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Abstract. We develop a theory of cosupport and costratification in tensor

triangular geometry. We study the geometric relationship between support
and cosupport, provide a conceptual foundation for cosupport as categori-
cally dual to support, and discover surprising relations between the theory of

costratification and the theory of stratification. We prove that many categories
in algebra, topology and geometry are costratified by developing and applying
descent techniques. An overarching theme is that cosupport is relevant for

diverse questions in tensor triangular geometry and that a full understanding
of a category requires knowledge of both its support and its cosupport.
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1. Introduction

One approach for comparing the objects of a given category is via a support theory.
The prototypical example is given by the support of a module in commutative algebra,
which inspired similar constructions in related areas such as algebraic geometry,
representation theory, and chromatic homotopy theory, to name just a few. The
common perspective is to view the objects of the category as “bundles” over a
geometric base space and record the points at which an object does not vanish. These
theories of support have been remarkably successful in organizing the objects being
studied, especially in derived and homotopical contexts [BCR97, Tho97, HS98].

Tensor triangular geometry [Bal10] puts these developments in a unified frame-
work: It regards a tensor-triangulated category T as a bundle over a certain space,
its Balmer spectrum, and constructs the universal theory of support for the compact
objects of T. This universal theory of support classifies the compact objects up to
how they build each other using the naturally available categorical structure. The
theory was extended beyond compact objects to “infinite-dimensional” contexts
in [Nee92a, HPS97, BF11, BIK08, Ste13, BHS23]. The theory of support is more
subtle for non-compact objects but in desirable situations extends the classification
of compact objects to all objects. This is characterized by a property of the category
called stratification.

The goal of this paper is to systematically develop a dual theory of cosupport in
tensor triangular geometry as well as the accompanying notion of costratification.
Conceptually, this may be motivated from three complementary points of view:

• (Geometric) In algebraic geometry, the support of a quasi-coherent sheaf
is captured by its local cohomology. The cosupport corresponds to local
homology. Grothendieck’s local duality expresses the relation between the
two notions through an adjunction, which can be formalized and provides a
definition of cosupport in more general settings. This is how cosupport has
traditionally been introduced into the literature.

• (Constructive) Theories of support provide an approach to understanding
infinite-dimensional objects in terms of how they build each other using the
naturally available “finite” structure together with infinite coproducts. This
amounts to studying the localizing ideals of the category. While the idea of
generating objects using coproducts is instilled in us from birth, it is not
the only choice: We can also gain insight by considering how objects build
each other using other constructions, such as infinite products. This leads to
studying the colocalizing coideals of the category, and is the organizational
framework that cosupport provides.

• (Categorical) The cosupport of a compactly generated category T can be
understood as the support associated to the opposite category Top. This
provides a very conceptual understanding of cosupport which has been
missing from the literature. It also highlights part of the subtlety of the
theory as Top fails to be compactly generated in all but trivial cases.

Superficially, this seems to suggest that cosupport and its properties are merely a
formal variant of the already established theory of support. However, this conclusion
would be false, as we will demonstrate throughout this work. Moreover, it turns out
that cosupport appears naturally even in situations where one is only interested in
support, and only the combination of both provides a full picture.
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Our construction of cosupport takes place in the context of a rigidly-compactly
generated tensor-triangulated (“tt”) category T whose Balmer spectrum of compact
objects Spc(Tc) is weakly noetherian (a mild point-set topological assumption
introduced in [BHS23] which simultaneously generalizes noetherian and profinite).
It takes the form of an assignment

Cosupp:
{

objects of T
}
−→

{
subsets of Spc(Tc)

}
satisfying a number of compatibilities with respect to the tensor-triangulated struc-
ture of T. We briefly and informally summarize the main features of our theory of
cosupport as follows:

• Cosupport illuminates key properties of support. For instance, the local-
to-global principle for support is equivalent to the detection property for
cosupport, and stratification can be characterized in terms of the combined
behaviour of support and cosupport. The behaviour of cosupport also
reflects the topology of the Balmer spectrum and thus provides insight into
the structure of compact objects. More generally, we study the geometric
relationship between support and cosupport and how they are intertwined
through intrinsic dualities in T.

• Cosupport affords an accompanying notion of costratification, which at-
tempts to parameterize colocalizing coideals of T in terms of subsets of the
Balmer spectrum. The basic properties of this theory are dual to those
of stratification as developed in [BHS23]. For example, we prove that our
theory of cosupport is the universal choice for classifying colocalizing coideals.
In particular, this implies that if T is costratified in the sense of Benson–
Iyengar–Krause [BIK12] then it is also costratified in our sense, but there
are many classes of examples for which the converse fails.

• We clarify the relation between stratification and costratification, discovering
a surprising asymmetry between the corresponding notions of (co)detection
and (co)local-to-global principle. Nevertheless, while costratification is an
a priori stronger property than stratification, we verify that all known
examples of stratified categories are also costratified. These results are
obtained as applications of general descent techniques. Our methods provide
streamlined proofs of all known classifications of colocalizing coideals in the
literature, and also establish new ones which were not previously accessible.

• We unify support and cosupport by showing that they both arise as particular
instances of a more general notion of support defined at a level of generality
which encompasses both T and Top. This leads to a deeper conceptual
understanding of cosupport as simply the support of the opposite category.

Content and summary of main results. We now proceed to give a more detailed
outline of the main results of the paper. These can be loosely organized into six
interconnected themes, as follows. Note however that the story being told here does
not faithfully reflect the linear structure of the document, for which we instead refer
to the end of the introduction.

Hypothesis. Throughout the introduction, (T,⊗,1) will denote a rigidly-compactly
generated tt-category with weakly noetherian spectrum Spc(Tc). We will denote
the internal hom of T by hom(−,−).
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Theme I. Cosupport and costratification. The common starting point for the
definition of support and cosupport in our tt-geometric setting is the existence of a
suitable supply of idempotents gP ∈ T which can be used to isolate attention at each
point P ∈ Spc(Tc). The construction of these idempotents relies on our topological
assumption that Spc(Tc) is weakly noetherian. We then define the support and
cosupport of an object t ∈ T (Definition 4.23) as the following subsets of Spc(Tc):

Supp(t) =
{
P
∣∣ gP ⊗ t 6= 0

}
and Cosupp(t) =

{
P
∣∣ hom(gP, t) 6= 0

}
.

This definition of support is due to Balmer–Favi [BF11] and was studied in [BHS23].
The definition of cosupport is inspired by the constructions of [HS99], [Nee11]
and especially [BIK12], where a similar definition is considered in the context of a
triangulated category equipped with an auxiliary action of a commutative noetherian
ring. We first extract the elementary properties the function Cosupp(t) satisfies and
thereby formulate the axiomatic notion of a cosupport theory (Definition 3.1 and
Proposition 4.25). This is summarized as follows:

Theorem. Cosupport satisfies the conditions of an axiomatic cosupport theory:

(a) Cosupp(0) = ∅ and Cosupp(T) = Spc(Tc);
(b) Cosupp(Σt) = Cosupp(t) for every t ∈ T;
(c) Cosupp(c) ⊆ Cosupp(a)∪Cosupp(b) for any exact triangle a→ b→ c in T;
(d) Cosupp(

∏
i∈I ti) =

⋃
i∈I Cosupp(ti) for any set of objects ti in T;

(e) Cosupp(hom(s, t)) ⊆ Cosupp(t) for all s, t ∈ T.

Although basic, formulating the axioms correctly is subtle due to the asymmetric
interaction between cosupport and support discussed in Theme II below, which is
hinted at by the unusual form of axiom (e). The key principle which guides our
choice of axioms is the observation that, while the collection of objects supported
on a given set forms a localizing ideal, the collection of objects cosupported on a
given set forms a colocalizing coideal (Definition 2.2). The above axioms (excluding
Cosupp(T) = Spc(Tc)) are in fact equivalent to the statement that the collection of
objects cosupported on a given set form a colocalizing coideal. Cosupport is thus
intimately related to the study of colocalizing coideals in the same way that support
is intimately related to the study of localizing ideals.

In [BHS23] we defined the category T to be stratified if the map

Supp:
{

localizing ideals of T
}
−→

{
subsets of Spc(Tc)

}
induced by the Balmer–Favi support is a bijection. Although one could consider the
analogous statement for any support theory on T, we proved that the Balmer–Favi
notion of support provides the universal choice of support theory for the purposes
of stratifying T. This justifies defining stratification as a property of the category
as above, rather than as a notion relative to a choice of auxiliary support theory.

Similarly, we say that T is costratified (Definition 7.1) if the map

Cosupp:
{

colocalizing coideals of T
}
−→

{
subsets of Spc(Tc)

}
induced by our tensor triangular cosupport theory is bijective. This intrinsic
definition of costratification as a property of T is justified by a corresponding
universality result for our cosupport theory:

Theorem (Informal version). Cosupport is the universal choice among costratifying
cosupport theories for T which is compatible with the usual classification of compact
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objects in T. In particular, if T is costratified in the sense of [BIK12], then it is also
costratified in our sense.

More precise statements are in Corollary 11.10 and Corollary 11.12. We merely
remark in passing that this universality result for cosupport is more subtle than
the corresponding result for support, since the restriction of Cosupp to the compact
objects does not in general coincide with Balmer’s universal support for compact
objects. Examples abound of tt-categories which are costratified in our sense but
not in the sense of [BIK12], and so—in our tensor triangular setting—our theory of
costratification is strictly more general than that of [BIK12].

In order to discuss our results further, we need additional preparation. Recall
that the spectrum of T controls its global geometric structure through a divide and
conquer approach: First decompose T into pieces ΓPT that capture those objects
with support concentrated at a single point P ∈ Spc(Tc) and secondly study these
individual pieces (or “stalks”). Intuitively, the local-to-global principle stipulates
that T can be reconstructed from its local pieces. In other words, each object
of T can be built from its stalks. In particular, it implies the detection property:
Supp(t) = ∅ if and only if t = 0. If T satisfies the local-to-global principle, there is
then a condition on the local pieces ΓPT which characterizes when the category T is
stratified, namely that the stalks ΓPT are minimal as localizing ideals. This is the
beginning to the theory of stratification developed systematically in [BHS23].

Now we can consider the analogue of these notions based on cosupport: We define
the colocalizing coideal ΛPT of T consisting of all objects which are cosupported at
a single point P ∈ Spc(Tc) and we have a corresponding colocal-to-global principle
(Definition 6.1) which morally states that every object can be built from these
“costalks”. This in turn implies the codetection property (Definition 5.5) which
states that Cosupp(t) = ∅ if and only if t = 0. In complete analogy with the theory
of stratification we have (Theorem 7.7):

Theorem. The following conditions are equivalent:

(a) T is costratified;
(b) T satisfies the colocal-to-global principle, and the colocalizing coideal ΛPT is

minimal for each P ∈ Spc(Tc).

In this way, the theory of costratification has the same basic features as the
theory of stratification developed in [BHS23].

Theme II. Asymmetry between stratification and costratification. Al-
though stratification and costratification have analogous characterizations, as de-
scribed above, there is a remarkable asymmetry in the relationship between the
two properties. Surprisingly, the local-to-global principle is equivalent to the code-
tection property and these are both equivalent to the colocal-to-global principle
(Theorem 6.4):

Theorem. The following conditions are equivalent:

(a) T satisfies the local-to-global principle;
(b) T satisfies the colocal-to-global principle;
(c) T satisfies the codetection property.

These conditions imply the detection property, but the converse does not hold in
general.

Moreover, costratification implies stratification (Theorem 7.19 and Corollary 7.20):
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Theorem. If T is costratified, then it is also stratified. Moreover, in this case the
map sending a localizing ideal L to its right orthogonal L⊥ =

{
t ∈ T

∣∣ hom(L, t) = 0
}

induces a bijection

{localizing ideals of T} ∼−→ {colocalizing coideals of T}
with inverse given by the left orthogonal.

We thus have a hierarchy of properties that a tt-category can possess, summarized
by the following diagram:

T is costratified

T is stratified

Codetection holds for T
The local-to-global principle

holds for T

The colocal-to-global
principle holds for T

Detection holds for T

?

\\
\\

It remains an open question whether stratification implies costratification in
general. This is related to questions concerning the existence of arbitrary Bousfield
localizations and is thereby related to set-theoretic concerns such as Vopĕnka’s
principle (see Remark 2.14 and Remarks 7.22–7.23). In light of this discrepancy,
costratification remains an a priori deeper property than stratification. From a
more practical point of view, the proofs of the known instances of costratification—
such as [Nee11] or [BIK12]—are significantly more involved than their stratification
counterparts. We will return to this topic later in Theme VI.

We now turn to another asymmetry between support and cosupport. A basic
property of support is that

(†) Supp(s⊗ t) ⊆ Supp(s) ∩ Supp(t)

for any s, t ∈ T. The “half-⊗ formula” states that this inclusion is an equality when
the object s is compact. Moreover, this is promoted to a “full-⊗ formula” (that
is, (†) is an equality for all objects) when the category is stratified. In contrast, the
behaviour for cosupport is as follows:

Theorem. The following statements hold:

(a) For any s, t ∈ T, Cosupp(hom(s, t)) ⊆ Supp(s) ∩ Cosupp(t).
(b) For any x ∈ Tc and t ∈ T, Cosupp(hom(x, t)) = Supp(x) ∩ Cosupp(t).
(c) Assume the local-to-global principle holds for T. The following conditions

are equivalent:
(i) T is stratified;

(ii) For all s, t ∈ T, we have Cosupp(hom(s, t)) = Supp(s) ∩ Cosupp(t).
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This is established in Lemma 4.29, Proposition 4.35, and Theorem 7.15. Note
how the inclusion in part (a), which is the analogue of property (†), involves both
cosupport and support. Part (b) of the theorem provides the “half-hom formula”.
Part (c) establishes that the half-hom formula promotes to a “full-hom formula” if and
only if the category is stratified (provided the local-to-global principle holds). This
fundamental relationship between stratification and the behaviour of cosupport is a
discovery due to Benson–Iyengar–Krause [BIK12]. One might have expected a priori
that the full-hom formula would instead be more closely related to costratification.

Theme III. The geometric relationship between support and cosupport.
The above motivates the search for a systematic geometric description of the relation
between support and cosupport as subsets of the spectrum. This turns out to be a
subtle question, but there are several conceptual results we can prove. For example,
we prove (Corollary 8.4):

Theorem. If T has noetherian spectrum, then min Supp(t) = min Cosupp(t) for
any t ∈ T. In general, if the spectrum is not noetherian, this identity can fail.

In the situation of the theorem, one might wonder whether it is possible for the
support and cosupport functions to coincide. We prove (Corollary 8.14):

Theorem. If T has noetherian spectrum, then the following are equivalent:

(a) Supp(t) = Cosupp(t) for all t ∈ T.
(b) Spc(Tc) is a finite discrete space.

From a more general perspective, the question of whether support coincides with
cosupport is related to the vanishing of the Tate construction and thereby reflects
the topology of the Balmer spectrum. For example, we have (Corollary 8.12):

Theorem. Assume that the codetection property holds. Let Y ⊆ Spc(Tc) be a
Thomason subset and let eY ∈ T be the associated left idempotent with Supp(eY ) = Y .
Then Cosupp(eY ) ⊆ Y if and only if there is a decomposition Spc(Tc) = Y t Y c as
a disjoint union of closed sets.

More refined statements could be made, but the significant point is that under-
standing cosupport is relevant even for questions purely about the structure of the
category Tc of compact objects.

It would be desirable to find a process for computing the cosupport of a given
object in terms of its support or vice versa. This turns out to be too optimistic: We
provide explicit counterexamples showing that in general the support of an object
does not determine its cosupport (Example 8.19) and, vice versa, the cosupport of
an object does not determine its support (Example 8.20). There are, however, more
refined ways to relate support and cosupport; for example, by considering pairs
of objects related by some notion of duality. To this end, we undertake a general
study of dualities in tt-categories (Definition 12.1) and analyze how support and
cosupport transform under them. For example, Brown–Comenetz duality provides
a way to construct objects with prescribed cosupport (Proposition 12.4):

Theorem. For any t ∈ T, Cosupp(t∗) = Supp(t), where t∗ denotes the Brown–
Comenetz dual of t.

Our results on dualities can be applied to a wide variety of examples. The
following theorem (Proposition 12.15) provides an illustrative example of the type of
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result which can be obtained. To understand the statement, we say that an object
t ∈ T has small cosupport if Cosupp(t) ⊆ Supp(t). Examples include compact
objects, and also dualizing complexes in algebraic geometry.

Theorem. Let T be stratified and suppose κ ∈ T dualizes the subcategory T0 ⊆ T.
If the objects of T0 have small cosupport, then for any t ∈ T0 we have

Cosupp(t) = Supp(t) ∩ Cosupp(κ).

Applied to Spanier–Whitehead duality, the statement of the theorem reduces to
the half-hom formula. Applied to the derived category of a commutative noetherian
ring which admits a dualizing complex, it extends the half-hom formula to bounded
complexes of coherent sheaves. These results clarify a number of results in the
literature concerning the relation between cosupport and completion.

Theme IV. Cosupport is support. A significant contribution of this paper is a
unification of support and cosupport which shows that they are both manifestations
of the same construction. This unification is not obvious. Attempts to find a deeper
connection between support and cosupport are clouded by the fact that colocalizing
coideals are not obviously categorically dual to localizing ideals. The key insight
that leads to their unification is the realization that T and Top share the same rigid
tt-category Td ∼= (Top)d of dualizable objects and that localizing Td-submodules of T
are precisely the localizing ideals of T, while the localizing Td-submodules of Top

are precisely the colocalizing coideals of T. Technicalities arise because the opposite
category Top is never compactly generated, but a framework which covers both T

and Top is provided by the notion of a perfectly generated non-closed tt-category
(Terminology 10.1). Summarizing results from Section 10, we have:

Theorem. There is a theory of support for perfectly generated non-closed tt-
categories T whose spectrum Spc(Td) of dualizable objects is weakly noetherian, and a
corresponding notion of stratification for classifying the localizing Td-submodules of T.

Example 10.31, Example 10.32, and Theorem 10.35 then provide:

Theorem. Let T be a rigidly-compactly generated tt-category.

(a) Applied to T the above theory reduces to the theory of support and stratifica-
tion for localizing ideals of T developed in [BHS23].

(b) Applied to Top the above theory reduces to the theory of cosupport and
costratification for colocalizing coideals of T developed in this paper.

(c) In particular,

CosuppT(t) = SuppTop(t)

for all t ∈ T, the colocalizing coideals of T are precisely the localizing
Td-submodules of Top, and T is costratified precisely when Top is stratified.

This provides sound conceptual foundations for the construction of cosupport.

Theme V. Base change of support and cosupport. Another major theme in
this paper is the study of the behaviour of support and cosupport in a relative
setting, that is under base change along functors between tt-categories. Such results
are of fundamental importance in the subject, as they allow us to reduce problems
in a category of interest to simpler categories. This is vital in our applications to
classification problems discussed below. It also emphasizes the value of basing our
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theory of cosupport on the Balmer spectrum, which readily affords a geometric
perspective for relating tt-categories.

The basic setup is a geometric functor f∗ : T → S, that is, a tt-functor which
preserves coproducts. The functor f∗ induces a continuous map on spectra

ϕ := Spc(f∗) : Spc(Sc)→ Spc(Tc).

Our assumptions also guarantee the existence of two layers of right adjoints:

f∗ a f∗ a f !.

We obtain a variety of results concerning the image and preimage under ϕ of support
and cosupport. An interesting feature is the prominent role that the double right
adjoint f ! plays concerning base change for cosupport. For example, one highlight
(Corollary 14.19) establishes the Avrunin–Scott identities [AS82] in a general tensor
triangular context:

Theorem. If f∗ : T → S a geometric functor with T stratified, then for any t ∈ T:

SuppS(f∗(t)) = ϕ−1(SuppT(t)) and CosuppS(f !(t)) = ϕ−1(CosuppT(t)).

These identities play a vital role in the study of descent properties for stratification,
a topic discussed in more detail below.

Another result (Corollary 13.15) gives an unconditional description of the image:

Theorem. If f∗ : T → S is a geometric functor, then imϕ = SuppT(f∗(1S)).

A number of more refined statements are obtained. For example, we prove that
if f∗ satisfies Grothendieck–Neeman duality (in the sense of [BDS16]) then the
induced map on spectra ϕ is a closed map (Remark 13.26). We also exhibit a close
relationship between the surjectivity of ϕ and the conservativity of the functors f∗

and f !; see, e.g., Proposition 13.33 and Corollary 14.24.
These are just the highlights of our base change results; they already demonstrate

that cosupport arises naturally in the study of any geometric functor f∗ : T → S,
providing insight into the behaviour of the double right adjoint f ! : T → S.

Theme VI. Descent and applications. Another theme is the development
of general techniques which allow us to establish costratification for numerous
categories of interest. These techniques will provide streamlined proofs for all known
classifications of colocalizing coideals in the literature and also apply to new classes
of examples that were not previously accessible. To provide proper context for our
results, we briefly review a blueprint for proving stratification, and then explain
how to bootstrap this process to establish costratification.

Suppose T is a tt-category that we wish to prove is stratified. This proceeds
naturally in three steps:

Step 1 Construct geometric functors f∗i : T → Si to simpler tt-categories Si such
that the images of the maps ϕi := Spc(f∗i ) jointly cover Spc(Tc).

Step 2 Prove stratification for the categories Si.
Step 3 Descend stratification along the functors f∗i .

Progress usually hinges on improvements in Step 3, i.e., finding more general criteria
for descending stratification. To this end, we add to the existing toolbox for
establishing stratification in the form of quasi-finite descent (Theorem 17.16) and
nil-descent (Theorem 17.20).
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Now the question presents itself of whether a similar approach works for costrati-
fication. We show that this is indeed the case in the strongest possible way, provided
we already have stratification. In other words, we prove that whenever we can
descend stratification, we can also descend costratification. The key insight is the
following ‘bootstrap theorem’:

Theorem. Suppose f∗ : T → S is a conservative geometric functor such that S is
costratified. If T is stratified, then it is also costratified.

This is Corollary 17.4 and is one of our main results. In order to run the descent
strategy and apply the theorem, we also need a sufficient supply of costratified
categories. One source is provided by our next result which combines Corollary 18.9
and Theorem 18.15:

Theorem. The following tt-categories T are costratified (and hence also stratified):

(a) T is pure-semisimple (e.g., a tt-field in the sense of [BKS19]). In this case,
Spc(Tc) is a finite discrete space.

(b) T is affine weakly regular in the sense of [DS16]. In this case, there is a

canonical homeomorphism Spc(Tc) ∼= Spech(End∗T(1)).

Our methods are flexible and have wide applicability to diverse classes of examples
in algebraic geometry, representation theory and homotopy theory. The next theorem
collects a sample of our applications; further examples can be found in the main
body of the paper.

Theorem.

(a) Let X be a quasi-compact and quasi-separated scheme which is topologically
weakly noetherian. The derived category Dqc(X) is stratified if and only if it
is costratified. In particular, it follows that Dqc(X) is costratified for any
noetherian scheme X. (See Theorem 19.5.)

(b) For X a p-good connected space with noetherian mod p cohomology, the
category of modules over the cochain algebra Mod(C∗(X; Fp)) is stratified if
and only if it is costratified if and only if X satisfies Chouinard’s condition.
In particular, these conditions hold for connected noetherian H-spaces. (See
Theorem 20.27.)

(c) The category of En-local spectra is costratified. (See Theorem 20.21.)
(d) Let G be a finite group and let EG ∈ CAlg(SpG) be a commutative equivariant

ring spectrum such that the non-equivariant derived categories D(ΦHEG) are
costratified with noetherian spectrum for each H ≤ G, where ΦHEG denotes
the geometric fixed points. Then D(EG) is costratified. (See Theorem 20.31.)

(e) As a special case of (d), the category of derived Mackey functors is costratified
for any finite group G. (See Corollary 20.36.)

(f) As a special case of (d) and [BCH+23a], the category of equivariant modules
over Borel-equivariant Morava E-theory is costratified. (See Theorem 20.41.)

(g) The category of rational G-spectra is costratified for compact Lie groups G.
(See Theorem 20.48.)

(h) The derived category of permutation modules DPerm(G, k) is costratified for
any finite group G and field k. (See Theorem 19.13.)

In each of these cases, we get a classification of localizing ideals and colocalizing
coideals in terms of the (known) underlying set of the corresponding Balmer spectrum.
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For each of these examples, stratification was already known, and we give precise
attributions and references in the main text.

Another new class of costratified categories, which uses the techniques of this paper
but whose proof lies outside its scope, are stable module categories StMod(G,R) of
finite groups with coefficients in noetherian commutative rings; see [BBI+23]. In the
present paper, we include a streamlined proof of the classical R = k case, handling
elementary abelian groups via Galois ascent (Proposition 20.12) à la Mathew; see
Theorem 19.10 and Theorem 20.14.

In summary, we have exhausted the list of all stratified tt-categories we are aware
of and have shown that each of them is also costratified. This in particular includes
the case of X = S3〈3〉 in part (b) of the previous theorem, which was not accessible
to previous technology; see Example 20.28.

Outline of the document. The paper consists of four parts.
Part I begins with Section 2 where we state our terminological conventions,

introduce notation, and recall fundamental facts about colocalizing coideals and
Bousfield localization. We define the notion of a cosupport theory in Section 3. In
Section 4, we define the tensor triangular cosupport of a rigidly-compactly generated
category and investigate its elementary properties. This study continues in Section 5
where we define the stalk and costalk at each point and introduce the detection
and codetection properties. We then proceed to a study of the local-to-global
principle and the colocal-to-global principle in Section 6 where we show that they
are equivalent and in fact also equivalent to the codetection property. In Section 7,
we define costratification, establish the conditions which characterize when a category
is costratified, and also prove that costratification implies stratification. We conclude
this part with Section 8 which is a study of the geometric behaviour of cosupport
and its relation to support.

In Part II we switch from the world of rigidly-compactly generated tt-categories
to a more general setting. We recall the notion of a perfectly generated triangulated
category in Section 9 and recall how the opposite category of a compactly generated
category is perfectly generated. In Section 10, we set up a theory of support for
perfectly generated tt-categories, and show that it provides a unification of support
and cosupport. In Section 11, we prove a universality result for our general theory
of support, obtaining a universality result for cosupport as a special case. Finally, in
Section 12 we study how support and cosupport are related under intrinsic dualities,
such as Spanier–Whitehead duality and Brown–Comenetz duality.

In Part III we study base change and descent results for (co)support and
(co)stratification. In particular, we study the image of a geometric functor, in-
cluding critera for it to be surjective, in Section 13, and base change results for
(co)support in Section 14. In Section 15, we apply these results to study descent
for the local-to-global principle. In Section 16, we obtain local cogenerators for our
costalk categories, which is an important technical ingredient for the results which
follow. This culminates in Section 17 where we establish our key ‘bootstrap’ theorem
which allows us to descend costratification whenever we can descend stratification.
We also establish descent techniques for stratification to power the theorem.

In Part IV we turn to applications and examples. We discuss abstract tensor
triangular examples in Section 18, algebraic examples in Section 19, and homotopical
examples in Section 20. We conclude the paper in Section 21 with a list of open
questions, which we hope will stimulate further research.
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Part I. Cosupport and costratification

2. Colocalizing coideals

2.1. Terminology. We follow the notation and terminology from [BHS23]. For the
majority of the paper T will denote a rigidly-compactly generated tensor-triangulated
category (with exceptions in Sections 9–11). We will denote the tensor by −⊗− and
the unit object by 1. We will denote the internal hom by hom(−,−) and the abelian
group of morphisms by HomT(−,−) or T(−,−). We also write t∨ := hom(t, 1) for
the dual of an object.

2.2. Definition. A localizing subcategory of T is a thick subcategory which is closed
under coproducts. A localizing ideal is a localizing subcategory L which is also
a tensor-ideal: L ⊗ T ⊆ L where L ⊗ T =

{
s ⊗ t

∣∣ s ∈ L, t ∈ T
}

. A colocalizing
subcategory of T is a thick subcategory which is closed under products. A colocalizing
coideal is a colocalizing subcategory C with the property that hom(T,C) ⊆ C where
hom(T,C) =

{
hom(t, s)

∣∣ s ∈ C, t ∈ T
}

.

2.3. Notation. We write Loc〈E〉, Locid〈E〉, Coloc〈E〉, and Colocid〈E〉 for the localiz-
ing subcategory, localizing ideal, colocalizing subcategory, and colocalizing coideal
generated by a collection of objects E ⊆ T.

2.4. Remark. If T = Loc〈E〉 for a collection of objects E ⊆ T, then a colocalizing
subcategory C is a coideal if and only if hom(E,C) ⊆ C. Thus, if T is monogenic
(meaning T = Loc〈1〉) then every colocalizing subcategory is automatically a coideal.

2.5. Remark. For any object t ∈ T, consider the three functors

t⊗− : T → T, hom(t,−) : T → T, and hom(−, t) : Top → T.

Localizing ideals pull back under the first functor to localizing ideals; colocalizing
coideals pull back under the second functor to colocalizing coideals; and colocalizing
coideals pull back under the third functor to localizing ideals. It follows that for
any collection of objects E ⊆ T, we have

t⊗ Locid〈E〉 ⊆ Locid〈t⊗ E〉,(2.6)

hom(t,Colocid〈E〉) ⊆ Colocid〈hom(t,E)〉, and(2.7)

hom(Locid〈E〉, t) ⊆ Colocid〈hom(E, t)〉.(2.8)

2.9. Definition (Orthogonal subcategories). If E ⊆ T is a collection of objects, we
define the right orthogonal of E to be the full subcategory

E⊥ :=
{
t ∈ T

∣∣ hom(s, t) = 0 for all s ∈ E
}
.

Note that E⊥ is a colocalizing coideal of T. Moreover, it follows from (2.8) that
E⊥ = Locid〈E〉⊥. Similarly, the left orthogonal is defined by

⊥E :=
{
t ∈ T

∣∣ hom(t, s) = 0 for all s ∈ E
}
.

It is a localizing ideal of T and it follows from (2.7) that ⊥E = ⊥Colocid〈E〉.

2.10. Remark. If E ⊆ T is an ideal then

E⊥ =
{
t ∈ T

∣∣T(s, t) = 0 for all s ∈ E
}
.

