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EQUIVARIANT TREES AND PARTITION COMPLEXES

JULIA E. BERGNER, PETER BONVENTRE, MAXINE E. CALLE, DAVID CHAN,
AND MARU SARAZOLA

Abstract. We introduce two definitions of G-equivariant partitions of
a finite G-set, both of which yield G-equivariant partition complexes.
By considering suitable notions of equivariant trees, we show that G-
equivariant partitions and G-trees are G-homotopy equivalent, general-
izing existing results for the non-equivariant setting. Along the way, we
develop equivariant versions of Quillen’s Theorems A and B, which are
of independent interest.

1. Introduction

Given a finite set n = {1, . . . , n}, we can consider the set of partitions of
n, which has a partial order by coarsening. For example, we have

(12)(3)(4) < (12)(34)

as partitions of the set 4. Thinking of this poset as a category allows us to
take its classifying space and obtain a topological space. If we include all
partitions, this space is contractible, since the discrete partition consisting
of singleton sets is an initial object, and the indiscrete partition consisting
of the whole set is a terminal object. Discarding these two partitions results
in a poset P(n); its classifying space |P(n)| is called a partition complex.

This space is of interest in a wide variety of mathematical applications,
ranging from combinatorics to algebra to topology. For instance, it has
been used to study the Goodwillie derivatives of the identity functor [AM99],
[Chi05]; its homology is intimately related to Lie (super)algebras [Wac98],
[HW95], [Bar90], [Rob04]; it plays a central role in the study of bar con-
structions for operads [Chi05], [Fre04]; and it has applications in pure com-
binatorics [Sta82, §7].

Robinson and Whitehouse [RW96, Rob04] first observed that the data of a
partition complex can also be encoded in a suitable category of trees. This
comparison was further developed in recent work by Heuts and Moerdijk
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[HM21], with an application to operad theory. Let us briefly summarize
these results; more details and formal definitions can be found in Section 2.

Let T (n) be the category of reduced n-trees of Definition 2.5. There are
two ways to show that P(n) and T (n) have suitably equivalent geometric
realizations, as given by the following zig-zags of topological spaces:

|P(n)| |∆P(n)| |T (n)|

|P(n)| T(n) |T (n)|.

≃≃

∼=Σn
∼=Σn

The first zig-zag uses the category of simplices ∆P(n) of the nerve of P(n),
and both maps are homotopy equivalences, obtained via an application of
Quillen’s Theorem A. The argument for why the left-hand map is a homo-
topy equivalence can be found in [Dug06], while the proof for the right hand
map is given by Heuts and Moerdijk [HM21]. As part of our work, we show
that these maps can be upgraded to Σn-equivariant homotopy equivalences.
Notably, this second composite homeomorphism does not arise from a map
between categories or simplicial sets.

The second zig-zag instead uses the space T(n) of measured n-trees given
in Definition 2.12, and the maps are Σn-equivariant homeomorphisms. The
proof for the left-hand map was given by Robinson [Rob04, Theorem 2.7],
and we give an argument for the right-hand map in Theorem 6.7.

Our goal in this paper is to show that these results hold in a G-equivariant
setting, where G is a finite group. As a first step, we must introduce G-
equivariant versions of the structures involved, and we find that there are
several possible ways to define both G-equivariant partition complexes and
G-trees, depending on “how equivariant” we ask them to be.

Given a finite set A, we can encode a partition of A as a surjective function
A ։ k for some k. If A is now a finite G-set, this notion of partition still
makes sense, as we can consider surjective functions on the underlying sets.
Alternatively, we can ask for a non-trivial G-action on the target as well.
That is, we can encode a partition of A as a surjective function A → B
where B is some finite G-set, and either ask that the surjective map be
equivariant or not. These distinctions are summarized in Table 1, and more
details can be found in Subsection 4.1.

Less equivariant More equivariant

Partitions
A։ k A։ B A։ B

non-equivariant non-equivariant equivariant

Partition complex |P(A)| |PG(A)| |PG(A)|

Table 1. Equivariant partitions
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There are inclusions of poset categories P(A) →֒ PG(A) ←֓ P
G(A); how-

ever, it turns out that the two extreme cases, P(A) and PG(A), have the
most interesting connections to trees. The relevant types of G-trees are
summarized in Table 2; see Section 5 for definitions and details.

Less equivariant More equivariant

Trees
A-labeled trees with A-labeled trees with

G-action on leaves G-action on entire tree

Category of trees T (A) T G(A)

Space of trees T(A) TG(A)

Table 2. Equivariant trees

Each of these notions of G-trees has the expected interaction with the cor-
responding notion of G-equivariant partition; we thus obtain two different
equivariant analogues of the zig-zags of equivalences above. To prove these
results, we develop equivariant versions of Quillen’s Theorems A and B
(Theorems A.1 and A.6), which we consider of independent interest.

Theorem 1.1 (Corollary 6.6, Theorem 6.7, Theorem 6.10). There are G-
equivariant zig-zags of G-spaces

|P(A)| |∆P(A)| |T (A)|

|P(A)| T(A) |T (A)|.

≃G≃G

∼=G
∼=G

By taking fixed points, we obtain the analogous zig-zags relating |PG(A)|,
TG(A), and |T G(A)|.

There are many applications of partition complexes and trees in the litera-
ture, and we can ask which of these applications have G-equivariant versions.
We address two of these questions here. The first is the computation of the
homotopy type of a partition complex. In the non-equivariant setting, these
homotopy types are given by wedges of spheres; in contrast, the situation
for G-partition complexes is much more subtle.

Theorem 1.2 (Proposition 4.5, Proposition 7.5, Proposition 7.11). Let A
be a finite G-set and ↓GH A be the restriction of A to an H-set for H ≤ G.
Then

|P (A)|H ≃ |PH(↓GHA)|

is non-contractible only if ↓GHA
∼=G

∐n
i=1H/K for some K ≤ H.
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This question was also addressed by Arone and Brantner [AB21], and
some of our results in Section 7 recover some of theirs, although our proofs
are different. The second question is the computation of the homology
groups of spaces of trees. In the classical setting, Robinson [Rob04] showed
that these groups are related to the Lie algebra operad via a twisted action
of the integral sign representation of Σn. We obtain an analogous result
for our “less equivariant” G-trees by considering instead the integral sign
representation of G.

Theorem 1.3 (Theorem 8.2). For any finite G-set A, there is an isomor-
phism of G-modules

Hn−3(T(A)) ∼= εGA ⊗ LieA,

where εGA is the sign representation of G induced by the action on A.

In Proposition 8.3 we also explore the homology of our space of “fully
equivariant” G-trees in relation to our understanding of the homotopy type
of their corresponding partitions.

Outline of the paper. In Section 2, we summarize the non-equivariant
comparison between partition complexes and trees, and in Section 3 we
review some of the equivariant homotopy theory that we use. We begin to
set up the equivariant picture in Section 4 by defining equivariant partition
complexes, and we analogously define equivariant trees in Section 5, and
then in Section 6 we establish Theorem 1.1. In Section 7 we discuss the
homotopy type of the equivariant partition complexes, and in Section 8 we
discuss the equivariant analogues of results relating the homology of spaces
of trees to Lie algebras.

Acknowledgements. This project was started at the Collaborative Work-
shop in Algebraic Topology in August 2022, supported by the Geometry and
Topology RTG grant at University of Virginia. We would like to thank the
other participants of this workshop for an enjoyable and productive week,
and the hosts at the workshop site for their hospitality.

2. A review of the partition complexes and trees

In this section we review partition complexes, categories of trees, and the
relationship between them in the non-equivariant setting. We begin with
partition complexes. First, let us fix a finite set n = {1, . . . , n} and consider
the poset category P(n) of non-trivial partitions of n, ordered by coarsening,
where we omit the discrete and indiscrete partitions. To turn this category
into a topological space, we use the classifying space construction.

Definition 2.1. The nerve of a category C, denoted by NC, is the simplicial
set whose n-simplices are chains of n composable morphisms

c0 → c1 → · · · → cn,
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where the degeneracy maps sj insert the identity cj
id
−→ cj for 0 ≤ j ≤ n

and the face maps di compose ci−1 → ci → ci+1 for 1 ≤ i ≤ n − 1; the
map d0 forgets the first morphism and dn forgets the final morphism. The
classifying space of C is the geometric realization of the nerve,

|C| := |NC|.

Definition 2.2. The partition complex of n is the classifying space |P(n)|
of P(n).

Remark 2.3. Other authors, including Heuts and Moerdijk [HM21], use
the refinement relation on P(n) instead. We have chosen to use coarsening
since it generalizes more conveniently to the equivariant setting in Section 4.
Ultimately, the choice does not matter on the level of classifying spaces.

Definition 2.4. For any category C, the category of simplices is the over-
category ∆C := ∆(−) ↓ NC. Explicitly, the objects are the k-simplices of the
nerve, i.e., chains of length k of arrows in C, and morphisms are generated
by the face and degeneracy maps.

There is a functor ∆C → C that sends a chain of arrows to its ultimate
target, called the last vertex functor.

Using the discussion preceding Theorem 2.4 in [Dug06], the last vertex
map is homotopy initial (Definition 3.11) and hence by Quillen’s Theorem
A induces a homotopy equivalence on classifying spaces. It follows that
|∆P(n)| is another model for the partition complex.

