THE SLICE SPECTRAL SEQUENCE OF MACKEY FUNCTORS
FOR THE C₄ ANALOG OF REAL K-THEORY

M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

WORK IN PROGRESS

CONTENTS

List of Tables 1

1. General nonsense about equivariant stable homotopy theory 2
2. The RO(G)-graded homotopy of HZ 3
3. The case G = C₄ 11
4. Some chain complexes of Mackey functors 13
5. The C₄-spectrum kH 20
6. Slices for kH and KH 23
7. Generalities on differentials 27
8. kH as a C₂-spectrum 29
9. The first differentials over C₄ 31
10. Higher differentials and exotic Mackey functor extensions 40

References 46

LIST OF TABLES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Some C₄-Mackey functors 12</td>
</tr>
<tr>
<td>2</td>
<td>Some C₂-Mackey functors 13</td>
</tr>
<tr>
<td>3</td>
<td>Some elements of filtration 0 in the homotopy of and slice spectral sequence for kH 24</td>
</tr>
<tr>
<td>4</td>
<td>Some elements of positive filtration in the homotopy of and slice spectral sequence for kH 25</td>
</tr>
</tbody>
</table>

The purpose of this paper is to describe the slice spectral sequence of a 32-periodic C₄-spectrum KH (to be defined in §5) related to the C₄ norm MU^{(C₄)} = N²₄MU_R of the real cobordism spectrum MU_R. Part of this spectral sequence is illustrated in an unpublished poster produced in late 2008 and shown at the end of this paper. It shows the spectral sequence converging to the homotopy of the fixed point spectrum KH^{C₄}. Here we will describe the corresponding spectral sequence of Mackey functors converging to the graded Mackey functor π₁KH. The C₈ analog

Date: September 26, 2012.

The authors were supported by DARPA Grant FA9550-07-1-0555 and NSF Grants 0905160...
of K_H is 256-periodic and detects the Kervaire invariant classes θ_j. The C_2 analog is the real K-theory spectrum K_R.

We will rely extensively on the results, methods and terminology of [HHR].

1. General nonsense about equivariant stable homotopy theory

We first discuss some structure on the homotopy groups of a G-spectrum X. For each representation V we get a Mackey functor $\pi^G_\ast X = \pi^G_\ast \Sigma^{-V} X$; we will often suppress G from the notation when it is clear from the context. Its components are the ordinary homotopy groups of various fixed point sets. In [HHR, 2.2.5] the group

$$\pi_k^H X (G/H) = \pi_k^{G/H} X$$

(for an integer k) is denoted by $\pi_k^H X = [S^k, X]^H$. Here S^k has the trivial group action, so an H-equivariant map to X must land in the fixed point spectrum X^H. Thus

$$\pi_k^H X = \pi_k^{G/H}(X^H),$$

the ordinary kth homotopy group of the ordinary spectrum X^H. Since the Weyl group of H acts on X^H, this group is a module over it.

For a representation V of G, the group

$$\pi^G_\ast X (G/H) = \pi^H_\ast X = [S^V, X]^H$$

is isomorphic to $[S^0, S^{-V} \wedge X]^H = \pi_0(S^{-V} \wedge X)^H$.

However fixed points do not respect smash products, so we cannot equate this group with $\pi_0(S^{-V} H \wedge X^H) = [S^V H, X^H] = \pi_{[V]} X^H = \pi^{G/H}_H X(G/H)$.

Conversely a G-equivariant map $S^V \to X$ represents an element in $[S^V, X]^G = \pi^G_\ast X = \pi^G_\ast X(G/G)$.

For $K \subseteq H \subseteq G$ we have maps

$$\pi^G_\ast X(G/H) \xrightarrow{\text{Tr}_K^H} \pi^G_\ast X(G/K)$$

which we call the fixed point restriction and transfer maps. When X is a ring spectrum, we have the fixed point Frobenius relation

(1) $\text{Tr}_K^H (\text{Res}_K^H(a) b) = a \text{Tr}_K^H(b)$ for $a \in \pi_\ast X(G/H)$ and $b \in \pi_\ast X(G/K)$.

In particular this means that

(2) $a \text{Tr}_K^H(b) = 0$ when $\text{Res}_K^H(a) = 0$.

We can also regard X as an H-spectrum for any subgroup H of G; we will not make a notational distinction between these two structures on X. As such it has an $RO(H)$-graded Mackey functor over H of homotopy groups. For simplicity we assume now that G is abelian. Recall that for a Mackey functor \underline{M} over H, the abelian group $\underline{M}(H/K)$ (for a subgroup K of H) is a module over $\mathbb{Z}[H/K]$. For
the $RO(H)$-graded abelian group $\pi^H_*(X(H/K))$ for a G-spectrum X, this module structure extends to one over $\mathbb{Z}[G/K]$.

We will define maps relating these Mackey functors over the various subgroups and call them group action restriction and transfer maps, denoted by r^G_H and t^G_H. The map r^G_H is induced by the forgetful functor from G-spectra to H-spectra denoted in [HHR 2.2.4] by i^*_H; for trivial H it is denoted by i^*_0.

Given a representation V of G restricting to W on $H \subseteq G$ and a G-spectrum X, we have maps of G-spectra

$$
\begin{array}{ccc}
S^V & \xrightarrow{\text{pinch}} & (G/H)_+ \wedge S^V \\
\xleftarrow{\text{fold}} & & \cong \xrightarrow{} G_+ \wedge H S^W =: S_W
\end{array}
$$

Since for each subgroup $L \subseteq H$,

$$
\pi^H_L X(H/L) = \pi^H_0 F(S^W, X)(H/L) = \pi^G_0 F(S_W, X)(G/L) = \pi^G_0 F((G/H)_+ \wedge S^V, X)(G/L),
$$

the pinch and fold maps induce

$$
\begin{array}{ccc}
\pi^G_V X & \xrightarrow{\iota^G_H} & \pi^H_L X \\
\xleftarrow{\iota^G_H} & & \xleftarrow{\iota^G_L} \pi^H_W X(H/L)
\end{array}
$$

$$
\begin{array}{ccc}
\pi^G_V X(G/L) & \xrightarrow{\iota^G_H(G/L)} & \pi^H_L X(G/L) \\
\xleftarrow{\iota^G_H(G/L)} & & \xleftarrow{\iota^G_L(G/K)} \pi^H_W X(H/H \cap K)
\end{array}
$$

where the X on the right is the restriction of the X on the left to an H-spectrum, $K \subseteq G$ and $L \subseteq H$. We can conjugate elements on the right by elements of G with the subgroup H acting trivially.

The group action transfer nominally depends on the choice of V that restricts to W, but two such choices V and V' lead to canonically isomorphic groups. For $L \subseteq H \subseteq G$ we have a diagram

$$
\begin{array}{ccc}
\pi^G_V X(G/L) & \xrightarrow{\iota^G_H(G/L)} & \pi^H_L X(H/L) \\
\pi^G_V X(G/L) & \xrightarrow{\iota^G_H(G/L)} & \pi^H_L X(H/L)
\end{array}
$$

The groups on the left are isomorphic because they depend only on the restrictions of V or V' to L. By assumption they have the same restrictions to H.

2. The $RO(G)$-graded homotopy of $H\mathbb{Z}$

We describe part of the $RO(G)$-graded Green functor $\pi_*(H\mathbb{Z})$, where $H\mathbb{Z}$ is the integer Eilenberg-Mac Lane spectrum $H\mathbb{Z}$ in the G-equivariant category, for some
cyclic 2-groups G. For each actual (as opposed to virtual) G-representation V we have an equivariant reduced cellular chain complex C^V_* for the space S^V. It is a complex of $\mathbb{Z}[G]$-modules with $H_*(C^V_*) = H_*(S^V|_0)$.

One can convert such a chain complex C^V_* of $\mathbb{Z}[G]$-modules to one of Mackey functors as follows. Given a $\mathbb{Z}[G]$-module M, we get a Mackey functor M defined by

$$M(G/H) = M^H$$

for each subgroup $H \subseteq G$.

We call this a fixed point Mackey functor. When M is a permutation module, meaning the free abelian group on a G-set B, we call M a permutation Mackey functor [HHR 2.45]. Given a finite G-CW spectrum X, meaning one built out of cells of the form $G_+ \wedge e^n$, we get a reduced cellular chain complex of $\mathbb{Z}[G]$-modules C_*X, leading to a chain complex of fixed point Mackey functors C_*X. Its homology is a graded Mackey functor H_*X with

$$H_*X(G/H) = \pi_*(X \wedge H\mathbb{Z})(G/H) = \pi_*(X \wedge H\mathbb{Z})^H.$$

In particular $H_*X(G/e) = H_*X$, the underlying homology of X. In general $H_*X(G/H)$ is not the same as $H_*(X^H)$ because fixed points do not commute with smash products. We will see an illustration of this below in Example 5 where we will also see that H_*X need not be a graded fixed point Mackey functor.

For a finite cyclic 2-group $G = C_{2^k}$, the irreducible representations are the 2-dimensional ones $\lambda(m)$ corresponding to rotation through an angle of $2\pi m/2^k$ for $0 < m < 2^{k-1}$, the sign representation σ and the trivial one of degree one, which we denote by 1. The 2-local homotopy type of $S^{\lambda(m)}$ depends only on the 2-adic valuation of m, so we will only consider $\lambda(2^j)$ for $0 \leq j \leq k-2$. The planar rotation $\lambda(2^{k-1})$ though angle π is the same representation as 2σ.

