI
(n)
p Mc

1[M ] 1bI
(n)
p Mc

r· r·

Fω

Fω

natural in M ∈ Mod[0,n]
R . Now, the diagonal map given by (either of) the compositions is also a

natural transformation of the form 1[−]! 1bI
(n)
p −c and hence, by Proposition 3.10, is classified by

the associated augmentation
I(n)
p R

r·
−−! I(n)

p R
ω
−−! 1×.

36



Definition 3.20. For r ∈ bRc, we denote by

(−)r : POr(n)
R (C ) −! POr(n)

R (C )

the pre-composition with I(n)
p R

r·
−−! I

(n)
p R.

Example 3.21. For R = Z/pr and n = 0, the operation ω 7! ωk for k ∈ Z/pr is given by raising
the pr-th root of unity ω to the k-th power.

For ease of reference we record the following immediate consequence of the above discussion:

Proposition 3.22. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)), and let ω ∈ POr(n)

R (C ). For every
r ∈ bRc, we have a commutative triangle

1[M ] 1[M ]

1bI
(n)
p Mc

r·

Fωr Fω

in CAlg(C ) naturally in M ∈ Mod[0,n]
R .

Proof. This follows immediately from the definition of ωr.

Duality

We conclude this section with a discussion of the symmetry of the Fourier transform with respect
to monoidal duality. Given a presentably symmetric monoidal ∞-category C and ω ∈ POr(n)

R (C ),
we have for every M ∈ Mod[0,n]-fin

R a Fourier transform map

(Fω)M : 1[M ] −! 1bI
(n)
p Mc.

Under the canonical identification M ∼−−! I
(n)
p (I(n)

p M), we also have the Fourier transform map

(Fω)
I

(n)
p M

: 1[I(n)
p M ] −! 1bMc.

We shall now show that when C is n-semiadditive, (Fω)
I

(n)
p M

coincides with the monoidal dual of
(Fω)M . In fact, we show more generally that even when C is not assumed to be n-semiadditive,
the two maps are the transpose of one another in the following sense:

Definition 3.23. Let C ∈ CAlg(Pr).

(1) For X ∈ C , we define the (weak) dual to be

X∨ := hom(X,1) ∈ C .

A map f : X ! Y ∨ can be identified with a map X ⊗ Y ! 1.
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(2) For a map f : X ! Y ∨ in C , we define the transpose of f to be the map

f t : Y −! X∨ ∈ C ,

corresponding to f via the isomorphism

MapC (X,Y ∨) ' MapC (X ⊗ Y,1) ' MapC (Y,X∨).

Unwinding the definitions, f t is given by the composition

f t : Y −! (Y ∨)∨ f∨

−−! X∨,

where the first map is the canonical map from an object to its double dual. In particular, if Y
is dualizable, then the transpose f t coincides with the dual f∨ under the canonical identification
Y ∼−−! Y ∨∨. One can think of the transpose as a useful substitute for the dual when Y is non-
dualizable.
Remark 3.24. In general, even if f is an isomorphism, f t might not be. For example, for V
an infinite dimensional vector space over a field k, the transpose of the identity map V ∨ ! V ∨

is the non-isomorphic embedding V ↪! (V ∨)∨ of V into its double dual. This deficiency however
disappears if we assume that X and Y are dualizable.

Proposition 3.25. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)) and let ω ∈ POr(n)

R (C ). We have a
natural isomorphism

(Fω)
I

(n)
p M

' (Fω)tM

as natural transformations of functors Mod[0,n]
R ! C .

Proof. We have
MapC (1[M ],1[I(n)

p M ]∨) ' MapC (1[M ]⊗ 1[I(n)
p M ],1) '

MapC (1[M × I(n)
p M ],1) ' MapS(bMc × bI(n)

p Mc, b1c).

By construction, via this identification, the map Fω : 1[M ] ! 1[I(n)
p M ]∨ corresponds to the map

of spaces
bMc × bI(n)

p Mc ev
−! bI(n)

p Rc ω
−! b1c.

By the definition of the transpose, we deduce that Ftω corresponds to the map of spaces

bI(n)
p Mc × bMc ∼−−! bMc × bI(n)

p Mc ev
−! bI(n)

p Rc ω
−! b1c.

Via the isomorphism M ∼−−! I
(n)
p (I(n)

p M), this map identifies with the composition

bI(n)
p Mc × bI(n)

p (I(n)
p M)c ev

−! bI(n)
p Rc ω

−! b1c,

which is the map corresponding to the morphism Fω : 1[I(n)
p M ]! 1bMc.

Corollary 3.26. In the situation of Proposition 3.25, if C is n-semiadditive and M is [0, n]-finite,
then

(Fω)
I

(n)
p M

' (Fω)∨M .

Proof. If C is n-semiadditive then the source and the target of both maps are dualizable [CSY22,
Proposition 3.3.6] and hence the maps (Fω)M and (Fω)

I
(n)
p M

are dual to one another.
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3.3 co-Multiplicative properties

So far, for a presentably symmetric monoidal∞-category C we have constructed the Fourier trans-
form

Fω : 1[M ] −! 1bI
(n)
p Mc

only as a map of commutative algebras in C . However, as in the classical case, under suitable
finiteness and semiadditivity assumptions, both sides also admit natural co-multiplication and co-
unit maps making them into Hopf algebras, and the Fourier transform preserves this structure.

Hopf algebras

We begin by recalling the definitions of coalgebras, bialgebras and Hopf algebras. First, given
C ∈ CAlg(Cat∞), the ∞-category of cocommutative coalgebras in C is given by

coCAlg(C ) := CAlg(C op)op.

Definition 3.27. Let C ∈ CAlg(Cat∞). We define the ∞-category of bialgebras in C by

biCAlg(C ) := coCAlg(CAlg(C )),

where CAlg(C ) has the induced symmetric monoidal structure from C .

Since the induced monoidal structure on CAlg(C ) is coCartesian, we have equivalently

biCAlg(C ) ' (CMon(CAlg(C )op))op.

Definition 3.28. Let C ∈ CAlg(Cat∞). We define the ∞-category of Hopf algebras in C to be
the following full subcategory

Hopf(C ) := (CMongp(CAlg(C )op))op

of biCAlg(C ).

Remark 3.29. By the Yoneda lemma, Definition 3.28 is equivalent to [Lur17, Definition 3.9.7] in
terms of the functor SpecC . One can think of Hopf(C ) as opposite to the category of commutative
group objects in the ∞-category CAlg(C )op of “affine C -schemes”.

We now have the following consequence of [GGN16, Corollary 2.10]:

Proposition 3.30. Let C ∈ CAlg(Cat∞). For every additive ∞-category E , composition with the
forgetful functor Hopf(C )! CAlg(C ) induces an equivalence

Funt(E ,Hopf(C )) ∼−−! Funt(E ,CAlg(C )),

where Funt denotes the ∞-category of co-product preserving functors.

Proof. This follows by applying the opposite of [GGN16, Corollary 2.10] to the∞-category CAlg(C ).
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Corollary 3.31. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). For every ω ∈ POr(n)

R (C ), the
Fourier transform

Fω : 1[−] −! 1bI
(n)
p (−)c

lifts uniquely to a natural transformation of functors Mod[0,n]-fin
R ! Hopf(C ), along the forgetful

functor Hopf(C )! CAlg(C ).

Proof. The ∞-category Mod[0,n]-fin
R is additive. The functor 1[−] is coproduct preserving as a (re-

striction of a) left adjoint and the functor 1bI(n)
p (−)c is coproduct preserving by the n-semiadditivity

assumption on C and Proposition 2.37. Thus, the claim follows from Proposition 3.30.

Remark 3.32. The co-multiplication of 1[M ] comes from the diagonal of M , while the multipli-
cation uses the addition of M . In contrast, the multiplication of 1bI(n)

p Mc uses only the diagonal
map of bI(n)

p Mc, while the co-multiplication uses the addition.

Translation equivariance

One of the main features of the classical Fourier transform is that it intertwines the translation
operations on the function space CM∗ with multiplication by characters on C[M ]. In other words,
the Fourier transform simultaneously diagonalizes the shift operators. We now derive a similar
result for the higher Fourier transform.

Definition 3.33. Given C ∈ CAlg(Cat∞) and H ∈ Hopf(C ) with an augmentation ε : H ! 1 as
a commutative algebra, we define the translation automorphism of H (as a commutative algebra)
by the composition

Tε : H ∆
−! H ⊗H Id⊗ε

−−−! H ⊗ 1 = H.

This construction naturally assembles into a functor

T(−) : Hopf?(C )! CAlg(C )[1],

where Hopf?(C ) is the category of pairs (H, ε), formally given as a pullback

Hopf?(C ) := Hopf(C )×CAlg(C ) CAlg(C )/1.

Remark 3.34. In algebro-geometric terms, ε : H ! 1 corresponds to a global element of the group
scheme Spec(H), and Tε is the translation map by that element from Spec(H) to itself.

Using the compatibility of the Fourier transform with augmentations (Proposition 3.15) and Hopf
algebra structures (Corollary 3.31), we deduce that it intertwines the corresponding translation
automorphisms.

Proposition 3.35. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). For every ω ∈ POr(n)

R (C ), the
associated Fourier transform Fω promotes uniquely to a functor

(Mod[0,n]-fin
R )

/I
(n)
p R

−! CAlg(C )[1]×[1],
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whose component at ϕ : M ! I
(n)
p R is given by

1[M ] 1bI
(n)
p Mc

1[M ] 1bI
(n)
p Mc.

T(εω◦ϕ) T(evϕ)

Fω

Fω

Proof. We have a commutative diagram of functors

(Mod[0,n]-fin
R )

/I
(n)
p R

(CAlg(C )/1)[1]

Hopf(C )[1] CAlg(C )[1],

where the top one is provided by Proposition 3.15, the bottom one by Corollary 3.31, and the other
two are the canonical forgetful functors (and both compositions are the Fourier transform map).
This corresponds to a functor from the top left corner into the pullback of the remaining diagram.
Since raising to the power of [1] preserves pullbacks, this is a functor

(Mod[0,n]-fin
R )

/I
(n)
p R

! Hopf?(C )[1].

Composing this functor with (T(−))[1], yields a functor

(Mod[0,n]-fin
R )

/I
(n)
p R

−! CAlg(C )[1]×[1].

Unwinding the definitions, the component at ϕ : M ! I
(n)
p R is as claimed.

4 Orientations and Orientability

The construction of the Fourier transform in the previous section depends on a choice of a pre-
orientation, which plays the role of a root of unity in classical Fourier theory. Usually, one chooses
the root of unity to be primitive, so that the Fourier transform is an isomorphism. In this section, we
consider an analogous property of a pre-orientation and its relation to affineness and the Eilenberg–
Moore property.

4.1 Orientations

Definition and functoriality

A pre-orientation for which the associated Fourier transform is an isomorphism on all π-finite
modules will be called an orientation. More precisely, we have the following:

Definition 4.1. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)), and let ω ∈ POr(n)

R (C ) be a pre-
orientation.

41



(1) M ∈ Mod[0,n]-fin
R is called ω-oriented if Fω : 1[M ]! 1bI

(n)
p Mc is an isomorphism.

(2) ω is called an orientation if every M ∈ Mod[0,n]-fin
R is ω-oriented.

We denote the subspace of R-orientations by Or(n)
R (C ) ⊆ POr(n)

R (C ), and say that C is (R, n)-
orientable if Or(n)

R (C ) 6= ∅.

The following is the motivating example from the classical theory:

Example 4.2. Let C be the category of (ordinary) modules over a field F of characteristic 0. Then,
Z/pr-pre-orientations of height 0 of C are just pr-th roots of unity in F (see Example 3.7). A root
of unity defines an orientation of C exactly when it is primitive. We note that the situation with
higher roots of unity is more subtle, as we shall discuss in Section 6.2.

Example 4.3. As in Remark 3.8, for R ∈ CAlg(C ) a Z-pre-orientation ω : ΣQ/Z ! R× of R,
in the sense of Definition 3.6 is the same datum as a pre-orientation ω̃ : Q/Z ! Gm(R) for the
divisible group Gm over R, in the sense of [Lur18b, Definition 2.6.8]. One may show that ω is an
orientation of R if and only if ω̃ is an orientation of Gm over R in the sense of [Lur18a, Definition
4.3.9]

We now examine how the space of orientations behaves under the various operations on pre-
orientations considered in Section 3. First, orientations are preserved under restriction of scalars.

Proposition 4.4. Let C ∈ CAlg(Pr) and let f : R! S in CAlg(Spcn
(p)). A moduleM ∈ Mod[0,n]-fin

S

is f∗ω-oriented if and only if f∗M is ω-oriented. Consequently, if ω is an R-orientation, then f∗ω
is an S-orientation.

Proof. Given M ∈ Mod[0,n]-fin
S , by Proposition 3.16, the component of Fω at f∗M ∈ Mod[0,n]-fin

R

is homotopic to the component of Ff∗ω at M . Thus, M is f∗ω-oriented if and only if f∗M is
ω-oriented.

Orientations are also preserved under symmetric monoidal functors which preserve n-finite limits.

Proposition 4.5. Let F : C ! D in CAlg(Pr), and let ω ∈ POr(n)
R (C ). If M ∈ Mod[0,n]-fin

R is
ω-oriented and F preserves bI(n)

p Mc-shaped limits, then M is F (ω)-oriented. In particular, if ω is
an orientation on C and F preserves n-finite limits, then F (ω) is an orientation on D .

Proof. The assumption that F preserves bI(n)
p Mc-shaped limits implies that the M -components

of F (Fω) and FF (ω) are isomorphic, see Remark 3.19. Thus, if M is ω-oriented then it is also
F (ω)-oriented. If F preserves all n-finite limits, then this is true for all M ∈ Mod[0,n]-fin

R .

When C and D are n-semiadditive, every colimit preserving functor F : C ! D preserves n-finite
limits. If we further assume that the ∞-categories are stable, Proposition 4.5 admits a partial
converse.

Definition 4.6. Recall from [CSY22, Definition 4.4.1], that a functor F : C ! D in Alg(Prst) is
called nil-conservative if for every S ∈ Alg(C ) for which F (S) = 0, we have S = 0.
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Proposition 4.7. Let F : C ! D in CAlg(Pr⊕-n
st ) be nil-conservative and let R ∈ CAlg(Spcn

(p)). An
ω ∈ POr(n)

R (C ) is an orientation on C if and only if F (ω) is an orientation on D .

Proof. Since F is n-semiadditive, it preserves n-finite limits and hence F (Fω) is isomorphic to FF (ω),
see Remark 3.19. We deduce that, for every M ∈ Mod[0,n]-fin

R , the map

F (Fω) : F (1[M ]) −! F (1bI
(n)
p Mc)

is an isomorphism. Since F is nil-conservative, it is conservative when restricted to the dualizable
objects of C , see [CSY22, Proposition 4.4.4]. By [CSY21b, Proposition 2.5], both 1[M ] and 1bI(n)

p Mc

are dualizable in C , and we deduce that Fω is an isomorphism at every M ∈ Mod[0,n]-fin
R if and only

F (Fω) is.

Finally, we have the following behaviour with respect to scaling:

Proposition 4.8. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)), and let ω ∈ Or(n)

R (C ). For r ∈ bRc,
the pre-orientation ωr is an orientation, if r ∈ R×. The converse holds if R is π-finite and C is
non-zero.

Proof. By Proposition 3.22, for every M ∈ Mod[0,n]-fin
R we have a commutative diagram

1[M ] 1[M ]

1bI
(n)
p Mc.

r·

Fωr Fω

Since ω is an orientation, the right diagonal map is an isomorphism. By 2-out-of-3 for isomorphisms,
ωr is an orientation, i.e., the left diagonal map is an isomorphism if and only if 1[M ] r·

−−! 1[M ] is
an isomorphism for all M ∈ Mod[0,n]-fin

R . Clearly, if r is invertible, then this is the case. Conversely,
assuming R is π-finite, we get that the map 1[R] r·

−−! 1[R] is an isomorphism. Applying MapC (−,1)
we get an isomorphism b1cbRc ∼−−! b1cbRc. Since π0(R) is a retract of bRc, we get an isomorphism
b1cπ0(R) ∼−−! b1cπ0(R), to which we can apply π0, which preserves products, and get an isomorphism
π0(1)π0(R) ∼−−! π0(1)π0(R). Since multiplication by r is not invertible on π0(R), the last map can
be an isomorphism only if π0(1) ' pt, which would imply that C is zero.

Oriented modules

To study the question of whether a given R-pre-orientation ω is in fact an orientation, it is useful
to know that the collection of ω-oriented R-modules is closed under a variety of operations. We
shall assume higher semiadditivity throughout. We begin by showing that orientability is preserved
under shifted Brown–Comenetz duality.

Proposition 4.9. Let R ∈ CAlg(Spcn
(p)), let C ∈ CAlg(Pr⊕-n), and let ω ∈ POr(n)

R (C ). An R-
module M ∈ Mod[0,n]-fin

R is ω-oriented if and only if I(n)
p M ∈ Mod[0,n]-fin

R is ω-oriented.
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Proof. By Corollary 3.26, the maps (Fω)M and (Fω)
I

(n)
p M

are dual to one another. Hence one is an
isomorphism if and only if the other is.

Oriented modules are also closed under finite direct sums.

Proposition 4.10. Let R ∈ CAlg(Spcn
(p)), let C ∈ CAlg(Pr⊕-n) and let ω ∈ POr(n)

R (C ). For every
ω-oriented M,N ∈ Mod[0,n]-fin

R , the module M ⊕N is also ω-oriented.

Proof. The Fourier transform Fω : 1[−]! 1bI
(n)
p (−)c is a natural transformation between two func-

tors, which both preserve finite co-products. Indeed, 1[−] by being a (restriction of a) left adjoint,
and 1bI(n)

p (−)c by the n-semiadditivity assumption on C and Proposition 2.37.

Next, we consider the behavior of orientability under cofibers and extensions of R-modules.

Proposition 4.11. Let R ∈ CAlg(Spcn
(p)), let C ∈ CAlg(Pr⊕-n) and let ω ∈ POr(n)

R (C ). Consider
an exact sequence in Mod[0,n]-fin

R of the form

M0 −!M1 −!M2,

such that M0 is ω-oriented and bI(n)
p M0c is C -affine. Then, M1 is ω-oriented if and only if M2 is

ω-oriented.

Proof. Consider the following commutative diagram in CAlg(C ), where the diagonal arrows repre-
sent the components of the Fourier transform Fω for the objects 0,M0,M1 and M2:

1[M0] 1[M1]

1bI
(n)
p M0c 1bI

(n)
p M1c

1 1[M2]

1 1bI
(n)
p M2c

∼

∼

(∗)

The two solid diagonal maps are isomorphisms by assumption and we have to show that if either of
the dashed diagonal maps is an isomorphism, then so is the other. Since the functor 1[−] is a left
adjoint, the back face of the diagram is a pushout. Since we assumed that bI(n)

p M0c is C -affine,
the front face is also a pushout (Theorem 2.38). Thus, if the top dashed diagonal (Fω)M1 is an
isomorphism, then so is the bottom one (Fω)M2 .
Now, assume that the bottom dashed diagonal is an isomorphism. We can view the diagram as
living in commutative algebras in C under 1bI(n)

p M0c or equivalently, as commutative algebras in
Mod

1
bI(n)
p M0c

(C ). By the definition of affineness, we have an equivalence of categories

Mod
1
bI(n)
p M0c

(C ) ' C bI
(n)
p M0c.
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The collection of functors ϕ∗ : C bI
(n)
p M0c ! C for all ϕ ∈ bI(n)

p M0c is jointly conservative. By
Corollary 2.17, these functors correspond under the above equivalence to the extension of scalars
functors

Fϕ := 1ϕ ⊗
1
bI(n)
p Mc (−) : Mod

1
bI(n)
p M0c

(C ) −! C ,

where 1ϕ is the unit 1 with the 1bI
(n)
p M0c-algebra structure given by evϕ : 1bI(n)

p M0c ! 1. For
example, in the above cubical diagram, the left vertical map in the front face is 1bI(n)

p Mc ! 10.
Thus, the fact that the back and the front faces are pushouts implies that

F0((Fω)M1) = (Fω)M2 ,

which is, by assumption, an isomorphism. To show that Fϕ((Fω)M1) is an isomorphism for all
ϕ ∈ bI(n)

p M0c, we shall use the translation invariance of the Fourier transform and the case ϕ = 0.
By the long exact sequence of homotopy groups associated with the cofiber sequence

M0 −!M1 −!M2,

the map πnM0 ! πnM1 is injective, which implies that the map π0(I(n)
p M1) ! π0(I(n)

p M0) is
surjective. Hence, we can lift ϕ to an element ϕ ∈ bI(n)

p M1c. By Proposition 3.35, we get a
commutative diagram

1[M0] 1[M1]

1bI
(n)
p M0c 1bI

(n)
p M1c

1[M0] 1[M1]

1bI
(n)
p M0c 1bI

(n)
p M1c,

T(evϕ)o
T(evϕ)o

T(εω◦ϕ)o
T(εω◦ϕ)o

where the vertical maps are the respective translation automorphisms. Pasting this diagram on
top of (∗) yields a cubical diagram analogous to (∗), where the left vertical map of the front face
is evϕ : 1bI(n)

p M0c ! 1. As before, we get that Fϕ((Fω)M1) identifies with (Fω)M2 and hence is an
isomorphism. Thus, (Fω)M1 is itself an isomorphism.

Similarly, we have a dual statement for fibers.

Proposition 4.12. Let R ∈ CAlg(Spcn
(p)), let C ∈ CAlg(Pr⊕-n) and let ω ∈ POr(n)

R (C ). Consider
an exact sequence in Mod[0,n]-fin

R of the form

M0 −!M1 −!M2,

such that M2 is ω-oriented and bM2c is C -affine. Then, M1 is ω-oriented if and only if M0 is
ω-oriented.

Proof. By Proposition 4.9, a module Mod[0,n]-fin
R is ω-oriented if and only if I(n)

p M is. Thus, the
claim follows from Proposition 4.11 applied to the exact sequence

I(n)
p M2 −! I(n)

p M1 −! I(n)
p M0.
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4.2 R-Cyclotomic extensions

We now construct for every R ∈ CAlg(Spcn
(p)) and C ∈ CAlg(Pr⊕-n) a universal R-oriented commu-

tative algebra (of height n) in C , denoted by 1[ω(n)
R ], which we call the R-cyclotomic extension (of

height n).