We now introduce several varieties of trees, studied in [Rob04] and [HM21],
that connect to the partition complex.

By a tree, we always mean a finite tree whose internal edges are attached
to a vertex at both ends, but whose external edges are only attached to
a single vertex. One external edge is distinguished as the root of the tree,
and the other external edges are called leaves. The tree is oriented from the
leaves down to the root. Additionally, our trees are prohibited from having
nullary vertices; see Example 2.7 for a visual.

Notation. For a tree T , we denote by L(T ), V (T ), and Ei(T ) the sets of
leaves, vertices, and inner edges of T , respectively.

Definition 2.5. For any n > 0, an n-labeled tree, or simply n-tree, is a tree
equipped with a labeling bijection n→ L(T ).

• We say an n-tree is layered if there is a constant number of inner
edges between any leaf and the root.
• We say an n-tree is reduced if there are no unary vertices.
• We say an n-tree is measured if it is equipped with the additional
data of an assignment Ei(T )→ (0, 1] giving every inner edge a length
in (0, 1], such that at least one inner edge has length 1.

An isomorphism of (reduced) n-trees is a root-preserving homeomorphism.
It is an isomorphism of layered trees if it also preserves the labels, and an
isomorphism of measured trees if it preserves edge measurements.
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Remark 2.6. What we call reduced n-trees are simply called n-trees in
[HM21] and [Rob04]. Robinson uses the term fully grown n-trees for what
we call measured n-trees.

Let us look at these different kinds of trees in more depth. First, we
observe that the category of simplices ∆P(n) is isomorphic to the category
of (isomorphism classes of) layered n-trees, with face maps contracting an
entire layer and degeneracy maps inserting a layer of unary edges.

Example 2.7. Let n = 6 and consider the 2-simplex

(1)(2)(34)(5)(6) ≤ (12)(34)(56) ≤ (12)(3456)

in NP(6). This chain of partitions corresponds to the layered tree with 3
internal layers below:

0

1

2

1 2 3 4 5 6

.

Here, layer 0 corresponds to (1)(2)(34)(5)(6), layer 1 to (12)(34)(56), and
layer 2 to (12)(3456). The face map d0 contracts the 0-th layer, i.e. all the
edges that intersect with the dashed line labeled by 0, resulting in the tree

0

1

1 2 3 4 5 6

that corresponds to the chain (12)(34)(56) ≤ (12)(3456). We leave it to the
reader to compute the other face maps as well as the degeneracy maps.

We say a layered tree is non-degenerate if its associated simplex is. Visu-
ally, this condition means that there is no layer whose vertices are all unary.
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Additionally, a layered tree is elementary if every layer contains exactly one
non-unary vertex. A vertex is in a layer if it is the source of an edge in the
layer. Both examples above are non-degenerate, but neither is elementary.

Remark 2.8. The exclusion of the trivial partitions in P(n) imposes re-
strictions on what a layered tree can look like before the first layer and after
the final layer. Specifically, excluding the coarsest partition means we do
not allow the layer closest to the root in any k-simplex to be degenerate:

k

and excluding the finest partition means we do not allow the 0-th layer to
be degenerate:

. . .

0

1 2 . . . n

.

Remark 2.9. Note that that a k-simplex in ∆P(n) determines a layered
n-tree only up to label-preserving isomorphism. For example, in the second
layered tree from Example 2.7, we may swap the labelings of 3 and 4 and,
independently, 5 and 6.

Definition 2.10. Let T (n) denote the poset whose objects are isomorphism
classes of reduced n-trees, where there is a unique morphism T → T ′ if T ′

can be obtained from T by contracting a collection of inner edges. In this
case we say T ′ is a face of T , as illustrated by the following picture:

−→

.

This category has an terminal object, the corolla Cn,

1 2 . . . n− 1 n

. . .
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but for the rest of this paper we omit this object from T (n).

Remark 2.11. The category T (n) is the opposite of the category denoted
by T+(n) in [HM21], due to our choice of ordering P(n) via coarsening; see
Remark 2.3. As a consequence, these arrows are the opposite of the maps
of trees in the dendroidal category Ω.

In [HM21], Heuts and Moerdijk show that the functor

∆P(n) T (n)

that collapses unary vertices and forgets layers is homotopy final (Definition 3.11),
and so again induces a homotopy equivalence |P(n)| ≃ |T (n)| on classifying
spaces.

Finally, we discuss the space of measured n-trees, following [RW96] and
[Rob04].

Definition 2.12. We denote the space of (isomorphism classes of) measured
n-trees by T(n). It is defined as the simplicial complex whose vertices are
the measured n-trees with exactly one inner edge. A k-simplex of T(n)
corresponds to a shape of fully grown tree with k + 1 inner edges, whose
vertices are obtained by collapsing all but one inner edge which is then
assigned weight 1.

Points in such a simplex consist of measured n-trees of that shape. In
other words, points in a simplex are obtained by assigning lengths to all the
inner edges in that simplex shape, and in turn, these lengths determine the
barycentric coordinates of the point.

Remark 2.13. Alternatively and equivalently, [RW96] defines the topology
on T(n) as given by the cubical complex structure where two trees are in the
same open cube if there is a label-preserving homeomorphism between them
which also preserves edges of length 1. The internal edge lengths determine
the coordinates within each cube. We do not make use of that description
here.

Robinson produces an explicit homeomorphism T(n)→ |P(n)| in [Rob04,
Theorem 2.7]. Moreover, a similar argument shows there is a homeomor-
phism T(n) → |T (n)| as well; see Theorem 6.7. All together, we have a
zig-zag of homeomorphisms

|P(n)| T(n) |T (n)|;

however, it does not appear to arise from any functors between these cat-
egories. In the same paper, Robinson also shows that T(n) is a simplicial
complex with the homotopy type of a wedge of spheres and studies the
connection between measured n-trees and Lie representations.
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3. Background on equivariant homotopy theory

In equivariant homotopy theory, we consider familiar objects like sets,
spaces, or categories, except now we give these objects the extra structure
of a group action. Throughout this paper, we assume the group G is finite.

This idea of equipping an object in a category C with a G-action is nicely
encapsulated by a functor from the one-object groupoid whose morphism
group is G. We use BG to refer to both the one-object category and the
classifying space of this category, clarifying if it is not clear from context
which we mean.

Definition 3.1. A C-object with G-action is an object of Fun(BG, C), the
category of functors from BG to C. Equivariant morphisms, or simply G-
morphisms, are natural transformations of these functors, and we typically
denote the resulting category by GC.

We primarily consider the following examples.

• For C = Set the category of sets, a G-set is a set A together with a
G-action map G×A→ A so that e ·a = a and (gg′) ·a = g ·(g′ ·a) for
all a ∈ A and g, g′ ∈ G. A G-map of G-sets is a set map f : A→ A′

so that g · f(a) = f(g · a) for all a ∈ A and g ∈ G. The category
of G-sets is denoted by GSet. We can also restrict to C = Fin, the
category of finite sets, to get a category of finite G-sets, denoted by
GFin.
• For C = T op the category of compactly generated weak Hausdorff
spaces, a G-space is a topological space X along with a continuous
map G × X → X, where G is given the discrete topology. A G-
map of G-spaces is a continuous map which is equivariant on the
underlying sets. The category of G-spaces is denoted by GT op.
• For C = Cat the category of small categories, a category with G-
action is a category D with action functors (g·) : D → D for each
g ∈ G so that (e·) = idD and (g·) ◦ (g′·) = (gg′·). A G-functor is a
functor F : D → D′ so that g ·F (d) = F (g ·d) and g ·F (f) = F (g ·f)
for all objects d of D, all morphisms f of D, and all g ∈ G. This
data assembles into a category, denoted by GCat.

Remark 3.2. What we call categories with G-action are sometimes called
strict G-categories, andG-functors between them are called strict G-functors.
In some situations, it can be helpful to consider pseudo G-categories where
the G-actions are only associative and unital up to natural isomorphism.
In all of the examples in this paper the actions are strictly associative and
unital so we do not need to make this distinction.

3.1. Preliminaries on equivariant topological spaces. We briefly re-
view some basic ideas in the context of G-spaces, specifically, although the
results we cite here have analogues in the setting of G-sets and G-categories.
Our exposition primarily follows [May96], and another well-known reference
is [LMS80].
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Many non-equivariant constructions on spaces work equally well equivari-
antly. For example, if X and Y are two G-spaces, then G acts diagonally
on their product X × Y and by conjugation on the set HomT op(X,Y ), i.e.,
for any f : X → Y , we get g · f : X → Y by

X X Y Y.
g−1 f g

Additionally, in the equivariant setting, we have access to new structures
that can be associated to subgroups H ≤ G.

Definition 3.3. Let X be a G-space and H ≤ G.

• The H-fixed points of X are given by the space

XH := {x ∈ X | h · x = x for all h ∈ H}.

• The H-orbits of X, denoted by X/H, is the quotient space of X by
the equivalence relation generated by x ∼ h · x for all h ∈ H.
• For x ∈ X, the isotropy subgroup, or stabilizer, of x is

Gx := {g ∈ G | g · x = x} ≤ G.

