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ABSTRACT. We calculate the group k2 of exotic elements in the K(2)-local
Picard group at the prime 2 and find it is a group of order 2° isomorphic to
(Z/8)% x (Z/2)3. In order to do this we must define and exploit a variety of
different ways of constructing elements in the Picard group, and this requires
a significant exploration of the theory. The most innovative technique, which
so far has worked best at the prime 2, is the use of a J-homomorphism from
the group of real representations of finite quotients of the Morava stabilizer
group to the K(n)-local Picard group.

CONTENTS

Introduction

Part I. K(n)-Local Results for General n and p

The K (n)-local category

Orientations and Filtrations

The G}-orientable elements of the Picard group
The J-construction

Truncating spectral sequences

Part II. K(2)-Local Computations at p = 2

The subgroup filtration of ko
The E"C:2-orientable elements of the exotic Picard group
Duality Resolutions

An upper bound for the Gyg-orientable elements

The Gg-orientable elements of the Picard group

Picard elements detected by E"“4s and the calculation of ks

References

Date: December 16, 2022.

THE EXOTIC K(2)-LOCAL PICARD GROUP AT THE PRIME 2

17
28
33

36
36
40
46
48
54
68
79



2 BEAUDRY, BOBKOVA, GOERSS, HENN, PHAM, AND STOJANOSKA
1. INTRODUCTION

The focus of this paper is a computation and analysis of the subgroup x, of
exotic elements in the Picard group of the K(n)-local stable homotopy category
at a prime p. We give quite a few structural results and outline some significant
techniques, all culminating in the main result Theorem 12.28, an isomorphism at
n=p=2

Ko = (Z/8)% x (Z/2)*.

We immediately note that this isomorphism, in itself, gives little insight into the
importance of this group, where the elements arise, or what they mean. In fact, we
might be better served writing

Ko 2 [Z/8 % (Z/2)?] x Z/2 x Z/8

reflecting the fact that the elements in this group arise in three different ways and
reflect three fundamentally different aspects of the K(2)-local category. Making
this clear and precise requires some explanation, and we begin there.

Let (C,®) be a symmetric monoidal category with unit object I. An object
X € C is invertible if there exists an object Y and an isomorphism X ® Y = I. If
the collection of isomorphism classes of invertible objects is a set, then ® defines
a group structure on this set. This basic invariant of the category C is the Picard
group Pic(C).

We are particularly interested in examples from stable homotopy theory. If we
consider the stable homotopy category of spectra, the answer turns out to be simple,
even if the proof is not: the only invertible spectra are the sphere spectra S™, n € Z
and the map Z — Pic(S) sending n to S™ is an isomorphism. See [HMS94].

However, it is an insight due to Mike Hopkins [Str92] that we don’t need to
stop there and that, in fact, we can get a great deal of information if we pass to
the localized stable homotopy categories which arise in chromatic stable homotopy
theory. The basic example is then K (n)-local spectra, where K(n) is the nth
Morava K-theory at a fixed prime p.

Thus, the aim of this paper is to study Pic,,, the Picard group of the K(n)-local
stable homotopy category at a fixed prime p. The first observation is that the
K (n)-local category as a whole and its Picard group in particular can be accessed
using Morava E-theory.

We fix a formal group law I';, of height n over the field F,» and let £ = E,, =
E(Fp»,T'y,) be the associated Lubin-Tate or Morava E-theory. (For a few more
details, see Section 2.) For a spectrum X we then define

E.X = W*LK(n)(E A\ X)

This graded E,-module has a continuous action by the Morava stabilizer group
Grn = Aut(Fp»,I'y,), which gives it the structure of a Morava module in the sense
of [BB20, Definition 5.2.30]. The completed tensor product over E, endows the
category of Morava modules with a symmetric monoidal structure with unit E, S°.
Thus, the category of Morava modules also has a Picard group, which we write
(Picy)alg. It consists of isomorphism classes of Morava modules which are free of
rank 1 over E,. A basic fact from the foundational paper [HMS94] of Hopkins,
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Mahowald, and Sadofsky says that a K(n)-local spectrum X is in Pic,, if and only
if £, X is in (Picy,)ag. Thus we obtain a group homomorphism

e : Pic,, = (Picp)alg -

Calculating the target of this map is difficult, but fundamentally an algebraic prob-
lem, and can be reduced to questions in group cohomology.

If p is large with respect to n the map ¢ is an isomorphism; for example, if n = 2,
then we need p > 3. This is a reflection of the fact that in those cases the homotopy
theory of K (n)-local spectra is algebraic, in a sense which can be made completely
precise. See [Pst22, Hea22, Pst21] for the state of the art. If p is small, however,
very little is known. For example, € is onto for n = 1 by [HMS94] and for n = 2
and p > 3 by [Lad13] and [Kar10], but we don’t yet know if this is true in any other
case, including n = p = 2.

This paper is focused on the group of exotic invertible K(n)-local spectra, de-
noted by k,, and defined as the kernel of e. Thus X € k,, if and only if

E.X>FES'=FE,

as Morava modules. Again very little is known about k,. If p = 2, k1 = Z/2 by
[HMS94]. If p = 3, then ko = Z/3 x Z/3 by [GHMRI15]. In earlier work [KS04],
Kamiya and Shimomura had shown k5 # 0 at p = 3, and had given an upper bound
as well. For all primes p, the group s,—1 contains non-trivial elements of order p,
by [BGHS22], and if p = 2 then &,, # 0 by [HLS21], who also produce elements of
2-power order which grows with n. General considerations using [HS99a] and the
vanishing line results of [DH04] show that there is an integer N so that p™Vk,, = 0,
but we have no good bounds on N. It is possible to conjecture that k, is finite,
just as it is possible to conjecture that 7. L g (,,)S 9is topologically finitely generated
in each degree. Both conjectures could be deduced from finiteness results for the
cohomology of the group G,,, which remains inaccessible at this point.

Our basic technique for studying k, uses the subgroup structure of G,. By
Devinatz, Goerss, Hopkins, and Miller, the group G, acts continuously on the
spectrum E through &..-ring maps; thus if H C G, is a closed subgroup, the
homotopy fixed point spectrum E* is a ring spectrum with an associated category
of modules, which has a Picard group Pic(E"?) and we get a homomorphism
Pic,, — Pic(E"). We would like to define k(H) C &, to be those elements in the
kernel of this map; that is, those X € k,, so that there is an equivalence E"¥ ~
EM A X of EM-modules. For various reasons, we need a more rigid definition of
trivialization, which we call an H-orientation; see Definition 3.3. However, in every
case we consider the weaker definition will suffice. See Lemma 3.8 and Example 3.9.
In any case, if Hy C Hs C G, is a sequence of subgroups will get inclusions
H(HQ) g H(Hl).

At n =2 and p = 2 we will focus on two subgroups of Go. The first of these is Gs,
a maximal finite subgroup with the property that E"s is the K(2)-localization of
the Hopkins-Miller spectrum of topological modular forms. The other is G defined
using the determinant map det : G,, — Z,. See Definition 4.1. Namely, if u C Z}
is the finite subgroup, then we get a map

AT T Ju T,

Gn b
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and GL C G, is the kernel of this map. This gives a filtration of ko at p = 2
(1.1) K2 2 K(Gag) 2 K(G3)

and then in Theorem 8.13, Theorem 11.17, and Theorem 12.21 we compute the
filtration quotients as

k(G3) 2 Z/8 @ (Z/2)?
(1.2) k(Gug)/K(G3) = Z,/2
/QQ/K,(G48) = Z/S

We then show that this filtration splits in Corollary 11.23 and Theorem 12.28. To
help with this, we compare this subgroup filtration with the descent filtration, the
one arising from the Adams-Novikov spectral sequence. See Definition 3.27 for
the details on this filtration. We remark immediately that this splitting is by no
means canonical and our methods give no reason to expect anything comparable
at a general height n. A roadmap and a more detailed synopsis is given after
Definition 7.3, near the beginning of Part II and after we have all the definitions in
place.

Echoing the three-part division of ko displayed in (1.2), we have three ways of
producing exotic elements in the Picard group. The first is a twisting construction,
which appeared in [GHMR15] and was studied in some detail in [Wes17]. Let
A C WthG}L be in the kernel of the Hurewicz map to EOEhG}L. Then we can
form the multiplicative subgroup 1 + A C (WOEhGi)X. Note the quotient group
Gn/GL 27, acts on 1+ A. Now if « € 1+ A and 9 € Z, is a topological generator
we can form a fiber sequence

X(a) — EhCh Y7 phe),
In Theorem 4.19 we prove this assignment « — X («) defines an isomorphism
HY(Zp, 1+ A) =2 k(G)).

We then implement this isomorphism at n = 2 and p = 2. The group 7TOEh(G’é was
computed in [BGH22; the difficulty here is to compute the action of Go/G3 on
this group. It turns out to be trivial, and the final calculation x(G3}) is given in
Theorem 8.13.

The second construction also uses the determinant map. At the prime 2, u =
{£1} C ZJ is a cyclic group of order 2 and we have a homomorphism x : G,, — Cs
defined as the composition

det

Gp ——=725 ——=75 /(1 +4Z2) = p = Cos.

If V is a virtual real representation of Cy with one-point compactification SV, G,,
acts on SV through this quotient, Giving £ A S the diagonal G,-action, we can
form

J(V) = (EASYV)hCn,
If V has virtual dimension zero and Cy acts trivially on HySY = Z, then J(V) €
Kn. Now let o be the sign representation of Cy. We show in Theorem 11.17 and
Theorem 11.21 that if n =2

J(QO’ — 2) S H(G4g)
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is an element of order 2 and generates the quotient group r(Gas)/k(G3) = Z/2.
As a preliminary to all this, we devote Section 5 to discussing the general cate-
gorical properties of this J-construction. Before getting this far, we need to show
k(G4g)/Kk(G}) is no larger than Z/2. This requires a separate suite of ideas and
uses the topological resolutions pioneered in [GHMRO05] and made explicit at p = 2
in [BG18]. So far these techniques are very special to height 2.

Note that we might conjecture that J(20 — 2) is a non-trivial element of &, for
all n at p = 2. This is true for n = 1 by a simple calculation and here we show
it at n = 2. Tt is possible to prove this for n odd using [HLS21] and the fact that
x has a splitting. For larger even n, this would follow if we could show a certain
cohomology class in H3(G,,, E») was non-zero. The precise class at n = 2 is given
in Proposition 10.9. This is quite plausible, but we make no attempt to prove it
here.

The third technique uses the fact that the K (n)-local category has two dualities:
Spanier-Whitehead duality D,, and Gross-Hopkins duality I,,. These are related by
the formula

I,X =D, XA,

where I,, is the Gross-Hopkins dual of the sphere. By [HG94b] and [Str00] we have
an equation
I, = 2" ""S(det) A P

where S(det) is a determinant sphere and P € k. See (12.17) and [BBGS22]. The
technique then is to find an X so that we know D, X and I, X, and then see that
the equation for I, forces P # 0. This is by now a classical idea, and has been
used in [Beh06, GHMR15, BGHS22, HLS21], and probably elsewhere. In our case
we take X = E"G4s where we can use [Pha2l, MR99, Stol2, Stol4] for I, EhCss
and [Bob20, BGHS22] for Dy E"@4#. Then not only is 0 # P € ky, but P generates
ko/K(Gas) = Z /8. See Theorem 12.21.

There is a drawback to this last technique. The spectrum I,, is the Brown-
Comenetz dual of the nth monochromatic layer of the sphere and thus is a product
of localization theory and Brown Representability. That we know FE, I, at all relies
on a deep result in the algebraic geometry of formal groups: the identification of
the dualizing sheaf of Lubin-Tate space, as in [HG94a]. This is all very indirect,
and gives no detailed information on the homotopy type of I,, or, by extension, of
the spectrum P. We only know that P is non-trivial because of its effects on much
larger spectra. It is as if we’ve observed the perturbations of the orbit of Uranus,
but have not yet discovered Pluto. Put another way, Gross-Hopkins duality remains
a tantalizing mystery when the prime is low with respect to the height. For further
thoughts on P, see Remark 12.24.
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Notation. This is a long paper, and concepts defined one place can reappear in
others, often many pages distant. We collect here some of the less standard items,
along with references to where they are defined.

Subgroups and cohomology classes of the Morava stabilizer group G,,.

1) det: G, — Z,; is defined in Definition 4.1

2) (:G,, = Z, is defined in Definition 4.2

3) x:G,, — Z/2 is defined in Definition 4.4

4) SG,, G., and G¥ are the kernels of det, ¢ and  respectively

5) ¢ € HY(G,, Ey) and X € H?(G,, Ey) are defined in Definition 4.6

6) Gus, Go4 and other finite subgroups of Gy are defined in Definition 7.1
7) e and k in H*(G3, Ey) appear in Figure 1

) k(K) and orientations are discussed in Definition 3.3 and Remark 3.4
) Kn,r is defined in Definition 3.27

) Gr: kin—EPT1(89) is defined in Definition 3.27

) Er(K) = K(K) N Epr

) ¢L (we need only ¢3) is defined in (10.1)

Various constructions and concepts.

algebraic maps of spectra are defined in Definition 3.21

A C moE"Cn is defined in (4.8)

A is defined in Definition 4.20

X(a) € k(GL) is defined in Definition 4.9

J(q, f, K) and J(V) are defined in (5.1) and Example 5.2
X<y and X are defined in Definition 6.5 and Definition 6.7
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(7) RP} is defined in (11.4)

Part I. K(n)-Local Results for General n and p

This first part of the paper focuses on machinery and results used to study the
K (n)-local category, its Picard group, and k,, for general heights n and prime p.
We will specialize to the case n = p = 2 in the second part.

2. THE K (n)-LOCAL CATEGORY

Detailed introductions to the K (n)-local category can be found in many places;
for example, much of the foundations can be found in [HS99b]. A precise summary
of what is needed here can be found in Section 2 of [BGH22] and we will use the
language and notation of that reference. Here we give a short summary to establish
the context.

We begin with the selection of a formal group I',, of height n. We will assume I',,
is defined over F,, and that for any extension Fy» C F, of finite fields the inclusion
of automorphism groups

Aut(Ty/Fpe) C Aut(T,/Fy)

is an equality. Examples include the Honda formal group of height n and the formal
group arising from the standard supersingular elliptic curves at p = 2 and p = 3.
See [Str00] and [Hen19].

We will write G,, for the automorphisms of the pair (Fy»,T',,); there is a semi-
direct product decomposition

Gy, = Aut(T), /Fpn) x Gal(Fpn /Fp).
It is customary to define S,, = Aut(I',, /Fpn) and we will write Gal = Gal(Fp» /Fp).

We define K(n) to be a 2-periodic complex orientable homology theory with
K(n). = Fpu[u*!] with u in degree —2 and associated formal group I',. This
homology theory has the same Bousfield localization functor as the 2(p™ — 1)-
periodic version historically labelled K(n). The 2-periodic version used here is
better related to Morava E-theory. See (2.1).

The K (n)-local category has a symmetric monoidal structure with product given
by
XANY = LK(n)(X N Y)
As this equation indicates, we adorn the smash product with the localization only
when emphasis is needed; normally, we will leave it understood.

The most important and most basic algebraic invariant of the K (n)-local cate-
gory is given by Lubin-Tate or Morava E-theory. In fact, E-theory is a functor that
associates a K (n)-local £ -ring spectrum to a pair of a perfect field and a formal
group law over it [GHO4]. We will write
(2.1) E=E, =EF,,T,).

There is a non-canonical isomorphism

By = W(luy ..., un )] [u*],
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where W = W (F,») is the Witt vectors on Fp». The power series rings is in degree
zero and w is in degree —2. This is a Landweber exact complex orientable theory
with formal group given by a universal deformation of I',,. Our version of Morava
K-theory is chosen so that there is a map F — K(n); on coefficients this map is
given by the quotient by the maximal ideal m = (p,uy,...,up—1).

We define
E.X = W*LK(n)(E/\X).

Since the formal group for E is the universal deformation of T',,, the group G,
acts on F, and, in fact, this lifts to an action on F through maps of £.-ring
spectra. Thus F,X is a continuous F,-module with a continuous action by Gy;
more precisely, it is a Morava module in the sense of Definition 5.3.20 of [BB20).
We will write 9ot for the category of Morava modules.

A fundamental fact is that the action of G, on the right factor of E A E =
Lgn)(E A E) defines an isomorphism of Morava modules

(2.2) E.E ¥ map(G,, E,)

to the ring of continuous functions. See [Str00], [DHO4], or [Hen19]. From this it
follows, as in [DHO04], that for many reasonable spectra — including all the spectra
of this paper — the K (n)-local Adams-Novikov Spectral Sequence has the form

(2.3) E3Y(X) = H*(Gy, B, X) = m_s L) X.

Note well: Here, and throughout the paper, group cohomology will be under-
stood to be continuous cohomology whenever this makes sense. Likewise, maps of
sets will be understood to be continuous whenever that makes sense. We will have
more to say about this spectral sequence and its construction in Example 6.2.

Remark 2.4. The Devinatz-Hopkins fixed point theory [DHO04] supplies a func-
torial assignment K + E"X from closed subgroups of G,, to K(n)-local £-ring
spectra. We have that Lg(,)S® ~ E"®» and if K = {e} then E" = E. This
construction has the following properties. First, there is an isomorphism of Morava
modules

(2.5) E.E"K =2 map(G, /K, E.)

and, second, for dualizable K (n)-local spectra X, there is a homotopy fixed point
or Adams-Novikov spectral sequence

(2.6) EJNK,X) = H(K,E,X) = m,_(E" A X).

The spectral sequence of (2.3) is the case of K = G,,. Further, the spectral sequence
(2.5) for any X is a module over the analogous spectral sequence for X = S°, a
fact which will be exploited several times in this paper.

3. ORIENTATIONS AND FILTRATIONS

Let K C G, be a closed subgroup. In this section we introduce the concept of
an E"X_orientation of an exotic element in the Picard group. This allows us to
introduce a decomposition on k,, which reflects the subgroup lattice of G,,. We
also introduce a second, more classical, descent filtration which, in essence, comes
from the Adams—Novikov filtration.



EXOTIC K(2)-LOCAL PICARD GROUP 9

3.1. Orientations. We begin with a basic definition.

Definition 3.1. Let X € k,. Then a G, -invariant generator for X is a choice of
a Gp-invariant element ¢x in EyX which generates F, X as an F,-module.

Remark 3.2. For X € k,, a G,-invariant generator ¢tx determines, and is deter-
mined by, a choice of isomorphism of Morava modules ¢ : E, — E,.X. This ¢
defines an isomorphism

H*(Gp, E,) = H*(G,, B, X).

Two choices of Gp-invariant generators differ by an element of Z; = H %Gy, Ep)*.
The latter isomorphism was historically known to the experts; one proof is in [BG18,
Lemma 1.33].

Definition 3.3. Let K C G, be a closed subgroup. Then k(K) C &, is the
subgroup of invertible spectra X such that there is a class z € mo(E" A X) which
maps to a G-invariant generator under the map

mo(E"AX) = mo(EAX) = EgX.

We call the class z an E"-orientation of X, or simply an orientation if K and X
are understood.

Remark 3.4 (Subgroup filtrations). If K3 C Ks, then x(K3) C k(K31), so the
assignment K — k(K) defines a filtered diagram of subgroups of k,,. In particular,
any nested sequence of closed subgroups

{e} =Ky C K1 C- C Ky =Gy,
gives an associated filtration
= 5({e}) 2 k(K1) 2+ 2 6(G) = (LS} -
We call this a subgroup filtration of K.

In order to compute the subgroups #(K), it is necessary to be able to find E"%-
orientations of elements X of x,. The goal of the remainder of this section is to
give recognition principles for E**-orientations which use the homotopy fixed point
spectral sequence (2.6).

Proposition 3.5. Let X € &, and let 1x € FyX be a G,-invariant generator.
Then X is in k,(K) if and only if tx is a permanent cycle in the homotopy fized
point spectral sequence

HY(K,E:X) = m,_(E" A X).

Proof. First, suppose that ¢tx is a permanent cycle detecting a class z € mo(E"X A
X). Then since vx is a G,-equivariant of £, X, the class z is an E"%-orientation.

Conversely, assume X € x(K). Then we have z € mo(E"® A X), whose image
in EgX is a G,-invariant generator, so it must be a unit multiple of tx. Thus z is
represented by a permanent cycle equaling acx for some a € Z;;. This implies that
tx itself is also a permanent cycle. O

We now examine some consequences of having an E"¥-orientation.
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Proposition 3.6. Let z € mo(E" A X) be an EMS -orientation for X. Then the
extension of z to an EM -module map
j.: EME 5 EME A X

is an equivalence.