Universally oriented categories

We begin by working one categorical level up, which does not require any higher semiadditivity
assumptions. The adjunction unit I(n)

p R ! 1[I(n)
p R]× exhibits 1[I(n)

p R] as the universal R-pre-
oriented (of height n) commutative algebra in C . Our first goal is to establish a categorification of
this fact.

Proposition 4.13. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). The functor

POr(n)
R (−) : CAlg(ModC (Pr)) −! S

is co-representable by Mod
1[I(n)

p R](C ).

Proof. Using the adjunctions

Mod(−)(C ) : CAlg(C ) � CAlg(ModC (Pr)) :End(1(−))

and
1[−] : Spcn � CAlg(C ) : (−)×,

we get

MapCAlg(ModC (Pr))(Mod
1C [I(n)

p R](C ),D) ' MapCAlg(C )(1[I(n)
p R],End(1D)) '

MapSpcn(I(n)
p R,End(1D)×) ' MapSpcn(I(n)

p R,1×D) =: POr(n)
R (D)

naturally in D ∈ ModC , which finishes the proof.

We shall thus use the following notation:

Definition 4.14. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). We define

C por
R,n := Mod

1[I(n)
p R](C )

and denote by
ωtaut : I(n)

p R −! 1×
Cpor

R,n

= 1[I(n)
p R]×

the tautological R-pre-orientation of C por
R,n given by the unit of the adjunction 1[−] a (−)×.

Remark 4.15. By Proposition 4.13, C por
R,n co-represents R-pre-orientations of height n for C -linear

presentably symmetric monoidal ∞-categories. Explicitly, given F : C por
R,n ! D in ModC (Pr), the

associated R-pre-orientation of D is F (ωtaut).
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We now consider the co-representability of the subfunctor Or(n)
R (−) ⊆ POr(n)

R (−).

Definition 4.16. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). We define C or

R,n ⊆ C por
R,n to be the

full subcategory of objects X ∈ C por
R,n, such that

F∗ωtaut
: hom(1bI

(n)
p Mc, X) −! hom(1[M ], X) ∈ C

is an isomorphism for all M ∈ Mod[0,n]-fin
R .

Equivalently, by Proposition 3.25, C or
R,n can be identified with the left localization of C por

R,n with
respect to the collection of morphisms of the form

IdY ⊗ Fωtaut : Y ⊗ 1[M ] −! Y ⊗ 1bI
(n)
p Mc.

In particular, it is a ⊗-localization of C por
R,n, and hence can be seen as an object of CAlg(ModC (Pr)),

and it is equipped with a symmetric monoidal localization functor Lor : C por
R,n ! C or

R,n.

Proposition 4.17. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). The localization functor

Lor : C por
R,n −! C or

R,n

co-represents the fully faithful embedding Or(n)
R (−) ⊆ POr(n)

R (−).

Proof. Since Lor is a localization, pre-composition with it exhibits MapCAlg(ModC (Pr))(C or
R,n,−) as

a subfunctor of
MapCAlg(ModC (Pr))(C

por
R,n,−) ' POr(n)

R (−).

Thus, it would suffice to show that a functor F : C por
R,n ! D in CAlg(ModC (Pr)) factors through

the localization functor Lor if and only if F (ωtaut) is an orientation of D .
By Proposition 3.18 we have FLor(ωtaut) ' Lor(Fωtaut) on Mod[0,n]-fin

R , which is an isomorphism by
the definition of C or

R,n. This implies that if F factors through Lor, then F (ωtaut) is an orientation.
Conversely, assuming that F (ωtaut) is an orientation we shall show that F factors through Lor.
For this, it suffices to show that the essential image of the right adjoint G : D ! C por

R,n of F lies
in C or

R,n ⊆ C por
R,n. By the definition of C or

R,n, this is if and only if, for every X ∈ D and every
M ∈ Mod[0,n]-fin

R , the morphism

F∗ωtaut
: hom(1bI

(n)
p Mc, G(X)) −! hom(1[M ], G(X))

is an isomorphism. Since F is symmetric monoidal, we have a natural isomorphism

homCpor
R,n

(Y,G(X)) ' G(homD(F (Y ), X))

for all Y ∈ C por
R,n, so it would suffice to show that

F (Fωtaut)∗ : hom(F (1bI
(n)
p Mc), X) −! hom(F (1[M ]), X)

is an isomorphism for every M ∈ Mod[0,n]-fin
R . But this follows from our assumption that F (ωtaut)

is an orientation.
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Universally oriented algebras

Proposition 4.17 shows that there is a C -linear symmetric monoidal ∞-category C or
R,n carrying a

universal R-orientation of height n. We now show that if C is n-semiadditive, then C or
R,n is in fact

the ∞-category of modules over a universally R-oriented commutative algebra in C .

Proposition 4.18. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). Then, there is an idempotent

commutative 1[I(n)
p R]-algebra 1[ω(n)

R ], such that

C or
R,n ' Mod

1[ω(n)
R

](C ) ∈ CAlg(ModCpor
R,n

(Pr)).

Proof. By [RS22, Theorem 7.6], it would suffice to show that C or
R,n is closed under all limits, all

colimits, tensoring with any object of C por
R,n and taking internal hom from any object of C por

R,n. Now,
the functor (X,Y ) 7! hom(Y,X) is limit preserving in the X-argument and satisfies

hom(Z,hom(Y,X)) ' hom(Y, hom(Z,X)).

These imply that C or
R,n is closed under limits and applying hom(Y,−) for Y ∈ C por

R,n. On the other
hand, by the n-seimadditivity assumption on C , for every M ∈ Mod[0,n]-fin

R the objects 1[M ] and
1bI

(n)
p Mc are dualizable. Hence, we can identify the morphisms

hom(1bI
(n)
p Mc, X) −! hom(1[M ], X)

of pre-composition with Fω, with the tensor product F∨ω ⊗X. This implies that C or
R,n is also closed

under all colimits and tensoring with any object of C por
R,n.

Finally, since the functor

Mod(−)(C ) : CAlg(C ) −! CAlg(ModC (Pr))

is fully faithful, it follows from Proposition 4.17 that indeed R-orientations of commutative algebras
in C are co-represented by 1[ω(n)

R ].

From the above proposition follows that R-orientations of commutative algebras in C are co-
represented by 1[ω(n)

R ]. In other words, 1[ω(n)
R ] carries a universal R-orientation of height n, which

motivates the following:

Definition 4.19. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). We refer to 1[ω(n)

R ] ∈ CAlg(C )
as the R-cyclotomic extension of height n.

In general, the functoriality of the construction 1C [ω(n)
R ] in C ∈ CAlg(Pr⊕-n) is rather subtle.

However, there is one relatively simple, yet useful, case.

Proposition 4.20. Let F : C ! D in CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). If F admits a

conservative right adjoint, then F (1C [ω(n)
R ]) ' 1D [ω(n)

R ].

Proof. Let G be a right adjoint of F . Then, G is lax symmetric monoidal and hence maps commu-
tative algebras in D to commutative algebras in C . Moreover, for S ∈ CAlg(D), we have a natural

48



identification G(S)× ' S× and hence we can identify pre-orientations of S with pre-orientations of
G(S).
The object 1D [ω(n)

R ] co-represents R-orientations of height n in CAlg(D), while F (1C [ω(n)
R ]) co-

represents the functors CAlg(D) ! S given by S 7! Or(n)
R (C ;G(S)). Both these functors are sub-

functors of POr(n)
R (D ;−). Hence, to identify them, it would suffice to show that, for S ∈ CAlg(D)

with pre-orientation ω : I(n)
p R! S× ' G(S)× and every M ∈ Mod[0,n]-fin

R , the morphism

Fω : S[M ] −! SbI
(n)
p Mc (∗)

is an isomorphism if and only if

Fω : G(S)[M ] −! G(S)bI
(n)
p Mc (∗∗)

is an isomorphism. The functor G is limit preserving and hence it preserves also π-finite colimits,
see [CSY22, Corollary 3.2.4]. Consequently, the map (∗∗) is the image under G of the map (∗).
Since G is assumed to be conservative, we deduce that (∗∗) is an isomorphism if and only if (∗) is
an isomorphism and the result follows.

Corollary 4.21. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). For every S ∈ CAlg(C ) we have,

S[ω(n)
R ] ' S ⊗ 1[ω(n)

R ] ∈ CAlgS(C ).

Proof. Apply Proposition 4.20 to the extension of scalars functor S ⊗ (−) : C ! ModS(C ).

Equivariance and Galois

Recall that 1[I(n)
p R] admits an action of the multiplicative monoid bRc. This induces an action

of bRc on the functor POr(n)
R (−; C ) it co-represents. This action is given by scaling and hence, by

Proposition 4.8, the action of the submonoid R× ⊆ bRc preserves the subspace

Or(n)
R (−; C ) ⊆ POr(n)

R (−; C ).

We thus obtain an action of R× on the co-representing object 1[ω(n)
R ] and an R×-equivariant map

1[I(n)
p R] −! 1[ω(n)

R ] ∈ CAlg(C )BR× .

Proposition 4.22. Let C ∈ CAlg(Pr⊕-(n+1)) and let R ∈ CAlg(Spcn
(p)) be n-finite. If the R-

cyclotomic extension 1[ω(n)
R ] is faithful, then it is R×-Galois.

Proof. By our assumptions, both BR× and R× are C -ambidextrous spaces. Thus, the tensor
product of C preserves the respective limits in conditions (G1) and (G2) of a Galois extension
(Definition 2.25). Hence, since 1[ω(n)

R ] is faithful, it suffices to show that it is Galois after base-
change along itself. Namely, after applying the functor

1[ω(n)
R ]⊗ (−) : C −! Mod

1[ω(n)
R

](C ).
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In other words, we may assume without loss of generality that C is (R, n)-orientable. We shall
show that in this case, 1[ω(n)

R ] is in fact split Galois. The Fourier transform, associated with any
R-orientation ω of height n, provides an isomorphism

Fω : 1[I(n)
p R] ∼−−! 1bRc,

which is equivariant with respect to the multiplicative monoid bRc, and hence in particular with
respect to R×. Consider the composition

1[I(n)
p R] Fω−−! 1bRc −! 1R× ∈ CAlg(C )BR× .

where the second map is given by restriction along the inclusion R× ↪! bRc. Since 1R× is co-
induced as an R×-object, this map corresponds to a non-equivariant map 1[I(n)

p R] ! 1 given by
evaluation at 1 ∈ R×. By unwinding the definitions, this is exactly the orientation ω, and hence
factors through 1[I(n)

p R] ! 1[ω(n)
R ]. Consequently, we get the following commutative square in

CAlg(C )BR× :
1[I(n)

p R] 1bRc

1[ω(n)
R ] 1R× .

Fω

(∗)

Since the top map is an isomorphism, it would suffice to show that (∗) is a pushout square, as
this would imply that the bottom map is an isomorphism as well. Furthermore, as the forgetful
functor CAlg(C )BR× ! CAlg(C ) is colimit preserving and conservative, it suffices to check that
(∗) is a pushout square non-equivariantly. Namely, we need to show that for every f : 1bRc ! S in
CAlg(C ), the composition

ωf : 1[I(n)
p R] Fω−−! 1bRc

f
−! S,

is an orientation on S if and only if f factors through the projection 1bRc ! 1R× . The ‘if’ part is
clear from the existence of the commutative square (∗). For the ‘only if’ part, it suffices to show
that if ωf is an orientation, then the pushout 1bRcrR× ⊗1bRc S vanishes. Since the space bRcrR×

is C -ambidextrous, it is C -semi-affine (Corollary 2.34), so by Proposition 2.4 we have a fully faithful
embedding

Mod
1bRcrR× (C ) ↪−! C bRcrR× .

Furthermore, by Corollary 2.17, the jointly conservative functors r∗ : C bRcrR× ! C correspond
to the functors 1r ⊗1bRcrR× (−). Therefore, by the associativity of the relative tensor product, it
suffices to show that Sr := 1r⊗1bRc S vanishes for every r ∈ bRcrR×. Now, consider the diagram,
where the right square a pushout square and the left square commutes by Proposition 3.22 and
Proposition 3.15:

1[I(n)
p R] 1bRc S

1[I(n)
p R] 1 Sr.

r· evr

Fω

ω

f

fr

gr
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Comparing the composition along the top and then right maps with the composition along the left
and the bottom maps provides an isomorphism

(gr)∗ωf ' ((fr)∗ωf )r ∈ POr(n)
R (S; C ).

Since we assumed that ωf is an orientation, it follows by Proposition 4.4, that the left hand side
is an orientation. However, since R is π-finite and r is assumed to be non-invertible, it follows by
Proposition 4.8, that the right hand side is not an orientation unless Sr = 0.

4.3 Virtual orientability and affineness

In Proposition 2.40, we have seen that having semiadditive height n for an ∞-category C implies
the affineness of (n + 1)-connected π-finite spaces with respect to C . We shall now show that the
existence of an R-orientation of height n implies the affineness of all n-truncated π-finite spaces
which admit an R-module structure. In fact, many ∞-categories of interest C are not themselves
(R, n)-orientable, yet possess an (R, n)-orientable commutative algebra S, which is faithful in the
sense that the functor S⊗− : C ! C is conservative. This allows one to use the Fourier transform
over ModS(C ) together with “faithful descent” along the morphism 1 ! S to derive structural
properties, such as affineness, for C .

Virtual orientability

The above discussion leads to the following definition:

Definition 4.23. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). We say that the ∞-category C is

virtually (R, n)-orientable if there exists a faithful commutative algebra S in C , which admits an
R-orientation of height n.

In the higher semiadditive setting, we have the universal commutative algebra 1[ω(n)
R ] in C that

caries an R-orientation. In this case, its faithfulness is equivalent to virtual orientability of C .

Proposition 4.24. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). Then, C is virtually (R, n)-

orientable if and only if 1[ω(n)
R ] is faithful.

Proof. Since 1[ω(n)
R ] admits an R-orientation of height n, if it is faithful, then C is virtually (R, n)-

orientable. Conversely, assume that C is virtually (R, n)-orientable, and let S ∈ CAlg(C ) be
a faithful algebra which admits an R-orientation of height n. The extension of scalars functor
S⊗− : C ! ModS(C ) admits a conservative right adjoint, which, by Proposition 4.20, implies that
S[ω(n)

R ] ' S ⊗ 1[ω(n)
R ]. Now, S admits an R-orientation, which in turn provides an augmentation

S ⊗ 1[ω(n)
R ] ' S[ω(n)

R ] −! S.

Since S is faithful, we deduce that S ⊗ 1[ω(n)
R ] is faithful, and hence that 1[ω(n)

R ] is faithful.

Example 4.25. The field of rational numbers Q does not admit a Z/pr-orientation of height 0,
i.e., a primitive pr-th root of unity, unless p = 2 and r = 1. However, it is still virtually (Z/pr, 0)-
orientable, as we can pass to the cyclotomic extension Q(ωpr ), which is clearly faithful over Q.
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By localizing with respect to 1[ω(n)
R ], we obtain the universal virtually (R, n)-orientable localization

of C .

Definition 4.26. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). We define ĈR,n to be the

Bousfield localization of C with respect to 1[ω(n)
R ].

Namely, ĈR,n is obtained from C by inverting all the morphisms X ! Y in C for which the
induced morphism X ⊗ 1[ω(n)

R ] ! Y ⊗ 1[ω(n)
R ] is an isomorphism. The ∞-category ĈR,n classifies

the property of being virtually (R, n)-orientable among localizations of C .

Proposition 4.27. Let C ∈ CAlg(Pr⊕-n) and let R ∈ CAlg(Spcn
(p)). The ∞-category ĈR,n is the

initial symmetric monoidal localization of C in CAlg(Pr⊕-n) which is virtually (R, n)-orientable.

Proof. First, since ĈR,n is a Bousfield localization of C , it is a symmetric monoidal localization of
C . Let L : C ! ĈR,n be the localization functor. By Proposition 4.20, and since L admits a fully
faithful (and in particular conservative) right adjoint, we have L(1C [ω(n)

R ]) ' 1
ĈR,n

[ω(n)
R ]. Since,

by construction, L(1C [ω(n)
R ]) is faithful in CAlg(ĈR,n), we deduce from Proposition 4.24 that ĈR,n

is virtually (R, n)-orientable. It remains to show that ĈR,n is initial with respect to being virtually
(R, n)-orientable. Let L1 : C ! D be any symmetric monoidal localization in CAlg(Pr⊕-n) for which
D is virtually (R, n)-orientable. By Proposition 4.20 again, we have that L1(1C [ω(n)

R ]) ' 1D [ω(n)
R ],

which is faithful by our assumption on D . This implies that L1 factors through the Bousfield
localization with respect to 1C [ω(n)

R ], that is, through L : C ! ĈR,n.

Affineness of modules

The existence of an R-orientation for an ∞-category C allows one to relate group algebras and
algebras of functions onR-modules. Since the functor 1[−] : ModR ! CAlg(C ) preserves pushouts,
we can use the Fourier transform to deduce Eilenberg–Moore type properties for C . In fact, virtual
orientability suffices.

Proposition 4.28. Let R ∈ CAlg(Spcn
(p)) and let C ∈ CAlg(Pr⊕-n) be virtually (R, n)-orientable.

For every exact square (∗) in Mod[0,n]-fin
R , the associated square (∗∗) is a pushout in CAlg(C ).

M0 M1 (∗) 1bM3c 1bM1c (∗∗)

M2 M3, 1bM2c 1bM0c.

Remark 4.29. The square (∗) is exact (see the conventions) in Mod[0,n]-fin
R if and only if it is a

pushout square in ModR(Sp).

Proof. Let S ∈ CAlg(C ) be a faithful algebra which admits an R-orientation of height n. Since
the tensor product in C preserves n-finite limits in each coordinate, tensoring the square (∗∗) with
S gives the analogous square in ModS(C ). Since S is faithful, we may replace C by ModS(C ) and
assume without loss of generality that C admits an R-orientation ω : I(n)

p R! 1×.
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The exact square (∗) in Mod[0,n]-fin
R induces another exact square in Mod[0,n]-fin

R :

I
(n)
p M3

��

// I(n)
p M1

��
I

(n)
p M2 // I(n)

p M0,

which is also exact in Spcn. The functor

1[−] : Spcn ! CAlg(C )

preserves colimits, so that the square

1[I(n)
p M0]

��

// 1[I(n)
p M1]

��
1[I(n)

p M2] // 1[I(n)
p M3]

(∗ ∗ ∗)

is a pushout square in CAlg(C ). Now, the (inverse of the) Fourier transform Fω : 1[M ] ∼−−! 1bI
(n)
p Mc

identifies the pushout square (∗ ∗ ∗) with the square (∗∗) in the claim, which is therefore a pushout
square as well.

This implies the following affineness result:

Proposition 4.30. Let R ∈ CAlg(Spcn
(p)) and let C ∈ CAlg(Pr⊕-n) be virtually (R, n)-orientable.

For every M ∈ Mod[0,n]-fin
R , the space bMc is C -affine.

Proof. First, we have a map bMc ! π0bMc whose fibers are all isomorphic to bτ≥1Mc. Thus, by
Proposition 2.18((2) and (3)), it suffices to prove that bπ0Mc and bτ≥1Mc are C -affine. Since bπ0Mc
is finite, it is C -affine by Example 2.35. Hence, we are reduced to the case that M is connected.
For connected M , all the path spaces Pa,bbMc for a, b ∈ bMc are isomorphic to bΩMc ' ΩbMc.
By Theorem 2.38, to show that bMc is C -affine, it suffices to show that the square

1bMc //

��

1

��
1 // 1bΩMc

is a pushout square in CAlg(C ). This in turn follows from Proposition 4.28.

Remark 4.31. The conclusion of Proposition 4.30 is far from being the best possible. Since C -
affine spaces are closed under extensions (Proposition 2.18), to deduce that an n-finite space A is
C -affine, it suffices to be able to build A from R-modules by iterated extensions. We exploit this
fact in Theorem 6.2, to show that already virtual (Fp, n)-orientability implies the C -affineness of
all n-finite p-spaces.
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Higher Kummer theory

When one actually has anR-orientation of height n we obtain a variant of Kummer theory, providing
a classification of certain abelian Galois extensions of a ring in terms of its units.

Proposition 4.32. Let R ∈ CAlg(Spcn
(p)) and let C ∈ CAlg(Pr⊕-n) be (R, n)-orientable. For every

M ∈ Mod[0,n]-fin
R and S ∈ CAlg(C ), we have an isomorphism of spaces

CAlgbMc−gal(S; C ) ' MapSpcn(I(n)
p M,S×).

Proof. By Proposition 4.30, the space bMc is C -affine. Hence, by Proposition 2.30, we have

CAlgbMc−gal
S (S; C ) ' MapCAlg(C )(1bMc, S).

Since C is (R, n)-orientable, the Fourier transform, associated with any R-orientation ω of height
n, provides an isomorphism

Fω : 1[I(n)
p M ] ∼−−! 1bMc ∈ CAlg(C ).

Plugging this into the above we get,

MapCAlg(C )(1bMc, S) ' MapCAlg(C )(1[I(n)
p M ], S) ' MapSpcn(I(n)

p M,S×).

Example 4.33. If C is (Fp, n)-orientable for some n ≥ 1, then applying the above to M = ΣCp,
we get

CAlgBCp−gal(S; C ) ' MapSpcn(Σn−1Cp, S
×) ' Ωn−1µp(S) =: µ(n−1)

p (S).
That is, Cp-Galois extensions are classified by p-th roots of unity of height n− 1.

Remark 4.34. The case n = 0 is excluded, and does not even make sense, in Example 4.33.
However, we have shown in [CSY21b, Theorem 3.18], that if C is additive and admits a primitive
m-th root of unity, then we have an isomorphism

CAlgBCm−gal(S; C ) ' MapSpcn(Cm,pic(S)).

Furthermore, we have explained how this recovers and extends classical Kummer theory. The
above isomorphism and the one in Example 4.33 can be combined into a single uniform claim (see
Theorem 7.34).