Similarly, if E ⊆ T is a coideal then
⊥E =

{
t ∈ T

∣∣T(t, s) = 0 for all s ∈ E
}
.
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2.11. Remark. A localizing ideal L is strictly localizing if the inclusion L ↪→ T has a
right adjoint. This is the case if and only if L is the kernel of a Bousfield localization
on T. In this situation, the subcategory of local objects is L⊥. Significantly, if L
is strictly localizing, then L = ⊥(L⊥), see for example [Kra10, Proposition 4.9.1].
Similarly, a colocalizing coideal C is strictly colocalizing if the inclusion C ↪→ T has a
left adjoint. This is the case if and only if C is the image of a Bousfield localization.
Moreover, in this case, C = (⊥C)⊥. We always have a function L 7→ L⊥ between
the strictly localizing ideals of T and the strictly colocalizing coideals of T. This
assignment is a bijection modulo the set-theoretic question of whether there is only
a set of such Bousfield localizations.

2.12. Remark. The question of whether Bousfield localizations always exist has an
interesting history, starting with [Bou79]. Of particular note for our purposes is the
following:

2.13. Theorem (Neeman). If T is a well generated triangulated category then every
set-generated localizing subcategory is strictly localizing.

Proof. The key point is that a set-generated localizing subcategory of a well generated
triangulated category is itself well generated, hence the inclusion has a right adjoint
by Brown representability; see [Nee01, Remark 1.16 and Proposition 1.21] or [Kra10,
Proposition 4.9.1 and Theorem 7.2.1]. �

2.14. Remark. There is no analogous result for colocalizing subcategories (morally,
because the proof techniques do not apply to Top). This is the heart of the issue for
why there could be “more” colocalizing subcategories and why one might expect a
classification of colocalizing coideals to be “harder” than a classification of localizing
ideals. For example, if there is only a set of localizing ideals (e.g., if T is stratified
in the sense of [BHS23]) then every localizing ideal is set-generated by [KS19,
Lemma 3.3] and hence is strictly localizing by Theorem 2.13. Hence in this case
the assignment L 7→ L⊥ provides an injection from the set of localizing ideals into
the collection of colocalizing coideals. A priori, there might be more colocalizing
coideals. The difference would disappear if we knew that all colocalizing coideals were
strictly colocalizing, but therein lie set-theoretic dragons. For example, Casacuberta–
Gutiérrez–Rosický [CGR14] prove that if a large cardinal axiom known as Vopĕnka’s
principle holds (see [AR94, Chapter 6]) then every colocalizing subcategory of T
is strictly colocalizing provided T = Ho(M) is the homotopy category of a stable
combinatorial model category. It remains an open question whether this is true for
arbitrary T and without assuming axioms beyond ZFC.

2.15. Remark. The modified version of [KS19, Lemma 3.3.1] provided by [BHS23,
Proposition 3.5] actually establishes that if there is a set of set-generated localizing
ideals then all localizing ideals are set-generated. With this in hand, a variant of the
above argument runs as follows: If there is a set of colocalizing coideals then there
is a set of strictly colocalizing coideals, hence a set of strictly localizing ideals, hence
a set of set-generated localizing ideals (by invoking Theorem 2.13), and hence all
localizing ideals are set-generated (and strictly localizing). In summary: If there is a
set of colocalizing coideals then there is a set of localizing ideals and they correspond
to the strictly colocalizing coideals of T.
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3. Cosupport theories

Our goal is to classify colocalizing coideals using a suitable notion of “cosupport”
for the objects of T. First we axiomatize the properties such a cosupport theory
should satisfy.

3.1. Definition. Let X be a topological space and let C : T → P(X) be a function,
where P(X) denotes the power set of (the underlying set of) X. This function
extends to collections E of objects in T by setting C(E) =

⋃
t∈E C(t). The pair (X,C)

is called a cosupport theory if it satisfies the following conditions:

(a) C(0) = ∅ and C(T) = X;
(b) C(Σt) = C(t) for every t ∈ T;
(c) C(c) ⊆ C(a) ∪ C(b) for any exact triangle a→ b→ c→ Σa in T;
(d) C(

∏
i∈I ti) =

⋃
i∈I C(ti) for any set of objects ti in T;

(e) C(hom(s, t)) ⊆ C(t) for all s, t ∈ T.

We also refer to C as a cosupport function.

3.2. Remark. These axioms (excluding C(T) = X) are equivalent to the statement
that for any subset Y ⊆ X, the subcategory

{
t ∈ T

∣∣C(t) ⊆ Y
}

is a colocalizing
coideal of T. In particular, C(Colocid〈E〉) = C(E) for any collection of objects E ⊆ T.
For example, if Colocid〈t1〉 = Colocid〈t2〉 then C(t1) = C(t2).

3.3. Remark. Note that we have not yet made use of the topology on X. For now,
it could therefore be dropped from the definition. We also remark in passing that
our axiomatization is similar but not exactly the same as the one given by [Ver22,
Definition 3.2]. Further discussion on this point will be given in Remark 11.14.

3.4. Example. Let D(R) be the derived category of a commutative noetherian ring R.
Neeman [Nee11] has given a classification of the colocalizing coideals of D(R) using
the assignment{

colocalizing coideals of D(R)
} B(−)−−−→

{
subsets of Spec(R)

}
where B(C) :=

{
p ∈ Spec(R)

∣∣κ(p) ∈ C
}

and κ(p) is the residue field of R associated
to the prime ideal p. We claim that the function B(t) := B(Colocid〈t〉) defined
on objects t ∈ D(R) is a cosupport theory in the sense of Definition 3.1. Indeed,
B(0) =

{
p ∈ Spec(R)

∣∣κ(p) ∈ (0)
}

= ∅, while κ(p) ∈ B(κ(p)) by definition
so that

⋃
p∈Spec(R)B(κ(p)) = Spec(R). Condition (b) is clear, while (c) follows

because if a → b → c → Σa is an exact triangle, then c is in the colocalizing
subcategory generated by a and b. Finally, (e) is a consequence of the inclusion
Colocid〈hom(s, t)〉 ⊆ Colocid〈t〉. Note that this cosupport theory is defined for any
commutative ring R, although Neeman’s theorem requires R noetherian.

3.5. Example. An alternative approach is given in [SWW17], where the cosupport
of t ∈ D(R) is defined by

co-suppR(t) =
{
p ∈ Spec(R)

∣∣ hom(k(p), t) 6= 0
}
.

Most of the axioms for cosupport are verified in [SWW17, Prop. 4.7–4.9]. Axiom (b)
is not verified, but is clear from the definition. The axiom co-suppR(D(R)) = Spec(R)
follows, for example, from the observation that hom(k(p), k(p)) 6= 0. The only
remaining axiom to check is (e). To this end, suppose hom(k(p), hom(s, t)) 6= 0.
Then hom(k(p)⊗ s, t) 6= 0. But k(p)⊗ s is a coproduct of suspensions of k(p), so
that hom(k(p), t) 6= 0, as well.
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3.6. Example. Let SE(n) denote the category of E(n)-local spectra; see [HS99] and
[BHS23, Section 10]. For t ∈ SE(n), Hovey and Strickland [HS99, Section 6] consider
the chromatic cosupport, defined by

co-supp(t) :=
{
m ∈ {0, . . . , n}

∣∣ hom(K(m), t) 6= 0
}
,

where K(m) is the m-th Morava K-theory. Arguments similar to those used for
Example 3.5 establish that this defines a theory of cosupport on SE(n).

3.7. Example. If a rigidly-compactly generated tt-category T is equipped with a
central action by a graded commutative noetherian ring R, then Benson–Iyengar–
Krause [BIK12] provide a cosupport theory (cosuppR(T), cosuppR) whose space of

cosupports cosuppR(T) ⊆ Spech(R) lies in the homogeneous spectrum of the acting
ring. The cosupport axioms are established in Sections 4, 8 and 9 of their paper.
For example, we could take the derived category D(R) of a noetherian commutative
ring acted upon by R itself, or we could take the stable module category StMod(kG)
of a finite group G over a field k acted upon by the group cohomology ring H∗(G; k).

In the latter example the space of cosupports is Proj(H∗(G, k)) ( Spech(H∗(G, k)).

4. Tensor triangular cosupport

In this section we introduce the main cosupport theory of interest to us, which is
related to the Balmer–Favi support (a.k.a. small support) introduced in [BF11] and
studied in depth in [BHS23]. Throughout T will denote a rigidly-compactly generated
tensor-triangulated category whose spectrum Spc(Tc) is weakly noetherian. We will
briefly recall what the latter topological condition means, before proceeding with
the definition of cosupport. Further discussion is found in [BHS23, Section 2]. First
we recall some details about smashing and finite localizations and their idempotent
triangles.

4.1. Remark. Let T be a rigidly-compactly generated tt-category. Recall from [BF11,
Theorem 2.13] that a smashing ideal is a strictly localizing ideal L which satisfies
the following equivalent conditions:

(a) L⊥ is a localizing subcategory of T;
(b) L⊥ is a localizing ideal of T;
(c) L⊥ is an ideal of T.

Associated to a smashing ideal is an idempotent exact triangle

e→ 1→ f → Σe

and we have the following diagram of adjunctions

(4.2)

L = e⊗ T hom(e,T) = L⊥⊥

T

L⊥ = f ⊗ T = hom(f,T)

hom(e,−)

∼=
e⊗−

hom(e,−)

incl incl

e⊗−
e⊗− hom(e,−)

hom(f,−)f⊗− incl
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in which each of the six “vertical” sequences • ↪→ T� • is a Bousfield localization.
See [BF11, Theorem 3.5], [BS17, Remark 5.3], [BHV18, Section 2] and [HPS97,
Section 3.3] for further discussion.

4.3. Example (Finite localizations). Let TcY :=
{
x ∈ Tc

∣∣ supp(x) ⊆ Y
}

denote the
thick ideal of compact objects corresponding to a Thomason subset Y ⊆ Spc(Tc).
The localizing ideal TY := Locid〈TcY 〉 = Loc〈TcY 〉 is a smashing ideal; see [BHS23,
Remark 1.23]. We write

eY → 1→ fY → ΣeY

for the corresponding idempotent triangle.

4.4. Example. If T = D(R) is the derived category of a commutative ring R and
I ⊆ R is a finitely generated ideal, we can take Y := V (I), the set of prime ideals
of R containing I. In this case, eY ⊗ T is the category of I-torsion complexes and
hom(eY ,T) is the category of I-adically complete complexes; see [Gre01, Section
5] and [Ste18, Example 2.24]. The equivalence eY ⊗ T ∼= hom(eY ,T) first arose in
the work of Matlis [Mat78] and Greenlees–May [GM92]; cf. [PSY14]. The functors
eY ⊗− and hom(eY ,−) can be interpreted in terms of local cohomology and local
homology, respectively; see, e.g., [ATJLL97, DG02, BHV18].

4.5. Lemma. For each Thomason subset Y ⊆ Spc(Tc),

Coloc〈TcY ⊗ T〉 = hom(eY ,T) = (TY )⊥⊥.

Proof. This is proved in [HPS97, Theorem 3.3.5(e)]. �

4.6. Definition. A subset W ⊆ Spc(Tc) is said to be weakly visible if it can be written
as the intersection of a Thomason subset and the complement of a Thomason subset:
W = Y1 ∩ Y c2 . We can then define an idempotent

gW := eY1 ⊗ fY2 .

This object of T only depends, up to isomorphism, on the subset W ; see [BF11,
Corollary 7.5]. We say that a point P ∈ Spc(Tc) is weakly visible if the singleton
subset {P} is weakly visible, and we define

gP := g{P}.

That is, gP = eY1 ⊗ fY2 for any choice of Thomason subsets Y1, Y2 ⊆ Spc(Tc) such
that {P} = Y1 ∩ Y c2 .

4.7. Remark. For a weakly visible point P, we can always take Y2 = gen(P)c, where
gen(P) =

{
Q
∣∣P ⊆ Q

}
and Y1 = supp(a) for some a ∈ Tc; see [BHS23, Remark 2.8].

4.8. Remark. The intersection W1 ∩W2 of two weakly visible subsets is again weakly
visible and gW1

⊗ gW2
= gW1∩W2

. Moreover, gW = 0 if and only if W = ∅. These
facts are proved in [BHS23, Lemma 1.27].

4.9. Example. If Y is a Thomason subset then both Y and Y c are weakly visible
subsets. We have gY = eY and gY c = fY . Remark 4.8 thus specializes to give
eY1
⊗ eY2

= eY1∩Y2
and fY1

⊗ fY2
= fY1∪Y2

for Thomason subsets Y1 and Y2; see
also [BF11, Theorem 5.18] and [BHS23, Lemma 1.27].

4.10. Definition. A spectral space X is weakly noetherian if every point is weakly
visible. This is the topological condition we will require of Spc(Tc) in order to
construct our cosupport theory.
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4.11. Remark. A spectral space X is weakly noetherian if and only if its Hochster
dual X∗ has the property that every point is locally closed. The latter is a separation
axiom between T0 and T1 called TD and shows up in work on the analogue of these
constructions for the smashing spectrum; see [BS21, Ver21] and [DST19, Section 4.5].

4.12. Remark. We define the specialization order on X by x ≤ y if and only if x
is a specialization of y, that is, x ∈ {y}. Be warned that this is opposite to how
the specialization order is defined in [DST19]. According to our convention, closed
points are minimal for the specialization order.

4.13. Proposition. Weakly noetherian spectral spaces satisfy the descending chain
condition (DCC) on irreducible closed sets.

Proof. It suffices to prove the result for the Balmer spectrum X = Spc(K) of an
essentially small tensor-triangulated category K since every spectral space arises in
this way.1 We claim that if X is weakly noetherian then K satisfies the descending
chain condition on prime ideals. Indeed, if P1 ⊇ P2 ⊇ P3 ⊇ · · · is a descending
chain of prime ideals, then consider the prime ideal P :=

⋂∞
n=1 Pn. If P is weakly

visible then {P} = supp(a) ∩ gen(P) for some a ∈ K (Remark 4.7). Then a 6∈ P

implies a 6∈ Pn for some n, so that Pn ∈ supp(a). Since Pn ∈ gen(P) we conclude
that P = Pn. �

4.14. Remark. There is also a purely point-set topological proof of the previous
proposition. The result is equivalent to the statement that any weakly noetherian
spectral space X has the descending chain condition for the specialization order
on X (Remark 4.12). To establish this, let Y = (y1 ≥ y2 ≥ · · · ) be a descending

specialization chain in X. Let Y
con

denote the closure of Y in the constructible
topology. By [DST19, Theorem 4.2.6], Y has an infimum y∞ ∈ X which is contained

in Y
con

. Since X is weakly noetherian, {y∞} = Z ∩ gen(y∞) for some Thomason
closed subset Z ⊆ X. To establish that y∞ = yn for some n ≥ 1, it suffices to
prove that Y ∩ Z 6= ∅ since Y ⊆ gen(y∞). If Y ∩ Z = ∅ then Y ⊆ Zc, but Zc is

closed in the constructible topology. Thus it would follow that Y
con ⊆ Zc which is

a contradiction since y∞ ∈ Y
con ∩ Z.

4.15. Example. Let X denote the Hochster dual of the Zariski spectrum Spec(Z).
Specialization chains in X are of length at most one, hence X satisfies the DCC on
irreducible closed sets. However, the point of X corresponding to the generic point
of Spec(Z) is contained in every Thomason subset of X. Thus, this point is not
weakly visible. This example shows that the converse to Proposition 4.13 is false.

4.16. Notation. Let X be a spectral space. For any subset V ⊆ X, we write minV
for the collection of points in V which are minimal for the specialization order
(x ≤ y iff x ∈ {y}) among the points of V :

minV :=
{
x ∈ V

∣∣ {x} ∩ V = {x}
}
.

For example, minX is the set of closed points of X, and V ∩minX ⊆ minV .

4.17. Remark. Proposition 4.13 establishes that if X is weakly noetherian then

V 6= ∅ =⇒ minV 6= ∅.
1Every spectral space arises as the Zariski spectrum of a commutative ring by Hochster’s

theorem [Hoc69] and it follows from Thomason’s theorem [Tho97] that the Zariski spectrum of a
commutative ring coincides with the Balmer spectrum of its derived category of perfect complexes.
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4.18. Definition. We say that a point P is visible if {P} is Thomason; in other words,

it is a weakly visible point for which we can take Y1 = {P}. Recall that a spectral
space is noetherian if and only if every point is visible; see [BF11, Corollary 7.14].
Also note that the closed point of a local category is weakly visible if and only if it
is visible; see [BHS23, Remark 2.9].

4.19. Notation. We write visX for the set of visible points in X. We will also abuse
notation slightly and write, for example, visT for vis(Spc(Tc)).

4.20. Notation. For a weakly visible point P ∈ Spc(Tc), we have the functor

ΓP := −⊗ gP : T → T

and its right adjoint
ΛP := hom(gP,−) : T → T.

More generally, we have functors

ΓW := −⊗ gW a hom(gW ,−) =: ΛW

for any weakly visible subset W ⊆ Spc(Tc).

4.21. Remark. Given t1, t2 ∈ T, adjunction provides the following useful formulas:

ΛPhom(t1, t2) ' hom(ΓPt1, t2) ' hom(t1,Λ
Pt2).(4.22)

4.23. Definition (The Balmer–Favi support and cosupport). Let T be a rigidly-
compactly generated tt-category whose spectrum Spc(Tc) is weakly noetherian. The
support of an object t ∈ T is defined as

Supp(t) :=
{
P ∈ Spc(Tc)

∣∣ΓPt 6= 0
}

=
{
P ∈ Spc(Tc)

∣∣ gP ⊗ t 6= 0
}
.

The cosupport of an object t ∈ T is defined as

Cosupp(t) :=
{
P ∈ Spc(Tc)

∣∣ΛPt 6= 0
}

=
{
P ∈ Spc(Tc)

∣∣ hom(gP, t) 6= 0
}
.

4.24. Remark. As discussed in [BHS23, Remark 2.12], the function Supp defines a
support theory on T in the sense of [BHS23, Definition 7.1]. Our present goal is to
study the properties of the function Cosupp and the relationship between the two
theories.

4.25. Proposition. The pair (Spc(Tc),Cosupp) defines a cosupport theory.

Proof. For any subset Y ⊆ Spc(Tc), observe that{
t ∈ T

∣∣ Cosupp(t) ⊆ Y
}

=
⋂

P∈Y c

ker(ΛP(−))

is a colocalizing subcategory since each ΛP = hom(gP,−) is a product preserving
exact functor. Moreover, it is a coideal by the formula (4.22). This establishes,
by Remark 3.2, that Cosupp satisfies all properties of a cosupport theory except
Cosupp(T) = Spc(Tc). For this just note that since the object gP is nonzero
(Remark 4.8), the internal hom hom(gP, gP) is nonzero. Thus, P ∈ Cosupp(gP) and
hence Spc(Tc) =

⋃
P∈Spc(Tc) Cosupp(gP). �

4.26. Lemma. Let P ∈ Spc(Tc). Then

{P} ⊆ Cosupp(gP) ⊆ gen(P).
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Proof. The first inclusion {P} ⊆ Cosupp(gP) is established in the proof of Propo-

sition 4.25. For the second inclusion we need to show that if P 6∈ {Q} then
hom(gQ, gP) = 0. Write {Q} = U1 ∩ U c2 and {P} = V1 ∩ V c2 for Thomason subsets
U1, U2, V1, V2. Then we have equalities

hom(gQ, gP) = hom(eU1
⊗ fU2

, eV1
⊗ fV2

)

= hom(eU1 ⊗ fU2 ⊗ fV2 , eV1 ⊗ fV2)

= hom(eU1 ⊗ fU2 ⊗ fV2 , eU1 ⊗ eV1 ⊗ fV2)

= hom(eU1
⊗ fU2∪V2

, eU1∩V1
⊗ fV2

),

where the last step uses Example 4.9. It follows that hom(gQ, gP) vanishes if either
of the following two conditions hold:

U1 ⊆ U2 ∪ V2 or U1 ∩ V1 ⊆ V2.

By Remark 4.7 we can always take U2 := gen(Q)c and V2 := gen(P)c. If P 6∈ {Q}
then Q ∈ V2 hence U1 ∩ U c2 ⊆ V2 which means U1 ⊆ U2 ∪ V2 and the proof is
complete. �

4.27. Remark. In general, Cosupp(gP) 6= {P}; see Example 8.16.

4.28. Remark. The geometric behavior of cosupport is slightly counterintuitive.
For example, it is often the case that Cosupp(1) ( Spc(Tc) is a proper subset;
see Example 8.7. We will study the geometry of cosupport, as well as its subtle
geometric relationship with support, in Section 8. At present we focus on general
properties.

4.29. Lemma. For t1, t2 ∈ T, there is an inclusion

(4.30) Cosupp(hom(t1, t2)) ⊆ Supp(t1) ∩ Cosupp(t2).

Proof. If P ∈ Cosupp(hom(t1, t2)) then ΛPhom(t1, t2) 6= 0 by definition, and hence
hom(ΓPt1, t2) 6= 0 and hom(t1,Λ

Pt2) 6= 0 by Remark 4.21. This implies that ΓPt1 6= 0
and ΛPt2 6= 0, and the result follows. �

4.31. Remark. The inclusion (4.30) is our most fundamental relationship between
support and cosupport. It is an equality (for all objects t1 and t2) if and only if T is
stratified; see Theorem 7.15. This demonstrates the significance of cosupport even
if one is only interested in localizing ideals. In general, (4.30) is an equality when
t1 = eY or t1 = fY for Y ⊆ Spc(Tc) a Thomason subset:

4.32. Lemma. Let Y ⊆ Spc(Tc) be a Thomason subset and let t ∈ T. Then:

(a) Cosupp(hom(eY , t)) = Y ∩ Cosupp(t);
(b) Cosupp(hom(fY , t)) = Y c ∩ Cosupp(t);
(c) Cosupp(ΛPt) = {P} ∩ Cosupp(t) for any P ∈ Spc(Tc).

Proof. First note that for any Thomason subset Y ⊆ Spc(Tc) and P ∈ Y we have
gP ⊗ eY = gP by Remark 4.8.

Now, by Lemma 4.29 and [BHS23, Lemma 2.13] we have

Cosupp(hom(eY , t)) ⊆ Y ∩ Cosupp(t).

To establish the reverse inclusion, let P ∈ Y ∩Cosupp(t). By the previous paragraph,
we have

hom(gP, hom(eY , t)) ' hom(gP, t) 6= 0
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so that P ∈ Cosupp(hom(eY , t)) as well. This establishes the equality in part (a).
The equality in part (b) can be proved similarly. The final statement is a consequence
of (a) and (b) by writing {P} = Y1 ∩ Y c2 :

Cosupp(ΛPt) = Cosupp(hom(eY1
⊗ fY2

, t))

= Cosupp(hom(eY1
, hom(fY2

, t)))

= Y1 ∩ Cosupp(hom(fY2 , t))

= {P} ∩ Cosupp(t). �

4.33. Remark. We next establish a cosupport-theoretic analogue of the “half
⊗-theorem” of [BF11, Theorem 7.22]; see also [BHS23, Lemma 2.18]. This re-
quires the following lemma:

4.34. Lemma. Let s1, s2, t ∈ T.

(a) If s1 ∈ Locid〈s2〉, then Cosupp hom(s1, t) ⊆ Cosupp hom(s2, t).
(b) If s1 ∈ Colocid〈s2〉, then Cosupp hom(t, s1) ⊆ Cosupp hom(t, s2).

Proof. Bearing in mind Remark 3.2, part (a) follows from (2.8) while part (b) follows
from (2.7). �

4.35. Proposition (Half-hom Theorem). If t ∈ T and x ∈ Tc, then

Cosupp hom(x, t) = supp(x) ∩ Cosupp(t).

Proof. The support supp(x) ⊆ Spc(Tc) of the compact object x ∈ Tc is a Thomason
subset and we have an equality Locid〈x〉 = Locid〈esupp(x)〉 of compactly generated
localizing ideals. By Lemma 4.34, we obtain

Cosupp hom(x, t) = Cosupp hom(esupp(x), t) = supp(x) ∩ Cosupp(t),

where the last equality uses Lemma 4.32. �

4.36. Example. For any compact x ∈ Tc, we have

Cosupp(x) = supp(x) ∩ Cosupp(1).

Indeed, since x and its dual x∨ = hom(x, 1) generate the same thick ideal of compact
objects, they have the same cosupport. Thus Cosupp(x) = Cosupp(hom(x,1)) =
supp(x) ∩ Cosupp(1) by Proposition 4.35. It follows that, although

Cosupp(T) = Spc(Tc)

(as established in Proposition 4.25), we have

Cosupp(Tc) = Cosupp(1).

It is possible for the latter to be a proper subset of Spc(Tc); see Example 8.7.

5. The stalk and costalk

5.1. Definition. We let ΓPT and ΛPT denote the essential images of the functors
ΓP : T → T and ΛP : T → T, respectively (Notation 4.20). We call ΓPT the stalk of T
at P and call ΛPT the costalk of T at P.

5.2. Proposition. Let P ∈ Spc(Tc).

(a) The full subcategory ΓPT is a localizing ideal and

ΓPT =
{
t ∈ T

∣∣ t ' ΓPt
}
.
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(b) The full subcategory ΛPT is a colocalizing coideal and

ΛPT =
{
t ∈ T

∣∣ t ' ΛPt
}
.

Proof. We prove part (b); the proof of (a) is similar. Since P is weakly visible we
can write {P} = Y1 ∩ Y c2 with Y1 and Y2 Thomason subsets. Consider the exact
triangle

eY1∩Y2
→ eY1

→ gP → ΣeY1∩Y2

obtained from eY2
→ 1→ fY2

→ ΣeY2
by tensoring with eY1

. We first establish that
t ∈ ΛPT if and only if the canonical maps

(5.3) hom(gP, t)→ hom(eY1
, t)← t

induced from eY1
→ gP and eY1

→ 1 are isomorphisms. Indeed, if t ∈ ΛPT then
t ' hom(gP, t

′) for some t′ ∈ T. Since P 6∈ Y1∩Y2 we have eY1∩Y2
⊗gP = 0 and hence

hom(eY1∩Y2
, t) = hom(eY1∩Y2

⊗ gP, t′) = 0. Also, hom(fY1
, t) = hom(fY1

⊗gP, t′) = 0
since P ∈ Y1 implies fY1

⊗ gP = 0. (Here we have repeatedly invoked Remark 4.8.)
We have thus established that t ∈ ΛPT if and only if the canonical maps in (5.3)

are isomorphisms if and only if there exists an isomorphism t ' hom(gP, t) = ΛPt.
Then, it follows from the latter characterization that ΛPT is closed under exact
triangles and hence is a triangulated subcategory of T. Now, ΛPT is closed under
products since ΛP = hom(gP,−) is a right adjoint. Moreover, it is a coideal: if
t1 ∈ T and t2 ∈ ΛPT then

hom(t1, t2) ' hom(t1, hom(gP, t2)) ' hom(gP, hom(t1, t2)) = ΛPhom(t1, t2)

by adjunction. �

5.4. Remark. It follows from Lemma 4.32 and [BHS23, Lemma 2.13] that

Supp(ΓPT) ⊆ {P} and Cosupp(ΛPT) ⊆ {P}.

This leads to the following:

5.5. Definition. We say that T satisfies

(a) the detection property if Supp(t) = ∅ implies t = 0 for all t ∈ T;
(b) the codetection property if Cosupp(t) = ∅ implies t = 0 for all t ∈ T.

5.6. Lemma. Let P ∈ Spc(Tc).

(a) If T has the detection property then

ΓPT =
{
t ∈ T

∣∣ Supp(t) ⊆ {P}
}
.

(b) If T has the codetection property then

ΛPT =
{
t ∈ T

∣∣ Cosupp(t) ⊆ {P}
}
.

Proof. The inclusion ⊆ in both (a) and (b) follows from Remark 5.4. We now
establish the reverse inclusion of part (b); the proof of the reverse inclusion of
part (a) is similar. We can write {P} = Y1 ∩ gen(P) with Y1 ⊆ Spc(Tc) Thomason,
so that gP = eY1⊗fgen(P)c . If Cosupp(t) ⊆ {P} then hom(egen(P)c , t) and hom(fY1 , t)
have empty cosupport by Lemma 4.32. It follows that hom(egen(P)c , t) = 0 and
hom(fY1

, t) = 0 since T has the codetection property. Hence t ' hom(fgen(P)c , t)

and t ' hom(egen(P)c , t). Together, this implies t ' hom(gP, t) ∈ ΛPT and we are
done. �
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5.7. Proposition. If T satisfies the codetection property then it also satisfies the
detection property.

Proof. Let t ∈ T and suppose Supp(t) = ∅. Then

Cosupp(hom(t, t)) ⊆ Supp(t) ∩ Cosupp(t)

by Lemma 4.29 which implies that Cosupp(hom(t, t)) = ∅. The codetection property
then implies hom(t, t) = 0. Hence T(t, t) = T(1, hom(t, t)) = 0, so that t = 0. �

5.8. Example. In contrast, the following example shows that the detection property
does not imply the codetection property. Let R be an absolutely flat ring and let
T = D(R). Since Spc(Tc) ∼= Spec(R) has dimension zero, {p} = Spec(R) ∩ gen(p).
Hence gp ∼= fgen(p)c

∼= Rp
∼= k(p) is the residue field of the prime ideal p; see [Ste14a,

Lemma 4.2 and Equation (4.1)] and [BHS23, Example 1.36]. Hence, we have

Cosupp(t) =
{
p ∈ Spec(R)

∣∣ hom(k(p), t) 6= 0
}

for any t ∈ D(R). The detection property holds for any absolutely flat ring R by
[Ste14a, Lemma 4.1]. On the other hand, the codetection property does not hold
if R is not semi-artinian. This follows from the argument in the proof of [Ste14a,
Theorem 4.8]: If R is not semi-artinian then there exists a superdecomposable
(pure-)injective R-module E 6= 0 by [Trl96, Lemma 1.2]. For each p ∈ Spec(R), we
must have HomR(k(p), E) = 0 for otherwise E would contain the (injective) simple
module k(p) as a direct summand, contradicting the superdecomposability of E.
It follows that Cosupp(E) = ∅ even though E 6= 0. An explicit example of an
absolutely flat ring which is not semi-artinian is an infinite product of fields, such
as R =

∏
N Fp. Theorem 6.4 below will provide further insight into this example

and the relationship between the detection and codetection properties.

5.9. Lemma. Let P ∈ Spc(Tc).

(a) If t ∈ ΓPT, then Supp(t) ⊆ Cosupp(t).
(b) If t ∈ ΛPT, then Cosupp(t) ⊆ Supp(t).