Proof. As mentioned in Remark 2.4, the homotopy fixed point spectral sequence
(2.6)

ESYK,S°) = H(K, E,) = m;_E"E
for SO acts on the spectral sequence Eg’t(K7 X), and calculates the action of E"X
on EM(X) = 7 (E" A X). Suppose X € k,(K), and suppose that we have

chosen a G, -invariant generator tx € EoX. If dy(tx) = 0 for ¢ < r, then the map
a > atx defines an isomorphism

E**(K, 8% = EX*(K, X).

In particular, if 1x is a permanent cycle detecting the class z € mo(E" A X), then
the module map E" — E" A X extending z is an equivalence. O

The equivalence of Proposition 3.6 also works well in E-homology.

Proposition 3.7. Let z € mo(E"™ A X) be an E"X-orientation for X and let
v+ By = E.X be the Morava module isomorphism induced by the G, -invariant
generator determined by z. Then there is a commutative diagram

E.E"E — = 5 map(G/K, E,)
E*(@)l lmap(G/KsW*)
E.(E" A X) —— map(G/K, E. X).

Proof. The horizontal equivalences are obtained as the adjoint of the composition
Gn/K x E.(E" ANX) = E.(EAX) = E.X

where the first map is given by the action map G,,/K x E"® — E and the second
by the multiplication E A E — E. Now it is a matter of chasing around the
diagram. (I

Proposition 3.6 suggests an alternative, potentially more natural, characteriza-
tion of the elements of x(K) which only requires an equivalence of E"%-modules
EMS — EME A X, We now give a criterion for when this is sufficient.

Lemma 3.8. Suppose X € k,, and that we have an E"X -module equivalence

fi EMC S EMOAX,
not assumed to be induced by an EME

edge homomorphism

-orientation of X. Suppose further that the

B — HO(K, Ep)
is onto. Then X has an EM -orientation, and X € k(K).
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Proof. We need to find a class z € mo(E"® A X) which maps to a G,-invariant
generator of EgX. The E"%-module equivalence f determines a K-invariant gen-
erator f.(1) =y € EyX. Since X € k,, we also can choose a G,-invariant gen-
erator x of EpX. There is an element a € (Ep)* so that ay = z, since both are
Fp-module generators. Since x and y are both K-invariant generators of a free
module, @ is also K-invariant. Choose an element o € moE"X which maps to a
and let ¢ : E"E — EME be the EM -module map extending . We then have a
new E"X-module equivalence g = (¢ A 1x)f : EMS — EMC A X and g.(1) = z as
needed. (]

Example 3.9. The hypothesis on K in Lemma 3.8 is equivalent to the statement
that £%° = E9° in the homotopy fixed point spectral sequence

ESY(K,S%) = H*(K, E;) = m,_ E"E.

This happens in all the examples for which we have complete calculations, including
all the examples at n = p = 2 we will consider in this paper.

The following result will allow for some flexibility in later sections, as it tells us
that the Galois group will not cause complications when it comes to orientations.

Proposition 3.10. Let K C G, be a closed subgroup and Ko =S, N K. Then the
inclusion kn,(K) C k,(Ko) is an equality.

Proof. Let G = K/Ky C G, /S, = Gal. For any dualizable spectrum X, which
in particular includes invertible spectra, the same argument as for [BG18, Lemma
1.32] shows that

W @we Ey'(K, X) = E' (Ko, X).
But for such X, the differentials in E3*(Ky, X) are automatically W-linear since
the spectral sequence is a module over the spectral sequence E3!(Ky, S%) and the

latter has W-linear differentials. This follows from Remark 1.35 of [BG18] and the
fact that the unit Z, — W is étale. Thus, for any dualizable spectrum X, we have

W @we EX(K, X) 2 B2 (Ko, X)

and the isomorphism preserves differentials. Now apply Proposition 3.5. [

3.2. The naturality of orientations. The material in this section, specifically
the notion of an algebraic map introduced in Definition 3.21 and their relationship
with orientations presented in Proposition 3.22 will be used in an essential way in
Section 10.1, specifically in Proposition 10.4.

For a closed subgroup K of G, let X € x(K), and let 2z € m(EM A X) be
a chosen E"f_orientation of X. Let ¢, : E" — ERMC A X be the equivalence of
E"E _modules obtained by extending z.

If g€ G, and H C gKg~ ', the composite
EhK *g> Eh(gKgfl) . EhH

gives a map which we also call g : E" — EM . The following result is immediate
from the definitions.
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Lemma 3.11. Let g € G, and H C gKg~'. If 2 € mo(E" A X) is an EMK-
orientation then

gz = (g A1),(2) € mo(E"H A X)
is an E™M -orientation and the following diagram commutes

(3.12) EME 9 phH
Lpzi"‘ N\L‘sz
EME A X — N phH x|

In this result, the map g is induced from an element in the Morava stabilizer
group. We would like to expand the class of maps for which we have a similar
diagram. Our key result is Proposition 3.22, but to state and prove it, we first need
to develop some language.

First, here is some material originally due to Devinatz—Hopkins [DHO04]; it was
also reviewed in [GHMRO5] and [BBGS22]. For any dualizable X in the K (n)-local
category, there is an isomorphism of Morava modules
(3.13) E.(E" A X) 2 map(G, /K, E.X),
where G,, acts on the right-hand side by conjugation: (g¢)(hK) = gp(g~ ' hK). We
also have an isomorphism of Morava modules
(3.14) map(G, /K, E,X) = Homg, (Z,[|G,/K]], E.X),
where the right-hand side is the group of continuous Z,-module maps.

We let X = S° Given closed subgroups K1, K of G, let h : Z,[[G, /K] —

Z,[|G,,/K1]] be a continuous G,,-module map. Using the identification of (3.14) we
obtain a map

Hom(h, E,): map(G,, /K1, E.)— map(G,, /K2, E.)
of Morava modules and so we get a homomorphism
(3.15) U: Homg (g, 1)(Zp[[Gn/K2]], Zp[[Gr / K1 ]]) —
Homonor(map(G,, /K1, E), map(G, /Ka, E.)).
The map W is always an injection; however, it is not always surjective. For example,

if K1 = G,; then,
Homg, (16,,1) (Zp[[Gn/ K2]l, Zp) = Zy,
while
Homanoe (Ex, map(G,/Ks, E,)) = HO(Ko, Eg) 2 Ej>.
If n > 1 and Ky = {e}, then Ej is a power series ring strictly containing Z,. More
critically for us, if p = 2 and K is finite, then Eé(z is typically also a power series
ring larger than Z,.
This discussion suggests that we single out a class of Morava module maps
E,E" ' =~ map(G,, /K, E,)— map(G, /K», E,) = E,E"?

that includes those the image of ¥; that is, those that can be written Hom(h, E.)
for some continuous Gp-map h: Z,[[G,/Ks]] = Zp[[G,/K>2]]. We will also need
to incorporate the periodicity of E"¥ into the picture. Thus, we start by a brief
discussion on the interplay of Morava modules and periodicities.
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Definition 3.16. Let K C G,, be a closed subgroup. An algebraic periodicity class
for K is a unit

de H°(K,E,)

in the ring of invariants. We say E"¥ has algebraic period k if k is the smallest
positive integer for which there is an algebraic periodicity class in degree k, i.e.
de€ HY(K, Ey).

Let K C G, be a closed subgroup, X be a spectrum, and suppose we have an
element d € H°(K, Ey). Then for all m we get an induced map of Morava modules

£ map(G,,/K, En X)— map(G, /K, Epi i X)
Q1
with
U(gK) = (9d)p(9K).
This is a map of map(G, /K, Fy)-modules in the category of Morava modules.

Definition 3.16 makes the following result obvious, since if d is invertible, then fj(_l
is inverse to fiX.

Lemma 3.17. Let d € H(K, E}) be a periodicity class, then for all m and all X,
the map
fi i map(G, /K, B, X)— map(G,, /K, Ey 1. X)

is an isomorphism.

Remark 3.18. It could happen that the only algebraic periodicity classes are in
H°(K, Ey), in which case E"K doesn’t have an algebraic period. This is the case
for K = G, itself, for example. We are more interested in this notion when K is a
finite subgroup of G,,. Indeed, if K is finite of order m then

d= ] gu™" € H'(K, Esm)
geK

is an algebraic periodicity class, although perhaps not one of minimal positive
degree.

Remark 3.19. There is a corresponding notion of a topological periodicity class,
namely a unit = € 7, E"¥ in positive dimension k. Then the induced E"%-module
map NFEM — EMK is an equivalence of E¥-module spectra. The corresponding
notion of topological period is the minimal k for which such an x exists. An
algebraic periodicity class determines a topological periodicity class if and only
if it is a permanent cycle in the homotopy fixed point spectral sequence; hence,
the algebraic and topological periods can and often do differ. For example, E*¢?
at height one (which is the 2-completion of the real K-theory spectrum KO) has
algebraic period 4 and topological period 8. At height two and the prime 2, E"C1s
has algebraic period 24 and topological period 192 = 8-24. (Details on the subgroup
Ggs can be found in Definition 7.1.)

For any spectrum X, an algebraic periodicity class d € H°(K, E}) determines
an isomorphism

PX : B, (SFEME A X) —> map(G, /K, E,X)
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as the composition

E.(XFEMS A X) ——= map(G,, /K, E._1.X) TZX) map(G, /K, E.X).

d

Remark 3.20. We have isomorphisms

E.E"S @ BE.X — =~ E,(E"K A X)
map(G, /K, E,) ®p. E.X —> map(G,/K, E. X)
Using these identifications and letting fq = deO and P; = Pdso, we have that
ff=fi®9EX and Pf 2 P;® E.X.

We now single out a particularly useful set of maps.

Definition 3.21. Let K, Ky be closed subgroups of G,,, and let d € H(K>, E})
be an algebraic periodicity class for Ky. A map f : EM — SEEMC of spectra is
algebraic for d if the induced map g of Morava modules

map(G, /K1, E,) —2> map(G, /K>, E,)

defined by the commutative square

E.f

E*EhKl E*EkEhKQ

gl ulpd

map(Gn/Klv E*) T’ Inap(Gn/K% E*)

is in the image of the map ¥ of (3.15). Thus, g = Hom(h, E,) for some continuous
G,,-module map

h: Zyp[[Gn /K]l — 2 [[Gn /K7 ]]-

The next result mixes orientations and algebraic maps, so requires some set-up.
We fix the following data

(1) a closed subgroup K C G,, and element X € x(K);

(2) an EME_orientation z € mo(E"E A X);

(3) two elements g; € G,,, for 1 < ¢ < 2 and two closed subgroups H; C giKgi_l;
and,

(4) an algebraic periodicity class d € H(Ha, E}).

Then by Lemma 3.11 we have induced orientations g;z € mo(E"i A X). Let
Pi = Pg, =" EMi__phHi X

be the induced E"Hi-module equivalences. In this context, we have the following
result.
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Proposition 3.22. Let f: EMv — SFERM2 be any map which is algebraic for d.
Then the following diagram of Morava modules commutes

E.f

(3.23) E,EM: E, >k phH:
E*(WI)\L lE*(EkW)
E,(EM1 A X) E.(SFEM: A X)),
E.(fAlx)

Proof. By Proposition 3.7, the induced H;-orientations for X give us commutative
diagrams

o

(3.24) E,EhH: map(G/H;, E.)

E*(%Ui lmap(G/Hma*)
E. (E"Mi A X) — map(G/H;, E.X).

We now use the hypothesis that f is an algebraic map, as then Definition 3.21
gives a corresponding map g with

g = Hom(h, E.)

for some continuous G,-module map h : Z,[[G,/Hz]] — Z,[[G,,/H:1]]. Using Re-
mark 3.20, we also have the following commutative diagram

E.(EM A X) 22U B (skphH: A X)

N |

map(Gn/Hy, B, X) —— map(G,/Hz, E.X)

with gx = Hom(h, E.X).
Thus, we have an isomorphism from the diagram of (3.23) to the diagram

Hom(h,E.)

Hom(Z,[[Gn/H ), Ev) Hom(Z,[[G/Hall, Ev)

Hom(G/Hl,gp*)\L iHom(G/Hg,ap*)

Hom(Z, [[G,,/H,]J, E.X) Hom(Z, (G, / Hall, E.X).

_—
Hom(h,E.X)
Note that we can use the same @, for both H; and Hs because the EMi_orientations
giz of E"1i A X map to the same G,,-invariant generator of EyX. This last diagram
evidently commutes, finishing the argument. O

3.3. The descent filtration. Another commonly used filtration to study x,, comes
from the K(n)-local Adams—Novikov spectral sequence. See, for example [HS99a]
and [KS04].

Recall from Remark 2.4 that if X is a dualizable object in the K (n)-local cat-
egory, then the E-based Adams-Novikov spectral sequence for EM A X is given
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by
Ey*(K,X) = H*(K,E;X) = m_s L (n) (B A X).
We will use the following key and deep property of this spectral sequence.

Remark 3.25. The K (n)-local E-based Adams-Novikov spectral sequence has a
uniform and horizontal vanishing line at F, i.e. there is an integer IV, depending
only on n, p, and K, so that in the Adams-Novikov spectral sequence we have

E3*(K,X)=0, s>N.

This can be found in the literature in several guises; for example, it can be put
together from the material in Section 5 of [DH04], especially Lemma 5.11. See also
[BBGS22| for even further explanation. If p — 1 > n, there is often a horizontal
vanishing line at Es, but we are decidedly not in that case in the second part of
this paper.

Let X € Kk, and choose a G,,-invariant generator tx € FyX as in Definition 3.1.
The Adams—Novikov spectral sequence for the sphere acts on the Adams—Novikov
spectral sequence X; thus, if dy(tx) = 0 for r < ¢, then we have an isomorphism
of E,-terms

(3.26) Er*(G,,S") = EX*(G,, X)
a+— atx.
Similar ideas were deployed in the proof of Proposition 3.6.

In Remark 3.2 we also observed that any two choices for a G, -invariant generator
of E.X differ by multiplication by a unit in Z,;. Thus the following definition is
independent of the choices.

Definition 3.27 (Descent filtration). For r > 2, let
Fnr={ X €ra |dp(tx) =0, 2<k<r},
where d;, denotes the differential in the homotopy fixed point spectral sequence
ESY (G, X) = H* (G, B, X) = m_ o X.
Define ¢, : ky,» — EZ"71(S%) by the equation
du(ix) = 6 (X)ix,
where the right-hand side uses the identification (3.26).

Lemma 3.28. The subsets ky, , of Ky satisfy the following basic properties.

(1) The subset Ky, s a subgroup of Kk, and ¢, is a homomorphism.
(2) The kernel of ¢, is identified with K, y+1, and so we have an exact sequence

r _
0—— Fp i1 — binyr ——= EN"7HG,, S9Y) .

(3) There exists an integer N so that K, N = {LK(n)SO},

Proof. Part (1) follows from the observation that tx € EpX and vy € EpY are
G-invariant generators then

Lx Ay € Eo(X AY)
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is a G,,-invariant generator. Part (2) is built into the definitions and part (3) follows
from the horizontal vanishing line of Remark 3.25. (]

Remark 3.29. The map ¢, : kp, — Er =G, S°) need not be onto. In Re-
mark 12.30 we note that the class n%e is not in the image of ¢5 at n = p = 2.

4. THE GL-ORIENTABLE ELEMENTS OF THE PICARD GROUP

For all n and all p, the group G,, has a closed subgroup G defined as the kernel of
a reduced determinant map. In this section we give general results on k(Gl) C &,
the subgroup of exotic invertible elements which have an EhG’?ll—orientaution7 and give
some remarks on the interaction between x(G.) and the filtration coming from the
descent filtration of Definition 3.27. Most of the key ideas are already present in
Section 5 of [GHMRI15], and then adapted and generalized in [Wes17].

4.1. The determinant, the subgroup G and the class (. We briefly introduce
the subgroup G} and the closely related homotopy class ¢.

We have already defined S,, = Aut(I',,/Fp») C G,, and indeed, we have a semi-
direct product decomposition S, x Gal = G,, where Gal = Gal(F,» /F,). The group
S,, is the group of units in the endomorphism ring O,, of I';, over F,». The inclusion
Z,, — O, sending n to the multiplication by n extends to an inclusion of the Witt
vectors W — O,, and O,, is a left W module of rank n. The right action of S,, on
O,, then defines a map

S, — GlL,(W).
The image of this map has enough symmetry that the determinant restricts to a
map
det: S, — Z,; CW*.
We then extend the determinant to all of G,, as follows.
Definition 4.1. The determinant det: G,, — Z,; is defined to be the composite

G, &S, x Gal —= X, 7 Gal —— 7%

where the second map is the projection. The kernel of det is denoted by SG,,.

We can now define one of the key players in this story, the reduced determinant
C.
Definition 4.2. The homomorphism ¢ = (,,: G,, = Z,, is the composite

det ~
Gn 52 LY 2 T,

where the second map is the quotient by the subgroup p of roots of unity. The
kernel of ¢ is denoted by GJ.

Remark 4.3. We note that ¢ is always a split surjection so that G, = Gl x L.
Throughout, we will let
Y €G,/GL 217,

be a topological generator.
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When p = 2, we can define another important homomorphism derived from the
determinant, which will not be used in this section but later in Part II to study the
case n =p = 2.

Definition 4.4. Let p = 2. The homomorphism x: G,, — Z/2 is defined as the
composite

Gp —2% 75— 75 (1 + 4Z) = (Zo/AZs)* 2 7/2.
We define G2 to be the kernel of x.

Remark 4.5. The fixed point spectrum E"C s a mysterious object, unusual even

at p = 2 and n = 1. However, the other fixed point spectrum E"®. is much more
familiar. If n = 1, the determinant G; — ZJ is the identity, so G} = {£1} and
EMC ~ K O, the 2-complete real K-theory spectrum.

We use the homomorphisms ¢ and x to define some of our key cohomology
classes.

Definition 4.6. The homomorphisms
C: Gp—7Zy
x: G,—Z/2
define classes
¢€ HY(G,,Z,) and xe€ HYG,,Z/2)

in cohomology with trivial coefficients. Since the inclusion Z, — Ey of the sub-
module generated by the unit is G,,-invariant we can also write

(€ HY(G,,Ey) and x€ HYG,,FEy/2)
for the image of these classes under the inclusion map. Finally, let
X € H*(Go, Ey)
be the Bockstein on x. Note that x and X are only defined if p = 2.

We now can record a standard result for recovering L () SO from ENCn. See,
for example, [DHO04, Proposition 8.1]. It follows easily from the isomorphism of

Morava modules map(G,,/G}, E.) = E,E"S. of Remark 2.4.

Proposition 4.7. Let 1) be a topological generator of G,,/GL. Then there is a fiber
sequence

Yol phel

L (n)S® —— EhCn
that gives a short exact of Morava modules

E.SY L> E*E'h(c’}l % E*EhGi.

The map i, is an injection onto the sub-Morava module of rank one generated by
1
the unit of the ring E, E"®n .
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As noted above, the homomorphism ¢ : G,, = Z,, defines a cohomology class
¢ =, € HY Gy, Zy).
We will confuse ¢ with its image under the map
HY(G,,Z,) — H'(G,, Eo)

defined by the inclusion of rings Z, — Ey. As is customary, we will then further
confuse the element with the homotopy class in

¢ €m_1L(n)S°
defined as the image of the unit i: S° — E"C. under the boundary homomorphism
0: ﬂthG:‘ — W_lLK(n)SO.

The homotopy class ¢ is detected by the cohomology class ¢ in the Adams-Novikov
Spectral Sequence

E3y' = H*(GnEy) = m—sLic(n)S°.

This follows from Proposition 4.7, the long exact sequence in cohomology

e HY(GL, E) - HGL, By) — 2 H4V (G By) —> -

)

and the Geometric Boundary Theorem. This is all due to Hopkins and Miller, see
Theorem 6 in [DHO04].

We immediately have
FkLK(n)SO L> ﬂkEhGh 48> Wk_lLK(n)SO

is multiplication by ¢. This extends to the maps on Adams—Novikov Spectral
Sequences: the composition

Ef’t(Gn, SO) Tx ‘E'7«§7t((G<17117 SO) Or Eﬁ+1’t(Gn7 SO)
is multiplication by ¢ € E}(G,,, S°).
4.2. A description of x(G)) in terms of homotopy groups. There is a stan-

dard way to produce spectra in x(GL), which we now review. The main result of
this subsection is Theorem 4.19.

Define
(4.8) A = Ker{ moE"®n — EoE"Cn }

to be the kernel of the E-Hurewicz homomorphism; this is the kernel of the edge
homomorphism of the spectral sequence

Ey'(Gp, 8°) = H*(GL, By) = my_  E"n

when ¢ = s. Since this spectral sequence has a horizontal vanishing line (see Re-
mark 3.25) any element in A is nilpotent. We thus have a subgroup

14 A C (mgE"En)*

of the units in the ring WOEhGi.
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Definition 4.9 (Twisting Construction). For ¢ € G,,/G) a topological generator
and « € 1 + A, we define X (a) by the fiber sequence

Y—a EhGL

X(a) —== EhC,

Here, in an abuse of notation, we also denote by « the unique E"®»-module map
1 1 . . 1
0o : B — E"Cn obtained by extending a: SO — E"Cn.