Note that x ∈ XH precisely when H ≤ Gx. Both XH and X/H have the
structure of WGH-spaces, where WGH = NGH/H is the Weyl group of H
in G. Here, NGH denotes the normalizer of H in G.

Remark 3.4. If the action of G on X is transitive, that is, if X is the orbit
of x for any x ∈ X, then X ∼=G G/Gx by the Orbit-Stabilizer Theorem.

Remark 3.5. Note that the G-fixed points of the conjugation action on
HomT op(X,Y ) are precisely the G-maps HomGT op(X,Y ).

The functors GT op → T op that take a G-space X to its H-fixed points
and H-orbits are the right and left adjoints, respectively, of the functor
T op→ GT op that gives a space the trivial G-action. That is, for a space A
with trivial G-action, we have

HomGT op(A,X) ∼= HomT op(A,X
G) and HomGT op(X,A) ∼= HomT op(X/G,A).

Given H ≤ G, we can also consider the restriction functor ↓GH : GT op →
HT op that only remembers the H-action. This functor admits a left adjoint

↑GH : HT op→ GT op

called induction. Given an H-space Y , the induction of Y is the balanced
product

↑GH (Y ) = G×H Y = G× Y/ ∼,

where ∼ is the relation generated by (g, h · y) ∼ (gh, y) for g ∈ G, y ∈ Y ,
and h ∈ H. If X is a G-space, rather than just an H-space, then

G×H X ∼=G G/H ×X

as G-spaces.



EQUIVARIANT TREES AND PARTITION COMPLEXES 11

Definition 3.6. A homotopy between G-maps X → Y is a homotopy
H : X × I → Y that is also a G-map, where I is given the trivial G-action.
A G-map f : X → Y is a (weak) G-equivalence if it is a (weak) equivalence
upon passage to H-fixed points fH : XH → Y H for each H ≤ G.

Taking H = e, we see that such an f needs to be a homotopy equiva-
lence of the underlying spaces. In light of the definition above, much of
equivariant homotopy theory amounts to non-equivariant homotopy theory
of fixed-point spaces.

3.2. Preliminaries on equivariant classifying spaces. In this subsec-
tion, we establish some basic facts about classifying spaces of categories
with G-action.

Definition 3.7. Let C be a category with G-action. The nerve of C is the
same simplicial set from Definition 2.1, but now is equipped with a G-action
given objectwise, with

g · (c0
f1
−→ c1

f2
−→ . . .

fn
−→ cn) = gc0

gf1
−−→ gc1

gf2
−−→ . . .

gfn
−−→ gcn.

This action makes NC a G-object in sSet, or equivalently a simplicial G-set,
which in turn makes |C| a G-space.

This construction is functorial, in that a G-functor induces a G-map of
classifying spaces. Note that a G-functor also restricts to a functor on H-
fixed points CH → DH , so we also get maps on fixed points of nerves and
classifying spaces. On nerves, we have that (NC)H = N(CH), and the
following proposition implies that taking fixed points also commutes with
taking classifying spaces.

Proposition 3.8. For any H ≤ G and simplicial G-space X, taking H-fixed
points commutes with geometric realization, i.e., there is a homeomorphism
|XH | ∼= |X|H .

Proof. There is a natural inclusion |XH | → |X|H . This map is also surjective
because any equivalence class [x, t] ∈ |X|H can be represented by a H-fixed
point of X, since one of the faces of x must be H-fixed. �

A G-natural transformation η : F ⇒ F ′ can be defined as a G-functor
η : C × {0 → 1} → D so that η(−, 0) = F and η(−, 1) = F ′. Here {0 → 1}
is the poset category with trivial G-action. A routine check shows that
this data is equivalent to the usual data of a natural transformation so that
ηg·c(−) = ηc(g · −) for each component ηc.

Proposition 3.9. A G-natural transformation η : F ⇒ F ′ induces a G-
homotopy |F | ≃ |F ′|.

Proof. By functoriality and the fact that |C × {0 → 1}| ∼= |C| × |{0 → 1}|
[Seg68, §2], the map |η| : |C|×I → |D| is a homotopy between |η(−, 0)| = |F |
and |η(−, 1)| = |F ′|. It is a G-homotopy by functoriality of taking classifying
spaces and the fact that G acts trivially on |{0→ 1}| = I. �
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For the following corollary, recall that a lax inverse of a functor F : C → D
is a functor F ′ : D → C such that both FF ′ and F ′F have natural transfor-
mations to or from the relevant identity functors. There are no conditions
imposed on the interactions of these natural transformations, so this notion
is strictly weaker than that of an adjunction, although adjoint pairs and
equivalences of categories are examples of lax inverses.

Corollary 3.10. The realization of a G-functor that admits an equivariant
lax inverse is a G-homotopy equivalence.

Recall that a functor F : C → D is homotopy initial (respectively, homo-
topy final) if the overcategories F ↓ d (respectively, undercategories d ↓ F )
are contractible for every object d of D. Quillen’s Theorem A [Qui73, §1]
shows that such a functor induces a homotopy equivalence on classifying
spaces. We can generalize this notion to G-functors.

Definition 3.11. AG-functor F : C → D between G-categories isG-homotopy
initial (respectively, G-homotopy final) if the overcategories F ↓ d (respec-
tively undercategories d ↓ F ) are Gd-contractible for every object d of D.

Remark 3.12. In [DM16], Dotto and Moi instead use the terminology left
G-cofinal rather than G-initial, and right G-cofinal rather than G-final.

In Appendix A, we prove that the realization of a G-homotopy initial
or final functor is a G-equivalence on classifying spaces, in the form of an
equivariant version of Quillen’s Theorem A.

When C is a category with G-action, its category of simplices inherits a
G-action and the last vertex functor ϕ is a G-functor. In Corollary A.3, we
show that this functor is G-homotopy initial (Definition 3.11), which has
the following consequence for the partition complex.

Corollary 3.13. The last vertex functor ∆P(n) → P(n) is Σn-homotopy
initial.

4. G-partition complexes

We now introduce equivariant versions of partition complexes; that is, we
develop an analogue of P(n), where the finite set n is replaced with a G-set
A such that |A| = n.

To figure out what we mean by a partition of a G-set A, we first note
that the data of a partition of n can be encoded as the equivalence class of
a surjective function n ։ k, modulo the action by Σk on k. As an example,
the partition

(12)(345)(6)

can be expressed as the function 6 ։ 3 given by

1, 2 7→ 1, 3, 4, 5 7→ 2, 6 7→ 3.
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The role of the equivalence relation is to identify this mapping with, for
example, the map

1, 2 7→ 2, 3, 4, 5 7→ 1, 6 7→ 3,

that determines the same partition.
From this perspective, there are several natural ways to extend this notion

to account for a G-action:

• through non-equivariant functions A ։ k where k has the trivial
G-action;
• through G-maps A։ B where A and B are G-sets; or
• through non-equivariant functions A։ B where A and B are G-sets.

We focus on the first two notions; see Remark 5.16 for a discussion on
why we choose to ignore the third.

4.1. G-partitions. We now explore the first notion ofG-partitions described
above.

Definition 4.1. For any G-set A, let P(A) denote the G-poset of non-trivial
partitions of ↓Ge A, the underlying set of A, ordered by coarsening.

Equivalently, we can describe P(A) as the category whose objects are
equivalence classes of non-equivariant surjections A։ k modulo the action
by Σk, and arrows (A։ k)→ (A։ j) are factorizations

A

k j.

As in the non-equivariant case, the trivial partitions A → |A| and A → 1

are excluded.
Note that this data is well-defined and indeed forms a poset, since by

surjectivity of A ։ k, any two such maps k ։ j must agree, and this
factorization determines a unique factorization between any two elements of
the equivalence classes of the legs. Moreover, P(A) is a G-poset, since an
element g ∈ G acts on P(A) by precomposition with its inverse; that is, g

sends A։ k to A A k
g−1

.
The following result gives us information about how to relate P(A) and

P(n), as well as their categories of simplices. The proof is omitted, as it
merely consists of a detailed unpacking of the definitions involved.

Lemma 4.2. Let A be a G-set with |A| = n, and let α : G→ Σn denote the
group homomorphism encoding the G-action. Then

P(A) = α∗P(n)

and

∆P(A) = α∗∆P(n).
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Just as for P (n), the last vertex functor for P (A) is G-homotopy initial;
see Corollary A.3.

Corollary 4.3. For any G-set A, the last vertex functor ∆P(A) → P(A)
is G-homotopy initial; in particular, it is a homotopy equivalence.

The second notion of equivariant partitions is as follows.

Definition 4.4. Let PG(A) denote the poset of non-trivial equivariant par-
titions of A, ordered by coarsening.

In other words, PG(A) is the category whose objects are equivalence
classes ofG-surjections between G-sets A։ B modulo the action by AutG(B),
and whose arrows are factorizations A ։ B′

։ B for which all maps are

equivariant. The trivial partitions given by G-isomorphisms A
∼=
−→ B and by

the constant map A→ 1 are excluded.
Since the objects of PG(A) consist of G-maps, the natural G-action on

PG(A) is the trivial one.

4.2. Interactions through fixed points. Studying the fixed points of
these G-posets yields interesting interactions between our different notions
of G-partitions.