We will describe the chain complex C^V_* for

$$V = a + b \sigma + \sum_{2 \leq j \leq k} c_j \lambda(2^{k-j}).$$

for nonnegative integers a, b and c_j. The isotropy group of V (the largest subgroup fixing all of V) is

$$G_V = \begin{cases} C_{2^k} = G & \text{for } b = c_2 = \cdots = c_k = 0 \\ C_{2^{k-1}} =: G' & \text{for } b > 0 \text{ and } c_2 = \cdots = c_k = 0 \\ C_{2^{k-\ell}} & \text{for } c_\ell > 0 \text{ and } c_{\ell+1} = \cdots = c_k = 0 \end{cases}$$

The sphere S^V has a G-CW structure with reduced cellular chain complex C^V_* of the form

$$C^V_n = \begin{cases} \mathbb{Z} & \text{for } n = d_0 \\ \mathbb{Z}[G/G'] & \text{for } d_0 < n \leq d_1 \\ \mathbb{Z}[G/C_{2^{k-1}}] & \text{for } d_{j-1} < n \leq d_j \text{ and } 2 \leq j \leq \ell \\ 0 & \text{otherwise.} \end{cases}$$

where

$$d_j = \begin{cases} a & \text{for } j = 0 \\ a + b & \text{for } j = 1 \\ a + b + 2c_2 + \cdots + 2c_j & \text{for } 2 \leq j \leq \ell, \end{cases}$$

so $d_\ell = |V|$.
The boundary map $\partial_n : C^V_n \to C^V_{n-1}$ is determined by the fact that $H_*(C^V) = H_*(S^V)$. More explicitly, let γ be a generator of G and

$$\theta_j = \sum_{0 \leq t < 2j} \gamma^t \quad \text{for } 1 \leq j \leq k.$$

Then we have

$$\partial_n = \begin{cases} \nabla & \text{for } n = 1 + d_0 \\ (1-\gamma)x_n & \text{for } n - d_0 \text{ even and } 2 + d_0 \leq n \leq d_n \\ x_n & \text{for } n - d_0 \text{ odd and } 2 + d_0 \leq n \leq d_n \\ 0 & \text{otherwise,} \end{cases}$$

where ∇ is the fold map sending $\gamma \mapsto 1$. We will use the same symbol below for the quotient map $\mathbb{Z}[G/H] \to \mathbb{Z}[G/K]$ for $H \subseteq K \subseteq G$. The elements $x_n \in \mathbb{Z}[G]$ for $2 + d_0 \leq n \leq |V|$ are determined recursively by $x_{2+d_0} = 1$ and

$$x_n x_{n-1} = \theta_j \quad \text{for } 2 + d_{j-1} < n \leq 2 + d_j.$$

It follows that $H_{|V|} C^V = \mathbb{Z}$ generated by either $x_{1+|V|}$ or its product with $1-\gamma$, depending on the parity of b.

This complex is

$$C^V = \Sigma_0 C^V/V_0$$

where $V_0 = V^G$. This means we can assume without loss of generality that $V_0 = 0$.

An element

$$x \in H_n C^V(G/H) = H_n S^V(G/H)$$

corresponds to an element $x \in \pi_{n-V} HZ(G/H)$.

We will denote the dual complex $\text{Hom}(C^V, \mathbb{Z})$ by C^{-V}. Its chains lie in dimensions $-n$ for $0 \leq n \leq |V|$. An element $x \in H_{-n}(-V)(G/H)$ corresponds to an element $x \in \pi_{-n} HZ(G/H)$.

The method we have just described determines only a portion of the RO(G)-graded Mackey functor $\pi_* HZ$, namely the groups in which the index differs by an integer from an actual representation V or its negative. For example it does not give us $\pi_{-\lambda(1)} HZ$ for $|G| \geq 4$.

Example 5. The case $G = C_8$ and $V = \sigma + \lambda(1)$. The representation V is not orientable since it involves an odd multiple of σ. Its unit sphere $S(V)$ is S^2 with the following action of G. There is a generator γ which rotates the equator though an angle of $\pi/4$ while reflecting through the equatorial plane. Thus the poles are fixed by each proper subgroup, and no other point is fixed by a nontrivial subgroup.

It follows that in the one point compactification S^V of V we have

$$(S^V)^H = \begin{cases} S^V & \text{for } H = e \\ S^1 & \text{for } H = C_2 \text{ or } C_4 \\ S^0 & \text{for } H = G \end{cases}$$

$S(V)$ has a G-CW structure with

- two 0-cells (the north and south poles) interchanged by γ,
- eight 1-cells (equally spaced longitudinal lines joining the two poles with alternating orientations) cyclically permuted by γ and λ,
- eight 2-cells (regions between two adjacent longitudinal lines) cyclically permuted by γ.

For $H = C_8$ we have

- S^V_e is the two point compactification of S^2,
- $S^V_{C_2}$ and $S^V_{C_4}$ are not compact.

The groups $\pi_{-\lambda(1)} HZ$ for $|G| \geq 4$ are determined only by the following examples.

- For $G = C_2$, $V = \sigma$, S^V has a C_2-CW structure with
 - one 3-cell S^0,
 - eight 2-cells S^1,
 - eight 1-cells S^2.

- For $G = C_4$, $V = \sigma + \lambda(1)$, S^V has a C_4-CW structure with
 - one 4-cell S^0,
 - eight 3-cells S^1,
 - eight 2-cells S^2,
 - eight 1-cells S^3.

- For $G = C_8$, $V = \sigma + \lambda(1)$, S^V has a C_8-CW structure with
 - one 4-cell S^0,
 - eight 3-cells S^1,
 - eight 2-cells S^2,
 - eight 1-cells S^3,
 - eight 0-cells S^4.

These spaces are used in the construction of $\pi_{-\lambda(1)} HZ$.

The RO(G)-graded Mackey functor $\pi_* HZ$ determines only a portion of the $\text{RO}(G)$-graded Mackey functor $\pi_* HZ$.

For example it does not give us $\pi_{-\lambda(1)} HZ$ for $|G| \geq 4$.

Example 5.
This means that S^V has a similar G-CW structure with two fixed 0-cells in which each positive dimensional cell is the double cone on a cell in $S(V)$. The reduced cellular chain complex C^V is

\begin{equation}
\begin{array}{cccc}
C_0^V & C_1^V & C_2^V & C_3^V \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\mathbb{Z} & \mathbb{Z}[G/G'] & \mathbb{Z}[G] & \mathbb{Z}[G]
\end{array}
\end{equation}

where $x_2 = 1$, $x_3 = 1 + \gamma$ and $x_4 = (1 + \gamma^2)(1 + \gamma^4)$. The number beneath each arrow indicates its rank as a homomorphism. $H_3 \subseteq C_3$ is the subgroup generated by

\[(1 - \gamma)x_4 = (1 - \gamma)(1 + \gamma^2)(1 + \gamma^4)\]

The corresponding chain complex of fixed point Mackey functors is

\[
\begin{array}{cccc}
C^V_0 & C^V_1 & C^V_2 & C^V_3 \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
1 \{ 2 \} & 1 {\gamma} & 1 {\gamma} & 1 {\gamma} \\
\mathbb{Z}[G/G'] & \mathbb{Z}[G/G'] & \mathbb{Z}[G/G'] & \mathbb{Z}[G/G'] \\
1 \{ 2 \} & 1 {\gamma} & 1 {\gamma} & 1 {\gamma} \\
\mathbb{Z}[G/C_2] & \mathbb{Z}[G/C_2] & \mathbb{Z}[G/C_2] & \mathbb{Z}[G]
\end{array}
\]

and its homology is

\[
\begin{array}{cccc}
H_0S^V & H_1S^V & H_2S^V & H_3S^V \\
\mathbb{Z}/2 & 0 & \mathbb{Z}/2 & 0 \\
\{ \} & \{ \} & \{ \} & \{ \} \\
0 & \mathbb{Z}/4 & 0 & \mathbb{Z}_- \\
\{ \} & 1 \{ \} & \{ \} & 1 \{ \} \\
0 & \mathbb{Z}/2 & 0 & \mathbb{Z}_- \\
\{ \} & 1 \{ \} & \{ \} & 1 \{ \} \\
0 & 0 & 0 & \mathbb{Z}_-
\end{array}
\]

where \mathbb{Z}_- denotes $\mathbb{Z}[G/H]/(1 + \gamma)$ for the appropriate proper subgroup H. In these diagrams of Mackey functors \overline{M}, the top and bottom groups are $\overline{M}(G/G)$ and $\overline{M}(G/e)$ with the values of \overline{M} on intermediate groups in between. Downward and upward pointing arrows are restrictions and transfers respectively.

Note that these homology groups are not fixed point Mackey functors, and $H_*(G/H)$ is not the same as $H_*(S^V)^H$ for any nontrivial subgroup H.

For the dual spectrum S^{-V} we apply the functor $\text{Hom}_Z(\cdot, Z)$ to (6). The resulting chain complex of fixed point Mackey functors is

\[
\begin{array}{cccc}
C_0^{-V} & C_1^{-V} & C_2^{-V} & C_3^{-V} \\
\begin{array}{c}
Z \\
1 \gamma \end{array} & 1 & 0 & Z \\
\begin{array}{c}
Z \\
1 \gamma \end{array} & 1 & 0 & Z \\
\begin{array}{c}
Z \\
1 \gamma \end{array} & 1 & 0 & Z \\
\begin{array}{c}
Z \\
1 \gamma \end{array} & 1 & 0 & Z \\
\end{array}
\]

with homology

\[
\begin{array}{cccc}
H_0S^{-V} & H_{-1}S^{-V} & H_{-2}S^{-V} & H_{-3}S^{-V} \\
0 & 0 & 0 & \mathbb{Z}/2 \\
0 & 0 & 0 & \mathbb{Z} \\
0 & 0 & 0 & \mathbb{Z} \\
0 & 0 & 0 & \mathbb{Z} \\
\end{array}
\]

Notice that $H_{-3}S^{-V}$ is quite different from H_3S^V.