Proof. If t ∈ ΓPT then t ' ΓPt by Proposition 5.2 and hence Supp(ΓPt) ⊆ {P} by
Remark 5.4. The claim is vacuously true if t = 0; otherwise

0 6= T(t, t) ' T(ΓPt, t) ' T(t,ΛPt)

shows that ΛPt 6= 0, i.e., P ∈ Cosupp(t). This establishes (a). The proof of (b)
uses a similar argument. If t ∈ ΛPT then t ' ΛPt by Proposition 5.2 and hence
Cosupp(ΛPt) ⊆ {P} by Remark 5.4. If t = 0, the inclusion holds. If not, the same
displayed equation applies to show that ΓPt 6= 0. �

5.10. Corollary. For any P ∈ Spc(Tc), we have Cosupp(ΛPΓP1) = {P}. Moreover,
for every subset Y ⊆ Spc(Tc), there exists an object t ∈ T with Cosupp(t) = Y .

Proof. The first statement is a consequence of Lem. 5.9(a) and Lem. 4.32(c), together
with the observation that Γp1 = gP 6= 0 (Remark 4.8). Then, given Y ⊆ Spc(Tc)
the object t :=

∏
P∈Y ΛPΓP1 has cosupport equal to Y . �

5.11. Remark. Let Y1, Y2 ⊆ Spc(Tc) be Thomason subsets. Recall from (4.2) that for
any smashing localization e→ 1→ f → Σe we have an equivalence e⊗T ∼= hom(e,T)
and an equality f⊗T = hom(f,T). In particular, it follows that hom(f, f⊗t) ' f⊗t
and f⊗hom(f, t) ' hom(f, t) for any t ∈ T. From this, and the fact that idempotent
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functors are fully faithful on their essential image, we deduce that we have a diagram
of adjunctions

hom(eY1
,T) eY1

⊗ T

hom(fY2
, hom(eY1

,T), ) fY2
⊗ eY1

⊗ T

hom(fY2
,−)

∼=

−⊗fY2a−⊗fY2 hom(fY2
,−)a

where the hooked arrows are fully faithful. In particular, writing W := Y1 ∩ Y c2 , the
ΓW : T � T : ΛW adjunction restricts to an adjoint equivalence

ΛWT ΓWT.∼=

This type of equivalence has been previously observed in [BIK12, Prop. 5.1]. For
Y2 = ∅ it specializes to the Matlis–Greenlees–May style equivalence mentioned in
Example 4.4; cf. [DG02, Theorem 2.1]. In particular, we obtain an equivalence

ΛPT ∼= ΓPT

between the costalk and stalk for any weakly visible point P. This equivalence
provides another perspective on Lemma 5.9.

5.12. Example. Consider a smashing ideal L with idempotent triangle

e→ 1→ f → Σe.

Then L = e⊗T and it follows from Remark 4.1 that its right orthogonal L⊥ = f⊗T =
hom(f,T) is both a localizing ideal and colocalizing coideal, and L⊥⊥ = hom(e,T)
is a colocalizing coideal. Using these descriptions we can readily check that

Supp(e) = Supp(L) = Cosupp(L⊥⊥)

and

Supp(f) = Supp(L⊥) = Cosupp(L⊥).

For example, Cosupp(L⊥) = Cosupp(hom(f,T)) ⊆ Supp(f) by Lemma 4.29. Con-
versely, if P ∈ Supp(f) then P ∈ Cosupp(L⊥) since gP ⊗ f 6= 0 implies

hom(gP, hom(f, gP ⊗ f)) = hom(gP ⊗ f, gP ⊗ f) 6= 0.

A similar argument gives Cosupp(L⊥⊥) = Supp(e).

6. The local-to-global principle

6.1. Definition (Local-to-global principle). Let T be a rigidly-compactly generated
tt-category with Spc(Tc) weakly noetherian. Recall from [BHS23, Definition 3.8]
that T satisfies the local-to-global principle for localizing ideals (or simply the
local-to-global principle) if for every object t ∈ T, we have

(6.2) Locid〈t〉 = Locid〈ΓPt | P ∈ Spc(Tc)〉.

Note that this implies the detection property (Definition 5.5) since the right-hand side
of (6.2) is the same as Locid〈ΓPt | P ∈ Supp(t)〉. Similarly, we say that T satisfies
the local-to-global principle for colocalizing coideals (or simply the colocal-to-global
principle) if for every object t ∈ T, we have

(6.3) Colocid〈t〉 = Colocid〈ΛPt | P ∈ Spc(Tc)〉.
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Note that this implies the codetection property since the right-hand side of (6.3) is
the same as Colocid〈ΛPt | P ∈ Cosupp(t)〉.

6.4. Theorem. Let T be a rigidly-compactly generated tt-category with weakly
noetherian spectrum. The following are equivalent:

(a) T satisfies the codetection property;
(b) T satisfies the local-to-global principle for localizing ideals;
(c) T satisfies the local-to-global principle for colocalizing coideals.

Proof. Let L := Locid〈gP | P ∈ Spc(Tc)〉. An object t ∈ T satisfies Cosupp(t) = ∅
if and only if t ∈ L⊥. Thus, the codetection property is equivalent to L⊥ = 0.
On the other hand, the local-to-global principle for localizing ideals is equivalent
to L = T since if 1 ∈ L then for any t ∈ T we have

t = t⊗ 1 ∈ t⊗ L ⊆ Locid〈t⊗ gP | P ∈ Spc(Tc)〉

by (2.6). Clearly L = T implies L⊥ = 0. On the other hand, L is strictly localizing
by Theorem 2.13, hence we have L = ⊥(L⊥) (Remark 2.11) so that L⊥ = 0 implies
L = T. Thus, (a) and (b) are equivalent. Condition (c) evidently implies (a) so it
remains to show that (b) implies (c). This is also immediate since if 1 ∈ L then for
any t ∈ T we have

t = hom(1, t) ∈ hom(L, t) ⊆ Colocid〈hom(gP, t) | P ∈ Spc(Tc)〉

by (2.8). �

6.5. Corollary. If Spc(Tc) is noetherian, then T satisfies the local-to-global principle
for colocalizing coideals.

Proof. The local-to-global principle for localizing ideals holds by [BHS23, Theo-
rem 3.21] and hence the result follows from Theorem 6.4. �

6.6. Remark. Although the proof of Theorem 6.4 is not difficult in hindsight, we
regard the statement as quite surprising. The local-to-global and colocal-to-global
principles are equivalent, and in fact are equivalent to the codetection property.
In particular, this shows that the theory of cosupport is highly relevant even for
the task of classifying localizing ideals via a theory of support. The theorem
also provides another way to see that the codetection property does not always
hold. Indeed, [Ste14a, Theorem 4.8] establishes that if R is an absolutely flat ring
which is not semi-artinian then D(R) does not satisfy the local-to-global principle;
cf. Example 5.8. This example also shows that the detection property does not imply
the codetection property. It remains a tantalizing possibility that the detection
property is always2 satisfied. We do not know of any counterexamples.

2When the spectrum is not weakly noetherian, the definition of support requires modification, as

the example of p-local spectra shows. For some remarks in this direction, see [BHS21, Remark 5.14].

A general approach to extending the Balmer–Favi support to points which are not weakly visible is
considered by William Sanders [San17] and has been further developed in recent work of Changhan
Zou [Zou23].
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7. Costratification

7.1. Definition (Costratification). Let T be a rigidly-compactly generated tensor-
triangulated category with Spc(Tc) weakly noetherian. We say that T is costratified
if the cosupport theory (Spc(Tc),Cosupp) (Definition 4.23) induces a bijection

(7.2)
{

colocalizing coideals of T
} Cosupp−−−−−→

{
subsets of Spc(Tc)

}
.

The inclusion-preserving function (7.2) is always surjective by Corollary 5.10, so
costratification amounts to its injectivity.

7.3. Remark. For a subset Y ⊆ Spc(T), we use the notation

Supp−1(Y ) :=
{
t ∈ T

∣∣ Supp(t) ⊆ Y
}

for the localizing ideal of objects supported on Y , and

Cosupp−1(Y ) :=
{
t ∈ T

∣∣ Cosupp(t) ⊆ Y
}

for the colocalizing coideal of objects cosupported on Y . If T is costratified, then
the inverse of (7.2) is necessarily given by Y 7→ Cosupp−1(Y ). Indeed, we always
have the inclusion C ⊆ Cosupp−1(Cosupp(C)) and costratification is equivalent to
these inclusions being equalities.

7.4. Remark. If a colocalizing coideal is generated by a set of objects E then it is
also generated by a single object: Colocid〈E〉 = Colocid〈

∏
t∈E t〉. We refer to such

colocalizing coideals as the set-generated colocalizing coideals.

7.5. Proposition. If the class of set-generated colocalizing coideals of T forms a
set, then every colocalizing coideal of T is generated by a set.

Proof. The argument in [KS19, Lemma 3.3.1] goes through verbatim with “local-
izing subcategory” and “Loc” replaced by “colocalizing coideal” and “Colocid”;
cf. [BHS23, Proposition 3.5]. �

7.6. Remark. It follows from Corollary 5.10 and Lemma 4.32 that the colocalizing
coideal ΛPT is nonzero and in fact has cosupport equal to the single point {P}.
Thus, a necessary condition for costratification is that ΛPT contains no nontrivial
proper colocalizing coideals, i.e., that it is a minimal colocalizing coideal.

7.7. Theorem. Let T be a rigidly-compactly generated tensor-triangulated category
with weakly noetherian spectrum. The following are equivalent:

(a) The local-to-global principle for colocalizing coideals holds for T, and for all
P ∈ Spc(Tc), ΛPT is a minimal colocalizing coideal of T.

(b) For all t ∈ T, Colocid〈t〉 = Colocid〈ΛPT | P ∈ Cosupp(t)〉.
(c) The function{

colocalizing coideals of T
} Cosupp−−−−−→

{
subsets of Spc(Tc)

}
is injective (and hence a bijection by Corollary 5.10); that is, T is costratified.

Proof. (a)⇒ (b): By the local-to-global principle for colocalizing coideals we have

Colocid〈t〉 = Colocid〈ΛPt | P ∈ Cosupp(t)〉.
Since ΛPT is a minimal colocalizing coideal, for any t ∈ T we have equalities
Colocid〈ΛPt〉 = ΛPT for any P ∈ Cosupp(t). Therefore,

Colocid〈t〉 = Colocid〈ΛPT | P ∈ Cosupp(t)〉.
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(b)⇒ (c): We will actually show that the map

(7.8)
{

set-generated colocalizing coideals of T
} Cosupp−−−−−→

{
subsets of Spc(Tc)

}
is injective. It will follow that there is only a set of set-generated colocalizing
coideals. Hence by Proposition 7.5, every colocalizing coideal is set-generated, so we
will have established (c). Note that the map is always surjective by Corollary 5.10.
Recall that every set-generated colocalizing coideal of T is generated by a single
object (Remark 7.4) and that Cosupp(Colocid〈t〉) = Cosupp(t) (Remark 3.2). Thus
the injectivity of (7.8) is equivalent to

∀t1, t2 ∈ T,Cosupp(t1) = Cosupp(t2) =⇒ Colocid〈t1〉 = Colocid〈t2〉.
If Cosupp(t1) = Cosupp(t2) then (b) implies that Colocid〈t1〉 = Colocid〈t2〉, so we
are done.

(c) ⇒ (a): Suppose the function Cosupp is injective. Applied to the zero
coideal, we obtain the codetection property and hence the local-to-global principle
by Theorem 6.4. Suppose then that 0 6= C ⊆ ΛPT is a colocalizing coideal. Then

∅ 6= Cosupp(C) ⊆ Cosupp(ΛPT) = {P}
using Lemma 4.32. Hence Cosupp(C) = Cosupp(ΛPT) and so C = ΛPT. This
establishes the minimality of ΛPT. �

7.9. Terminology. We say that T satisfies (or has) “cominimality at P” if ΛPT is a
minimal colocalizing coideal of T as in Remark 7.6 and part (a) of Theorem 7.7.

7.10. Remark. Recall from [BHS23] that T is said to be stratified if the Balmer–Favi
support theory (Spc(Tc),Supp) provides a bijection{

localizing ideals of T
} Supp−−−→

{
subsets of Spc(Tc)

}
.

Theorem 7.7 should be compared with [BHS23, Theorem 4.1] which provides a
directly analogous characterization of stratification. Note that the statement of
part (b) in Theorem 7.7 is slightly different than the formulation of part (b) in
[BHS23, Theorem 4.1]. Morally this is because cosupport is not controlled by the
unit 1 in the same way that support is.

7.11. Remark. Our next goal is to prove that costratification implies stratification.
To this end, we will utilize the following crucial result which is a minor modification
of [BIK11a, Lemma 3.9].

7.12. Lemma (Benson–Iyengar–Krause). Let T be a rigidly-compactly generated
tt-category and let L be a nonzero localizing ideal of T. The following statements
are equivalent:

(a) The localizing ideal L is minimal.
(b) hom(t1, t2) 6= 0 for any two nonzero objects t1, t2 ∈ L.

Proof. (a) ⇒ (b): If t1 6= 0 then minimality implies L = Locid〈t1〉. Hence if
hom(t1, t2) = 0 then hom(L, t2) = 0. In particular hom(t2, t2) = 0 so that t2 = 0.

(b) ⇒ (a): Let 0 6= t1 ∈ L. Then L1 := Locid〈t1〉 = Loc〈t1 ⊗ Tc〉 is a set-
generated localizing subcategory and hence is strictly localizing by Theorem 2.13.
By Remark 2.11, L1 ⊆ L is the kernel of a Bousfield localization on T. For any t2 ∈ L

consider the associated Bousfield localization triangle Γt2 → t2 → Lt2 → ΣΓt2. The
first two objects are in L, thus so is Lt2. However, (b) implies that no nonzero
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object of L can be contained in (L1)⊥; that is, (L1)⊥ ∩ L = {0}. Hence Lt2 = 0,
since Γt2 ∈ L1, so that Γt2 ' t2 is contained in L1. This proves that L1 = L. �

7.13. Remark. We highlight that the proof of Lemma 7.12 crucially depends on the
existence of Bousfield localizations for arbitrary set-generated localizing ideals. In
light of Remark 2.14, one cannot establish minimality of colocalizing coideals by a
similar argument.

7.14. Remark. Lemma 7.12 admits the following relative version: Let L be a
localizing ideal of T and let J ( L be a set-generated localizing subcategory. Then L

is minimal among those localizing ideals which properly contain J if and only if
hom(t1, t2) 6= 0 for any two objects t1, t2 ∈ L \ J. In the proof one needs to consider
L1 := Locid〈J ∪ {t1}〉.

7.15. Theorem. Let T be a rigidly-compactly generated tt-category whose spectrum
is weakly noetherian. Assume that the local-to-global principle for localizing ideals
holds. The following conditions are equivalent:

(a) T is stratified.
(b) Cosupp hom(t1, t2) = Supp(t1) ∩ Cosupp(t2) for all t1, t2 ∈ T.
(c) hom(t1, t2) = 0 implies Supp(t1) ∩ Cosupp(t2) = ∅ for all t1, t2 ∈ T.

Proof. Using Lemma 5.9 we can follow the proof of Theorem 9.5 of [BIK12], which
we spell out for the reader.

(a) ⇒ (b): One inclusion (⊆) is Lemma 4.29. For the other inclusion, let
P ∈ Supp(t1) ∩ Cosupp(t2). In particular, ΓPt1 6= 0. Since ΓPT is a nontrivial
minimal localizing ideal, gP ∈ Locid〈ΓPt1〉. Using [BIK12, Lemma 8.4] and the
assumption P ∈ Cosupp(t2) we see that

0 6= ΛPt2 = hom(gP, t2) ∈ Colocid〈hom(ΓPt1, t2)〉.
Therefore 0 6= hom(ΓPt1, t2) ' hom(gP, hom(t1, t2)) and as a consequence we have
that P ∈ Cosupp hom(t1, t2).

(b)⇒ (c): This follows from Cosupp(0) = ∅.
(c)⇒ (a): The local-to-global principle for localizing ideals holds by hypothesis.

We show that the criteria of Lemma 7.12 are satisfied for ΓPT. Let t1, t2 ∈ ΓPT be
nonzero objects. Then P ∈ Supp(t1) and P ∈ Supp(t2). By Lemma 5.9, we also
have P ∈ Cosupp(t2). Hence (c) implies hom(t1, t2) 6= 0. �

7.16. Remark. The appearance of cosupport in the above characterization of strati-
fication should be regarded as significant: it is a fundamental characterization of
stratification which utilizes the notion of cosupport. This motivates the study of
cosupport even for questions purely about localizing ideals.

7.17. Remark. Recall that stratification implies that the Balmer–Favi support
satisfies the full tensor product property: Supp(t1 ⊗ t2) = Supp(t1) ∩ Supp(t2)
for all t1, t2 ∈ T; see [BHS23, Theorem 8.2]. It would be natural to guess that
costratification would promote the half-hom theorem (Proposition 4.35) to a full
hom-theorem: Cosupp(hom(t1, t2)) = Supp(t1) ∩ Cosupp(t2). Perhaps surprisingly,
Theorem 7.15 shows that this full hom-theorem is actually equivalent to stratification.

7.18. Corollary. If T is stratified then:

(a) L⊥ = Cosupp−1(Supp(L)c) for every localizing ideal L.
(b) ⊥C = Supp−1(Cosupp(C)c) for every colocalizing coideal C.
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Proof. Stratification implies the local-to-global principle by [BHS23, Theorem 4.1]
and hence also the codetection property by Theorem 6.4. Hence we can use
Theorem 7.15 to observe that

L⊥ =
{
t ∈ T

∣∣ hom(s, t) = 0 for all s ∈ L
}

=
{
t ∈ T

∣∣ Cosupp hom(s, t) = ∅ for all s ∈ L
}

=
{
t ∈ T

∣∣ Supp(s) ∩ Cosupp(t) = ∅ for all s ∈ L
}

= Cosupp−1(Supp(L)c)

and similarly
⊥C =

{
s ∈ T

∣∣ hom(s, t) = 0 for all t ∈ C
}

=
{
s ∈ T

∣∣ Cosupp hom(s, t) = ∅ for all t ∈ C
}

=
{
s ∈ T

∣∣ Supp(s) ∩ Cosupp(t) = ∅ for all t ∈ C
}

= Supp−1(Cosupp(C)c). �

7.19. Theorem. If T is costratified, then it is also stratified.

Proof. Since the colocal-to-global principle is equivalent to the local-to-global princi-
ple by Theorem 6.4, it suffices by [BHS23, Theorem 4.1] and Theorem 7.7 to establish
that ΓPT is minimal for all P ∈ Spc(Tc). For this we follow the proof of [BIK12,
Theorem 9.7] by invoking Lemma 7.12. To this end, we fix two nonzero objects
t1, t2 ∈ ΓPT and show that hom(t1, t2) 6= 0. Since t1 ∈ ΓPT, we have that ΓPt1 ' t1
by Proposition 5.2. Then by Remark 4.21, hom(t1, t2) ' hom(t1,Λ

Pt2). Since
t2 ∈ ΓPT, by Lemma 5.9 we have that P ∈ Cosupp(t2), that is, ΛPt2 6= 0. Because T

is costratified, the cominimality of ΛPT implies that ΛPt1 ∈ Colocid〈ΛPt2〉. To
conclude, we observe that because t1 6= 0, we have 0 6= hom(t1, t1) ' hom(t1,Λ

Pt1),
which by (2.7) is only possible if 0 6= hom(t1,Λ

Pt2) ' hom(t1, t2). �

7.20. Corollary. If T is costratified, then the map sending a subcategory L to L⊥

induces a bijection

{localizing ideals of T} ∼−→ {colocalizing coideals of T}
The inverse map sends C to ⊥C.

Proof. Costratification and stratification (Theorem 7.19) provide bijections of both
sets with the set of all subsets of Spc(Tc). The map which sends a subset to
its complement then induces a bijection from the set of localizing ideals to the
set of colocalizing ideals which, by Corollary 7.18, is given by L 7→ L⊥ with
inverse C 7→ ⊥C. �

7.21. Proposition. If T is stratified but not costratified, then T has a colocalizing
coideal which is not strictly colocalizing.

Proof. A strictly colocalizing coideal must be of the form L⊥ for a localizing ideal L
(see Remark 2.11). If T is stratified then for any Y ⊆ Spc(Tc), we have

(Supp−1(Y ))⊥ = (Locid〈gP | P ∈ Y 〉)⊥ =
{
gP
∣∣P ∈ Y }⊥ = Cosupp−1(Y c).

Now, since T is not costratified, there is some colocalizing coideal C such that
C 6= Cosupp−1(Cosupp(C)). But if C was strictly colocalizing then

C = L⊥ = (Supp−1(Supp(L)))⊥ = Cosupp−1(Supp(L)c)
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and Supp(L)c = Supp(⊥C)c = Cosupp(C) by Corollary 7.18(b), so that C =
Cosupp−1(Cosupp(C)). �

7.22. Remark. We do not know whether stratification implies costratification. This
seems to be a difficult question. For example, suppose we could find an example T

which is stratified but not costratified. By Proposition 7.21, this category would have
a colocalizing coideal which is not strictly colocalizing. Assuming the counterexample
arises from a combinatorial model, this would prove (Remark 2.14) that Vopĕnka’s
principle is inconsistent with ZFC. Whether that is likely or unlikely is beyond our
expertise.

7.23. Remark. On the other hand, if Vopĕnka’s principle is taken as an axiom
then stratification implies costratification for any example that arises from a stable
combinatorial model. Indeed, in this case every colocalizing coideal C of T = Ho(M)
is strictly colocalizing (Remark 2.14). Hence C = (⊥C)⊥. If T is stratified then
(⊥C)⊥ = Cosupp−1(Cosupp(C)) by Corollary 7.18 and costratification follows.

7.24. Remark. We can summarize the situation with the diagram displayed on page 6.
It assembles the implications of Proposition 5.7, Theorem 6.4, Theorem 7.19, along
with Example 5.8 and [BHS23, Example 4.6].

8. The geometry of cosupport

We have already seen some relations between support and cosupport in the
previous sections. We now dig deeper into the somewhat mysterious relationship
between the support and cosupport of a given object. Throughout this section T

will denote a rigidly-compactly generated tt-category whose spectrum Spc(Tc) is
weakly noetherian.

8.1. Proposition. Assume that codetection holds. Let Y ⊆ Spc(Tc) be a Thomason
subset. Then for any t ∈ T we have:

Supp(t) ∩ Y = ∅ if and only if Cosupp(t) ∩ Y = ∅.

Proof. The codetection property implies the detection property by Proposition 5.7.
Then observe that

Cosupp(t) ∩ Y = ∅⇐⇒ Cosupp(hom(eY , t)) = ∅ (Lemma 4.32)

⇐⇒ hom(eY , t) = 0 (codetection)

⇐⇒ hom(x, t) = 0 for all x ∈ TcY

⇐⇒ x⊗ t = 0 for all x ∈ TcY

⇐⇒ eY ⊗ t = 0

⇐⇒ Supp(eY ⊗ t) = ∅ (detection)

⇐⇒ Supp(t) ∩ Y = ∅
which establishes the claim. �

8.2. Remark. The next theorem (and its corollary) expresses a fundamental relation
between support and cosupport, generalizing [BIK12, Theorem 4.13]. The statement
uses Notation 4.19 and Notation 4.16.

8.3. Theorem. Assume that codetection holds. Then for any t ∈ T we have

visT ∩min Supp(t) = visT ∩min Cosupp(t).
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Proof. Let P be a visible point. Then {P} = {P} ∩ gen(P) and {P} \ {P} =

{P} ∩ gen(P)c is the intersection of two Thomason subsets and hence is itself

Thomason. Applying Proposition 8.1 to the Thomason {P} \ {P} yields

Supp(t) ∩ {P} ⊆ {P} ⇐⇒ Cosupp(t) ∩ {P} ⊆ {P}.

It follows, by invoking Proposition 8.1 again for the Thomason {P}, that

Supp(t) ∩ {P} = {P} ⇐⇒ Cosupp(t) ∩ {P} = {P}.

Recall that P ∈ minV means, by definition, that V ∩{P} = {P} so we are done. �

8.4. Corollary. If T has noetherian spectrum and t ∈ T, then

min Supp(t) = min Cosupp(t).

Proof. Since the spectrum is noetherian, the colocal-to-global principle holds (by
Corollary 6.5) and hence the codetection property holds (by Theorem 6.4). Moreover,
a spectral space is noetherian if and only if each of its points is visible, by [BF11,
Proposition 7.13]; see also [BHS23, Remark 2.2]. Hence the result follows immediately
from Theorem 8.3. �

8.5. Remark. Recall that a spectral space has Krull dimension zero if and only if its
specialization order is trivial if and only if it is T1 if and only if it is Hausdorff if
and only if it is profinite (see, e.g., [BHS23, Remark 2.4]). In this case we have:

8.6. Corollary. If the spectrum of T is zero-dimensional and T satisfies the code-
tection property then for any t ∈ T we have

visT ∩ Supp(t) = visT ∩ Cosupp(t).

Proof. Since the specialization order is trivial, we have minW = W for any subset
W ⊆ Spc(Tc). Hence the statement follows from Theorem 8.3. �

8.7. Example. Let T = K(Inj kG) denote the homotopy category of complexes of
injective kG-modules with G a finite group and k a field whose characteristic divides
the order of G. In [BIK12, Example 11.1] the authors prove that Cosupp(1) = {m}
is a singleton, where m is the unique maximal ideal in H∗(G, k). This shows that
the statement of Corollary 8.4 is, in the given generality, optimal.

8.8. Example. Consider N+, the one-point compactification of the discrete set N of
natural numbers with ∞ denoting the accumulation point, and let R = C(N+, k) be
the commutative ring of locally constant functions on N+ with values in a field k.
If D(R) denotes the derived category of R-modules, we have homeomorphisms

Spc(D(R)c) ∼= Spec(R) ∼= N+.

Note that this space is profinite, hence weakly noetherian and generically noetherian3

but not noetherian. The canonical inclusion N ⊂ N+ exhibits N as a Thomason
subset and we can consider ΛN1 = hom(eN,1). We claim:

(a) ∞ ∈ Supp ΛN1; and
(b) Cosupp ΛN1 ⊆ N.

3Recall that a spectral space X is said to be generically noetherian if gen(x) is noetherian for
every x ∈ X; see [BHS23, Definition 9.5].
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Since minW = W for any subset W ⊆ N+, we deduce that

min Supp t 6= min Cosupp t

for t = ΛN1 ∈ D(R). Thus Corollary 8.4 does not hold without the noetherian
assumption, leading to the more precise statement Theorem 8.3. Moreover, since
vis D(R)c = N, this example also shows that the restriction to visible points in
Corollary 8.6 is necessary.

Claim (b) follows from Lemma 4.32, so it remains to prove Claim (a). To this
end, note that since the space is Hausdorff, gen(∞) = {∞} and g∞ = fgen(∞)c = fN.

Thus, ∞ 6∈ Supp ΛN1 would mean that fN ⊗ ΛN1 = 0. This would imply that the
homotopy pullback square

1 ΛN1

fN fN ⊗ ΛN1

degenerates to an isomorphism 1 ' fN ⊕ ΛN1. By naturality, this would force
ΛN1 ' eN and consequently a decomposition N+ = Nt{∞}. This is a contradiction,
so ∞ ∈ Supp ΛN1 as claimed.

In fact, Cosupp ΛN1 = N, since for any n ∈ N, one can use the delta function
δn ∈ C(N+, k) to construct a nontrivial map gn → 1 in D(R), bearing in mind
Example 5.8. It then follows from Theorem 8.3 and (a) that Supp ΛN1 = N+.

8.9. Remark. The above examples show that Supp(t) 6= Cosupp(t) in general. In
fact, it turns out that the relationship between Supp(t) and Cosupp(t) has an
interesting connection with the Tate construction.

8.10. Proposition. Let Y ⊆ Spc(Tc) be a Thomason subset and let

eY → 1→ fY
θ−→ ΣeY

be the associated finite (co)localization. The following are equivalent:

(a) The internal hom hom(fY ,ΣeY ) vanishes.
(b) The map θ : fY → ΣeY vanishes.
(c) The Thomason Y is both open and closed and the spectrum decomposes

Spc(Tc) = Y t Y c

as a disjoint union of closed subsets.
(d) The complement Y c is Thomason.

Proof. This is established by [PSW22, Proposition 2.29]. �

8.11. Lemma. Let Y ⊆ Spc(Tc) be a Thomason subset. The following are equivalent:

(a) Cosupp(eY ) ⊆ Y .
(b) Cosupp(hom(fY ,ΣeY )) = ∅.

Proof. By Lemma 4.32, we have

Cosupp(hom(fY ,ΣeY )) = Y c ∩ Cosupp(eY )

and hence (a) is equivalent to (b). �
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8.12. Corollary. Assume that the codetection property holds and let Y ⊆ Spc(Tc) be
a Thomason subset. Then Cosupp(eY ) ⊆ Y if and only if there is a decomposition
Spc(Tc) = Y t Y c as a disjoint union of closed subsets.

Proof. Since we are assuming that the codetection property holds, Lemma 8.11 says
that Cosupp(eY ) ⊆ Y if and only if hom(fY ,ΣeY ) = 0. The result then follows
from Proposition 8.10. �

8.13. Proposition. Let T be a rigidly-compactly generated tt-category with Spc(Tc)
weakly noetherian. The following are equivalent:

(a) The codetection property holds and Supp(t) = Cosupp(t) for all t ∈ T.
(b) Spc(Tc) is a finite discrete space.

Proof. (a)⇒ (b): Recall that Supp(eY ) = Y for any Thomason subset Y ⊆ Spc(Tc).
Hence Corollary 8.12 implies that Y is both open and closed. Since Spc(Tc) is
assumed weakly noetherian, every point is the intersection of a Thomason and the
complement of a Thomason. Hence every point is open and so the topology is
discrete. Since Spc(Tc) is quasi-compact, it is then finite and discrete. (b)⇒ (a) :
This is provided by Corollary 8.4, Theorem 6.4 and Corollary 6.5 since a finite
discrete space is both noetherian and zero-dimensional. �

8.14. Corollary. If Spc(Tc) is noetherian then the following are equivalent:

(a) Supp(t) = Cosupp(t) for all t ∈ T.
(b) Spc(Tc) is a finite discrete space.

Proof. This follows from Proposition 8.13 and Corollary 6.5. �

8.15. Example. If Spc(Tc) = ∗ is a single point then Supp = Cosupp. Indeed, both
just detect whether an object is nonzero.

8.16. Example (Two connected points). Let T be a rigidly-compactly generated
tt-category whose spectrum

Spc(Tc) =

• m

• η

consists of two connected points: a closed point m and a generic point η. There
is only one non-trivial Thomason subset, namely {m}, hence there is only one
non-trivial finite localization

e{m} → 1→ f{m} → Σe{m}.