By Proposition 4.7,
Lim)S” ~ X(1)

and there is a short exact sequence of Morava modules

(4.10) B.50 Wy poprel WD p gl

The map (i1). is an injection onto the sub-Morava module of rank one generated
by the unit of the ring EgE"®» 2 map(G, /GL, Ey). This observation is extended
in the following result.

Proposition 4.11. Let a € 1+ A. Then the map
(ia)s : B, X(a)—E,E"®n

is an injection onto to the sub-Morava module of rank one generated by the unit.
The assignment o — X («) defines a homomorphism

X(=): 1+ A—k(G;,).

Proof. Since E,a = E,(1) the first statement follows from the short exact sequence
(4.10). Tt follows that the map io : X () — E"®n extends to an equivalence

E"Cn A X (o) S5 EMGn,

If we let z € 7r0(EhGi A X(a)) be the element which maps to the unit in the

ring WOEhGi under this equivalence, then z is an E"C1_orientation in the sense of
Definition 3.3. Thus, X (o) € x(GL). Proposition 3.17 of [Wes17] shows that the
function a — X () has the property that there are canonical pairing maps

X()NX(B) — X(af).
and that this map is an equivalence. Thus we have a homomorphism. (I
Remark 4.12. There’s an omission in the statements of Propositions 3.15 and

3.17 of [Wes17]. They are stated for a general unit in 7 E"Cn; however, the proofs

in [Wes17] work only if & = 1 modulo the maximal ideal in moE"Cn. In all our
applications, and indeed in all the applications in [Wes17], this additional hypothesis
holds.

Proposition 4.13. Let a € 1+ A and let ¢ be a topological generator of G, /G .
There is an equivalence LK(n)SO — X () if and only if

af =yp
for some g €1+ A.
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Proof. First suppose ¥ = af3. Then we have a factoring
L K(n)SO
! - lﬁ

X(a) — EMGn

(2=

P—a

EhG}L

Since 8 € 1+ A, the map F, [ is injection onto the sub-Morava module of E*EhGit
generated by the unit. Then Proposition 4.11 implies the map f is an E,-isomorphism.
Conversely, suppose we are given an equivalence h: Ly )5 0 - X(a). We define
~ to be the image of A in WQEhG}l under the map i,: X(a) — E"®.. Then we have

a diagram
E.SY

B
(oY) FY*

E.X(0) —> E,E"Cu

(fa)+

Let 1 € EpS° be the tautological generator. Since the ring of Morava module
endomorphisms of E,S? is isomorphic to Z, and h, is such an endomorphism,
Proposition 4.11 implies that

V(1) = alia)«(1)

for some a € Z;. Define g = a~'y. Then B € 1+ A and f is in the kernel of
P — a. (Il

The quotient group Z, = G,,/G), acts on 1+ A and we have an exact sequence

o

1+A 1+ A HY(Zp,1+A) —=0

where 9(3) = B714(B3). Thus Proposition 4.13 implies that X («) is trivial in &, if
and only if « is a coboundary in 1 + A. Thus we have an injection

HY(Gn /Gy, 1+ A) —=k(Gy)
sending the coset of a to X(a). We will show in Theorem 4.19 that this is an
isomorphism, but we need some preliminaries.
Let A>® C [Ethlt, EhGi] be the set of maps f such that E, f = 0; note that A* is

an ideal in the endomorphism ring. The map f — f(1g) defines a split surjection

(4.14) A® S5 A

The splitting sends a € A to the E"Cn_module map defined by extending a.
Now let g € 1 + A* and form the cofiber sequence

X(g) g EhGi Y=g EhGi.

The following is a generalization of Proposition 4.11 and of Proposition 4.13.
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Proposition 4.15. Let g € 1 + A*>. Then the map
(ig)s : B. X (9)— E, E"®n

is an injection onto to the sub-Morava module of rank one generated by the unit.
The assignment g — X (g) defines a homomorphism

X(=): 1+ A®—k(GL).

For g € 1+ A and 1 the chosen topological generator of G, /GL, there is an
equivalence Ly, SO — X(g) if and only if

9B =B
for some €1+ A.
Proof. The proof of Proposition 4.11 goes through without change for the first part,
and that of Proposition 4.13 for the second part. (]
Remark 4.16. As in Proposition 4.15, we have in particular that if g(1g) = 1g,
then X (g) is trivial.

If we write g € 1 + A® as g =1+ f with f € A, then g(1g) = 1g if and only
if f(1g) =0. We then have a diagram

(4.17) 14+ A% — > x(GL)

T

1+A
where the vertical map sends g to g(1g). Thus we have the following result.
Lemma 4.18. Suppose g: E"Cn 5 EhCL g any self map so that E.g is the identity
and let o = g(1g) € 7oE"®». Then
X(g9) = X(a) € K(Gy).
Proof. Let s be the splitting of (4.14), then X (s ( )) = X(«) by definition. There-
fore, X(s(a™1)g) = X(s(a™1)) A X(9) = X(a™!) A X(g). But Proposition 4.15
implies that X (s(a™1)g) is trivial since (s(a=1)g)(1g) = 1g. O
We can now prove the following result.

Theorem 4.19. The assignment o — X () deﬁnes an isomorphism
HY(G,/G}L, 1+ A) —— k(G)).

In particular, if G, /GL acts trivially on A, then we have an isomorphism 1+ A =

k(GL).

Proof. Proposition 4.13 shows that the map is well-defined and an injection; thus
we must show it is onto.

Let X € x(G}). Choose an EMCn_orientation z € WO(Ethll A X); see Defini-
tion 3.3. Let ¢q: E"C. — EhCL A X and p: E — E A X be the equivalences
induced by extending z. The image of z in EyX is denoted ¢x; it is a G,-invariant
generator of FyX.
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For any spectrum A we have an isomorphism ¢4 of Morava modules
E,A—>E,A®p, B X —> E(ANX).

The first isomorphism sends a to a®tx, and the second is the Kiinneth isomorphism.
1

Both maps are natural is A; thus, so is ¢4. If A = E"®n we will simply write

¢ = ¢4. The composition

d)—l

E*EhG}l

is then the identity. Let ¢ € G,G. be a topological generator. (See Proposi-

tion 4.7.) We next define a self map : EhG. 5 EhG, by requiring the following
diagram to commute

Gy, G,

‘Pli'z gpliz

oL quE— N ¢
YAX

Applying E-homology and prolonging with ¢!, we obtain the commutative dia-
gram

E* EhGi P E*EhG}l

(901)*l i(%)*

E,(E"S: A X) E,(E"S. A X)
¢1l i oo
E* E*hG}1 E*EhG;
where the vertical composites are the identity. From this we conclude that

by =y BLE"Sn — B E"C

(PAX)

P

Defining F' to be the fiber of QZ — 1, we get a diagram of fiber sequences

F EhGL vt EhG

zl gE o=

) QR /YN GE—— /LN '¢
(p—1)AX

Define f = @Z)fi/;: EMCh — EhC, By construction 1:/;71 = 1—(14+f). Furthermore,
E.f = 0. Hence f € A* and F ~ X(1 + f). The result now follows from
Lemma 4.18. O

4.3. A comparison of filtrations. In Definition 3.27 we defined a filtration on &,
using the Adams-Novikov spectral sequence; specifically &, s C Ky, is the subgroup

of elements so that d,(tx) = 0 for r < s for any choice of G,-invariant generator
tx of FpX. We also discussed homomorphisms

bs: Fins — ES57HG,, S°)
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determined by the formula
ds(LX> = ¢9(X)LX

Define
ks(Gr) = kins NK(G}) C K(GL) =2 HY G, /G, 1+ A).
These subgroups give a filtration of x(G.). In this section, we compare it with
the Adams—Novikov filtration on A. This does not appear to be formal; indeed,
it is not clear how the two filtrations can be compared without some additional
hypotheses. We provide such a result with hypotheses that will suffice for our
purposes in Theorem 4.27.

Definition 4.20. Let A, C moE"®» be the subgroup of elements whose Adams-
Novikov filtration is greater than or equal to s in the spectral sequence

E;’t(G}L, SO) — HS(G}L, Et) — Wt,sEhGi.

Note that by definition, A = Ay, and furthermore, we get a corresponding filtra-
tion 1 + Ay € 1+ A. The first observation about this latter filtration will be the
cause of much technical complication.

Lemma 4.21. Leta€l+ A, and B €1+ Ay and s < s'. ThenaB € 1+ A,. If
«a has exact filtration s, then so does af3.

Proof. Write & = 1+x and 8 = 1+y with x and y of filtration s and s’ respectively
in the Adams-Novikov spectral sequence for E"®n. Then af8 — 1 is congruent to =
modulo elements of filtration greater than s. O

Remark 4.22. Beyond the complications implied by Lemma 4.21, the filtration
14+ A of 1+ A also does not fit particularly well with the cohomological description
in Theorem 4.19. While 1 + A, is closed under the action of G,,/GL, the map

HYG,/GL 14+ A,)—H (G, /GL, 1+ A)

induced by the inclusion is not obviously one-to-one. These facts complicate the
analysis of the relationship between the Adams-Novikov filtration x,(GL) and the

n
Adams-Novikov filtration on A C WthG}l, at least in the absence of further hy-
potheses. This observation explains the excessive (even in the context of this paper)

technicality of Theorem 4.27.

Remark 4.23. A first hypothesis will be to require that G,,/GL act trivially on

onhGi. Then Theorem 4.19 specifies an isomorphism 1 + A = k(G}), sending «
to X («). We then get a filtration

K(GL)=21+A=1+AD1+AD...

of k(G}). In that case, we have two filtrations of (G} ), namely 1+ A and x4(GL)
and we wish to compare them. This is the goal of the rest of the section. Note that
if « =1+ 2z with z € A,_1, then we hope to have a formula of the form

¢s(X (@) = (T € B*7(Gn, 8°)

where T € ES71571(GL, S°) detects x. If this holds, then X (a) € rs(GL). Thus
we would be comparing 1 + A1 and s(G}).
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Lemma 4.24. Suppose that G, /G acts trivially on onhng, and let o € 1+ A.
The boundary map WthG}L — m_1X () of the long exact sequence on homotopy

for the fibration
(4.25) X(a) — E"Gn 2% phG
induces an injection

7B (= 1) < 71 X ().

Proof. For a € WQEhGTll, Y(a) = a, so

(¢ —a)(a) = (1 - a)a.

The claim then follows from the long exact sequence on homotopy groups for the
fiber sequence (4.25). O

We make two basic observations help organize the assumptions in the following
results. First, recall from Definition 4.20 that Ay C moE"Cn is the subgroup of
elements of filtration at least s in the G homotopy fixed point spectral sequence.
Since H!(GL, E1) = 0, we have Ay = A; = A. Thus many of statements begin with
§=2.

Second, because of the uniform horizontal vanishing of the homotopy fixed point
spectral sequence, we know that there is an integer NV so that for all s > N we have
that 1+ Ay and x4(GL) C kn,s are trivial. One of our goals is to show that, at
least under certain hypotheses, the assignment o — X («) defines an isomorphism
1+ As 1 =2 ks(GL). If s > N, this is obvious, so we are free to concentrate on
smaller s.

The first step for proving our comparison result is the following factorization of
the homomorphism ¢, restricted to xs(Gl).

Lemma 4.26. Assume that G, /G acts trivially on onhGi, that As_1 is trivial
for s > N, and assume further that for all 2 < s < N the following conditions are
satisfied:

(i) Es;1571(GL, 8% = Es~bs—1(GL, S%); and
(i) there is an exact sequence
0 — B517L(GL, §0) — > B55L(G,,, §0) —> E51(GL, S°)
where i, is the restriction.
Then, the map ¢, restricts to a homomorphism
s+ 1s(Gy,) = (BTG, S9)
forall2 < s < N.

Proof. By Theorem 4.19, £(GL) = 1+ A and from (i) and (ii), for 2 < s < N we
have an injection

0 — > Ay_1 /Ay = B3 Lo1(GL §0) S B5s=1(G,y, SO).
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If X € x(GL) then we can choose a G,-invariant generator tx € EgX which is a
permanent cycle in the G-homotopy fixed point spectral sequence

H*(GL, B, X) = m_o(E"®n A X).

For this reason, any differential on ¢ x in the G,-homotopy fixed point spectral se-
quence must lie in the kernel of the restriction i, : E°~1(G,, S°) — E5*~1(G}, S9)
for some s. We conclude from (ii) that the possible differentials are of the form

ds(ex) = (Cy)ex
for some element y € E3;71(GL, SY). Rephrased, we have shown that the map
¢s factors as a map
R(B)) —> (B 1G], 8°) —— B3 (G, 5°).

We will continue to write ¢ for the first of these maps, and this is the map from
the statement of the lemma. |

The stage is now set for our main comparison result. Note that all hypotheses
will be checked in Section 8 in the case p =n = 2.

Theorem 4.27. Assume that G, /G acts trivially on ﬂ'OEhGi, that As_1 is trivial
for s > N, and assume further that for all 2 < s < N the following conditions are
satisfied:

(i) BN, 50) = B (6,5,
(i) there is an exact sequence
0 By 1 1@, 8°) — = B (G, 8) - By (G, )
where iy 18 the restriction; and
(iii) all elements in ES~15~Y(GL,S%) are torsion.
Then, we conclude that for all s > 2,
(1) the homomorphism o — X () defines an isomorphism 1+ A,_1 = rs(GL);
(2) the map ¢ induces an isomorphism
ks(Gp)/ks+1(Gy) = BTGy, 8%);
(3) ifr € As_1, a=1+z, and T € ES~571(GL, SY) is the equivalence class of x,
then
ds(tx(a)) = aZ(C

for some a € Z.

Proof. We set up an inductive argument, with the following induction hypothesis.
For a fixed integer 2 < s < N and all integers r with 2 <r <'s

(a) The homomorphism « +— X () defines an injection 1+ A,_1 — k,.(GL).
(b) Let z € A,y anda=1+z. [f0#£7 € EI-""1GL, SY) then
dr(LX(a)) =az(

for some a € Z;.
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(¢) The map ¢, induces an isomorphism
ke (Gp) /Kr1(Gy) 2 (BTG, 7).
Furthermore, for any 0 # y € EX~1b"=1(GL, SY) there is a class 8 € 1 + A,_1
so that ¢,.(X(8)) = (y and f is non-trivial modulo 1 + A,..
(d) Let z € A, and o = 1+ 2. Then d,(tx(a)) = 0.
To deduce the result from this, note that since Ay = 0 and k(G}) = 1 + A,
(a)—(d) imply that Ky41(GL) = 0. So for s > N +1, (1)—(3) are trivial statements.

For 2 < s < N, part (1) of the result can be deduced from (a) and (c), part (2)
from (c) and, and part (3) from (b) and (d).

We now begin the induction argument. The base case is s = 2. The statements
follow from the sparseness of the spectral sequence. Specifically, we have that

Ey'(Gy,S%) = HY(GL, E1) =0
E>'(G,,8°%) =~ H*(G,, E;) = 0.

We now proceed with the induction step. So assume the statements (a)—(d) hold
for s — 1.

We first show (a). Since the homomorphism
X(=): 1+ A—k(G;)
is an isomorphism, we need only show X (Fy_1) C ks(GL). By (d) for s — 1, we
have that if o € Fy_1, then d,(1x(q)) = 0 for all 7 < s, and the assertion follows.

We now prove (b). Let X = X(«) where « = 1 4+ for x € Ag_; and T #
0 € E571571(GL,S%). We have just shown that X(a) € ks(GL). In particular
tx survives to the E,-page of the G}-homotopy fixed point spectral sequence. By
(ii) in our hypotheses, 0 # T(vx. By Lemma 4.24, the element T(tx must be hit
by a differential; otherwise, it would survive to a non-trivial element detecting the
boundary of o — 1. Since H(GL, Ey) = Z,, generated by ¢x, the only possibility is

ds(tx) = aTlex, an;f.
This proves (b) and shows
64(X () = aTC # 0.
We can now move to (c¢). By definition ¢ induces an injection
ks(Gy) /Ks11(Gp)— B (G, S%).

Since (ES~171(GL,S%) C E$*~1(G,,SY), the map of (c) remains an injection:
we have only changed the target. So we need to show that it is onto. Let 0 # y €
Es=bs=1(GL, 8%) and chose an © € A;_; with T =y. Let @ = 1+ 2. Then we have
just shown
¢s(X(a)) =aT(#0

for some a € Z). Since we assumed in (iii) that every element of E5~1*~1(G}, S?)
has finite order, we can choose a positive integer b coprime to p such that baZ = T.
Since ¢ is a homomorphism,

¢s(X(a’)) = baT( = y¢



28 BEAUDRY, BOBKOVA, GOERSS, HENN, PHAM, AND STOJANOSKA

as needed. Note we have proved the final statement of (c) as well: the class a® = (1+
7)® € 1+A,_; has the property that the residue class of a® — 1 in E5~15~1(G1, S°)
is by and, hence, non-zero.

We are left with (d). The only case we need to prove is r = s. So suppose that
x€A; and @ =14 2. Then d,(tx) =0 for r < s and we have

¢s(X (@) = y¢

for some y € ES~1571(GL, S°). We will show y = 0 by contradiction. So assume
y # 0.

By (c), there is a class 8 = 1+ 2z € 1+ A;_; so that the coset Z of z in
E:~Ls=1(GL, S0) is non-zero and

¢s(X(B)) = —yC.

Then ¢5(X(af)) =0, af € 1+ As_1, and aff = 1+ z modulo Ag. This contradicts
(b).

This finishes the induction step, and the result follows. (I

5. THE J-CONSTRUCTION

We now come to a fundamental construction which allows us to produce invert-
ible K(n)-local spectra from virtual representations of quotients of G,,.

Let ¢ : G,, — H be a continuous map to a finite group. This will usually be
surjective. Suppose we are given an action of H on L K(n)Sk specified by a map of
spaces

f:BH — {k} x BGli(Lg)S°) € Z x BGli(Lg(n)S°).

Here Gli (L (,)S?) is simply the topological monoid of self-equivalences of L (,)S°.
We will write S(f) for L(,)S* with the action defined by f. We can form the
spectrum E A S(f) with the diagonal G,,-action.

It is straightforward to check that this action has a continuous refinement in the
sense of [BBGS22, Definition 2.5]. The requisite map

ENS(f) = Fu(G,y, EAS(S))

to the continuous function spectrum [BBGS22, Definition 2.2] can be built from
the analogous maps for E and S(f): the first coming from [DH04], the second from
the fact that H is finite. Then we can define

J(f)=J(q, [,Gy) = (E/\S(f))hGn

as the continuous homotopy fixed point spectrum, in the style of Devinatz-Hopkins;
see [BBGS22, Definition 2.8].

The notation J(f) is under-decorated since J( f) depends on the map ¢ : G,, — H
as well as the map the map f. In context, we hope that ¢ is clear. More generally,
if K C G, is any closed subgroup we then define the E"*¥-module spectrum

(5.1) J(a, f. K) = (EAS(f)".

The following basic case explains the choice of J for this notation.
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Example 5.2. Suppose H is finite and V is a virtual representation of H of di-
mension k. Then the one-point compactification SV of V has an H action and has
underlying sphere S*. The localization L K(n)S V' inherits this action and we obtain

J(V) = (EASV)Cn,
Write RO(H) for the real representation ring and RO(H)" for the completion at
the augmentation ideal. Then the induced map
RO(H) — [BH,Z x BGly(Lg(n)S°)]
factors as
RO(H) — RO(H)" = [BH,Z x BO]
— [BH,Z x BGI1;(S)]
— [BH,Z x BGL(Lg(n)S%)]-

Then J(V) = J(f) where f is the image of V under this map. This example is also
discussed in [BBHS20, Section 3] and [BGHS22, Section 12.1].

Because of this example, we make the following definition.

Definition 5.3. We refer to f: BH — Z x BGly(Lg(,)S?) as a K(n)-local spher-
ical representation of H or simply as a spherical representation. The integer k
obtained by projection onto the Z factor is the virtual dimension of this spherical
representation.

In the rest of the section, we will want to study properties of this construction.
But we first need a technical result in K (n)-local homotopy theory that allows us to
untwist certain homotopy fixed points. The result uses the language of Devinatz—
Hopkins [DHO04] which is also reviewed in depth in [BBGS22]. See also Remark 2.4.
The initial version is a slight generalization on Devinatz—Hopkins’s determination
of E.F, and is as follows.

Lemma 5.4 ([BBGS22, Corollary 2.18]). Let X be a spectrum with a G, -action,
dualizable in the K(n)-local category. Give E N X the diagonal G,-action and
suppose this action is continuous. Then there is an equivalence

EN(EANX)"Cn ~ AKX,

inducing an isomorphism of Morava modules F, (E/\X)hG" =~ F,. X, where G, acts
on B, X = 7w, L) (EAX) diagonally.

We will use the following upgrade.