Example 5 illustrates the nonoriented case of the following, whose proof we leave as an exercise.

Proposition 7. The top homology group. Let G be a finite cyclic 2-group and V a nontrivial representation of G of degree d with $V^G = 0$ and isotropy group G_V. Then $C_d^V = C_{-d}^V = \mathbb{Z}[G/G_V]$ and

(i) If V is oriented then $H_dS^V = \mathbb{Z}$, the constant \mathbb{Z}-valued Mackey functor in which each restriction map is an isomorphism and each transfer Tr^K_H is multiplication by $|K/H|$. $H_{-d}S^{-V} = \mathbb{Z}(G, G_V)$, the constant \mathbb{Z}-valued Mackey functor in which

\[
\begin{align*}
\text{Res}^K_H &= \begin{cases}
1 & \text{for } K \subseteq G_V \\
|K/H| & \text{for } G_V \subseteq H
\end{cases} \\
\text{Tr}^K_H &= \begin{cases}
|K/H| & \text{for } K \subseteq G_V \\
1 & \text{for } G_V \subseteq H
\end{cases}
\end{align*}
\]
(These determine all restrictions and transfers.) The functor $Z(G,e)$ is also known as the dual Z^*. These isomorphisms are induced by the maps

$$
\begin{align*}
H_d S^V & \xrightarrow{\Delta} Z(G/G_V) \\
\mathbb{Z} & \xrightarrow{\pi_0} Z(G,G_V)
\end{align*}
$$

(ii) If V is not oriented then $H_d S^V = \mathbb{Z}$, where

$$
\mathbb{Z}_-(G/H) = \begin{cases}
0 & \text{for } H = G \\
\mathbb{Z} & \text{otherwise}
\end{cases}
$$

where each restriction map Res^K_H is an isomorphism and each transfer Tr^K_H is multiplication by $|K/H|$ for each proper subgroup K. We also have $H_d S^{-V} = Z(G,G_V)$, where

$$
\begin{align*}
Z(G,G_V)_-(G/H) & = \begin{cases}
0 & \text{for } H = G \text{ and } V = \sigma \\
\mathbb{Z}/2 & \text{for } H = G \text{ and } V \neq \sigma \\
\mathbb{Z}_- & \text{otherwise}
\end{cases} \\
\end{align*}
$$

with the same restrictions and transfers as $Z(G,G_V)$. These isomorphisms are induced by the evident maps

$$
\begin{align*}
H_d S^V & \xrightarrow{\Delta} Z(G/G_V) \\
\mathbb{Z} & \xrightarrow{\pi_0} Z(G,G_V)
\end{align*}
$$

\textbf{Definition 8. Three elements in } $\pi_*^G(H\mathbb{Z})$. Let V be an actual (as opposed to virtual) representation of the finite cyclic 2-group G with $V^G = 0$ and isotropy group G_V.

(i) The equivariant inclusion $S^0 \to S^V$ defines an element in $\bar{\pi}_- S^0(G/G)$ via the isomorphisms

$$
\bar{\pi}_-S^0(G/G) = \bar{\pi}_0 S^V(G/G) = \pi_0 S^{V^G} = \pi_0 S^0 = \mathbb{Z},
$$

and we will use the symbol a_V to denote its image in $\pi_*^G H\mathbb{Z}(G/G)$.

(ii) The underlying equivalence $S^V \to S^{|V|}$ defines an element in

$$
\bar{\pi}_V S^{|V|}(G/G_V) = \bar{\pi}_V - |V| S^0(G/G_V)
$$

and we will use the symbol e_V to denote its image in $\pi_* H\mathbb{Z}(G/G_V)$.

(iii) If W is oriented, there is a map

$$
\Delta : \mathbb{Z} \to C^W_{|W|}
$$

as in Proposition\cite{7} giving an element

$$
u_W \in H_{|W|} S^W(G/G) = \pi_{|W| - W} H\mathbb{Z}(G/G).
$$

For nonoriented V Proposition\cite{7} gives a map

$$
\Delta_- : \mathbb{Z}_- \to C^V_{|V|}
$$

and an element

$$
u_V \in H_{|V|} S^V(G/G') = \pi_{|V| - V} H\mathbb{Z}(G/G').
$$
Note that a_V and e_V are induced by maps to equivariant spheres while u_W is not. This means that in any spectral sequence based on a filtration where the subquotients are equivariant HZ-modules, elements defined in terms of a_V and e_V will be permanent cycles, while multipoles of u_W can support differentials.

Note also that $a_0 = e_0 = u_0 = 1$. The trivial representations contribute nothing to $\pi_*(HZ)$. We can limit our attention to representations V with $V^G = 0$. Among such representations of cyclic 2-groups, the oriented ones are precisely the ones of even degree.

Lemma 9. Properties of a_V, e_V and u_W. The elements $a_V \in \pi_{-V}HZ(G/G)$, $e_V \in \pi_{-|V|}HZ(G/G)$ and $u_W \in \pi_{|W|^{-W}}HZ(G/G)$ for W oriented satisfy the following.

1. $a_{V+W} = a_V a_W$ and $u_{V+W} = u_V u_W$.
2. $|G/G| a_V = 0$ where G_V is the isotropy group of V.
3. For oriented V, $Tr^G_{G_V}(e_V)$ and $Tr^G_{G_V}(e_{V+\sigma})$ have infinite order while $Tr^G_{G_V}(e_{V+\sigma})$ has order 2 if $|V| > 0$, and $Tr^G_{G_V}(e_{\sigma}) = 0$.
4. For oriented W, $Tr^G_{G_W}(e_W) = |G/G| \in \pi_0HZ(G/G) = Z$.
5. $a_{V+W} Tr^2_{G_V}(e_{V+U}) = 0$ if $|V| > 0$.
6. For V and W oriented, $u_W Tr^G_{G_V}(e_{V+W}) = |G_V/G_{V+W}| Tr^G_{G_V}(e_V)$.
7. The au relation. For V and W oriented representations of degree 2 with $G_V \subseteq G_W$, $awu_V = |G_W/G_V| a_V u_W$.

For nonoriented W similar statements hold in $\pi_+HZ(G/G')$. $2W$ is oriented and u_{2W} is defined in $\pi_{|W|-2W}HZ(G/G)$ with $Res^G_{G'}(u_{2W}) = u_{2W}^\epsilon$.

Proof.

1. This follows from the existence of the pairing $C^V \otimes C^W \rightarrow C^{V+W}$. It induces an isomorphism in H_0 and (when both V and W are oriented) in $H_{|V+W|}$.
2. This holds because $H_0(V)$ is killed by $|G/G_V|$.
3. This follows from Proposition 7.
4. Using the Frobenius relation we have

\[Tr^G_{G_V}(e_W) u_W = Tr^G_{G_V}(e_W Res^G_{G'}(u_W)) = Tr^G_{G_V}(|G/G_V|) = |G/G_V|. \]

5. We have

\[a_{V+W} Tr^G_{G_V}(e_{V+U}) : S^{-|V|-|U|} \rightarrow S^{W-U}. \]

It is null because the bottom cell of S^{W-U} is in dimension $-|U|$.

6. Since V is oriented, then we are computing in a torsion free group so we can tensor with the rationals. It follows from (iv) that

\[Tr^G_{G_V+U}(e_{V+W}) = \frac{|G/G_{V+W}|}{u_{V+W}} \]

and

\[Tr^G_{G_V}(e_V) = \frac{|G/G_V|}{u_V} \]

so

\[u_W Tr^G_{G_V+U}(e_{V+W}) = \frac{|G/G_{V+W}|}{u_{V}} = |G_V/G_{V+W}| Tr^G_{G_V}(e_V). \]
(vii) The relevant chain complexes are

\[
\begin{array}{cccccc}
 & 0 & 1 & 2 & 3 & 4 \\
C^V : & \mathbb{Z} \xrightarrow{\nabla_V} \mathbb{Z}[G/G_V] \xrightarrow{1-\gamma} \mathbb{Z}[G/G_V] \\
C^W : & \mathbb{Z} \xrightarrow{\nabla_W} \mathbb{Z}[G/G_W] \xrightarrow{1-\gamma} \mathbb{Z}[G/G_W] \\
C^{V+W} : & \mathbb{Z} \xrightarrow{\nabla_W} \mathbb{Z}[G/G_W] \xrightarrow{1-\gamma} \mathbb{Z}[G/G_V] \xleftarrow{\theta_W} \mathbb{Z}[G/G_V] \xleftarrow{1-\gamma} \mathbb{Z}[G/G_V] \\
\end{array}
\]

\[
\begin{array}{cccccc}
C^V \otimes Z C^W : & \mathbb{Z} \xleftarrow{\partial_1} \mathbb{Z}[G/G_V] \otimes \mathbb{Z}[G/G_W] \xleftarrow{\partial_2} T(V, W) \xleftarrow{\partial_3} T(V, W) \xleftarrow{\partial_4} T(V, W) \\
\end{array}
\]

where \(\nabla_V \) and \(\nabla_W \) are fold or reduction maps sending each power of \(\gamma \) to 1,

\[
\theta_W = \sum_{0 \leq i < |G/G_W|} \gamma^i
\]

and

\[
T(V, W) = \mathbb{Z}[G/G_V] \otimes \mathbb{Z}[G/G_W] = \bigoplus_{|G/G_W|} \mathbb{Z}[G/G_V].
\]

To describe the maps \(m_i \) and \(\partial_i \) we use left matrix multiplication on column vectors. We have

\[
\begin{align*}
\partial_1 &= \begin{bmatrix} \nabla_V & \nabla_W \end{bmatrix} \\
\partial_2 &= \begin{bmatrix} 1-\gamma & 0 \\ 0 & 1-\gamma \end{bmatrix} \\
m_1 &= \begin{bmatrix} \nabla_{V,W} & 1 \\ 1-\gamma \end{bmatrix} \\
m_2 &= \begin{bmatrix} \nabla_{V,W} & 1 \end{bmatrix}
\end{align*}
\]

where \(\nabla_{V,W} \) is the reduction map and the unidentified maps from \(T(V, W) \), namely \(\partial_3, \partial_4, m_3 \) and \(m_4 \), are not relevant here.