Moreover, g(m) = e{m} and g(η) = f{m}. We can directly observe that the codetec-
tion property holds (i.e., without invoking Corollary 6.5). In fact we can directly
observe that the local-to-global principle and the colocal-to-global principle hold in
this example. From Lemma 4.26 we have that Cosupp(g(η)) = {η} is a single point.
On the other hand, since the two points are connected, we know by Corollary 8.12
that Cosupp(g(m)) = {m, η} is the whole space. The nature of Cosupp(1) is more
subtle. We always have m ∈ Cosupp(1), either by a direct argument or by Corol-
lary 8.4. On the other hand, both η ∈ Cosupp(1) and η 6∈ Cosupp(1) are possible,
as the next sub-example demonstrates.
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8.17. Example. Take T = D(R) to be the derived category of a discrete valuation
ring (R,m, k). In this example, Cosupp(1) ⊆ {m} if and only if R is complete. This
follows from the triangle

hom(f{m},1)→ 1→ hom(e{m},1)

and g(η) = f{m}, once one recognizes that in this case hom(e{m},−) is the derived
functor of m-adic completion; see Example 4.4 and the references therein.

8.18. Remark. If a category is stratified then its support function determines and
is determined by its cosupport function. Indeed, for any t ∈ T, we have Supp(t) =
Cosupp({t}⊥)c and Cosupp(t) = Supp(⊥{t})c by Corollary 7.18. However, the
question remains whether the support of an individual object Supp(t) determines
its cosupport Cosupp(t), or vice versa. The next two examples demonstrate that in
general this is false.

8.19. Example. Let Y := supp(x) for a compact object x ∈ Tc. Then Supp(x) =
Supp(eY ) = Y . In particular, Cosupp(x) ⊆ Y by Example 4.36. On the other
hand, we have seen in Corollary 8.12 that if Cosupp(eY ) ⊆ Y then the spectrum
disconnects into Y and its complement (provided the codetection property holds).
Therefore there are many examples where we have two objects t1 and t2 with
Supp(t1) = Supp(t2) and yet Cosupp(t1) 6= Cosupp(t2). For an explicit example,
this occurs for any category T whose spectrum is two connected points (Example 8.16)
and t1 = e{m} and t2 = x any compact object with supp(x) = {m}. Moreover, there
are such examples which are costratified; e.g., the derived category T = D(R) of a
discrete valuation ring (see Proposition 19.1 below). We conclude that an object’s
support does not in general determine its cosupport, even in costratified examples.

8.20. Example. Let T be a local category where Cosupp(1) = {m} just consists
of the closed point. For example, we could take T = D(R) for R a complete
discrete valuation ring (Example 8.17) or T = K(Inj kG) (Example 8.7). Then for
any nonzero compact object x, we have Cosupp(x) = supp(x) ∩ Cosupp(1) = {m}
(Example 4.36). Thus, any two nonzero compact objects have the same cosupport:
Cosupp(x) = Cosupp(y). On the other hand, provided the spectrum is not a single
point, there exist nonzero compact objects with differing support. We conclude that
an object’s cosupport does not in general determine its support, even in costratified
examples.

8.21. Remark. In Section 12 we will establish a further important relationship
between support and cosupport, namely that the support of an object coincides with
the cosupport of its Brown–Comenetz dual; see Proposition 12.9. The discussion
there will also elaborate on the relationship with completion.



COSUPPORT IN TENSOR TRIANGULAR GEOMETRY 35

Part II. Perfection and duality

The opposite category Top of a triangulated category T inherits a triangulated
structure (with ΣTop = Σ−1

T ) and the notion of a thick subcategory is self-dual. In
fact, the thick subcategories of a triangulated category T coincide with the thick
subcategories of its opposite triangulated category Top. Moreover, the localizing
subcategories of T are precisely the colocalizing subcategories of Top and vice versa.
However, localizing ideals and colocalizing coideals are not obviously dual notions.
As it stands, the notion of a colocalizing coideal is somewhat mysterious, besides
its appearance in right orthogonals of localizing ideals. Similarly, definitions of
cosupport in the literature — including the notion we have studied above — are not
very conceptually motivated. It is not too far a stretch to say that one scratches
one’s head the first time one sees the definition of cosupport. Fortunately, in this
part of the paper we will provide a conceptual understanding for it all, exhibit
localizing ideals as dual to colocalizing coideals, support as dual to cosupport, and
stratification as dual to costratification. In order to achieve this, we will work in a
more general setting that encompasses both T and Top. This leads us to perfection:

9. Perfect generation

The opposite category Top of a compactly generated triangulated category T

is never compactly generated.4 The more general notion of “perfectly generated”
triangulated category is more flexible in this respect, encompassing both compactly
generated triangulated categories and their opposites. This notion has a three-fold
role to play in this work. Firstly, it will provide an adequate level of generality in
which the Balmer–Favi approach to support can be constructed, which will facilitate
a comparison between support and cosupport. Secondly, it will provide another way
to construct objects with prescribed cosupport. Thirdly, it will be important for
controlling descent of costratification.

9.1. Definition (Krause). Recall from [Kra10, Section 5] that a triangulated cate-
gory T is perfectly generated if it has coproducts and there exists a set of objects G ⊆ T

satisfying the following two conditions:

(PG1) Loc〈G〉 = T.
(PG2) Given any family (xi → yi)i∈I of morphisms in T such that the induced map

T(g, xi)→ T(g, yi) is surjective for all g ∈ G and i ∈ I, the induced map

T(g,
∐
i

xi)→ T(g,
∐
i

yi)

is surjective.

Dually, we say that a triangulated category T is perfectly cogenerated if Top is
perfectly generated.

9.2. Remark. As noted in [Kra10, Remark 5.1.2], in the presence of (PG2), the
generation condition (PG1) is equivalent to the (a priori weaker) generation condition
that an object t ∈ T vanishes if T(Σng, t) = 0 for all g ∈ G and n ∈ Z.

4Boardman [Boa70] proved this for T = SH. The general result is due to Neeman [Nee01,
Appendix E.1].
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9.3. Example. A compactly generated triangulated category is perfectly generated.
The (PG2) condition is automatic when G is a set of compact objects. More generally,
a well generated triangulated category is perfectly generated; see [Kra01].

9.4. Definition. Let T be a compactly generated triangulated category. For any
compact object c ∈ Tc, the functor

(9.5) HomZ(T(c,−),Q/Z) : Top → Ab

is homological and sends coproducts in T to products in Ab, hence by Brown
representability is represented by an object Ic ∈ T. Consequently, we have a natural
isomorphism

(9.6) T(t, Ic) ∼= HomZ(T(c, t),Q/Z)

for any t ∈ T and c ∈ Tc.

9.7. Remark. The significance of Q/Z in the above construction is that it is an
injective cogenerator of the category of abelian groups. Injectivity ensures that
the functor (9.5) is homological, while cogeneration amounts to the fact that
every nonzero abelian group admits a nonzero homomorphism to Q/Z. It follows
that an object t = 0 if and only if T(c, t) = 0 for all c ∈ Tc if and only if
T(t, Ic) = HomZ(T(c, t),Q/Z) = 0 for all c ∈ Tc. Moreover, we have:

9.8. Lemma. For any morphism x→ y in T and c ∈ Tc, the induced map T(y, Ic)→
T(x, Ic) is surjective if and only if the induced map T(c, x)→ T(c, y) is injective.

Proof. One implication follows from the injectivity of Q/Z: The induced map
T(y, Ic) → T(x, Ic) is surjective if the induced map T(c, x) → T(c, y) is injective.
The other implication uses the cogeneration property of Q/Z: If T(y, Ic)→ T(x, Ic)
is surjective then by the natural isomorphism (9.6) any homomorphism of abelian
groups T(c, x)→ Q/Z factors through T(c, x)→ T(c, y). This implies that T(c, x)→
T(c, y) is injective because if f ∈ T(c, x) is nonzero we can extend a nonzero
homomorphism of abelian groups 〈f〉 → Q/Z to a homomorphism T(c, x)→ Q/Z
which does not annihilate f and hence T(c, x)→ T(c, y) cannot annihilate f . �

9.9. Proposition. If T is compactly generated then Top is perfectly generated. More
precisely, if G ⊆ T is a set of compact generators, then Top is perfectly generated by
I(G) :=

{
Ic
∣∣ c ∈ G

}
. In particular, T = Coloc〈I(G)〉.

Proof. Suppose t ∈ T is such that T(t, Ic) = 0 for all c ∈ G. Since Q/Z is a
cogenerator of Ab, this is equivalent to the statement that T(c, t) = 0 for all c ∈ G

(Remark 9.7). By assumption, G is a generating set for T, hence t = 0. This
shows that I(G) is a set of cogenerators for T (Remark 9.2). In order to verify
condition (PG2), let fi : xi → yi be a collection of maps in T with T(fi, Ic) surjective
for all c ∈ G. In light of Lemma 9.8, this translates to the statement that the maps
T(c, fi) are injective for all c ∈ G. It follows that

∏
i T(c, fi) = T(c,

∏
i fi) is injective

in Ab for each c ∈ G, which in turn is equivalent to the surjectivity of T(
∏
i fi, Ic)

for all c ∈ G. This establishes that I(G) is a set of perfect cogenerators for T. �

9.10. Remark. The Brown representability theorem holds for perfectly generated
categories; see [Kra02, Kra10]. In particular, if T is perfectly generated then any
coproduct-preserving exact functor f∗ : T → S admits a right adjoint f∗.
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9.11. Proposition. Suppose the triangulated category T is perfectly generated
by G ⊆ T. Let f∗ : T → S be a coproduct-preserving exact functor whose right
adjoint f∗ preserves coproducts. Then the following are equivalent:

(a) The category S is perfectly generated by f∗(G).
(b) The right adjoint f∗ is conservative.

Proof. One verifies directly that f∗(G) satisfies (PG2). Here one uses the assumption
that f∗ preserves coproducts. Then using Remark 9.2, the equivalence of (a) and (b)
just follows from observing that f∗(s) = 0 if and only if T(ΣnG, f∗s) = 0 if and only
if S(Σnf∗(G), s) = 0. �

9.12. Remark. With “perfectly generated” replaced by “compactly generated”,
Proposition 9.11 is well-known. In this case, the assumption that f∗ preserves
coproducts can be removed since it is implied by (and is in fact equivalent to) the
condition in part (a) that f∗ preserves the compactness of the generators; see [Nee96,
Theorem 5.1].

10. Cosupport is support

By a tensor-triangulated category we usually mean a triangulated category
equipped with a compatible closed symmetric monoidal structure as spelled out in
[HPS97, Appendix A]. Indeed, the closed structure is used in a fundamental way
in the definition of cosupport and is featured in the very definition of colocalizing
coideal. Although the opposite category of a symmetric monoidal category inherits
a symmetric monoidal structure, it does not inherit a closed symmetric monoidal
structure. For this reason, we will need the following weaker notion:

10.1. Terminology. In this paper, by a non-closed tensor-triangulated category we
mean a triangulated category T equipped with a symmetric monoidal structure such
that −⊗ t : T → T is an exact functor for each t ∈ T (with the usual compatibility
between the associated suspension isomorphisms; see [Bal10, Definition 3]). We
will not assume that T has an internal hom, and even when we assume that T has
coproducts, we do not assume that −⊗ t : T → T preserves them. However we will
require that the full subcategory Td ⊆ T of dualizable objects is an essentially small
triangulated subcategory and that (−)∨ : Td → (Td)op preserves exact triangles.

10.2. Remark. The requirement that Td is a triangulated subcategory amounts to
the assumption that an extension of dualizable objects is again dualizable. If T is
idempotent-complete (for example, if it has countable coproducts) then Td is a thick
subcategory.

10.3. Remark. If T is a non-closed tensor-triangulated category then Td is a rigid
essentially small tensor-triangulated subcategory of T.

10.4. Remark. If T is a rigidly-compactly generated tensor-triangulated category in
the usual sense then Td = Tc. Nevertheless, we will often write Td when emphasizing
dualizability over compactness. The results which follow provide evidence that it
is Td which is more fundamental to tensor triangular geometry and that Spc(Td) is
the correct definition of “the” Balmer spectrum of T.

10.5. Example. Let T be a rigidly-compactly generated tensor-triangulated category
in the usual sense. Its opposite category Top is a non-closed tensor-triangulated
category and Td ∼= (Top)d are equivalent tensor-triangulated categories, hence have
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the same Balmer spectrum. In fact, since thick ideals of dualizable objects are
closed under taking duals, T and Top have exactly the same thick ideals of dualizable
objects, the same Balmer spectrum of dualizable objects, the same universal support
for dualizable objects, and so on. For all intents and purposes, T and Top are
just two extensions of “the same” rigid tensor-triangulated category that we will
sometimes denote by K.

10.6. Remark. The following definition is the key to reconciling localizing ideals and
colocalizing coideals.

10.7. Definition. Let T be a non-closed tensor-triangulated category which has small
coproducts. A localizing Td-submodule of T is a localizing subcategory L ⊆ T such
that Td ⊗ L ⊆ L.

10.8. Remark. The localizing Td-submodule generated by a collection of objects
E ⊆ T coincides with Loc〈E⊗ Td〉.

10.9. Example. Let T be a rigidly-compactly generated tt-category (in the usual
sense). A localizing subcategory L is a localizing ideal if and only if L ⊗ T ⊆ L

if and only if L ⊗ Td ⊆ L if and only if L is a Td-submodule of T. That is, the
localizing ideals of T are precisely the localizing Td-submodules of T. The key reason
for this is that T = Loc〈Td〉 is generated by the subcategory of dualizable objects.

10.10. Example. Let T be a rigidly-compactly generated tt-category (in the usual
sense). A colocalizing subcategory C of T is a colocalizing coideal if and only if
hom(T,C) ⊆ C if and only if hom(Td,C) ⊆ C if and only if Td ⊗ C ⊆ C if and only if
C is a localizing Td-submodule of Top. That is, the colocalizing coideals of T are
precisely the localizing Td-submodules of Top. Thus, the task of classifying localizing
ideals and colocalizing coideals is, in both cases, the question of classifying the
localizing Td-submodules of T and Top, respectively.

10.11. Remark. Our next goal is to explain how cosupport is related to support.
Recall from Proposition 9.9 that if T is compactly generated then Top is perfectly
generated.

10.12. Lemma. Let T be a non-closed tensor-triangulated category and let E ⊆ Td

be a set of dualizable objects. If T is perfectly generated by G ⊆ T then Loc〈E⊗ T〉
is perfectly generated by E⊗ G.

Proof. Let L := Loc〈E⊗ G〉. Then
{
t ∈ T

∣∣E⊗ t ∈ L
}

is a localizing subcategory
since the objects in E are dualizable. It contains G and hence since T = Loc〈G〉 we
conclude that E⊗ T ⊆ Loc〈E⊗ G〉. This establishes (PG1). Condition (PG2) can
be readily checked from the definition. The key point here is that for a dualizable
object d ∈ Td, the functor d⊗− : T → T has a right adjoint d∨ ⊗− : T → T which
itself preserves coproducts; cf. Proposition 9.11. �

10.13. Proposition. Let T be a perfectly generated non-closed tensor-triangulated
category and write K := Td. For every Thomason subset Y ⊆ Spc(K), the localizing
subcategory Loc〈KY ⊗T〉 is strictly localizing, where KY :=

{
a ∈ K

∣∣ supp(a) ⊆ Y
}

.
We write

(10.14) ΓY (t)→ t→ LY (t)→ ΣΓY (t)

for the associated Bousfield localization triangle.
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Proof. By Lemma 10.12, the localizing subcategory Loc〈KY ⊗ T〉 is perfectly gener-
ated. It follows from [Kra10, Proposition 5.2.1] that it is strictly localizing. �

10.15. Remark. The subcategory ΓY (T) = Loc〈KY ⊗ T〉 of colocal objects is a
localizing Td-submodule of T. The proof is a standard thick subcategory argument
which uses the fact that for a dualizable object a ∈ Td, the functor a⊗− : T → T

preserves coproducts. Note that we are not assuming that t⊗− preserve coproducts
in general (for an arbitrary t ∈ T). This is related to the fact that ΓY (T) is not
necessarily a localizing ideal of T.

10.16. Remark. The subcategory of local objects LY (T) = Loc〈KY ⊗ T〉⊥ coincides
with

⋂
a∈KY

ker(a ⊗ −) and hence is itself a localizing Td-submodule of T. This

implies that the Bousfield localization (10.14) is smashing in the sense that ΓY
and LY preserve coproducts. It follows that

(10.17) ΓY (a⊗ t) ' a⊗ ΓY (t) and LY (a⊗ t) ' a⊗ LY (t)

for any a ∈ Td and t ∈ T.

10.18. Remark. The localizing Td-submodule generated by the thick ideal KY is
given by Loc〈KY 〉 = Loc〈KY ⊗ Td〉; cf. Remark 10.8. The localizing Td-submodule
ΓY (T) = Loc〈KY ⊗ T〉 is potentially larger.

10.19. Lemma. The assignment Y 7→ ΓY T, regarded as a map from the lattice
of Thomason subsets of Spc(Td) to the lattice of localizing Td-submodules of T,
preserves arbitrary joins and finite meets.

Proof. For notational simplicity, write K := Td. It is immediate that the map
preserves the greatest and least elements. We first prove that it preserves arbitrary
joins. To this end, consider a union

⋃
i Yi of Thomason subsets of Spc(K). The

inclusion
∨
i ΓYiT ⊆ Γ⋃

i Yi
T is trivial. To establish the other inclusion we need to

check that K⋃
i Yi
⊗ T ⊆

∨
i ΓYiT. Observe that{
a ∈ Td

∣∣ a⊗ T ⊆
∨
i
ΓYiT

}
is a thick ideal of Td. It contains KYi for each i. Hence it contains thickid〈

⋃
iKYi〉

which — by the classification of thick ideals of the rigid tt-category K — coincides
with K⋃

i Yi
. This establishes the desired claim.

It remains to prove that the function preserves finite meets. That is,

ΓY1
T ∩ ΓY2

T = ΓY1∩Y2
T

for any pair of Thomason subsets Y1, Y2. The ⊇ inclusion is immediate. For the ⊆
inclusion we need to establish that

(10.20) Loc〈KY1 ⊗ T〉 ∩ Loc〈KY2 ⊗ T〉 ⊆ Loc〈KY1∩Y2 ⊗ T〉.
First note that KY1∩Y2

= KY1
∩KY2

= thick〈KY1
⊗KY2

〉 where the last equality
uses the rigidity of K. Then consider an object t contained in the left-hand side
of (10.20). Since t ∈ Loc〈KY2 ⊗ T〉, we have

ΓY1
(t) ∈ ΓY1

(Loc〈KY2
⊗ T〉) ⊆ Loc〈ΓY1

(KY2
⊗ T)〉,

where the inclusion uses that ΓY1
preserves coproducts (Remark 10.16). But also

t ' ΓY1
(t) since t ∈ Locid〈KY1

⊗ T〉; hence

t ∈ Loc〈ΓY1
(KY2

⊗ T)〉.



40 TOBIAS BARTHEL, NATÀLIA CASTELLANA, DREW HEARD, AND BEREN SANDERS

Now using (10.17) and the fact that tensoring with dualizable objects preserves
coproducts, we have

Loc〈ΓY1(KY2 ⊗ T)〉 = Loc〈KY2 ⊗ ΓY1T〉 = Loc〈KY2 ⊗ Loc〈KY1 ⊗ T〉〉
= Loc〈KY2 ⊗KY1 ⊗ T〉
= Loc〈KY1∩Y2

⊗ T〉
(10.21)

which establishes (10.20). �

10.22. Lemma. Let Y1, Y2 ⊆ Spc(Td) be two Thomason subsets. Then we have:

(a) ΓY1ΓY2 = ΓY1∩Y2 = ΓY2ΓY1 ;
(b) LY1LY2 = LY1∪Y2 = LY2LY1 ;
(c) ΓY1

LY2
= LY2

ΓY1
.

Proof. First note that if Y ⊆ Y ′ then ΓY ' ΓY ΓY ′ . Hence, ΓY1∩Y2
' ΓY1∩Y2

ΓY2
'

ΓY1∩Y2ΓY1ΓY2 . To prove (a) it suffices to verify that ΓY1ΓY2t ∈ Loc〈KY1∩Y2 ⊗ T〉 so
that ΓY1∩Y2ΓY1ΓY2(t) ' ΓY1ΓY2(t). Note that, by the classification of thick ideals of
the rigid tt-category K, KY1∩Y2

= KY1
∩KY2

. Thus, we want to show that

ΓY1
ΓY2

t ∈ Loc〈KY1
⊗KY2

⊗ T〉)
for any t ∈ T. Since ΓY2

t ∈ Loc〈KY2
⊗ T〉, we have

ΓY1
ΓY2

t ∈ ΓY1
(Loc〈KY2

⊗ T〉) ⊆ Loc〈ΓY1
(KY2

⊗ T)〉,
where the last inclusion uses that ΓY preserves coproducts (Remark 10.16). Now
using the same Remark 10.16, we see as in (10.21) above that

Loc〈ΓY1(KY2 ⊗ T)〉 = Loc〈KY2 ⊗KY1 ⊗ T〉

which is what we wanted to show. This establishes (a).
For part (b), first observe that if Y ⊆ Y ′ then LY ′ ' LY ′LY . Hence LY1∪Y2 '

LY1∪Y2LY2 ' LY1∪Y2LY1LY2 . The proof will be finished if we can show that

LY1
LY2

t ∈ Loc〈KY1∪Y2
⊗ T〉⊥.

For this, it is enough to show that

(10.23) KY1∪Y2 ⊗ LY1LY2t = 0

which, since KY1∪KY
= thickid〈KY1 ∪KY2〉, is equivalent to

KY1 ⊗ LY1LY2t = 0 and KY2 ⊗ LY1LY2t = 0

both of which follow from Remark 10.16.
Finally, we prove part (c). It follows from (a) that ΓY1LY2t is LY2-local. Hence

ΓY1
LY2

t
∼−→ LY2

ΓY1
LY2

t. On the other hand, it also follows from (a) that ΓY1
t→

ΓY1
LY2

t is an LY2
-equivalence, hence

ΓY1
LY2

t
∼−→ LY2

ΓY1
LY2

t
∼←− LY2

ΓY1
t. �

10.24. Definition (Support for perfectly generated categories). Let T be a perfectly
generated non-closed tensor-triangulated category whose spectrum Spc(Td) is weakly
noetherian. Write {P} = Y1 ∩Y c2 for Thomason subsets Y1, Y2 ⊆ Spc(Td) and define
ΓP := ΓY1LY2 . Armed with Lemma 10.22, one shows that this definition does not
depend on the choice of Y1 and Y2 by following the ideas of [BF11, Lemma 7.4].
The Balmer–Favi support of an object t ∈ T is defined as

SuppT(t) :=
{
P ∈ Spc(Td)

∣∣ΓP(t) 6= 0
}
⊆ Spc(Td).
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10.25. Remark. We warn the reader that it is not necessarily true that SuppT(x) =
supp(x) for x ∈ Td. That is, the small support does not necessarily recover the
universal support of dualizable objects.

10.26. Definition. Let T be a non-closed tensor-triangulated category which has
small coproducts. A function σ : T → P(X) is a support theory for localizing
Td-submodules if it satifies the following conditions:

(a) σ(0) = ∅;
(b) σ(Σt) = σ(t) for every t ∈ T;
(c) σ(c) ⊆ σ(a) ∪ σ(b) for any exact triangle a→ b→ c→ Σa in T.
(d) σ(

∐
i ti) =

⋃
i σ(ti) for any set of objects ti in T.

(e) σ(x⊗ t) ⊆ σ(t) for any x ∈ Td and t ∈ T.

These properties are precisely equivalent to the statement that for every subset
Y ⊆ X, the subcategory

{
t ∈ T

∣∣σ(t) ⊆ Y
}

is a localizing Td-submodule of T.

10.27. Definition. We say that a support theory (X,σ) stratifies T if the map
L 7→

⋃
t∈L σ(t) is a bijection from the collection of localizing Td-submodules of T to

the set of all subsets of X.

10.28. Remark. If (X,σ) stratifies T then the inverse must necessarily be given
by Y 7→

{
t ∈ T

∣∣σ(t) ⊆ Y
}

. It follows that σ provides a lattice isomorphism

between the lattice of localizing Td-submodules and the lattice of all subsets of X.
In particular, it preserves joins and meets.

10.29. Example. If Spc(Td) is weakly noetherian, then SuppT defined in Defini-
tion 10.24 is a support function in the sense of Definition 10.26. Axioms (d) and (e)
follow from Remark 10.16.

10.30. Definition. We say that a perfectly generated non-closed tt-category T

with Spc(Td) weakly noetherian is stratified if it is stratified by SuppT.

10.31. Example. Let T be a rigidly-compactly generated tensor-triangulated category
in the usual sense and let K := Td. The localizing K-submodules of T are precisely the
localizing ideals of T (Example 10.9). If we apply the construction of Definition 10.24
to T, we are just considering for each Thomason subset Y ⊆ Spc(K), the Bousfield
localization of T whose acyclics are

Loc〈KY ⊗ T〉 = Locid〈KY 〉 = Locid〈eY 〉 = Loc〈KY 〉 =: TY .

This is the usual idempotent triangle

eY ⊗ t→ t→ fY ⊗ t→ ΣeY ⊗ t
on T, and the support is

SuppT(t) =
{
P ∈ Spc(K)

∣∣ gP ⊗ t 6= 0
}
.

That is, we obtain the usual Balmer–Favi support of Definition 4.23. Stratification
for T in the sense of Definition 10.30 recovers the notion of stratification studied in
[BHS23]. In this example, SuppT(x) = supp(x) for x ∈ Td.

10.32. Example. Let T be a rigidly-compactly generated tensor-triangulated category
in the usual sense. Then Top is a perfectly generated non-closed tensor-triangulated
category with subcategory of dualizable objects K := (Top)d ∼= Td. The localizing
K-submodules of Top are precisely the colocalizing coideals of T (Example 10.10).
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If we apply the construction of Definition 10.24 to Top, we are then considering a
Bousfield localization in Top for each Thomason subset Y ⊂ Spc(K),

(10.33) Γop
Y (t)→ t→ Lop

Y (t)→ ΣΓop
Y (t),

whose acyclics are LocTop〈KY ⊗ Top〉. This corresponds to a Bousfield localization
in T,

(10.34) Lop
Y (t)→ t→ Γop

Y (t)→ ΣLop
Y (t),

whose local objects are

LocTop〈KY ⊗ Top〉 = ColocT〈KY ⊗ T〉.
That is, expressed in T, the subcategory of local objects is ColocT〈KY ⊗ T〉 =
hom(eY ,T) = (TY )⊥⊥ using Lemma 4.5. Thus the Bousfield localization (10.34)
in T is the Bousfield localization

hom(fY , t)→ t→ hom(eY , t)→ Σhom(fY , t)

whose acyclics are (TY )⊥. Thus, the original Bousfield localization (10.33) in Top is
given by

Γop
Y (t) = hom(eY , t) and Lop

Y (t) = hom(fY , t)

and the support function on Top is given by

SuppTop(t) :=
{
P ∈ K

∣∣ hom(gP, t) 6= 0
}
.

In conclusion, we have established that the support (Definition 10.24) of the opposite
category Top is precisely Balmer–Favi cosupport (Definition 4.23):

10.35. Theorem. Let T be a rigidly-compactly generated tensor-triangulated category
with Spc(Td) weakly noetherian. Then

CosuppT(t) = SuppTop(t)

for all t ∈ T, the colocalizing coideals of T are precisely the localizing Td-submodules
of Top, and T is costratified (Definition 7.1) precisely when Top is stratified (Defini-
tion 10.30).

10.36. Remark. Our perspective has been to regard a non-closed tt-category T as a
module over its rigid tt-subcategory of dualizable objects Td. There are similarities
but also differences between the support theory we have constructed compared to
what is achieved in [Ste13]. Our setting is both more general and more specialized.
When T is a rigidly-compactly generated tt-category acting on a compactly generated
triangulated category S, Stevenson constructs a notion of support for localizing
T-submodules of S taking values in Spc(Tc). In particular, one can let T act on
itself, in which case one recovers the Balmer–Favi support theory. On the other
hand, Stevenson’s theory applies to non-tensor examples like singularity categories
(see, e.g., [Ste14b]). Our setting is more specialized because we require a monoidal
structure, but within the monoidal setting our construction is more general in that
it only requires a non-closed perfectly generated tt-category; moreover, it zeros in on
the significance of the Td part of the action. These ideas also provide new examples
beyond cosupport, as we now explain:

10.37. Example. If L is any strictly localizing ideal of a rigidly-compactly generated
tt-category T then the corresponding Bousfield localization T/L inherits the structure
of a tensor-triangulated category and the generators of T localize to a set of dualizable
generators of T/L. In general, these generators are not compact when n > 0. For
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example, the unit of the K(n)-local category is not compact. Nevertheless, the local
category T/L is well generated hence perfectly generated (see [Kra10, Theorem
7.2.1]) and (T/L)d is essentially small (see [Mat16, p. 413]). Thus, Definition 10.24
provides a support theory for any Bousfield localization of a rigidly-compactly
generated tt-category which lies in the spectrum of dualizable objects Spc((T/L)d)
provided this space is weakly noetherian. We will not pursue this class of examples
in this work, but it would be an interesting support theory to study, e.g., for the
K(n)-local category. Some work in this direction has been carried out in [BHN22].

11. Universality

Our next goal is to establish that our approach to costratification via the cosupport
theory defined in Section 4 is in a certain sense the unique or universal such choice.
We obtained analogous results for stratification in [BHS23, Section 7]. In fact, given
the connection between stratification and costratification established in Section 10,
we will proceed by proving a generalized version of that uniqueness result which
holds for support theories for perfectly generated categeories.

11.1. Hypothesis. Unless otherwise specified, T will denote a perfectly generated
non-closed tensor-triangulated category (Terminology 10.1) and support theory will
mean the notion of Definition 10.26.

11.2. Lemma. Let σ : T → P(Spc(Td)) be a support theory (Definition 10.26) which
satisfies σ(ΓY T) ⊆ Y and σ(LY T) ⊆ Y c for a Thomason subset Y ⊆ Spc(Td). Then

σ(ΓY t) = Y ∩ σ(t) and σ(LY t) = Y c ∩ σ(t)

for any t ∈ T.