Proposition 5.5 (Untwisting Equivalence). Let X be a spectrum with a G,,-
action, dualizable in the K(n)-local category. Give E N X the diagonal G, -action
and suppose this action is continuous. Then for all closed subgroups K C G, the
natural map

(EAX)Cn —(E A X)ME
extends to an equivalence of EMS -module spectra

EME A (E A X)HCn ~ (B A XK,
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Proof. Let A be any spectrum, Y any K (n)-locally dualizable spectrum with a G,,-
action such that the diagonal G,-action on E AY is continuous, and let K be any
closed subgroup of G,,. Then by [BBGS22, Proposition 2.17], there is a K(n)-local
equivalence

ANEANY)E ~ (ANEAY)RE,
For example, we could take A = (E A X)"C» and Y = S° to obtain
(E A X)WCn A BRE ~ (B A X)MCn A B)RE

Now it suffices to show that F A X with its diagonal G,-action is equivalent to
(E A X)"Cn A B where the G,-action on the latter is from the right-hand factor.
This is immediate from Lemma 5.4. ([

We can now explore the consequences of this untwisting result for spherical
representations.

Proposition 5.6. Let f : BH — 7Z x BGll(LK(n)SO) be a spherical representa-
tion and S(f) the associated representation sphere. Suppose we are given a map
q: G, — H and J(f) = J(q, f,Gy). Then for all closed K C G,, there is a natural
equivalence

EMENJ(f) = EMSAJ(q, f,Gr) — J(q, f,K) = (E A S(f)"E

of E"K -module spectra, where K acts diagonally on E A S(f). If, in addition K is
in the kernel of q, we have

EMS A J(f) ~ SPEME,

where k is the virtual dimension of f.

Proof. This follows from Proposition 5.5 and the equation J(f) = (E A S(f))"®=.
If K is in the kernel of ¢, then K acts trivially on S(f) ~ S*, and the second
statement follows. O

Remark 5.7. Given a spherical H-representation f, the action of H on the right
factor of A S(f) induces an action on the Morava module E,S(f). Note that, as
Morava modules, F,S(f) = E.S*. We thus get a map

Xf + H— Autonoc(E,S*) = Autono.(E.S°) = 7%

where the automorphism group is the Morava module automorphisms. We refer to
X ¢ as the character defined by f. Then, using the diagonal action of G,, on EAS(f)
we have a G, -isomorphism

(5.8) E.S(f) = E.S* ® Zy(xs) = Z"E(xy)-

Note that if f is defined by a virtual real representation of H, as in Example 5.2,
then x is trivial or acts through {+1}. We now have the following result.

Proposition 5.9. Let q: G,, — H be a homomorphism and let f be a spherical
H -representation of virtual dimension 0. If x5 is trivial, then J(f) € kp.

Proof. This follows from Lemma 5.4 and (5.8). O
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Since Zx BGl; (LK(,L)SO) is an infinite loop space, the set [BH, Zx BGl, (LK(n)SO)]
has the structure of an abelian group and S(f +g) is equivalent to S(f) A S(g) with
the diagonal H action. This is compatible with the J-construction in the following
sense.

Proposition 5.10. Let f,g: BH — 7Z X BGll(LK(n)SO) be two maps and let
K C G, be a closed subgroup. Then the natural map

(E NS Agrxc (B AS(@)"E = (ENS(f+9))""

is an equivalence.

Proof. 1t is sufficient to show that the map induces an isomorphism on K(n),
homology. As a consequence of (3.13) we have that

K (n).(E A S(f))"" = map(Gn/K, K(n).5(f))
and, hence, K(n).(E A S(f))"X is a free K(n),E"® module of rank 1. We can
apply the spectral sequence
Tor XM+ F" (K (n). X, K(n).Y)q = K(n)p1q(X Agrx Y)

with X = (EAS(f))"  and Y = (E A S(g)) . Since the higher Tor terms vanish,
the result follows. g

Proposition 5.10 has the following immediate consequence.

Proposition 5.11. Let K C G, be a closed subgroup and let q : G,, — H be a map
to a finite group. The J-construction defines a homomorphism

J(q,—, K) : [BH, BGly(Lg (n)S°)] = Pic(E").

For later use we record the following result, which can be proved using a similar
Tor-spectral sequence, as in Proposition 5.10.

Proposition 5.12. Let S(f) be a K(n)-local spherical representation. Then for
any sequence of closed subgroups K1 C Ko C G the natural map

EMSC A puie, (B A S(f)) M2 — (B AS(F)"E
is an equivalence.

Remark 5.13. By construction, we have a map of G,-spectra S(f) — E A S(f),
where the G,-action on S(f) is defined via the map ¢ : G,, — H. The H-equivariant
homotopy theory may be of interest in its own right, and we’d like to make a
comparison.

For K a closed subgroup of G,,, the map S(f) = E A S(f) and the composition
of the inclusion K C G,, with the map ¢ : G, — H define a map of augmented
cosimplicial G,,-spectra

S(f) ———— F(H**,5())

| |

EANS(f) —= F.(K*TL,EAS(f))
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and hence a diagram of spectral sequences

H*(H,mS(f)) == m_sS(f)"MH

| |

HS(Ka Ets(f) = 7Tt—s‘](Q7f7 K)

Example 5.14. There are variants of these constructions, for example H doesn’t
have to be a finite group. Consider the case of the reduced determinant map
q=¢:G, = G,/G. = Z, We can take BZ, to be the p-completion of S', as
was done in [BBGS22| in constructing the determinant sphere. We set up notions
of continuity of actions can as done in that paper. Then the above results will have
analogous counterparts. For example, consider

f € [BZy, BGli (Lf¢(n)S°)] € m BGli(Lg(n)S®) = (moLr¢(nyS®)*.

If f maps to 1 € EpS® under the Hurewicz map, then x ¢ is the trivial character
and Lemma 5.4 implies that

E.J(f) = E.(EAS(f))"" = E,5°

as a Morava module. Hence J(f) € k,. Using Proposition 5.12; we have an
equivalence of E"Ch_modules

E"Sn A J(f) 2 (B A S(F)MS 2 B"Sn A S(f) = E"S

since G}, is the kernel of . We now apply Lemma 3.8 and the fact that H°(G), Ey) =
Z, to conclude that J(f) € k(GL).

We end with a result relating the J-construction and the subgroups x(K) dis-
cussed in Section 3.1, analogous to Example 5.14 but involving spherical represen-
tations of finite groups as set up at the beginning of this section.

Proposition 5.15. Suppose that K C G,, is a closed subgroup with the property
that the edge homomorphism

moEM — HO(K, Ep)

is onto. Let H be a finite group, and suppose we are given a homomorphism q :
G, - H. Let f: BH — BGll(LK(n)SO) be a spherical representation of virtual
dimension 0 with x ¢ trivial. Further suppose that the composite K — G,, — H is
trivial. Then

J(f) € w(K).

Proof. By Proposition 5.9 we have J(f) € x,. We also have from Proposition 5.6
that

EMCNJ(f) = (E A L (ny SO ~ EME.

Now apply Lemma 3.8. (]
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6. TRUNCATING SPECTRAL SEQUENCES

Here we explain a technique for taking apart some spectral sequences. This will
be used in Section 8 and Section 11, and any close reading could be postponed until
(or even if) it is needed.

Let
= Xy — X — - — X5 — X
be a tower of fibrations in spectra. Write X = {X,} for this tower and X =

holim X for the homotopy inverse limit. If we write F for the fiber of X, — X, _1,
with X_; = %, then we have a spectral sequence with

ENX) =1 o Fy = m_ . X.
Convergence is an issue which we won’t address in this generality.

Example 6.1. Such towers often arise from a Reedy fibrant cosimplicial spectrum
A* = {A°}. Using the partial totalization functors Totg, this writes X = Tot(A®)
as a homotopy inverse limit of a tower of fibrations X = { X} with X, = Tots(A®).
The resulting spectral sequence is the Bousfield-Kan spectral sequence. This begins
with
EPN(A%) = BYY(X) = m-oFy = N°my(A®) := N7 (A®),

where N°® is the normalization functor on cosimplicial abelian groups. Write

BI(A*) C Z3(A*) € Ni(A%)
for the coboundaries and cocyles of this cochain complex and

mimA® = Z;(A®)/B; (A®).
The next page of the Bousfield-Kan spectral sequence then reads

E3'(A*) 2 r°m A® = my_, Tot(A®) = m_ X,

Example 6.2. An important sub-example of Example 6.1 is the Adams-Novikov
spectral sequence and its variants. For us, the K (n)-local E-based Adams-Novikov
spectral sequence is the most important, so we expand some details about it here.
When working in the K (n)-local category we write X AY for Ly, (X AY).

If Y is any spectrum, let E*®* A'Y denote the standard cobar construction; that
is, the augmented cosimplicial spectrum in the K(n)-local category

(6.3) Y — s EAY=—=FEAEANY =...

IfY = EAX for X dualizable in the K (n)-local category, this becomes

(6.4) ENX —>Fo(G,, EAX) == F.(G2_,

EnX) ==,

where F,. denotes the continuous fixed points as defined in [BBGS22, Definition 2.2],
for example. If K C G, is any closed subgroup, the Devinatz-Hopkins definition of
EME s

(B AX)"E =Tot (F.(G,5, E A X)X) ~ Tot (Fu(G,* % Gn /K4, ENX))

and the associated Bousfield-Kan spectral sequence is isomorphic to a spectral
sequence
EyY K, X) = H*(K,E,X) = m,_(E"8 A X).
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If K = Gy, then E"®n ~ L;,)S° and this is the K(n)-local E-based Adams-
Novikov spectral sequence. If K is finite, then the spectral sequence is isomorphic
to the classical homotopy fixed point spectral sequence. A concise reference for all
this is [BBGS22, Section 2], which is a synopsis of many sources, especially [DH04,
Appendix A].

Definition 6.5. Let X be a tower of fibrations and fix an integer 0 < M < co.
Define a new tower X< = {Y;} by

v — Xs,  s< M;
S Xu, s> M.

There is an evident map of towers X = {X,} — X< = {Y;} and the induced
map on homotopy inverse limits is the projection map X — X;;. We will call the
tower X< s the Mth truncated-tower and the resulting spectral sequence the Mth
truncated spectral sequence.

Note that the fiber of Y, — Y,_1 is F, if s < M and contractible if s > M. Write
Byt (X) = E7* (X<n)

for the truncated spectral sequence. If X is the tower of a cosimplicial spectrum
A* we will write

E:;M(X) - Ef,’th(A.)
The following calculation is immediate.

Lemma 6.6. Let A® be a Reedy fibrant cosimplical spectrum. For the Mth truncated
spectral sequence we have

T A®, s < M;
Eyn(A®) = NM(A%)/BM (A%), s =M;
0, s> M.

The induced map

Ey*(A%) = m°mA® — By, (A®)
is an isomorphism if s < M, and zero for s > M. If s = M, this map is the
standard injection. The cokernel is isomorphic to NM(A®)/ZM (A®), which injects
into NMF1(A®) C m AM+L,

We also have a relative version of this construction.

Definition 6.7. Suppose we have two integers M > K > 0. Then we have a map
of towers X<p; — X<(x—1) and we let X3/ = {X7.} be the tower obtained by
taking level-wise fibers. Then we have

o _ fiber of Xy —» Xx_1, K <s< M,
K *, otherwise.

Note that
F,, K<s<M;

%,  otherwise.

fiber of X35, — X5 ' = {



EXOTIC K(2)-LOCAL PICARD GROUP 35

Lemma 6.8. Let A® be a Reedy fibrant cosimplical spectrum. For the relative
truncated spectral sequence we have

ZE(A*) s=K;
S A® K <s< M;
Es,t XM o~ T ’ )
2 XRVE Ny B as), s =
0, otherwise.

One practical application of these truncations is that they can be used to “break
up” differentials and turn various r-cycles into permanent cycles. Specifically, we
will use the following straightforward geometric boundary result.

Lemma 6.9. Let X be a tower of fibrations, and let 0 < K < M < oo be two
integers. Consider the cofiber sequence of towers

P GUESS STTELD STIREIS ) ¢
with a corresponding cofiber sequence in the limit
XML xS X, S ux M,
Let r > 1, and suppose x € E$'(X<pr) supports a differential
d(z) =y € By (X aw),
where 0 < s < K <s+r. Then

(1) g.x € ES'(X<k_1) is a permanent cycle representing a homotopy class
[9+2] € Tt XK1, and
(2) S.[gs7] is detected by y € ESTHIHT—1(X <)) & Eetrttr=1(XM),

Conversely, suppose 0 < s < K, and let € E5'(X<p) be such that g.x €
Es'(X<k_1) is a permanent cycle representing [g.x] € m—sXx_1. If 0.[gx] =
0e Wt,s,lX}‘(/[, then x s a permanent cycle.

Proof. The proof is a chase of diagrams and definitions, such as those from [GJ09,
VI1.2], which is a gloss on [BK72]. For simplicity of notation, in this proof we let Fy
denote the homotopy fiber of (X<pr)s = (X<ar)s—1-
So, suppose © € E$'(X<ys) is given; by definition, this means z is represented
by a map
x:S7% 5 F,
which has a lift £ making the following diagram commute

Xs+r—1 — Xs

1]

St— 2~ F,
In particular, since K — 1 < s +r — 1, there are no obstructions to lifting x to the
intermediate term Xx_q = lim X< _1, proving item (1).

The formula d,(x) = y means that y is represented by the (desuspension of the)
composite

_s T
St s = Xs+r—1 — ZFSJ’_T.
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Now note that we have a commutative diagram of fiber sequences

Xy —— Xg g —>SX Y

b

Xs+r —_— XK—l — EX;(+T3
and the right-hand bottom map gives the commutative diagram

Xer'r‘fl I XKfl

L

SF, . — X5

Here, y is represented by the image of z along the left vertical map. On the other
hand, g.x is represented by the image of ¥ along the top horizontal map. The
image of either to the bottom corner is a class detecting d.[g.x], proving (2).

The converse is straightforward. (I

Part II. K(2)-Local Computations at p = 2

In this part of the paper, we get specific and work at n = p = 2. The main
goal isto compute k3. To do this, we need to use the full arsenal of K(2)-local
chromatic homotopy theory. Even this is not enough, as we will also develop new
tools, and call an academic family of collaborators. Every step of the computation
has required either new theory and deep computations.

So, dear reader, get ready for a long and strenuous hike through the forest of
intricacies that is K(2)-local chromatic homotopy theory at the prime 2!

7. THE SUBGROUP FILTRATION OF Ko

In this section, we discuss the various subgroups of Go at p = 2 and specify
which subgroup filtration we will use to compute xs.

We customarily choose I'y to be the formal group a supersingular elliptic curve
C defined over Fs; this has the advantage of direct access to the geometry of elliptic
curves, although this geometry will be tacit in this paper, subsumed into the body
of work that has led to this paper (e.g. [Beal7, BG18, BGH22]). We then have an
inclusion of the automorphism groups

Aut(F4, C) 4Q> Aut(]F4, Fg) = G2.

The structure of Aut(Fy, C) is well understood. See, for example, [Sil86, Appendix
A]. We have Aut(Fy, C) = Aut(C/Fy) x Gal, where we abbreviate the Galois group
of Fy/FF5 as Gal, and there is an isomorphism

Qg X 03 = Aut(C/F4),

where Qg is the quaternion group of order 8 and C3 = Aut(Qs) is cyclic of order
3. This semidirect product is the binary tetrahedral group.
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Z/ﬁ ba

m

FiGURE 1. The E3 and Fs-pages of the homotopy fixed point spectral sequences
H*(G), Ey) = m_,E"® (top) and H*(Gy, E;) = m_sE"®2 (bottom). Here, B =
Zo, ¢ =7)2, + = Z/4 and x = Z/8. 1If, instead, we let B =W, ¢ = W/2, + =
W/4 and x = W/8, then this is the E5 and Es-pages for H*(S}, E;) = s NS
(top) and H*(S2, E;) = m_sE"S2 (bottom). These computations were done in
[BBGT22].

157 SN

+
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Definition 7.1 (The finite subgroups). Let p = 2 and n = 2. Define the
following finite subgroups of Go

Gas = Qg x C3 = Aut(C/Fy)

Gag = Goyg x Gal = Aut(Fy, C)
Cy C Ga4 = any of the cyclic groups of order 4 in Qg
Cy C Qg = the center of Qg
Cs =Cy x C3 C Goy -

The groups G4g and G4 are maximal finite subgroups in G, and So respectively.
See [Hen19] for more on the finite subgroups of Ga.

All of the homotopy fixed point spectral sequences E"" where F are the sub-
groups of Definition 7.1 have been heavily studied and, indeed, much of what follows
depends on and is driven by that knowledge. See [BG18, Section 2] for a pithy sum-
mary. Note that all of the choices of Cy are conjugate in Ga4, so that the fixed
point spectrum E"“* is independent of the choice.

We record here two additional facts about the subgroups of Go which we use
later.

First, there is an open subgroup K C S, and a semi-direct product decomposition
(72) K~ G24 = Sg.

In particular, Go4 is a quotient of S, as well as a subgroup. This can be found in
many references; for example, see [Beal5].

As in Definition 4.2, we also a have the closed subgroup G} which is the kernel
of (: Gy — Zy. Similarly, S} is the kernel of the restriction of ¢ to Sp. If we let
m € Sy be any class so that {(m) € Zs is a topological generator, then 7 defines a
section of ¢ : So — Zy and we get semi-direct product decompositions

GQgG%X]ZQ and SggSéxZg,
where S} = S, N G3.

Any finite subgroup of Sy is automatically in S}; in particular, both Gos and
7Goym ™! are in S}. They are evidently conjugate in Sy, but not in S. Tt is
customary to write

GI24 = 7TG247T71.

In what follows, we will use a filtration of ko coming from a sequence of subgroups
of Go and the constructions of Remark 3.4.
Definition 7.3. The subgroup filtration of ko is
K(Gé) Q /i(G4g) g KRo.

We can now give a road map for what is to come.
First, the associated graded of the subgroup filtration will be
k(G3) 2 Z/8 ® (Z/2)?
K(Gag) /r(Gy) = Z)2
ka/K(Gag) = Z/8.



EXOTIC K(2)-LOCAL PICARD GROUP 39

The results giving these filtration quotients can be found in Theorem 8.13, Theo-
rem 11.17, and Theorem 12.21. Further, we show that this filtration splits by com-
paring the subgroup filtration with the descent filtration, namely the one arising
from the Adams-Novikov Spectral Sequence. See Definition 3.27. Thus, kg2, C K2 is
the subset of elements so that d,(¢x) = 0 for ¢ < r in the Adams-Novikov Spectral
Sequence for X and for any choice of Go-invariant generator tx of FgX. If G is a
closed subgroup of G, let x,(G) denote the intersection x(G) N kg .

Thus, we will have a diagram, where all the arrows are inclusions
(7.4) kg <—— K(Gag) =— K(GI)

]

#g,5 < 5(Gag) <—— r5(G3)
I<62,7 < l€7(G48) < I€7(G%)

In the end we will show that the diagram of (7.4) maps isomorphically to following
diagram of groups, again with all arrows inclusions.

(7.5) (Z)8)? ® (2)2)3 <——Z/8® (Z)2)> <——Z/8 & (Z/2)?

| | |

(Z)8)? ©Z)2<——T7)8PL)2<——T7/8DL)2

| T |

(z/2)? 7)2 = 72 .

We can then filter this diagram first vertically and then horizontally. Using
Theorem 11.24 and Theorem 12.29 the associated graded becomes

3 Z/2{xn} Z)2A¢(X,2,m) }
5| Z/A{kv} Z/4{Gev} & Z/2{CXn” }
7| Z/2{kn’} Z/2{Cen’}

We have labelled the various generators here, using the following convention.
Suppose X € k2, and 1x € HO(Go, EgX) = Zs is a Go-invariant generator. Then
note that Definition 3.27 implies an inclusion

Ko /Ko ri1— BT (S0),
given by the formula d,(1x) = ¢ (X)ex.

Thus we have labelled the elements of the table by their names in E7"~1(S9),
which in turn have names inherited from Ej"'(S°) & H"(Gs, E,_1). The relevant
part of the group cohomology Eg’rfl(SO) >~ H"(Gq, E,—1), the ds-differentials, and
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the resulting page 5" (S°) were computed in [BBG+22], and are summarized in
Figure 1.
Remark 7.6. It is instructive to compare these results with what happened at
p = 3 and height n = 2. See [GHMRI15]. There the analogous subgroup filtration
collapses to

H(G%) = KJ(G24) - K9
and we had k(G1) 2 Z/3 and r2/k(G3) =2 Z/3. The descent filtration was particu-
larly simple

0=~rog C Koy = k2
and

gf)5 : K2—>H5(G27E4) = Z/3 X Z/3

was an isomorphism. This gave the splitting.

The two summands of Z/8 at p = n = 2 are completely analogous to the two
summands of Z/3 at p = 3; in both cases generators are detected in the decent
filtration by kv and (ev, once we realize the name of v at p =3 is a.