We have a noncommuting diagram

\[
\begin{array}{cccc}
\mathbb{Z}[G/G_V] & \xrightarrow{\Delta_V} & \mathbb{Z}[G/G_V] & \xrightarrow{\nabla_{V,W}} & \mathbb{Z}[G/G_V] \\
\Delta_W & & \mathbb{Z}[G/G_W] & & \mathbb{Z}[G/G_W] \\
\end{array}
\]

where the maps to the relevant summands are

\[
\begin{array}{cccc}
\mathbb{Z}[G/G_V] & \xrightarrow{\nabla_{V,W}} & \mathbb{Z}[G/G_V] \otimes \mathbb{Z} \\
\mathbb{Z}[G/G_W] & \xrightarrow{\nabla_{V,W}} & \mathbb{Z} \otimes \mathbb{Z}[G/G_W] \\
\end{array}
\]
where

\[\Delta_V = \sum_{0 \leq i < |G/G_V|} \gamma^i \]

\[\Delta_W = \sum_{0 \leq i < |G/G_W|} \gamma^i. \]

The upper composite is \(|G_W/G_V|\) times the lower one, so \(a_W u_V = |G_W/G_V| a_V u_W\) as claimed. \(\square\)

3. The case \(G = C_4\)

Now let \(G = C_4\) with generator \(\gamma\), and let \(G' \subseteq G\) be its index 2 subgroup. Then the above discussion leads at a diagram

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\pi_*^G X(G/G)} & \pi_*^G X(G/G') \\
\xrightarrow{\text{Res}_2^G} & \xrightarrow{\text{Tr}_2^G} & \xrightarrow{\text{Res}_2^{G'}} \\
\mathbb{Z}[G/G'] & \xrightarrow{\pi_*^G X(G/e)} & \pi_*^{G'} X(G'/e) \\
\xrightarrow{\text{Res}_1^G} & \xrightarrow{\text{Tr}_1^G} & \xrightarrow{\text{Res}_1^{G'}} \\
\mathbb{Z}[G] & \xrightarrow{\pi_*^G X(G/G')} & \pi_* X
\end{array}
\]

Here the homotopy groups are modules over the rings shown on the left and graded over the indexing groups shown above. The group action transfers \(t^G_2\) and \(t^G_1\) are defined only on groups indexed by representations the smaller group which extend to representations of the larger group. \textit{We will make no use of them in this paper.}

In the bottom row each homotopy group is an underlying homotopy group of \(X\) depending only on the degree of the indexing representation. The group action restriction maps are isomorphisms. The group action transfers are

\[t^G_1(x) = (1 + \gamma^2)x \quad \text{and} \quad t^G_1(y) = (1 + \gamma)y. \]

In the middle row each homotopy group depends only on the restriction of the representation to \(G'\). The restriction \(r^G_1\) is an isomorphism in each \(RO(G)\)-graded degree, but it misses half of the \(RO(G')\)-graded degrees. The transfer is multiplication by \(1 + \gamma\) when the representation of \(G'\) is the restriction of one of \(G\).

We need some notation for Mackey functors to be used in spectral sequence charts. The first four in Table 3 are fixed point Mackey functors \(4\), meaning they...
are fixed points of an underlying $\mathbb{Z}[G]$-module M, such as

$$
\begin{align*}
\mathbb{Z} &= \mathbb{Z}[G]/(\gamma - 1) \\
\mathbb{Z}_- &= \mathbb{Z}[G]/(\gamma + 1)
\end{align*}
$$

$\mathbb{Z}[G/G'] = \mathbb{Z}[G]/(\gamma^2 - 1)$ and $\mathbb{Z}[G/G']_- = \mathbb{Z}[G]/(\gamma^2 + 1)$.

There are short exact sequences

$$
\begin{align*}
0 &\longrightarrow \hat{\bullet} \longrightarrow \hat{\square} \longrightarrow \hat{\square} \longrightarrow 0 \\
0 &\longrightarrow \bullet \longrightarrow \square \longrightarrow \square \longrightarrow 0 \\
0 &\longrightarrow \nabla \longrightarrow \circ \longrightarrow \bullet \longrightarrow 0 \\
0 &\longrightarrow \bullet \longrightarrow \circ \longrightarrow \triangle \longrightarrow 0 \\
0 &\longrightarrow \bigcirc \longrightarrow \square \longrightarrow \circ \longrightarrow 0 \\
0 &\longrightarrow \bigcirc \longrightarrow \square \longrightarrow \bullet \longrightarrow 0
\end{align*}
$$

Here the hat symbol is used for a Mackey functor induced up from C_2, for which our notation is shown in Table 2, where \circ, the dual of \square, is the kernel of the surjective map $\square \rightarrow \bullet$.

Table 1. Some C_4-Mackey functors

<table>
<thead>
<tr>
<th>\square</th>
<th>$\hat{\square}$</th>
<th>∇</th>
<th>\triangle</th>
<th>\bullet</th>
<th>$\hat{\bullet}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>0</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>$\Delta\left(\mathbb{Z}[G/G'] \right)$</td>
<td>$\mathbb{Z}_-\nabla$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>$\Delta\left(\mathbb{Z}[G/G'] \right)$</td>
</tr>
<tr>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>\mathbb{Z}_-</td>
<td>$\mathbb{Z}/2\left(\mathbb{Z}[G/G']\right)$</td>
<td>$\mathbb{Z}/2\nabla$</td>
<td>$\mathbb{Z}/2$</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>\mathbb{Z}_-</td>
<td>$\mathbb{Z}/2\left(\mathbb{Z}[G/G']\right)_-$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/4$</td>
<td>$\mathbb{Z}/2$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>$\Delta\left(\mathbb{Z}[G/G'] \right)$</td>
<td>$\mathbb{Z}[G/G']\nabla$</td>
<td>$\mathbb{Z}[G/G']$</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
</tr>
<tr>
<td>\mathbb{Z}_-</td>
<td>$\mathbb{Z}[G/G']_-$</td>
<td>$\mathbb{Z}[G]$</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>$\Delta\left(\mathbb{Z}[G/G'] \right)$</td>
<td>$\mathbb{Z}[G/G']\nabla$</td>
<td>$\mathbb{Z}[G/G']$</td>
<td>$\mathbb{Z}/2$</td>
<td>$\mathbb{Z}/2$</td>
</tr>
<tr>
<td>\mathbb{Z}_-</td>
<td>$\mathbb{Z}[G/G']_-$</td>
<td>$\mathbb{Z}[G]$</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. Some C_2-Mackey functors

<table>
<thead>
<tr>
<th>□</th>
<th>□</th>
<th>•</th>
<th>□</th>
<th>□</th>
<th>▼</th>
<th>▲</th>
<th>□</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>$1{1}$</td>
<td>$1{1}$</td>
<td>$0{1}$</td>
<td>$2{1}$</td>
<td>$0{1}$</td>
<td>$1{0}$</td>
<td>$\Delta{1}$</td>
<td>∇</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
</tbody>
</table>

We have short exact sequences

(11) \[0 \rightarrow \square \rightarrow \square \rightarrow \bullet \rightarrow 0 \]

(12) \[0 \rightarrow \bullet \rightarrow \square \rightarrow \square \rightarrow 0 \]

Proposition 13. Exactness of Mackey functor induction. The induction functor above is exact. It sends a C_2-Mackey functor M of the form

\[M(C_2/C_2) \]

\[\text{Res} \] to the C_4-Mackey functor \widehat{M} of the form

\[\widehat{M}(C_4/C_4) = M(C_2/C_2) \]

\[\Delta \otimes M(C_2/C_2) \]

\[\nabla \otimes M(C_2/C_2) \]

\[M(C_4/C_2) = \mathbb{Z}[C_4] \otimes_{\mathbb{Z}[C_2]} M(C_2/C_2) \]

\[\mathbb{Z}[C_4] \otimes_{\mathbb{Z}[C_2]} \text{Res} \]

\[\mathbb{Z}[C_4] \otimes_{\mathbb{Z}[C_2]} \text{Tr} \]

The same holds for induction up to G of a Mackey functor defined for a subgroup H of G for any finite G.

Definition 14. A $\mathbb{Z}[C_4]$-enriched C_2-Mackey functor. For a C_2-Mackey functor M as above, \widetilde{M} will denote the C_2-Mackey functor enriched over $\mathbb{Z}[C_4]$ defined by

\[\widetilde{M}(C_2/H) = \mathbb{Z}[C_4] \otimes_{\mathbb{Z}[C_2]} M(C_2/H) \]

for $H = C_2$ or e with structure maps as above.