Proof. This follows in a routine manner from the exact triangle (10.14). �

11.3. Lemma. Assume Spc(Td) is weakly noetherian. For any Thomason subset
Y ⊆ Spc(Td) and t ∈ T, we have

(a) SuppT(ΓY t) = Y ∩ SuppT(t), and
(b) SuppT(LY t) = Y c ∩ SuppT(t).

Proof. This is a routine exercise using Lemma 10.22 and the exact triangle (10.14).
Note that in light of Lemma 11.2 and Example 10.29, it suffices to establish the ⊆
inclusions in (a) and (b). �

11.4. Proposition. Let T be a perfectly generated non-closed tensor-triangulated
category with Spc(Td) weakly noetherian. The notion of support defined in Defini-
tion 10.24 is the only assignment of a subset σ(t) ⊆ Spc(Td) to each object t ∈ T

which can satisfy the following two properties:

(a) For every t ∈ T, σ(t) = ∅ implies t = 0.
(b) For every Thomason subset Y ⊆ Spc(Td), σ(ΓY t) = σ(t) ∩ Y and σ(LY t) =

σ(t) ∩ Y c.

Proof. If {P} = Y1 ∩ Y c2 then ΓY1LY2t = {P} ∩ σ(t). Thus P ∈ σ(t) if and only if
σ(ΓY1LY2t) 6= ∅ if and only if ΓY1LY2t 6= 0 if and only if P ∈ SuppT(t). �
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11.5. Theorem. Let T be a perfectly generated non-closed tensor-triangulated cat-
egory. Suppose T is stratified (Definition 10.27) by a support function σ (Defini-
tion 10.26) taking values in a spectral space X. Suppose σ induces a bijection

Y 7→ σ(ΓY T)

between the set of Thomason subsets of Spc(Td) and the set of Thomason subsets of X.

Then there is a unique homeomorphism f : X
∼−→ Spc(Td) such that σ(Γsupp(a)T) =

f−1(supp(a)) for all a ∈ Td. Moreover, if the space X is weakly noetherian then
σ(t) = f−1(SuppT(t)) for all t ∈ T.

Proof. Recall from Remark 10.28 that σ provides a lattice isomorphism. Together
with Lemma 10.19 this ensures that the hypothesized bijection Y 7→ σ(ΓY T) is a
lattice isomorphism. Both lattices are coherent frames (see, e.g., [KP17]) hence

by Stone duality [Joh82] it corresponds to a homeomorphism f : X
∼−→ Spc(Td).

By construction this homeomorphism satisfies f−1(Y ) = σ(ΓY T) for every Thoma-
son subset Y ⊆ Spc(Td). Since σ is a lattice isomorphism, ΓY T ∩ LY T = 0 and
ΓY T ∨ LY T = T which together imply that σ(LY T) = f−1(Y )c. The fact that
f−1(SuppT(t)) = σ(t) for each t ∈ T then follows from Lemma 11.2 and Propo-
sition 11.4. The uniqueness statement is standard; see [Bal05, Lemma 3.3] for
example. �

11.6. Remark. Recall from Remark 10.18 that ΓY T is not necessarily the localizing
Td-submodule generated by TdY . For example, the localizing Td-submodule generated
by a dualizable object a ∈ Td is Loc〈a ⊗ Td〉 while Γsupp(a)T = Loc〈a ⊗ T〉. This
may be helpful in understanding Theorem 11.5: σ(a) is the support of the localizing
Td-submodule generated by a, while σ(Γsupp(a)T) is the support of a potentially

larger localizing Td-submodule; cf. Remark 10.25.

11.7. Remark. The lattice homomorphism C 7→ Loc〈C⊗ T〉 from thick ideals of Td

to localizing Td-submodules of T (cf. Lemma 10.19) is not obviously injective. In
situations where it is known to be injective, the hypothesis of Theorem 11.5 simplifies
slightly. This will be the case for our two main examples of interest below.

11.8. Corollary. Let T be a rigidly-compactly generated tensor-triangulated category.
Suppose T is stratified by a support theory σ in a spectral space X. Suppose that σ(a)
is Thomason closed for every a ∈ Td and that every Thomason closed subset of X
arises in this way. If X is weakly noetherian then there is a homeomorphism
X ∼= Spc(Td) under which σ(t) ∼= SuppT(t).

Proof. Note that ΓY T = Loc〈KY ⊗ T〉 = Loc〈KY ⊗ Loc〈Td〉〉 = Loc〈KY 〉. Hence
σ(ΓY T) = σ(KY ). In particular, σ(Γsupp(a)T) = σ(a) for any a ∈ Td. Similarly, for
a Thomason subset Y =

⋃
i supp(ai) we have (invoking Lemma 10.19)

σ(ΓY T) = σ(
∨
i

Γsupp(ai)T) =
⋃
i

σ(Γsupp(ai)T) =
⋃
i

σ(ai).

Thus, the hypothesis that σ(a) ⊆ X is Thomason for all a ∈ Td implies that
σ(ΓY T) is also Thomason for each Thomason subset Y ⊆ X. Moreover, every
Thomason closed of X is hypothesized to be of the form σ(a) for some a ∈ Td.
Hence every Thomason subset of X is of the form

⋃
i σ(ai) =

⋃
i σ(Γsupp(ai)T) =

σ(
∨
i Γsupp(ai)T) = σ(Γ∪i supp(ai)T). Moreover, the map Y 7→ ΓY T is injective,

because ΓY T ∩ Td = Loc〈KY 〉 ∩ Td = KY by [Nee92b, Lemma 2.2]. Then the
hypotheses of Theorem 11.5 hold and we are done. �
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11.9. Remark. Corollary 11.8 is essentially the uniqueness theorem of [BHS23,
Theorem 7.6]. We have included the above arguments to show how it is deduced from
the primordial uniqueness Theorem 11.5. The statement in [BHS23, Theorem 7.6]
includes some further conditions equivalent to the hypotheses.

11.10. Corollary. Let T be a rigidly-compactly generated tensor-triangulated cate-
gory. Suppose T is costratified by a cosupport theory C taking values in a spectral
space X. The following are equivalent:

(a) For every Thomason subset Y ⊆ Spc(Td), C(hom(eY ,T)) is a Thomason
subset of X, and every Thomason subset of X arises in this way.

(b) The map Y 7→ C(hom(eY ,T)) is a bijection from the lattice of Thomason
subsets of Spc(Td) onto the lattice of Thomason subsets of X.

(c) For every Thomason subset Y ⊆ Spc(Td), C(Loc〈KY 〉⊥)c is a Thomason
subset of X, and every Thomason subset of X arises in this way.

(d) The map C 7→ C(Loc〈C〉⊥)c is a bijection between the thick ideals of Td and
the Thomason subsets of X.

(e) There is a unique homeomorphism f : X
∼−→ Spc(Td) such that

f−1(supp(a)) = C(hom(a,T))

for each a ∈ Td.

If these conditions hold and the spectral space X is weakly noetherian then under the
homeomorphism X

∼−→ Spc(Td) the cosupport theory C coincides with the Balmer–
Favi cosupport Cosupp.

Proof. We wish to apply Theorem 11.5 to Top. Recall from Example 10.32 that
ΓY T

op = hom(eY ,T). Thus, the hypothesis of Theorem 11.5 (applied to Top)
is that Y 7→ C(hom(eY ,T)) is a bijection between the set of Thomason subsets
of Spc(Td) and the set of Thomason subsets of X; that is, statement (b). Note
that this map is necessarily injective: If C(hom(eY1

,T)) = C(hom(eY2
,T)) then

hom(eY1
,T) = hom(eY2

,T) since C costratifies T. Hence

Locid(eY1
) = ⊥⊥hom(eY1

,T) = ⊥⊥hom(eY2
,T) = Locid(eY2

)

so that

KY1
= Td ∩ Locid(eY1

) = Td ∩ Locid(eY2
) = KY2

and hence Y1 = Y2. Therefore, statement (b) is equivalent to statement (a).
Now recall from Remark 10.28 that the costratifying cosupport C is a lattice

isomorphism; in particular it preserves joins and meets. If C1 := Loc〈KY 〉⊥ =
fY ⊗ T = hom(fY ,T) and C2 := hom(eY ,T) = Loc〈KY 〉⊥⊥, we have C1 ∩ C2 = 0.
On the other hand, for any t ∈ T, there is an exact triangle hom(fY , t) → t →
hom(eY , t)→ Σhom(fY , t) which shows that C1 ∨ C2 = T. Since C preserves joins
and meets, we conclude that C(C1)c = C(C2). Thus statement (c) is equivalent to
statement (a), and statement (d) is equivalent to statement (b).

Bearing in mind Lemma 4.34 which gives hom(a,T) = hom(esupp(a),T), Theo-
rem 11.5 establishes that (b) implies (e). Conversely, suppose (e) holds. For an
arbitrary Thomason Y =

⋃
i∈I supp(ai) we have hom(eY , hom(ai, t)) = hom(ai, t)

which implies that f−1(Y ) ⊆ C(hom(eY ,T)). Moreover, since eY ∈ Locid〈ai | i ∈ I〉,
we have

hom(eY , t) ∈ hom(Locid〈ai | i ∈ I〉, t) ⊆ Colocid〈hom(ai, t) | i ∈ I〉
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by (2.8) so that C(hom(eY ,T)) ⊆ f−1(Y ). Thus, C(hom(eY ,T)) = f−1(Y ) which
establishes that (a) holds.

Finally note that the last statement (when X is weakly noetherian) is also
provided by Theorem 11.5. �

11.11. Remark. As with Corollary 11.8 (and the original [BHS23, Theorem 7.6]),
the point of Corollary 11.10 is that if T is costratified by a notion of cosupport in a
weakly noetherian spectral space such that the costratification is “compatible” with
the usual classification of thick ideals of dualizable objects, then it must be achieved
by the tensor triangular cosupport theory which lies in the Balmer spectrum.

11.12. Corollary (BIK costratification). Let T be a rigidly-compactly generated
tt-category which, in the terminology of [BIK12] is noetherian and costratified by the
action of a graded-noetherian ring R. Then the BIK space of cosupports cosuppR(T)
is homeomorphic to Spc(Tc) and the BIK notion of cosupport in cosuppR(T) coin-
cides with the notion of cosupport in Spc(Tc) defined in Definition 4.23.

Proof. We first note that because T is costratified by R, it is also stratified by R,
see [BIK12, Theorem 9.7]. Moreover, cosuppR(T) = suppR(T) and for any localiz-
ing ideal L, cosuppR(L⊥) = suppR(L)c (see the proof of [BIK12, Corollary 9.9]).
Invoking [BIK11b, Theorem 6.1] we see that C 7→ cosuppR(Loc〈C〉⊥)c is a bijection
between the thick ideals and the Thomason subsets of suppR T. Moreover, by
[BIK08, Theorem 5.5], suppR(T) = SuppR(1) is a closed subspace of Spec(R), hence
is itself a noetherian spectral space. Hence, we can invoke Corollary 11.10 with
hypothesis (d). Alternatively, we could invoke [BHS23, Corollary 7.11] to conclude
that Spc(Tc) ∼= suppR(T) ∼= cosuppR(T) and invoke Proposition 11.4 noting that the
BIK theory of cosupport satisfies conditions (a) and (b) (see in particular [BIK12,
Theorem 4.5 and Proposition 4.7]). �

11.13. Remark. The axioms of a support function for localizing submodules given
in Definition 10.26 look slightly weaker than the axioms for a support function for
localizing ideals given in [BHS23, Definition 7.1]. The former’s axiom (e) states
that σ(x ⊗ t) ⊆ σ(t) for any x ∈ Td and t ∈ T while the latter’s axiom (e) states
that σ(t1 ⊗ t2) ⊆ σ(t1) ∩ σ(t2) for all t1, t2 ∈ T. For T rigidly-compactly generated,
this stronger axiom is forced by the axioms of Definition 10.26. Indeed, for any
t ∈ T,

{
s ∈ T

∣∣σ(s⊗ t) ⊆ σ(t)
}

is a localizing subcategory which contains the
dualizable objects. Similarly, axiom (e) of Definition 3.1 looks slightly stronger
than what is provided by Definition 10.26 when applied to Top, namely it requires
C(hom(s, t)) ⊆ C(t) for all s, t ∈ T. Again it is implied by the a priori weaker axioms
by considering

{
s ∈ T

∣∣C(hom(s, t)) ⊆ C(t)
}

. On the other hand, Definition 10.26
does not include the second part of axiom (a) of Definition 3.1.

11.14. Remark. The reader may find it interesting to compare our axioms for
cosupport theory with the axioms of [Ver22, Definition 3.2] which explicitly involve
Brown–Comenetz duals (which will make an appearance in our work in the next
section). Our axioms are a priori weaker. In particular, a cosupport datum in the
sense of [Ver22, Definition 3.2] is a cosupport function in the sense of Definition 3.1.
We claim that our formulation of axiom (e) is morally “correct” due to Remark 3.2;
also cf. Definition 10.26(e). In any case, it follows from Proposition 12.9 below that
the Balmer–Favi cosupport function satisfies the stronger axioms stated in [Ver22,
Definition 3.2]. Hence, by Corollary 11.10 any cosupport theory which costratifies
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the colocalizing coideals in a weakly noetherian space (in the sense of the corollary)
satisfies the stronger axioms of [Ver22, Definition 3.2].

12. Duality

12.1. Definition. Let κ be an object in a closed symmetric monoidal category T. We
say that κ dualizes a full subcategory T0 ⊆ T if hom(−, κ) restricts to an equivalence

T0
'−→ T

op
0 .

12.2. Remark. Writing ∆κ(x) := hom(x, κ), observe that the evaluation morphism
∆κ(x) ⊗ x → κ is adjoint to a morphism φx : x → ∆κ∆κ(x). Dinaturality of
evaluation implies that φx is natural in x. Unwinding the definition, we see that κ
dualizes T0 if and only if ∆κ preserves T0 and x→ ∆κ∆κx is an isomorphism for
all x ∈ T0.

12.3. Example. The monoidal unit 1 dualizes the full subcategory Td ⊆ T of
dualizable objects and also the (potentially larger) full subcategory of reflexive
objects of T, i.e., those x ∈ T for which the canonical map x→ (x∨)∨ = ∆1∆1(x)
is an isomorphism. More generally, any ⊗-invertible object κ dualizes precisely the
same subcategories as the monoidal unit 1.

12.4. Proposition. Let T be a triangulated category with a compatible closed sym-
metric monoidal structure (as in [HPS97, Appendix A]). Let κ ∈ T be an arbitrary
object. It dualizes the full subcategory

Tκ :=
{
x ∈ T

∣∣φx : x→ ∆κ∆κ(x) is an equivalence
}
.

The full subcategory Tκ is a thick Td-submodule of T (that is, a thick subcategory
satisfying Td ⊗ Tκ ⊆ Tκ). It contains any full subcategory of T dualized by κ.

Proof. The functor ∆κ := hom(−, κ) is adjoint to itself

(12.5) ∆κ : T � Top : ∆κ

with the map φx of Remark 12.2 serving as both the unit and the counit of the
adjunction. The fact that κ dualizes the subcategory Tκ is then just a manifestation
of the fact that any adjunction induces an equivalence between the full subcategory
of objects on which the unit is an isomorphism and the full subcategory of objects
on which the counit is an isomorphism. Since (12.5) is a triangulated adjunction, Tκ
is a thick subcategory of T. To see that it is a Td-submodule just note that for
any x ∈ T and y ∈ Td, we have

∆κ∆κ(x)⊗ y ' ∆κ∆κ(x⊗ y)

and φx ⊗ idy ' φx⊗y. The final statement is clear from Remark 12.2. �

12.6. Remark. The fact that every object κ ∈ T dualizes a certain canonical thick
Td-submodule of T seems not to have been previously noticed (or appreciated) and
leads to new approaches to organizing the objects of a tt-category. For example,
the Picard group of a rigid tt-category K describes precisely those objects which
dualize K itself. A more in-depth study of this notion will be the subject of future
work. Our present focus is on how this connects with cosupport.

12.7. Example (Brown–Comenetz duality). Recall that in Definition 9.4 we con-
structed an object Ic for each compact object c in a compactly generated triangulated
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category T. Now suppose T is a rigidly-compactly generated tt-category. It fol-
lows from (9.6) that Ic = c ⊗ I1 for any compact object c ∈ Tc. We define the
Brown–Comenetz dual of an arbitrary object t ∈ T, as

t∗ := hom(t, I1).

This object represents the functor

HomZ(T(1, t⊗−),Q/Z) : Top → Ab .

Note that for a compact object c ∈ Tc, we have c∗ = Ic∨ . In particular, 1∗ = I1.
This observation, together with (9.6), implies that an object t = 0 if and only
if t∗ = 0.

12.8. Example. When T = SH is the category of spectra, the Brown–Comenetz dual
of the sphere I1 dualizes the full subcategory of spectra whose homotopy groups are
finite; see [BC76].

12.9. Proposition. For any compact object c ∈ Tc, we have

Cosupp(Ic) = supp(c).

For an arbitrary object t ∈ T, we have

Cosupp(t∗) = Supp(t).

If t ∈ TI1 , that is, t
∼−→ t∗∗ is an isomorphism, then

Cosupp(t) = Supp(t∗).

Proof. Let c ∈ Tc. Then observe that

hom(gP, Ic) = 0⇐⇒ T(d⊗ gP, Ic) = 0 for all d ∈ Tc

⇐⇒ T(c, d⊗ gP) = 0 for all d ∈ Tc

⇐⇒ T(d∨, c∨ ⊗ gP) = 0 for all d ∈ Tc

⇐⇒ c∨ ⊗ gP = 0.

Here, the second equivalence relies on the discussion in Remark 9.7. Thus,

Cosupp(Ic) = Supp(c∨) = supp(c∨) = supp(c).

In particular, Cosupp(I1) = Cosupp(1∗) = Spc(Tc). For the second statement,
Lemma 4.29 provides the inclusion

Cosupp(t∗) = Cosupp(hom(t,1∗)) ⊆ Supp(t) ∩ Cosupp(1∗) = Supp(t).

On the other hand, suppose P ∈ Supp(t), so that gP ⊗ t 6= 0. Hence since the Ic
cogenerate we have T(gP ⊗ t, Ic) 6= 0 for some compact c. Using Ic ' c⊗ I1, we see
that T(c∨, hom(gP, hom(t, I1))) 6= 0 so that P ∈ Cosupp(t∗). �

12.10. Example (Dualizing complexes). A dualizing complex 5 for a separated noe-

therian scheme X is an object t ∈ Db(cohX) which dualizes Db(cohX).

12.11. Definition. We say that an object t ∈ T has small cosupport if Cosupp(t) ⊆
Supp(t).

12.12. Example. Compact objects have small cosupport by Example 4.36.

5The classical literature sometimes also requires a “dualizing complex” to have finite injective
dimension. Neeman [Nee10] emphasized that this should not be included as part of the definition.
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12.13. Remark. If Supp(t) is Thomason and the codetection property holds then t
has small cosupport if and only if the canonical map t → hom(eSupp(t), t) is an
isomorphism. In this way, having small cosupport is related to derived notions of
being adically complete.

12.14. Example. If X = Spec(R) is a noetherian affine scheme then any t ∈ Db(cohX)
has small cosupport. Indeed, the Balmer–Favi support Supp(t) ⊆ Spec(R) coincides
with the ordinary cohomological support

⋃
i∈Z Supp(Hi(t)) which is just a finite

union of closed sets, hence is itself closed. Denoting this closed set by V (I), the
complex t is cohomologically I-adically complete by [PSY15, Theorem 1.21] (see also
[SWW17, Theorem 6.7] and [BIK12, Proposition 4.19]) meaning that the canonical
map t→ hom(eV (I), t) is an isomorphism. Hence Cosupp(t) ⊆ V (I) = Supp(t).

12.15. Proposition. Let T be stratified and suppose κ ∈ T dualizes the subcate-
gory T0 ⊆ T. For any t ∈ T0, we have

Cosupp(t) = Supp(∆κ(t)) ∩ Cosupp(κ).

In particular, if 1 ∈ T0 (that is, if Td ⊆ T0) then

Cosupp(1) = Supp(κ) ∩ Cosupp(κ).

If the objects of T0 have small cosupport, then

Cosupp(t) = Supp(t) ∩ Cosupp(κ)

for each t ∈ T0.

Proof. The first statement follows directly from the isomorphism t ' ∆κ∆κ(t)
and Theorem 7.15. The second statement is an immediate consequence of the
first statement. It follows that if t ∈ T0 has small cosupport then Cosupp(t) ⊆
Supp(t) ∩ Cosupp(κ). On the other hand, if ∆κ(t) ∈ T0 also has small cosupport,
then Supp(t) ∩ Cosupp(κ) = Cosupp(∆κ(t)) ⊆ Supp(∆κ(t)) and it follows that
Supp(t) ∩ Cosupp(κ) ⊆ Supp(∆κ(t)) ∩ Cosupp(κ) = Cosupp(t). �

12.16. Remark. In general, we know that Cosupp(x) = Supp(x)∩Cosupp(1) for any
compact object x ∈ Tc. The point of Proposition 12.15 is that it gives us relations
between the support and cosupport for bigger (not necessarily compact) objects.
For example:

12.17. Corollary. Let X be a noetherian affine scheme which admits a dualizing
complex. Then

Cosupp(t) = Supp(t) ∩ Cosupp(1).

for any t ∈ Db(cohX).

Proof. Let κ ∈ Db(cohX) be a dualizing complex for X (Example 12.10). We
apply Proposition 12.15. Since bounded complexes of coherent sheaves have small
cosupport (Example 12.14), we obtain Cosupp(t) = Supp(t) ∩ Cosupp(κ) for any

t ∈ Db(cohX). Note that Db(cohX) ⊇ Dqc(X)c contains 1. Moreover, a dualizing

complex is (by definition) itself contained in Db(cohX), hence itself has small
cosupport. It follows that Cosupp(1) = Cosupp(κ) and we are done. �

12.18. Remark. Many schemes admit dualizing complexes; for example, complete
noetherian local rings, Dedekind domains, and any scheme of finite type over
a field (see, e.g., [Har66, Section 10]). Proposition 12.15 and Corollary 12.17
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provide a general perspective on (and generalization of) results such as [BIK12,
Proposition 4.18]; see also [SWW17, Theorem 1.2]. On the other hand, not every
scheme admits a dualizing complex (see, e.g., [Sha79, Kaw02]).

12.19. Example (Matlis duality). Let (R,m, k) be a noetherian local ring. Matlis
duality implies that the injective hull E(k) dualizes the full subcategory thick〈k〉 ⊂
D(R) =: T. Indeed, this duality can be “lifted” from the ordinary duality on D(k)
along the map R→ k; see [BDS16, Example 7.2]. Recall that thick〈k〉 consists of
those complexes of R-modules which have only finitely many nonzero homology
modules, each of which is a module of finite length (see, e.g., [DGI06]). The
objects of thick〈k〉 have small cosupport since a module of finite length is m-adically
complete. Consider thick〈k〉 ⊆ TE(k). Since hom(E(k), E(k)) is isomorphic to the
m-adic completion of R, we see that 1 ∈ TE(k) if and only if R is complete, while
1 ∈ thick〈k〉 if and only if R is artinian (and hence complete). Note that the
dualizing object E(k) is typically not contained in the subcategory thick〈k〉 which
it dualizes. For example, if R = Z(p) then E(k) = Z(p∞) which is artinian but not
noetherian. Note that if R is regular (or, more generally, Gorenstein) of dimension d,
then E(k) = Σde{m}, so in light of Corollary 8.12, E(k) cannot have small cosupport
unless dim(R) = 0, that is, unless R is artinian (in which case E(k) ∈ thick〈k〉).
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Part III. Morphisms and descent

We now return to the world of rigidly-compactly generated tt-categories and
study base change results for support and cosupport, as well as descent techniques
for establishing stratification and costratification.

13. The image of a geometric functor

We begin with a general observation about the image of the map on Balmer
spectra induced by a geometric functor. This seems to have been overlooked in
the literature; it gives further evidence for the distinguished role played by the
Balmer–Favi notion of support.

13.1. Terminology. A coproduct-preserving tt-functor f∗ : T → S between rigidly-
compactly generated tt-categories is called a geometric functor. As explained
in [BDS16], such a functor admits a right adjoint f∗ which itself admits a right
adjoint f !. The object ωf := f !(1T) ∈ S is called the relative dualizing object for f∗.

13.2. Hypothesis. Throughout this section f∗ : T → S will denote a geometric functor
between rigidly-compactly generated tt-categories and

ϕ : Spc(Sc)→ Spc(Tc)

will denote the induced map on Balmer spectra. We will further assume throughout
that Spc(Sc) and Spc(Tc) are weakly noetherian.

13.3. Remark. The adjoints f∗ a f∗ a f ! of a geometric functor f∗ are related by a
number of useful formulas, spelled out in [BDS16, Proposition 2.15]. In particular,
the projection formula

f∗(f
∗(t)⊗ s) ∼= t⊗ f∗(s)

holds for any s ∈ S and t ∈ T. It follows, using the fact that f∗ preserves coproducts,
that

(13.4) f∗ Locid〈f∗(E)〉 ⊆ Locid〈E〉

for any collection of objects E ⊆ T.

13.5. Remark. While the kernel of f∗ is a localizing ideal, the kernel of f ! is a
colocalizing coideal. This follows from another useful formula:

(13.6) f !hom(t1, t2) ∼= hom(f∗t1, f
!t2)

for any t1, t2 ∈ T; see [BDS16, (2.19)].

13.7. Remark. For any Thomason subset Y ⊆ Spc(Tc), it is established in [BS17,
Proposition 5.11] that f∗(eY ) = eϕ−1(Y ) and f∗(fY ) = fϕ−1(Y ). In particular, if
P ∈ Spc(Tc), then writing {P} = Y1 ∩ Y c2 for Thomason subsets Y1, Y2, we see
that the preimage ϕ−1({P}) = ϕ−1(Y1) ∩ ϕ−1(Y2)c is a weakly visible subset, and
f∗(gP) = eϕ−1(Y1) ⊗ fϕ−1(Y2) = gϕ−1({P}). Hence

(13.8) SuppS(f∗(gP)) = ϕ−1({P}).

Combined with [BHS23, Lemma 2.13], this generalizes to

SuppS(f∗(gP)⊗ s) = ϕ−1({P}) ∩ SuppS(s)

for any s ∈ S. These observations will be used repeatedly in the proofs.
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13.9. Remark. Note that the unit-counit equation

f∗(t) f∗f∗f
∗(t) f∗(t)

id

implies that a right adjoint f∗ is conservative on the essential image of its left
adjoint f∗. The other unit-counit equation shows that, similarly, a left adjoint is
conservative on the essential image of its right adjoint.

13.10. Definition. A weak ring object in a symmetric monoidal category is an
object w which admits a map η : 1→ w such that w⊗ η : w → w⊗w is split monic.
Similarly, a weak coring object is an object c which admits a map ε : c → 1 such
that c⊗ ε : c⊗ c→ c is split epi. Note that these notions are left-right agnostic.

13.11. Example. The left idempotents eY are weak corings and the right idempo-
tents fY are weak rings. Indeed, these examples are idempotent (co)rings. More
generally, the left and right idempotents of a (not-necessarily-finite) smashing
localization are idempotent (co)rings.

13.12. Remark. Let A be a symmetric monoidal additive category in which the
tensor product functors a⊗− : A→ A are additive functors. Let F : A→ B be any
additive functor. If F admits a left adjoint L : B → A then F is conservative on
objects of the form L(b) ⊗ w where b ∈ B is an arbitrary object and w ∈ A is a
weak ring object. Indeed, if F (L(b)⊗ w) = 0 then

A(L(b), L(b)⊗ w) = B(b, F (L(b)⊗ w)) = 0.

Thus, if η : 1→ w is a unit for the weak ring w then the map L(b)
1⊗η−−→ L(b)⊗ w

vanishes. This implies L(b)⊗ w = 0 since the identity of L(b)⊗ w factors as

L(b)⊗ w 1⊗η⊗1−−−−→ L(b)⊗ w ⊗ w → L(b)⊗ w

and so must itself vanish. Similarly, if F : A→ B admits a right adjoint R : B→ A

then F is conservative on objects of the form R(b)⊗ c, where b is arbitrary and c is
a weak coring.

13.13. Theorem. Let f∗ : T → S be a geometric functor as in Hypothesis 13.2.
Then for any weak ring object w ∈ S,

ϕ(SuppS(w)) = SuppT(f∗(w))

provided either that

(a) the detection property holds for S; or
(b) the weak ring object w is compact.
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Proof. Let P ∈ Spc(Tc) and recall from Remark 13.7 that Supp(f∗(gP)) = ϕ−1({P}).
For any object w ∈ S consider the following implications:

(13.14)

P ∈ SuppT(f∗(w))⇐⇒ gP ⊗ f∗(w) 6= 0

⇐⇒ f∗(f
∗(gP)⊗ w) 6= 0

=⇒︸︷︷︸
(†)

f∗(gP)⊗ w 6= 0

⇐=︸︷︷︸
(‡)

SuppS(f∗(gP)⊗ w) 6= ∅

⇐⇒ ϕ−1({P}) ∩ SuppS(w) 6= ∅
⇐⇒ P ∈ ϕ(SuppS(w)).

Note that the converse of the (‡) implication holds if S has the detection property. It
also holds if w is compact. Indeed, writing {P} = Y1 ∩Y c2 and setting Y ′1 := ϕ−1(Y1)
and Y ′2 := ϕ−1(Y2) observe that for any compact x ∈ Sc, we have

Supp(f∗(gP)⊗ x) = ∅⇐⇒ supp(x) ∩ Y ′1 ⊆ Y ′2
⇐⇒ esupp(x)∩Y ′1 ⊗ fY ′2 = 0

⇐⇒ esupp(x) ⊗ eY ′1 ⊗ fY ′2 = 0

⇐⇒ Locid〈esupp(x)〉 ⊗ eY ′1 ⊗ fY ′2 = 0

⇐⇒ Locid〈x〉 ⊗ eY ′1 ⊗ fY ′2 = 0

⇐⇒ x⊗ eY ′1 ⊗ fY ′2 = 0.

Here we have used [BHS23, Lemma 1.27] several times. In summary, we have
established that SuppT(f∗(w)) ⊆ ϕ(SuppS(w)) provided the detection property holds
or w is compact. It remains to prove that the converse of the (†) implication holds
under our assumption that w is a weak ring. This was explained in Remark 13.12:
the right adjoint f∗ is conservative on objects of the form f∗(t)⊗ w with w a weak
ring. �

13.15. Corollary. We always have the equality

imϕ = SuppT(f∗(1S)).