4.4 Detection for local rings

We shall now show that Proposition 4.4 admits a partial converse, when C is higher semiadditive
and f : R! S is a strict map of local ring spectra in the following sense:

Definition 4.35. Let R be a connective commutative ring spectrum. We say that R is local if
π0(R) is local. In this case, we refer to the residue field k of π0(R) as the residue field of R. We
shall implicitly assume that k is of characteristic p, which implies that R is p-local. We say that a
map R! S of local ring spectra is strict, if it induces an isomorphism on residue fields.

54



For a local ring spectrum R with residue field k, the ∞-categories Mod[0,n]-fin
R and Mod[0,n]-fin

k are
closely related.

Definition 4.36. Let E be a pointed ∞-category and let E0 be a full subcategory of E .

(1) We say that E0 ⊆ E is closed under extensions if for every exact sequence

M ! N ! L

in E such that M,L ∈ E0, we also have N ∈ E0.

(2) We say that E0 generates E under extensions, if the only subcategory of E containing E0 and
closed under extensions is E itself.

Proposition 4.37. Let R ∈ CAlg(Spcn
(p)) be local with residue field k. The ∞-category Mod[0,n]-fin

R

is generated under extensions from the essential image of the restriction of scalars functor

f∗ : Mod[0,n]-fin
k −! Mod[0,n]-fin

R

induced by the residue map f : R! k.

Proof. Let E denote the minimal subcategory of Mod[0,n]-fin
R which is closed under extensions and

contains the essential image of f∗. Given M ∈ Mod[0,n]-fin
R , we wish to show that M ∈ E . Consider

the Postnikov tower
M = τ≤nM ! τ≤n−1M ! · · ·! τ≤0M ! 0

of M . For every 1 ≤ t ≤ n, we have an exact sequence

ΣtπtM ! τ≤tM ! τ≤t−1M

Hence, by induction on the tower, and using that E is closed under extensions, it would suffice to
show that for every 0 ≤ t ≤ n, the R-module Σtπt(M) belongs to E . In particular, it would suffice
to show that for every discrete, finite π0(R) module N and every 0 ≤ t ≤ n, we have ΣtN ∈ E .
Let m be the maximal ideal of π0(R). Since π0(R) is a local ring and N is finite, we have m`N = 0
for some ` ≥ 0. We shall proceed by induction on `, where the case ` = 0 holds trivially. Let N [m]
denote the m-torsion in N , i.e., the submodule of elements killed by m. Then, we have an exact
sequence

ΣtN [m]! ΣtN ! ΣtN/N [m].
The object ΣtN [m] is a restriction of scalars of a κ-module, so it belongs to E . Also, by construction
we have m`−1 (N/N [m]) = 0. By our inductive hypothesis, this implies that ΣtN/N [m] ∈ E , and
since E is closed under extensions, we deduce that ΣtN ∈ E .

In particular, this allows us to bootstrap affineness from k-modules to R-modules.

Corollary 4.38. Let R ∈ CAlg(Spcn
(p)) be local with residue field k and let C ∈ CAlg(Pr⊕-n) be

virtually (k, n)-orientable. Then, for every M ∈ Mod[0,n]-fin
R , the space bMc is C -affine.

Proof. By Proposition 4.30, the space bMc is C -affine for R-module M in the essential image of
the functor Mod[0,n]-fin

k ! Mod[0,n]-fin
R . By Proposition 2.18, the R-modules M for which bMc is

C -affine are closed under extensions. The result now follows from Proposition 4.37.
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Finally, we can show that the orientation property of a pre-orientation is detected at the residue
field.

Theorem 4.39. Let C ∈ CAlg(Pr⊕-n) and let f : R ! S be a strict map in CAlg(Spcn
(p)). A pre-

orientation ω ∈ POr(n)
R (C ) is an R-orientation if and only if f∗ω ∈ POr(n)

S (C ) is an S-orientation.

Proof. The ‘only if’ direction follows from Proposition 4.4. Thus, for the ‘if’ direction, it suffices
to consider the case where f : R ! k is the quotient map to the residue field. We now have to
show that all objects of Mod[0,n]-fin

R are ω-oriented assuming that all objects of Mod[0,n]-fin
k are f∗ω-

oriented. By Proposition 4.4, all the objects in the image of f∗ are ω-oriented. Since these generate
Mod[0,n]-fin

R under extensions (Proposition 4.37), it would suffice to show that the collection of ω-
oriented R-modules is closed under extensions. Since for every M ∈ Mod[0,n]-fin

R , the space bMc is
C -affine (Corollary 4.38), this follows from Proposition 4.11.

Remark 4.40. The above result reduces the verification of the R-orientability of an S-oriented∞-
category C to a lifting problem. Namely, to R-orient C , it will suffice to have any map ω : I(n)

p R!
1× which makes the following diagram commutative:

I
(n)
p S I

(n)
p R

1×.

ω ω

Theorem 4.39 has the following consequence regrading the functoriality of the construction 1C [ω(n)
R ]

in R ∈ CAlg(Spcn
(p)):

Proposition 4.41. Let C ∈ CAlg(Pr⊕-n). For every strict map f : R ! S in CAlg(Spcn
(p)), we

have
1[ω(n)

R ] ' 1[I(n)
p R]⊗

1[I(n)
p S] 1[ω(n)

S ].

Proof. Passing to the co-representable functors, the claim is equivalent to the existence of a natural
isomorphism

Or(n)
R (T ; C ) ' POr(n)

R (T ; C )×POr(n)
S

(T ;C ) Or(n)
S (T ; C ).

for T ∈ CAlg(C ). Both sides are naturally subspaces of POr(n)
R (T ; C ); the left hand side consisting

of those pre-orientations which are orientations, and the right hand side those pre-orientations
ω for which f∗ω is an orientations. By Theorem 4.39, these two subspaces are equal for every
T ∈ CAlg(C ), and the result follows.

Corollary 4.42. Let C ∈ CAlg(Pr⊕-n) and let f : R! S be a strict map in CAlg(Spcn
(p)). If C is

virtually (R, n)-orientable, then it is virtually (S, n)-orientable.

Proof. By Proposition 4.41, there is a map 1[ω(n)
S ]! 1[ω(n)

R ]. Therefore, if 1[ω(n)
R ] is faithful, then

so is 1[ω(n)
S ], and the claim follows from Proposition 4.24.
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5 Categorification and Redshift

In this section, we shall study the interaction of the various notions developed in this paper (affine-
ness, (pre)orientations and the Fourier transform) with categorification.

5.1 Categorification

For C a presentably symmetric monoidal∞-category, the∞-category ModC (Pr) of presentably C -
linear∞-categories admits a canonical symmetric monoidal structure (see [Lur, Corollary 5.1.2.6]).
Hence, we could try to apply the theory developed in the previous sections to ModC (Pr) in place
of C . However, ModC (Pr) is usually not presentable itself. To avoid set-theoretical complications,
we follow the strategy of [Lur, §5.3.2] and adopt the following convention:

Convention 5.1. For every presentable∞-category C , there exists an uncountable regular cardinal
κ, such that C is κ-compactly generated. We shall always implicitly choose such κ and treat C as
an object of the ∞-category Prκ, which is presentable by [Lur, Lemma 5.3.2.9]. If needed, we shall
allow ourselves to implicitly replace κ by some larger κ′ using the canonical (non-full) inclusion
Prκ ↪! Prκ′ . If C is furthermore presentably En-monoidal, we let ModC be the presentably En−1-
monoidal ∞-category ModC (Prκ), for κ as in [Lur, Lemma 5.3.2.12].

Semiadditivity of ModC

An important feature, for our discussion, of Pr is that it is ∞-semiadditive (see [HL13, Example
4.3.11]). In view of Convention 5.1, we shall need the analogous property of Prκ.

Proposition 5.2. For every uncountable regular cardinal κ, the∞-category Prκ is∞-semiadditive.

Proof. Let Catκ-small ⊂ Cat∞ be the (non-full) subcategory of ∞-categories that admit κ-small
colimits and functors preserving them. Since κ is assumed to be uncountable, we have an equivalence
of ∞-categories Prκ ' Catκ-small, by [Lur09, Proposition 5.5.7.10]. Similarly, for every integer m,
let Catm-fin ⊂ Cat∞ be the (non-full) subcategory of∞-categories that admit m-finite colimits and
functors preserving them. By [Har20, Propoistion 5.26], the∞-category Catm-fin is m-semiadditive.
Recall from [Lur09, §5.3.6], the functor

Pκ-small
m-fin : Catm-fin −! Catκ-small,

which adds formally κ-small colimits while fixing the m-finite ones. This functor preserves all small,
and in particular m-finite, colimits by [Lur09, Corollary 5.3.6.10]. Moreover, by [Lur, Remark
4.8.1.8], it is also symmetric monoidal with respect to the canonical symmetric monoidal structures
on the source and target, which preserve colimits in each coordinate by [Lur, Remark 4.8.1.6]. Thus,
by [CSY22, Corollary 3.3.2], the ∞-category Catκ-small ' Prκ is m-semiadditive as well.

Corollary 5.3. For every n ≥ 2 and C ∈ AlgEn(Pr), the ∞-category ModC is ∞-semiadditive.

Proof. Let κ be the cardinal for which ModC = ModC (Prκ). By Proposition 5.2, the ∞-category
Prκ is ∞-semiadditive. Therefore, the claim follows from [CSY22, Corollary 3.3.2], applied to the
monoidal functor

C ⊗ (−) : Prκ −! ModC (Prκ).
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Affineness revisited

By [Lur, §4.8.5 and §5.3.2], for every 1 ≤ n ≤ ∞ and a presentably En-monoidal ∞-category C ,
we have a monoidal, fully faithful embedding

Mod(−) : AlgEn(C ) ↪! AlgEn−1(ModC ),

taking an En algebra R in C to the ∞-category of left modules ModR in C . Furthermore, Mod(−)
admits a right adjoint, which takes an En−1-monoidal C -linear∞-category D to the endomorphism
object of the unit End(1D) ∈ AlgEn(C ). We shall reserve a special notation for the value of this
right adjoint on morphisms.

Notation 5.4. For C ∈ AlgEn(Pr) and F : D ! E in AlgEn−1(ModC ), we denote by

F d : End(1D)! End(1E ) ∈ AlgEn(C )

the map induced by F between the endomorphism objects of the units of D and E , and refer to it
as the decategorifcation of F .

Remark 5.5. By [Lur, Proposition 4.8.5.1], the functor Mod(−) is compatible with base-change in
the sense that for every C ! D in AlgEn(Pr), we have a commutative square

AlgEn(C ) AlgEn−1(ModC )

AlgEn(D) AlgEn−1(ModD).

Mod(−)

Mod(−)

Specializing the above discussion to n = 2, we can characterize the essential image of Mod(−) in
terms of the affineness.

Proposition 5.6. Let C ∈ AlgE2(Pr). An ∞-category D ∈ AlgE1(ModC ) belongs to the essential
image of the functor

Mod(−) : AlgE2(C )! AlgE1(ModC ),

if and only if the unit functor u∗ : C ! D is affine.

Proof. Since Mod(−) is fully faithful, D belongs to its essential image if and only if the counit map
ModEnd(1D)(C )! D is an isomorphism. Moreover, we have

End(1D) ' hom(1D ,1D) ' hom(u∗1C ,1D) ' hom(1C , u∗1D) ' u∗1D

and the above counit map identifies with u] : Modu∗1D (C )! D . Thus, the claim follows from the
very definition of affineness.

The above characterisation of module categories has an immediate consequence for detecting equiv-
alences of C -linear ∞-categories.
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Proposition 5.7. Let C ∈ AlgE2(Pr) and let F : D ! E in AlgE1(ModC ), such that the unit
functors C ! D and C ! E are affine. Then, F is an equivalence if and only if the map

F d : End(1D)! End(1E ) ∈ AlgE2(C )

is an isomorphism.

Proof. By Proposition 5.6, the∞-categories D and E are in the essential image of the fully faithful
embedding Mod(−) : AlgE2(C ) ↪! AlgE1(ModC ). Hence, F is an equivalence if and only if its image
under the right adjoint of Mod(−) is an equivalence. Finally, this right adjoint is given by taking
the endomorphism object of the unit and takes F to F d.

We conclude this subsection by comparing affineness with respect to C and affineness with respect
to ModC .

Proposition 5.8. Let C ∈ CAlg(Pr) and let A be a π-finite C -ambidextrous space. If A and ΩaA,
for every a ∈ A, are C -affine, then A is ModC -affine.

Proof. By Corollary 5.3, the space A is ModC -ambidextrous, and so by Theorem 2.38, it would
suffice to show that for every a, b ∈ A, the square

ModAC //

��

ModC

��
ModC

// Mod{a}×A{b}C

(∗)

is a relative tensor square in AlgE1(ModC ). Now, the space A is C -affine by assumption and the
space {a} ×A {b} is either empty or isomorphic to ΩaA, and hence C -affine as well. Since pt is
obviously C -affine, we can identify the square (∗) with the image under the functor

Mod(−) : CAlg(C )! CAlg(ModC )

of the square
1A //

��

1

��
1 // 1{a}×A{b}.

(∗∗)

Since Mod(−) is colimit preserving, and relative tensor squares of commutative algebras are pushout
squares, Mod(−) takes relative tensor squares in CAlg(C ) to relative tensor squares in CAlg(ModC ).
Thus, it would suffice to show that (∗∗) is a relative tensor square. Since, by our assumption, A is
C -affine, this follows again from Theorem 2.38.

5.2 The categorical Fourier transform

In this subsection, we compare the Fourier transform for a presentably symmetric monoidal ∞-
category C , with the Fourier transform for its categorification ModC .
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Looping pre-orientations

We begin with the observation that height n pre-orientations for C are essentially the same thing as
height n+ 1 pre-orientations for ModC . More precisely, for R ∈ CAlg(Spcn

(p)), an R-pre-orientation
of height n+ 1 for ModC is a map

ω : I(n+1)
p R −! C× =: pic(C ),

where pic(C ) is the Picard spectrum of C , consisting of ⊗-invertible objects. By applying the
functor Ω: Spcn ! Spcn to ω, we get a morphism

Ωω : I(n)
p R ' ΩI(n+1)

p R −! Ωpic(C ) = 1×C ,

which we can view as an R-pre-orientation of C of height n. Under the (natural) assumption that
R is n-truncated, taking loops provides an isomorphism between POr(n+1)

R (ModC ) and POr(n)
R (C ).

Proposition 5.9. Let C ∈ CAlg(Pr) and let R ∈ CAlg(Spcn
(p)). If R is n-truncated, we get an

isomorphism of spaces
Ω: POr(n+1)

R (ModC ) ∼−−! POr(n)
R (C ).

Proof. Since R is n-truncated we get π0(I(n+1)
p R) = 0. Consequently, for every M ∈ Spcn,

MapSpcn(I(n+1)
p R,M) ' MapSpcn(I(n+1)

p R, τ≥1M) ' MapSpcn(I(n)
p R,ΩM).

The result follows by taking M = pic(C ).

Categorical group algebras

Given ω ∈ POr(n+1)
R (ModC ), we get for every M ∈ Mod[0,n+1]-fin

R the categorical Fourier transform:

Fω : C [M ] −! C bI
(n+1)
p Mc ∈ CAlg(ModC ).

The range is the functor category Fun(bI(n+1)
p Mc,C ) endowed with the pointwise symmetric

monoidal structure. We shall now show that the domain, i.e., the categorical group algebra C [M ],
is also the functor category Fun(bMc,C ), albeit with the Day convolution symmetric monoidal
structure. That is, the categorical Fourier transform is a C -linear, colimit preserving symmetric
monoidal functor

Fω : Fun(bMc,C )Day −! Fun(bI(n+1)
p Mc,C )Ptw,

where the subscripts ‘Day’ and ‘Ptw’ stand for the Day convolution and pointwise symmetric
monoidal structures respectively.

Proposition 5.10. For every C ∈ CAlg(Pr) and M ∈ Spcn, we have a natural isomorphism

C [M ] ' Fun(bMc,C )Day ∈ CAlg(ModC ).

Proof. On the one hand,

C [M ] ' C ⊗ S[M ] ∈ CAlg(ModC ),
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and on the other, by [MS21, Proposition 3.10],

Fun(bMc,C )Day ' C ⊗ Fun(bMc,S)Day ∈ CAlg(ModC ).

Thus, the general case follows from the case C = S. It remains to show that the functor

Fun(b−c,S)Day : Spcn −! CAlg(Pr)

is left adjoint to the functor
(−)× = pic : CAlg(Pr)! Spcn.

By [Hin21], for every D ∈ CAlg(Pr), we have

MapCAlg(Pr)(Fun(bMc,S)Day,D) ' MapCAlg(Ĉat∞)(bMc,D).

Since as a symmetric monoidal ∞-category, bMc is an ∞-groupoid with all objects ⊗-invertible,
we have

MapCAlg(Ĉat∞)(bMc,D) ' MapSpcn(M,pic(D)).

The claim follows by stringing together the two isomorphisms above.

WhenM is connected, we can also identify the categorical group algebra C [M ] with the∞-category
Mod1C [ΩM ](C ) of modules over the ordinary group algebra of ΩM in C (as symmetric monoidal
∞-categories).

Proposition 5.11. For every C ∈ CAlg(Pr) and a connected M ∈ Spcn, we have a natural
isomorphism

C [M ] ' Mod1[ΩM ](C ) ∈ CAlg(ModC ).

Proof. We shall show that both objects co-represent naturally isomorphic functors from ModC into
S. For every D ∈ ModC we have a natural isomorphism

MapCAlg(ModC )(C [M ],D) ' MapSpcn(M,pic(D)).

Since M is connected we have a natural isomorphism

MapSpcn(M, pic(D)) ' MapSpcn(ΩM,Ωpic(D)) ' MapSpcn(ΩM,1×D).

On the other hand, we have

MapCAlg(ModC )(Mod1C [ΩM ](C ),D) ' MapCAlg(C )(1C [ΩM ],End(1D)) ' MapSpcn(ΩM,1×D).

Thus, both C [M ] and Mod1C [ΩM ](C ) co-represent the functor MapSpcn(ΩM,1×(−)) and hence iso-
morphic by the Yoneda lemma.

Remark 5.12. The isomorphism provided by the proof of Proposition 5.11 can be succinctly
summarized as follows. The object C [M ] corepresents mapsM ! pic(−) and the object Mod1C [ΩM ]
co-represents maps ΩM ! 1×(−). When M is connected, the two types of data are equivalent by
taking Ω and using the identification 1× ' Ω pic.
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Decategorifying the Fourier transform

We shall now explain how the Fourier transform for C is essentially the decategorification of the
Fourier transform for ModC . Given ω ∈ POr(n+1)

R (C ) and M ∈ Mod[0,n+1]
R , the categorical Fourier

transform decategorifies to a natural transformation

Fd
ω : End(1C [M ]) −! End(1

C
bI(n+1)
p Mc) ∈ CAlg(C ).

We now interpret the source and target in terms of familiar commutative algebras. First, we have,

End(1
C
bI(n+1)
p Mc) ' 1bI

(n+1)
p Mc ∈ CAlg(C ).

And second, when M is connected, we have by Proposition 5.11,

End(1C [M ]) ' 1[ΩM ] ∈ CAlg(C ).4

Furthermore, for every M ∈ Mod[0,n]
R , we also have a natural isomorphism

I(n+1)
p (ΣM) = homcn(ΣM, I(n+1)

p R) ' homcn(M,Ω(I(n+1)
p R)) ' homcn(M, I(n)

p R) = I(n)
p M.

Using these isomorphisms we have the following:

Proposition 5.13. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)) and let ω ∈ POr(n+1)

R (ModC ). The
following diagram of functors Mod[0,n]

R ! CAlg(C ) commutes:

1[M ] 1bI
(n)
p Mc

1[ΩΣM ] 1bI
(n+1)
p (ΣM)c.

o o

FΩω

Fd
ω

Proof. By Proposition 3.10, it suffices to show that the pre-orientation I(n)
p R! 1× associated with

the path down–right–up is also Ωω. This follows from Proposition 5.11 and Remark 5.12

5.3 Orientations and categorification

For every C ∈ CAlg(Pr), we have constructed a map

Ω: POr(n+1)
R (ModC ) −! POr(n)

R (C )

between the respective spaces of R-pre-orientations. Both the domain and the range have distin-
guished subspaces consisting of the R-orientations. We shall now show that in the higher semiad-
ditive setting these are preserved and detected by Ω.

Proposition 5.14. Let C ∈ CAlg(Pr), let R ∈ CAlg(Spcn
(p)) and let ω ∈ POr(n+1)

R (ModC ). For
every M ∈ Mod[0,n]-fin

R , if ΣM is ω-oriented, then M is Ωω-oriented. The converse holds if bI(n)
p Mc

is C -affine.
4In fact, it can be easily deduced that this isomorphism also holds without the assumption that M is connected.
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Proof. By Proposition 5.13, FΩω is an isomorphism at M if and only if Fd
ω is an isomorphism at

ΣM . Now, Fd
ω is an isomorphism at ΣM , if Fω is an isomorphism at ΣM and the converse holds

if the source and target of
Fω : C [ΣM ] −! C bI

(n+1)
p (ΣM)c

have affine units (Proposition 5.7). For the source, since ΣM is connected, the unit C ! C [ΣM ]
is affine by Proposition 5.11 and Proposition 5.6. For the target, by assumption, the space
bI(n+1)
p (ΣM)c ' bI(n)

p Mc is C -affine, and hence the unit C ! C bI
(n+1)
p (ΣM)c is affine.

Theorem 5.15. Let C ∈ CAlg(Pr⊕-(n+1)), let R ∈ CAlg(Spcn
(p)) and let ω ∈ POr(n+1)

R (ModC ).
Then, ω is an orientation of ModC if and only if Ωω is an orientation of C .

Proof. By Proposition 5.14, if ω is an orientation on ModC , then Ωω is an orientation on C .
Conversely, assume that ω is an orientation on C . We first observe that by Proposition 4.30, for
every M ∈ Mod[0,n]-fin

R , the space bI(n)
p Mc is C -affine, and hence by Proposition 5.14 again, ΣM

is ω-oriented. In other words, we get that all 1-connective N ∈ Mod[1,n+1]-fin
R are ω-oriented. By

Proposition 4.9, ω-oriented modules are closed under the operation M 7! I
(n+1)
p M = N , and hence

also all M ∈ Mod[0,n]-fin
R are ω-oriented. Finally, for a general M ∈ Mod[0,n+1]-fin

R , we have an exact
sequence

τ≥1M !M ! τ≤0M ∈ Mod[0,n+1]-fin
R .