Proposition 4.5. For any H ≤ G there is an equivalence of categories

P(A)H ≃ PH(↓GH A).

Proof. To simplify notation, we leave the ↓GH implicit and simply treat A as
an H-set. We begin by defining an auxiliary category PH

ord(A) which has as
objects the equivalence classes of H-surjections f : A ։ B, where B is an
H-set equipped with a total ordering. The morphisms in this category are
the same as those of PH(A); in particular, we do not require morphisms to
respect the ordering. With these morphisms, one can see that the functor
PH
ord(A)→ P

H(A) that forgets the orderings is an equivalence of categories.

It remains to check that PH
ord(A) is categorically equivalent to P(A)H .

Given f : A։ B in PH
ord(A), the total ordering on B determines a unique

bijection B
∼=
−→ kB where kB = |B|. Define a functor F : PH

ord(A) → P(A)
H

which sends the class of a map f : A։ B to the class of

A
f
−→ B

∼=
−→ kB.

Note that F (f) is H-fixed because for any h ∈ H, the fact that hfh−1 = f
implies that F (f) and F (f) ◦ h−1 are the same up to an automorphism of
kB, namely the one determined by h. Similar reasoning shows that F is
well defined, since varying the representative f : A ։ B of an equivalence
class by an H-automorphism of B only changes the value of F (f) by an
automorphism of kB.
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If s : B ։ B′ defines a morphism in PH
ord(A), we define F (s) to be the

unique map that fills the following square:

B B′

kB k′
B
.

s

∼= ∼=

F (s)

We want to show that F is an equivalence of categories. Note that since
PH
ord(A) is equivalent to a poset, its hom-sets all have size 0 or 1, and so the

functor F is automatically faithful.
First we show that F is surjective on objects. Let f : A։ k represent an

object in P(A)H , which means that for each h ∈ H there exists a (necessarily
unique) bijection σh : k→ k such that the following diagram commutes:

A A

k k.

h

f f

σh

Thus k is endowed with the H-action given by hi = σh(i) for all i ∈ k

and h ∈ H. Note that the uniqueness of σh ensures that σe = id and
σh1

σh2
= σh1h2

and we do indeed get an H-action. This action is defined so
that f : A ։ k is an H-map which determines an object in PH

ord(A) whose
image under F is equal to f : A։ k.

It remains to show that F is full. Given a morphism ϕ : k ։ j between
objects f : A։ k and f ′ : A։ j in P(A)H , consider the following diagram:

A A

k k

j j.

h

f

f ′

f

f ′
σk
h

ϕ ϕ

σj

h

The lower square commutes when precomposed with the surjection f , which
implies that the square itself commutes and thus ϕ is an H-map when k and
j are given H-actions as above. This data determines a map ϕ′ between the
corresponding objects f : A ։ k and f ′ : A ։ j in PH

ord(A) with F (ϕ
′) = ϕ,

and hence F is full. �

The next result now follows directly.

Corollary 4.6. For any H ≤ G there is an equivalence of categories

∆P(A)H ≃ ∆PH(↓GH A).
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5. G-trees

Having defined several notions of equivariant partitions, we now present
the corresponding notions of trees in this equivariant context. We refer the
reader back to Definition 2.5 for the analogous non-equivariant definitions.

Definition 5.1. For any finite G-set A, an A-labeled tree, or simply A-
tree, is a tree equipped with a non-equivariant labeling bijection from A to
the leaves of T . We say an A-tree is layered, reduced, or measured if the
underlying |A|-tree is.

An isomorphism of (reduced) A-trees is a root-preserving homeomor-
phism. It is an isomorphism of layered A-trees if it also preserves the labels,
and an isomorphism of measured A-trees if it preserves edge measurements.

First, we observe that, as in the non-equivariant case, the category of
simplices ∆P(A) may be described as the category of (isomorphism classes
of) layered A-trees.

Example 5.2. Let G = Σ6 and A = 6 = {1, 2, 3, 4, 5, 6}. Then both trees
from Example 2.7 are examples of layered 6-trees.

Example 5.3. Let G = C4 = {1, i,−1,−i} and A = {x = −x, ix =
−ix, y,−y, iy,−iy} = C4 ∐ C4/C2. Then

0

1

x y ix iy −y −iy

is the layered A-tree corresponding to the chain of partitions

(x, y)(ix, iy)(−y,−iy) < (x, y)(ix, iy,−y,−iy).

Equivalently, reading down the layers of this tree, we see that this chain
corresponds to the string A։ 3→ 2, where A, 3, and 2 correspond to the
leaves, the inner edges in layer 0, and the inner edges in layer 1, respectively.

Note that the labeling of the leaves need not correspond in any way to
the symmetry of the tree.

As before, layered A-trees are defined up to label-preserving isomorphism,
so, for example, we may swap the labels ix and iy, and independently −y
and −iy in the above example.

Next, we consider the category of reduced A-trees.
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Definition 5.4. We denote by T (A) the category whose objects are isomor-
phism classes of reduced A-trees T , and where there is a unique morphism
T → T ′ if T ′ can be obtained from T by contracting a collection of inner
edges, and call T ′ a face of T . As we did non-equivariantly, we omit the
terminal object given by the corolla tree with no internal edges.

The poset T (A) naturally has an action by G, where g acts on objects by
sending (T, f : A→ L(T )) to (T, fg−1).

Example 5.5. Let G and A be as in Example 5.3. Then there is a map

−→

yx

ix iy −y −iy

x y

ix iy −y −iy

in T (A).

Finally, we consider the G-space of measured A-trees.

Definition 5.6. We denote the G-space of (isomorphism classes of) mea-
sured A-trees by T(A). It is defined as the simplicial complex whose vertices
are the measured A-trees with exactly one inner edge. An n-simplex of T(A)
corresponds to a fully grown tree with n+ 1 inner edges whose vertices are
obtained by collapsing all but one inner edge which is then assigned weight
1. Points in such a simplex consist of measured A-trees of that shape. In
other words, points in a simplex are obtained by assigning lengths to all the
inner edges in that simplex shape, and in turn, these lengths determine the
barycentric coordinates of the point.

The groupG acts on a point of T(A) by acting on the underlyingA-labeled
tree.

Analogously to Lemma 4.2, we can establish the following relationship
between these new notions of equivariant trees and the classical notions
reviewed in Section 2.

Lemma 5.7. Let A be a G-set with |A| = n, and let α : G→ Σn denote the
group homomorphism encoding the G-action. Then there is an isomorphism
of G-categories

T (A) ∼=G α∗T (n)

and a G-homeomorphism between spaces

T(A) ∼=G α∗T(n).
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In order to visualize the equivariant partitions introduced in Definition 4.4
properly, we need a corresponding more equivariant notion of A-tree.

Definition 5.8. A G-tree is a tree equipped with a G-action through root-
preserving automorphisms which endows the sets of leaves, (inner) edges,
and vertices with a G-action. An A-labeled G-tree is a G-tree equipped with
an equivariant labeling bijection between A and the G-set of leaves.

• We say an A-labeled G-tree is layered or reduced if the underlying
|A|-tree is.
• We say an A-labeled G-tree is G-elementary if each layer has a
unique G-orbit of vertices that are non-unary.
• We say an A-labeled G-tree is G-measured if the length assignment
Ei(T )→ (0, 1] is G-equivariant.

An isomorphism of (reduced) G-trees is a G-homeomorphism that pre-
serves the root. It is an isomorphism of layered A-labeled G-trees if it also
preserves labels, and an isomorphism of G-measured A-labeled G-trees if it
preserves edge measurements.

Remark 5.9. Note that this notion of G-tree is distinct from the notion
with the same name in the work of the second-named author and Pereira;
see [BP22, §2.2]. There, the above trees would be examples of “trees with
G-action”, while the term G-tree would refer to “orbits” of trees, say G ·H T
for some tree T with H-action.

As before, we can associate categories and spaces to the three types of
additional structure on G-trees.

Definition 5.10. First, the category of simplices ∆PG(A) may be described
as the category of (isomorphism classes of) layered A-labeled G-trees, where
faces and degeneracies again collapse or add layers.

Second, let T G(A) denote the category of isomorphism classes of A-labeled
G-trees, again excluding the A-corolla. There is a unique morphism T → T ′

if T ′ can be obtained from T by contracting a collection of inner edges, and
in this case we call T ′ a (G-equivariant) face of T .

Third, let TG(A) denote the space of (isomorphism classes of) measured
A-labeled G-trees. In this case, the vertices are measured G-trees with
exactly one orbit of inner edges. The description of a generic simplex in
TG(A), as well as that of a generic point, mimics the one in Definition 5.6.

Example 5.11. Let G = {1, i,−1,−i}, and A = {x, ix, y,−y, iy,−iy} as in
Example 5.3. None of the A-trees from Example 5.3 or Example 5.5 may be
endowed with a G-action such that the A-labeling isG-equivariant. However,
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consider the following relabeling of the trees from Example 5.5:

a ia

b

c
−c

d

ic −ic

id

e

r

a
ia

c −c ic
−ic

e

r

−→

ixx

y −y iy −iy

x ix

y −y iy −iy

.

We have additionally named the edges of the tree to indicate the G-action.
There is an arrow between these two trees in T G(A).