The existence of the extra summands of Z/2 at p = 2 is related to the fact that
there is an extra homomorphism from Ss to Z/2 at the prime 2, see [Henl7, Propo-
sitions 5.2, 5.3]. This is the same complication that gave rise to the modification
of the Chromatic Splitting Conjecture at p = 2; see [BGH22]. Finally, the class in
k(Gag)/Kk(GL) =2 Z /2 arises from the J-construction and, as far as we know, cannot
be produced in any other way.

1
8. THE E"®2-ORIENTABLE ELEMENTS OF THE EXOTIC PICARD GROUP

In this section we start with the calculation of K(G%) C Ko, the subgroup of exotic
invertible elements which have an E"®2-orientation. The complexity of H*(Gaq, E\)
makes this section technically forbidding. The key ideas are all in Section 4, and
the key computational input comes from several sources. We refer to [BBGT22]
for results about the cohomology H*(Ga, E,) and H*(G}, E.). We also refer to
[BGH22] for the computation of . E"®2 in a range. We freely use the notation
established in these sources.

Recall that in Theorem 4.19, we proved that
K(Gy) = H'(G2/Gy, 1+ A)
where A is the subgroup of WthG% of elements of positive Adams—Novikov filtration.
We calculate the group 14+ A in Proposition 8.5 and show that the action of G, /G4 =
Zs is trivial in Proposition 8.6 and Proposition 8.9. This allows us to determine

k(GL) in Theorem 8.13. In Theorem 8.16, we compute the descent filtration of
k(G3).

Lemma 8.1. The unique non-zero class
w € m_yB"C: Z)2

is detected by the non-zero class X € H*(G}, Eg) =2 7Z/2. The class w is the image
of a class wg € W,QLK(Q)SO of order 2 under the map

W_QLK(Q)SO — W_gEhG;.
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Furthermore,
7T72LK(2)SO = Z/2 ©® Z/2,

generated by wg and (won.

Proof. By [BGH22, Corollary 9.1.8] we have that
r_E"G: > 7/2
T_oEMG: = 7,/2

generated by elements detected by xn € H?(G}, Ey) and ¥ € H*(G3, Ey) respec-
tively. The latter class detects w. It then follows from the fiber sequence

Li(2)S° — E"%: — Ehe
that we have an exact sequence
0—Z/2 — m_3Lg(2)S° — Z/2 — 0.

The generator of the subgroup in this extension is detected by (xn € H*(Gs, E»),
and there is a class wg € W,QLK(Q)SO detected by X € H?(Gs, Ey) which generates
the quotient. To prove the lemma, it suffices to show this sequence splits, i.e. that
wq has order 2.

If the sequence is not split then the class in the kernel becomes trivial when
passing to m_o L2V (0). But, by [BGH22, Theorem 8.2.6] both classes are non-
zero under the map

H*(Gy, E.) — v; "H*(Gy, E.V(0)).

By [BGH22, Theorem 8.3.5] they detect non-zero classes in . Ly 1)L 2)V(0).
Thus the sequence is split as needed. ([

Lemma 8.2 ([BGH22, Corollary 9.1.8, 9.1.9]). There is an isomorphism
T B2 = 2,{1} @ Z/8{x} @ Z/4{y},
where the generators y and x have the following description.

1) The classy € 7T0Eh(c"i can be chosen to be either of the two elements in the Toda
bracket (w,2,n), and is detected by the Massey product

627 2377> € HZ(G%7 E2)

The class 2y is then detected by xn> € H*(GL, Ey).
2) The class © € moE"®> is detected by ev € H*(GL, Ey). The class 4z is detected
by en® € HS(G3, Es).

In particular,
(8.3) AN=2Z/8{z}®Z/4{y}.
Corollary 8.4. In the spectral sequence

E3'(GY) = H*(GL, Ey) = m_ E"®2,
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we have
Z2{1} s=0
Z/2((%,2.)} s=2
B3 (GY) = { 2/20n°%) @ Z/4{ve} s =14
7.)2{n3e} 5s=6
0 otherwise.

Furthermore, EY°(GY) = E9O(G)), and, for 0 < s < 6, we have EXF = B35 (GY).

Proof. The Es-page of the spectral sequence was computed in [BBGT22, Section
8]. See Figure 1 for a figure illustrating that computation. The classes listed
are permanent cycles by Lemma 8.2. For degree reasons, they cannot be hit by
differentials. Therefore, they survive to the E..-page and account for all of the
classes in the homotopy group WthGé. It follows that there can be no non-zero
classes in higher filtration at E. The claim about the stabilization of EJ}(G3)
is immediate from the computation in [BBG*22]. O

Proposition 8.5. There is an isomorphism

1+A=Z/8@ (Z/2)2.

Proof. In [BGH22, Corollary 9.1.9] it is shown that 2% = 0 and
v =2y + 2z

for some integer [ which only depends on its congruence class modulo 4. Further,
xy has Adams-Novikov filtration at least 6, so we have

xy = dex
for some € = 0 or 1. Then
lI+2)"=14+nz
(1+y—lz)*=1.
Thus 1+ A 2 Z/8 ® (Z/2)? generated by 1+ z, 1 +y — Iz, and 1 + 2y. O

The next step is to show that the Zs =2 Go/G} action on 1 + A is trivial; this is
equivalent to showing that the action on A is trivial.

Proposition 8.6. The class y € WthG; is invariant under the action of Go/G}.
Proof. The class w of Lemma 8.1 is the image of a class wg of order 2 under the

map ﬂ_QLK(g)SO — W_QEhG;. Once we have wg we can form the Toda bracket
(wo,2,7m). So, by Part (1) of Lemma 8.2, we see that y is in the image of

WoLK(Q)SO *)’/T()EhG;. [l

Our next goal is to prove the invariance of x.

Remark 8.7. In [BBG'22, Lemma 7.2, we proved that the action of Go/G} on
H*(G3, E}) is trivial in the range 0 < t < 12.
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The triviality of the action of G2/G3 in cohomology implies that the action of
G2/G) on E%#(GL) is trivial, but this is only the associated graded of 7o E"C2. In
particular, this result is not enough to show the class z is invariant, because 4x is
detected in higher filtration. So, we will use the technique of truncated spectral
sequences, from Section 6 to discuss the invariant of x.

As in Example 6.2 and [DHO04], the spectral sequence
Ey' = H*(Gh, By) = m_ E"®

is constructed as the K(2)-local E-based Adams-Novikov Spectral Sequence; that
is, as the Bousfield-Kan Spectral Sequence of the augmented cosimplicial K (2)-local
spectrum

E"S: 5 Br A ERGe = At
Using the partial totalization functors Tot,,, this writes EhG: a5 a homotopy inverse
limit of a tower of fibrations X = {X}

= Xy — X — - — X — X

with X, = Tots(E**! A E'G2). The limit X is then E"®2. We will work with the
truncated tower X<g with Xg = holim X <. See Section 6 for the definitions and
notation.

Lemma 8.8. In the Adams-Novikov tower X under X = EhGé, the map
WthGé — moX¢g

s an injection.

Proof. In the Adams-Novikov spectral sequence
H*(G), E,) = m_ E"C>
we have ES° =0 for s > 6 by Corollary 8.4. Now use Lemma 6.6. ]

Proposition 8.9. Let x € 71'0Eh(G’é be any class detected by ev € HY(G3, Ey). Then
x is invariant under the action of Go/G3.

Proof. Truncation is natural in towers of fibrations and the cobar construction
X — BE*+*! A X is natural in X. Let ¢: E"®2 — EhC2 be the map induced by the
action of a topological generator ¢ € Go/G3. This induces a map

'LZJ : XSG —>X§6

of truncated towers and hence induces a map of truncated spectral sequences. By
Lemma 8.8 it is sufficient to show that = € 7y X is invariant; that is, ¢ (z) = x.

Te class x is detected by
ev € H4(G%7E4) = Eg:éﬁ(A.)v
and by Part (2) of Lemma 8.2, we know that 4z is detected by
en® € HY(GY, Eg) C By 2g(A°).
The advantage of working with X is that this class represented by en? is in

fact a product of n® and a class detected by e. Indeed, we now turn to the class
e € H3(Gi, Ep), which is invariant by Remark 8.7. It was shown in [BBG'22,



44 BEAUDRY, BOBKOVA, GOERSS, HENN, PHAM, AND STOJANOSKA

Proposition 8.3] that ds(e) = 0 in the Adams-Novikov spectral sequence. By natu-
rality, the same is true in the truncated spectral sequence, where longer differentials
on e are not possible. Thus there is a class z € m_3Xg detected by e. We do not
know that z is invariant, but we may conclude

Y(z)=z+b
where b has filtration 5.
Now we have that zv and x are two classes of order 8 in 7y Xg which are detected
by ev € H*(G3, E4). If we write
v=zv—T
then v € ES,EES(A.) is torsion. But by Lemma 6.6, we have an inclusion
H®(G3, Es) C Ey'2(A%),

whose cokernel is a summand of 7, (A”), so is torsion-free. Thus v must be detected
in H%(G3, Es). The group H®(G3, Eg) is invariant under the action of Go/G3, by
[BBGT22, Lemma 7.2]. Since this is the top filtration of m9Xs, any class in moXg
detected by an element of H%(G3, Eg) C ES%(A®) must be invariant. We conclude
that v is invariant, thus zv is invariant if and only if x is.

So finally, we show that zv is invariant to complete the proof. Since )(z) = z+b
for b detected by a class in H?(G}, Es), and v is invariant, we have that ¢ (zv) =
2v + bv. We computed in [BBGT22, Table 2] that all classes in H°(G3, F3) are
multiples of 1, thus b must be a multiple of 1. See also Figure 1. Since nv = 0, we
get that by = 0, and so ¥(zv) = zv as needed. O

Now we combine the above results into the following consequence.
Theorem 8.10. The action of Go/G} on WthG; is trivial. In particular, the map

WQLK(Z)SO — WthGé defined by the unit of 7TOE(G’é 18 surjective.

Proof. The first claim follows from Proposition 8.6 and Proposition 8.9 and the fact
that the unit is fixed. The second claim follows from the fact that the image of the
unit map on 7 is the kernel of 1) — 1 for ¢ a topological generator of Go/G3. O

As an aside, this also allows us to compute W,lLK(Q)SO.

Corollary 8.11. There is an isomorphism
m1Lg(2)8" = Zo{C} ® Z/8{Cx} © Z/4{Cy} ® Z/2{nwo}.

Proof. The fiber sequence

—1
(8.12) Lic(2)S° Ehey L7 phes
gives an exact sequence
FthG; 46> 7T_1LK(2)SO e F_lEhG%

which we prove is split short exact. For injectivity of 0, we use that the kernel is
the image of ¥ — 1 acting on ﬂthG%, which is zero by Theorem 8.10. By [BGH22,
Corollary 9.1.8], we know that m_1 EhC: o Z,/2 generated by wn, which is the image
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of won by Lemma 8.1. Since wgn has order 2, the sequence is split. Note that the
map 9 is multiplication by (, giving the claim. ([

Combining the results proved above, we get the following explicit identification
of the group of EMG2_orientable elements of Ko.

Theorem 8.13. The twisting construction a — X (a) of Definition 4.9 gives an
isomorphism

Z/8® (Z/2)? =1+ A = k(G3).

Proof. By Theorem 8.10, the action of G5 /G4 on 1+A is trivial. Thus Theorem 4.19
gives the isomorphism between #(G1) and 1 + A. The identification of 1 + A is
Proposition 8.5. O

Now we turn to identifying the descent filtration on x(G3). To do that, we will
use Theorem 4.27, which requires us to check one more technical condition. We
check that condition in Proposition 8.15, for which we’ll use the following input.

Lemma 8.14. In the homotopy fized point spectral sequence for G = Go and G,
the class

n*k € H (G, Eg)

is a ds-cycle.

Proof. Tn [BBG*22, §8], we compute the Es-page Fi'(G) of both homotopy fixed
point spectral sequences in a range. See Figures 12 and 13 of that reference. In
particular, we show that k € Ey°(G) is a ds-cycle. Therefore,

ds(n*k) = n’ds (k).
But
Z]A{vk*} @ Z)2{n*ek} G=G}
Z)A{vk?, Cvek} © Z/2{n*ek} G = Ga.
Since n?v = 0 and we prove that n°ek = d3(uck), it follows that
ds(n°k) € n*(E5(G)) = 0. O

ds(k) € B;H(G) = {

Proposition 8.15. For 2 < s <7, the sequence
0= B 7UGY) S B3 H(Gy) 1 ESTHGE) = 0
is exact, where i, is the restriction.
Proof. The triviality of the action of Zy = G2/G3 (see Remark 8.7) gives such an
exact sequence on Es-pages. In [BBG'22, §8], we computed the ds-differentials in

a range. See Figure 1 above. From that explicit determination of E}*(Gy) and
EXY(G}) for 2 <r <5and 0 <t < 10, we conclude that we have an exact sequence

0= E5H(GY) & E3H(Ge) = EXYGL) — 0

in that same range.
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In particular, our sequence is exact at the Es-page for 2 < s < 5. Since the Fjg
and E; pages agree, it remains to check that this is also true at the E;-page. At
FEs5, we have the short exact sequence

T

0 — ESS(GL) — = E%(Gy) — > EIS(GL) —> 0

0——=2Z/2{n’e} —=Z/2{¢n’e,n’k} ——Z/2{n’k} —0.

From Lemma 8.2, we know that n®e is a permanent cycle in the G}-spectral se-
quence, and from Theorem 8.10, we get that it remains a permanent cycle in the
Gg-spectral sequence. Hence (ne is also a permanent cycle. From Lemma 8.14,
n3k is a ds-cycle, hence it survives to the E;-page.

The dj differentials that have ES®(G}), EL®(Gy), and EL®(G)) as targets orig-
inate in
Eg*(Gy) =2/2{n}, E3*(G2) = Z/2{(X,2,m),n¢}, E3*(G3) = Z/2{(X,2,m)},
respectively. However, 7, n¢ and (X, 2,7n) are permanent cycles. For (¥,2,7n), see
Lemma 8.2 above. Therefore, the exact sequence remains the same at the Fr-
page. (I

Finally, we apply Theorem 4.27 to study the filtration on x(G}).
Theorem 8.16. In the filtration

0 C k7(G3) € £5(G3) € 3(Gy) = K(Gy) X Z/8 x (Z/2)?

we have isomorphisms

K(GY)/r5(Ch) — 2> Z/2{C(X, 2.m))

k5(GY)/kr(CY) —2> Z/4{Cev} x Z/2{CRn?)

k7 (GY) - Z/2{Cen’}.

Proof. We apply Theorem 4.27 with N = 7. Conditions (i) and (ii) follow from
Corollary 8.4, while condition (iii) is checked in Proposition 8.15. The identification
of the filtration quotients follows from Corollary 8.4. O

9. DuALITY RESOLUTIONS

A crucial tool for analyzing the rest of ko is the Duality Resolution of the half
sphere E"S2. In this section we recall the basic material.

The algebraic duality resolution, first introduced by Goerss—Henn—Mahowald—
Rezk and developed in detail in [Beal5], is a device for isolating the contributions
of finite subgroups F to the cohomology of S}; similarly the topological duality
resolution of [BG18] isolates the contributions of 7, B to ﬂ'*EhSé. Some of the
basic finite subgroups of Go were defined and discussed in Section 7.
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The Algebraic Duality Resolution is an augmented exact complex of continuous
Zs|[[SA]]-modules

0 = Z[[S3/F3]] = Z[[S3/ Fal] — Zo[[S3/F1]] — Zo[[S3/Fo]] — Zo[[S3/F-1]] = 0
where
(9.1) F =8}, Fy=Ga, Fi=F,=Cs F;3=Ghy.
Note Zs[[S3/F_1]] = Z is the trivial module.
We then induce up to a sequence of Zs[[Gz]]-modules
(9.2) 0 = Zo[[G2/Gosl] =Z2[[G2/Cg]] = Z2[[G2/C]|
— Zo[[Ga/G24]] = Z2[[G2/S3]] — 0.
Since G4, is conjugate to Ga4 in Go, we have dropped the distinction. We write
d=dy: Lo[[Go/Fpl] = Zo[[G2/Fp—1]],  0<p<3.
We next apply Homg, (—, E.) to the sequence (9.2) to obtain an exact sequence
of Morava modules
0 — map(Ga/S;, E.) = map(Gy/Gaa, E.) — map(G/Cs, E,)
— map(Gz/Cs, Ex) = map(Ga/Gag, E.) — 0.
By Remark 2.4 this is isomorphic to an exact sequence of Morava modules

(9.3) 0 — E,E": E,E" _ B, E"0 5 B, E"C — B, EMG (.

The project of the Topological Duality Resolutions from [GHMRO05] or [BG18]
is to realize such sequences as maps of spectra.

Remark 9.4. There is some ambiguity here; for example, the Morava module
map(Gz/Gay, E,) is 24-periodic, but the spectrum E"“24 is only 8 - 24 = 192 pe-
riodic. In the language of Definition 3.16 we can produce an algebraic periodicity
class

A€ HO(G24, E24)

as the discriminant of a deformation of the unique supersingular elliptic curve over
F,. Then A® is a permanent cycle and

T192E"C? — H®(Ga4, E192)
is an isomorphism. Thus A® detects a topological periodicity class. We will use

these classes in our constructions below.

The main theorem of [BG18] produces a sequence of spectra
(9.5) [hSs _y ghGaa _, phCe _, phCs _, 5148 hGaa

realizing the sequence (9.3) of Morava modules, and called the T'opological Duality
Resolution. All the maps in (9.5) are algebraic in the sense of Definition 3.21 for
d = A. Furthermore, all compositions are zero and all Toda brackets in (9.5)
contain zero, so the sequence refines to a tower.

Definition 9.6 (Duality Spectral Sequences). For Fs as in (9.1), we get the
following spectral sequences.
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(1) If X is any spectrum, then the spectral sequence of the tower gives the
Topological Duality spectral sequence for X

ESHX) = my(E"Fe A X) = m_o(E"S2 A X).

(2) Let M be a Morava module. The original sequence of Zy[[Si]]-modules and
the Schapiro Isomorphism gives the Algebraic Duality spectral sequence

EPI(M) = HP(Fy, M) = H"™(S3, M).
for any appropriate Zs|[[S}]]-module M.

We now have two ways of calculating mEhSé from H*(F,, E,) encoded in the
two ways around the following square

H(F,, E,X) =2EESS o o (EM A X)

ADSSH/ \H/TDSS

HEP(S}, B X) = T s p(B"2 A X)),
We hope the acronyms are clear. In general these two methods have a relatively
complicated relationship, but under certain hypotheses we can deduce some infor-
mation. The hypotheses of the following result are crafted to ensure there are no
exotic jumps of filtration in related Adams-Novikov Spectral Sequences. The proof
is exactly the same as for [BGH22, Lemma 2.5.11].

Lemma 9.7. Let x € WnEhSé. Suppose

(1) the class x is detected by o € HP(S}, E;X) in the ANSS, son =1t — p;
(2) the class x is detected by y € m,(E"M» A X) in the TDSS; and,
(3) the class y is detected by B € H(F,, E;X) in the HFPSS.

Then « is detected by B in the ADSS.

10. AN UPPER BOUND FOR THE (4g-ORIENTABLE ELEMENTS

We continue to examine the subgroup filtration
H(G%) Q KJ(G48) g KRo.

of ko given in Definition 7.3. In this section we give an upper bound on the filtration
quotient #(Gug)/k(G3). This group is the group of elements in ko which have an
E"Gas_orientation, but cannot be given an E"®2_orientation. In this section we will
show that there is an injective homomorphism x(Gus)/k(G3) — Z/2, hence this
group can be at most of order 2. In the next section we will show that this group
has order 2, by constructing and examining a non-zero element in x(Gys)/k(G3). In
some sense, these two sections contain some of the main innovations of this paper,
as it is here we depart considerably from the program laid out in [GHMR15] at the
prime 3.

Recall from Definition 3.3 that x(K) C k2 is the subgroup of invertible spectra
X with an orientation class z € mo(E"® A X); then z extends to an equivalence



EXOTIC K(2)-LOCAL PICARD GROUP 49

@, : BME ~ KA X of EMS_modules and defines a Go-invariant generator tx €
FEoX. As in Definition 3.27, we introduce a homomorphism

(10.1) 3+ ke — H*(Gy, Ba) = Z/2{Xn}

by the equation
ds(1x) = ¢3(X)ex

where d3 is the differential in the homotopy fixed point spectral sequence
H*(GL, B X) = m_,(E"®2 A X).
We will prove that x(G3) is the kernel of the composition

1

c ®3 ~
K(Gas) — tg — H*(G}, Bz) = Z/2{Xn}

and thus obtain an injective group homomorphism r(Gus)/k(G3) — Z/2.