4. Some chain complexes of Mackey functors

As noted above, a G-CW complex X, meaning one built out of cells of the form $G_+ \wedge e^n$, has a reduced cellular chain complex of $\mathbb{Z}[G]$-modules $C_* X$, leading to a chain complex of fixed point Mackey functors (see [1]) $C_* X$. When $X = S^V$ for a representation V, we will denote this complexes $C_{\mathcal{M}}^*$. Its homology is the graded Mackey functor $H_{\mathcal{M}} X$. Here we will apply the methods of [2] to three examples.
(i) Let $G = C_2$ with generator γ, and $X = S^{n\rho}$ for $n > 0$, where ρ denotes the regular representation. We have seen before [HHR, 3.6] that it has a reduced cellular chain complex C with

$$
C_{i}^{n\rho} = \begin{cases}
\mathbb{Z}[G]/(\gamma - 1) & \text{for } i = n \\
\mathbb{Z}[G] & \text{for } n < i \leq 2n \\
0 & \text{otherwise}
\end{cases}
$$

Let c_i denote a generator of C_i. The boundary operator d is given by

$$
d(c_{i+1}) = \begin{cases}
c_i & \text{for } i = n \\
\gamma_{i+1-n}(c_i) & \text{for } n < i \leq 2n \\
0 & \text{otherwise}
\end{cases}
$$

where $\gamma_i = 1 - (-1)^i$. For future reference, let

$$
\epsilon_i = 1 - (-1)^i = \begin{cases}
0 & \text{for } i \text{ even} \\
2 & \text{for } i \text{ odd}
\end{cases}
$$

This chain complex has the form

- n \hspace{1cm} $n+1$ \hspace{1cm} $n+2$ \hspace{1cm} $n+3$ \hspace{1cm} $2n$

- \mathbb{Z} \hspace{1cm} $\mathbb{Z}[G]$ \hspace{1cm} $\mathbb{Z}[G]$ \hspace{1cm} $\mathbb{Z}[G]$ \hspace{1cm} $\mathbb{Z}[G]$

- \mathbb{Z} \hspace{1cm} $\mathbb{Z}/2$ \hspace{1cm} $\mathbb{Z}/2$ \hspace{1cm} $\mathbb{Z}/2$ \hspace{1cm} $\mathbb{Z}/2$

Passing to homology we get

- n \hspace{1cm} $n+1$ \hspace{1cm} $n+2$ \hspace{1cm} $n+3$ \hspace{1cm} $2n$

- \bullet \hspace{1cm} 0 \hspace{1cm} \bullet \hspace{1cm} 0 \hspace{1cm} \cdots \hspace{1cm} H_{2n}

- $\mathbb{Z}/2$ \hspace{1cm} 0 \hspace{1cm} $\mathbb{Z}/2$ \hspace{1cm} 0 \hspace{1cm} \cdots \hspace{1cm} $H_{2n}(G/G)$

where

$$
H_{2n}(G/G) = \begin{cases}
\mathbb{Z} & \text{for } n \text{ even} \\
0 & \text{for } n \text{ odd}
\end{cases}
$$

Here \square and \square are fixed point Mackey functors but \bullet is not.

Similar calculations can be made for $S^{n\rho^2}$ for $n < 0$. The results are indicated in Figure [1].
In other words the $RO(G)$-graded Mackey functor valued homotopy of HZ is as follows. For $n > -3/2$ we have

$$\pi_\ast \Sigma^{n\rho_2} HZ = \pi_{3 - n\rho_2} HZ = \begin{cases}
\Box & \text{for } n \text{ even and } i = 2n \\
\bullet & \text{for } n \text{ even and } i = 2n - 2j \text{ with } 0 < j \leq n/2 \\
\Box & \text{for } n \text{ odd and } i = 2n \\
\bullet & \text{for } n \text{ odd and } i = 2n + 1 - 2j \text{ with } 0 < j \leq (n + 1)/2 \\
0 & \text{otherwise}
\end{cases}$$

For $n < -3/2$ we have

$$\pi_\ast \Sigma^{n\rho_2} HZ = \pi_{3 - n\rho_2} HZ = \begin{cases}
\Box & \text{for } n \text{ even and } i = 2n \\
\bullet & \text{for } n \text{ even and } i = 2n + 2j - 1 \text{ with } 0 < j \leq (-3 - n)/2 \\
\Box & \text{for } n \text{ odd and } i = 2n \\
\bullet & \text{for } n \text{ odd and } i = 2n + 2j \text{ with } 0 < j \leq (-3 - n)/2 \\
0 & \text{otherwise}
\end{cases}$$

We can use Definition 8 to name some elements of these groups.

Note that HZ is a commutative ring spectrum, so there is a commutative multiplication in $\pi_\ast HZ$, making it a commutative Green functor. For such a functor \mathcal{M} on a general group G, the restriction maps are a ring homomorphisms while the transfer maps satisfy the Frobenius relations [1].
Figure 2. The Mackey functor slice spectral sequence for $G_+ \wedge_{G'} \bigvee_{n \in \mathbb{Z}} \Sigma^{np^2} \mathbb{Z}$, for $G = C_4$ and $G' = C_2$. The symbols are for C_4-Mackey functors defined in Table 1.

Then

$$
\begin{aligned}
\quad & \text{2-SLICE:} \\
& a = a_\sigma \in \Sigma_{1}^{p^2} \mathbb{H} \mathbb{Z}(G/G) = \Sigma_{-\sigma} \mathbb{H} \mathbb{Z}(G/G) \\
& x = u_\sigma \in \Sigma_{2}^{p^2} \mathbb{H} \mathbb{Z}(G/e) = \Sigma_{1-\sigma} \mathbb{H} \mathbb{Z}(G/e) \\
& \quad \text{with } \gamma(x) = -x \\
\end{aligned}
$$

$$
\begin{aligned}
\quad & \text{4-SLICE:} \\
& u = u_{2\sigma} \in \Sigma_{4}^{2p^2} \mathbb{H} \mathbb{Z}(G/G) = \Sigma_{2-2\sigma} \mathbb{H} \mathbb{Z}(G/G) \\
& \quad \text{with } \text{Res}(u) = x^2 \\
\end{aligned}
$$

NEGATIVE SLICES:

$$
\begin{aligned}
& z_n = e_{2n \rho^2} \in \Sigma_{-4n} \Sigma^{-2n \rho^2} \mathbb{H} \mathbb{Z}(G/e) \\
& a^{-i} \text{Tr}(x^{-2n-1}) \in \Sigma_{-4n-2-i} \Sigma^{-2n+1+i \rho^2} \mathbb{H} \mathbb{Z}(G/G) \\
& \quad \text{for } n > 0 \quad \text{and } i \geq 0 \\
\end{aligned}
$$

are the generators of their respective groups. We have relations

$$
\begin{aligned}
& 2a = 0 \quad \text{Res}(a) = 0 \\
& z_n = x^{-2n} \quad \text{Tr}(x^n) = \begin{cases}
2n^{n/2} & \text{for } n \text{ even and } n \geq 0 \\
\text{Tr}(z^{-n/2}) & \text{for } n \text{ even and } n < 0 \\
0 & \text{for } n \text{ odd and } n > -3.
\end{cases}
\end{aligned}
$$

(ii) Let $G = C_4$ with generator γ, $G' = C_2 \subseteq G$, the subgroup generated by γ^2, and $\hat{S}(n, G') = G_+ \wedge_{G'} \Sigma^{np^2}$. Thus we have

$$
C_*(\hat{S}(n, G')) = \mathbb{Z}[G] \otimes_{\mathbb{Z}[G']} C_*^{np^2}
$$

with $C_*^{np^2}$ as in [15]. The calculations of the previous example carry over verbatim by the exactness of [13].
The results are indicated in Figure 2 which is obtained from the Figure 1 by putting a hat over each symbol. We will name elements in the groups shown here as follows. For an element
\[\alpha \in \pi_{i-V}^G(Z(G'/K)) = \pi_i^G \Sigma^V HZ(G'/K), \]
such as those listed in (17), we denote the two corresponding elements in
\[\tilde{\pi}_i^G(G + G' \Sigma HZ(G/K)) = \pi_i^G \Sigma^V HZ(G'/K) \]
by \(\hat{\alpha} \) and \(\gamma(\hat{\alpha}) \). We have \(\gamma^2(\hat{\alpha}) = \pm \hat{\alpha} \), and there is no canonical choice of \(\hat{\alpha} \).

When the representation \(V \) of \(G' \) is the restriction of a representation \(W \) of \(G \), then this group is
\[\pi_i^G \Sigma^V HZ(G/G) = \pi_i^G \Sigma^V HZ(G'/G') \]
under the transfer, namely the element corresponding to \(\alpha \) under the evident isomorphism. Hence if \(\alpha \) (or a set of such elements) generates the group \(\pi_{i-V}^G(Z(G'/G)) \), then \(t_4^2(\hat{\alpha}) \) (or the corresponding set) generates \(\pi_i^G \Sigma^V HZ(G/G) \).