The modules τ≥1M and τ≤0M are ω-oriented by the above. Moreover, the finite set bτ≤0Mc is
ModC -affine, as ModC is 0-semiadditive (Example 2.35). We conclude by Proposition 4.12 that M
is ω-oriented.

Corollary 5.16. Let C ∈ CAlg(Pr⊕-(n+1)) and let R ∈ CAlg(Spcn
(p)). If R is n-truncated, we get

an isomorphism of spaces
Ω: Or(n+1)

R (ModC ) ∼−−! Or(n)
R (C ).

In particular, C is (R, n)-orientable if and only if ModC is (R, n+ 1)-orientable.

Proof. By Theorem 5.15, the analogous isomorphism of the corresponding spaces of pre-orientations,
provided by Proposition 5.9, restricts to an isomorphism between the subspaces of orientations. In
particular, the domain is non-empty if and only if the range is non-empty.

When C is (R, n)-orientable, we get for every M ∈ Mod[0,n+1]-fin
R an equivalence of C -linear pre-

sentable symmetric monoidal ∞-categories

Fω : Fun(bMc,C )Day
∼−−! Fun(bI(n+1)

p Mc,C )Ptw.

By Proposition 5.13, we recover the ordinary Fourier transform at M ∈ Mod[0,n]-fin
R ,

FΩω : 1[M ] ∼−−! 1bI
(n)
p Mc,

by applying the functor End(1(−)) to Fω at ΣM . However, in the oriented case, we can also go the
other way around. By Proposition 5.11, we have

Fun(bΣMc,C )Day ' Mod1[M ](C ),

63



and by Proposition 4.30, the space bI(n)
p Mc is C -affine, so that we have

Fun(bI(n)
p Mc,C )Ptw ' Mod

1
bI(n)
p Mc(C ).

Thus, the categorical Fourier transform Fω at ΣM can be recovered from the ordinary Fourier
transform FΩω at M by applying the functor Mod(−)(C ).

Remark 5.17. To be precise, the above procedure recovers Fω at ΣM from FΩω at M only as an
equivalence of plain (C -linear)∞-categories. The equivalence as symmetric monoidal ∞-categories
can be deduced from the fact that FΩω is an isomorphism of Hopf algebras (Corollary 3.31), though
we shall not prove nor use this.

In contrast, for non-connected modules M ∈ Mod[0,n+1]-fin
R , the categorical Fourier transform pro-

vides some new information.

Example 5.18. When M is discrete (i.e., a finite abelian group), the inverse of the categorical
Fourier transform at its Pontryagin dual M∗ assumes the form

F−1
ω : CBn+1M ∼−−!

∏
ϕ∈M∗

C .

This should be thought of as providing a decomposition of every C -valued representation of the
group ΩBn+1M = BnM into a sum of characters. For R = Z/pr and height n = 0, this reproduces
the Fourier transform considered in [CSY21b, Definition 3.12].

Another consequence of Corollary 5.16 is that the categorical R-cyclotomic extension is simply the
∞-category of modules over the usual R-cyclotomic extension.

Corollary 5.19. Let C ∈ CAlg(Pr⊕-(n+1)) and let R ∈ CAlg(Spcn
(p)) be n-truncated. We have a

natural isomorphism

C [ω(n+1)
R ] ' Mod

1[ω(n)
R

](C ) ∈ CAlg(ModC ).

Proof. Since R is n-truncated, I(n)
p R is connected and hence by Proposition 5.11, we have an

isomorphism
C [I(n+1)

p R] ' Mod
1[I(n)

p R](C ) ∈ CAlg(ModC ).

This isomorphism corresponds the natural isomorphism of the associated co-represntable functors

Ω: POr(n+1)
R (D ; ModC ) ∼−−! POr(n)

R (End(1D); C )

for D ∈ CAlg(ModC ). Corollary 5.16 implies that the above isomorphism restrict to an isomorphism
between the corresponding subspaces of orientations, when D = C . However, by base-changing
from C to D , this implies that the same holds for an arbitrary D ∈ CAlg(ModC ). From this we
deduce the isomorphism in the claim as these are the objects co-representing the corresponding
subspaces of orientations.
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6 Orientations for Thickenings of Fp
In the definition of an R-orientation of height n of an ∞-category C , the main role of the ring
spectrum R is to determine which objects of Sp[0,n]-fin admit a Fourier transform, namely those
admitting an R-module structure. It is natural to restrict attention to the subcategory of local
rings R with residue field Fp and strict maps in the sense of Definition 4.35. The minimal choice
R = Fp, i.e., the terminal object, gives rise to a Fourier transform for Fp-vector spaces. The
maximal choice R = S(p), i.e., the initial object, gives rise to a Fourier transform for all p-local
spectra. In between, we also have the finite rings Z/pr, the p-local integers Z(p), and the Postnikov
truncations of the p-local sphere τ≤dS(p). In this section, we study these particular cases, their
special features, interrelations and implications.

6.1 Fp-Orientations and affineness

We start with the minimal case R = Fp and show that virtual (Fp, n)-orientability already has
several significant consequences.

Semiadditive height

To begin with, in the definition of a pre-orientation the height was a free parameter. However, in
the higher semiadditive setting, if the pre-orientation is an orientation, then its height is strongly
constrained by the higher semiadditive structure of the ∞-category.

Proposition 6.1. Let C ∈ CAlg(Pr⊕-∞). If C is virtually (Fp, n)-orientable, then C is of semi-
additive height n at p.

Proof. First, by Proposition 4.30, the spaces BkCp = bΣkCpc are C -affine for all k = 0, . . . , n.
Hence, by Proposition 2.40(3), C is of height ≥ n at p. To show that C is also of height ≤ n
at p, it would suffice, by [CSY21a, Proposition 3.2.1], to show that 1[Σn+1Cp] ' 1 ∈ CAlg(C ).
Furthermore, it suffices to show this after extending scalars along a faithful commutative alge-
bra, so without loss of generality, we may assume that C is itself is (Fp, n)-orientable. Now, the
commutative algebra 1[Σn+1Cp] is the pushout of the following diagram

1
ε

 −−−− 1[ΣnCp]
ε

−−−−! 1.

Applying the Fourier transform associated to any Fp-orientation of height n of C , we get that
1[Σn+1Cp] is also the pushout of the isomorphic diagram

1
ev0 −−−−−− 1bCpc

ev0−−−−−−! 1.

Finally, since bCpc is C -affine (see Example 2.35), by Theorem 2.38, we have

1[Σn+1Cp] ' 1⊗1bCpc 1 ' 1ΩbCpc ' 1.
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Affineness for p-spaces

Virtual (Fp, n)-orientability also implies the affineness (and non-affineness) of a large class of spaces.

Theorem 6.2. Let C ∈ CAlg(Pr⊕-∞) be non-zero and virtually (Fp, n)-orientable. A π-finite
p-space A is C -affine if and only if πn+1(A, a) = 0 for all a : pt! A.

Proof. By Proposition 2.18, the collection of C -affine spaces is closed under extensions. That
is, given a map of spaces f : B ! B′, if B′ and all the fibers of f are C -affine, then so is B.
Combined with Example 2.35, we are reduced to considering only connected A. Now, assuming
that πn+1(A, a) = 0, the Postnikov tower of A can be refined to a tower

A = τ≤rA −! τ≤r−1A −! . . . −! τ≤0A ' pt,

in which the fiber of each map is of the form BkCp for k 6= n+1. By Proposition 6.1, we get that C
is of height n at p. Therefore, for k ≥ n+ 2, the spaces BkCp are C -affine by Proposition 2.40(1).
For k ≤ n, the spaces BkCp = bΣkCpc are C -affine by Proposition 4.30. Thus, by Proposition 2.18
again, we conclude that A is C -affine.
Conversely, by Proposition 6.1, C is of height n at p and hence by [CSY21a, Proposition 3.2.3], we
have CA ' C τ≤n+1A. We can thus assume without loss of generality that A is (n+1)-finite. Hence,
if πn+1A 6= 0, then by refining the Postnikov tower of A as above, we have a fiber sequence

Bn+1Cp −! A −! B,

with B also (n + 1)-finite. In particular, ΩB, being n-finite, is C -affine by Theorem 6.2. Thus, if
A were C -affine, by applying Proposition 2.18(2) to the map Bn+1Cp ! A, we would deduce that
Bn+1Cp is C -affine, contradicting Proposition 2.40(2).

Remark 6.3. In Theorem 6.2, if C is further assumed to be p-local, as is often the case (e.g., if
C is stable and n ≥ 1), then the collection of C -affine spaces includes the larger class of π-finite
spaces A, such that for every a : pt! A,

(1) π1(A, a) is a p-group,

(2) πn+1(A, a) is of order prime to p.

The proof proceeds by the exact same argument as in the proof of Theorem 6.2, with the additional
ingredient that for every prime ` 6= p, the spaces BkC` are C -affine for all k ≥ 2. Indeed, if C is
p-local, then it is of semiadditive height 0 at `, so the said claim follows again from Proposition 2.40.

Bootstrapping virtual orientability

By Corollary 4.42, for every local ring spectrum R with residue field Fp, virtual (R, n)-orientability
implies virtual (Fp, n)-orientability. Conversely, we have the following bootstrap result:

Proposition 6.4. Let C ∈ CAlg(Pr⊕-∞) and let R! S be a strict map of local rings (in the sense
of Definition 4.35) with residue field Fp, such that:

(1) Its fiber is π-finite.
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(2) It is surjective on π0 and πn.

Then, C is virtually (R, n)-orientable if and only if it is virtually (S, n)-orientable.

Proof. By Corollary 4.42, if C is virtually (R, n)-orientable, then it is virtually (S, n)-orientable,
so we only need to prove the converse. By Proposition 4.24, we need to show that 1[ω(n)

R ] is faithful
under the assumption that 1[ω(n)

S ] is faithful. Using Corollary 4.42 for the map S! Fp, we deduce
that C is virtually (Fp, n)-orientable. Moreover, since 1[ω(n)

Fp ] is faithful (again, by Proposition 4.24),
it suffices to show that 1[ω(n)

R ]⊗ 1[ω(n)
Fp ] is faithful, so we can replace C with the (Fp, n)-orientable

∞-category of 1[ω(n)
Fp ]-modules in C . In other words, we can assume without loss of generality that

C itself is (Fp, n)-orientable.
We shall say that a map A ! B in CAlg(C ) is faithful, if the functor B ⊗A − : ModA ! ModB
is conservative. In particular, A is faithful if the unit map 1 ! A is faithful. Since faithful maps
are clearly closed under composition, and 1[ω(n)

S ] is faithful by assumption, it suffices to show that
the map 1[ω(n)

S ]! 1[ω(n)
R ] is faithful. By Proposition 4.41, the map R! S induces the following

pushout square in CAlg(C ):
1[I(n)

p S] 1[I(n)
p R]

1[ω(n)
S ] 1[ω(n)

R ].

It is easy to see that faithful maps are also closed under cobase-change, so it actually suffices to
show that the map 1[I(n)

p S]! 1[I(n)
p R] is faithful. By Remark 3.4, we may assume without loss of

generality that bothR andS are n-truncated, in addition to being connective. The assumption that
R! S is surjective on π0 and πn implies that I(n)

p S! I
(n)
p R is a map of connective n-truncated

spectra, which is injective on πn and π0.
We shall prove, more generally, that for every map of n-truncated connective spectra f : M ! N ,
such that,

(1) the fiber of f is p-local and π-finite, and

(2) f is injective on π0 and πn,

the induced map 1[M ] ! 1[N ] is faithful. The first stage of the relative Postnikov tower factors
f as M ! N0 ! N , where M ! N0 is a surjection on π0 and N0 ! N is an injection on π0 and
an isomorphism on πk for k ≥ 1. It follows that 1[N ] is a free 1[N0]-module and hence the map
1[N0]! 1[N ] is faithful. It thus remains to show that the map 1[M ]! 1[N0] is faithful. Since f
is an injection on π0, it follows that M ! N0 is in fact an isomorphism on π0. In other words, we
can assume without loss of generality that f itself is an isomorphism on π0. Consequently, the fiber
of f is connective. Moreover, since M and N are n-truncated and f is injective on πn, the fiber of
f is also (n− 1)-truncated. Therefore, by refining the Postnikov tower of f , we get a tower

M = M0 −!M1 −! . . . −!Mk = N
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of connective n-truncated spectra, where the fiber of each map Mi !Mi+1 is isomorphic to ΣdCp
for some 0 ≤ d ≤ n− 1. Since faithful maps are closed under composition, we can assume without
loss of generality that the fiber of f itself is of this form. Now, the exact sequence

ΣdCp −!M −! N

induces a a pushout square in CAlg(C ),

1[ΣdCp] 1

1[M ] 1[N ].

ε

By the same consideration as above, it would suffice to show that the map 1[ΣdCp]
ε
−−! 1 is faithful.

Applying the Fourier transform associated with any Fp-orientation of C , this map identifies, by
Proposition 3.15, with

1B
n−dCp ' 1bΣ

n−dCpc eve−−−! 1

for e : pt! Bn−dCp the base point. Finally, by Proposition 4.30, the space Bn−dCp is C -affine and
so the functor

1⊗
1B

n−dCp (−) : Mod
1B

n−dCp (C ) −! C

identifies, by Corollary 2.17, with
e∗ : CBn−dCp −! C ,

which is conservative because n− d ≥ 1 and hence Bn−dCp is connected.

In particular, virtual (Fp, n)-orientability bootstraps to (R, n)-orientability for a large class of ring
spectra R.

Corollary 6.5. If C ∈ CAlg(Pr⊕-∞) is virtually (Fp, n)-orientable, then it is virtually (R, n)-
orientable for every π-finite local ring spectrum R with residue field Fp (e.g., R = Z/pr).

Proof. Apply Proposition 6.4 to the map R! Fp.

6.2 Z/pr-Orientations and higher roots of unity

Higher roots of unity

We now turn to the case R = Z/pr for some r ∈ N. Since the shifted Brown–Comenetz dual of
Z/pr is given by

I(n)
p (Z/pr) ' ΣnZ/pr ∈ Spcn,

a Z/pr-pre-orientation of height n of C is the same thing as a pr-th root of unity of height n in
1C , in the sense of [CSY21b, Definition 4.2] (see Example 3.7). To compare the theory developed
in this paper with the one in [CSY21b], we shall further assume that C is stable. At height n = 0,
a Z/pr-pre-orientation is an orientation if and only if the corresponding root of unity is primitive.
At higher heights the situation is in general more subtle, but this does continue to hold under the
assumption that C is virtually (Fp, n)-orientable. More precisely, we have the following:
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Proposition 6.6. Let C ∈ CAlg(Pr⊕-∞
st ) and let ω : ΣnZ/pr ! 1×. If ω is an orientation, then it

is a primitive pr-th root of unity. The converse holds if C is virtually (Fp, n)-orientable.

Proof. Assume that ω is an orientation. First, by Proposition 6.1, C is of height n at p. Second,
it follows by Proposition 4.5, that for every commutative algebra S ∈ CAlg(C ), the composition
ΣnZ/pr ω

−! 1× ! S×, which we denote by ωS , is an orientation on S. Now, if

ωp
r−1

S = 1 ∈ µ
(n)
pr (S),

then we have a commutative triangle in CAlg(C ),

S[Cpr ] SB
nCpr

S.

F
ω
pr−1
S

ε0

But then, by Proposition 3.22, the map S[Cpr ]
pr−1

−−−! S[Cpr ] factors through the augmentation
S[Cpr ]

ε0−−! S, which implies S = 0.
Conversely, assume that ω is primitive and that C is virtually (Fp, n)-orientable. By Corollary 6.5,
C is virtually (Z/pr, n)-orientable and since we can check that ω is an orientation after a faithful
extension of scalars, we can in fact assume without loss of generality that C is (Z/pr, n)-orientable.
Choose some ζ ∈ Or(n)

Z/pr (C ) and consider the composition

1Z/pr F−1
ζ
−−−! 1[ΣnZ/pr] εω−−−! 1.

This map is represented by a sequence of orthogonal idempotents e0, . . . , epr−1 ∈ π0(1), with the
property e0 + · · ·+ epr−1 = 1. Thus, we get a decomposition

1 ' 1[e−1
0 ]× · · · × 1[e−1

pr−1] ∈ CAlg(C ).

Since the subfunctor
Or(n)

Z/pr (−; C ) ⊆ POr(n)
Z/pr (−; C )

is co-representable, it preserves products. It therefore suffices to show that each of the compositions

1[ΣnZ/pr] εω−−! 1
πj
−−! 1[e−1

j ],

for j = 0, . . . , pr − 1, corresponds to an orientation. We observe that by Proposition 3.22, for each
such j, we have

πj(ω) = πj(ζj) ∈ µ
(n)
pr (1[e−1

j ]).
If j is divisible by p, then

πj(ω)p
r−1

= πj(ωp
r−1

) = πj(ζj·p
r−1

) = πj(1) = 1.

By the primitivity of j, we get that 1[e−1
j ] = 0 and hence πj(ω) is trivially an orientation. For j

that is not divisible by p, the induced map 1[ΣnZ/pr] j
−! 1[ΣnZ/pr] is an isomorphism and hence

ζj is an orientation. Consequently, πj(ω) = πj(ζj) is an orientation as well.
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Higher cyclotomic extensions

In Proposition 4.18, we have shown that Z/pr-orientations of height n are classified by a certain
commutative algebra called 1[ω(n)

Z/pr ], which was constructed in a rather indirect manner. In con-
trast, primitive pr-th roots of unity of height n are classified by the higher cyclotomic extension
1[ω(n)

pr ], which was constructed in [CSY21b, Definition 4.7] by a fairly explicit formula; namely, by
splitting a certain idempotent in the group algebra 1[ΣnZ/pr]. As a consequence of Proposition 6.6
these two algebras coincide under the assumption of virtual (Fp, n)-orientability.

Corollary 6.7. Let C ∈ CAlg(Pr⊕-∞
st ) be virtually (Fp, n)-orientable. For every r ∈ N,

1[ω(n)
Z/pr ] ' 1[ω(n)

pr ] ∈ CAlg(C ).

Proof. By Proposition 6.6, both objects co-represent the same subfunctor of

POr(n)
R (−; C ) : CAlg(C ) −! S.

Hence, the claim follows from the Yoneda lemma.

Using higher cyclotomic extensions and the comparison between higher roots of unity and orienta-
tions, we can also show that nil-conservative functors detect virtual (Fp, n)-orientability. We first
need a lemma regarding the functoriality of primitive roots of unity.

Lemma 6.8. Let F : C ! D in CAlg(Pr⊕-∞
st ). For every R ∈ CAlg(C ) of height n at p, the induced

map µ(n)
pr (R)! µ

(n)
pr (F (R)) takes primitive roots to primitive roots.

Proof. Using the adjunction
1C [−] : Spcn � CAlg(C ) : (−)×,

a root ω : 1C [ΣnCpr ]! R is primitive if and only if

1C [ΣnCpr−1 ]⊗1C [ΣnCpr ] R ' 0.

Since F is symmetric monoidal and colimit preserving, applying F to the left hand side we obtain

1D [ΣnCpr−1 ]⊗1D [ΣnCpr ] F (R),

which is zero if and only if F (ω) is primitive.

Proposition 6.9. Let F : C ! D in CAlg(Pr⊕-∞
st ) be nil-conservative. If D is virtually (Fp, n)-

orientable, then so is C .

Proof. First, by Proposition 6.1, D is of height n at p and therefore so is C , by [CSY21a, Proposition
4.4.2]. It follows that we can consider 1C [ω(n)

p ] ∈ CAlg(C ), the p-th cyclotomic extension of height
n in C . By [CSY21b, Proposition 4.9(2)], the commutative algebra 1C [ω(n)

p ] is faithful, hence if we
show that it is (Fp, n)-orientable, the claim will follow. Consider the tautological Fp-pre-orientation,
i.e., root of unity, ω : ΣnFp ! 1C [ω(n)

p ]×. Since F is nil-conservative, by Proposition 4.7, for ω to
be an orientation it suffices that F (ω) : ΣnFp ! 1D [ω(n)

p ]× is an orientation. Since ω is a primitive
root of unity, by Lemma 6.8 so is F (ω), which is therefore an orientation by Proposition 6.6.

70



Remark 6.10. In fact, under the assumptions of Corollary 6.7, one can write an “explicit formula”
for 1[ω(n)

R ], for any local ring spectrum R with residue field Fp. Indeed, let εp ∈ π0(1[ΣnFp]) be
the idempotent for which 1[ω(n)

p ] ' 1[ΣnFp][ε−1
p ] and denote by εR ∈ π0(1[I(n)

p R]) its image under
the map 1[ΣnFp] ' 1[I(n)

p Fp]! 1[I(n)
p R]. By Proposition 4.41, we have

1[ω(n)
R ] ' 1[I(n)

p R]⊗
1[I(n)

p Fp] 1[ω(n)
Fp ] ' 1[I(n)

p R]⊗1[ΣnFp] 1[ΣnFp][ε−1
p ] ' 1[I(n)

p R][ε−1
R ].

The results above show also that virtual (Fp, n)-orientability implies that the higher cyclotomic
extensions are Galois.

Proposition 6.11. Let C ∈ CAlg(Pr⊕-∞
st ) be virtually (Fp, n)-orientable. For every r ∈ N, the

cyclotomic extension 1[ω(n)
pr ] is faithful (Z/pr)×-Galois.

Proof. By Corollary 6.7, we have 1[ω(n)
pr ] ' 1[ω(n)

Z/pr ]. By Corollary 6.5, C is virtually (Z/pr, n)-
orientable, so 1[ω(n)

Z/pr ] is faithful by Proposition 4.24. Thus, the claim follows from Proposition 4.22.

Warning 6.12. For a general, non virtually (Fp, n)-orientable, C ∈ CAlg(Pr⊕-∞st ), it may happen
that 1[ω(n)

pr ] fails to be Galois. In particular, it is possible that 1[ω(n)
Z/pr ] 6' 1[ω(n)

pr ], and so that
a primitive root of unity fails to be an orientation. This occurs in some examples constructed by
Allen Yuan using the Segal conjecture, see [Yua22].