Proof. Apply Theorem 13.13 to the ring object w := 1S and note that SuppS(1S) =
Spc(Sc) under our weakly noetherian assumption, e.g., by [BHS23, Lemma 2.18] or
Remark 4.8. �

13.16. Remark. This result provides an unconditional formula for the image of the
map on spectra induced by a geometric functor. It improves on [Bal18, Theorem 1.7]
which requires the right adjoint f∗ to preserve compactness. An analogous result
for the homological spectrum is [Bal20, Theorem 5.12].

13.17. Example. If T → S is a smashing localization with idempotent triangle
e→ 1T → f → Σe in T, then the image of ϕ : Spc(Sc)→ Spc(Tc) is Supp(f).

13.18. Example. Let C be a rigidly-compactly generated symmetric monoidal stable
∞-category with associated homotopy category Ho(C). If Ho(C)→ Ho(ModC(A))
is extension-of-scalars with respect to a highly structured commutative algebra
A ∈ CAlg(C), then the image of Spc(Ho(ModC(A))c)→ Spc(Ho(C)c) is Supp(A).



54 TOBIAS BARTHEL, NATÀLIA CASTELLANA, DREW HEARD, AND BEREN SANDERS

13.19. Corollary. If f∗ : T → S is conservative then ϕ : Spc(Sc) → Spc(Tc) is
surjective.

Proof. Indeed, 0 6= gP implies 0 6= f∗(gP) and thus 0 6= f∗f
∗(gP) ' f∗(1S)⊗ gP by

Remark 13.9. Therefore Supp(f∗(1S)) = Spc(Tc) and we invoke Corollary 13.15. �

13.20. Remark. In contrast, the conservativity of

f∗|Tc : Tc → Sc

(that is, conservativity of f∗ on compact objects) is equivalent to the image of ϕ
containing all the closed points; see [Bal18, Theorem 1.2]. In fact, Corollary 13.19
and [Bal18, Theorem 1.4] establish that if f∗ : T → S is conservative then it satisfies
a nilpotence theorem for morphisms between compact objects (see loc. cit. for more
details). In fact, [BCH+23a, Theorem 2.25] deduces a stronger nilpotence theorem
from the conservativity of f∗ in which only the source is assumed to be compact.
Combined with [Bal18, Theorem 1.3], this gives another proof of Corollary 13.19;
see [BCH+23a, Corollary 2.26].

13.21. Proposition. If f ! : T → S is conservative then f∗ : T → S is conservative.

Proof. If f∗(t) = 0 then f !hom(t, t) ∼= hom(f∗(t), f !(t)) = 0 by (13.6). Hence
hom(t, t) = 0 so that t = 0. �

13.22. Remark. We will later prove that the converses to Corollary 13.19 and
Proposition 13.21 hold when T is stratified; see Corollary 14.24. Another situation
in which the converses hold will be given in Proposition 13.33 below. As we shall
see, these conservativity properties are closely related to the following notion, whose
name is motivated by terminology used in [Mat16]:

13.23. Definition. We say that a geometric functor f∗ : T → S is weakly descendable
if 1T ∈ Locid〈f∗(1S)〉.

13.24. Remark. If 1T ∈ Locid〈f∗(1S)〉 then it follows from (2.6) and (2.8) that

t ∈ Locid〈f∗f∗t〉 and t ∈ Colocid〈f∗f !t〉

for all t ∈ T. Hence f∗ and f ! are both conservative.

13.25. Remark. For any compact object x ∈ Sc, Theorem 13.13 implies that

ϕ(supp(x)) = SuppT(f∗(x⊗ x∨)).

Indeed just recall that x ⊗ x∨ ∼= hom(x, x) is the endomorphism ring object and
that supp(x) = supp(x⊗ x∨). For an arbitrary object s ∈ S, we can also consider
the endomorphism ring object hom(s, s). The theorem provides

ϕ(SuppS(hom(s, s))) = SuppT(f∗hom(s, s))

assuming S satisfies the detection property.

13.26. Remark. Note that if f∗(1S) is compact then Corollary 13.15 implies that
the image imϕ = Supp(f∗(1S)) = supp(f∗(1S)) is closed. Moreover, if f∗ preserves
all compact objects (not just 1S) then Remark 13.25 shows that ϕ maps every
Thomason closed subset to a Thomason closed subset. It follows that ϕ is a closed
map (see, e.g., [DST19, Theorem 5.3.3]). This leads to the following terminology:
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13.27. Definition. We will say that f∗ : T → S is weakly closed if f∗(1S) is compact
and strongly closed if f∗ preserves compact objects. Note that if S is monogenic
then a weakly closed morphism is automatically strongly closed.

13.28. Remark. The above terminology is given more for grammatical and linguistic
convenience rather than deep mathematical significance. We do not claim that it
captures the correct geometric notion of “closed morphism” in tensor triangular
geometry. For example, a closed immersion Spec(R/I) ↪→ Spec(R) of affine schemes
induces a geometric functor D(R)→ D(R/I) which is often not (weakly or strongly)
closed in the sense of Definition 13.27; see [San19, Example 7.8].

13.29. Remark. In the terminology of [BDS16], a geometric functor f∗ is strongly
closed if and only if it satisfies Grothendieck–Neeman duality (or GN-duality, for
short). As explained in [BDS16], a morphism f∗ satisfies GN-duality if and only
if it preserves products if and only if it has a left adjoint if and only if the trio of
functors f∗ a f∗ a f ! extends on both sides to a sequence of five adjoints:

(13.30) f! a f∗ a f∗ a f ! a f(−1).

There is then an analogue of Theorem 13.13 for the left adjoint f!:

13.31. Theorem. Let f∗ : T → S be a geometric functor as in Hypothesis 13.2. If
f∗ is strongly closed then for any weak coring object w ∈ S,

ϕ(SuppS(w)) = SuppT(f!(w))

provided either that

(a) the detection property holds for S; or
(b) the weak coring object is compact.

Proof. One proceeds through the argument as in the proof of Theorem 13.13
replacing f∗ with f!. Note that the left projection formula holds by [BDS16,
(3.11)]. To obtain the right-to-left implication of the analogue of (†), namely that
f∗(gP) ⊗ w 6= 0 implies f!(f

∗(gP) ⊗ w) 6= 0 one again uses the fact explained in
Remark 13.12 that the left adjoint f! is conservative on objects of the form f∗(t)⊗w
for w a weak coring. �

13.32. Remark. According to the ur-Wirthmüller isomorphism of [BDS16, (3.10)],
f!(s) ' f∗(s⊗ ωf ) for any s ∈ S. In particular, applied to the weak coring s := 1S,
Theorem 13.31 implies that imϕ = Supp(f∗(ωf )). Thus, f∗(ωf ) and f∗(1S) have
the same support if f∗ is strongly closed. These objects can be very different for a
general geometric functor f∗. For example, if f∗ is a smashing localization as in
Example 13.17 then f∗(1S) = f while f∗(ωf ) = hom(f, 1T). Of course, it is rare
for a smashing localization to be strongly closed. On the other hand, according to
[San22] a necessary condition for f∗ to be finite étale is that f∗(1S) ' f∗(ωf ). We
have shown that these two objects have the same support for any strongly closed
functor.

13.33. Proposition. Suppose f∗ : T → S is weakly closed (Definition 13.27). The
following are equivalent:

(a) f∗ is weakly descendable (Definition 13.23);
(b) f ! is conservative;
(c) f∗ is conservative;
(d) ϕ : Spc(Sc)→ Spc(Tc) is surjective.
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Proof. The implication (a)⇒ (b) follows from Remark 13.24, (b)⇒ (c) is Proposi-
tion 13.21 and (c)⇒ (d) is Corollary 13.19. For (d)⇒ (a) note that the surjectiv-
ity of ϕ implies that SuppT(f∗(1S)) = Spc(Tc) by Corollary 13.15 and f∗(1S)
is compact by assumption. Thus, by the classification of thick ideals of Tc,
1T ∈ thickid〈f∗(1S)〉 ⊆ Locid〈f∗(1S)〉. �

14. Base change for support and cosupport

We now turn to base change formulas that are valid for arbitrary objects. The
cost will be some additional hypotheses on our functors or on our categories.

14.1. Hypothesis. We continue to let f∗ : T → S denote an arbitrary geometric
functor and assume both Spc(Tc) and Spc(Sc) are weakly noetherian. We write

ϕ : Spc(Sc)→ Spc(Tc)

for the induced map on spectra.

14.2. Proposition. Suppose f∗ : T → S is as above (Hypothesis 14.1) and let s ∈ S.

(a) If S has the detection property, then

SuppT(f∗(s)) ⊆ ϕ(SuppS(s))

with equality when the functor f∗ is conservative.
(b) If S has the codetection property, then

CosuppT(f∗(s)) ⊆ ϕ(CosuppS(s))

with equality when the functor f∗ is conservative.

Proof. The set-up is the same as the proof of Theorem 13.13. Let P ∈ Spc(Tc). For
part (a) consider the implications (13.14) displayed in the proof of Theorem 13.13.
Note that the left-to-right direction of (‡) holds if S has the detection property.
Hence, going from left-to-right we obtain the inclusion in part (a). On the other
hand, the right-to-left direction of (†) holds if f∗ is conservative.

For part (b), consider the analogous series of implications:

(14.3)

P ∈ CosuppT(f∗(s))⇐⇒ hom(gP, f∗(s)) 6= 0

⇐⇒ f∗hom(f∗(gP), s) 6= 0

=⇒︸︷︷︸
(†)

hom(f∗(gP), s) 6= 0

⇐=︸︷︷︸
(‡)

CosuppS(hom(f∗(gP), s)) 6= ∅

⇐⇒ ϕ−1({P}) ∩ CosuppS(s) 6= ∅
⇐⇒ P ∈ ϕ(CosuppS(s)).

Again, the converse of (‡) holds when S has the codetection property, and the
converse of (†) holds if f∗ is conservative. �

14.4. Remark. If the right adjoint f∗ is not conservative then there exist objects for
which the inequalities of Proposition 14.2 are strict.

14.5. Remark. It is a well-known exercise (recall Remark 9.12) that the right
adjoint f∗ is conservative if and only if f∗ sends a set of compact generators of T to
a set of (compact) generators of S, in other words, if and only if Sc = thick〈f∗(Tc)〉.
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For example, if S is monogenic then every geometric functor f∗ : T → S has a
conservative right adjoint.

14.6. Remark. The right adjoint f∗ of a geometric functor is always “weakly conser-
vative” in the following sense: For any nonzero s ∈ S there always exists a compact
object c ∈ Sc such that f∗(c ⊗ s) 6= 0. Indeed, since S is compactly generated,
if s 6= 0 then S(c, s) 6= 0 for some compact c ∈ Sc. Replacing c by its dual, we
can assert that there exists a compact c ∈ Sc such that S(1S, c ⊗ s) 6= 0. Since
1S = f∗(1T), adjunction implies T(1T, f∗(c⊗ s)) 6= 0 hence f∗(c⊗ s) 6= 0. One way
of appreciating this phenomenon is to recognize that while the kernel of f∗ is a
localizing subcategory, it need not be an ideal. Indeed, the above argument shows
that the largest localizing ideal contained in it, namely{

s ∈ S
∣∣ f∗(c⊗ s) = 0 ∀c ∈ Sc

}
is always the zero ideal. In other words, the right adjoint f∗ of a geometric functor
is conservative precisely when the kernel of f∗ is an ideal.

14.7. Proposition. Suppose f∗ : T → S is as above (Hypothesis 14.1) and let t ∈ T.

(a) We always have inclusions

ϕ(SuppS(f∗(t))) ⊆ SuppT(t⊗ f∗(1S)) ⊆ SuppT(t) ∩ imϕ.

(b) If S has the detection property, then

ϕ(SuppS(f∗(t))) = SuppT(t⊗ f∗(1S)).

(c) If S has the detection property and T is stratified, then

ϕ(SuppS(f∗(t))) = SuppT(t) ∩ imϕ.

(d) If f∗ is conservative, then

SuppT(t⊗ f∗(1S)) = SuppT(t),

hence
ϕ(SuppS(f∗(t)) = SuppT(t)

if S also has the detection property.

Proof. Let P ∈ Spc(Tc) and write {P} = Y1 ∩ Y c2 with Y1 and Y2 Thomason. Recall
Remark 13.7. For any object t ∈ T consider the following implications:

(14.8)

P ∈ ϕ(SuppS(f∗(t)))⇐⇒ ϕ−1({P}) ∩ SuppS(f∗(t)) 6= ∅
⇐⇒ SuppS(f∗(gP)⊗ f∗(t)) 6= ∅
=⇒︸︷︷︸
(†)

f∗(gP)⊗ f∗(t) 6= 0

⇐⇒ f∗(gP ⊗ t) 6= 0

⇐=︸︷︷︸
(‡)

f∗(f
∗(gP ⊗ t)) 6= 0

⇐⇒ gP ⊗ t⊗ f∗(1S) 6= 0

⇐⇒ P ∈ SuppT(t⊗ f∗(1S)).

Note that the converse of (‡) holds by Remark 13.9. Hence, going from left to right
establishes the first inclusion in part (a), while the second inclusion in part (a) is
due to Corollary 13.15 and [BHS23, Remark 2.12(e)]. This establishes (a). Now the
converse of (†) holds when we have the detection property. Hence going from right to
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left gives (b). Part (c) follows from part (b) by invoking the tensor product formula
([BHS23, Theorem 8.2]), which holds because T is stratified, and Corollary 13.15:
SuppT(t⊗ f∗(1S)) = SuppT(t) ∩ SuppT(f∗(1S)) = SuppT(t) ∩ imϕ. For part (d) it
suffices to show that SuppT(t) ⊆ SuppT(t⊗ f∗(1S)) when f∗ is conservative. Indeed
if f∗ is conservative then so is the composite f∗f

∗ (Remark 13.9), hence 0 6= gP ⊗ t
implies 0 6= f∗f

∗(gP ⊗ t) ' gP ⊗ t⊗ f∗(1S). �

14.9. Remark. If S has the detection property then the equality

ϕ(SuppS(f∗(t))) = SuppT(t) ∩ imϕ

also holds (without further hypotheses on f∗ or S) if the object t is compact, or
a left idempotent eY , or a right idempotent fY , or an object gP. Indeed, in these
cases the inclusion SuppT(t ⊗ f∗(1S)) ⊆ SuppT(t) ∩ SuppT(f∗(1S)) is an equality
by [BHS23, Lemma 2.13 and Lemma 2.18].

14.10. Proposition. Suppose f∗ : T → S is as above (Hypothesis 14.1) and let t ∈ T.

(a) We always have inclusions

ϕ(CosuppS(f !(t))) ⊆ CosuppT(hom(f∗(1S), t)) ⊆ CosuppT(t) ∩ imϕ.

(b) If S has the codetection property, then

ϕ(CosuppS(f !(t))) = CosuppT(hom(f∗(1S), t)).

(c) If S has the codetection property and T is stratified, then

ϕ(CosuppS(f !(t))) = CosuppT(t) ∩ imϕ.

(d) If f ! is conservative, then

CosuppT(hom(f∗(1S), t)) = CosuppT(t),

hence
ϕ(CosuppS(f !(t)) = CosuppT(t)

if S also has the codetection property.

Proof. The proof is similar to the proof of Proposition 14.7. Let P ∈ Spc(Tc) and
write {P} = Y1 ∩ Y c2 with Y1 and Y2 Thomason. For any object t ∈ T consider the
following implications analogous to those of (13.14):

(14.11)

P ∈ ϕ(CosuppS(f !(t)))⇐⇒ ϕ−1({P}) ∩ CosuppS(f !(t)) 6= ∅

⇐⇒ CosuppS(hom(f∗(gP), f !(t))) 6= ∅

=⇒︸︷︷︸
(†)

hom(f∗(gP), f !(t)) 6= 0

⇐=︸︷︷︸
(‡)

f∗hom(f∗(gP), f !(t)) 6= 0

⇐⇒ hom(gP, f∗f
!(t))) 6= 0

⇐⇒ hom(gP, hom(f∗(1S), t)) 6= 0

⇐⇒ P ∈ CosuppT(hom(f∗(1S), t)).

Here we have invoked the adjunction isomorphisms f∗hom(f∗(a), b) ∼= hom(a, f∗(b))
and f∗f

!(t) ∼= f∗hom(1S, f
!(t)) ∼= hom(f∗(1S), t) established in [BDS16]. More-

over, the isomorphism f !hom(a, b) ∼= hom(f∗(a), f !(b)) from (13.6) shows that
hom(f∗(gP), f !(t)) is in the essential image of f ! and hence the converse of (‡)
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holds by Remark 13.9. Hence, going from left to right we obtain the first inclu-
sion in part (a), while the second inclusion is a standard property of cosupport
(4.30) together with Corollary 13.15. This establishes (a). Now the converse
of (†) holds when we have codetection property. Hence going from right to left
gives (b). Part (c) follows from part (b) by invoking the hom formula (Theo-
rem 7.15), which uses that T is stratified, and Corollary 13.15. For part (d)
it suffices to show that CosuppT(t) ⊆ CosuppT(hom(f∗(1S), t)) when f ! is con-
servative. Indeed, if hom(gP, t) 6= 0 then f∗f

!hom(gP, t) 6= 0 by Remark 13.9.
That is, 0 6= f∗f

!hom(gP, t) ∼= f∗hom(f∗(gP), f !(t)) ∼= hom(gP, f∗f
!(t)) and recall

f∗f
!(t) ∼= hom(f∗(1S), t). �

14.12. Corollary. Suppose f∗ is weakly closed (Definition 13.27). Then:

(a) If S has the detection property then

ϕ(SuppS(f∗(t)) = SuppT(t) ∩ imϕ

for every t ∈ T.
(b) If S has the codetection property then

ϕ(CosuppS(f !(t)) = CosuppT(t) ∩ imϕ

for every t ∈ T.

Proof. This follows from parts (a) and (b) of Proposition 14.7 and Proposition 14.10
together with the half-tensor and half-hom theorems ([BHS23, Lemma 2.18] and
Proposition 4.35). �

14.13. Remark. It follows from Proposition 14.7(a) and Proposition 14.10(a) that
the following inclusions hold for any t ∈ T:

SuppS(f∗(t)) ⊆ ϕ−1(SuppT(t)), and

CosuppS(f !(t)) ⊆ ϕ−1(CosuppT(t)).

Our next goal is to establish that these are equalities when T is stratified; see
Corollary 14.19 below.

14.14. Lemma. Let Q ∈ Spc(Sc). For any s ∈ S we have

SuppT(f∗(s⊗ gQ)) ⊆ {ϕ(Q)}.

Proof. Suppose P ∈ SuppT(f∗(s⊗ gQ)). Then

f∗(f
∗(gP)⊗ s⊗ gQ) ' gP ⊗ f∗(s⊗ gQ) 6= 0

so that f∗(gP)⊗ gQ 6= 0. That is, Q ∈ SuppS(f∗(gP)) = ϕ−1({P}) by Remark 13.7.
Thus P = ϕ(Q). �

14.15. Theorem (Local Avrunin–Scott identities). Let f∗ : T → S be a geometric
functor as in Hypothesis 14.1 and let t ∈ T. Suppose the localizing ideals ΓPT are
minimal for all P ∈ SuppT(t). Then we have:

SuppS(f∗(t)) = ϕ−1(SuppT(t)); and(14.16)

CosuppS(f !(t)) = ϕ−1(CosuppT(t)).(14.17)
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Proof. The ⊆ inclusions always hold (Remark 14.13). To establish the ⊇ inclusion
in (14.16), suppose Q ∈ ϕ−1(SuppT(t)) so that ϕ(Q) ∈ SuppT(t). Since Γϕ(Q)T

is minimal, it follows that gϕ(Q) ∈ Locid〈t〉. Hence f∗(gϕ(Q)) ∈ Locid〈f∗(t)〉.
Therefore

Q ∈ ϕ−1({ϕ(Q)}) = SuppS(f∗(gϕ(Q))) ⊆ SuppS(f∗(t)),

where the first equality is because of Remark 13.7. It remains to establish the ⊇
inclusion in (14.17). Suppose Q 6∈ CosuppS(f !(t)). We will show that Q 6∈
ϕ−1(CosuppT(t)). By Remark 14.6 and Lemma 14.14, there exists a compact
c ∈ Sc such that SuppT(f∗(c⊗ gQ)) = {ϕ(Q)}. Since Γϕ(Q)T is minimal, we conclude
that

(14.18) gϕ(Q) ∈ Locid〈f∗(c⊗ gQ)〉.

Now, since Q 6∈ CosuppS(f !(t)) by hypothesis, we have hom(gQ, f
!(t)) = 0. Hence

hom(c⊗ gQ, f !(t)) = 0 and so

hom(f∗(c⊗ gQ), t) ' f∗hom(c⊗ gQ, f !(t)) = 0.

Therefore, hom(gϕ(Q), t) = 0 by (14.18). That is, ϕ(Q) 6∈ CosuppT(t). �

14.19. Corollary (Global Avrunin–Scott identities). If T is stratified, then for any
t ∈ T we have:

SuppS(f∗(t)) = ϕ−1(SuppT(t)); and(14.20)

CosuppS(f !(t)) = ϕ−1(CosuppT(t)).(14.21)

Proof. Indeed, [BHS23, Theorem 4.1] shows that stratification of T gives minimality
at every point of its spectrum, so the result follows from Theorem 14.15. �

14.22. Remark. In a tensor triangular setting, the Avrunin–Scott identities for
support and cosupport were studied (under more restrictive hypotheses) in [BCHV19,
Proposition 3.14]. They originate in the work of Avrunin–Scott [AS82] on support
varieties for representations of finite groups.

14.23. Remark. If we assume that the right adjoint f∗ is conservative, then we
can prove the Avrunin–Scott identities of Corollary 14.19 under slightly weaker
hypotheses on the category T by modifying the proof of [BCHV19, Proposition 3.14];
namely, the identity for f∗ holds if T has the tensor product formula, while the
identity for f ! holds if T has the Hom formula. Recall that the former is implied by
stratification ([BHS23, Theorem 8.2]) and the latter is equivalent to stratification
(Theorem 7.15).

14.24. Corollary. Let T be stratified. For f∗ : T → S as in Hypothesis 14.1, the
following conditions are equivalent:

(a) f∗ is weakly descendable (Definition 13.23);
(b) f ! is conservative;
(c) f∗ is conservative;
(d) ϕ : Spc(Sc)→ Spc(Tc) is surjective.

Proof. The implication (a)⇒ (b) follows from Remark 13.24, (b)⇒ (c) is Proposi-
tion 13.21 and (c)⇒ (d) is Corollary 13.19. For (d)⇒ (a) note that the surjectivity
of ϕ implies that SuppT(f∗(1S)) = Spc(Tc) by Corollary 13.15. If T is stratified,
this implies 1T ∈ Locid〈f∗(1S)〉. �
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14.25. Example. Let (R,m, k) be a commutative noetherian local ring whose maximal
ideal m is nilpotent (that is, R is a commutative artinian local ring). Corollary 14.24
implies that the functor D(R)→ D(k) is conservative. Hence, if M is an arbitrary
flat R-module, we conclude that M/mM = 0 implies M = 0. This is a well-known
variant of Nakayama’s Lemma which replaces finite generation of the module M
with flatness together with nilpotence of the ideal m; cf. [Mat89, Theorem 7.10].

14.26. Example. Let A be the ring denoted A in [Kel94]. It is a non-discrete valuation
domain of rank 1 whose value group is Z[1/`] ⊂ Q; see [FS01, Theorem II.3.8]. The
quotient R := A/xA by any nontrivial principal ideal is then a non-noetherian local
ring whose spectrum is a single point. The map to the residue field f : R → k
induces a functor f∗ : D(R)→ D(k) which is surjective on spectra. However, the
maximal ideal of R satisfies m2 = m and is flat as an R-module. Hence M := m is a
nonzero R-module which is annihilated by f∗. We conclude that D(R) cannot be
stratified, since this would contradict Corollary 14.24. Alternatively, it follows from
the work of Bazzoni–Šťov́ıček (cf. [BŠ17, Example 5.24]) that D(R) → D(k) is a
smashing localization which has no finite acyclics. Hence D(R) does not satisfy the
telescope conjecture and we can alternatively conclude that it is not stratified by
invoking [BHS23, Theorem 9.11].

14.27. Example. Let (R,m, k) be a commutative noetherian local ring and let R̂ de-

note the m-adic completion of R. The induced functor D(R)→ D(R̂) is conservative.

Indeed, R→ R̂ is faithfully flat, so Spec(R̂)→ Spec(R) is surjective.

15. Descending the local-to-global principle

We now provide a version of descent for the local-to-global principle.

15.1. Proposition. Let f∗ : T → S be as above (Hypothesis 14.1). Assume that S

satisfies the local-to-global principle. Then

t ∈ Locid〈t⊗ gP | P ∈ SuppT(t)〉
for any object t ∈ T such that t ∈ Locid〈f∗f∗t〉.

Proof. By the local-to-global principle in S, we have

Locid〈f∗gP〉 = Locid〈f∗gP ⊗ gQ | Q ∈ ϕ−1({P})〉
= Locid〈gϕ−1({P}) ⊗ gQ | Q ∈ ϕ−1({P})〉
= Locid〈gQ | Q ∈ ϕ−1({P})〉

for any P ∈ Spc(Tc), where the last equality uses Remark 4.8. Hence

(15.2) Locid〈f∗t⊗ f∗gP〉 = Locid〈f∗t⊗ gQ | Q ∈ ϕ−1({P})〉
by [BHS23, Lemma 3.6], for example. Then, by the local-to-global principle for f∗t,
we have

f∗t ∈ Locid〈f∗t⊗ gQ | Q ∈ SuppS(f∗t)〉
⊆ Locid〈f∗t⊗ gQ | Q ∈ ϕ−1(SuppT(t))〉 (Remark 14.13)

= Locid〈f∗t⊗ f∗gP | P ∈ SuppT(t)〉 (by (15.2)).

Using (13.4), we obtain

f∗f
∗t ∈ Locid〈t⊗ gP | P ∈ SuppT(t)〉
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which establishes the claim. �

15.3. Remark. It follows from Corollary 13.15 that objects satisfying t ∈ Locid〈f∗f∗t〉
have their support contained in the image of ϕ. For some functors, the converse
holds: If SuppT(t) ⊆ imϕ then t ∈ Locid〈f∗f∗t〉. This is the case for the following
two examples:

(a) A finite localization f∗ : T → T(U) under the assumption that T has the
detection property. In this case, imϕ = U and f∗f

∗t ∼= t for all t which are
supported in U .

(b) A weakly closed functor f∗ : T → S under the assumption that T has the
detection property. This follows from [BHS23, Lemma 3.7].

Intuitively we can think of Proposition 15.1 as saying that the local-to-global principle
partially descends along f∗ to objects supported in the image of ϕ. However, note
that if f∗ : T → S is a functor which is not conservative and yet for which ϕ is
surjective (such as the functor described in Example 14.26) then there exists an
object t ∈ T with SuppT(t) ⊆ imϕ and yet with t 6∈ Locid〈f∗f∗t〉, so the above
intuition is not completely accurate.

15.4. Remark. It follows from Remark 14.13 that the following hold:

(a) If f∗ : T → S is conservative then the detection property descends from S

to T.
(b) If f ! : T → S is conservative then the codetection property descends from S

to T.

Since the codetection property is equivalent to the (co)local-to-global principle
(by Theorem 6.4) we see that the local-to-global principle descends from S to T

whenever f ! is conservative.

15.5. Example. If f∗ : T → S is fully faithful then the local-to-global principle
descends from S to T. This follows from Proposition 15.1 since t ∼= f∗f

∗t for
all t ∈ T. It also follows from Remark 15.4 since if f∗ is fully faithful then f ! is
conservative. Indeed, in general f∗f

!(t) ∼= hom(f∗(1S), t), which becomes f∗f
!(t) ∼= t

when f∗ is fully faithful since f∗(1S) ∼= 1T (see, e.g., [San22, Remark 4.13]).

15.6. Example. If f∗ : T → S is conservative and weakly closed then the local-to-
global principle descends from S to T. This follows from Proposition 13.33 and
Remark 15.4. It can also be obtained as an application of Proposition 15.1.

16. Local cogeneration

We have seen in Section 9 that a compactly generated category is perfectly
cogenerated by the Brown–Comenetz duals of its compact objects. We now explain
how these can be used to construct suitable local cogenerators in tt-geometry. This
will be an important ingredient in our bootstrap result for descending costratification
in Section 17.

16.1. Proposition. Let T be a rigidly-compactly generated tt-category.

(a) Let Y ⊆ Spc(Tc) be a Thomason subset. The subcategory hom(eY ,T) is
perfectly cogenerated by

{
Ic
∣∣ supp(c) ⊆ Y

}
. In particular,

hom(eY ,T) = Coloc〈Ic | supp(c) ⊆ Y 〉.
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(b) Let Y1, Y2 ⊆ Spc(Tc) be Thomason subsets and consider the weakly visible
subset W := Y1 ∩ Y c2 . The subcategory ΛWT is perfectly cogenerated by{

ΛW Ic
∣∣ supp(c) ⊆ Y1

}
. In particular,

ΛWT = Coloc〈ΛW Ic | supp(c) ⊆ Y1〉.

Proof. Let K := Tc and let KY :=
{
x ∈ K

∣∣ supp(x) ⊆ Y
}

. By Example 12.7 and

Proposition 9.9, T is perfectly cogenerated by
{
Ic
∣∣ c ∈ K

}
= K⊗ I1. Recall from

Lemma 4.5 that hom(eY ,T) = Coloc〈KY ⊗T〉. Hence Lemma 10.12 (applied to Top)
implies that hom(eY ,T) is perfectly cogenerated by KY ⊗ K ⊗ I1 = KY ⊗ I1 ={
Ic
∣∣ c ∈ KY

}
. This establishes (a).

We obtain part (b) by applying Proposition 9.11 to part (a). The functor

(16.2) hom(fY2 ,−) : hom(eY1 ,T)→ hom(gW ,T)

preserves products. Hence, since the domain category is perfectly cogenerated (by
part (a)), we know it must have a left adjoint. Indeed, as observed in Remark 5.11,
it has the fully faithful left adjoint

−⊗ fY2
: hom(gW ,T)→ hom(eY1

,T).

But this functor is naturally isomorphic to

hom(eY1
,−) : hom(gW ,T)→ hom(eY1

,T)

which evidently preserves products. Thus, the functor (16.2) has a conservative left
adjoint, which itself preserves products. Hence we can invoke Proposition 9.11 to
conclude that ΛW := hom(gW ,T) is perfectly cogenerated by{

hom(fY2 , Ic)
∣∣ supp(c) ⊆ Y1

}
.