The main idea is that given X € rx(Gys), if we can factor the orientation class

EMS2 A X

7z
e
e
re
7

S0, EhGas p X
z

then we would have X € x(G}). Note that x(G3) = x(S}) by Proposition 3.10,
so it is equivalent to lift to E"S2. We will examine the obstructions to this latter
lifting the using the Topological Duality resolution.

10.1. Untwisting the Topological Duality Resolution. A key observation for
this section is that if X € x(Gyg) then, the first two pages of the Topological Duality
spectral sequences for S° and for X agree. The claim for the first page is clear, and
the point of this subsection is to prove the statement for the second pages.

The Topological Duality resolution was defined and discussed in Section 9. In
the next result, the groups F; C Go are the finite subgroups that appear in the
Duality resolution: Fy = F3 = Ga4 and Fy = F5 = Cg. The resolution itself is

FhS} FhGaa _ 4 phCs 4 phCs __ @ 548 phGay

To prove our untwisting result, we need some facts about the Hurewicz homomor-
phism.

Lemma 10.2. Let Hy, Hy € {Cgs,G24}. The Hurewicz map
m F(E" | BM2)  Homgy,. (EgEM!, E,E"H2)
8

(1) ingective if t =0 modulo 48, and
(2) bijective if t = 0.
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Proof. By [GHMRO5, Proposition 2.7] we have a commutative diagram
1 B[Go/ Hi )" —————— (E,[G2/H\])™"

iu lu

m F (B BH2) o Homgy, (Eo EMIY, By EMI2)
where the horizontal maps are the Hurewicz homomorphism. The top arrow is a
limit of Hurewicz maps
(10.3) B — HY(F, Ey)
for various subgroups F' C Ga4 (see [BG18, Sec. 2], [BBHS20], [Bau08]|, [DFHH14]
and [MR09] for computation of 7, E"¥). The maps (10.3) are all injective under
our condition that t =0 mod 48. Indeed, any class in 7, " has Adams-Novikov

filtration O in these cases. Furthermore, when ¢ = 0, the Hurewicz maps (10.3) are
isomorphisms for F' C GGo4. This proves the claims. U

Now let X € k(Gug) and let
z € mo(EM%s A X)
be a choice of E"G4s_grientation. For 0 < i < 3 we get an induced orientation
z € mo(E" A X)
and hence an equivalence ; : EM% — EM A X of EMi-modules.
Proposition 10.4. The following diagram commutes up to homotopy

EhG24 d EhCG EhCe Z48EhG24

.| .| | o

EhG24 AX dAlX; Eth AX 5 EhCe AX S E4SEhG24 AX.

d d

Proof. By Lemma 10.2 and the fact that EMAX ~ EM for F = Cg, Goa, we need
only check that the diagram commutes after we apply E.(—). This follows from
Proposition 3.22. (]

Note we have made no claim about extending Proposition 10.4 to the augmen-
1
tation from E": — EPG24; indeed, the existence of a map completing the diagram
EhSé EhGaa
\
‘ lm
Y

EMS: N X ——s EhG2 p X

is equivalent to the assertion that X € x(S3).

As an immediate consequence of Proposition 10.4, we have the following conclu-
sion.

Corollary 10.5. Let X € r(Gag) and let z € mo(E"%s A X) be a choice of an
EhGss _orientation. Then z determines an isomorphism between the Es-term of
the Topological Duality spectral sequence for S° and the Ey-term of the Topological
Duality spectral sequence for X.
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10.2. Analyzing the obstruction. Let X € x(Gyg) and let z € my(E"“1s A X)
be an E"Gs_orientation. If F C Gyg is any subgroup, we write z € mo(EM A X)
for the induced E"F- orientation. If F is the trivial subgroup we will also write
tx € FpX for the induced Go-invariant generator.

We now examine the obstructions to lifting z : S© — E"&21 A X up the duality
resolution tower

EMSa A X

/
/ ‘X'2 > 246EhG24

VLD cpu— LS N e

EMCs A X

S0 — EMG2a A X
This is equivalent to computing d,.(z) in the Topological Duality spectral sequence
ESYX) = m BN A X = m_ JE"2 A X,

Note that this is a spectral sequence of W-modules as WthS% acts on the spectral
sequence.

We first record some results of [BGH22] about the Topological Duality spectral
sequence for S°. See Remark 9.1.5, Theorem 9.1.7, and especially Figure 6 of
[BGH22|, which we also included in Figure 2.

Lemma 10.6 ([BGH22, §9]). In the Topological Duality spectral sequence for S°,
we have

(1) ES°(S%) =W generated by a class detecting the unit element of ToEhSz,
(2) E% O(SO) =~ W/2 generated by a class by detecting the class X.

(3) Ey (SO) & W/2 generated by class by detecting the class X1.

(4) Ey*(5°) =

Proposition 10.7. Let X € r(Gag) and let ES*(X) be the Topological Duality
spectral sequence

ESYX) = my(EM"Fe A X) = m_o(E"S2 A X).
Let z € mo(EM924 A X) = EY° be the induced E"G2+-orientation. Then
(1) di(2) =0, B
(2) da(2) € E = W/2{nboz},
(3) if do(2) = 0, then z is a permanent cycle and X € k(G3) = k(S}), and
(4) if do(z) # 0 then m_1(E"S2 A X) = 0.

Proof. Proposition 10.4 implies that we have an isomorphism

Ey7(8°) = By (X)
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| e | 7

— T

FIGURE 2. The Ey-page of the Topological Duality spectral sequence for S°. The
vertical axis is the Topological Duality spectral sequence filtration s and the hor-
izontal axis is t — s. Further, B = W, e = [F,, and the circled bullet repre-
sents Eg’?’ >~ W/8. Horizontal lines are n-multiplications and curved lines are
v-multiplications.

sending a to az. Then (1)—(3) follow from Lemma 10.6 and Figure 2. For point (4)
note that w_l(Ehsé AX)isa ﬂthsé—module and hence a W-module. The smallest
non-zero W module is Fy; hence if do(2) # 0, we must have 7_; (EhSé AX)=0. O

We also have that following result, which we will use in the proof of Proposi-
tion 10.9.

Lemma 10.8. Let X € k(Gag). Let z € mo(E"G> A X) = EYY be the induced
E"G2a_orientation and 1x € EoX the induced Go-invariant generator. Then we
have

T_oE"S: A X 2 W/2.

The generator y is detected by
boz € BS*(X)

in the Topological Duality spectral sequence and by

Xtx € H*(S3, EgX)
in the Adams-Novikov spectral sequence.
Proof. All but the last statement follow from Lemma 10.6 and Figure 2. The last
statement follows from Lemma 9.7 with 8 = by z and the fact that by detects X in
the Algebraic Duality spectral sequence, as shown in [BGH22, Lemma 5.2.10]. O

Proposition 10.7 defines a function

k(Gag) — W/2
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sending X to da(z). Because the Topological Duality spectral sequence does not
have good multiplicative properties it is not clear if this function is a homomor-
phism. We would also like to cut down the image to Z/2. To do all this, we relate
it to a differential in the Adams—Novikov spectral sequence.

Proposition 10.9. Let X € r(Gyg) and let z € mo(E"924 A X) be an EMG2a-
orientation induced by an E"C4s-orientation of X. Let

1x € H(Gy, EoX) C HY(GL, EyX) C EgX
be the Go-invariant generator determined by z.

Then da(z) # 0 in the Topological Duality spectral sequence computing ﬂ*(EhS; A
X) if and only if

ds(tx) = Xnix € H*(Gy, E2) = Z/2{Xnux }

in the Adams-Novikov spectral sequence computing m(EhGé AX).

Proof. We use Lemma 10.8. Let y € m_o(E"2 A X) be the class detected by byz in
the Topological Duality spectral sequence and Ytx in the Adams-Novikov spectral
sequence. Suppose

dy(z) = abonz € B3N (X) = W/2{bynz}, 0#aecW/2.
Then point (4) of Proposition 10.7 gives that
yn=0¢ 7r_1(EhSé AX).

However,
0 7é %TN’X € HS(S;EQX) = HB(S%aE2)

See Figure 1. Because xnux detects yn = 0, we must have (for degree reasons) that
ds(tx) is a non-zero multiple of X7 x.

Since we have a map of spectral sequences

(10.10) H*(GL, B X) —= m_ E"® A X

| |

H*(S, By X ) == m,_ E"S> A X.
and the map on Fs-terms is an injection onto the Galois invariants we exactly have
d3(Lx) = Xntx
as needed.

For the converse, if da(z) = 0, then X € x(G3i) by Proposition 10.7 so tx

is a permanent cycle in the Adams-Novikov spectral sequence for EMG: A X by
Proposition 3.5. (I

For the next result, we recall that the homomorphism ¢3 was defined in (10.1)
(c.f. Definition 3.27). It is given by the formula

d3(ix) = ¢3(X)ix
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where tx € FpX is any Go-invariant generator and ds is the differential in the
spectral sequence

(10.11) H*(GY, B, X) = m_ E"®2 A X
Theorem 10.12. The composite

#(Gas) = Kz 25 HY(GY, Ba) = 2/2{nx}
induces an injective homomorphism
#(Gas) K(GL) > 22

Proof. Let X € x(G}). Then by Proposition 3.5 the class ¢x is a permanent cycle
in the spectral sequence of (10.11). Therefore, ¢1(1x) = 0 and so x(G3) is in the
kernel of ¢3.

Now, suppose that X € x(G4g) is in the kernel of the composite. Then d3(tx) = 0
in the spectral sequence of (10.11). Then Proposition 10.9 implies that da(z) = 0
in the Topological Duality spectral sequence for X. By Proposition 10.7, X €
k(G3). O

11. THE G48-ORIENTABLE ELEMENTS OF THE PICARD GROUP

In this section we compute x(Gag), the group of E"“s_orientable elements in
k2. The main result is Corollary 11.23. We begin by finding and analyzing a
non-trivial element in x(Gys)/k(G3); that is, we will find a spectrum @ which has
an E"Cis_orientation that cannot be refined to an E"Cz-orientation. We will use
Theorem 10.12; thus we need to find @ € k(Gys) so that ds(tg) # 0 in the spectral
sequence

EZ(G%? Q) = HS(G%’ EtQ) = 7ths(E‘hGé A Q)
To do this we will use the J-construction as in Section 5 and some classical Cs-
equivariant homotopy theory.

Let o be the one dimensional real sign representation of C';. We have an isomor-
phism
Zlo]/(c? — 1) =2 RO(Cs)
describing the real representation ring of Co. The augmentation RO(Cs) — Z sends
a representation to its virtual dimension; the augmentation ideal I(C3) is of rank
1 over Z generated by o — 1.

Now take x: Gg — (Z2/4)* = C5 to be the surjective homomorphism of Defini-
tion 4.4, whose kernel we called G3. Given any virtual representation V € RO(Cy),
we get an action of Gy on SV by restriction along x. Recall from Example 5.2 and
Proposition 5.11 that we get a homomorphism

J: RO(CQ) — PiCQ,
defined by the formula

J(V) = (E NSV,
This uses the diagonal action of Gg on the smash product.

Applying Proposition 5.6, we have that if K C G is a closed subgroup, then
E"MEAJ(V) = E"A(EASY)C2 ~ (EASVYE,
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so that in particular, if K is in the kernel of y, then we obtain an equivalence
EME A J(V) = BdimV ghE

Let V € I(Cy) and let j = jy € moSY = Z a chosen generator. Define 1 = 1y €
EySY to the the image of j under the Hurewicz map. We have an isomorphism of
Morava modules

T (EANJ(V)) 21, (EASY) 2 E, @5, EoSY
where G5 acts diagonally on E,®p, EoS". In particular, if V € 1(C3)? = (2(6—1)),
tyv is a Ge-invariant generator and J(V') € k3. Compare Remark 5.7.
Lemma 11.1. If V € I(Cy), then there is an equivalence of E"%4s -modules
EhCGas ~ phGas A (V).
va € I(CQ)Q, then J(V) S H(G48).

Proof. Note that Goy C Sy is in the kernel of the determinant (Definition 4.1),
since there are no non-trivial group homomorphisms Go4 — ZJ . (See, for example,
Remark 5.1.6 of [BGH22] for this last fact.) Then Gys is in the kernel of x, and the
first statement follows. The second statement follows from the first by Lemma 3.8,
since vy gives E,J(V) a Ge-invariant generator by the above discussion. O

Now we come to the star of this section.
Definition 11.2. Let @ € x(G3) be the spectrum
Q=J(20 —2) = (EAS> 72

By Lemma 11.1, we know that @ is an element of x(G4s), and we will show that
its class in the quotient x(Gys)/k(G3) is non-trivial. We will also make an analysis
of 2Q) ~ J(40 — 4) for use in solving extension problems.

For any virtual Cy representation V', there is a Cy-equivariant map
SV EMCE A SV
hence a map
(S8Y)hC2—(B"S2 A §V)hC2 ~ J(V).
In the next subsection, we will use standard methods in equivariant stable homotopy

theory to give a partial analysis of (SV)"“2  which will help us analyze Q and apply
Theorem 10.12.

11.1. Some Cs-homotopy theory for representation spheres. In this sec-
tion we write down some classical homotopy theory for the homotopy fixed points
(SV)hC2  where V is a virtual representation of the cyclic group of order 2.

There is a small and geometric model for FCs; namely, S = US™ with the
antipodal action. In a coincidence forced on us by the fact that Cy is a very
small group, S is equivariantly homeomorphic to the geometric realization of the
standard simplicial model for EC5 obtained from the bar construction. Thus for
any Cy-spectrum X, its homotopy fixed points can be expressed as

X" ~ Tot(F(CH, X)) ~ F(X,5%, X).
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Indeed, for each m there is an equivalence Tot,, (F(C3™, X)) ~ Fo,(X28™, X).
We could use either of these descriptions to construct the homotopy fixed point
spectral sequence

H¥(Co,mX) = m_ X",

as the Bousfield-Kan spectral sequence of the respective towers giving X2 as a
homotopy limit

X"“2 ~ holim Tot,, (F(Cs**, X)) ~ holim,, Fe, (X3 S™, X).

If V is a virtual Cy-representation, then SV is dualizable with Spanier-Whitehead
dual S~V; thus we have

(SV)"% ~ holim,, F(SFS™ Ac, S7V, S°).
From this we get that the basic objects of study are the spectra
EES™ Ne, "7, ny,meZ, m>0
and their Spanier-Whitehead duals. As above, o is the sign representation.

In the following we will confuse the (pointed) projective spaces RP™ with their
suspension spectra. We will do this throughout, letting context indicate whether
we are working with the space or the spectrum.

Let £ be the tautological line bundle over RP* and let T denote the Thom
spectrum functor; we arrange our conventions for this functor so that if v is a
bundle of virtual dimension k, then the Thom class is in H*(T(7y),Fs). By [Hus94,
Theorem 1.8 of Chapter 16], we have that for all n € Z, the Thom spectrum of n¢
is identified as

(11.3) LS Ne, S™7 ~ T (n€) ~ RP;Y.

Here, if n > 0, then RPS° = RP*®/RP"™ ! is the (suspension spectrum of ) truncated
projective space; if n < 0, this formula is the definition of RP;°. Note that if n = 0,
RP° ~ X°RP>, while for n = 1 we have RP{° ~ X°RP, which we write as
RP* according to the convention above.

If &, denotes the restriction of £ to RP™, then
(11.4) EPS™ Ag, 8™~ T(n&,,) ~RP",
where again this formula may be needed to define the truncated projective space.

Note again that Hy(RP”"" Fy) # 0 only for n < k < m + n. Colloquially, we say
that this spectrum has bottom cell in dimension n and top cell in dimension m + n.

The virtual bundle &, —1 on RP™ has finite order; indeed, this order is a number
cm related to the Adams vector field number. The original source for this result is
[Ada62], but it can be found conveniently in [Hus94, Chapter 16, Theorem 12.7],
with an explicit formula in [Hus94, Chapter 16, Remark 11.1]. This gives James
Periodicity for truncated projective spaces

Cm +n Cmt+m+n
(11.5) nemRPIHT o RPen I,

In particular, the following classical result will help calculate differentials in the
Cs-homotopy fixed point spectral sequence of a suitable representation sphere.
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Lemma 11.6. For all n, there are equivalences of spectra
YARPIT? ~ RPRTS, SIRPITS ~ RPITT and  SSRPITT ~ RPITP.
In addition, we have an equivalence of spectra

RP? ~ RP? v §5.

Proof. By [Hus94, Chapter 16, Theorem 12.7] the virtual bundles &, — 1 on RP?, as
well as é3—1 on RP? have order co =4 = c3, while &, —1 on RP7 has order Cm = 8.
So, the first three statements follow from James Periodicity (11.5). For the last
statement, note that RP® is the manifold underlying the Lie group SO(3); hence
RP? is stably parallelizable and stably the top cell splits off. That RP? is stably
parallelizable could also be proved using the fact that the stable tangent bundle of
RP? is isomorphic to 4£3, hence trivial. U

We will need the following formula for the Spanier-Whitehead dual of RPZ
(11.7) DRPF = F(RP% S°) ~ YRP /71,

which can found as [Ati61, Theorem 6.1], or can easily be proved given what we’ve
said so far. Indeed, if n = 0 this follows from Atiyah Duality and the fact that the
stable normal bundle of RP* is —(k + 1)¢ 4+ 1. For general n and k we use James
Periodicity, as in (11.5).

The above material may be assembled to give a formula for the homotopy fixed
points. We will only need it for n = 0, 2, and 4, but the result is easy to state for
all n.

Proposition 11.8. Let n € Z. Then the Tot-tower of the cosimplicial spectrum
Fe,(C3T,8™7) is equivalent to the tower of fibrations

. ——=3RP!, , —>SRP}") — ... —=YRP.") — > XRP."}

Sn—m Sn—m+1 Sn—l Sn

where the maps from the successive fibers are given by the inclusion of the bottom
cell. We have

Tot,, Fo,(C3T,8™7) ~ SRP? "L |
and there is an equivalence

(8"7)"2 ~ holim; YRP™; ! .

Proof. By the discussion at the beginning of this subsection, we have an equivalence
Tot,, (F(CsT,8"7)) ~ Fe, (87 S™, S™).
We can analyze the right-hand side using (11.4) to obtain
Fe,(85°8™,8"7) ~ F(SS™ A¢, 577, 8%) ~ F(RP™, ", 5°),

while (11.7) identifies this with SRP?~} | as needed. O

n—m-—
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Remark 11.9. So far these formulas have only been for multiples of the sign
representation, but we have S"°t* = §no A §¥ with the trivial action on S*. This
forces a shift into the Tot-tower; for example, we have

(SmoTRYAC2 & holim, RTFRP T .

Now let n be even and we implicitly 2-complete all spectra.

The requirement that n be even implies that the action of Cy on H,,(S™?,Zs) is

no ~

trivial, so the action on 7, >~ ,S™ is also trivial. Choose a generator
Gn € HY(Co, 7, 8™7) =2 Zy.

We are interested in the fate of this class in the homotopy fixed point spectral
sequence

(11.10) Ey' = H*(Co,mS"7) = m_s(S™7)"C2.

This is the spectral sequence for the tower of fibrations in Proposition 11.8. Since
the class j, is represented by the generator of

T, XRP" "1 = 7, §" = 7,
differentials on it come down to whether or not the projection map

YRP'Z) = S"

m
to the top cell has a splitting.

We now give a calculation of the Ea-term of (11.10) in a range. Since we are as-
suming n is even, the Fy-term is a free module of rank one on j, € H°(Cy, 7, S™7)
over the ring H*(Cy,m.S°). Let n € m1S° and v € 735° be the standard genera-
tors and let h € H'(Cy,7Z/2) and g € H?(C3,7Z2) be the generators of the group
cohomology rings. Then g is the Bockstein on h, and reduces to h? € H2(Cy,7Z/2).
Finally, let a« = hn € HY(Cy, 7 5°%), and 8 = hv? € HY (O3, 735°). The following is
now a standard calculation. Compare Figure 3.

Proposition 11.11. There is a map of bigraded rings
©: Zalg,m, a, v, Bl— H*(Cy,m,S5°),
where the (s,t)-bidegrees of the generators are
lgl =(2,0) |nl=(0,1) |al=(1,1) [v[=(0,3) [B]=(1,6).
The ideal
I=(2n, 8v, 2%, nv, n° — 4v, 20, 2g, n’g — o?, va, 28)
is in the kernel of ¢. The map
Zslg,n, a,v, B]/I— H*(Cy,7,S°)
induced by ¢ is an isomorphism in bidegrees (s,t) with t < 6.
We now come to our first calculations with (11.10), which will be key to Theo-
rem 11.17 and Theorem 11.21.

The following proposition will be useful because the homotopy fixed point spec-
tral sequences for Cy acting on SV for any representation V are modules over the
spectral sequence for the Cy acting trivially on S°.
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FIGURE 3. The cohomology ring H®(Cq,7;S%) in a range. The vertical axis is s
and the horizontal axis is t — s.