We have shown that a virtually (Fp, n)-orientable C ∈ CAlg(Pr⊕-∞st ) enjoys the following two,
seemingly unrelated, properties:

(1) All the higher cyclotomic extensions 1[ω(n)
pr ] are (Z/pr)×-Galois (Proposition 6.11).

(2) All n-finite p-spaces are C -affine (Theorem 6.2).

However, taken together, they turn out to characterize virtual (Fp, n)-orientability in the stable
setting. In fact, the converse implication requires only the following a priori weaker versions of the
above two properties:

Proposition 6.13. Let C ∈ CAlg(Pr⊕-∞
st ) be of height n at p. Then C is virtually (Fp, n)-orientable

if and only if the following holds:

(1) The higher cyclotomic extension 1[ω(n)
p ] is F×p -Galois.

(2) The spaces BkCp, for k = dn2 e+ 1, . . . , n, are C -affine.

Proof. As noted above, virtual (Fp, n)-orientability implies conditions (1) and (2) by Proposi-
tion 6.11 and Theorem 6.2 respectively, so it remains to prove the converse. Since C is 1-semiadditive
and 1[ω(n)

p ] is Galois, it is also faithful ([CSY21b, Remark 2.3] using [Rog08, Proposition 6.3.3]).
Thus, it will suffice to show that the canonical primitive p-th root of unity of height n of 1[ω(n)

p ]
is an Fp-orientation. Equivalently, by base-changing to 1[ω(n)

p ], it suffices to show that if C itself
admits a primitive p-th root of unity ω : 1[ω(n)

p ]! 1, then ω is an Fp-orientation. We will first use
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condition (1) to show that ΣnFp is an ω-oriented Fp-module and then use condition (2), and the
various closure properties of oriented modules, to deduce that all the modules in Mod[0,n]-fin

Fp are
ω-oriented.
Since 1[ω(n)

p ] is assumed to be Galois, the existence of the augmentation ω : 1[ω(n)
p ]! 1 implies that

it is split Galois. That is, we have an isomorphism 1[ω(n)
p ] ∼−−! 1F×p , which in the k-th coordinate

is given by ωk : 1[ω(n)
p ]! 1. Thus, we get the following composite isomorphism

1[ΣnFp] ∼−−! 1[ω(n)
p ]× 1 ∼−−! 1F×p × 1 ∼−−! 1bFpc.

Observing that the canonical augmentation 1[ΣnFp] ! 1 can be thought of as ω0, it follows by
Proposition 3.22, that the above isomorphism coincides with Fω at ΣnFp. In other words, the
module ΣnFp is ω-oriented.
Next, for each k = dn2 e+ 1, . . . , n, consider the exact sequence

Σk−1Fp −! 0 −! ΣkFp ∈ Mod[0,n]
Fp .

By assumption, BkCp = bΣkFpc is C -affine. Hence, by Proposition 4.12, if ΣkFp is ω-orientable,
then Σk−1Fp is ω-orientable as well. Thus, by descending induction starting form k = n, we get that
ΣkFp is ω-oriented for all k = dn2 e, . . . , n. Furthermore, by Proposition 4.9, if ΣkFp is ω-oriented,
then so is Σn−kFp ' I

(n)
p (ΣkFp). Therefore, ΣkFp is ω-oriented for all k = 0, . . . , n. Finally,

every object of Mod[0,n]-fin
Fp can be written as a finite direct sum of objects of the form ΣkFp for

k = 0, . . . , n. Thus, we deduce from the above and Proposition 4.10, that all such modules are
ω-oriented and hence that ω is an orientation.

Remark 6.14. Every C ∈ CAlg(Pr⊕-∞st ) of height n = 0 is virtually (Fp, 0)-orientable. At height
n = 1, condition (2) of Proposition 6.13 is vacuous. Hence, C is virtually (Fp, 1)-orientable if and
only if 1[ω(1)

p ] is Galois, which is however not always the case (see Warning 6.12). At heights n ≥ 2,
condition (2) is non-vacuous, but we don’t know whether it is implied by condition (1) or not.

6.3 Z(p)-Orientations

Z(p)-orientability

In this subsection, we shall consider orientations for the ring R = Z(p). We begin with the observa-
tion that, for every height, the data of a Z(p)-pre-orientation is nothing but a compatible sequence of
Z/pr-pre-orientations for all r ∈ N. The quotient maps Z(p) � Z/pr induce a system of compatible
maps I(n)

p Z/pr ! I
(n)
p Z(p).

Lemma 6.15. The assembly map lim−! I
(n)
p (Z/pr)! I

(n)
p Z(p) is an isomorphism, so that we have

I(n)
p Z(p) ' ΣnQp/Zp ∈ Spcn.

Proof. Under the identification I(n)
p (Z/pr) ' ΣnZ/pr, the tower of maps Z/pr+1 � Z/pr induces

the sequence of maps ΣnZ/pr ↪! ΣnZ/pr+1, whose colimit is ΣnQp/Zp. Since the canonical map

lim−! homAb(Z/pr,Qp/Zp) −! homAb(Z(p),Qp/Zp) = Qp/Zp
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is an isomorphism, the map lim−! I
(n)
p (Z/pr)! I

(n)
p Z(p) induces an isomorphism on homotopy groups

and is thus an isomorphism as well.

Remark 6.16. It might seem more natural to speak of Zp-(pre-)orientations, rather than Z(p)-
(pre-)orientations, but that would require us to take into account the p-adic topology of Zp in
the construction of the Pontryagin/Brown–Comenetz dual, which is a technical complication we
preferred to avoid. Namely, while the composition

lim−! homAb(Z/pr,Qp/Zp) −! homAb(Zp,Qp/Zp) −! homAb(Z(p),Qp/Zp)

is an isomorphism, the first map is merely an inclusion, which identifies the left hand side, and hence
homAb(Z(p),Qp/Zp), with the subgroup of continuous group homomorphisms Zp ! Qp/Zp. The
most adequate general framework appears to be that of commutative pro-[0, n]-finite ring spectra,
but it is outside the scope of this paper.

We deduce the corresponding statement for orientations.

Proposition 6.17. Let C ∈ CAlg(Pr⊕-∞). We have a canonical isomorphism

1[ω(n)
Z(p)

] ' lim−!1[ω(n)
Z/pr ] ∈ CAlg(C ).

Proof. By Lemma 6.15 and the fact that the group algebra functor preserves colimits, we have

1[I(n)
p Z(p)] ' lim−!1[I(n)

p (Z/pr)] ∈ CAlg(C ).

Thus, by applying Proposition 4.41 to Z(p) � Fp, we have

1[ω(n)
Z(p)

] ' 1[I(n)
p Z/p]⊗

1[I(n)
p Fp] 1[ω(n)

Fp ] '

(lim−!1[I(n)
p (Z/pr)])⊗

1[I(n)
p Fp] 1[ω(n)

Fp ] ' lim−! (1[I(n)
p (Z/pr)]⊗

1[I(n)
p Fp] 1[ω(n)

Fp ]).

Applying Proposition 4.41 to Z/pr � Fp, we get

1[I(n)
p (Z/pr)]⊗

1[I(n)
p Fp] 1[ω(n)

Fp ] ' 1[ω(n)
Z/pr ].

Combining this with the above we obtain the claimed isomorphism.

As in [CSY21b, Definition 4.10], we set

1[ω(n)
p∞ ] := lim−!1[ω(n)

pr ] ∈ CAlg(C ).

In the stable setting, we then obtain the following:

Corollary 6.18. Let C ∈ CAlg(Pr⊕-∞
st ) be virtually (Fp, n)-orientable. We have a canonical iso-

morphism
1[ω(n)

Z(p)
] ' 1[ω(n)

p∞ ] ∈ CAlg(C ).

Proof. The claim follows from the combination of Proposition 6.17 and Corollary 6.7.
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Virtual Z(p)-orientability

At height n = 0, Corollary 6.18 implies that if C is stable and virtually (Fp, 0)-orientable, then it is
also virtually (Z(p), 0)-orientable. Indeed, 1[ω(0)

Z(p)
] is then the ordinary infinite cyclotomic extension

1[ωp∞ ], which is always faithful (since, say, it has 1 as a retract). However, for higher heights n,
virtual (Fp, n)-orientability need not imply virtual (Z(p), n)-orientability, even in the stable setting.
Namely, even though each 1[ω(n)

pr ] is faithful, the filtered colimit 1[ω(n)
p∞ ] = lim−!1[ω(n)

pr ] may no
longer be. Nevertheless, there are still some general observations that can be made. Recall from
Definition 4.26, that the Bousfield localization of C with respect to 1[ω(n)

p∞ ] is denoted by ĈZ(p),n.
We shall show that this localization is smashing and identify its unit. The commutative algebra
1[ω(n)

p∞ ] is acted on by the group Z×p , whose torsion subgroup is

Tp =
{
Z/(p− 1) p is odd.
Z/2 p = 2.

Furthermore, using the p-adic logarithm we get an isomorphism Z×p ' Tp × Zp, which provides a
distinguished dense subgroup

G := Tp × Z ⊆ Tp × Zp ' Z×p .

Proposition 6.19. Let C ∈ CAlg(Pr⊕-∞
st ) be virtually (Fp, n)-orientable for some n ≥ 1. Then,

ĈZ(p),n is a smashing localization of C with unit 1[ω(n)
p∞ ]hG. In other words, the corresponding local-

ization functor L : C ! ĈZ(p),n is given by

L(X) = 1[ω(n)
p∞ ]hG ⊗X ∈ C .

Proof. We need to show that R := 1[ω(n)
p∞ ]hG is an idempotent algebra in the same Bousfield class

as 1[ω(n)
p∞ ]. We first observe that since C is both ∞-semiadditive and stable, we have

(−)hTp ' (−)hTp and (−)hZ ' Σ−1(−)hZ,

hence the operation (−)hG ' ((−)hTp)hZ commutes with colimits and the tensor product. In
particular, for every X ∈ C , we have

R⊗X = 1[ω(n)
p∞ ]hG ⊗X ' (1[ω(n)

p∞ ]⊗X)hG,

where we set R := 1[ω(n)
p∞ ]hG. Now, on the one hand, we have a map

R = 1[ω(n)
p∞ ]hG −! 1[ω(n)

p∞ ] ∈ CAlg(C ).

Hence, every R-acyclic object is also 1[ω(n)
p∞ ]-acyclic. On the other hand, if X ∈ C is 1[ω(n)

p∞ ]-acyclic,
then we have

R⊗X ' (1[ω(n)
p∞ ]⊗X)hG ' 0,

so X is also R-acyclic. Consequently, R and 1[ω(n)
Z(p)

] are Bousfield equivalent.
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Next, we show that R is an idempotent algebra. Using the notation

C(Z×p ;X) := lim−!X(Z/pr)× , C(Zp;X) := lim−!XZ/pr ,

we have

R[ω(n)
p∞ ] := R⊗ 1[ω(n)

p∞ ] ' (1[ω(n)
p∞ ]⊗ 1[ω(n)

p∞ ])hG ' C(Z×p ;1[ω(n)
p∞ ])hG ' C(Z×p ;R),

and thus
R⊗R ' (R[ω(n)

p∞ ])hG ' C(Z×p ;R)hG ' C(Z×p /Tp;R)hZ ' C(Zp;R)hZ.

It remains to show that the commutative R-algebra unit map R! C(Zp;R)hZ is an isomorphism.
In fact, this holds for every stable p-complete presentably symmetric monoidal ∞-category C and
R ∈ CAlg(C ), such as our C (by Proposition 6.1 and the assumption n ≥ 1). It suffices to check
this in the universal case C = Ŝpp and for the unit R = S(p). Furthermore, since both sides are
connective, it suffices to check this after tensoring with Fp ∈ CAlg(Ŝpp). Denoting by σ the action
of 1 ∈ Z on C(Zp;Fp), the claim becomes equivalent to the exactness of the short sequence of
abelian groups

0 −! Fp −! C(Zp;Fp)
Id−σ
−−−! C(Zp;Fp) −! 0,

which can be easily verified by an explicit computation.

Finally, virtual (Z(p), n)-orientability can be bootstrapped “all the way up”.

Proposition 6.20. Let C ∈ CAlg(Pr⊕-∞). If C is virtually (Z(p), n)-orientable, then it is virtually
(R, n)-orientable for every local ring spectrum R with residue field Fp.

Namely, by replacing virtual (Fp, n)-orientability with virtual (Z(p), n)-orientability, we can remove
the π-finiteness assumption from Corollary 6.5.

Proof. By Corollary 4.42, it suffices to consider the initial case R = S(p), and by Remark 3.4, we
can further reduce to R = τ≤nS(p). The result now follows from Proposition 6.4 applied to the map

τ≤nS(p) −! τ≤0S(p) ' Z(p).

6.4 τ≤dS(p)-Orientations and connectedness

By Proposition 6.20, a Z(p)-orientation of height n for C ∈ CAlg(Pr⊕-∞) can be lifted to an S(p)-
orientation, after a faithful extension of scalars. To study the existence of such a lift in C itself,
we proceed in steps by climbing up the Postnikov tower of S(p). In general, for each d = 0, . . . , n,
there will be an obstruction for lifting a τ≤d−1S(p)-orientation to a τ≤dS(p)-orientation. Here, by
convention, we set

τ≤−1S(p) := Fp.

To study this extension problem, we shall introduce a certain d-connectedness property of the
∞-category C that will be closely related to the vanishing of these obstructions.
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Spherical cyclotomic extensions

We begin by showing that the truncated spherical cyclotomic extensions are pro-Galois extensions.
We proceed by approximating S(p) by π-finite local rings, using an argument we learned form
Dustin Clausen. Consider the standard cosimplicial resolution (aka Amitsur complex) of the map
S(p) ! Fp:

S(p) Fp Fp ⊗S Fp Fp ⊗S Fp ⊗S Fp

The partial totalizations Sp,s := Tots(F⊗S(•+1)
p ) for s ≥ 0 assemble into a tower in CAlg(Spcn

(p))
under S(p).
Lemma 6.21. For every s ≥ 0, the partial totalization Sp,s has finite homotopy groups and is a
local ring spectrum with residue field Fp. Moreover, for every t ≥ 0, we have lim −−πt(Sp,s) ' πt(Sp).

Proof. By the computation of the dual Steenrod algebra, the ring spectrum A∨ = Fp ⊗S Fp has
finite homotopy groups and π0A∨ ' Fp. Hence, the same holds for F⊗S(k+1)

p ' (A∨)⊗Fpk for every
k ≥ 0. Now, each Sp,s can be written as a finite limit of the rings F⊗S(k+1)

p for k = 0, . . . s. From
this we deduce that the homotopy groups of Sp,s are also finite. Moreover, since the functor of units
(−)× is a right adjoint, it preserves limits. It follows that an element in (the underlying space of)
Sp,s is invertible if and only if its image is invertible in each F⊗S(k+1)

p . We conclude that Sp,s is
local with residue field Fp. Alternatively, from a more computational perspective, the above facts
may be deduced from the multiplicative spectral sequence arising from the finite filtration of Sp,s
by the lower partial totalizations.
Finally, by the convergence of the Adams spectral sequence at Sp, we have lim −−Sp,s ' Sp. Since
all the homotopy groups of all the Sp,s-s are finite, the Mittag-Leffler condition is satisfied and
therefore for all t ≥ 0, we have lim −−πt(Sp,s) ' πt(Sp).

Next, we show that the Brown–Comenetz duals of (the truncations of) Sp,s also approximate the
Brown–Comenetz dual of (the truncations of) S(p).
Lemma 6.22. For all 0 ≤ d ≤ n, the augmented tower

τ≤d(S(p)) −! (. . . −! τ≤d(Sp,2) −! τ≤d(Sp,1) −! τ≤d(Sp,0)),

induces an isomorphism

lim−! s(I(n)
p τ≤d(Sp,s)) ∼−−! I(n)

p τ≤d(S(p)) ∈ Spcn.

Proof. By Lemma 6.21, for all t ≥ 0,

lim −−s(πtSp,s) ' πtSp =
{
Zp t = 0
p−finite t > 0.

Since both Zp and all finite abelian groups are topologically finitely generated, we deduce that the
above isomorphism holds as pro-finite abelian groups, and therefore induces an isomorphism on
continuous Pontryagin duals. This implies that the composition

lim−! s homAb(πtSp,s,Qp/Zp)! homAb(πtSp,Qp/Zp)! homAb(πtS(p),Qp/Zp)

is an isomorphism (see Remark 6.16), which implies the claim.
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We deduce that the (truncated) spherical cyclotomic extension can be well approximated by the
(truncated) Sp,s-cyclotomic extensions.

Proposition 6.23. Let C ∈ CAlg(Pr⊕-∞). For all 0 ≤ d ≤ n, there is an isomorphism

1[ω(n)
τ≤dS(p)

] ' lim−!1[ω(n)
τ≤dSp,s ] ∈ CAlg(C ).

Proof. Applying the colimit preserving functor 1[−] to the isomorphism in Lemma 6.22, we get

lim−!1[I(n)
p τ≤dSp,s] ∼−−! 1[I(n)

p τ≤dS(p)] ∈ CAlg(C ).

Since all the maps in the augmented tower are strict maps of local rings, by Proposition 4.41, we
get the desired isomorphism by tensoring with 1[ω(n)

Fp ] over 1[I(n)
p Fp].

Theorem 6.24. Let C ∈ CAlg(Pr⊕-∞) be virtually (Fp.n)-orientable. For every 0 ≤ d ≤ n, the
truncated spherical cyclotomic extension 1[ω(n)

τ≤dS(p)
] is pro-Galois with respect to the pro-π-finite

group τ≤dS×p = lim −−s(τ≤dS
×
p,s).

Proof. Each τ≤dSp,s is n-truncated and π-finite. Hence, by Corollary 6.5, C is virtually (Sp,s, n)-
orientable, and by Proposition 4.22, 1[ω(n)

τ≤dS(p)
] is τ≤dS×p,s-Galois. By naturality, these actions are

compatible when s varies. It remains to observe that the limit of τ≤dS×p,s is τ≤dS×p . Indeed, by
Lemma 6.21, lim −−τ≤dSp,s ' τ≤dSp, and taking the spectrum of units (−)× preserves limits.

Categorical connectedness

To study the problem of constructing truncated spherical orientations we introduce the following
notion:

Definition 6.25. Let C ∈ CAlg(Pr) and let d ≥ −2 be an integer. We say that,

(1) A space A is C -reflective if the canonical map

A −! MapCAlg(C )(1A,1) ∈ S

is an isomorphism.

(2) C is said to be d-connected at a prime p if every d-finite p-space A is C -reflective.

Remark 6.26. If A happens to be C -affine, then by Proposition 2.30, we have an isomorphism

MapCAlg(C )(1A,1) ' CAlgA−gal(C )

and the canonical inclusion of A into the above space corresponds to the trivial A-Galois extensions.
Thus, A is C -reflective if and only if all the A-Galois extensions of 1 are trivial. Furthermore, if
every d-finite p-space A is C -affine, for example if C is virtually (Fp, n)-orientable for some n ≥ d
(Theorem 6.2), then C is d-connected at p if and only if it has no non-trivial Galois extensions over
such spaces.

The first few values of d recover some familiar notions:
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Example 6.27. First, since 1pt = 1 is initial in CAlg(C ), every C is (−2)-connected. Second,
since 1∅ = 0 is the zero ring, C is (−1)-connected if and only if C 6= 0.

Next, we have the following characterization of 0-connectedness:
Proposition 6.28. For C ∈ CAlg(Pr⊕-0), the following are equivalent:

(1) C is 0-connected.

(2) 1C is indecomposable.

(3) For every decomposition 1 = ε+ δ in π0(1C ) such that ε and δ are idempotents with εδ = 0,
we have either ε = 1 and δ = 0 or vice versa.

Proof. To show that (1) implies (2), we assume by contradiction that 1 decomposes as 1 ' R× S
with both R and S non-zero. Then, the set

π0 MapCAlg(C )(1× 1,1) ' π0 MapCAlg(C )(R2 × S2, R× S)
' π0 MapCAlg(C )(R2 × S2, R)× π0 MapCAlg(C )(R2 × S2, S)

contains at least 4 elements. It follows that the set with two elements is not C -reflective, contra-
dicting (1).
Now, (2) implies (3) because for every pair of idempotents ε, δ ∈ π0(1) as in (3), we have a
decomposition of commutative rings 1 ' 1[ε−1]× 1[δ−1], and (2) implies that one of the factors is
zero and hence ε = 1 and δ = 0 or vice versa.
It remains to prove that (3) implies (1). For a finite set A, the ring π0(1A) admits a collection of
orthogonal idempotents εa ∈ π0(1A) for a ∈ A, such that

∑
a∈A εa = 1. Thus, by (3), every map

1A ! 1 has to send exactly one of the εa-s to 1 ∈ π0(1). We get

MapCAlg(C )(1A,1) '
∐
a∈A

MapCAlg(C )(1A[ε−1
a ],1) '

∐
a∈A

MapCAlg(C )(1,1) ' A.

Example 6.29. For an ordinary commutative ring R, Proposition 6.28 implies that the∞-category
ModR is 0-connected if and only if the scheme Spec(R) is connected.

As an application of Proposition 6.28, we deduce that 0-connectedness interacts well with categori-
fication.
Corollary 6.30. Let C ∈ CAlg(Pr⊕-0). Then, C is 0-connected if and only if ModC is 0-connected.

Proof. By Proposition 6.28 it suffices to show that 1 is indecomposable in C if and only if C is
indecomposable in ModC . First, assume 1 is indecomposable and let C = C0×C1 in CAlg(ModC ).
We get

(1C0 , 0)× (0,1C1) = (1C0 ,1C1) = 1C ∈ CAlg(C )
By our assumption either 1C0 = 0 or 1C1 = 0 and hence either C0 ' 0 or C1 ' 0.
Conversely, given R ' R0 × R1 in CAlg(C ), then as in the proof of [CSY21a, Proposition 5.1.11],
the 0-semiadditivity of C implies that

C ' ModR0(C )×ModR1(C ).

By the indecomposability of C , we get either ModR0(C ) = 0 or ModR1(C ) = 0, which implies
either R0 = 0 or R1 = 0.
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The higher notions of connectedness depend on the prime p and are more subtle. A classical example
is provided by Mandell’s theorem [Man01].