Note that hom(fY2
, Ic) = hom(gW , Ic) = ΛW Ic since Ic ∈ hom(eY1

,T) already. �

16.3. Remark. The statement in part (a) of Proposition 16.1 is the special case
of part (b) when Y2 := ∅. Indeed, as explained in the proof, if supp(c) ⊆ Y then
Ic ∼= hom(eY , Ic) = ΛY Ic. We have formulated the proposition as we have, since the
special case is used to prove the more general statement.

16.4. Remark. The reader may find it interesting to compare with [BIK12, Prop. 5.4].

16.5. Remark. The compact generators of eY ⊗ T = Loc〈c | supp(c) ⊆ Y 〉 similarly
pushdown to a set of perfect generators of ΓWT = Loc〈ΓW (c) | supp(c) ⊆ Y1〉.
Indeed, one uses the second adjunction displayed in Remark 5.11, observing that
the fully faithful right adjoint hom(fY2

,−) is naturally isomorphic to eY1
⊗−, which

preserves coproducts, whence one can invoke Proposition 9.11.

16.6. Proposition. Let f∗ : T → S be as above (Hypothesis 14.1) and let W ⊆
Spc(Tc) be a weakly visible subset. The trio of adjoints f∗ a f∗ a f ! induces a trio
of adjoints

ΓWT ΛWT

Γϕ−1(W )S Λϕ
−1(W )S

f∗

∼=
f !

f∗a
∼=

f∗ a

where the middle square commutes and uses the equivalences of Remark 5.11.
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Proof. It follows from the definitions and the standard isomorphisms from [BDS16]
together with Remark 13.7 that the functors f∗, f∗ and f ! restrict to the four
functors in the statement, and one verifies directly that we have the two displayed
adjunctions f∗ a f∗ and f∗ a f !. One then checks that the middle square commutes
from the definitions of the “stalk-costalk equivalences” in Remark 5.11. �

17. Bootstrap for costratification

We now provide descent techniques for establishing costratification.

17.1. Lemma. Let f∗ : T → S be a geometric functor. For any d ∈ Tc, there is an
isomorphism If∗d ∼= f !Id.

Proof. For any s ∈ S, the defining property of the Brown–Comenetz dual (Defini-
tion 9.4) together with adjunction provides natural isomorphisms

S(s, If∗d) ∼= HomZ(S(f∗d, s),Q/Z)

∼= HomZ(T(d, f∗s),Q/Z)

∼= T(f∗s, Id)

∼= S(s, f !Id)

and we summon Yoneda. �

17.2. Theorem. Let f∗ : T → S be a geometric functor as in Hypothesis 14.1 and
consider a prime P ∈ imϕ. Assume that

(a) T is stratified; and
(b) ΛQS is a minimal colocalizing coideal of S for all Q ∈ ϕ−1({P}).

Then ΛPT is a minimal colocalizing coideal of T.

Proof. Let t ∈ ΛPT be a nonzero object. Hence CosuppT(t) = {P} by the codetection
property (which holds by Theorem 6.4). Since T is stratified, we have

CosuppS(f !(t)) = ϕ−1 CosuppT(t) = ϕ−1({P})

by Corollary 14.19. Then, since S has cominimality at all primes Q ∈ ϕ−1({P}), we
have

Colocid〈ΛQS | Q ∈ ϕ−1({P})〉 ⊆ Colocid〈f !(t)〉.

Now, Colocid〈f !(t)〉 = Coloc〈hom(S, f !(t))〉 and so, since f∗ preserves products, we
obtain an inclusion

f∗Λ
QS ⊆ Coloc〈f∗hom(S, f !(t))〉.

Using the adjunction isomorphism [BDS16, (2.18)], we conclude that

(17.3) f∗Λ
QS ⊆ Coloc〈hom(f∗S, t)〉 ⊆ Colocid〈t〉

for each Q ∈ ϕ−1({P}).
Combining Lemma 14.14 and Remark 14.6, there exists c ∈ Sc (possibly depending

on Q ∈ ϕ−1({P})) with supp(f∗(ΓQc)) = {P}. On the one hand, stratification of T
shows that ΓP1 ∈ Locid〈f∗ΓQc〉. Hence by (2.8) we have for every d ∈ Tc:

ΛPId ∼= hom(ΓP1, Id) ∈ Colocid〈hom(f∗ΓQc, Id)〉.
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On the other hand, there are isomorphisms

f∗(Λ
QIc∨⊗f∗(d)) ∼= f∗hom(ΓQ1, c∨ ⊗ If∗d)

∼= f∗hom(ΓQc, If∗d)

∼= hom(f∗ΓQc, Id),

where the fourth isomorphism uses Lemma 17.1. Combining these two observations
with (17.3), we see that

ΛPId ∈ Colocid〈f∗(ΛQIc∨⊗f∗(d))〉 ⊆ Colocid〈t〉.

Proposition 16.1 then implies that ΛPT ⊆ Colocid〈t〉. This establishes cominimality
of T at P. �

17.4. Corollary (Bootstrap). Suppose f∗ : T → S is a geometric functor as above
(Hypothesis 14.1) such that

(a) T is stratified;
(b) S is costratified; and
(c) f∗ is conservative.

Then T is costratified.

Proof. By Theorem 7.7 and Theorem 6.4, we need to establish the minimality of
ΛPT for each P ∈ Spc(Tc). By Corollary 13.19, conservativity of f∗ implies that ϕ
is surjective. Therefore, Theorem 17.2 applies at all points of Spc(Tc). �

17.5. Remark. In the situation of Corollary 17.4, assuming (a), condition (c) is
equivalent to the statement that the map ϕ is surjective, and also equivalent to f !

being conservative, see Corollary 14.24.

17.6. Remark. Theorem 17.2 becomes especially useful in combination with descent
results for stratification. If S is costratified then it is also stratified (Theorem 7.19)
and one can then try to apply one of the stratification descent techniques to show
that T is stratified. Corollary 17.4 implies that, under the mild hypothesis that the
induced map on spectra is surjective, costratification then descends as well. Thus
we view it as a bootstrap technique. We give three instances of this idea below,
suggestively called

• Zariski descent (Corollary 17.14);
• Quasi-finite descent (Corollary 17.17); and
• Nil-descent (Corollary 17.22).

The following variant of the bootstrap theorem will also be useful:

17.7. Theorem. Suppose that there exist geometric functors f∗i : T → Si (Hypothe-
sis 14.1) to costratified categories Si such that the induced maps ϕi on spectra are
jointly surjective: ⋃

i

imϕi = Spc(Tc).

Then T is stratified if and only if T is costratified.

Proof. That costratification for T implies stratification for T is Theorem 7.19. For
the converse, we apply Theorem 17.2 to the functors f∗i : T → Si. Because Si
is costratified, the theorem implies that T satisfies cominimality at P for every
P ∈ imϕi. Varying over i, we see that cominimality holds at all primes of Spc(Tc).
Since T is stratified by assumption the local-to-global principle holds, and hence so
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does the colocal-to-global principle (Theorem 6.4). Therefore T is costratified by
Theorem 7.7. �

17.8. Remark. In [Ste13, Theorem 8.11] and [BHS23, Corollary 5.5], it was shown
that stratification is—in an appropriate sense—a Zariski-local property of a rigidly-
compactly generated tt-category. We complement this result by establishing the
analogous statement (Corollary 17.14) for costratification.

17.9. Proposition. Let T be a rigidly-compactly generated tt-category with Spc(Tc)
weakly noetherian.

(a) If T satisfies the (co)local-to-global principle, then so does each finite local-
ization T(V ).

(b) If Spc(Tc) = V1 ∪ . . .∪Vr is a finite cover by complements of Thomason sets
such that T(Vi) satisfies the (co)local-to-global principle, then so does T.

Proof. The statements for the local-to-global principle were proven in [BHS23,
Corollary 3.13] and [BHS23, Proposition 3.17], respectively. We established that
the local-to-global principle and the colocal-to-global principle are equivalent in
Theorem 6.4. �

17.10. Remark. Stevenson proves in [Ste13, Proposition 8.4] that the finite localiza-
tion functor T → T(Y c) associated with a Thomason subset Y ⊆ Spc(Tc) induces
an equivalence of stalks

ΓPT
∼−→ ΓP(T(Y c))

for any P ∈ Y c. His result was stated under the assumption that Spc(Tc) is
noetherian, but the argument works when the space is weakly noetherian. The
corresponding statement for costalks holds as well:

17.11. Proposition. Suppose Y ⊆ Spc(Tc) is a Thomason subset and let P ∈ Y c.
We have an equivalence of costalks

ΛPT
∼−→ ΛP(T(Y c)).

Proof. Let f∗ : T → T(Y c) denote the finite localization functor. As in Proposi-
tion 16.6, the adjunction f∗ a f ! restricts to an adjunction

f∗ : ΛP(T(Y c)) � ΛPT :f !.

The left adjoint is fully faithful (being the restriction of a fully faithful functor).
Hence it remains to prove that the counit f∗f

!(x)→ x is an isomorphism for each
x ∈ ΛPT. Indeed, f∗f

!(ΛPt) ' hom(fY ,Λ
Pt) ' ΛPt for all t ∈ T, which gives the

desired claim. �

17.12. Proposition. Let U ⊆ Spc(Tc) be the complement of a Thomason subset.
If P ∈ U is a weakly visible point, then T satisfies cominimality at P ∈ Spc(Tc) if
and only if the localized category T(U) satisfies cominimality at P ∈ Spc(T(U)c).

Proof. Let f∗ : T → T(U) denote the localization functor. Proposition 17.11 estab-
lishes that the induced adjunction f∗ : ΛPT(U) � ΛPT : f ! of Proposition 16.6 is an
adjoint equivalence. We thus have an inclusion-preserving bijection between the colo-
calizing subcategories of ΛPT(U) and the colocalizing subcategories of ΛPT given by
C 7→ C′ := f∗(C) with inverse C′ 7→ C := f !(C′). Moreover, since the inclusion of the
costalk ΛPT ↪→ T preserves products, the colocalizing subcategories of ΛPT are pre-
cisely the colocalizing subcategories of T which are contained in ΛPT — and similarly
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for the costalk ΛPT(U) ↪→ T(U). We claim that under this correspondence C 7→ C′

of colocalizing subcategories, C is a coideal of T(U) if and only if C′ is a coideal of T.
This follows from the adjunction isomorphisms homT(t, f∗(s)) ' f∗homT(U)(f

∗(t), s)

and f∗homT(U)(s, f
!(t)) ' homT(f∗(s), t). This establishes an inclusion-preserving

correspondence between the colocalizing coideals of T(U) contained in ΛPT(U) and
the colocalizing coideals of T contained in ΛPT. Hence ΛPT(U) is minimal among
colocalizing coideal of T(U) if and only if ΛPT is minimal among colocalizing coideals
of T. �

17.13. Corollary. The category T satisfies cominimality at a point P ∈ Spc(Tc) if
and only if the local category T/〈P〉 satisfies cominimality at its unique closed point.

Proof. Apply Proposition 17.12 with U = gen(P). �

17.14. Corollary (Zariski descent). Let T be a rigidly-compactly generated tt-
category with Spc(Tc) weakly noetherian and which satisfies the local-to-global prin-
ciple. Suppose Spc(Tc) =

⋃
i∈I Vi is a cover by complements of Thomason subsets.

Then T is costratified if and only if each finite localization T(Vi) is costratified.

Proof. Each T(Vi) has the colocal-to-global principle by Proposition 17.9 and Theo-
rem 6.4. Hence it suffices to consider cominimality (Theorem 7.7) and we can invoke
Proposition 17.12. �

17.15. Remark. We end this section with two descent techniques for stratification
which empower our bootstrap theorem (cf. Remark 17.6). The first is a modification
of the argument in [Bar21, Section 2.2.2] establishing finite étale descent, which in
turn is a generalization of [BHS23, Theorem 6.4].

17.16. Theorem (Quasi-finite descent). Let f∗ : T → S be a geometric functor as
in Hypothesis 14.1. Suppose f∗ is strongly closed and ϕ is surjective with discrete
fibers. If S is stratified then so is T.

Proof. Since f∗ is weakly closed, the surjectivity assumption on ϕ implies that both
f ! and f∗ are conservative (recall Proposition 13.33). Hence the local-to-global
principle descends from S to T by Example 15.6 and it suffices to check minimality
at each prime in T. The hypotheses on the functor f∗ are local in the target
(cf. [BHS23, Proposition 1.30]) and hence it suffices to assume that T is local and
check minimality at the unique closed point m ∈ Spc(Tc).

Since the Thomason closed subset ϕ−1({m}) is discrete (by hypothesis), an
elementary topological argument verifies that the fiber ϕ−1({m}) consists of finitely
many visible closed points. Now consider an object t ∈ T. Recall that m ∈ SuppT(t)
if and only if m ∈ CosuppT(t) (Theorem 8.3). We claim that if m ∈ SuppT(t) then
ϕ−1({m}) ⊆ SuppS(f∗(t))∩CosuppS(f !(t)). To this end, let Q ∈ ϕ−1({m}). Since Q

is a visible closed point, there is some z ∈ Sc such that supp(z) = {Q}. Moreover,
since the right adjoint f∗ is weakly conservative (Remark 14.6) there exists some
x ∈ Sc such that f∗(z ⊗ x) 6= 0; but supp(z ⊗ x) = {Q}, so replacing z by z ⊗ x
if necessary we may assume without loss of generality that f∗(z) 6= 0. Note that
∅ 6= Supp(f∗(z)) ⊆ ϕ(Supp(z)) = {m} by Proposition 14.2 so that Supp(f∗(z)) =
{m}. Since f∗(z) is compact, Supp(t ⊗ f∗(z)) = Supp(t) ∩ Supp(f∗(z)) = {m} by
[BHS23, Lemma 2.18]. In particular, t ⊗ f∗(z) 6= 0 so that f∗(t) ⊗ z 6= 0 and
thus Q ∈ SuppS(f∗(t)). This establishes that ϕ−1({m}) ⊆ SuppT(t). Now consider
CosuppS(f !(t)). Again, since f∗(z) is compact we have CosuppT(hom(f∗(z), t)) =
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SuppT(f∗(z)) ∩ CosuppT(t) = {m} by Proposition 4.35. Hence f∗hom(z, f !(t)) =
hom(f∗(z), t) 6= 0 so that hom(z, f !(t)) 6= 0 and thus P ∈ CosuppT(f !(t)).

In summary, if t1, t2 ∈ T are objects with m contained in their (co)support then

∅ 6= ϕ−1({m}) ⊆ SuppS(f∗(t1)) ∩ CosuppS(f !(t2))

= CosuppS(hom(f∗(t1), f !(t2))),

where the equality uses the assumption that S is stratified and applies Theorem 7.15.
Therefore, f !hom(t1, t2) = hom(f∗(t1), f !(t2)) 6= 0 and hence hom(t1, t2) 6= 0. This
establishes minimality at m by Lemma 7.12. �

17.17. Corollary. If f∗ is strongly closed, ϕ is surjective with discrete fibers, and S

is costratified, then T is costratified as well.

Proof. Since S is costratified, it is also stratified by Theorem 7.19. It then follows
from Theorem 17.16 that T is also stratified. We can now invoke Corollary 17.4
since f∗ is conservative due to Proposition 13.33. �

17.18. Remark. The name of Theorem 17.16 is motivated by algebraic geometry. A
finite type morphism f : X → Y of schemes is quasi-finite in the sense of [Gro61,
Définition 6.2.3] if and only if it has discrete fibers.

17.19. Remark. The next result is inspired by work of Shaul and Williamson [SW20]
in the context of BIK-stratification and BIK-costratification. The following tt-
geometric version strengthens [Bar21, Theorem 2.24].

17.20. Theorem (Nil-descent). Let f∗ : T → S be a geometric functor as in Hypoth-
esis 14.1. Suppose f ! is conservative and ϕ is injective. If S is stratified then so
is T.

Proof. Since f ! is conservative, T inherits the local-to-global principle from S (Re-
mark 15.4). To establish that T is stratified we will use Theorem 7.15. To this
end, let t1, t2 ∈ T be objects with hom(t1, t2) = 0. Our goal is to prove that
Supp(t1)∩Cosupp(t2) = ∅. We have 0 = f !hom(t1, t2) = hom(f∗t1, f

!t2) by (13.6),
hence

Supp(f∗t1) ∩ Cosupp(f !t2) = ∅
since S is assumed stratified. The assumption that ϕ is injective then implies

(17.21) ϕ(Supp(f∗t1)) ∩ ϕ(Cosupp(f !t2)) = ∅.
Since S has detection and codetection, Proposition 14.7 and Proposition 14.10 imply
that (17.21) is the same as

Supp(t1 ⊗ f∗(1S)) ∩ Cosupp(hom(f∗1, t2)) = ∅.
Since f ! is conservative, f∗ is also conservative by Proposition 13.21. Proposi-
tion 14.7 and Proposition 14.10 then imply that Supp(t1 ⊗ f∗(1S)) = Supp(t1) and
Cosupp(hom(f∗(1S), t2)) = Cosupp(t2), which completes the proof. �

17.22. Corollary. If f ! is conservative and ϕ is injective (hence bijective) and S is
costratified, then T is costratified as well.

Proof. Note that f∗ is also conservative by Proposition 13.21. The claim then
follows from Theorem 7.19, Theorem 17.20, and Corollary 17.4. �

17.23. Remark. If f∗ is weakly closed and ϕ is a bijection then we can invoke
Theorem 17.20 and Corollary 17.22 because of Proposition 13.33.
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Part IV. Applications and examples

We now turn to applications and examples. We show that a pure-semisimple
tt-category (in particular, any tt-field) is costratified (Theorem 18.4) and that any
affine weakly regular tt-category is costratified (Theorem 18.15). We also show that
the derived category of a (topologically weakly noetherian) quasi-compact and quasi-
separated scheme is costratified if and only if it is stratified (Theorem 19.5). In repre-
sentation theory, we show that the category of k-linear representations Rep(G, k) and
the derived category of k-linear permutation modules DPerm(G, k) is costratified for
any finite group G and field k (Theorem 19.10, Theorem 19.13 and Theorem 20.14).
In homotopy theory, we give a new proof that the category of E(n)-local spectra is
costratified (Theorem 20.19) and prove that certain cochain algebras have costrati-
fied derived categories (Theorem 20.27). We establish that the category of rational
G-spectra is costratified for any compact Lie group G (Theorem 20.48) and show
that, for any finite group G, the category of spectral G-Mackey functors valued in a
commutative algebra E ∈ CAlg(Sp) is costratified whenever D(E) itself is costratified
and has a noetherian spectrum (Theorem 20.31). As a special case, this shows that
Kaledin’s category of derived Mackey functors is costratified (Corollary 20.36).

18. Tensor triangular examples

Pure-semisimple categories and tt-fields.

18.1. Lemma. Let T be a rigidly-compactly generated tt-category with weakly noe-
therian spectrum. Suppose that every colocalizing coideal of T is also a localizing
ideal. Then T is stratified if and only if it is costratified.

Proof. In light of Theorem 6.4 and Theorem 7.19, it suffices to show that if minimality
holds at a point P ∈ Spc(Tc) then cominimality also holds at P. Under the
equivalence ΛPT ∼= ΓPT of Remark 5.11, the thick subcategories C of ΛPT correspond
bijectively with the thick subcategories C′ of ΓPT. Moreover, one readily checks
that Td ⊗ C ⊆ C if and only if Td ⊗ C′ ⊆ C′. By our hypothesis, the costalk ΛPT is a
localizing ideal of T. In particular, the inclusion ΛPT ↪→ T preserves coproducts. It
follows that if C ⊆ ΛPT is a localizing ideal of T then its corresponding C′ ⊆ ΓPT

is also a localizing ideal of T. Armed with these observations, suppose C ( ΛPT

is a proper colocalizing coideal. By hypothesis, it is a localizing ideal of T, hence
corresponds to a proper localizing ideal C′ ( ΓPT. Minimality at P implies that
C′ = 0 and hence C = 0, so that we have cominimality at P. �

18.2. Definition (Beligiannis [Bel00], Krause [Kra00]). A compactly generated trian-
gulated category T is said to be pure-semisimple if every pure monomorphism splits,
where f : x→ y is a pure monomorphism if the induced map T(c, x)→ T(c, y) is a
monomorphism for all compact objects c ∈ Tc. This is equivalent to a host of other
conditions, for example that any object of T is a coproduct of compact objects,
that T has all filtered colimits, or that T is phantomless; see [Bel00, Theorem 9.3]
and [Kra00, Theorem 2.10].

18.3. Proposition. If T is a rigidly-compactly generated pure-semisimple tt-category
then Spc(Tc) is a finite discrete space.

Proof. We first prove that every Thomason subset Y ⊆ Spc(Tc) is both open and
closed. Since T is pure-semisimple, we can write fY =

∐
i∈I xi as a coproduct of
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compact objects. Note that each xi is contained in ker(−⊗ eY ) = Locid〈fY 〉; see
Remark 4.1. Since this is a localizing ideal, it also contains the duals x∨i , and hence

T(fY ,ΣeY ) =
∏
i∈I

T(xi,ΣeY ) =
∏
i∈I

T(1,ΣeY ⊗ x∨i ) = 0.

Thus Proposition 8.10 establishes that Y is both open and closed.
Next we establish that the specialization order is trivial (cf. Remark 8.5). To this

end, suppose there exists an inclusion of primes P ⊆ Q with P 6= Q. Then Q 6⊆ P,
i.e., Q 6∈ {P}. Hence there exists a Thomason closed subset Z which contains P but
does not contain Q. This is a contradiction, since the Thomason subset Z is open
(by the first part of the proof) and hence closed under generalization.

It follows that {P} = gen(P) is open since it is the complement of a Thomason
subset. Since every point is open, the topology is discrete. Moreover, a discrete
quasi-compact space is necessarily finite. �

18.4. Theorem. If T is a rigidly-compactly generated pure-semisimple tt-category,
then Spc(Tc) is a finite discrete space and T is costratified and stratified.

Proof. Proposition 18.3 establishes that the Balmer spectrum is finite and discrete.
We first show that T is stratified. By [BHS23, Theorem 3.21] the local-to-global
principle holds for T. We establish minimality using Lemma 7.12. To that end, fix
P ∈ Spc(Tc) and consider nonzero objects t1, t2 ∈ ΓPT. Since T is pure-semisimple,
we have t1 =

∐
i∈I xi and t2 =

∐
j∈J yj for nonzero compact objects xi, yj . Since

xi (respectively, yj) is a retract of t1 (respectively, t2), we see that each xi and yj
is in ΓPT as well. Thus supp(xi) = supp(yj) = {P} and hence hom(xi, yj) 6= 0. It
follows that hom(t1, t2) 6= 0, as required.

For any collection of objects {ti}i∈I in a pure-semisimple tt-category T, the
canonical map

∐
i∈I ti →

∏
i∈I ti from the coproduct to the product splits; see

[Bel00, Theorem 9.3]. In particular, any colocalizing subcategory of T is localizing.
Moreover, since a colocalizing subcategory of T is a coideal if and only if it is
closed under tensoring with dualizable objects (Example 10.10), we conclude that
any colocalizing coideal is a localizing ideal. Hence we can invoke Lemma 18.1 to
conclude that T is costratified. �

18.5. Example. Let A be an Artin algebra which is derived equivalent to a hereditary
algebra of Dynkin type. Then the homotopy category K(InjA) of complexes of
injective A-modules is pure-semisimple [Zhe13, Proposition 4.4] and hence stratified
and costratified by Theorem 18.4.

18.6. Remark. As a consequence of Proposition 18.3, we see that an infinite product
of nontrivial pure-semisimple tt-categories cannot be pure-semisimple. This should
be compared with the following observation: An infinite product of nontrivial pure-
semisimple commutative rings is never pure-semisimple. Indeed, a pure-semisimple
ring is always artinian [Cha60, Theorem 4.4] and, in particular, its Zariski spectrum
is always finite discrete. We note also that if D(R) is pure-semisimple in the sense of
Definition 18.2 then R is pure-semisimple [GP05, Corollary 7.2]. We thus see that
for a field k, neither

∏∞
i=1 D(k) nor D(

∏∞
i=1 k) is pure-semisimple, even though D(k)

is pure-semisimple.

18.7. Example. In [BKS19, Definition 1.1], Balmer–Krause–Stevenson define a tt-field
to be a rigidly-compactly generated tt-category F for which every object X ∈ F is a
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coproduct X '
∐
i∈I xi of compact-rigid objects xi ∈ Fc and for which each object

X ∈ F is ⊗-faithful (X ⊗ f = 0 =⇒ f = 0). A tt-field F is pure-semisimple and
Spc(Fc) = {∗} is a single point; see [BKS19, Proposition 5.1].

18.8. Example. The stable module category T = StMod(kCpn) is a pure-semisimple
triangulated category which, if n ≥ 2, is not a tt-field; see [BKS19, Example 5.11].

18.9. Corollary. Any tt-field F is both stratified and costratified.

Affine weakly regular tt-categories.

18.10. Definition (Dell’Ambrogio–Stanley [DS16]). A tensor-triangulated category T

is said to be affine weakly regular if it satisfies the following two conditions:

(a) (affine) T is compactly generated by its tensor unit 1.
(b) (weakly regular) The graded endomorphism ring R := Hom∗T(1,1) is a graded

noetherian ring concentrated in even degrees, and for every homogeneous
prime ideal p of R, the maximal ideal of the local ring Rp is generated by a
(finite) regular sequence of homogeneous non-zero-divisors.

The first axiom ensures that T is a rigidly-compactly generated tt-category and that
every (co)localizing subcategory is a (co)ideal (cf. Remark 2.4).

18.11. Remark. Given an affine weakly regular tt-category we set

π∗(X) := Hom∗T(1, X).

For any prime ideal p ∈ Spech(R), there is a residue field object K(p) ∈ T with the
property that

π∗(K(p)) ' κ(p)

where κ(p) := Rp/pRp denotes the algebraic residue field; see [DS16, §3]. This object
plays a role analogous to gp; in particular, Loc〈gp〉 = Loc〈K(p)〉. The following
theorem states the main results of [DS16]:

18.12. Theorem (Dell’Ambrogio–Stanley). Let T be an affine weakly regular tt-

category. There is a homeomorphism Spc(Tc) ∼= Spech(R) and T is stratified.

18.13. Lemma. For any set I and integers {di}i∈I , the natural map

(18.14)

∐
i∈I

ΣdiK(p) −→
∏
i∈I

ΣdiK(p)

is a split monomorphism.

Proof. Applying π∗ to the morphism (18.14) gives the monomorphism of graded
κ(p)-modules

⊕
i∈I Σdiκ(p)→

∏
i∈I Σdiκ(p). We can extend the standard basis of⊕

i∈I Σdiκ(p) to a basis B of
∏
i∈I Σdiκ(p). As

∏
i∈I ΣdiK(p) ' K(p)⊗

∏
i∈I Σdi1,

Proposition 3.6 of [DS16] provides an isomorphism∐
b∈B

Σ|b|K(p) '
∏
i∈I

ΣdiK(p)

where |b| denotes the homological degree of b. Any set-theoretic splitting of I ⊆ B

then lifts to a left-inverse of (18.14). �

18.15. Theorem. Let T be an affine weakly regular tt-category. Then T is costratified.
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Proof. The proof follows [BIK12, Theorem 10.3]. The colocal-to-global princi-
ple holds by Corollary 6.5, so we only need to establish cominimality at every
p ∈ Spech(R). To that end, let 0 6= t ∈ ΛpT. Then, since T is stratified we have

Coloc〈t〉 = Coloc〈hom(gp, t)〉 = Coloc〈hom(K(p), t)〉

where the last step uses that Loc〈gp〉 = Loc〈K(p)〉 and Lemma 4.34. Now a similar
argument to [DS16, Proposition 3.6] shows that

hom(K(p), t) '
∐

α
Σ|α|K(p)

where α runs through a graded κ(p)-vector space basis of π∗hom(K(p), t). It
follows that K(p) ∈ Coloc〈hom(K(p), t)〉. Moreover, by Lemma 18.13 we see that∐
α Σ|α|K(p) is a retract of

∏
α Σ|α|K(p), hence we have

hom(K(p), t) '
∐

α
Σ|α|K(p) ∈ Coloc〈K(p)〉.

Therefore, we obtain

Coloc〈t〉 = Coloc〈hom(K(p), t)〉 = Coloc〈K(p)〉.

If Coloc〈t〉 were a proper subcategory of ΛpT, then any object s in the complement
would have to satisfy Coloc〈t〉 = Coloc〈s〉, which is absurd. Therefore, ΛpT is
minimal as a colocalizing subcategory of T, as required. �

Finite products of tt-categories.

18.16. Example. Let {Ti}ni=1 be a finite collection of rigidly-compactly generated
tensor-triangulated categories. Their product

∏n
i=1 Ti is again rigidly-compactly

generated and (
∏n
i=1 Ti)

c =
∏n
i=1 T

c
i . Moreover,

Spc(

n∏
i=1

Tci )
∼=

n∐
i=1

Spc(Tci )

where the right-hand side has the disjoint union topology. Indeed, each prime ideal
of
∏n
i=1 T

c
i is of the form

∏n
i=1 Pi, where for some k, Pk is a prime ideal of Tck,

and for i 6= k, Pi = Tci . Thus
∏n
i=1 Ti has (weakly) noetherian spectrum if and

only if each Ti has (weakly) noetherian spectrum. Moreover, by Zariski descent
(Proposition 17.9 and Corollary 17.13),

∏n
i=1 Ti is costratified if and only if each Ti

is costratified.

18.17. Example. Let T be any rigidly-compactly generated tt-category. Let T ×Z2 T

denote the product category T× T with the Z2-graded tensor-triangulated structure
described in [San22, Example 4.23]. It is again rigidly-compactly generated and
the inclusion a 7→ (a, 0) is a fully faithful geometric functor f∗ : T ↪→ T × T. The
projection onto the first coordinate is both left and right adjoint to f∗. Hence f ! = f∗.
The prime ideals of (T × T)c = Tc × Tc are P× P for P a prime ideal of Tc, and the
induced map

Spc(f∗) : Spc(Tc × Tc)→ Spc(Tc)

given by P × P 7→ P is a homeomorphism. Under this identification, one readily
checks that SuppT×T((t0, t1)) = SuppT(t0) ∪ SuppT(t1) and CosuppT×T((t0, t1)) =
CosuppT(t0) ∪ CosuppT(t1). It is then straightforward to establish that if T is
costratified then T ×Z2 T is costratified. The converse follows from Theorem 17.20
and Corollary 17.4.
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19. Algebraic examples

Commutative rings and schemes.