(iii) Let \(G = C_4 \) and \(X = S^{n_{\rho^1}} \). Then the reduced cellular chain complex is
\[
C_{i}^{n_{\rho^1}} = \begin{cases}
\mathbb{Z} & \text{for } i = n \\
\mathbb{Z}[G/G'] & \text{for } n < i \leq 2n \\
\mathbb{Z}[G] & \text{for } 2n < i \leq 4n \\
0 & \text{otherwise}
\end{cases}
\]
with
\[
d(c_{i+1}) = \begin{cases}
c_i & \text{for } i = n \\
\gamma_{i+1-n}c_i & \text{for } n < i \leq 2n \\
\theta_{i+1-n}c_i & \text{for } 2n < i < 4n \text{ and } i \text{ even} \\
\gamma_{i+1-n}c_i & \text{for } 2n < i < 4n \text{ and } i \text{ odd} \\
0 & \text{otherwise},
\end{cases}
\]
where
\[
\theta_i = \gamma_i(1 + \gamma^2) = (1 - (-1)^i \gamma)(1 + \gamma^2).
\]
The fixed point Mackey functors for \(Z = \mathbb{Z}[G/G], \mathbb{Z}[G/G'] \) and \(\mathbb{Z}[G] = \mathbb{Z}[G/e] \), are \(\square, \hat{\square} \) and \(\hat{\hat{\square}} \). In low dimensions the chain complex of Mackey functors is
\[
\begin{array}{cccccccc}
n & n+1 & n+2 & n+3 \\
\square & \searrow \hat{\square} & \downarrow 1-\gamma & \hat{\square} & \downarrow 1+\gamma & \hat{\hat{\square}} & \cdots \\
\end{array}
\]
In homology this gives
\[
\begin{array}{cccc}
n & n+1 & n+2 & n+3 \\
\bullet & 0 & \bullet & 0 & \cdots
\end{array}
\]
In dimensions near $2n$ we have

$$
\cdots \xrightarrow{\gamma_n} \mathbb{Z} \xrightarrow{\epsilon_n} \mathbb{Z} \xrightarrow{\Delta} \mathbb{Z} \xrightarrow{\Delta} \cdots
$$

The homology is

$$
H_{2n+i} = \begin{cases}
\circ & \text{for } n \text{ and } i \text{ even and } 0 \leq i < 2n \\
\bullet & \text{for } n \text{ and } i \text{ odd and } 0 \leq i < 2n \\
\blacklozenge & \text{for } n \text{ odd and } i \text{ even and } 0 \leq i < 2n \\
\square & \text{for } n \text{ even and } i = 2n \\
\blacksquare & \text{for } n \text{ odd and } i = 2n \\
0 & \text{otherwise}
\end{cases}
$$

Again similar calculations can be made for $S^{n\rho_4}$ for $n < 0$. The results are indicated in Figure 3. The Mackey functors in filtration 0 (the horizontal axis) are the ones described in Proposition 7.
As in (i), we name some of these elements. Let \(G = C_4 \) and \(G' = C_2 \subseteq G \). Recall that the regular representation \(\rho_4 \) is \(1 + \sigma + \lambda \) where \(\sigma \) is the sign representation and \(\lambda \) is the 2-dimensional representation given by a rotation of order 4.

Note that while Figure 1 shows all of \(\pi_1 H \mathbb{Z} \) for \(G = C_2 \), Figure 3 shows only a bigraded portion of this trigraded Mackey functor for \(G = C_4 \), namely the groups for which the index differs by an integer from a multiple of \(\rho_4 \). We will need to refer to some elements not shown in the latter chart, namely

\[
\begin{align*}
\rho &
\end{align*}
\]

\(\rho \) for which the index differs by an integer from a multiple of \(\rho_4 \). We will denote the generator of \(\pi_1 \mathbb{Z} \) by \(y_1 \).

We will denote the generator of \(E_1^2 \mathbb{Z} \) by \(x_{1-s,s}, y_{t-s,s} \) and \(z_{t-s,s} \) for \(H = G, G' \) and \(e \) respectively. Then the generators for the groups in the 4-slice are

\[
\begin{align*}
y_{4,0} &= u_{\rho_4} = u_\sigma \text{Res}^4_{u}(u_{\lambda}) \in \pi_1 \Sigma^{\rho_4} H \mathbb{Z}(G/G') = \pi_{1-\sigma-\lambda} H \mathbb{Z}(G/G') \\
\text{with } \gamma(x_{4,0}) &= -x_{4,0} \\
x_{3,1} &= a_{\sigma} u_{\lambda} \in \pi_1 \Sigma^\rho H \mathbb{Z}(G/G) = \pi_{1-\sigma-\lambda} H \mathbb{Z}(G/G) \\
y_{2,2} &= \text{Res}^4_{u}(u_{\sigma} u_{\lambda}) \in \pi_1 \Sigma^\rho H \mathbb{Z}(G/G') = \pi_{1-\sigma-\lambda} H \mathbb{Z}(G/G') \\
x_{1,3} &= a_{\rho_4} = a_{\sigma} a_{\lambda} \in \pi_1 \Sigma^\rho H \mathbb{Z}(G/G) = \pi_{1-\sigma-\lambda} H \mathbb{Z}(G/G)
\end{align*}
\]

and the ones for the 8-slice are

\[
\begin{align*}
x_{8,0} &= u_{2\rho_4} = u_{\sigma} \text{Res}^4_{u}(u_{\lambda}) \in \pi_8 \Sigma^{2\rho_4} H \mathbb{Z}(G/G' = \pi_{6-2\sigma-2\lambda} H \mathbb{Z}(G/G) \\
\text{with } y_{4,0}^2 &= y_{8,0} = \text{Res}^4_{u}(x_{8,0}) \\
x_{6,2} &= a_{\lambda} u_{\lambda} x_{2,\sigma} \in \pi_6 \Sigma^{2\rho_4} H \mathbb{Z}(G/G) = \pi_{4-2\sigma-2\lambda} H \mathbb{Z}(G/G) \\
\text{with } x_{3,1}^2 &= 2x_{6,2} \\
\text{and } y_{4,0} y_{2,2} &= y_{6,2} = \text{Res}^4_{u}(x_{6,2}) \\
x_{4,4} &= a_{2\lambda} u_{2\sigma} \in \pi_4 \Sigma^{2\rho_4} H \mathbb{Z}(G/G) = \pi_{2-2\sigma-2\lambda} H \mathbb{Z}(G/G) \\
\text{with } y_{2,2}^2 &= y_{4,4} = \text{Res}^4_{u}(x_{4,4}) \\
\text{and } x_{1,3} x_{3,1} &= 2x_{4,4} \\
x_{6,2} &= x_{3,1} \in \pi_8 \Sigma^{2\rho_4} H \mathbb{Z}(G/G) = \pi_{6-2\sigma-2\lambda} H \mathbb{Z}(G/G).
\end{align*}
\]

These elements and their restrictions generate \(\pi_1 \Sigma^{m\rho_4} H \mathbb{Z} \) for \(m = 1 \) and 2. For \(m > 2 \) the groups are generated by products of these elements. There are relations

\[
\begin{align*}
2a_{\sigma} &= 0 \quad \text{Res}^4_{u} a_{\sigma} = 0 \\
4a_{\lambda} &= 0 \quad 2\text{Res}^4_{u} a_{\lambda} = 0 \quad \text{Res}^4_{u} a_{\lambda} = 0
\end{align*}
\]

The element

\[
\begin{align*}
z_{4,0} &= \text{Res}^4_{u}(y_{4,0}) = \text{Res}^4_{u}(u_{\rho_4}) \in \pi_4 \Sigma^{\rho_4} H \mathbb{Z}(G/e) \\
\text{is invertible with } \gamma(y) &= -y, z_{4,0}^2 &= z_{8,0} = \text{Res}^4_{u}(x_{8,0}) \quad \text{and}
\end{align*}
\]

\[
\begin{align*}
z_{-4m,0} := z_{4,0}^{-m} &= c_{m\rho_4} \in \pi_{-4m} \Sigma^{-m\rho_4} H \mathbb{Z}(G/e) \quad \text{for } m > 0.
\end{align*}
\]

These elements and their transfers generate the groups in

\[
\pi_{-4m} \Sigma^{-m\rho_4} H \mathbb{Z} \quad \text{for } m > 0.
\]
Theorem 18. Divisibilities in the negative regular slices for C_4. There are
the following infinite divisibilities in the third quadrant of the spectral sequence in
Figure 3.

Proof???

- $x_{-4,0} = \text{Tr}_1^4(x_{-4,0})$ is infinitely divisible by $x_{4,4}$ and $x_{1,3}$, meaning that
 $x_{4,4}^k x_{1,3}^j x_{-4,0} = x_{-4,0}$ for $j, k \geq 0$.
- $x_{-7,-1}$ is infinitely divisible by $x_{4,4}$, $x_{6,2}$ and $x_{8,0}$, meaning that
 $x_{4,4}^k x_{6,2}^j x_{8,0}^i x_{-7,-1} = x_{-7,-1}$ for $i, j, k \geq 0$.

Now let G be a finite cyclic 2-group with generator γ. In [HHR, 5.47] we defined generators

$$\pi_k = \pi_k^G \in \pi_n^{C_2} MU((G))(C_2/C_2)$$

(note that this group is a module over G/C_2) and

$$r_k = \bigwedge^G \text{Res}_k^G(\pi_k) \in \pi_n^{C_2} MU((G))(e/e) = \pi_n^{C_2} MU((G)).$$

These are defined in terms of the coefficients

$$m_k \in \bigwedge^{C_2} HZ(2) \wedge MU((G))(C_2/C_2)$$

of the logarithm of the formal group associated with the left unit map from MU
to $MU((G))$. For small k we have

$$\tau_1 = (1 - \gamma)(m_1)$$
$$\tau_2 = m_2 - 2\gamma(m_1)(1 - \gamma)(m_1)$$
$$\tau_3 = (1 - \gamma)(m_3) - \gamma(m_1)(m_1^2 + 2m_1\gamma(m_1) - 3\gamma(m_1)^2 - 2m_2)$$

Now let $G = C_4$ and $G' = C_2 \subseteq G$. The generators τ_k^G are the τ_k defined above.
We also have generators $\tau_k^{G'}$ defined by similar formulas with γ replaced by γ^2;
recall that $\gamma^2(m_k) = (-1)^k m_k$. Thus we have

$$\tau_1^{G'} = 2m_1$$
$$\tau_2^{G'} = m_2 + 4m_1^2$$
$$\tau_3^{G'} = 2m_3 - 2m_1 m_2 - 4m_1^3$$

5. The C_4-spectrum k_H
If we set \(r_2 = 0 \) and \(r_3 = 0 \), we get

\[
\begin{align*}
\mathcal{r}_1^{G'} &= (1 + \gamma)(r_1) \\
\mathcal{r}_2^{G'} &= 3\pi_1\gamma(r_1) + \gamma(r_1)^2 \\
\mathcal{r}_3^{G'} &= 5\pi_1^2\gamma(r_1) + 5\pi_1\gamma(r_1)^2 + \gamma(r_1)^3 \\
\mathcal{r}_3^{G'} \cdot \gamma(\mathcal{r}_3^{G'}) &= -\pi_1\gamma(r_1) \left(5\pi_1\gamma(r_1)^2 - 5\pi_1\gamma(r_1) + \mathcal{r}_3^{G'} \right) \\
&= -5\pi_1^3\gamma(r_1) + 20\pi_1^2\gamma(r_1)^2 - 7\pi_1\gamma(r_1)^3 - 5\pi_1^2\gamma(r_1)^3 + 20\pi_1\gamma(r_1)^4 - 5\pi_1\gamma(r_1)^5
\end{align*}
\]

Let \(k_H \) be the \(G \)-spectrum obtained from \(MU(G') \) by killing the \(r_n \)s and their conjugates for \(n \geq 2 \). We will often use a (second) subscript \(\epsilon \) to indicate the action of \(\gamma \), so \(\gamma(x_\epsilon) = x_{1+\epsilon} \) and \(x_{2+\epsilon} = \pm x_\epsilon \).