Example 6.31 (Mandell). The ∞-category ModFp is ∞-connected at p.

Connectedness and higher semiadditivity

We shall, however, be interested in higher connectedness primarily in the higher semiadditive set-
ting. In this case, we first observe that the semiadditive height gives an upper bound on connect-
edness.

Proposition 6.32. Let C ∈ CAlg(Pr⊕-∞). If the height of C at p is ≤ n, then C is not (n + 1)-
connected at p.

Proof. Since the height of C at p is at most n, the n-connected space Bn+1Cp is C -acyclic, so that
1B

n+1Cp = 1, see [CSY21a, Proposition 3.2.1]. Thus, the canonical map

Bn+1Cp ! MapCAlg(C )(1B
n+1Cp ,1) = MapCAlg(C )(1,1) = pt

is not an isomorphism.

To further analyze the collection of C -reflective spaces, we use the Eilenberg–Moore property of
affine spaces.

Proposition 6.33. Let C ∈ CAlg(Pr⊕-∞). The functor

MapCAlg(C )(1(−),1) : S −! S

preserves pullbacks of diagrams A! B  C of π-finite spaces, where B is C -affine.

Proof. As pushouts in CAlg(C ) are given by relative tensor products, this follows from Theorem 2.38
and the fact that representable functors take pushouts to pullbacks.

This implies that under the assumption of affineness C -reflective spaces are closed under extensions
and formation of fibers.

Proposition 6.34. Let C ∈ CAlg(Pr⊕-∞) and let f : A! B be a map of π-finite spaces, where B
is C -reflective and C -affine. Then, A is C -reflective if and only if all the fibers of f are C -reflective.

Proof. Consider the canonical natural transformation

(−) −! MapCAlg(C )(1(−),1)

of functors S ! S. The domain, being the identity functor, clearly preserves pullbacks. By
Proposition 6.33, the codomain preserves the pullbacks of all diagrams of the form A

f
−! B

b
 − pt.

Now, consider the commutative diagram

A MapCAlg(C )(1A,1)

B MapCAlg(C )(1B ,1),∼
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where the bottom arrow is an isomorphism since B is C -reflective. It follows that the induced map
on the fibers of the vertical maps at b ∈ B can be identified with the canonical map

f−1(b) −! MapCAlg(C )(1f
−1(b),1).

Thus, A is C -reflective if and only if f−1(b) is C -reflective for all b ∈ B.

Assuming the affineness of all d-finite p-spaces, d-connectedness can be reduced to the C -reflectivity
of a single space.

Proposition 6.35. Let C ∈ CAlg(Pr⊕-∞), such that all d-finite p-spaces are C -affine. Then, C is
d-connected at p if and only if BdCp is C -reflective.

Proof. If C is d-connected at p, then by definition all d-finite p-spaces are C -reflective and in
particular BdCp. Conversely, assume that BdCp is C -reflective. The functor

MapCAlg(C )(1(−),1) : S −! S

takes pt to pt, and preserves pullbacks of π-finite spaces with a C -affine base (Proposition 6.33).
Hence, it commutes with taking loops for d-finite p-spaces. It follows that B`Cp is C -reflective
for all ` = 0, . . . d. Finally, by Proposition 6.34, the C -reflective d-finite p-spaces are closed
under extensions. Since all the d-finite p-spaces are generated under extensions by the spaces
Cp, BCp, . . . , B

dCp, it follows that all of them are C -reflective, so C is d-connected at p.

It will be useful for the sequel to have a slight variant of the above.

Proposition 6.36. Let C ∈ CAlg(Pr⊕-∞), such that all d-finite p-spaces are C -affine. Then, C is
d-connected at p if and only if C is 0-connected and the space MapCAlg(C )(1B

dCp ,1) is d-connected,
which then in particular implies that

BdCp ' MapCAlg(C )(1B
dCp ,1).

The subtle difference from Proposition 6.35 is that we do not, a priori, require the above isomorphism
to be provided by the canonical map, at the expense of requiring 0-connectedness in advance.

Proof. The ‘only if’ part is clear. For the ‘if’ part, consider the canonical map

BdCp −! MapCAlg(C )(1B
dCp ,1).

By assumption, both the source and target are (d−1)-connected, so it suffices to show that we get an
isomorphism after applying the d-fold loop space functor. Now, as in the proof of Proposition 6.35,
the functor MapCAlg(C )(1(−),1) commutes with taking loops for d-finite p-spaces. Thus, applying
Ωd we get the canonical map

Cp −! MapCAlg(C )(1Cp ,1),

which is an isomorphism by the assumption that C is 0-connected.
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Connectedness and orientations

The notions of connectedness at p and Fp-orientability interact in a non-trivial way.

Proposition 6.37. Let C ∈ CAlg(Pr⊕-∞). If C is virtually (Fp, n)-orientable, then it is not
(n+ 1)-connected at p.

Proof. Combine Proposition 6.32 and Proposition 6.1.

Furthermore, by Theorem 6.2, when C is virtually (Fp, n)-orientable, all n-finite p-spaces are C -
affine. Hence, by Proposition 6.36, for every d ≤ n, the d-connectedness of C depends only on the
properties of the commutative algebra 1BdCp ∈ CAlg(C ). When C is actually (Fp, n)-oriented, we
can further reformulate the d-connectedness property in terms of the space

µp(1) := MapSpcn(Cp,1×)

of p-th roots of unity of 1 ∈ C .

Proposition 6.38. Let C ∈ CAlg(Pr⊕-∞) be 0-connected and (Fp, n)-orientable. For every d ≤ n,
the ∞-category C is d-connected at p if and only if

τ≥n−d(µp(1C )) ' BnCp ∈ S.

Proof. From the (Fp, n)-orientability, we deduce that all the d-finite p-spaces are C -affine (Theo-
rem 6.2). Thus, by Proposition 6.36, C is d-connected if and only if it is 0-connected, and the space
MapCAlg(C )(1B

dCp ,1) is isomorphic to BdCp. Using the Fourier transform we get

MapCAlg(C )(1B
dCp ,1) ' MapCAlg(C )(1[Σn−dCp],1).

Now, applying the various adjunctions, we get

MapCAlg(C )(1[Σn−dCp],1) ' MapSpcn(Σn−dCp,1×) '

Ωn−d MapSpcn(Cp,1×) ' Ωn−dµp(1).

Thus, C is d-connected if and only if it is 0-connected and the space Ωn−dµp(1) is isomorphic to
BdCp, which completes the proof.

Remark 6.39. In particular, for C ∈ CAlg(Pr⊕-∞) which is 0-connected and (Fp, n)-oriented,
the space of Fp-pre-orientations of height n is isomorphic to the discrete set Cp. Its subspace of
orientations consists of the non-zero elements Cp r {0}, and is a torsor for the action of F×p by
scaling.

The characterization of d-connectedness in terms of p-th roots of unity also implies that it interacts
well with categorification.

Corollary 6.40. Let C ∈ CAlg(Pr) be 0-connected and (Fp, n)-orientable. For every d ≤ n, the
∞-category C is d-connected at p if and only if ModC is d-connected at p.
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Proof. By Corollary 6.30, ModC is 0-connected and by Corollary 5.16, ModC is (Fp, n+1) orientable.
In addition, we have

Ω(1ModC )× = ΩPic(C ) ' 1×C .

Hence,
Ω(n+1)−dµp(1ModC ) ' Ωn−dµp(1C ).

So the claim follows from Proposition 6.38.

Remark 6.41. While an (Fp, n)-orientable C is at most n-connected, its categorification ModC

can be (n+ 1)-connected. Furthermore, we shall see that (n+ 1)-connectedness of ModC can have
interesting implications for C itself.

Extending orientations

Our interest in d-connectedness steams from the fact that it allows one to extend Fp-orientations to
truncated S(p)-orientations. We begin with the somewhat more general setting. In Theorem 4.39,
we have seen that given a strict map of local ring spectra f : R ! S, an R-preorientation ω is an
orientation if and only if f∗ω is an orientation. We shall now show, that under more restrictive
assumptions on f , the property of d-connectedness implies the stronger conclusion that every S-
orientation can be lifted to an R-orientation.

Definition 6.42. Let f : R ! S be a strict map of local rings in Spcn. We say that f is d-small
if the fiber of f is [0, d− 1]-finite and admits an S-module structure.

Proposition 6.43. Let C ∈ CAlg(Pr⊕-∞) be d-connected at p and let f : R! S be a d-small map
between local ring spectra with residue field Fp. For n ≥ d, every S-orientation of C of height n
extends to an R-orientation.

Proof. Let ω : I(n)
p S ! 1× be an S-orientation. By Theorem 4.39, it would suffice to construct a

lift as in the diagram:
I

(n)
p S I

(n)
p R

1×,

ω ω

see Remark 4.40. Let X be the fiber of f : R ! S, as a map of spectra. The obstruction for the
existence of ω lies in the group

π0 MapSp(Σ−1I(n)
p X,1×).

By the assumption that f is d-small, X is in particular connective and (n − 1)-truncated. Hence,
Σ−1(I(n)

p X) ' I(n)
p (ΣX) is connective. Consequently, we have

MapSp(I(n)
p (ΣX),1×) ' MapSpcn(I(n)

p (ΣX),1×) ' MapCAlg(C )(1[I(n)
p ΣX],1).

By assumption, X is π-finite and admits an S-module structure. Thus, by the Fourier transform
associated with ω, we have

MapCAlg(C )(1[I(n)
p (ΣX)],1) ' MapCAlg(C )(1bΣXc,1).
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Finally, by our assumptions, bXc is a (d−1)-finite p-space, so bΣXc is a d-finite p-space, and hence
the d-connectedness of C implies that

MapCAlg(C )(1bΣXc,1) ' bΣXc.

Since π0(bΣXc) = π0(ΣX) ' 0, we see that there is no obstruction to construct ω.

This specializes to the following criterion for extending Fp-orientations to truncated S(p)-orientations:

Proposition 6.44. Let C ∈ CAlg(Pr⊕-∞) be d-connected at p. Every Fp-orientation of height n
of C extends to a τ≤d−1S(p)-orientation.

Proof. The claim holds vacuously for d = 0, so we may assume d ≥ 1. Let ω : I(n)
p Fp ! 1× be

an Fp-orientation of C . First, we extend ω to a Z(p)-orientation. For all r ≥ 1, the quotient map
Z/pr+1 � Z/pr satisfies the assumptions of Proposition 6.43. Thus, applying it iteratively, we
obtain a compatible sequence of Z/pr-orientations extending ω. Since I(n)

p Z(p) ' lim−! I
(n)
p (Z/pr) by

Lemma 6.15, and
Mod[0,n]-fin

Z(p)
=

⋃
r∈N

Mod[0,n]-fin
Z/pr ,

the colimit of the associated diagram is the desired extension of ω to a Z(p)-orientation:

I
(n)
p (Z/p) I

(n)
p (Z/p2) . . . I

(n)
p (Z/pr) . . . I

(n)
p Z(p)

1×
ω

ω≤0

Next, we proceed by induction on the Postnikov tower

τ≤d−1S(p) −! . . . −! τ≤1S(p) −! τ≤0S(p) = Z(p).

Again, each map in the tower satisfies the conditions of Proposition 6.43, and thus the τ≤0S(p)-
orientation ω≤0 can be extended inductively all the way to a τ≤d−1S(p)-orientation.

If C admits an Fp-orientation of height n, then it is not (n + 1)-connected (Proposition 6.37).
Thus, the most we can get from Proposition 6.44 is when d = n, which when combined with
Proposition 6.38 gives us the following:

Corollary 6.45. Let C ∈ CAlg(Pr⊕-∞), such that

µp(1) = MapSpcn(Cp,1×) ' BnCp.

If C is (Fp, n)-orientable, then it is (τ≤n−1S(p), n)-orientable.

This raises a natural question of when does a spectrumM ∈ Sp[0,n]-fin
(p) admit an action of τ≤n−1S(p).

In general, being a module over a truncated sphere is a (rather subtle) structure. However, for
spectra concentrated in degrees 0 to n, this structure degenerates to a property, which can moreover
be detected on the level of homotopy groups.
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Proposition 6.46. A spectrum M ∈ Sp[0,n] admits a module structure over τ≤n−1S if and only if
the action map

πnS⊗ π0M
αM−−−! πnM ∈ Ab

is zero. Moreover, this module structure is then unique.

Proof. The ∞-category Sp[0,n] admits a symmetric monoidal structure for which the truncation
functor τ≤n : Spcn ! Sp[0,n] is symmetric monoidal. In particular, the unit is τ≤nS ∈ Sp[0,n], and
the tensor product of X,Y ∈ Sp[0,n] is given by τ≤n(X ⊗ Y ) ∈ Sp[0,n]. We divide the claim into
two parts:

(1) τ≤n−1S is an idempotent algebra in Sp[0,n], in the sense of [Lur, Definition 4.8.2.8];

(2) τ≤n−1S classifies the property that αM is zero, in the sense that M ∈ Sp[0,n] is an τ≤n−1S-
module if and only if αM = 0.

Consider the exact sequence
ΣnπnS

f
−−! τ≤nS

u
−−! τ≤n−1S,

where the truncation map u is the unit map for τ≤n−1S as a commutative algebra in Sp[0,n]. For
every M ∈ Sp[0,n], we get an exact sequence

M ⊗ ΣnπnS
1M⊗f−−−−!M ⊗ τ≤nS

1M⊗u−−−−!M ⊗ τ≤n−1S.

The left most spectrum is n− 1 connected, and on πn the map 1M ⊗ f induces the map

πn(M ⊗ ΣnπnS) ' π0M ⊗ πnS
αM−−−! πnM ' πn(M ⊗ τ≤nS).

Thus, by the long exact sequence in homotopy groups, the map 1M ⊗ u becomes an isomorphism
after applying τ≤n if and only if αM = 0. Now, for M = τ≤n−1S, the target of αM is the zero
group and hence it is the zero map. Thus 1τ≤n−1S ⊗ u : τ≤n−1S ⊗ τ≤nS ! τ≤n−1S ⊗ τ≤n−1S is an
isomorphism, so τ≤n−1S is an idempotent algebra in Sp[0,n]; this verifies (1). By [Lur, Proposition
4.8.2.10], this implies that the forgetful functor

Modτ≤n−1S(Sp[0,n]) −! Sp[0,n]

is fully faithful, and the essential image is precisely the objects M ∈ Sp[0,n], whose tensor with u in
Sp[0,n] is an isomorphism, which by the above is equivalent to αM = 0. Therefore, we have shown
that (2) holds as well.

Corollary 6.47. A spectrum M ∈ Sp[0,n]-fin
(p) admits a module structure over τ≤n−1S(p) if and only

if the action map
πnS(p) ⊗ π0M

αM−−−! πnM ∈ Ab

is zero. Moreover, this module structure is then unique.

Proof. In view of [Lur, Proposition 4.8.2.10], this follows immediately from Proposition 6.46.
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Sadly, Corollary 6.45 stops short from implying (τ≤nS(p), n)-orientability, which will be already the
same as (S(p), n)-orientability. This obstacle, however, can be overcome using categorification.

Proposition 6.48. Let C ∈ CAlg(Pr⊕-∞) such that

MapSpcn(Cp,pic(C )) ' Bn+1Cp.

If C is (Fp, n)-orientable, then it is (S(p), n)-orientable.

Proof. By Corollary 5.16, if C is (Fp, n)-orientable, then ModC is (Fp, n + 1)-orientable. Since
we can identify MapSpcn(Cp,pic(C )) with µp(1ModC ), we get by Proposition 6.38, that ModC is
(n+1)-connected. Hence, by Proposition 6.44, the∞-category ModC is (τ≤nS(p), n+1)-orientable.
It follows, by Corollary 5.16 again, that C is (τ≤nS(p), n)-orientable and hence, by Remark 3.4,
(S(p), n)-orientable.

Torsion units and (d+ 1
2 )-connectedness

To further study extensions of Fp-orientation to truncated S(p)-orientations, it will be convenient
to use the following terminology:

Definition 6.49. Let C ∈ CAlg(Pr⊕-∞) be (Fp, n)-orientable. We say that C is (d+ 1
2 )-connected,

if it is d-connected and (τ≤dS(p), n)-orientable.

Remark 6.50. If C ∈ CAlg(Pr⊕-∞) is (Fp, n)-oriented and 0-connected, then by Remark 6.39,
the space of its Fp-orientations of height n is a torsor for the group (Z/p)×. Thus, if any of the
Fp-orientations of C extends to a τ≤dS(p)-orientation, then all of them do.

As a sanity check, we observe that (d+ 1)-connectedness implies (d+ 1
2 )-connectedness by Propo-

sition 6.44, which in turn implies d-connectedness by definition. We further note that while an
(Fp, n)-orientable C can not be (n+ 1)-connected (Proposition 6.37), it can be (n+ 1

2 )-connected.
The following is a useful criterion for that:

Proposition 6.51. Let C ∈ CAlg(Pr⊕-∞) such that

MapSpcn(Cp,pic(C )) ' Bn+1Cp.

If C is (Fp, n)-orientable, then C is (n+ 1
2 )-connected.

Proof. By Proposition 6.48, we get that C is (τ≤nS(p), n)-orientable. By looping once the isomor-
phism in the hypothesis, we get

µp(1C ) = MapSpcn(Cp,1×C ) ' BnCp.

Thus, C is n-connected by Proposition 6.38.

Our next goal is to show that just like d-connectedness can be characterized in terms of the p-
th roots of unity of 1 (Proposition 6.38), the property of (d + 1

2 )-connectedness can be similarly
characterized in terms of all of the “p-local π-finite units” of 1.
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Definition 6.52. Let Spπ-tor
(p) ⊆ Spcn be the full subcategory generated under (filtered) colimits by

Spπ-fin
(p) ⊆ Spcn, and denote the right adjoint of the embedding by

(−)π-tor
(p) : Spcn −! Spπ-tor

(p) .

We say that a spectrum X ∈ Spcn is (p-local) π-torsion if it belongs to Spπ-tor
(p) .

The above notion of ‘p-local π-torsion’ is related to p-torsion in the usual sense by the following:

Proposition 6.53. Let X ∈ Spcn. If X ∈ Spπ-tor
(p) , then X[p−1] = 0. The converse holds if X is

bounded above.

Proof. For the ‘if’ part, observe that the collection of spectra X for which X[p−1] = 0, contains
Cp and is closed under colimits in Sp. Since all p-local π-finite spectra are generated by Cp under
colimits, the same holds for all p-local π-torsion spectra and the claim follows. Conversely, if
X ∈ Spcn is p-torsion and bounded above, it is the colimit of its Postnikov truncations, for which
the successive fibers are (de)suspensions of p-torsion abelian groups, which in turn are all generated
from Cp by colimits in Sp.

Remark 6.54. Some additional hypothesis is necessary for the converse part in Proposition 6.53,
as X = S/p is an example of a connective spectrum with X[p−1] = 0, but X /∈ Spπ-tor

(p) .

Definition 6.55. For C ∈ CAlg(Cat∞) and S ∈ CAlg(C ), the p-local π-torsion units of S are
given by

µSp(S) := (S×)π-tor
(p) ∈ Spπ-tor

(p) .

In many examples of interest, such as R = τ≤dS(p), the spectrum I
(n)
p R belongs to Spπ-tor

(p) . In these
cases, pre-orientations I(n)

p R! S× factor uniquely through µSp(S)! S× and are thus in bijection
with maps I(n)

p R! µSp(S). As with ordinary roots of unity, the semiadditive height gives an upper
bound on the truncatedness of the spectrum µSp(S).

Proposition 6.56. Let C ∈ CAlg(Cat⊕-∞) and let S ∈ CAlg(C ). If S is of height ≤ n at p, then
the spectrum µSp(S) is n-truncated.

Proof. For every M ∈ Spπ-fin
(p) , the fold map S[Σn+1M ] ! S is an isomorphism by [CSY21a,

Proposition 3.2.3]. Thus, applying the various adjunctions, we have

MapSpcn(M,Ωn+1µSp(S)) ' MapSpcn(Σn+1M,µSp(S)) '

MapSpcn(Σn+1M,S×) ' MapCAlgS(C )(S[Σn+1M ], S) ' MapCAlgS(C )(S, S) ' pt.

Since Spπ-fin
(p) generates Spπ-tor

(p) under colimits, it follows that Ωn+1µSp(S) = 0 and hence µSp(S) is
n-truncated.

We therefore focus on the full subcategory Sp[0,n]-tor
(p) ⊆ Spπ-tor

(p) of n-truncated objects. Furthermore,
passing from Sp[0,n]-fin

(p) to Sp[0,n]-tor
(p) is a purely formal operation.
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Lemma 6.57. For every prime p and integer n ≥ 0, we have an equivalence of ∞-categories

Sp[0,n]-tor
(p) ' Ind(Sp[0,n]-fin

(p) ).

Proof. By definition, the π-finite objects in Spπ-tor
(p) generate it under colimits. Since n-truncation

preserves colimits and the property of being π-finite, the same holds for Sp[0,n]-tor
(p) . It hence remains

to show that the π-finite objects are compact in Sp[0,n]-tor
(p) . This follows from the fact that any

n-truncated π-finite spectrum can be represented as the n-truncation of a finite spectrum.

With these preliminaries, we are ready to prove the following analogue of Proposition 6.38:

Theorem 6.58. Let C ∈ CAlg(Pr⊕-∞) be 0-connected and (Fp, n)-oriented. For every d ≤ n, the
∞-category C is (d+ 1

2 )-connected at p if and only if

τ≥n−d(µSp(1)) ' τ≥n−d(I(n)
p S(p)) ∈ Spcn.

Proof. Throughout the proof we shall write Ω: Spcn ! Spcn for the loops functor from the ∞-
category of connective spectra to itself. With this convention, the above isomorphism is equivalent
to the following one:

Ωn−d(µSp(1)) ' Ωn−d(I(n)
p S(p)) ∈ Spcn.

We begin with the ‘if’ part. Assuming the above isomorphism we get

Ωn−dµp(1) = Ωn−d homSpcn(Cp,1×) ' Ωn−d homSpcn(Cp, µSp(1)) '

homSpcn(Cp,Ωn−dµSp(1)) ' homSpcn(Cp,Ωn−d(I(n)
p S(p))) '

Ωn−d homSpcn(Cp, (I(n)
p S(p))) ' Ωn−d(I(n)

p Cp) ' Ωn−d(ΣnCp) ' ΣdCp.