19.1. Proposition. Let R be a commutative ring with Spec(R) weakly noetherian.
Then D(R) is stratified if and only if it is costratified.

Proof. Recall that Spc(D(R)c) ∼= Spec(R) by Thomason’s theorem [Tho97]; see
[BHS23, Example 1.36]. For each p ∈ Spec(R), we consider the base-change functor
f∗p : D(R)→ D(κ(p)), where κ(p) denotes the residue field at p. This is a geometric
functor whose target is a tt-field and the induced map on spectra sends the unique
point ∗ to p. The result then follows from Theorem 17.7 and Corollary 18.9. �

19.2. Example. For any commutative noetherian ring R, we then deduce the main
result of [Nee11] from the original [Nee92a]: D(R) is costratified.

19.3. Example. Let R be an absolutely flat ring which is not noetherian. Stevenson
[Ste14a, Ste17] proves that R is semi-artinian ⇐⇒ the local-to-global principle for
D(R) holds ⇐⇒ D(R) is stratified. By Proposition 19.1, this is also equivalent
to D(R) being costratified. For example, this applies to the subring of

∏
N Fp con-

sisting of those sequences which are eventually constant; cf. [BHS23, Example 3.25].

19.4. Remark. We can extend Proposition 19.1 to derived categories of schemes.
For a quasi-compact and quasi-separated scheme X, let Dqc(X) denote the de-
rived category of complexes of OX -modules with quasi-coherent cohomology. It is
rigidly-compactly generated and its subcategory of rigid-compact objects Dqc(X)c =
Dperf(X) is the derived category of perfect complexes. A fundamental result con-
cerning the Balmer spectrum is that Spc(Dperf(X)) ∼= X. See [Bal05, Theorem 6.3],
[BKS07, Theorem 9.5], and [Tho97].

19.5. Theorem. Let X be a quasi-compact and quasi-separated scheme which is
topologically weakly noetherian. The derived category Dqc(X) is stratified if and only
if it is costratified.

Proof. One direction is Theorem 7.19. For the converse, suppose that Dqc(X) is
stratified. It satisfies the local-to-global principle by [BHS23, Theorem 4.1] and
hence the colocal-to-global principle by Theorem 6.4. Now take an open affine cover
of X by subsets Vi = Spec(Ai). Each of these affine schemes is also topologically
weakly noetherian (cf. [BHS23, Remark 2.6]) and we have the implications Dqc(X)
is stratified ⇐⇒ each D(Ai) is stratified ([BHS23, Corollary 5.5]) ⇐⇒ each D(Ai)
is costratified (Proposition 19.1) ⇐⇒ Dqc(X) is costratified (Corollary 17.14). �

19.6. Example. If X is noetherian, then it follows from [BHS23, Corollary 5.10] that
Dqc(X) is stratified and hence is also costratified. For such X, the costratification
of Dqc(X) has also been obtained in recent work of Verasdanis [Ver22].

Derived categories of representations.

19.7. Definition. For a finite group G and commutative ring R, we let

Rep(G,R) := Ind Fun(BG,Perf(R))

denote the derived ∞-category of R-linear G-representations, where Ind denotes
ind-completion ([Lur09, Section 5.3.5]), and let

StMod(G,R) := Ind Fun(BG,Perf(R))/Perf(R[G]).
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By construction, both of these categories are rigidly-compactly generated symmetric
monoidal stable ∞-categories; passage to their homotopy categories yields the
corresponding rigidly-compactly generated tt-categories. Moreover, up to idempotent
completion, the category of compact objects in StMod(G,R) is obtained as a finite
localization of the compact objects in Rep(G,R).

19.8. Remark. If R = k is a field, then the category Rep(G, k) is equivalent
to K(Inj k[G]), the homotopy category of unbounded complexes of injective k[G]-
modules, as studied in [BK08], and the category StMod(G, k) agrees with the usual
stable module category.

19.9. Remark. The next result is originally due to Benson–Iyengar–Krause [BIK12,
Theorem 11.6] with the computation of the spectrum due to Benson–Carlson–Rickard
[BCR97]. We will give an alternative proof via our bootstrap theorem, relying on a
result we prove at the end of Section 20 using Galois ascent as in [Mat15].

19.10. Theorem (Benson–Iyengar–Krause). For any finite group G and field k, the
category Rep(G, k) is costratified with spectrum Spc(Rep(G, k)c) ∼= ProjH∗(G; k).

Proof. By Chouinard’s theorem, as given in [BIK11a, Proposition 9.6], the functor

ResGE : Rep(G, k) −→
∏
E≤G

Rep(E, k)

given by the product of restriction functors is a conservative geometric functor.
Moreover, the target category

∏
E≤G Rep(E, k) is costratified by Theorem 20.14

below and Example 18.16, and Rep(G, k) is stratified by [BIK11a, Theorem 10.1].
It follows from Corollary 17.4 that Rep(G, k) is costratified as well. �

19.11. Remark. The forthcoming [BBI+23] will establish stratification of Rep(G,R)
for all finite groups G and all noetherian commutative rings R, and then deduce
costratification via the bootstrap theorem. The computation of Spc(Rep(G,R)c)
for any commutative ring R is due to Lau [Lau21].

19.12. Remark. There is an enlargement of the category Rep(G,R) given by the
derived category of permutation modules DPerm(G,R), for any (pro)finite group G
and commutative ring R. For the construction of this category as well as its relation
to Artin motives and Mackey functors, we refer to [BG21].

19.13. Theorem. The derived category of permutation modules DPerm(G, k) is
costratified for any finite group G and field k of characteristic p dividing the order
of G.

Proof. In [BG22], the authors construct geometric functors

Ψ̌H : DPerm(G, k)→ Rep(WG(H), k)

indexed by all conjugacy classes of p-subgroups H of G, where WG(H) denotes the
Weyl group of H in G. In [BG22, Theorem 5.12], they prove that these functors
are jointly conservative, while [BG22, Theorem 8.11] establishes stratification for
DPerm(G, k). It then follows from our bootstrap theorem Corollary 17.4 together
with Theorem 19.10 that DPerm(G, k) is costratified as well. �
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20. Homotopical examples

Galois descent and ascent.

20.1. Definition. Let G be a compact Lie group and consider a morphism f : A→ B
of commutative ring spectra, where B is equipped with an A-linear G-action.
Following Rognes [Rog08], the map f is a Galois extension with Galois group G (or
simply a G-Galois extension) if it satisfies the following two conditions:

(a) the canonical map A→ BhG is an equivalence;
(b) the canonical map B ⊗A B → hom(G+, B) is an equivalence.

A Galois extension f : A → B is said to be faithful if f∗ : Mod(A) → Mod(B) is
conservative.

20.2. Remark. In forthcoming joint work with Naumann and Pol [BCH+23b], we
investigate general descent properties for stratification along conservative geometric
functors. Combined with our bootstrap theorem, we obtain Galois descent for
costratification:

20.3. Proposition (Galois descent). Let f : A→ B be a faithful G-Galois extension
for G a compact Lie group. If Mod(B) is costratified, then so is Mod(A).

Proof. Since Mod(B) is costratified, it is also stratified by Theorem 7.19. It then
follows from Galois descent for stratification, proved in [BCH+23b], that Mod(A) is
also stratified. The bootstrap theorem (Corollary 17.4) thus gives the claim. �

20.4. Example. There are numerous examples that this result applies to. For example,
the complexification map KO → KU from real K-theory to complex K-theory is a
faithful C2-Galois extension [Rog08, Proposition 5.3.1] and Mod(KU) is costratified
by Theorem 18.15. Hence, costratification descends, and we deduce that Mod(KO)
is costratified. Similarly, if En denotes the Lubin–Tate spectrum, then Mod(En)
is costratified by Theorem 18.15 (see Remark 20.16 below) and we deduce from
[Rog08, Theorem 5.4.4] and [HMS17, Proposition 3.6] that Mod(EhGn ) is costratified
for any finite subgroup G ⊆ Gn of the Morava stabilizer group.

20.5. Remark. Under stronger conditions on the Galois group, there is a converse to
Proposition 20.3 which we establish as Proposition 20.12 below. The proof follows
the strategy used in [Bar22] to establish the analogous result for stratification. This
in turn was inspired by ideas developed in [Mat15]. First we need some general
lemmas.

20.6. Notation. Let T be a rigidly-compactly generated tt-category and write
Colocid(T) for the class of colocalizing coideals of T. Note that for any functor
F : T → S, we have a function

Colocid(T)
F−→ Colocid(S)

which sends a colocalizing coideal C to the colocalizing coideal generated by F (C).

20.7. Remark. If G : S→ R is a functor with the property that colocalizing coideals
of R pull back to colocalizing coideals of S, then G(Colocid〈E〉) ⊆ Colocid〈G(E)〉
for any collection of objects E ⊆ S. It follows that for any functor F : T → S, the
diagram

Colocid(T) Colocid(S) Colocid(R)

G◦F

F G
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commutes.

20.8. Example. Let f∗ : T → S be a geometric functor. The isomorphism (13.6)
implies that colocaling coideals pull back along the product-preserving exact functor
f ! : T → S. If f∗ is conservative, then the same is true for the functor f∗ : S → T.
Indeed, given a colocalizing coideal C of T, we have

hom(S, f−1
∗ (C)) = hom(Loc〈f∗(Tc)〉, f−1

∗ (C)) (Remark 14.5)

⊆ Coloc〈hom(f∗(Tc), f−1
∗ (C))〉 (2.8)

⊆ Coloc〈f−1
∗ (C)〉 = f−1

∗ (C)

where the last inclusion uses the isomorphism f∗hom(f∗(a), b) ' hom(a, f∗(b)) from
[BDS16, (2.17)].

20.9. Lemma. Let f∗ : T → S be a weakly descendable (Definition 13.23) geometric
functor whose right adjoint f∗ is conservative. Then the composite

Colocid(T) Colocid(S) Colocid(T)
f ! f∗

is the identity.

Proof. Since f∗ is conservative, Remark 20.7 and Example 20.8 imply that the above
composite sends a colocalizing coideal D of T to

Colocid〈f∗f !(D)〉 = Colocid〈hom(f∗(1S),D)〉.
Certainly Colocid〈hom(f∗(1S),D)〉 ⊆ D. On the other hand, if f∗ is weakly de-
scendable, then

D = hom(1T,D) ⊆ hom(Locid〈f∗(1S)〉,D) ⊆ Colocid〈hom(f∗(1S),D)〉
by (2.8) and the proof is complete. �

20.10. Example. A morphism f : A → B of commutative ring spectra is called
descendable if thickid〈B〉 = Mod(A) in Mod(A). Then the base-change functor
f∗ : Mod(A) → Mod(B) is weakly descendable in the sense of Definition 13.23
and its right adjoint is conservative. Hence Lemma 20.9 applies. For example,
a faithful G-Galois extension f : A → B is descendable. This follows from the
fact that B is dualizable as an A-module (by [Rog08, Proposition 6.2.1]). Since
B ⊗ − is conservative on Mod(A), B ⊗ fsupp(B) = 0 implies fsupp(B) = 0 so that
supp(B) = Spc(Mod(A)c); hence A ∈ thickid〈B〉 follows from the classification of
thick ideals of compact objects. A more high-powered argument is given in [Mat16,
Theorem 3.38].

20.11. Lemma. Suppose f : A → B is a faithful G-Galois extension with G a
connected compact Lie group. Then f ! induces a bijection

f ! : Colocid(Mod(A))
∼=−→ Colocid(Mod(B)).

Proof. The following pushout square of commutative ring spectra induces a commu-
tative diagram of forgetful functors, as displayed on the right:

A B Mod(B ⊗A B) Mod(B)

B B ⊗A B Mod(B) Mod(A).

f

f

g2

g1 (g2)∗

f∗

(g1)∗

f∗
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The latter square is horizontally right adjointable, i.e., the corresponding Beck–
Chevalley transformation (g2)∗ ◦ g!

1 → f ! ◦ f∗ is a natural equivalence. Hence the
following diagram is commutative

Mod(B) Mod(B ⊗A B)

Mod(A) Mod(B).

g!1

f∗ (g2)∗

f !

By Remark 20.7 and Example 20.8, it induces a commutative square

Colocid(Mod(B)) Colocid(Mod(B ⊗A B))

Colocid(Mod(A)) Colocid(Mod(B)).

g!1

f∗ (g2)∗

f !

The morphism f is descendable (Example 20.10) and consequently g1 and g2 are
descendable, too. Hence, by Lemma 20.9, the maps f ! and g!

1 are (split) injective
while f∗ and (g2)∗ are (split) surjective. The assumption on G guarantees that the
canonical morphism h : B ⊗A B → B is descendable as well (see [Mat16, Proposi-
tion 3.36]), so h∗ is (split) surjective using Lemma 20.9 once more. Furthermore,
h ◦ g2 ' id on B, so (g2)∗ ◦ h∗ = id as maps on Colocid(Mod(B)). This shows
that h∗ is also injective, hence both (g2)∗ and h∗ are in fact bijections. It follows
from the commutative square above that f∗ is a bijection as well. �

20.12. Proposition (Galois ascent). Let f : A→ B be a faithful G-Galois extension
with G a connected compact Lie group. Then f∗ induces a homeomorphism

ϕ : Spc(Mod(B)c)
∼=−→ Spc(Mod(A)c).

Moreover, if Mod(A) is costratified, then so is Mod(B).

Proof. The statement about the Balmer spectra is part of [BCH+23b], so assume
that Mod(A) is costratified. We have a diagram

Colocid(Mod(A)) Colocid(Mod(B))

P(Spc(Mod(A)c)) P(Spc(Mod(B)c)),

f !

Cosupp ∼= Cosupp

ϕ−1

∼=

which commutes by Corollary 14.19 and Theorem 7.19. The top horizontal map
is a bijection by Lemma 20.9, hence so is the right vertical map. In other words,
Mod(B) is costratified. �

20.13. Remark. As a consequence we can complete our proof of Theorem 19.10 by
giving the following alternative proof of [BIK12, Theorem 11.6]:

20.14. Theorem (Benson–Iyengar–Krause). Let E be an elementary abelian p-group
and k a field of characteristic p. Then the category Rep(E, k) is costratified, with
spectrum Spc(Rep(E, k)c) ∼= ProjH∗(E; k).
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Proof. Let E be an elementary abelian subgroup of rank r ≥ 1. By [Mat15,
Proposition 3.9], the inclusion E ∼= (Z/p)× ⊆ (S1)×r =: T induces a faithful
T-Galois extension f : khT → khE . Note that

π∗k
hT ∼= k[x1, . . . , xr]

with all generators xi in degree 2, so Mod(khT) is an affine weakly regular tt-
category. Therefore, Mod(khT) is costratified by Theorem 18.15. Since f satisfies
the assumptions of Proposition 20.12, Galois ascent implies that Mod(khE) is
costratified as well. Finally, we observe that there is an equivalence of tt-categories

Mod(khE) ' Rep(E, k),

so Rep(E, k) is costratified, too. �

Chromatic homotopy theory.

20.15. Definition. For a fixed prime number p, let S denote the p-local stable
homotopy category, let En denote the nth Lubin–Tate spectrum, and let SEn

denote the category of En-local spectra. Recall that En is a commutative ring
spectrum Bousfield equivalent to the nth Johnson–Wilson spectrum E(n). For
further background material on chromatic homotopy theory, we refer the interested
reader to [BB19].

20.16. Remark. We write Ln : S→ SEn
for the corresponding Bousfield localization

functor. This is a smashing localization, and as such, we have SEn
' Mod(LnS

0)
and the localization Ln : S→ Mod(LnS

0) is given by base change along S0 → LnS
0.

20.17. Remark. We have

π∗(En) ∼= W (Fpn)[[u1, . . . , un]][u±1]

where |ui| = 0 and |u| = −2. In particular, Mod(En) is affine weakly regular
(Definition 18.10) and hence Mod(En) is costratified by Theorem 18.15.

20.18. Notation. For each 0 ≤ h ≤ n, we define

Ph :=
{
x ∈ ScEn

∣∣K(h)∗(x) = 0
}
,

a prime ideal of ScEn
. The following is a restatement of [HS99, Theorem 6.9], as

given in [BHN22, Proposition 3.5].

20.19. Theorem (Hovey–Strickland). The spectrum

Spc(ScEn
) = Pn − · · · − P1 − P0

is a local irreducible space consisting of n+ 1 points, where closure goes to the left:
{Ph} =

{
Pk
∣∣h ≤ k ≤ n}.

20.20. Remark. The following result recovers the classification of colocalizing sub-
categories of SEn given in [HS99, Theorem 6.14].

20.21. Theorem (Hovey–Strickland). The category of En-local spectra SEn
is cos-

tratified.

Proof. Consider the geometric functor f∗ : SEn
→ Mod(En) given by base-change. It

is a consequence of the Hopkins–Ravenel smash product theorem [Rav92, Chapter 8]
that this functor is conservative (see also [Mat16, Prop. 3.18 and Thm. 4.17]).
Moreover, Mod(En) is costratified (Remark 20.17) and SEn is stratified by [BHS23,
Theorem 10.14]. By Corollary 17.4, we conclude that SEn

is costratified. �
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20.22. Remark (Chromatic cosupport). In [BHS23, Proposition 10.12], we established
an isomorphism gPk

'MkS
0 between the Balmer–Favi idempotent and the fiber of

LkS
0 → Lk−1S

0. It follows that

Cosupp(t) = {Pk ∈ Spc(ScE(n)) | hom(gPk
, t) 6= 0}

= {k ∈ {0, . . . , n} | hom(MkS
0, t) 6= 0}.

As recalled in Example 3.6, Hovey–Strickland define the chromatic cosupport by

co-supp(t) =
{
k ∈ {0, . . . , n}

∣∣ hom(K(k), t) 6= 0
}
.

We claim that co-supp(t) = Cosupp(t) for all t ∈ SEn . Indeed, suppose that
hom(MkS

0, t) = 0. Then

hom(K(k), hom(MkS
0, t)) ' hom(K(k)⊗MkS

0, t) = 0

but K(k) ⊗MkS
0 ' MkK(k) ' K(k), so hom(K(k), t) = 0. Conversely, suppose

that hom(K(k), t) = 0. The collection of Y ∈ SEn for which hom(Y, t) = 0 is a
localizing subcategory which contains K(k), and hence also contains MkS

0 by [HS99,
Proposition 6.17]. Therefore, hom(MkS

0, t) = 0 as well. Therefore the Balmer–
Favi notion of cosupport agrees with the usual version of chromatic cosupport.
Alternatively, one can prove this using Corollary 11.10 and [HS99, Theorem 6.14].

Cochain algebras.

20.23. Definition. For a space X, we let C∗(X; Fp) denote the function spectrum
F (Σ∞+ X,Fp).

20.24. Remark. In [BCHV22] we investigated when Mod(C∗(X; Fp)) is stratified
in the sense of BIK. This used a certain category E(X) associated to X, whose
objects are (isomorphism classes of) pairs (V, φ) consisting of an elementary abelian
p-group E and a finite morphism φ : H∗(X; Fp)→ H∗(BE; Fp) of unstable algebras
over the dual Steenrod algebra. We showed that these maps φ lift to maps on the
level of cochains, and therefore we have a map of commutative ring spectra

(20.25) ρX : C∗(X; Fp)→
∏

(E,φ)∈E(X)

C∗(BE; Fp).

20.26. Definition. A p-good6 connected topological space X with noetherian mod p
cohomology is said to satisfy Chouinard’s condition if induction and coinduction
along the map (20.25) are conservative.

20.27. Theorem. Let X be a p-good connected space with noetherian mod p coho-
mology. Then the following are equivalent:

(a) Mod(C∗(X; Fp)) is stratified.
(b) Mod(C∗(X; Fp)) is costratified.
(c) X satisfies Chouinard’s condition.

If any of these holds, then Spc(Mod(C∗(X; Fp))c) ∼= Spech(H∗(X; Fp)).

Proof. We have that (a) is equivalent to (c) by [BCHV22, Theorem 5.12] and (b)
implies (a) by Theorem 7.19. These also imply claim (b). Assume then that (a),
and hence (c), hold and consider the base change functor

f∗ : Mod(C∗(X; Fp))→
∏

(E,φ)∈E(X)

Mod(C∗(BE; Fp)).

6in the sense of Bousfield–Kan [BK72].
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Since the product is finite (which is a consequence of [Rec84, p. 194]), the target
category is costratified by [BIK12, Theorem 11.6] and Example 18.16. Moreover,
f∗ is a conservative geometric functor and Mod(C∗(X; Fp)) is stratified. Now apply
Corollary 17.4. �

20.28. Example. Let X = S3〈3〉 denote the 3-connected cover of S3. In this case,
there is a single non-trivial object in the category E(S3〈3〉), namely the pair coming
from the composite BZ/p→ BS1 → S3〈3〉. In [BCHV19, Example 5.16] it is shown
that

Mod(C∗(S3〈3〉; Fp))→ Mod(C∗(BZ/p; Fp))

satisfies Chouinard’s condition. We deduce that Mod(C∗(S3〈3〉; Fp)) is costratified.
Note that in our previous work, we were unable to prove this; see [BCHV19,
Section 4.5] and the discussion therein.

20.29. Example. If X is a noetherian H-space, then X satisfies Chouniard’s condition
by [BCHV19, Theorem 5.15]. Therefore, Mod(C∗(X; Fp)) is costratified.

Equivariant homotopy theory.

20.30. Notation. Let SpG denote the ∞-category of genuine G-spectra. For a
commutative algebra E ∈ CAlg(SpG), we write ModSpG

(E) for the ∞-category of
modules and DG(E) for the associated homotopy category.

20.31. Theorem. Let G be a finite group and let E ∈ CAlg(SpG). Suppose that the
following conditions hold for all subgroups H ≤ G :

(a) Spc(D(ΦHE)c) is noetherian; and
(b) D(ΦHE) is costratified.

Then DG(E) is costratified and Spc(DG(E)c) is noetherian.

Proof. We first observe that by Theorem 7.19, condition (b) implies that each
D(ΦHE) is stratified. Then [BCH+23a, Theorem 3.33] shows that DG(E) is stratified
with noetherian spectrum Spc(DG(E)c). In order to show that it is costratified, we
use the bootstrap theorem (Corollary 17.4). Indeed, let

Φ: DG(E)
{ΦH}H−−−−−→

∏
H≤G

D(ΦHE)

denote the product of geometric fixed point functors. By [BCH+23a, Proposi-
tion 3.25], Φ is a conservative geometric functor. By assumption, each D(ΦHE) is
costratified, and hence so is the product (Example 18.16) and we have already seen
that DG(E) is stratified. Now apply Corollary 17.4. �

20.32. Remark. The generalized Quillen stratification theorem proven in [BCH+23a,
Theorem 4.3] describes the underlying set of Spc(DG(E)c) in terms of the spectra of
the geometric fixed points D(ΦHE) along with the Weyl group actions.

20.33. Remark. Let F denote a family of subgroups of G. Recall that E ∈ CAlg(SpG)
is F-nilpotent if E is in the thick ideal of SpG generated by

{
G/H+

∣∣H ∈ F }. In

this case, we have ΦHE = 0 whenever E 6∈ F by [MNN17, Theorem 6.41], and in
particular it suffices to check the conditions of Theorem 20.31 for H ∈ F . There
is always a minimal such family F known as the derived defect base of E. See
[MNN19] for a computation of the derived defect base of many equivariant spectra.
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20.34. Example. There is a canonical geometric functor trivG : Sp→ SpG that sends
a spectrum to the corresponding G-spectrum with trivial G-action. See [PSW22,
Section 3] for further details. For E ∈ CAlg(Sp), let EG := trivG E ∈ CAlg(SpG)
denote the corresponding commutative algebra in genuine G-spectra. For each
H ≤ G, we have that ΦHEG ' E. In particular, Theorem 20.31 implies the
following:

20.35. Corollary. Let E ∈ CAlg(Sp) be a commutative ring spectrum such that
Spc(D(E)c) is noetherian. If D(E) is costratified, then DG(EG) is costratified for
any finite group G.

20.36. Corollary. For any finite group G and discrete commutative ring R, the
category of derived Mackey functors DG(HRG) is costratified.

Proof. Using Example 19.2, we can apply Corollary 20.35 to E = HR. �

20.37. Remark. By [PSW22, Proposition 4.9] and [BHS23, Proposition 14.3], there
is an equivalence of symmetric monoidal ∞-categories

MackG(E) ' ModSpG
(EG)

where MackG(E) denotes Barwick’s category of spectral G-Mackey functors with
E-coefficients [Bar17]. In particular, the previous result shows that HR-valued
spectral Mackey functors are costratified for any discrete noetherian commutative
ring R. For R = Z, the corresponding spectrum was determined completely in
[PSW22].

20.38. Example. Taking E = LnS
0 (Remark 20.16) we obtain the category SHG,En

:=
DG(EG) of En-local spectral Mackey functors; see [BHS23, Example 13.15]. Equiva-
lently, this is the category of spectral Mackey functors with coefficients in SEn

; see
[BHS23, Example 14.4]. As explained in loc. cit., the underlying set of the spectrum
of SHG,En

is known, thanks to Theorem 20.19.

20.39. Corollary. For any finite group G, prime number p, and 0 ≤ n < ∞, the
category of En-local spectral Mackey functors SHG,En is costratified.

Proof. This follows from Corollary 20.35 with E = LnS
0, using Theorem 20.21. �

20.40. Remark. Given a non-equivariant spectrum E ∈ CAlg(Sp), there is another
way to produce an equivariant spectrum, namely by taking the associated Borel
equivariant spectrum bGE ∈ CAlg(SpG); see [MNN17, Section 6.3].

20.41. Theorem. For any finite group G, the category DG(bGEn) is costratified by
Spc(DG(bGEn)c) ∼= Spec(E0

n(BG)).

Proof. It is shown in [BCH+23a, Theorem 6.14] that ΦH(bGEn) is nonzero only
when H is an abelian p-group of rank at most n, in which case its homotopy groups
are a regular noetherian even-periodic ring. In particular, each D(ΦH(bGEn)) is cos-
tratified with noetherian spectrum by Theorem 18.15. By Theorem 20.31, DG(bGEn)
is costratified by Spc(DG(bGEn)c), which is homeomorphic to Spec(E0(BG)) by
[BCH+23a, Lemma 7.3]. �

20.42. Remark. Our next example comes from the category of modules associated to
equivariant complex K-theory KUG for a finite group G; see [Seg68]. We let R(G)
denote the complex representation ring associated to G.
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20.43. Theorem. For any finite group G, the category DG(KUG) is costratified by
Spc(DG(KUG)c) ∼= Spec(R(G)).

Proof. This is similar to the previous proof. It is shown in [BCH+23a, Lemma 8.6]
that ΦH(KUG) is nonzero only when H is a cyclic subgroup of G, in which case its
homotopy groups are a regular noetherian even-periodic ring. In particular, each
D(ΦH(KUG)) is costratified with noetherian spectrum by Theorem 18.15. By The-
orem 20.31, DG(KUG) is costratified by Spc(DG(KUG)c), which is homeomorphic
to Spec(R(G)) by [BCH+23a, Lemma 8.11]. �

20.44. Remark. For a compact Lie group G, let SHG,Q denote the stable homotopy
category of rational G-equivariant spectra. This is a rigidly-compactly generated
tt-category which is stratified; see [Gre19] or [BHS23, Theorem 12.22]. Our final
goal is to prove that it is costratified.

20.45. Remark. Recall that, by definition, L is cotoral in K if L is a normal subgroup
of K and K/L is a torus. Moreover, for each H ≤ G we have geometric fixed point
functors

ΦH : SHG,Q → SHQ

which are jointly conservative (for example, [Sch18, Proposition 3.3.10]). Since the
spectrum of SHQ ' D(Q) is a single point, we obtain a prime ideal pH ∈ Spc(SHG,Q)
for each H ≤ G. Up to conjugacy, these turn out to be all the prime ideals:

20.46. Theorem (Greenlees). Let G be a compact Lie group. Then as a set

Spc(SHc
G,Q) =

{
pH
∣∣ (H) conjugacy class of closed subgroups in G

}
.

The specialization order is determined by cotoral inclusions:

pK ⊆ pH if and only if K is conjugate to a subgroup cotoral in H.

The topology on Spc(SHc
G,Q) is the “Zariski topology on the f -topology” of [Gre98].

20.47. Remark. The space Spc(SHc
G,Q) is weakly noetherian by [BHS23, Lem. 12.12].

20.48. Theorem. For any compact Lie group G, the category of rational G-spectra
is costratified.

Proof. We apply bootstrap to the collection of geometric fixed point functors
ΦH : SHG,Q → SHQ ' D(Q). The target category is costratified (Corollary 18.9),
while SHG,Q is stratified (Remark 20.44). Therefore, by Theorem 17.7 and Theo-
rem 20.46 we deduce that Spc(SHG,Q) is costratified. �

21. Open questions

We collect here some questions we do not know the answer to.

21.1. Question. Does the detection property always hold? (See Remark 6.6.)

21.2. Question. Does stratification imply costratification? (See Remark 7.22.)

21.3. Question. What is the cosupport of gP? More precisely, in what generality is
it true that Cosupp(gP) = gen(P)? (See Lemma 4.26.)

21.4. Question. Does the (co)detection property always hold for weak (co)rings?

21.5. Question. A rigidly-compactly generated tt-category T satisfies the telescope
conjecture if it is stratified with generically noetherian spectrum; cf. [BHS23, Theo-
rem 9.11]. Can this result be improved if T is costratified?
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21.6. Question. Does there exist a geometric functor f∗ : T → S between rigidly-
compactly generated tt-categories such that f∗ is conservative but f ! is not? (See
Corollary 14.24 and the results cited in its proof.)

21.7. Question. Is it true that if f∗ : T → S is any geometric functor and S satisfies
the local-to-global principle, then T satisfies the local-to-global principle for objects
t ∈ T with Supp(t) ⊆ imϕ? It suffices to prove it under the additional assumption
that f∗ is conservative. (See Section 15.)

21.8. Question. Does the local-to-global principle hold for an object t ∈ T if its
support Supp(t) is noetherian?

21.9. Question. Is there a characterization of when the local-to-global principle
holds purely in terms of the topology of Spc(Tc)?

21.10. Question. Does stratification always descend along a conservative geometric
functor f∗ : T → S between rigidly-compactly generated tt-categories? If so, our
bootstrap theorem (Corollary 17.4) implies that costratification always descends as
well.
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and cohomology on schemes. Ann. Sci. École Norm. Sup. (4), 30(1):1–39, 1997.
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