Proposition 11.12. Let n =0 mod 8. Then in the homotopy fixed point spectral
sequence

Ey' = H*(Cy,mS"7) = my_(S"7)"
we have d,(g%j,) =0 for r < 3.
Proof. Write n = 8k. We use the tower of Proposition 11.8. The class g%, is the

residue class of the bottom cell of ERPSQ:% and we are asking if it is in the image
of the quotient map

YRPS L S RPE L
From Lemma 11.6 we have that this map is a (de-)suspension of the quotient map
RP{—XRP].
If $3 — RP? splits off the top the cell then the composition
53 —RP3—RP;—XRP}.
is non-zero in homology, as needed. a

Proposition 11.13. Letn = 2 modulo 4. Then in the homotopy fixed point spectral
sequence

Ey' = H*(Cy,mS™7) = m_4(S"7)"

we have differentials

dQ(Jn) = ngjn and d2(g,7n) =0.
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Proof. Write n = 4k + 2. We can analyze these differentials as obstructions to
lifting along the tower in Proposition 11.8. Note that we have a splitting RP;‘IQH ~
Sk S4kFL wwhich gives a lift of j, as a map S*+2 — ZRP:IEH, and da(jy,) is the

obstruction to lifting this further to SRP}r 1. Now note that
0# Sq? : H* Y (RPITT, Fo)— H*HH(RPTT Fy).

This implies that

4k+1 4k+1
7T4k+22RP4k_1 —>7T4k+22RP4k+1

is not surjective, since the non-trivial Sq? implies that the top cell of RPi:ﬂ does
not split off. This gives d2(jn) # 0 and, by Proposition 11.11 there is only one

non-zero class in H?(Cy,m,115™).

For the second statement, let 2 : S* — YRPI¥*1 be the inclusion of the bottom

cell. Then we are asking if = factors through YRP;; T2, To see that it does, note

that the composition
4k—1 4k+1 Ak+1
RPp—5 = RP; "3 = RP g5
is non-zero in Hag_1(—,F5). Now use that
RP;; % o NAFARPS o g4k—1y yik—dRp?

to see that x can be factored as the resulting splitting S** — ERPjE:é followed by
the inclusion YRPJ¥ ™% — YRP{F 1L, 0

By a similar method, we get the following result, crucial to Theorem 11.21.

Proposition 11.14. Let n = 4 modulo 8. Then in the homotopy fixed point spectral
sequence
H*(C,mS™7) == my_s(S7)C2
we have d,.(j,) =0 forr < 3 and
0 # da(jn) = ngjn-
Moreover, d,.(g%j,) =0 for r < 3.

Proof. Write n = 8k + 4. Proving that d,.(j,,) = 0 for » < 3 amounts to lifting the
bottom cell S84 — ERPSZI@ to ERP§£+3. But by Lemma 11.6, we have
RP5 % ~ S8RP] ~ S8 v S8 RP? v §84F3,
so there are no obstruction to the needed lift. For the d4 calculation, notice that
0# Sq* : H¥ L (RPE T3 o) — HE*F3(RPS 13 Ty).
It follows
7T8k+4ERP§l]2+3—>W8k+4ERPSZIg = ZQ

is surjective but

8k+4 8k+3
7r8k+4ERP8k,1 Hﬂsk+4ERP8k+3

is not, implying that d4(j,) # 0. By Proposition 11.11
vg®jn € H(Ca,mny35™)

is the only non-zero class. Since d4(j,) # 0, the class g?vj, cannot be the image
of dy or d3 and the result follows.
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To see that d,.(g%j,) = 0 for » < 3, note from Proposition 11.12 that g2 is a
ds-cycle in the homotopy fixed point spectral sequence for the trivial Cs-action on
S0, Using the module structure over that spectral sequence, we get the claim. [

11.2. A non-trivial element in r2(Gas)/k(G3). After the above interlude on
stunted projective spaces and the calculation of differentials in some classical Cs-
homotopy fixed points, we are ready to return to the study of our invertible spec-
trum @ from Definition 11.2.

We set the stage for the proof of Theorem 11.17, to connect it to the material in
Section 11.1. We will use the same set-up for Theorem 11.21 as well.

Let V € I(Cy). In Remark 5.13 we used the map SV — E A SV to construct a
map of augmented cosimplicial spectra

11.15 SV F(Cstt §V)C2
2

| |

EANSY ——=F,(GyT, EASY)Ce

Suppose V = no —n. Let Y, = Tot,, F.(G3"', E A SV)®. Then, by Proposi-
tion 11.8 and Remark 11.9 we have a commutative diagram of towers

»-rRPCL S,

| |

1— n—1
by nRPn—m — > Im-1,

which gives the diagram of spectral sequences

(11.16) E3H 0y, 8Y) = H*(Cy,mSV) =——=>m;_ (S )2

| |

ESY(Ga, EASY) = H*(Gy, B, SY) =——=m;_,J(V).

Now suppose V' € I(C3)? and fix a choice of Cy-invariant generator ji» € mSV,
which defines a Go-invariant generator ¢,y € FgSY. Then we have a commutative
diagram in group cohomology

H*(CQ,W*SO)4 > H*(GQ7E*)

(jv)*lu (Lv)*lu

H*(Cy,m,8V) H*(Gy, E,SY).

Note that the bottom spectral sequence is isomorphic to the Adams—Novikov
spectral sequence for J(V'), by Lemma 5.4. We will be interested in the faith of ¢y .

To be specific, recall the map
(1% : K(G48) — HB(G%’EQ) = Z/2

from (10.1) (c.f. Definition 3.27). For the element @ = J(20 — 2) from Defini-
tion 11.2 of kg,s, we can understand ¢1(Q) by first analyzing the faith of 19, 2
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in the homotopy fixed point spectral sequence E** through (11.16). Then we can

restrict to the Adams—Novikov spectral sequence for EhG2 A Q, which is the G}
homotopy fixed point spectral sequence for E A $?°~2 and study the outcome.

In the next subsection, a similar argument will determine that 2@Q), equivalent
to J(4o — 4) by Proposition 5.10, is a trivial element in the Picard group. In that
case, we will be checking that t4,_4 cannot support differentials.

In Theorem 10.12, we proved that ¢3 gives an injection
k(Gas)/K(G3)—ZL/2,
and now we are ready to prove surjectivity.
Theorem 11.17. We have
0# ¢3(Q) € H*(Gy, En) = Z/2
and hence a short exact sequence

0 —— 1(Gl) —— K(Gyg) —=17/2 —=0

Proof of Theorem 11.17. Let V = 20—2. We will show that in the spectral sequence
E34(Gg, EASY), there is a non-trivial differential

d3(vv) = nxiy.

Because the restriction of Yty is non-zero in H*(G}, E.SY), this forces the same
differential in the homotopy fixed point spectral sequence E5*(GL, E A SY). The
result then follows from Theorem 10.12.

From here on, we write j = jy, t = Ly, we abbreviate E$(SV) = E54(Cy, S)
and ESHE A SY) = E34(Ge, EASY), and we refer to Proposition 11.11 for the
definitions of elements in H*(Ca, m,SV).

We apply the truncation construction of Section 6 to the map of towers (11.15),
and let
for EDL5(SY) = ELZ5(EASY)
be the resulting map of truncated spectral sequences. We truncate up to 3 since
we are interested in d3(¢). Then we have a commutative diagram

(11.18) H*(Co,mSV) ——— H*(Go, E;SY)

| |

5t f 5.t

E;gg(sv) ——Ey5(EA sY),
where the vertical maps are injections for s < 3 and isomorphisms for s < 3. See
Lemma 6.6. The truncated spectral sequence E::;S(SV) converges to m,X 'RP!,
by Proposition 11.8 and Remark 11.9.

From Proposition 11.13 we get that gj is a permanent cycle in the truncated
spectral sequence

Ey%y(8Y) = m_ .S 'RP,
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detecting a non-zero element of 7_,X"'RP', which we will denote by [gj]. Fur-
thermore, also by Proposition 11.13 we have the differential

d2(j) = ngj
and so we conclude that n[gj] = 0 in w_lZ_lRP1_2.

We now turn to some corresponding elements in the truncated spectral sequence
EyLy(EASY) = m_, Tots(Q).
Referring to (11.18) we see that on Eo-terms, fi(gj) is the class
Xt € H*(Ga, EySY),

which is immediate from the definition of the class X € H?(Gy, Ey) = H?(Go, EySY)
as the Bockstein on y; see Definition 4.4 or [BBGT22, (1.7)]. Now, the class
Xt € E:ES(E A SV) is not hit by a differential for degree reasons; see [BBGT22,
Table 3]. Therefore, it detects a non-trivial class in [Y¢] € 7_5 Tot3(Q).

Since n[gj] = 0 we must have n[yt] = 0. But n[x:] is detected by
nxt € H*(Gy, EySY) = H*(Gy, E)

again by [BBG'22, §7], or Figure 1. So, nXt must be killed by a differential and
ds(t) = nxt is the only possibility. O

11.3. The group k(Gysg). In this section we apply the same type of analysis as in
the previous section in order to prove that @ € x(Gyg) has order 2. This will imply
a splitting

K(G4g) = K(G%) D Z/Q.

While the idea of the argument is essentially the same as for Theorem 11.17, it is
somewhat harder to accomplish as there are longer differentials to keep track of.

We start with the diagram of augmented cosimplicial spectra from (11.15), with
V =40 — 4. Again we abbreviate

j = jao—sa € H*(Ca,mpS* ™)
L= lgo—q4 € HO(G27E054074).

The goal is to show that ¢ is a dy-cycle in the Gy spectral sequence. Recalling
Definition 3.27, this would imply that 2¢) is an element of x5 g, so altogether in
kg(G3), which is trivial by Theorem 8.16.

The first step is an examination of some useful truncations of the Cs-fixed point
spectral sequence of $4°~*, whose outcome is Lemma 11.20. Since we are ultimately
interested in d,(¢) for r < 7, we will study the 7-truncation. By Proposition 11.14
we know that in the homotopy fixed point spectral sequence

HS(OQ,WtS4U_4) — ﬂ,t_s(S4cr—4)hCQ

we have d4(j) = vg?j; we will study a relative truncation in order to analyze the
implications of this differential.
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FIGURE 4. The spectral sequence for the cofiber sequence of towers
X§—>XS7—>X§2. Classes in blue are in the spectral sequence for X <o, classes
in black are in that of X%. The classes combined give the Fa-page of the spectral
sequence of X<7. A B is a copy of Zy, a e is a Z/2. The circled e represent Z/8.
We have only drawn one differential in the spectral sequence of X<7.

The Tot tower X for (§4°~4)hC2 is a (—4)-desuspension of the tower given in
Proposition 11.8. The 7-truncation X<~ of this tower is given by the tower

Y RP}, —= X RP3, —= ¥ 3RP?, —> ¥ 3RP? | —» ... —> ©3RP}

T T T T |

ST S§—6 S—5 S~ S0

and the relative truncation X is given by
(11.19)

Y 3RP?, — = 2 3RPY; — = 2 3RP?, — > £ 3RP? | — = N 3RP)

T T | ]

S S—6 S5 S—4 S3.
We have a fiber sequence of very short towers
X§—>X§7—)XS2

which, after taking inverse limits (which amounts to taking the top space in these
finite towers) gives the standard cofiber sequence

Y 3RP?, —» ¥ 3RP? , - X 3RPY - ©2RPY,.
For example, Tot(X3) ~ X 3RP” ;. Note X 3RP? = ¥ —3RP? ~ §° v N —3RP?,
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From Lemma 6.6, for N = 2 we get an identification

H*(Cy,mS%), s<2;
0, s> 2,

By (X<) = {

while for N =7, we get
H*(Cy,mSY), s<6;
E;’t(XS'ﬂ = 7TtSO, s=T;
0, s> 1.

In addition, by Lemma 6.8, we have

H*(Cy,mS8%), 3<s<6;
E3'(XT) = SO, s=T;
0, otherwise.
Figure 4 gives a concise summary of the Fs-terms of the respective spectral se-
quences: the part in blue depicts the spectral sequence for X<o, the part in black
depicts the one for XZ, and everything together gives the spectral sequence for

X<7. Differentials are not depicted in this figure, other than the ds-differential on
j, amounting to the image of j under the boundary map.

Using the nomenclature of Proposition 11.11 we now have the following lemma,
illustrated in Figure 4.

Lemma 11.20. In the spectral sequence
By (X<p) = m_ (X °RP3

the class j is a permanent cycle detecting a homotopy class [j2] € ToX 3RP3, which
is non-zero in homology.

The class g°j is a non-trivial permanent cycle in the spectral sequence

ESHXD) = m_ X 3RPY,.

The image 8.[ja] of [j2] in m7_1X3RPY, is detected by the class [vg®j] in the
spectral sequence
EyH (X)) = m_ S RPY,.

More precisely, 6,]j2] = v([g2§] + alvb7]), where a € Z/2, and by € E3°(X5).

Proof. We apply Lemma 6.9 to the tower X with K =3, M =7, r =4, z = j,
and y = vg?j, as we know from Proposition 11.14 that d4(j) = vg%j. This gives us
that 6.[jo] is indeed detected by [vg?j]. Since there is nothing in filtrations 5 and
6 contributing to 7_1 X 3RP",, we conclude that 8,[ja] = [rg%j] + [27], for some
2 € EyS(XD).

First, we note that the class [vg%j] € 7_ X °RPY, is the v-multiple of [¢2]],
which follows from the fact that [g%j] is a non-trivial permanent cycle in the spectral
sequence for X7, again by combination of Proposition 11.14 and Lemma 6.9.

Second, z7; = av?by, where b; represents the bottom cell of Z_BRP(L;, and a €
Z/2. Note that vb; cannot be hit by a differential: while there are potentially
non-trivial do and ds with targets in bidegree (s,t) = (7, 3), they both have sources
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in groups of order at most 2, thus cannot conspire to kill the generator vb; of
EI3(X7T) =2 /8. Consequently, [z7] = av[vbs], and all together, d,[js] is a multiple
of v. O

Theorem 11.21. The spectrum 2Q = Q A Q is trivial in Ks.

Proof. Write
Ao — {(Eo+1 A S4¢7—4)h@2}

for the cosimplicial spectrum giving the homotopy fixed point spectral sequence.
Write Y, for the associated tower. As discussed in the beginning of this subsection,
it suffices to show that d,.(¢) = 0 for r < 7 in the associated spectral sequence, i.e.
the G2 homotopy fixed point spectral sequence. For that, it suffices to show that ¢
is a permanent cycle in the truncated spectral sequence for Y<7, and that is what
we will prove.

Consider the truncated towers

Y] = Y<r = Yeo.

Then (11.15) gives us a diagram

(11.22) Y 3RPY, —= 2 3RP? , — = % 3RP?
fi fJ/ Lf
Yy Y7 Y,

where Y3 = holim Y] and so on. We have a diagram of spectral sequences

Ey'(X<p) == m_ X °RP?

| if*

By (Y<p) =——=m_sYo.

By Lemma 11.20, we have that j € H%(Cy, S47~%) is a permanent cycle in the top
spectral sequence, giving a non-trivial class [js] € meX 3RP?, which is in fact a
choice of splitting of the top cell. This implies that f.(j) = ¢ is also a permanent
cycle in the bottom spectral sequence, giving a homotopy class of [12] € mY3.

We also have a diagram of spectral sequences

Ey'(X]) == m_ X °RP",

| |

By (Y]) =—= Y],
and we next study the image of 6,[j2] € 7_1 X 3RP°, under f,. By Lemma 11.20,
d.[j2] = v([g?j] + alvdr]).

First, note that since f.([vb7]) has filtration 7, it must actually be zero as
EJ*(YZ) = 0. This implies that

Fo(0:lg2]) = v f<([g5))-
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From Theorem 6.1.6 and Proposition 5.3.1 of [BGH22] we have that
0=x>€ H*Gy, W) = H*(Gy, Ey)
and hence
0 =X = fu(g%)) € HY Gy, EoS* ") = Ey°(Y]).
This implies that f,[g%4] must be detected in filtration greater than 4 in the spectral
sequence for Yy . Thus f,[g%j] could be detected in E5*~*(Y7), with 4 < s < 7.

By Lemma 6.8, and since m £ = 0 = w3 FE, the only such group which is non-zero
is the case s = 6, given by

ES* (YY) = HY(Go, E»).

Thus f.[g%j] must have filtration 6. From [BBG'22, Table 2], we know that v-
multiplication

H(Gs, By) % H™(Gs, Fe)
is trivial (since every class in HY(Gy, Eo) is a multiple of n), thus vf.[¢%j] =
f«(v[g?j]) must be in higher filtration, i.e. in filtration at least 8. However, there
is nothing in filtration 8 in the homotopy of Y5, so f.(v[g%j]) = 0.

Therefore, the image of [t2] := fi[j2] in BT is
Oulta] = 0ufildo] = f*(”[g2.7]) =0.
Now we apply the second part of Lemma 6.9 to conclude that ¢ is a permanent
cycle in the spectral sequence for Y7 as needed. [l
Now the following calculation of k(Gys) is immediate.

Corollary 11.23. The short exact sequence

0 — > K(GL) — > r(Gag) — 2> 7/2 — 0

splits and there is an isomorphism
k(Gas) 2 k(G ®Z/2=7/8® (Z/2)3.
We end this section with an analysis of the descent filtration of x(Gas).
Theorem 11.24. In the filtration
0 C k7(Gas) C k5(Gas) C k3(Gas) = k(Gas) = Z/8 x (Z/2)°

we have isomorphisms

k5 (Gag) = k5(Gh) = Z/8 © L/2
H7(G48) = KZ7(G%) = Z/2
HS(G48) = HS(G%) = 07 s> 1.

Furthermore,
#(Gis) /r5(Cas) —a Z/2{nR} * Z/2{C(X, 2, 1)}

5(Gas) /w7 (Gas) — > Z/4{Cer} x Z/2{(CXn)

k7(Gas) Z Z)2{Cen?}.
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Proof. Consider the diagram
@3

0 —— r5(G)) r(G3) H3(Gs, Es)

0 — > ri5(Cag) —> K(Gag) —2> H3Go, Es)

where both ¢3 mean their restrictions to x(G4s) and x(G}). Both horizontal se-
quences are exact by Lemma 3.28. By [BBGT22, §7] (see also Figure 1),

H*(Gg, B2) = Z/2{((X,2,n)} ® Z/2{nX}.

From Theorem 8.16, we have that ¢3(k(G3d)) = Z/2{¢(X,2,n)} and Theorem 11.17
shows that ¢3(Q) = nX. By chasing in the above diagram, we see that

H5(G48) = H5(G%)

We then conclude that rs(Gas) = r5(G3) for s > 5, and the calculation of ¢5 and
¢7 follows from Theorem 8.16. O

12. PICARD ELEMENTS DETECTED BY EhG48, AND THE CALCULATION OF Kg

Now that we have determined the subgroup x(Gas) C k2, it remains to compute
the quotient and study the extension in order to understand ko completely.

In this section, we will show that ko/k(Gag) is Z/8 in two steps: first, we show
that the upper bound on this quotient is Z/8 in Proposition 12.14, and then we
exhibit a generator of order 8 in Theorem 12.21. Then, in Proposition 12.27 we
show that the extension problem is trivial and finally, we conclude the paper by
analyzing the descent filtration on k5 in Theorem 12.28.

The elements of ko detected by EhGas are those X € kg which do not have
an E"G4s_orientation in the sense of Definition 3.3. We will be looking at the
obstructions for having such an orientation. By Proposition 3.5, those obstructions
come in the form of differentials on a Gs-invariant generator

1x € HY(Gy, BoX) C H°(Gys, EoX)
in the homotopy fixed point spectral sequence

(12.1) ESY(Gus, X) = H*(Gus, Bi X) = m_o(E"Gs A X).

We have an isomorphism of this Fs-page with ES’t(G48,SO) determined by the
choice of tx. To understand the possible fates of ¢x, we’ll need a detailed analysis
of the homotopy fixed point spectral sequence for E"@4s  over which (12.1) is a
module. We recall some details about that spectral sequence in the first subsection.

12.1. The homotopy fixed point spectral sequence for E"G+. The complete
calculation of homotopy fixed point spectral sequence E;*(Gyg, SY) can be found in
citeDuanKongLiLuWang. This is closely related to any calculation of the homotopy
groups of various version of topological modular forms spectrum, since the K(2)-
localization of tmf at p = 2 is E"“4s. See, for example, [DFHH14, Bau08, Stol4,
BR21]. A basic point is that this is a spectral sequence of rings; in particular the
differentials satisfy the Leibniz rule.
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The cohomology ring H*(G4s, E,) is described in Theorem 2.15 and the accom-
panying Figure 5 of [BG18] and we content ourselves with a summary here. There
are elements

cy € H(Gug, Ex) cs € H(Gyg, Er2)
A € H(Gus, E2s) j € H(Gus, Eo)
so that
EY' = H*(Gus, Er) = Zo|[j]][ca, c, A/ (] — ¢ — (12)°A, ¢} — jA)

and
(12.2) H*(Gus, E,) = H°(Gus, E.)[n, v, p, €, 5, 5] /R,
where R is a rather elaborate list of relations. The classes
n € H' (G, Es) v e H' (Gys, Ey)
e € H*(Gus, E1p) K € H*(Gus, Exg)

K € H4(G48, E24)

are named for the elements of 7,.S? that they detect. The class u € H*(G4s, Eg) has
the property that ds(u) = n*. Crucial among these generators is & € H*(Gyg, Ea4),
and one important property it has is that multiplication by & on H*(Gas, E.) is
onto in cohomological degree greater than 4 and has no annihilators of positive
cohomological dimension.