Then we have

\[
\pi_+^u k_H = \mathbb{E}_e k_H(G/e) = \mathbb{Z}[r_1, \gamma(r_1)] = \mathbb{Z}[r_{1,0}, r_{1,1}] \quad \text{where} \quad \gamma^2(r_{1,\epsilon}) = -r_{1,\epsilon}.
\]

Here we use \(r_{1,\epsilon} \) and \(r_{1,1} \) to denote the images of elements of the same name in the homotopy of \(MU(G'/G) \).

The Periodicity Theorem [HHR 9.12] states that inverting a class

\[
D \in \mathbb{E}_{4p_4} k_H(G/G)
\]

whose image under \(r_4^1 \text{Res}_{2}^4 \) is divisible by \(\mathcal{r}_3^{G'} \cdot \gamma(\mathcal{r}_3^{G'}) \) (see (20)) and \(r_{1,0} \mathcal{r}_{1,1} \) makes \(u_{8p_4} \) a permanent cycle. Let

\[
D = (r_4^1 \text{Res}_{2}^4)^{-1} \left(\mathcal{r}_3^{G} \cdot \gamma(\mathcal{r}_3^{G'}) \right) \in \mathbb{E}_{4p_4} k_H(G/G)
\]

(see Table 3 for a more explicit description) and \(K_H = D^{-1} k_H \). Then we know that \(\Sigma^{32} K_H \) is equivalent to \(K_H \).

The Slice and Reduction Theorems [HHR 6.1 and 6.5] imply that the 2kth slice of \(k_H \) is the 2kth wedge summand of

\[
HZ \wedge N_2^2 \left(\bigvee_{i \geq 0} S_i^{p_2} \right).
\]

It follows that over \(G' \) the 2kth slice is a wedge of \(k + 1 \) copies of \(HZ \wedge S^{kp_2} \).

The group \(\mathbb{E}_2^{G'} k_H(G'/e) \) is not in the image of the group action restriction \(r_2^4 \) because \(p_2^G \) is not the restriction of a representation of \(G \). However, \(\pi_2^G k_H \) is refined (in the sense of [HHR 5.29]) by a map from

\[
S_{p_2} = G_+ \wedge_{G'} S_{p_2} \xrightarrow{\mathcal{r}_1} k_H.
\]

The reduction theorem implies that the 2-slice \(P_2^G k_H \) is \(S_{p_2} \wedge HZ \). We know that

\[
\mathbb{E}_2(S_{p_2} \wedge HZ) = \mathbb{H}.
\]

We use the symbols \(r_1 \) and \(r_{1,1} \) to denote the generators of the underlying abelian group of \(\mathbb{E}(G/e) = \mathbb{Z}[G/G'] \). These elements have trivial fixed point transfers and

\[
\mathbb{E}_2(S_{p_2} \wedge HZ)(G'/G') = 0.
\]
Tables 3 and 4 describe some elements in the low dimensional homotopy of k_H, which we now discuss.

Given an element in $\pi_\star MU((G))$, we will often use the same symbol to denote its image in $\pi_\star k_H$. For example, in [HHR, 9.1]

$$\delta_k \in \pi_{(2^k-1)\rho_4}^G MU((G)) = \pi_{(2^k-1)\rho_4}^G MU((G)) (G/G)$$

was defined to be the composite

$$S^{(2^k-1)\rho_4} N_2 S^{(2^k-1)\rho_2} N_4^G \rightarrow \rightarrow \rightarrow N_2^G MU((G)) \rightarrow MU((G)).$$

We will use the same symbol to denote its image in $\pi_{G}^G k_H(G/G)$.

The element $\eta \in \pi_1 S^0$ (coming from the Hopf map $S^3 \to S^2$) has image $a_\sigma r_1 \in \pi_1^G k_R(G/G')$. There are two corresponding elements

$$\eta_\epsilon \in \pi_1^G k_H(G'/G') \quad \text{for } \epsilon = 0, 1.$$

We use the same symbol for their preimages under r_4^G. We denote by η again the image of either under the transfer Tr_2^G. It is the image of the Hopf map in $\pi_1^G k_H(G/G)$, and $Res_2^G(\eta) = \eta_0 + \eta_1$.

Its cube is killed by a d_3 in the slice spectral sequence, as is the sum of any two monomials of degree 3 in the η_ϵ. It follows that in E_3 each such monomial is equal to η_3^0. It has a nontrivial transfer, which we denote by x_3.

In [HHR, 5.51] we defined

$$f_k = a_\sigma^k N_2^G \in \pi_{k}^G MU((G)) (G/G)$$

for a finite cyclic 2-group G. Its slice filtration is $k(g - 1)$ and we conjecture that

$$Tr_2^G(u_\sigma Res_2^G(x)) = a_\sigma f_1 x.$$

Proof???

$$d_{1+|G|}(u_2 \sigma) = a_\sigma^2 f_1.$$

In particular, for $G = C_4$ we have

$$f_1 = a_\sigma a_\lambda \delta_1 \quad \text{with } Tr_2^4(u_\sigma Res_2^4(x)) = a_\sigma f_1 x.$$

For example

$$Tr_2^4(\eta_0 \eta_1) = Tr_2^4(u_\sigma Res_2^4(a_\lambda \delta_1)) = a_\sigma f_1 a_\lambda \delta_1 = f_1^2.$$

The Hopf element $\nu \in \pi_3 S^0$ has image

$$a_\sigma u_\lambda \delta_1 \in \pi_3^G k_H(G/G),$$

so we also denote the latter by ν. It has an exotic restriction η_3^0 (filtration jump two), which implies that

$$2\nu = Tr_2^4(Res_2^4(\nu)) = Tr_2^4(\eta_3^0) = x_3.$$

Proof???
One way to see this is to use the Periodicity Theorem to equate $\pi_3 k_H$ with $\pi_{−29} k_H$, which can be shown to be the Mackey functor $σ$ in slice filtration $−32$. Another argument not relying on periodicity is given below in [39].

The exotic restriction on $ν$ implies

$$\text{Res}_2^4(ν^2) = 0_6^6,$$

with filtration jump 4.

Theorem 26. The Hurewicz image The elements $η ∈ \pi_1 k_H(G/G)$, $ν ∈ \pi_3 k_H(G/G)$, $ε ∈ \pi_8 k_H(G/G)$, $κ ∈ \pi_{14} k_H(G/G)$, and $π ∈ \pi_{29} k_H(G/G)$ are the images of elements of the same names in $π_* S^0$.

We refer the reader to [Rav86, Table A3.3] for more information about these elements.

Proof. Suppose we know this for $ν$ and $κ$. Then $Δ_1−4 ν$ is represented by an element of filtration $−3$ whose product with $ν^2$ is nontrivial. This implies that $ν^3$ has nontrivial image in $π_9 k_H(G/G)$. This is a nontrivial multiplicative extension in the first quadrant, but not in the third.

Since $ν^3 = ηε$ in $π_* S^0$, this implies that $η$ and $ε$ are both detected and have the images stated in Table 4. It follows that $στ$ has nontrivial image here. Since $κ^2 = στ$ in $π_* S^0$, $κ$ must also be detected. Its only possible image is the one indicated. More details needed here.

Both $ν$ and $π$ have images of order 8 in $π_* tmf$ and its $K(2)$ localization. The latter is the homotopy fixed point set of an action of the binary tetrahedral group G_{24} acting on E_2. This in turn is a retract of the homotopy fixed point set of the quaternion group Q_8. A restriction and transfer argument shows that both elements have order at least 4 in the homotopy fixed point set of $C_4 ⊂ Q_8$. WE NEED TO RELATE THIS C_4 ACTION TO THE ONE WE ARE STUDYING.