However, if we had only collapsed the edge labeled by d on the left, the
resulting tree would not have a compatible G-action, and thus would not
be a G-tree. We thus observe that we must collapse an entire orbit of inner
edges.

Example 5.12. With a slight modification, the map from Example 5.11
is also a map of elementary layered A-labeled G-trees. With G and A as
before, consider the following trees:

−→

ixx y −y iy −iy

x ix y −y iy −iy

0

1

2

0

1

.

For readability, we have dropped the names of the edges indicating the action
by G; however, the action is just as it was previously. Additionally, this map
is between layered trees, as the arrow simply collapses the layer 1 on the left.
Finally, these trees are both G-elementary; in particular, even though there
are two non-unary vertices in layer 1 in the tree on the left, this tree is still
G-elementary since those two vertices are in the same G-orbit.
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Example 5.13. With G and A as in Example 5.11, the tree

c
−c

d

ic −ic

id

e

y −y iy −iy

is a vertex in TG(A), as |Ei(T )/G| = 1. However, the underlying A-tree is
not a vertex in T(A).

Remark 5.14. Note that, just as with PG(A), the natural G-actions on
∆PG(A), T G(A), and TG(A) are the trivial ones.

These different varieties of trees are strongly related, as indicated by the
following result.

Lemma 5.15. For any H ≤ G there is an isomorphism of categories

T (A)H ∼= T H(↓GH A)

and a homeomorphism of spaces

T(A)H ∼= TH(↓GH A).

Proof. We describe the homeomorphism of spaces; the isomorphism of cat-
egories is very similar with the slight wrinkle that we must consider an
auxiliary category to define our functors as in the proof of Proposition 4.5.

Given an A-labeled H-tree T , forgetting the H-action on T , but remem-
bering the G-action on A, determines a measured A-tree we denote by ϕ(T ).
Since the isomorphism class of T as an A-labeled H-tree is smaller than the
isomorphism class of T as a measured A-tree, this asignment determines a
well-defined continuous map

ϕ : TH(↓GH A)→ T(A).

Given an A-labeled H-tree T , observe that the H-action is determined en-
tirely by the action of H on the leaves, and thus by the structure of T as
simply an A-tree. Said another way, T being a H-tree is a property, not
additional structure, which implies that ϕ is injective. Since both spaces are
finite simplicial complexes, they are compact Hausdorff and so injectivity
implies that ϕ is a homeomorphism onto its image.

It remains to prove that im(ϕ) is equal to T(A)H . Note that for any
A-labeled H-tree T , the H-action on T fixes the isomorphism class of T
as an A-tree. Thus the image of ϕ is contained in the H-fixed points of
T(A). Conversely, if a measured A-tree (T, f : A → L(T )) is H-fixed, then
for each h ∈ H, h · T = (T, fh−1) is in the same equivalence class as T , so
there exists a tree automorphism σh such that fh−1 = σhf . These σh then
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define an H-action on T such that f is an H-map. We denote the resulting
A-labeled H tree by ψ(T ). We have ϕ(ψ(T )) = T , so we have shown that
im(ϕ) = T(A)H . �

One conclusion we draw from this result is that, given an A-labeled
tree, there exists at most one G-action on the tree making the labeling
G-equivariant.

Remark 5.16. The third option proposed for equivariant partitions at the
beginning of Section 4 was non-equivariant surjections A ։ B between G-
sets. Using this notion in practice leads to several complications, often due
to the fact that the G-actions and fixed points do not correspond to natural
constructions.

First, in order to build a new G-poset structure PG(A) with these objects,
the arrows must be triangles such that the map B → B′ is G-equivariant,
which implies that we must take as objects A։ B modulo theG-automorphisms
of B. If such an equivalence class [A։ B] is H-fixed, the representing map
need not be H-equivariant; instead, following the proof of Proposition 4.5,
it implies that the G-action on B extends to a G×H-action, and the map
is H-equivariant with respect to the “diagonal” H-action on B.

Finally, the trees that correspond to this structure are seemingly prob-
lematic, as G-trees equipped with a non-equivariant A-labeling of the leaves,
modulo G-automorphisms of the G-tree. Describing the elements of an such
equivalence class is a non-trivial exercise. Once again, the H-fixed points
correspond to G × H-trees such that the A-labeling is H-equivariant with
respect to the diagonal action.

6. Comparison of G-partition complexes and G-trees

In this section, we use the equivariant version of Quillen’s Theorem A
to establish G-homotopy equivalences between the classifying spaces of the
equivariant partition complex and several notions of equivariant trees.

To that end, let ϕ : ∆P(n)→ T (n) denote the functor from [HM21] that
collapses unary vertices and forgets layerings. Given a G-set A, Lemmas 4.2
and 5.7 imply that this functor induces a G-functor

(6.1) ϕ : ∆P(A)→ T (A).

Theorem 6.2. The G-functor ϕ from Equation (6.1) is G-homotopy final.

Proof. We follow the proof in [HM21], but take into account the potential
orbital nature of T .

Fix a tree T in T (A) and H ≤ GT = StabG(T ). We must show that
(T ↓ ϕ)H is contractible. We first note that T is an H-tree by Lemma 5.15,
and following Corollary 4.6, we define an H-layering of T to be a layered A-
labeled H-tree S, thought of as an object of ∆P(A)H = ∆PH(↓GH A), such

that ϕ(S) = T . Second, let ΛH(T ) ⊆ NPH(↓GH A) denote the sub-simplicial
set spanned by the H-equivariant faces of H-layerings of T . Equivalently,
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ΛH(T ) is generated by the elementary H-layerings of T , all of which live in
simplicial degree |V (T )/H| − 2. Note that a simplex S′ ∈ ΛH(T ) is the face
of a unique non-degenerate H-layering S of T , as the face of a layering of T
is the layering of a unique face of T , and thus S′ induces a canonical H-map
T = ϕ(S)→ ϕ(S′) in T H(A).

We can then see that

(T ↓ ϕ)H = T ↓ ϕH ∼= ∆ ↓ ΛH(T ).

Let V L(T ) denote the H-set of maximal vertices of T , i.e. vertices whose
inputs are all leaves. For any Hv ∈ V L(T )/H, let ΛH

Hv(T ) ⊆ ΛH(T ) denote
the sub-simplicial set generated by the elementary H-layerings for which
the vertex orbit Hv is in the top layer. Then ΛH(T ) =

⋃
V L(T )/H ΛH

Hv(T ).

But ΛH
Hv(T ) is the cone on ΛH(∂HvT ), where ∂HvT is the tree obtained

from T by removing all the vertices in Hv and their incoming edges. Addi-
tionally, given distinct orbits Hv1, . . . ,Hvn, we have that their intersection⋂

i=1,...,n Λ
H
Hvi

(T ) is the cone on Λ(∂Hv1 . . . ∂HvnT ). Thus ΛH(T ) is con-

tractible, and hence so is ∆ ↓ ΛH(T ) ∼= (T ↓ ϕ)H . �

Example 6.3. Let G = {1, i,−1,−i} and A = {x, ix, y,−y, iy,−iy} as in
Example 5.11. Consider the tree T below:

x ix

y iy −y −iy

.

Both trees from Example 5.12 are in ΛG(T ): the source is an actual G-
layering of T , while the target is a face.

Remark 6.4. For an H-tree T with orbital representation T/H, ΛH(T )
is not equal to Λ(T/H), as unary vertices in T/H can correspond to (an
orbit of) non-unary vertices in T . Thus, we cannot reduce the proof of
Theorem 6.2 to the non-equivariant case, even though the argument of the
proof seems to follow as if we could.

Remark 6.5. Considering n with the natural Σn-action, this result implies
that ϕ : ∆P(n)→ T (n) is Σn-homotopy final.

Combining Theorems 6.2 and A.2 and Corollary A.3 yields the following
comparison.

Corollary 6.6. There is a natural zig-zag of G-functors

P(A)
≃
←−− ∆P(A)

≃
−−→ T (A)

that induce G-homotopy equivalences on classifying spaces.
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As in the non-equivariant case, we also have an independent chain of a
G-homeomorphisms between related spaces.

Theorem 6.7. There are G-homeomorphisms

|P(A)| ∼=G T(A) ∼=G |T (A)|.

Proof. The first G-homeomorphism follows from [Rob04, Theorem 2.7] and
Lemmas 4.2 and 5.7, since the restriction of a Σn-homeomorphism is a G-
homeomorphism. For the second, we define a Σn-homeomorphism F : T(n)→
|T (n)| below of a similar flavor, from which the result follows.

Given a measured n-tree T , we get a family of n-trees S(t), for 0 ≤ t ≤ 1,
by collapsing all inner edges with lengths less than t and forgetting the
remaining lengths. This family in fact produces a chain of n-trees, and the
barycentric coordinate of F (T ) with respect to S is given by the amount of
time S(t) = S.

Conversely, given a (strict) chain of n-trees and barycentric coordinates
(S0 < S1 < · · · < Sn, (ℓ0, . . . , ℓn)), define the measured n-tree T to have
underlying n-tree S0, with the weights of Ei(Sn) equal to 1, and for 0 ≤ k ≤
n − 1, the weights of Ei(Sk) \ E

i(Sk+1) equal to 1 −
∑n

i=k+1 ℓi. Here, we
are using the fact that if T ′ is a face of T then there is a canonical inclusion
Ei(T ′) ⊆ Ei(T ).