Hence, by Proposition 6.38, C is d-connected. It remains to show that C is (τ≤dS(p), n)-orientable.
Let ω be an Fp-orientation of height n for C . By Theorem 4.39, it suffices to solve the lifting
problem

I
(n)
p Fp I

(n)
p τ≤dS(p)

µSp(1).
ω ω

Since I(n)
p Fp is (n−1)-connected, it is in particular (n−d−1)-connected. Hence, ω factors through

τ≥n−d(µSp(1)), which we assumed to be isomorphic to τ≥n−d(I(n)
p S(p)) ' I

(n)
p τ≤dS(p). We shall be

done by showing that every two non-zero maps I(n)
p Fp ! τ≥n−d(I(n)

p S(p)) differ by an automorphism
of the target. Indeed, we have

MapSpcn(I(n)
p Fp, τ≥n−d(I(n)

p S(p))) ' MapSpcn(I(n)
p Fp, I(n)

p S(p)) ' MapSpcn(S(p),Fp) ' Fp.

The non-zero maps correspond to F×p and multiplication by the Teichmuller lifts F×p ! S×p permutes
them.
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We now show the ‘only if’ part. Assume that C is (d+ 1
2 )-connected. We have

Ωn−d(I(n)
p S(p)) , Ωn−d(µSp(1)) ∈ Sp[0,d]-tor

(p) ,

by definition and Proposition 6.56 respectively. By the Yoneda lemma, it would thus suffice to show
that both objects represent the same functor on Sp[0,d]-tor

(p) . In fact, since Sp[0,d]-tor
(p) ' Ind(Sp[0,d]-fin

(p) )
(Lemma 6.57), it suffices to show that on Sp[0,d]-fin

(p) , both objects represent the functor bI(d)
p (−)c.

Given M ∈ Sp[0,d]-fin
(p) , we have on the one hand a chain of natural isomorphisms

MapSpcn(M,Ωn−d(I(n)
p S(p))) ' MapSpcn(Σn−dM, I(n)

p S(p)) ' bI(n)
p (Σn−dM)c ' bI(d)

p Mc.

On the other hand, we have a chain of natural isomorphisms

MapSpcn(M,Ωn−d(µSp(1))) ' MapSpcn(Σn−dM,µSp(1)) '

MapSpcn(Σn−dM,1×) ' MapCAlg(C )(1[Σn−dM ],1).

We now use the assumption that ω extends to a τ≤dS(p)-orientation. This gives a Fourier transform
natural isomorphism

1[Σn−dM ] ∼−−! 1bI
(n)
p (Σn−dM)c ' 1bI

(d)
p Mc.

Using this, and the d-connectedness of C at p, we can extend the above chain of natural isomor-
phisms by

MapCAlg(C )(1[Σn−dM ],1) ' MapCAlg(C )(1bI
(d)
p Mc,1) ' bI(d)

p Mc.

Corollary 6.59. C ∈ CAlg(Pr⊕-∞) is (n + 1
2 )-connected if and only if it is 0-connected, (Fp, n)-

orientable and
µSp(1) ' I(n)

p S(p) ∈ Spcn.

Proof. This follows immediately from the case n = d in Theorem 6.58.

7 Chromatic Applications

In this final section, we apply the general theory of Fourier transforms and orientations to chromatic
homotopy theory, specifically to the study of the monochromatic categories SpK(n), SpT (n), and
Mod∧En . In particular, we deduce theorems A-F stated in the introduction of the paper.

7.1 Chromatic preliminaries

We begin with a rapid review of some material from chromatic stable homotopy theory, geared
towards our applications in the subsequent subsections. For a more comprehensive survey, we refer
the interested to [BB20]. In the end of this section we also review briefly the theory of higher
cyclotomic extensions in the monochromatic categories from [CSY21b], and their relationship with
Westerland’s ring spectrum Rn introduced and studied in [Wes17].

88



Telescopic localizations

Let Sp be the symmetric monoidal ∞-category of spectra and let p be a fixed prime. The thick
subcategory theorem of Hopkins and Smith [HS98] classifies the thick subcategories of the ∞-
category Spω(p) of finite p-local spectra. These subcategories assemble into a strictly ascending
chromatic filtration

(0) = C ω
∞ ⊂ . . . ⊂ C ω

n ⊂ C ω
n−1 ⊂ . . . ⊂ C ω

0 = Spω(p),

which plays a fundamental role in chromatic stable homotopy theory. The objects of C ω
n r C ω

n+1
are said to be (p-local) finite spectra of type n; by the thick subcategory theorem, any choice of
finite type n spectrum generates C ω

n as a thick subcategory. Furthermore, the periodicity theorem
says that any finite spectrum F (n) of type n admits a vn-self map ν : Σ|ν|F (n) ! F (n) of some
non-negative degree |ν| depending on F (n). We will denote the corresponding height n telescope by
T (n) = F (n)[ν−1]. For n = 0, we use the convention that the self-map is taken to be multiplication
by p. In particular one can take F (0) = S(p) and T (0) = S(p)[1/p] ' Q.
The chromatic filtration extends to the category of all p-local spectra Sp(p), by considering for each
height n the subcategory Cn ⊆ Sp(p) generated by C ω

n (equivalently, by F (n))) under all colimits.
The “complement” of Cn+1 is given by the Verdier quotient

Cn+1 −! Sp(p) −! Spfn,

and we write
Lfn : Sp! Sp(p) ! Spfn ↪! Sp

for the corresponding finite localization functor (leaving the prime p implicit). The subcategory
Spfn ⊆ Sp(p) consists of the (T (0)⊕· · ·⊕T (n))-local spectra in the sense of Bousfield. In particular,
if X ∈ Sp is T (m)-acyclic for 0 < m ≤ n, then

LfnX ' L
f
0X = X ⊗Q.

For example, as we shall repeatedly use, this is the case when X is bounded above.
We denote by Cfn the Lfn-acyclification functor. Thus, for every X ∈ Sp we have a canonical fiber
sequence of spectra

CfnX −! X(p) −! LfnX.

Finally, we note that the functors Lfn and (−)(p), and hence Cfn , are smashing. This means that
they preserve all colimits (as endofunctors of Sp).
The ∞-categories Spfn form a strictly ascending filtration

SpQ = Spf0 ⊂ . . . ⊂ Spfn ⊂ Spfn+1 ⊂ . . . ⊂ Sp(p),

interpolating between the∞-categories of rational and p-local spectra. The n-th filtration quotient
can then be identified with the Bousfield localization of Sp(p) at a height n telescope T (n):

Spfn/Spfn−1
∼−−! SpT (n).

The localization SpT (n) inherits a symmetric monoidal structure, given by the T (n)-localized smash
product. Moreover, by [CSY22, Theorem A], SpT (n) is ∞-semiadditive of height n.
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K(n)-local homotopy

There is a variant of the chromatic filtration that is constructed from the Morava K-theories.
Continuing to work with an implicit fixed prime p, for every finite height n ≥ 1, let K(n) denote
the n-th Morava K-theory spectrum associated to a formal group law Γ of height n over Fp. It has
the structure of a complex oriented E1-ring spectrum, and its coefficient ring is given by

K(n)∗ ∼= Fp[v±1
n ],

where vn is of degree 2(pn−1). By convention, we set K(0) = Q and K(∞) = Fp. As a consequence
of the nilpotence theorem [DHS88, HS98], the Morava K-theories form the prime fields of Sp(p).
Let Ln : Sp! Sp be the Bousfield localization functor with respect to (K(0)⊕· · ·⊕K(n)). Hopkins
and Ravenel proved that Ln is smashing as well. Setting Spn = LnSp, we obtain a filtration

SpQ = Sp0 ⊂ . . . ⊂ Spn ⊂ Spn+1 ⊂ . . . ⊂ Sp(p),

which is compatible with the chromatic filtration discussed above, in the sense that Spn ⊆ Spfn. The
n-th filtration quotients of this filtration are symmetric monoidally equivalent to the K(n)-local
categories:

Spn/Spn−1
∼−−! SpK(n).

The question whether the localization functor LK(n) : SpT (n) ! SpK(n) is an equivalence is the
content of Ravenel’s telescope conjecture.
By construction, the ∞-category SpK(n) is compactly generated by the K(n)-localization of F (n)
for any finite spectrum F (n) of type n. However, for n ≥ 1, the unit SK(n) ∈ SpK(n) is not
compact. Finally, as the telescopic categories, each SpK(n) is ∞-semiadditive of height n as well,
as was proven previously by Hopkins and Lurie in [HL13].

Lubin–Tate spectra and cyclotomic extensions

For n ≥ 1, let En be the n-th Lubin–Tate spectrum (or Morava E-theory spectrum) at the prime
p associated to a formal group law Γ of height n over Fp. Namely, it is the Landweber exact ring
spectrum attached to the universal deformation of the base-change Γ of Γ over Fp and has ring of
coefficients

π∗En 'W(Fp)[[u1, . . . , un−1]][u±1].

Here, W(Fp) denotes the ring of Witt vector on Fp, the power series variables ui have degree 0, and
u has degree −2. The spectrum En is K(n)-local and has the same Bousfield class as

⊕n
i=0K(i);

in particular, there is a natural equivalence of localization functors Ln ' LEn . By Goerss–Hopkins
obstruction theory [GH04], En admits an essentially unique E∞-ring spectrum structure (see also
[Lur18a]). We write Mod∧En for the ∞-semiadditive height n symmetric monoidal ∞-category of
K(n)-local modules over En.
While other conventions exist in the literature, for the purposes of this paper it is convenient to
define the Lubin–Tate spectrum at height 0 to be the even periodic commutative ring spectrum5

E0 := Q[u±1] ∈ CAlg(SpQ),
5see also [BSY22] for further motivation for this convention.
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where u is in degree −2.
For n ≥ 1, the n-th Morava stabilizer group, defined as the profinite group

Gn = Aut(Γ/Fp) o Gal(Fp/Fp),

acts continuously on En through E∞-ring maps, in a sense made precise by Devinatz and Hopkins
in [DH04]. In fact, En is algebraically closed and the canonical unit map SK(n) ! En exhibits the
target as a K(n)-local pro-Galois extension with Galois group Gn (in fact, the algebraic closure);
see for example [Rog08]. Note, however, that E0 is not a Galois extension of SK(0) = Q.
This brings into focus intermediate extensions of SK(n). One particularly relevant such extension
appeared in work of Westerland [Wes17], where he constructed a certain Z×p -extension Rn of SK(n)
for all odd primes and positive heights. In fact, as explained in [CSY21b], this extension identifies
with the (infinite) higher cyclotomic extension SK(n)[ω(n)

p∞ ], which we therefore denote by Rn at all
primes and heights (including p = 2 and n = 0). The cyclotomic extensions Rn are given as the
filtered colimits of the corresponding finite cyclotomic extensions Rn,r := SK(n)[ω(n)

pr ],

Rn ' lim−!Rn,r ∈ CAlg(SpK(n)),

where Rn,r is a (Z/pr)×-Galois extension in SpK(n). For n ≥ 1, under the K(n)-local Galois
correspondence of [Mat16, Theorem 10.9], the Galois extensions Rn,r correspond to group homo-
morphisms χp,r : Gn ! (Z/pr)×. Consequently, Rn corresponds to a continuous homomorphism

χp : Gn −! Z×p
called the p-adic cyclotomic character of SpK(n), see [CSY21b, §5.2]. The kernel of χp, denoted
by G0

n / Gn, is a closed subgroup, and we have an equivalence Rn ' E
hG0

n
n of faithful Z×p -Galois

extensions of SK(n); here, (−)hG0
n stands for the continuous fixed points. For n = 0, the ring Rn

is the classical cyclotomic extension Q(ωp∞), and it corresponds to the usual p-adic cyclotomic
character of the absolute Galois group of Q.
One advantage of the cyclotomic approach from [CSY21b] is that it allows for a telescopic lifts of
Rn,r and Rn. The corresponding pr-th finite cyclotomic extensions Rfn,r := ST (n)[ω(n)

pr ], constructed
in parallel to the finite cyclotomic extensions Rn,r, are again faithful (Z/pr)×-Galois for every r
([CSY21b, Proposition 5.2]). They assemble into an infinite cyclotomic extension

Rfn := ST (n)[ω(n)
p∞ ] = lim−!Rfn,r ∈ CAlg(SpT (n))

which is a pro-finite Z×p -Galois extension in SpT (n). It is, however, not known whether Rfn is a
faithful Galois extension; we return to this point at the end of Section 7.3.

7.2 Orientations of the Lubin–Tate ring spectrum

We begin our discussion of the Fourier transform in chromatic homotopy theory with the case of
En-modules. After reinterpreting Theorem 1.1 of Hopkins and Lurie as providing En with a Z(p)-
orientation and descending it to Rn, we apply the results of Section 6 to extend it to a spherical
orientation (Theorem D), and the results of Section 5 to further categorify it (Theorem G). We
then construct the pro-π-finite Galois K(n)-local spherical cyclotomic extension (Theorem F), and
conclude the subsection with the computation of the connective cover of the p-localized discrepancy
spectrum of En (Theorem E).
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Z(p)-Orientability

As we shall now explain, the (Z(p), n)-orientability of En is essentially equivalent to the following
result of Hopkins and Lurie:

Theorem 7.1 ([HL13, Corollary 5.3.26]). For every n ≥ 1, there is a natural isomorphism

En[M ] ∼−−! EbΣ
nM∗c

n ∈ CAlg(SpK(n)),

for connective π-finite p-local Z-modules M , where M∗ = homZ(M,Q/Z).

Indeed, while this isomorphism is not constructed in [HL13] using Fourier theory, all natural trans-
formations of the above form are essentially Fourier transforms. Thus, this result can be reformu-
lated (and extended to height n = 0) as follows:

Corollary 7.2. For every n ≥ 0, the ∞-category Mod∧En is (Z(p), n)-orientable.

Proof. We start with the case n = 0. The commutative ring spectrum E0 is an algebra over Q,
and hence it suffices to show that Q is (Z(p), 0)-orientable by Proposition 4.5. Using Lemma 6.15,
the compatible system of p-power roots of unity exp( 2πi

pk
) ∈ Q (viewed as a subfield of C) gives a

Z(p)-pre-orientation of Q of height 0. For a finite abelian p-groupM , the resulting Fourier transform
Q[M ]! QM

∗

is the classical discrete Fourier transform, hence an isomorphism.
We turn to the case n ≥ 1. First, a π-finite p-local Z-module is the same thing as a π-finite
Z(p)-module. Furthermore, if M is concentrated between degrees 0 and n then ΣnM∗ ' I

(n)
p M .

Hence, an isomorphism as in Theorem 7.1 restricts to a natural isomorphism En[−] ' E
bI(n)
p −c

n of
functors Mod[0,n]-fin

Z/pr ! CAlg(SpK(n)) for every r ∈ N. By Proposition 3.10 (and Remark 3.13),
such an isomorphism is the Fourier transform associated with an essentially unique Z/pr-orientation
ω : ΣnZ/pr ! E×n . Since these orientations are compatible with each other, they assemble into a
Z(p)-orientation of En of height n by Proposition 6.17.

Remark 7.3. The construction of the isomorphism in Theorem 7.1 depends on a choice of a nor-
malization ν of the p-divisible group Γ associated with En, in the sense of [HL13, Definition 5.3.1].
Hence, identifying this isomorphism with the Fourier transform, we associate to a normalization
ν of Γ a (Z(p), n)-orientation ων . It is not hard to show that the association ν 7! ων furnishes a
bijection between normalizations of Γ and (Z(p), n)-orientations of En.

The orientability of Mod∧En implies virtual orientability of SpK(n).

Corollary 7.4. For every n ≥ 0, the ∞-category SpK(n) is virtually (Z(p), n)-orientable (hence, in
particular, virtually (Fp, n)-orientable).

Proof. Since En is faithful in SpK(n), this follows from Corollary 7.2.

While SpK(n) is virtually (Z(p), n)-orientable, it is not (Z(p), n)-orientable. Namely, one can not
replace En with SK(n) in the isomorphism of Theorem 7.1. However, the Fourier theoretic point of
view does allow us to descend this isomorphism from En to the intermediate extension Rn.
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Theorem 7.5. For every n ≥ 0, there is a natural isomorphism

Rn[M ] ∼−−! RbΣ
nM∗c

n ∈ CAlg(SpK(n))

for connective π-finite p-local Z-module spectra M .

Proof. Since SpK(n) is virtually (Fp, n)-orientable, by Corollary 6.18 we obtain that

Rn = SK(n)[ω(n)
p∞ ] ' SK(n)[ω(n)

Z(p)
] ∈ CAlg(SpK(n)).

In particular, the universal (Z(p), n)-orientation on Rn provides the desired isomorphism.

Remark 7.6. The fact that Rn carries the universal (Z(p), n)-orientation among K(n)-local com-
mutative ring spectra, shows that for n ≥ 1 the isomorphism in Theorem 7.1 is obtained from
the one in Theorem 7.5 by scalar extension along a map Rn ! En. This map identifies with the
inclusion of the fixed point algebra Rn ' EhG

0
n

n ! En, up to possibly pre-composing with an auto-
morphism of Rn (that is, an element of Z×p ). Hence, Theorem 7.5 is essentially the claim that the
isomorphism in Theorem 7.1 is G0

n-equivariant.

S(p)-orientability

Since SpK(n) is virtually Z(p)-orientable (by Corollary 7.4), it is also virtually S(p)-orientable (by
Proposition 6.20). Namely, the K(n)-local spherical cyclotomic extension SK(n)[ω(n)

S(p)
] is faithful.

Our general results imply that it is a pro-π-finite Galois extension of SK(n).

Theorem 7.7. For every n ≥ 0, the commutative algebra SK(n)[ω(n)
S(p)

] is a pro-Galois extension of
SK(n) for the group τ≤nS×(p), viewed as a pro-π-finite group.

Proof. By Corollary 7.4, SpK(n) is virtually (Fp, n)-orientable. Thus, the result follows from Theo-
rem 6.24.

While SK(n)[ω(n)
S(p)

] is the universal spherically oriented K(n)-local commutative algebra, we do not
have an explicit description of it. In contrast, combining the theory of categorical connectedness
from Section 6 with the results on pic(En) from [BSY22], we can also construct a (non-universal)
spherical orientation on En, which for n ≥ 1 is an ordinary (pro-finite) Galois extension of SK(n).

Theorem 7.8. For every n ≥ 0, the ∞-category Mod∧En is (n+ 1
2 )-connected, hence in particular

(S(p), n)-orientable.

Proof. We check the assumptions of Proposition 6.51. By Corollary 7.2, Mod∧En is (Fp, n)-orientable,
and by [BSY22, Proposition 8.14], we have

MapSpcn(Cp,pic(En)) ' Bn+1Cp.

Applying the general results on categorification of orientations from Section 5, we also get the
following:
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Corollary 7.9. There is a natural equivalence of symmetric monoidal ∞-categories:

Fun(Ω∞M,Mod∧En)Day
∼−−! Fun(Ω∞−(n+1)(IQp/ZpM),Mod∧En)Ptw,

for M a connective (n+ 1)-finite p-local spectrum, provided that the action map

πn+1S⊗ π0M −! πn+1M

is zero.

Proof. Since Mod∧En is (τ≤nS(p), n)-orientable (by Theorem 7.8), we get by Corollary 5.16 that
ModMod∧

En
is (τ≤nS(p), n+ 1)-orientable. By Corollary 6.47, this translates to the above.

We expect that the technical condition on M can be removed:

Conjecture 7.10. The ∞-category ModMod∧
En

is (S(p), n+ 1)-orientable.

At least in height 0, this conjecture can be verified by an explicit computation:

Proposition 7.11. The ∞-category ModModE0
is (S(p), 1)-orientable (for every prime p).

Proof. It suffices to show that ModModE0
is (τ≤1S(p), 1)-orientable (see Remark 3.4). By Corol-

lary 7.2, ModE0 is (Z(p), 0)-orientatable, and hence by Corollary 5.16, ModModE0
is (Z(p), 1)-

orientable. For p 6= 2, we have τ≤1S(p) ' Z(p), so the result holds for odd primes. It remains
to treat the case p = 2. In fact, we shall show that ModModE0

is (1 + 1
2 )-connected at p = 2, which

implies (τ≤1S(p), 1)-orientability, by definition.

By Theorem 6.58 applied to ModModE0
, it would suffice to show that pic(E0)π-tor

(2) ' I
(1)
2 S(2). Since

π∗E0 is a 2-periodic even graded field, π0pic(E0) ' Z/2, with the non-zero element given by the
isomorphism class of ΣE0 (see, e.g., [BR05, Theorem 37]). Since Ωpic(E0) ' E×0 we conclude that

πt(pic(E0)) =


Z/2Z t = 0
Q× t = 1
Q t > 1 odd
0 otherwise

Let X denote the fiber of the map pic(E0) ! pic(E0)[1/2]. Since pic(E0)[1/2]π-tor
(2) ' 0, we obtain

that pic(E0)π-tor
(2) ' Xπ-tor

(2) , and we shall compute the latter.
From the long exact sequence of homotopy groups associated with the fiber sequence

X ! pic(E0)! pic(E0)[1/2],

we see that the homotopy groups of X are as follows:

πt(X) =

 Z/2Z t = 0
Q2/Z2 t = 1
0 t ≥ 2.

In particular, by Proposition 6.53, X ' Xπ-tor
(2) , so it remains to show that X ' I(1)

2 S(2).
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Since X is an extension of Z/2Z by ΣQ2/Z2, it is classified by a map Z/2Z! Σ2Q2/Z2 in Sp. The
collection of homotopy classes of such maps is given by

π0 MapSp(Z/2Z,Σ2Q2/Z2) ' π0 MapModZ
(Z/2Z⊗S Z,Σ2Q2/Z2) ' (π2(Z/2Z⊗S Z))∗ ' Z/2Z,

where the last isomorphism follows from the classical computation of the integral (dual) Steenrod
algebra. Consequently, there are only two possible extensions of Z/2Z by ΣQ2/Z2, and we want to
show that X is the non-split one.
These two extensions can be distinguished using the multiplication-by-η map from π0 to π1, which
is 0 for the split extension and the inclusion Z/2Z ↪! Q2/Z2 for the non-split one. Since the
morphism X ! pic(E0) induces an isomorphism on π0 and an injection on π1, it suffices to show
that multiplication by η is non-zero already on π0pic(E0). This follows from the fact that, for the
class [ΣE0] ∈ π0(P ), we have (e.g., by [CSY21b, Proposition 3.20]),

η · [ΣE0] = dim(ΣE0) = −1 ∈ π1(pic(E0)) ' Q×,

which is non-trivial.