If r is even, then d, = 0. The odd differentials form a complicated but well-
understood pattern. Crucially, A® is a permanent cycle and the entire spectral
sequence is periodic of period 192 in degree t.

Here and elsewhere we will use the standard convention of writing elements by
their names at Fs even though they may no longer be products at E,..

The d3 differentials are determined by
(12.3) ds(p) =n*,  ds(cs) = can®
and the fact that all other generators are ds-cycles.

The ds and d; differentials are determined by the formulas

d5 (A) = KU,
(12.4) d7(4A) = Fn?, d7(2A%) = ARn?,
d7(40%) = AR, d7(AY) = AR,

the multiplicative structure, and the fact that they vanish on all the remaining
generators.

Next are the dg differentials, regarding which we need only the following
(12.5) do(A%€) = Rk, do(A%) = A*R% k.
In fact, there are considerably more differentials, but those are not needed for

our arguments below. We will focus here on the calculation in a small range, which
we present in Figure 5, and some key properties summarized in the following result.
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Proposition 12.6. In the homotopy fized point spectral sequence
(12.7) ES'(Gus, 8°) = H®(Gus, Ey) = m_ B8
we have the following:

(1) The non-zero differentials that originate on the zero line are ds, ds and dy.
(2) The spectral sequence collapses at the r = 24 page and
E3*(Gyg,8%) =0 if s>23.

(3) Forr > T, we have EV"~1(Gys,5%) = 0.
(4) For s >0, E5°(Guss,S°) = 0.
5) The spectrum E"C4s js 192-periodic, with a class A8 € w199 E"C48 ¢ peri-
(5) i p : P

odicity generator. Thus the composition

192 hGas A%AL mhG hGas M. hG
E E 48 }E 48 /\E 48 v_}E 48’

where m is the ring spectrum multiplication, is an equivalence.

12.2. Establishing an upper bound for ko/k(Gysg). In this subsection we will
produce an injective homomorphism xs/k(Gag) — Z/8, see Proposition 12.14.

So we fix X € ko, let tx € EgX be a Go-invariant generator for X, and we
examine what can happen to ¢x in the spectral sequence (12.1). The first result
handles ds.

Lemma 12.8. In the homotopy fixed point spectral sequence
H*(Gus, Bt X) = m_o(E"C4 A X)
we have d3(A¥1x) =0 for all k.

Proof. Since A is a d3 cycle (see (12.3)), it suffices to prove that
1 3C4C
dy(1x) € H(Gas, EaX) = Fal[fl]n’ —ex

is zero. A priori, we have

da(ex) = FGIP L x

for some power series f(j) € Fy[[j]]. We apply d3 again, and use the fact that
% =j mod 2 to obtain that f(j) satisfies

FG) +3f(G)* = 0.
This implies that f(j) = 0. O
Remark 12.9. The reader is encouraged to compare this computation of ds(tx)

with the computation of d3 in the Picard spectral sequence in [MS16, Theorem
8.2.2].

Remark 12.10. Now that we know ds(tx) = 0, (12.2) and the differential patterns
of (12.3), (12.4) and (12.5) (depicted in Figure 5) give that

ds(tx) = aA YRy, for some a € Z/4
and if a = 0,

dr(tx) = bA T Rnluy, for some b € Z/2.
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3 A 3 A
2 4 9
1 A 1 4
0 — 0 -
T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

FIGURE 5. The homotopy fixed point spectral sequence (12.7) for 7, E"%s in a
small range. The z-axis is ¢ — s and the y-axis is s. The circles represent jF2[[]]
and bullets represent Fo. n bullets connected by a vertical line represent Z/2™.
Lines of slope 1 and 1/3 represent multiplication by 1 and v, respectively.
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We use this observation to prove the next result, which finds that some A-
multiple of tx must be a dr-cycle.

Lemma 12.11. Let X € ko and let 1x € EgX be a Go-invariant generator. Then
there is an integer k so that

d5(AkLX) =0= d7(Aka).

Proof. In the homotopy fixed point spectral sequence for E"%4s we have ds(A) =
Rv, see (12.4). Then
d5(Ak) _ kAR 1Ry, k% 0 modulo 4;
0, k = 0 modulo 4.

and
d7(AF) = AP Rp?, k = 4 modulo 8.
We use this and the differential pattern of Remark 12.10. Suppose ds(tx) =
aA~'kvix with 0 < a < 3; then ds(A~%x) = 0, and
d7(A™%x) = cAT Ry, c€E€Z/2.
If ¢ = 0 we are done. If not, ds(A~*"*1x) = 0 as well and

d7(Aia74Lx) =0. O

Let tx be a Go-invariant generator for X. By Lemma 12.11, we can find an
integer k such that AFux is a d7-cycle in the homotopy fixed point spectral sequence
E3*(Gug, X) (12.1). It turns out that this implies A*,x is a permanent cycle, which
has the following consequence.

Proposition 12.12. Let X € ko, and let k be an integer such that AFux is a dr-
cycle. Then AFux a permanent cycle extending to an equivalence of E"G -modules
Y2k phGas ~ phGas A X

Proof. To see that A*.x is a permanent cycle, we use an adaptation of the usual
proof that A8 is permanent cycle in the spectral sequence for EPC1s. If A¥ x is a
d,-cycle, then we have an isomorphism of E**(Gysg, S°)-modules

E*(Gas, X) & EF*(Gas, S**) = B2 (Gag, 5°).

We know this is the case for r = 7. The image of AF1x under d, then lives in the
group
E:’T+24k71(G487 X) = E:’ril(G487 50)7

but from Proposition 12.6(3), we know when r > 7, the groups E"~!(Gys, S°)
vanish. Thus we conclude that we cannot have any further non-trivial differentials
on AFix. O

As a first corollary of this result, we get a bound on the descent filtration on k.

Corollary 12.13. The subgroup ra g C kg 18 trivial.
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Proof. Suppose X € kgog, so that by definition, d,(tx) = 0 for r < 7 in the
homotopy fixed point spectral sequence E2¢(Gz, X). Then we get that the image
of tx in the homotopy fixed point spectral sequence E2t(Gys, X) is also a dy-cycle,
but then Proposition 12.12 shows that ¢x is a permanent cycle in the latter spectral
sequence. Hence, X € kg(Gag) = k2,8 NK(Gyg). But from Theorem 11.24, we know
that the group rg(Gag) is trivial, implying that X is trivial. O

Note that since E'G4s is 24 x 8 = 192-periodic, the integer k in Proposition 12.12
is only well-defined modulo 8.

Proposition 12.14. Define a homomorphism ko — Z/8 by sending X to k, where
EMGas N X ~ 324k phGas - This gives an injection

FLQ/H(G48) — Z/8

Proof. Suppose X € ko goes to 0; that is, we have an equivalence of E"4s-module
spectra "G4s ~ F"G1s A X Then Lemma 3.8, with the input of Proposition 12.6(4)
implies that X is in x(Gas). O

Remark 12.15. Let Pic’(E"%13) denote the Picard group of invertible E"G1s-
modules N so that FE,N is in even degrees. This is equivalent to the Picard group
Pic%48 (E) of invertible K (2)-local E-modules M in Ggg-spectra so that m,M is in
even degrees. Then myM is an invertible Fy-module equipped with a compatible
action of G4g. Thus we have a map

Pic®(E"C4) — HY(Gys, EY).

Using methods similar to [Karl0, Proposition 5.2] at the prime 3, or the uncom-
pleted version in [MS16, Appendix B], one can show that the target is isomorphic
to Z/12 generated by the image of X2 E"%4s. In particular, the map is onto and we
have a short exact sequence

0 — K — Pic’(E"Cs) — HY(Gys, EY) — 0.

Using the techniques of [MS16] and [HMS17], and using the same input we used
above, one can also show that K is Z/8 generated by X2*E"Css;: in particular,
Pic’(E"Cs) 22 7,/96 and hence Pic(E"51s) = 7,/192 generated by Y E"1s. Theo-
rem 12.21 below shows that the induced map ko/k(G4s) — K is an isomorphism.

Note that EMC1s ~ [ k(2)TMF and the analogous result for the Picard group of
T M F-modules is [MS16, Theorem 8.2.2].

12.3. A generator for ro/k(Gag). In the previous section we established that the
quotient ko/k(Gag) is at most Z/8. The goal of this section is to show that it is
exactly Z/8 by showing that there exists P € kg such that PA EMG1s ~ 1,724 phGas,

The invertible spectrum P that we’ll use for this purpose comes from Gross-
Hopkins duality [HG94c, HG94a]. This seminal work implies that at each height n,
the spectrum I, obtained as the Brown-Comenetz dual of the n-th monochromatic
layer of the sphere, is an invertible object in the K(n)-local category; a more
hands-on presentation of this fact can be found in [Str00]. For each n, there is a
decomposition of I,, as a smash product

(12.16) I, ~ S™ " A S(det) A P,
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where S(det) is the determinant sphere, as constructed in [BBGS22], for example,
and P, is an element of x,,. The invertibility of I,, then implies that for any K(n)-
local spectrum Z, we have

(1217)  I,Z = F(Z,1,) ~ F(Z, L S°) A L, = D, Z AS" ~"5%(det) A Py,
where the smash product is understood to be K(n)-local.

The P we consider at height 2 is exactly this P,. We can find a minimum
for its order in ko by studying the interplay between the Spanier-Whitehead dual
DyEMCas = F(E"Cas | Ly(,,)S0) and the Gross-Hopkins dual I, E"¢4 = F(E"Cs I,)
of E"Css_ The Spanier-Whitehead as well as Gross-Hopkins duals of E"“18 are well
known.

Theorem 12.18 ([Bob20]). There is an equivalence of E"“4s-modules

DgEhG48 ~ 244EhG48 )

See also [BGHS22, Theorem 13.25] for a different proof of Theorem 12.18.

The next result identifies the Gross-Hopkins dual of E*@ss. It has a long history
but has not been recorded in the literature in the precise form that we use, and here
we present a proof analogous to the prime 3 version given in [Beh06, Proposition
2.4.1]. The key 2-primary calculations are coming from [Pha21].

Theorem 12.19. There is an equivalence of E"%*s -modules

IQEhG4S ~ 222EhG48 )

Proof. Let A(1) be a finite 2-local spectrum with the property that H*(A(1),Fs)
is free on a generator in degree zero over the subalgebra of the Steenrod algebra
generated by Sq' and Sq*. We have some choice here, and we choose a version of
A(1) which is self-dual; in [Pha21] these are called A;[10] and A;[01]. Either choice
will do, and it suffices to show the claimed equivalence holds after smashing with

A(1).

We have that DA(1) = F(A(1),S°) = £76A(1). Since A(1) is a type 2 complex
Ly (E"5 A A(1)) ~ % and

L(E" A A(1)) = I 9 (E"945 A A(1)).

Here, I7/2« X denotes the Brown-Comenetz dual of X, whose homotopy groups are
(mX)¥ = Hom(m. X,Z/2°). Using Proposition 12.12, (12.17), and the fact that
A(1) is a finite complex, we have

Iz 90 (E"945 A A(1)) = S A SO(det) A P ASHE" s A S0 A(1)
~ RO EhGas A P A A1)
~ $A0+24k phGas A A(1)
with k to be determined. This gives an equation
(7 (B4 A A(1)]Y 22 T —a0—2ak (BE"C® A A(1))
~ T 152—oan (EM99E A A(D)).
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The last isomorphism uses the periodicity of E"@4s. Investigating [Pha21, Figures
22-25] for low values of n we see that this is only possible if £ = —1 modulo 8.
Specifically, we see that if 1 <n < 15, then

T (B4 N A(1)) = mig2—n (B9 A A(1)) = 0.
In the same range, m,4152—24(E %45 A A(1)) = 0 only if k = —1. O

Remark 12.20. An alternative proof would be to cite Greenlees [Grel6, Example
4.4], for the fact that tmf is Gorenstein self-dual, which is also done in much more
detail in the newer [BR21, BGR22]. Then one can apply [GS18, Proposition 4.1]
to obtain that the non-connective, non-periodic Tmf is Anderson self-dual, and
then K (2)-localize to obtain that E"¢4s = Ly o) T'mf is Gross-Hopkins self-dual as
claimed.

The most conceptual proof would use Serre duality on a suitable cover of the
compactified moduli stack of elliptic curves. The analogue at the prime 3 was done
in [Stol12], while the algebraic calculations needed at p = 2 are set up in [Stol4].

Combining these two results give the main result of this section.

Theorem 12.21. Let P = P» € Ky be determined by the equation (12.16) atn = 2,
i.e.
I ~ S% A S%(det) A P.
Then we have an equivalence of E"G1s -modules
2724EhG48 ~ EhG4g AP

and, thus, an isomorphism
HQ/KJ(G48) = Z/S

Proof. We set Z = E"G4s in (12.17), and then combine with Theorem 12.18 and
Theorem 12.19 to get

N2 phGas ~ 1 phGas A 5260 (det) A P.

Then we note that S°(det) A ERCGss ~ ENGas gince Gug is in the kernel of the
determinant map; see [BBGS22, Corollary 3.11]. This then reduces to the indicated
equivalence.

The final isomorphism follows from Proposition 12.14, since 8 is the smallest
integer m such that E"Gas A PA™ ~ FhGas, O

Remark 12.22. In the homotopy fixed point spectral sequence E**(Gys, P), we
have that ¢p is a ds-cycle and ds(tp) is a generator of E2*(Gys, P) = Z/4{kv}.
Compare Remark 12.10.

Remark 12.23. A similar comparison of the effect of P, in E"? is done in [HLS21,
Theorem 6.6], but that result shows that Cs can only see that the order of P» is
divisible by 2.

Remark 12.24. It is natural to ask whether we can construct an element of xo
which maps to a generator of ko /k(Gag) = Z/8 using the J construction of Section 5.
We have not been able to do quite this much, but here is what we can do towards
that goal.
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Recall from (7.2) that Se has an open normal subgroup K with the property
that the composition

G24—>SQ—>§2/K
is an isomorphism, which produces a splitting So & K x Ga4. Unfortunately, K is
not Galois-invariant, so we cannot write Go4 or G4g as the quotient of Go. Still, we
can use the J-construction for the quotient So/K = Ga4 to produce an invertible

E"2_module, which if we knew is Galois invariant, would be a generator of the
quotient HQ/H(G48).

Let H be real quaternion algebra; this a four dimensional irreducible represen-
tation of Qg
H =~ R{1,i,7,k}.
The action of C3 on Qg which permutes 17, j, k extends H to a Go4-representation.

We can let So act on H via the quotient g: So — So/K = Gay. Let V =H — 4 and
let

J(V) = (EASV)S2 ~ (EME A §V)1G2a

compare (5.1); however, this is not quite the same construction as (5.1), since Sy/K
is not a quotient of Go. Nonetheless, J(V) is a K(2)-local invertible E"$2-module,
and

EMS A J(V) ~ EME
Furthermore, by Proposition 5.12, we have an equivalence
EMG24 A pnsy (BN SY)MS2 (B A SV )hG2s

In Propositions 13.22 and 13.23 [BGHS22], all elements of the form (E A SV )hG24
in the Picard group Pic(E"%2) of invertible E"“2¢-modules are computed. This is
done by showing that the J homomorphism factors as'

RO(G24) PiC(EhG24).

w )

L& L8 — (Z&ZL/R)/(24,1) =2 7,/192

Here, the map
Y: RO(Gay) > ZDZ/8

is defined by ¢¥(W) = (dim W, A(W)) for a certain characteristic class A which has
been normalized so that A(H) = 1. Therefore, ¢»(V) = (0,1). From this, it follows
that

(EASY)hG2 ~ 53724 phGas,
If we could find an X € ko such that E"2 A X ~ J(V) then X would be a generator

for k2/k(Gag). This can be phrased as the question of whether J(V) € Pic(E"S2)
is Galois invariant.

IThere is a slight gap in [BGHS22, Proposition 3.23 (2)]. We only know that the right vertical
map is an inclusion, as there is no proof in the literature that Pic(E"24) 2 7,/192.
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12.4. The group k2. In this final section we show that the extension

(1225) O*>I€(G4g) Ko Z/8 0

from Theorem 12.21 is split, and we relate these groups to the descent filtration. We
begin with the following intermediate results, which examine the descent filtration
and decompose the subgroup k25 C ko. Recall that k5(Gas) = k(Gasg) N Ka 5.

Proposition 12.26. There is a short exact sequence
0 — k5(Gag) = ko5 — Z/8 —= 0,

where Ko 5 — Z/8 is the composite ka5 — ko — kao/Kk(Gas) = Z/8.

Proof. Consider the following commutative diagram

k5(Gas) — k(Gag) —> H3(Ga, Es) — 0

I

K25 K2 H?*(Gg, Ey),

The lower sequence is exact by Lemma 3.28. That the top ¢3 is onto follows
from Theorem 11.24, and the rest of the top sequence is exact because k5(Gyg) =
k(Gag) N Ko5. In particular, the bottom ¢3 must be onto as well, and then the
Snake Lemma gives the needed isomorphism

Ko,5/k5(Gas) = Ko /k(Gas) = Z/8. O
In order to give a splitting of (12.25), we will first split its restriction from
Proposition 12.26.
Proposition 12.27. The short exact sequence
0 — k5(Gag) — Koy = Z/8 =0
splits.

Proof. From Theorem 11.24, we have that k5(Gag) = Z/8 & Z /2. The result will
follow if we prove that xo 5 has exponent 8.

Lemma 3.28 provides us with an exact sequence
5,4 0
0— Ko7 — K25 — E5 (GQ,S )

The right most term Eg’ ’4(((}2, S9) has exponent 4; see Figure 1. Therefore, it suffices
to prove that 27 has exponent 2. For this, we note that the map

7,6
¢7 : K277—>E7

is injective as a consequence of Corollary 12.13. But E;’G (G, S°) has exponent 2,
from Figure 1. So, it follows that ko 7 has exponent 2 and we are done. O

The final calculation of ks is now an immediate corollary.
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Theorem 12.28. The short exact sequence

0——s K,(G4g) ) Z/S 0.
splits and gives an isomorphism

ko = k(Gag) D Z/8 = (Z/8)* @ (Z/2)3.

Proof. That the short exact sequence splits follows from Proposition 12.26 and
Proposition 12.27. For the calculation of xk(Gys), see Corollary 11.23. O
We end by recording the descent filtration on xo.
Theorem 12.29. In the filtration
0 C ko Ckop C ko =ho 2 (Z/8) x (Z/2)?

we have isomorphisms

1%

Ko = (Z/8)* x /2
Ko = (Z/2)?
R2,s = 0, s>T.

Furthermore,
[ ~ ~
Ko /Ko s ——=—= Z/2{xn} x Z/2{¢(X,2,n)}

Koo/ Ko —e= Z/4{kv} x Z/4{Cev} x Z/2{CT?)

<

7

Koy ————= L/2{kn’} x Z/2{Cen’}.

o~

Proof. The group k2 5 is of the given form by Proposition 12.27 and Theorem 11.24.
The proof of Proposition 12.26 also gave the isomorphism of k2 /kg 5 as claimed.

Now consider the diagram

00— — H5(G48) R2 5 Z/8 0

l% \L%

0 —= Z/4{Cev} x Z/2{(Xn?*} — im(¢s5) — Eo*(Gus, S°) = Z/4{kv} — 0,

ESA(GQ’ SO)

where the left vertical map is surjective by Theorem 11.24, and the right vertical
map is surjective by Remark 12.22. This gives the image of the middle ¢, which
is the quotient kg2 5/k2,7 as claimed.

The Snake Lemma for the kernels in the above diagram now gives a short exact
sequence

0—7Z/2 = k7(Gag) = ko7 = Z/2 — 0,
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which has to split since ¢7 : kg7 — EX%(Gg, S0) is injective and E1%(Gy, S°) has
exponent 2. In fact, ET'%(Gy, S9) = Z/2{kn?} x Z/2{Cen®}, so we conclude that
70(Gy, 89) = ET%(Gy, S°) and that ¢ must be onto.

Finally, we have that xs s is trivial for s > 7 by Corollary 12.13. O

Remark 12.30. Note that this proof shows that ¢5 does not surject onto the group
E§’4(G2, SY), which was computed in [BBGT22], see Figure 1. Namely, the class
n?e is not in the image of ¢s.
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