It is straightforward to check that these maps are continuous, Σn-equivariant,
and inverse to one another. �

Example 6.8. Consider the following element of T(6):

1 1

1/2

1 1

1/2

1 1

2/3

1

1

1 2

3 4 5 6

.
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The map in the proof above sends this element to the 2-simplex of |T (A)|

1 2

3 4 5 6

1 2

3 4 5 6

1 2

3 4

5 6

,

with barycentric coordinates (1/2, 1/6, 1/3).

Remark 6.9. The composite map |T (n)| → |P(n)| is not simplicial, as it
does not even send vertices to vertices. For example, the height 3 binary
tree with 4 leaves gets sent to the chain of partitions (1)(234) < (1)(2)(34)
with barycentric coordinates (1/2, 1/2).

Taking fixed points yields similar results to the above comparingG-equivariant
partitions and G-trees.

Theorem 6.10. For any G-set A:

(a) The functor

ϕ : ∆PG(A) −→ T G(A)

is homotopy final, and so in particular induces a homotopy equivalence
on classifying spaces.

(b) There is a natural zig-zag of functors

PG(A)
≃
←−− ∆PG(A)

≃
−−→ T G(A)

that induce homotopy equivalences on classifying spaces.
(c) There are homeomorphisms

|PG(A)| ∼= TG(A) ∼= |T G(A)|.

Proof. Using Corollary 4.6 and Lemma 5.15 and the fact that the fixed
points of a G-homotopy initial (respectively, final functor) is homotopy ini-
tial (respectively, final), part (a) follows from Theorem 6.2, part (b) from (a)
and Corollary A.3, and part (c) from Proposition 3.8 and Theorem 6.7. �
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7. The G-homotopy type of P(A)

In this section we use tools developed above to study the homotopy type
of the partition complexes |P(A)| and |PG(A)|. These two spaces are related
by Propositions 3.8 and 4.5, which identify |P(A)|H ≃ |PH(↓GH A)| for all
H ≤ G. Since the G-homotopy type of |P(A)| depends on the ordinary
homotopy type of its fixed points, one should view computations of |PH(A)|
as stepping stones to understanding the G-homotopy type of |P(A)|.

When G = Σn, computations of the G-homotopy type of P(n) have been
carried out by Arone and Brantner [AB21]. Our results are similar, but our
proofs are different and make use of our explicit descriptions of the fixed
point categories of P(A).

A study of the category PG(A) reveals that its homotopy type depends
heavily on the G-set A; more precisely, on whether A is H-isovariant for
some subgroup H ≤ G.

Definition 7.1. A finite G-set A isH-isovariant if there is a G-isomorphism
A ∼= ∐n

i=1G/H for some n.

With this in mind, we divide our approach in two cases.

7.1. Case 1: A is not H-isovariant. We first prove that if A is not H-
isovariant for any H ≤ G, then PG(A) is contractible.

Note that in this case A must have at least two orbits as otherwise, by
Remark 3.4, we would have A ∼= G/Ga for any a ∈ A. Thus A would be
Ga-isovariant, which would imply, in particular, that the category PG

2 (A)
appearing in the following lemma is non-empty.

Lemma 7.2. Suppose that A is not H-isovariant for any H ≤ G. Let
PG
2 (A) ⊆ PG(A) denote the full subcategory on objects A։ B where B has

at least two G-orbits. Then PG
2 (A) is contractible.

Proof. Let C ⊆ PG
2 (A) be the full subcategory on objects f : A ։ B where

B has trivial G action. Since A is not G-isovariant and has at least two
orbits, the partition A։ A/G is neither discrete nor indiscrete and thus is
an object in C. This object is initial in C and so C is contractible.

Let I : C → PG
2 (A) denote the inclusion; we want to show that this functor

is a homotopy equivalence. By Quillen’s Theorem A, it suffices to prove
that for any object f : A ։ B in PG

2 (A), the category f ↓ I has an initial
object. By the definition of PG

2 (A), the G-set B must have at least two
orbits so |B/G| > 1. Let π : B → B/G denote the quotient map. The pair
(πf : A ։ B/G,B ։ B/G) is an object in f ↓ I and is initial since any
equivariant map from A to a set with trivial G-action which factors through
B must also factor through B/G. �

Since almost all G-sets have more than one orbit, PG
2 (A) ⊆ PG(A) is

a rather large subcategory. We will see presently that the inclusion of
this subcategory induces a homotopy equivalence whenever A is not H-
isovariant for any H ≤ G. The argument follows Quillen’s Theorem A:
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if I : PG
2 (A) → PG(A) is the inclusion, we show that the overcategory

I ↓ (f : A ։ B) is contractible for any f : A ։ B in PG(A). When
A = ∐n

i=1G/H is H-isovariant, our arguments show that the overcategory
I ↓ f is either contractible or categorically equivalent to the partition poset
P(n).

Before proceeding, we need some notation.

Definition 7.3. Let H ≤ G be a proper subgroup and let A be a finite
G-set. We say that A is H-induced if there is an G-map A։ G/H.

Remark 7.4. Let A′ be an H-set, and let ∗ denote the H-set with one point
and trivial action. Applying the induction functor ↑GH : HFin → GFin to

the map A′ → ∗ yields aG-map ↑GH (A′)→↑GH (∗) ∼= G/H. This construction
actually gives an equivalence of categories HFin ≃ GFin ↓ (G/H), which
justifies our terminology for H-induced sets. In particular, A is H-induced
if and only if there is a finite H-set A′ with A isomorphic to ↑GH (A′).

The following result is equivalent, by Proposition 4.5 above, to Lemma
6.3 in [AB21] in the case where G = Σn.

Proposition 7.5. If A is not H-isovariant for any H ≤ G then PG(A) is
contractible.

Proof. Let I : PG
2 (A)→ PG(A) denote the inclusion of the full subcategory

on objects A ։ B where B has at least two orbits. We want to show,
under our hypotheses, that I induces a homotopy equivalence so the result
follows from Lemma 7.2. We prove that for any f : A ։ B in PG(A), the
undercategory I ↓ f is contractible, and hence our claim follows from (the
dual of) Quillen’s Theorem A.

If f : A ։ B is an object in PG
2 (A) then I ↓ f is contractible since the

identity on f is a terminal object. Suppose then that f : A ։ B is not
in PG

2 (A). Then B has a single orbit, and by Remark 3.4 we may assume
without loss of generality that B = G/H for some proper subgroup H ≤ G.
In particular, A is H-induced and so there is a finite H-set A′ so that
A ∼=↑GH (A′).

We claim there is an equivalence of categories I ↓ f ≃ PH
2 (A′). If so, then

the fact that A is not H-isovariant implies A′ is not K-isovariant for any
K ≤ H, and so PH

2 (A′) is contractible by Lemma 7.2.
An object in the category I ↓ f consists of a commutative triangle

A B′

G/H

f

in GFin such that B′ has more than one orbit. The claim follows from
the observation that I ↓ f is equivalent to the subcategory of (f : A ։

G/H) ↓ (SetG ↓ (G/H)) consisting of surjections from A onto objects with
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at least two orbits. Since the equivalence HFin ≃ GFin ↓ (G/H) preserves
both surjections and objects with at least two orbits, we see that I ↓ f
is equivalent to the subcategory of A′ ↓ HFin with only surjections onto
H-sets with more than one orbit, which is the definition of PH

2 (A′). �

Remark 7.6. In the notation of the above proof, it is always true that
I ↓ f ≃ PH

2 (A′). When A is H-isovariant, A′ is a trivial H-set and we
have an equivalence of categories PH

2 (A′) ≃ P(|A′|), which is generally not
contractible.

7.2. Case 2: A is H-isovariant. We now turn our attention to studying
PG(A) when A is H-isovariant.

The simplest case is when A = G/H is a transitive G-set, and we can
identify PG(A) with an equivalent category. In order to do this, let us first
establish the following convention.

Remark 7.7. IfH andK are subgroups of G, the collection of G-maps from
G/H to G/K is in bijection with the set of g ∈ G such that gHg−1 ⊆ K.
When H ≤ K, the G-map G/H → G/K corresponding to eHe−1 ⊆ K is
given by gH 7→ gK, and we call this map the canonical quotient.

Proposition 7.8. There is an equivalence of categories between the poset
PG(G/H) and the poset S(G,H) of subgroups K of G such that H � K � G.

Proof. Define a functor I : S(G,H) → PG(G/H) that sends a subgroup K
to the class of the canonical quotient G/H ։ G/K. On morphisms, I sends
an inclusion of subgroups K ≤ K ′ to the canonical quotient G/K ։ G/K ′.

As the domain category is a poset, I is necessarily faithful. To see that
I is full, note that a morphism in PG(G/H) between canonical quotients
(G/H ։ G/K) → (G/H ։ G/K ′) corresponds to a map G/K → G/K ′

sending eK to eK ′. Such a map exists, and is a canonical quotient, if and
only if K ≤ K ′.