The discrepancy spectrum

Another application of the categorical connectedness result of Theorem 7.8, is an explicit description
of the spectrum µSp(En).

Theorem 7.12. For every n ≥ 0 there is an isomorphism

µSp(En) ' τ≥0(ΣnIQp/Zp) ∈ Spcn
(p).

Proof. The∞-category Mod∧En is (n+ 1
2 )-connected by Theorem 7.8, so the claim follows by Corol-

lary 6.59, keeping in mind that I(n)
p S(p) ' τ≥0(ΣnIQp/Zp).

The spectrum µSp(En) turns out to be closely related to the discrepancy spectrum of En. In
[AHR10], Ando, Hopkins, and Rezk defined the discrepency spectrum of an arbitrary Ln-local
commutative ring spectrum R as the fiber of the localization map R× ! LnR

×. For such a
ring spectrum R, it essentially follows from [AHR10, Theorem 4.11] that its discrepency spectrum
agrees with its p-torsion π-finite units µSp(R), after taking the connective cover and p-localizing.
As explained in [AHR10] (see the discussion below [AHR10, Lemma 4.12]), if R is Ln-local then
LnR

× ' LfnR×, so one can use LfnR× instead of LnR× in the definition of the discrepancy spectrum.
This variant has the advantage of providing a well-behaved notion of a discrepancy spectrum defined
for all Lfn-local commutative ring spectra. In particular, for this definition, the p-localization of the
discrepancy spectrum of R ∈ CAlg(LfnSp) is given by CfnR×.
Our goal in this subsection is to review the relation between the discrepancy spectrum and the
p-torsion π-finite units of Ln-local commutative ring spectra from [AHR10], and generalize it to the
context of Lfn-local commutative ring spectra. In fact, we will even work in the wider generality of
almost Lfn-local commutative ring spectra, in the following sense:

Definition 7.13. A p-local spectrum X is almost Lfn-local, if hom(Z,X) is bounded above for some
(and hence all) finite spectra Z of type n+ 1.
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Equivalently, X is almost Lfn-local if X⊗Z is bounded above for some (and hence all) finite spectra
Z of type n + 1. Indeed, hom(Z,X) ' DZ ⊗X and DZ is of type n + 1 if and only if Z is. Note
also that the collection of almost Lfn-local spectra itself forms a thick subcategory of Sp(p).

Remark 7.14. If we replace in Definition 7.13 ‘bounded above’ with ‘π-finite’, we arrive at the
stronger notion of fp-type n in the sense of Mahowald and Rezk [MR99].

Example 7.15. Every Lfn-local (and in particular Ln-local) spectrum is almost Lfn-local. Indeed,
a p-local spectrum X is Lfn-local if and only if hom(Z,X) = 0 for some finite spectrum Z of type
n+ 1.

Example 7.16. Every p-local bounded above spectrum is almost Lfn-local. Indeed, if X is a
bounded above spectrum and Z is any (in particular, type n + 1) finite spectrum, then Z ⊗X is
also bounded above.

The example above implies that the almost Lfn-locality of a spectrum can be checked after passing
to an arbitrary connected cover of it. In fact, one can verify this property using only an arbitrary
connected cover of its underlying space.

Proposition 7.17. Let X,Y ∈ Sp(p) be such that

Ω∞+dX ' Ω∞+dY ∈ S∗

for some (and hence all sufficiently large) d ≥ 0. Then, X is almost Lfn-local if and only if Y is.

Proof. Let A ∈ S∗ be a finite pointed space whose reduced suspension spectrum Z := S[A] is of type
n+ 1. Then, by definition, a spectrum W is almost Lfn-local if and only if hom(Z,W ) is bounded
above. This is the case if and only if there exists e ∈ N such that

Ω∞+e hom(Z,W ) ' pt (∗)

By applying the functor Ω to the above isomorphism, if (∗) holds for some e then it holds for any
larger value of e as well. Unwinding the definitions, we get

Ω∞+e hom(Z,W ) ' Ωe MapSp(Z,W ) ' Ωe MapS∗(A,Ω
∞W ) ' MapS∗(A,Ω

∞+eW ).

Now, if Ω∞+dX ' Ω∞+dY and X is almost Lfn-local, we may choose e satisfying (∗) for X such
that e ≥ d. But then

MapS∗(A,Ω
∞+eY ) ' MapS∗(A,Ω

∞+eX) ' pt

and we deduce that Y is almost Lfn-local as well. By symmetry, if Y is almost Lfn-local then so is
X and therefore they are almost Lfn-local together.

Given R ∈ CAlg(Sp(p)), in addition to the “additive” underlying p-local spectrum R ∈ Sp(p), we
can form the “multiplicative” p-localized spectrum of units R×(p) ∈ Sp(p). Although these are very
different p-local spectra in general, Proposition 7.17 implies that they are almost Lfn-local together.

Corollary 7.18. A p-local commutative ring spectrum R is almost Lfn-local if and only if the
p-localization of its spectrum of units R× is almost Lfn-local.
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Proof. This follows from Proposition 7.17 and the fact that

Ω∞+1R ' Ω∞+1R× ' Ω∞+1(R×(p)).

Note that, in particular, R×(p) is almost Lfn-local for every R ∈ CAlg(Spn). We thus obtain the
following:

Example 7.19. The spectrum (E×n )(p) is almost Lfn-local.

We proceed by analysing the behavior of the functor Cfn on arbitrary almost Lfn-local spectra.

Proposition 7.20. For an almost Lfn-local spectrum X, the spectrum CfnX is a filtered colimit of
bounded above p-torsion spectra.

Proof. This follows from the standard fact (see [HS99, Proposition 7.10]) that CfnX can be written
as lim−! hom(Zα, X), where the Zα-s are a cofiltered diagram of finite spectra of type n + 1. Since
X is almost Lfn-local and the Zα-s are finite p-torsion spectra, each hom(Zα, X) ' hom(Zα, CfnX)
is bounded above and p-torsion.

The functor Cfn is compatible with connective covers in the following sense:

Lemma 7.21. For X ∈ Sp, the canonical map

τ≥0(Cfnτ≥0X)! τ≥0(CfnX) ∈ Spcn
(p)

is an isomorphism.

Proof. Since Cfn is an exact functor, we have a cofiber sequence

Cfnτ≥0X −! CfnX −! Cfnτ≤−1X ∈ Sp(p).

Applying the limit preserving functor τ≥0 : Sp(p) ! Spcn
(p) we obtain a fiber sequence

τ≥0C
f
nτ≥0X −! τ≥0C

f
nX −! τ≥0C

f
nτ≤−1X ∈ Spcn

(p).

Thus to show that the first map is an isomorphism, it suffices to show that τ≥0C
f
nτ≤−1X ' 0.

Equivalently, for Y ∈ Sp, we wish to show that if τ≥0Y = 0 then τ≥0C
f
nY = 0. First, such a Y is

bounded above, so LfnY ' Q⊗ Y (as explained in Section 7.1). Consequently,

τ≥0L
f
nY ' τ≥0(Q⊗ Y ) ' Q⊗ τ≥0Y ' 0,

and similarly
τ≥0Y(p) ' (τ≥0Y )(p) ' 0.

Finally, CfnY is the fiber of a map Y(p) ! LfnY , and since the functor τ≥0 : Sp ! Spcn preserves
fibers, we get τ≥0C

f
nY ' 0.

Recall that µSp(R) is defined as the p-local π-torsion part of R×. The relation between µSp(R) and
the discrepancy spectrum of R is deduced from the following general fact:
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Proposition 7.22. Let X be an almost Lfn-local spectrum. Then

τ≥0(CfnX) ' (τ≥0X)π-tor
(p) ∈ Spcn

(p).

Proof. First, we can assume without loss of generality that X is connective, by replacing it with
τ≥0X. Indeed, by Example 7.16, the spectrum τ≥0X is also almost Lfn-local, and by Lemma 7.21,
we have τ≥0(CfnX) ' τ≥0(Cfnτ≥0X). Now, by the definition of (−)π-tor

(p) , it would suffice to show
that:

(1) τ≥0C
f
nX ∈ Spπ-tor

(p) .

(2) For every Z ∈ Spπ-tor
(p) , the map τ≥0C

f
nX ! X induces an isomorphism

Map(Z, τ≥0C
f
nX) ' Map(Z,X).

For (1), by Proposition 7.20, there is a filtered colimit presentation CfnX ' lim−!Xα such that each
Xα is bounded above and p-torsion. Since the formation of connective covers preserves filtered
colimits, we obtain that

τ≥0(CfnX) ' lim−! τ≥0Xα.

Each τ≥0Xα is connective, bounded above and p-torsion. By Proposition 6.53, τ≥0Xα belongs to
Spπ-tor

(p) , and hence so does τ≥0(CfnX).
For (2), by definition, every Z ∈ Spπ-tor

(p) is a filtered colimit of bounded above p-torsion spectra. A
bounded above spectrum Y satisfies LfnY ' Y ⊗Q and if Y is also p-torsion, then it is Lfn-acyclic.
Since Lfn-acyclic spectra are closed under colimits, we deduce that Z itself is Lfn-acyclic, hence
Spπ-tor

(p) ⊆ Cfn(Sp(p)). Consequently,

Map(Z,X) ' Map(Z,CfnX) ' Map(Z, τ≥0(CfnX)),

where the composite of these isomorphisms is given by post-composing with the canonical map
τ≥0C

f
nX ! X.

Putting everything together we get the main result of this subsection.

Theorem 7.23 (cf. [AHR10, Theorem 4.11]). For all n ≥ 0 and for every almost Lfn-local commu-
tative ring spectrum R, we have

µSp(R) ' τ≥0C
f
n(R×) ∈ Spcn

(p).

Proof. By Corollary 7.18, the p-localization of the spectrum R× is almost Lfn-local as well. Hence,
by Proposition 7.22, we have

τ≥0C
f
n(R×) = τ≥0C

f
n((R×)(p)) ' (R×)π-tor

(p) := µSp(R).

Corollary 7.24. The connective cover of the p-localized discrepancy spectrum of En is isomorphic
to τ≥0(ΣnIQp/Zp).
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Proof. Recall that the connective cover of the p-localized discrepancy spectrum of En is isomorphic
to τ≥0C

f
n(E×n ). By Theorem 7.23, we have τ≥0C

f
n(E×n ) ' µSp(En). Hence, the result follows from

Theorem 7.12.

Remark 7.25. Using the vanishing of the telescopic homology of sufficiently connected Eilenberg–
MacLane spaces, established in [CSY22, Theorem E], the same argument as in the proof of Proposi-
tion 6.56, shows that µSp(R) is n-truncated for everyR ∈ CAlg(LfnSp). Together with Theorem 7.23,
this constitutes a telescopic generalization of [AHR10, Theorem 4.11].

As another consequence of Theorem 7.23, we obtain the following property of the functor µSp(−).

Corollary 7.26. The functor µSp(−) : CAlg(LfnSp)! Spπ-tor
(p) preserves filtered colimits.

Proof. First, observe that the fully faithful embedding Spπ-tor
(p) ↪! Spcn

(p) is conservative and preserves
filtered colimits, so it suffices to prove the claim when regarding µSp(−) as a functor into p-local
connective spectra.
By Theorem 7.23, we have µSp(R) ' τ≥0C

f
n(R×) for R ∈ CAlg(LfnSp). Namely, we may write the

functor µSp(−) as the composition

CAlg(LfnSp) ↪−!
(1)

CAlg(Sp) (−)×
−−−!

(2)
Sp Cfn−−−!

(3)
Sp(p)

τ≥0
−−!
(4)

Spcn
(p).

We will proceed by showing that each of the functors in this composite preserve filtered colimits.

(1) The embedding CAlg(LfnSp) ↪! CAlg(Sp) is obtained from the lax symmetric monoidal,
colimit preserving, fully faithful embedding LfnSp ↪! Sp by applying CAlg(−), and hence it
preserves filtered colimits.

(2) The argument for the functor (−)× : CAlg(Sp)! Sp is similar to [MS16, Proposition 2.3.3],
and we give it for completeness. The lax symmetric monoidal functor Ω∞ : Sp! S preserves
filtered colimits, and therefore so does the induced functor CAlg(Sp) ! CMon(S), taking
a commutative algebra to its underlying space with the multiplicative commutative monoid
structure. Furthermore, the functor CMon(S) ! Spcn, right adjoint to the inclusion of
connective spectra as group-like commutative monoids, also preserves filtered colimits. Indeed,
this can be checked after composing with the conservative filtered colimit preserving forgetful
functor CMon(S)! S, and the invertible elements form a connected summand, so the claim
can be easily verified on π0.

(3) The functor Cfn : Sp! Sp(p) is the acyclification functor associated with the smashing local-
ization Lfn and hence it preserves all small colimits.

(4) The functor τ≥0 : Sp(p) ! Spcn
(p) preserves filtered colimits since the formation of homotopy

groups preserves filtered colimits.

We deduce that their composition µSp(−) preserves filtered colimits.
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7.3 Virtual orientability of SpT (n)

We now turn to the application of the theory of orientations and the Fourier transform to the
T (n)-local setting. In particular, we construct a T (n)-local lift of the chromatic Fourier transform
(Theorem A) and prove the corresponding T (n)-local affineness, Eilenberg–Moore and Galois results
(Theorem B and Theorem C).

Virtual Fp-orientability & applications

In [HL13, §5], the (Z(p), n)-orientability of En was used to prove affineness results for SpK(n),
as well as Eilenberg–Moore type formulas for the cohomology of π-finite spaces with K(n)-local
coefficients. From the Fourier-theoretic perspective, this is a formal consequence of SpK(n) being
virtually (Fp, n)-orientable. Similarly, the next proposition allows us to lift all of these results to
SpT (n).

Proposition 7.27. For all n ≥ 0, the ∞-category SpT (n) is virtually (Fp, n)-orientable.

Proof. The T (n)-local commutative ring spectrum En is (Z(p), n)-orientable by Corollary 7.2 and
hence in particular (Fp, n)-orientable by Proposition 4.4. Since the functor

En ⊗ (−) : SpT (n) −! Mod∧En

is nil-conservative (see, e.g., [CSY22, Corollary 5.1.17]6), we deduce from Proposition 6.9 that
SpT (n) is virtually (Fp, n)-orientable.

Remark 7.28. The virtual (Fp, n)-orientability of SpT (n) depends crucially on the fact that it is
∞-semiadditive of semiadditive height n ([CSY21a, Theorem 4.4.5]). However, those properties
alone do not suffice to guarantee that a stable ∞-category is virtually (Fp, n)-orientable. Indeed,
for n = 1, the universal example of such an ∞-category is 1צ (constructed in [CSY21a, Theorem
5.3.6]). In [Yua22], Yuan constructs a commutative algebra S1צ

p ∈ CAlg(1צ), whose p-th cyclotomic
extension is not Galois ([Yua22, Proposition 3.9]). By Proposition 6.11, this implies that 1צ is not
virtually (Fp, 1)-orientable.

The virtual (Fp, n)-orientability of SpT (n) implies the following affineness result:

Theorem 7.29. Let n ≥ 0, and let A be a π-finite space for which π1(A, a) is a p-group and
πn+1(A, a) is of order prime to p, for every a ∈ A. Then, A is SpT (n)-affine.

Recall that by Proposition 2.5, this implies that for every R ∈ Alg(SpT (n))A, the global sections
functor induces an isomorphism

ModR(SpAT (n)) ∼−−! ModA∗R(SpT (n)).

Proof. By Proposition 7.27, SpT (n) is virtually (Fp, n)-orientable, and as it is also stable and p-local,
the SpT (n)-affineness of A follows from Theorem 6.2 and Remark 6.3.

6The height 0 case, while not covered by the referred corollary, follows easily from the fact that Q is a retract of
E0 in SpQ.
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The affineness of the spaces in Theorem 7.29 gives in turn corresponding Eilenberg–Moore type
results:

Corollary 7.30. Let A be as in Theorem 7.29 (e.g., an n-finite p-space) and let R ∈ Alg(SpT (n)).
For every π-finite space B and an arbitrary space B′ mapping to A, we have

RB ⊗RA RB
′
' RB×AB

′
∈ SpT (n)

Proof. The space A and the map B ! A are SpT (n)-ambidextrous by the ∞-semiadditivity of
SpT (n) ([CSY22, Theorem A]), and A is SpT (n)-affine, by Theorem 7.29. Thus, the claim follows
from Theorem 2.38.

We also obtain the following result on the ubiquity of T (n)-local Galois extensions:

Corollary 7.31. Let A be as in Theorem 7.29 (e.g., an n-finite p-space). Every R ∈ CAlg(SpT (n))A
is an A-Galois extension of A∗R, in the sense of Definition 2.25.

In particular, for n ≥ 1 and G a finite p-group, every R ∈ CAlg(SpT (n))BG is a G-Galois extension
of its fixed point algebra RhG.

Proof. By Theorem 7.29, A is SpT (n)-affine. Hence, the claim follows from Corollary 2.28.

Remark 7.32. The K(n)-local analogues of the above results follow easily, either using the colimit
preserving symmetric monoidal functor LK(n) : SpT (n) ! SpK(n) or by an identical argument start-
ing from the virtual (Fp, n)-orientability of SpK(n). In particular, we recover the affineness result
of [HL13, Theorem 5.4.3] and the Eilenberg–Moore type result of [HL13, Theorem 5.4.8].

The virtual Fp-orientability of SpT (n), given by Proposition 7.27, bootstraps automatically to virtual
R-orientability for every connective n-truncated π-finite p-local commutative ring spectrum R, by
Corollary 6.5. Namely, the corresponding R-cyclotomic extensions, over which we have a Fourier
transform isomorphism, are faithful. Specializing to R = Z/pr, these are precisely the T (n)-local
higher cyclotomic extensions Rfn,r constructed in [CSY21b]. We thus obtain Fourier isomorphisms
over these extensions.

Theorem 7.33. For every n ≥ 0 and r ≥ 1, there is a natural isomorphism of T (n)-local commu-
tative Rfn,r-algebras

Fω : R
f
n,r[M ] ∼−−! (Rfn,r)bΣ

nM∗c,

where M is a connective π-finite Z/pr-module and M∗ is its Pontryagin dual.

Proof. By Corollary 6.7, Rfn,r is the universal (Z/pr, n)-oriented commutative algebra in SpT (n).

Finally, we also obtain a higher chromatic height analogue of Kummer theory.

Theorem 7.34. For every n ≥ 0, every R ∈ CAlg(SpT (n)) admitting a primitive higher pr-th root
of unity, and every M ∈ Mod[0,n]-fin

Z/pr , there is a natural isomorphism of spaces

CAlgbMc−gal(R; SpT (n)) ' MapSpcn(I(n)
p M,R×).
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Proof. This is a special case of Proposition 4.32.

Classically, Kummer theory is used to classify abelian Galois extensions. Applying Theorem 7.34
to the case of finite abelian p-groups, we get a similar classification in arbitrary chromatic heights.

Corollary 7.35. For every n ≥ 0, every R ∈ CAlg(SpT (n)) admitting a primitive higher pr-th root
of unity, and every finite abelian pr-torsion group M , there is a natural isomorphism

CAlgBM−gal(R; SpT (n)) ' MapSpcn(ΣnM∗,pic(R)).

Proof. The case n = 0 follows from [CSY21b, Theorem 3.18]. For n ≥ 1 we have

Map(ΣnM∗,pic(R)) ' Map(Σn−1M∗,Ωpic(R)) '

Map(Σn−1M∗, R×) ' Map(I(n)
p ΣM,R×).

By Theorem 7.34, the last space identifies with

CAlgbΣMc−gal(R; SpT (n)) = CAlgBM−gal(R; SpT (n)).

Virtual Z(p)-orientability & speculations

By Corollary 6.18, the infinite cyclotomic extension Rfn is the universal (Z(p), n)-orientable T (n)-
local commutative ring spectrum, so in particular it supports a Fourier transform for all π-finite
p-local Z-modules. Note that by universality, this lifts the K(n)-local Fourier transform over Rn
from Theorem 7.5. However, in contrast with Rn, we do not know whether Rfn is faithful (even
though all the Rfn,r-s are). This question can be re-formulated in a way that might shed some light
on the relationship between SpT (n) and SpK(n).
By Proposition 4.27, the Bousfield localization of SpT (n) with respect to Rfn is the universal virtu-
ally Z(p)-orientable symmetric monoidal localization of SpT (n). Proposition 6.19 tells us that this
localization ŜpT (n) := (SpT (n))Rfn is smashing and that its unit is given by (Rfn)hG ∈ CAlg(SpT (n)),
where

G := Tp × Z ⊆ Tp × Zp ' Z×p .

We also observe that since, essentially by construction, ŜpT (n) is virtually Z(p)-orientable, it is in
fact virtually S(p)-orientable, by Proposition 6.20. Now, Since SpK(n) is a virtually Z(p)-orientable
localization of SpT (n), we obtain a chain of fully faithful embeddings

SpK(n) ⊆ ŜpT (n) ⊆ SpT (n).

The gap between SpK(n) and SpT (n) is the subject of Ravenel’s celebrated telescope conjecture,
which would imply that all the above inclusions are in fact equalities. However, this conjecture is
not only open, but also believed by many experts to be false for heights greater than 1. It is also
not known whether there can be any Bousfield localization strictly in between SpK(n) and SpT (n).
In this light, we propose the following:

Question 7.36. What can be said about the location of the intermediate localization ŜpT (n)? In
particular, is ŜpT (n) = SpK(n)? Is ŜpT (n) = SpT (n)?
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On the one hand, ŜpT (n) = SpT (n) if and only if Rfn is faithful in SpT (n). On the other, ŜpT (n) =
SpK(n) if and only if Rfn is itself K(n)-local, namely Rfn ' LK(n)R

f
n ' Rn. Thus, the failure of the

telescope conjecture is equivalent to at least one of these assertions being false, while the failure of
both would produce a strictly intermediate localization.
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