Finally, we show I is essentially surjective on objects. If f : G/H ։ B
is surjective, then B must be a transitive G-set. By the Orbit-Stabilizer
Theorem, B ∼= G/K where K is the stabilizer of f(eH). Since the stabilizer
of eH is H, we have H ≤ K and f is equivalent to the canonical quotient
G/H ։ G/K. �

Remark 7.9. The space |PG(G/H)| is generally non-contractible. For ex-
ample, when G = Σ3, the space PΣ3(Σ3/e) is equivalent to four points.
Interestingly, understanding the general homotopy type of the realization
of the posets S(G,H) is an open problem. When G is solvable, Kratzer
and Thévenaz have shown that |S(G, e)| is homotopy equivalent to a wedge
of equidimensional spheres [KT85]. However, such a result does not hold
for general G; Kramarev and Lokutsievskiy have shown that when G =
PSL(2,F7), the space |S(G, e)| is homotopy equivalent to a wedge of 48
copies of S1 and 48 copies of S2 [KL08].
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We are left to understand the homotopy type of PG(A) when A is H-
isovariant with more than one orbit. In Proposition 7.11 below, we show
that the homotopy type of PG(A) for such A is entirely determined by the
subgroup H ≤ G and the number of orbits. When H = G, we recover the
non-equivariant partition complex, so for the remainder of the section we
assume H < G is a proper subgroup.

First, we fix some notation. For any object α in PG(A), let α⊥ denote
the collection of objects in PG(A) that are orthogonal to α. Thinking of
PG(A) as a poset, an element β is in α⊥ if there is no element ω which is
either a lower or upper bound for β and α.

Lemma 7.10. Let A = ∐n
i=1G/H, with n > 1, and let α : A ։ ∐n

i=1G/G
be the union of n collapse maps. Then α⊥ ⊆ PG(A) consists of all objects
β : A։ B where B ∼= G/H.

Proof. Suppose that β : A ։ B represents an object in α⊥. Then B must
have only one orbit; otherwise, the map A։ B ։ B/G is an upper bound
for α and β. Thus B ∼= G/K for some subgroup K ≤ G. Since there is a
G-map A→ G/K, it must be the case that H is subconjugate to K.

If K is not conjugate to H, the map A։ ∐n
i=1G/K is a lower bound for

β and α. It follows that everything in α⊥ is of the form in the statement.
That all such objects are in α⊥ follows from similar arguments. �

Proposition 7.11. There is a homotopy equivalence

|PG(∐n
i=1G/H)| ≃

∨

|WG(H)|n−1

|PG(G/H)|⋄ ∧ |P(n)|⋄

where WG(H) = NG(H)/H is the Weyl group and (−)⋄ denotes the unre-
duced suspension.

Proof. Let α ∈ PG(A) be as in Lemma 7.10. By [AB21, 3.5] (see also [BW83,
4.2]), there is a homotopy equivalence

|PG(A)| ≃
∨

β∈α⊥

|(β ↓ PG(A))×)|
⋄ ∧ |(PG(A) ↓ β)×|

⋄,

where the × denotes that we are considering the subcategory of the slice
category which does not contain the initial or final objects. We remove
these objects so that the categories are not contractible.

By Lemma 7.10, we have that an arbitrary β ∈ α⊥ is of the form A ։

G/H, and it is straightforward to check that (β ↓ PG(A))× ≃ P
G(G/H)

and (PG(A) ↓ β)× ≃ P(n). It remains to check how many isomorphism
classes of objects are in α⊥. Note that every element β ∈ α⊥ is represented
by an object in HomG(A,G/H). Since A is a disjoint union of n copies
of G/H, we have HomG(A,G/H) ∼= AutG(G/H)n ∼= WG(H)n. Finally, we
need to take the quotient by the subgroup of automorphisms of the target,
which is the diagonal copy of WG(H). �
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Remark 7.12. The splitting of Proposition 7.11 is similar to a result of
[AB21]. Let A be an H-isovariant G-set and let n = |A| and |G/H| = d.
The action of G on G/H induces an inclusion G ⊆ Σd. The G-action on A
induces an inclusion G ⊆ Σn which, up to relabeling, factors as

G ⊆ Σd ⊆ Σ
n

d

d ⊆ Σn,

where the second inclusion is the diagonal embedding. Using this embedding,
[AB21, Theorem 6.2] identifies

|P(A)|G ∼=↑
WΣn

(G)

WΣd
(G)×Σn

d

|PG(G/H)|⋄ ∧ |P(n)|⋄,

where ↑ is the induction functor on based spaces. We can compare this result
directly with Proposition 7.11, as induction on based spaces is given by tak-
ing wedges. Counting the number of wedge summands in both presentations,
we obtain a combinatorial identity

|WΣn
(G)|

|WΣd
(G)| · (nd )!

= |WG(H)|n−1

that must hold whenever G acts H-isovariantly on a set with n elements.

In many cases of interest, Proposition 7.11 suffices to show that |PG(A)|
has the homotopy type of a wedge of equidimensional spheres.

Corollary 7.13. If G is a solvable group, H ≤ G is normal, and A is
H-isovariant then |PG(A)| is homotopy equivalent to a wedge of equidimen-
sional spheres.

Proof. As noted in Remark 7.9, when G is solvable the homotopy type of
|PG(G/e)| is a wedge of equidimensional spheres. Since H is normal, Q =
G/H is a solvable group and we have equivalences of categories

PG(G/H) ∼= S(G,H) ∼= S(Q, e) ∼= PQ(Q/e),

and thus |PG(G/H)| has the homotopy type of a wedge of equidimensional
spheres. It is well-known that the homotopy type of |P(n)| is also a wedge of
equidimensional spheres; see, for example [Rob04]. The claim now follows
immediately from Proposition 7.11 and the facts that the smash product
distributes over wedges and the smash product of two spheres is a sphere. �

8. Connections to Cohomology and Lie algebras

Non-equivariantly, the cohomology of the space of trees is related to cer-
tain integral representations of the symmetric group Σn coming from Lie
algebra theory. In this section we recall this result, following Robinson
[Rob04], and explain how our work relates to it. All cohomology groups in
this section are integral.

Before proceeding, some remarks are in order regarding the way our work
fits into the general context of equivariant cohomology theories. For a G-
space X, there are three standard ways that the action of G induces addi-
tional structure on homology. The most straightforward, and the one we
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focus on, is that for all g ∈ G, the maps g : X → X induce a G-action
on H∗(X) giving it the structure of a graded G-module. Two other com-
mon ways of treating equivariant cohomology theories are known as Borel
cohomology and Bredon cohomology [May96], but we do not consider these
notions here. The interested reader can find computations of the Bredon ho-
mology of partition complexes in the case where G = Σn in work of Arone,
Dwyer, and Lesh [ADL16], [ADL21].

We now recall the work of Robinson on computations of the Σn-module
structure on the cohomology of the ordinary partition complex P(n). For a
fixed n, write Ln for the free Lie algebra on a set of n generators {x1, . . . , xn}.
The n-linear part of Ln is the subgroup Lien ≤ Ln generated by Lie mono-
mials containing every generator xi exactly once. The standard left action
of the symmetric group Σn on the set {x1, . . . , xn} extends to an action on
Lien that we call the integral Lie representation of Σn. The collection of
Z[Σn]-modules {Lien} forms a symmetric operad in abelian groups whose
algebras are Lie algebras.

Let εΣn denote the integral sign representation of Σn. The following
theorem is proved in [Rob04, Theorem 4.1].

Theorem 8.1. There is an isomorphism of Σn-modules

Hn−3(T(n)) ∼= εΣn ⊗ Lien .

We would like to prove an analogous result when n is replaced by a G-set
A for some finite group G. The first step is to find suitable replacements
for the Σn-representations Lien and εΣn . Given a G-set A, let α : G → Σn

be the homomorphism that realizes the action of G on A. Implicitly, this
homomorphism depends on a choice of total ordering for A, but we do not
use this additional information.

Let LA denote the free Lie algebra on the set A. Since LA is generated as
a Lie algebra by a set in bijection with A, it inherits a natural G-action. We
define the A-linear part of LA to be the G-subgroup LieA ≤ LA generated
by Lie monomials containing every generator of LA exactly once. This G-
submodule plays the role of Lien in the equivariant setting.

To replace the sign representation, we define the A-sign representation
εGA of G. Let G act on the free abelian group V generated by A. A choice
of ordering for A corresponds to a choice of ordered basis for V , and thus
gives matrix representations for the action of each g ∈ G. Define εGA(g) =
det(g) = ±1 for all g ∈ G, and consider this action as a 1-dimensional G-
representation. Note that while this definition requires a choice of ordering
for A, the G-representation εGA is independent of this choice, since any two
choices of ordering yield actions on V that are conjugate.

It is not hard to show there are isomorphisms of G-modules

LieA ∼= α∗(Lien) and εGA
∼= α∗(εΣn),
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where α∗ is the functor that restricts a Σn-module to a G-module along the
homomorphism α : G→ Σn. The next proposition uses these isomorphisms
to give an equivariant analogue of Theorem 8.1.

Theorem 8.2. There is an isomorphism of G-modules

Hn−3(T(A)) ∼= εGA ⊗ LieA .

Proof. Unwinding the definition, we see there are isomorphisms ofG-modules

α∗(εΣn

A ⊗ Lien) ∼= α∗(εΣn)⊗ α∗(Lien) ∼= εGA ⊗ LieA .

Since εΣn ⊗ Lien ∼= Hn−3(T(n)), the result now follows from Lemma 5.7,
together with the fact that for any Σn-space Y there is an isomorphism of
G-modules H∗(α∗Y ) ∼= α∗H∗(Y ). This last isomorphism follows from an
isomorphism at the level of singular cochains. �

We conclude this section with some comments on the cohomology of the
space of equivariant trees TG(A). Here we rely on the homeomorphism
TG(A) ∼= |PG(A)| from Theorem 6.10. Using Proposition 7.5 we see that
the homology of this space is often trivial.

Proposition 8.3. Suppose A is a G-set that is not H-isovariant for any

H ≤ G. Then the reduced homology H̃∗(TG(A)) = 0.

When A isH-isovariant, its homology is non-trivial and, by Proposition 7.11,
it is determined by the homotopy types of |PG(G/H)| and |P(|A|)|. As
noted in Remark 7.9, the homotopy type of |PG(G/H)| is not known in
general, and so we are unable to compute the homology of these spaces com-
pletely. In nice cases, we can use Corollary 7.13 to compute the cohomology
when the G-set A is free.

Corollary 8.4. If G is a solvable group, H ≤ G is normal, and A is H-
isovariant, then the reduced cohomology of TG(A) is a finitely generated free
abelian group concentrated in a single dimension.

Appendix A. Equivariant versions of Theorems A and B

Quillen’s Theorems A and B [Qui73, §1] play central roles in Quillen’s
work on higher algebraic K-theory, but are also widely applied outside of
that context. In this appendix, we prove the analogous theorems for G-
functors between categories with G-action.

A.1. Equivariant Theorem A. Quillen’s Theorem A is a useful tool for
determining whether a functor between categories induces a homotopy equiv-
alence on their classifying spaces. In particular, Theorem A is used by Heuts
and Moerdijk in their comparison of partition complexes and trees [HM21].
For our equivariant version of this comparison, we need a suitable equivariant
analogue, which we prove here. In the special case of posets, an equivariant
version of Theorem A was proved by Thévanaz and Webb [TW91].
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The idea behind Quillen’s Theorem A is that we can determine whether
a functor F : C → D is a homotopy equivalence by looking at the classifying
spaces of the undercategory d ↓ F for all objects d of D. Recall that the
objects of d↓F are pairs (c, g : d → Fc), where c is an object of C and g is
a morphism in D, and that a morphism between (c, g) and (c′, g′) in d↓F is
a map f : c→ c′ such that the following triangle commutes in D:

d

Fc Fc′.

g g′

Ff

The original statement of Quillen’s Theorem A is as follows.

Theorem A.1. Let F : C → D be a functor. If d ↓ F is contractible for
every object d of D, then F induces a homotopy equivalence |F | : |C| → |D|.

As noted by Quillen [Qui73], the dual statement where we assume F is
homotopy initial, rather than homotopy final, also holds by an analogous
proof.

We want an equivariant analogue of this theorem. Observe that if F : C →
D is a G-functor between categories with a G-action, then the fiber d ↓ F
has an action of the isotropy subgroup Gd = {g ∈ G | g · d = d}. For any
H ≤ Gd we can compute the fixed point category (d ↓ F )H . Note that we
have equalities

(d ↓ F )H = d ↓ FH ,

since both categories consist of the pairs of objects (c, ψ : d→ Fc) in d ↓ F
with hc = c and hψ = ψ for all h ∈ H.

We now want to ask that each fiber d↓F is Gd-contractible, meaning that
the homotopy equivalence |d↓F | → ∗ restricts to homotopy equivalences of
fixed points |d↓F |H → ∗ for all H ≤ Gd. In other words, we want F to be
G-homotopy final in the sense of Definition 3.11. Setting H = e, we see the
fibers all need to be contractible, as in the non-equivariant version.

We can thus state the equivariant version of Quillen’s Theorem A as
follows.

Theorem A.2 (Equivariant Theorem A). If F : C → D is G-homotopy ini-
tial or G-homotopy final, then |F | : |C| → |D| is a G-homotopy equivalence.

Proof. We focus our attention on the case where F is G-homotopy final, as
the dual result follows similarly by replacing the use of (non-equivariant)
Theorem A with its dual theorem.

To conclude |F | is a G-homotopy equivalence, we need to show that
|F |H : |C|H → |D|H is a homotopy equivalence for all H ≤ G. Since tak-
ing fixed points commutes with classifying spaces by Proposition 3.8, we
can equivalently show that |FH | : |CH | → |DH | is a homotopy equivalence,
which we can do by applying (non-equivariant) Theorem A. Note that if
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d ∈ obDH , then we must have H ≤ Gd, and

|d↓F |H = |(d↓F )H | = |d↓(FH )|.

Then by assumption, d ↓ FH = (d ↓ F )H is contractible, so we may ap-
ply Theorem A to conclude |FH | : |CH | → |DH | is a homotopy equivalence,
which completes the proof. �

Finally, we include the following consequence of Theorem A.2 that we use
in this paper.

Corollary A.3. For any category C with G-action, the functor

F : ∆C → C,

sending a chain to its final element, is G-homotopy initial and hence induces
a G-equivalence on classifying spaces.

Proof. From the definitions, one can check that F ↓ d = ∆(C ↓ d) for any
object d of C, and so (F ↓ d)H = FH ↓ d = ∆(CH ↓ d) for all H ≤ Gd.
As noted in, for example, the discussion in [Dug06] before Theorem 2.4,
the (non-equivariant) last vertex map induces a weak equivalence on nerves.
Hence (F ↓ d)H and CH ↓ d have equivalent nerves, and thus (F ↓ d)H is
contractible, as desired. �

A.2. Equivariant Theorem B. We may similarly prove an equivariant
version of Quillen’s Theorem B, which gives a sufficient condition to model
the homotopy fiber of |F | : |C| → |D| as a classifying space. The original
statement of Quillen’s Theorem B is as follows.

Theorem A.4. Let F : C → D be a functor and suppose that for every
morphism d → d′ in D, the induced map |d′ ↓ F | → |d ↓ F | is a homotopy
equivalence. Then the pullback square

|d↓F | |C|

|d↓ idD| |D|

F

is a homotopy pullback.

Since the identity on d is an initial object, |d↓ idD| is contractible, so the
inclusion |d ↓F | → hfib(|F |) is a homotopy equivalence. As with Theorem
A, there is also a dual version of Theorem B.

To prove an equivariant version of Theorem B, we need a lemma about
the homotopy fiber of a G-functor.

Lemma A.5. Suppose F : C → D is a G-functor and let d ∈ ob(D). Then
the homotopy fiber hfibd(|F |) is a Gd-space with

hfibd(|F |)
H ≃ hfibd(|F

H |)

for every H ≤ Gd.
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Proof. We can model the homotopy fiber hfibd(|F |) as

{d} ×h
|D| |C| = {(d, γ, c) | c ∈ |C|, γ ∈ |D|

I , γ(0) = d, γ(1) = |F |(c)}.

This space has a Gd-action g ·(d, γ, c) = (d, g ·γ, g ·c) where (g ·γ)(t) = g ·γ(t)
for all t ∈ I. A point (d, γ, c) ∈ hfibd(|F |) is thus H-fixed if and only if
c ∈ |C|H = |CH | and γ is a path in |D|H = |DH |, which is to say (d, γ, c) ∈
hfibd(|F

H |). Thus hfibd(|F |)
H models hfibd(|F

H |) for H ≤ Gd. �

Theorem A.6 (Equivariant Theorem B). Suppose F : C → D is a G-functor
and every morphism d→ d′ in D induces a Gd ∩ Gd′-equivalence |d

′ ↓F | →
|d↓F |. Then for each object d of D, the inclusion |d↓F | → hfibd(|F |) is a
Gd-equivalence.

Proof. For an object d of D, we want to show that |d ↓F |H → hfibd(|F |)
H

is a homotopy equivalence for each H ≤ Gd by applying non-equivariant
Theorem B to FH : CH → DH . Note that for any object d in D and H ≤ Gd,
we have that d is an object in DH and

|d↓F |H = |(d↓F )H | = |d↓(FH )|.

In order to apply Theorem B, we need to know that every morphism d1 →
d2 in DH induces an equivalence |d2 ↓ F

H | → |d1 ↓ F
H |. This equivalence

holds by assumption, since if d1 and d2 are objects of DH , then H ≤ Gd1 ∩
Gd2 . Hence Theorem B allows us to conclude that for any object d of DH ,
the pullback

|d↓FH | |CH |

|d↓FH | |DH |

FH

is a homotopy pullback, which is to say the inclusion |d↓FH | → hfibd(|F
H |)

is a homotopy equivalence. By Lemma A.5, it follows that |d ↓ F |H →
hfibd(|F |)

H is an equivalence. This argument applies to any H ≤ Gd, and
therefore |d↓F | → hfibd(|F |) is a Gd-equivalence. �

Remark A.7. There is a dual version of Theorem B for F ↓ d, where we
instead assume each morphism d→ d′ in D induces a Gd ∩Gd′ -equivalence
|F ↓d| → |F ↓d′|.

Remark A.8. As is true non-equivariantly, the equivariant version Theo-
rem B could be used to give an alternative proof of the equivariant version
of Theorem A.
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