6. Slices for k_H and K_H

Let

$$Δ_1 = u_{2ρ_4} δ_1^2 \in \pi_8 k_H(G/G),$$

$$δ_1 = u_{ρ_4} \text{Res}_2^4(δ_1) \in \pi_4 k_H(G/G'),$$

so $δ_1 = \text{Res}_2^4(Δ_1)$. Hence we have

$$δ_1^m = \begin{cases} u_σ \text{Res}_2^4(\eta (u_{ρ_4}^2 u_{\lambda}^m δ_1^m)) & \text{for } m \text{ odd} \\ \text{Res}_2^4(\eta (u_{ρ_4}^2 u_{\lambda}^m δ_1^m)) & \text{for } m \text{ even}. \end{cases}$$

Theorem 27. The slice E_2-term for k_H. The slices of k_H are

$$P_s^* k_H = \begin{cases} X_{m,s/2−m} & \text{for } s \text{ even and } s \geq 0 \\ * & \text{otherwise} \end{cases}$$

where

$$X_{m,n} = \begin{cases} \Sigma^{mρ_4} HZ & \text{for } m = n \\ G_+ \wedge_G \Sigma^{(m+n)ρ_2} HZ & \text{for } m < n \end{cases}$$
Table 3. Some elements of filtration 0 in the homotopy of and slice spectral sequence for k_H. Refer to Table 4 for targets of differentials and transfers.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{1,e} \in \pi_{2}^{G} k_H(G'/G)$ with $r_{1,2} = -r_{1,0}$</td>
<td>Images from Table 4 defined in [HHR, 5.47]</td>
</tr>
<tr>
<td>$r_{1,e} \in \pi_{2}^{G} k_H(G'/e)$</td>
<td>$u_{\sigma_{2}} \text{Res}{1}^{2} (\tau{1,e})$</td>
</tr>
<tr>
<td>$r_{1,e} \in \pi_{2}^{G} k_H(G/e)$ with $r_{1,2} = -r_{1,0}$</td>
<td>Preimages of the above under r_{2}^{2}, generating $\bar{G} = \pi_{2}^{G} k_H/\text{torsion}$</td>
</tr>
<tr>
<td>$\pi_{2,e} \in \pi_{2}^{G} k_H(G'/G')$</td>
<td>Preimages of $\tau_{1,e}$ under r_{2}^{2}</td>
</tr>
<tr>
<td>$\xi_{1} \in \pi_{2}^{G} k_H(G/G)$ with $\nu_{1}^{1} \text{Res}{2}^{2} (\xi{1}) = \nu_{1,0}^{1} \tau_{1,1}$ and $\nu_{3} \text{Res}{3}^{2} (\xi{1}) = 0$</td>
<td>Image from Table 4 defined in [HHR, 9.1]</td>
</tr>
<tr>
<td>$\xi_{2} \in \pi_{2}^{G} k_H(G/G)$ with $\nu_{3}^{4} \text{Res}{2}^{2} (\xi{2}) = \xi_{2,0} - \xi_{2,1}$</td>
<td>$(-1)^{e} \text{Tr}{3}^{4} (\pi{2,e})$</td>
</tr>
<tr>
<td>$D \in \pi_{4}^{G} k_H(G/G)$, the periodicity element</td>
<td>$\delta_{2}^{2} (-5 \xi_{2}^{2} + 20 \xi_{2} \xi_{1} + 9 \delta_{1}^{2})$</td>
</tr>
<tr>
<td>$u_{\sigma} \in \pi_{1-\sigma}^{G} k_H(G'/G')$ with $\gamma (u_{\sigma}) = -u_{\sigma}$ and $\text{Tr}{3}^{2} (u{\sigma}) = u_{\sigma} \text{f}_{1}$ (exotic transfer).</td>
<td>Isomorphic image of $1 \in \pi_{0}^{G} k_H(G'/G')$</td>
</tr>
<tr>
<td>$\Sigma_{2,e} \in \pi_{2}^{G} k_H(G/G')$ with $\Sigma_{2,2} = \Sigma_{2,0}$ and $d_{3} (\Sigma_{2,e}) = \eta_{2}^{2} (\eta_{0} + \eta_{1})$</td>
<td>$(-1)^{e} u_{\rho_{4}} \pi_{2,e}$</td>
</tr>
<tr>
<td>$T_{2} \in \pi_{2}^{G} k_H(G/G)$ with $\nu_{3}^{4} \text{Res}{2}^{2} (T{2}) = \xi_{2,0} + \xi_{2,1}$ and $d_{3} (T_{2}) = \eta_{3}$</td>
<td>$\text{Tr}{2}^{4} (\Sigma{2,e}) = (-1)^{e} u_{\rho_{4}} \text{Tr}{2}^{4} (u{\sigma} \pi_{2,e})$</td>
</tr>
<tr>
<td>$T_{4} \in \pi_{4}^{G} k_H(G/G)$ with $T_{4}^{2} = \Delta_{1} (T_{2}^{2} - 4 \Delta_{1})$, $\nu_{3}^{4} \text{Res}{2}^{4} (T{4}) = (\Sigma_{2,0} - \Sigma_{2,1}) \delta_{1}$ and $d_{3} (T_{4}) = 0$</td>
<td>$(-1)^{e} \text{Tr}{2}^{4} (\Sigma{2,\delta_{1}}) = u_{2,\sigma} \nu_{3}^{2} T_{2} \xi_{1}$</td>
</tr>
<tr>
<td>$\delta_{1} \in \pi_{2}^{G} k_H(G'/G')$ with $\gamma (\delta_{1}) = -\delta_{1}$, $\text{Tr}{2}^{4} (\delta{1}) = 0$ and $d_{3} (\delta_{1}) = \eta_{0} \eta_{1} (\eta_{0} + \eta_{1})$</td>
<td>$u_{\rho_{4}} \text{Res}{2}^{4} (\delta{1}) = u_{\rho_{4}} \text{Res}{2}^{4} (u{3} \xi_{1})$</td>
</tr>
<tr>
<td>$\Delta_{1} \in \pi_{2}^{G} k_H(G/G)$ with $\nu_{3}^{4} \text{Res}{2}^{4} (\Delta{1}) = \delta_{2}^{2}$ and $d_{3} (\Delta_{1}) = \nu_{4}$</td>
<td>$u_{2,\rho_{4}} \delta_{1}^{2} = u_{2,\sigma} u_{3}^{2} \delta_{1}^{2}$</td>
</tr>
</tbody>
</table>

The structure of $\pi_{2}^{G} k_H$ as a $\mathbb{Z}[G]$-module (see [27]) leads to four types of orbits and slices:

(1) $\{(r_{1,0}r_{1,1})^{2}\ell\}$ leading to $X_{2\ell,2\ell}$ for $\ell \geq 0$; see the leftmost diagonal in Figure 3. On the 0-line we have a copy of \square (see Table 7) generated under restrictions by

$$\Delta_{1}^{\ell} = u_{2,\ell} \delta_{1}^{2\ell} = u_{2,\sigma} u_{3}^{2\ell} \delta_{1}^{2\ell} \in E_{2}^{0,8\ell} (G/G).$$

In positive filtrations we have

$$\circ \subseteq E_{2}^{2j,8\ell}$$

generated by
Table 4. Some elements of positive filtration in the homotopy of and slice spectral sequence for k_H.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta \in \pi^g_1 k_H(G'/G')$ with $2\eta = 0$</td>
<td>$a_{\sigma_2} \eta_1$</td>
</tr>
<tr>
<td>$\eta \in \pi^g_1 k_H(G'/G')$</td>
<td>Preimage of the above under $\pi^g_1 k_H$</td>
</tr>
<tr>
<td>$f_1 \in \pi_1 k_H(G/G)$</td>
<td>$a_{\sigma} a_\lambda \delta_1$, generating the summand \bullet of $\pi_1 k_H$</td>
</tr>
<tr>
<td>$\eta \in \pi^g_1 k_H(G/G)$ with $\text{Res}_2(\eta) = \eta_0 + \eta_1 \in \pi^g_1 k_H(G/G')$</td>
<td>$\text{Tr}_2(\eta) + f_1$</td>
</tr>
<tr>
<td>$\eta_0 \in \pi_1 k_H(G/G)$ with $\text{Res}_2(\eta) = \eta_0 + \eta_1$, $\eta \in \pi^g_1 k_H(G/G')$</td>
<td>$a_{\sigma} \eta_0 \text{Res}2(\alpha{\lambda_1}) \delta_2, \text{ and } u_{\sigma} \eta_0 \text{Res}2(\alpha{\lambda_1})$, generating the torsion $\bullet \oplus \nabla$ in $\pi^g_1 k_H$</td>
</tr>
<tr>
<td>$\nu \in \pi_3 k_H(G/G)$ with $\text{Res}_2(\nu) = \eta_0 + 2\nu = x_3$ (exotic restriction and group extension)</td>
<td>$a_{\sigma} u_{\lambda_1} \delta_1, \text{ generating } \circ = \pi_3 k_H$</td>
</tr>
<tr>
<td>$x_4 \in E_2^{u,3}(G/G)$ with $d_5(x_4) = f_1$, $\text{Res}_2(x_4) = (\eta_0 \eta_1)^2 = \eta_0^4$ and $2x_4 = f_1 \nu$</td>
<td>$a_{\lambda}^j u_{2\sigma} \delta_1^j$</td>
</tr>
<tr>
<td>$\nu^3 \in \pi_6 k_H(G/G)$</td>
<td>$2a_{\alpha} u_{\lambda_1} u_{2\sigma} \delta_1^j = (2, \eta, f_1, f_1^2)$</td>
</tr>
<tr>
<td>$\epsilon \in \pi_8 k_H(G/G)$</td>
<td>Represents $x_4^2 \in E_2^{1,8} k_H(G/G)$</td>
</tr>
<tr>
<td>$\nu^4 = \eta \in \pi_9 k_H(G/G)$</td>
<td>Represents $f_1 x_4^2 \in E_2^{1,16} k_H(G/G)$</td>
</tr>
<tr>
<td>$\kappa \in \pi_14 k_H(G/G)$</td>
<td>$2a_{\alpha} u_{2\sigma} u_{3\sigma} \delta_1^3$</td>
</tr>
<tr>
<td>$\bar{\kappa} \in \pi_20 k_H(G/G)$</td>
<td>$a_{\lambda}^3 u_{2\sigma} u_{3\sigma} \delta_1^3$</td>
</tr>
</tbody>
</table>

\[a_{\lambda}^j u_{2\sigma} u_{\lambda}^{2\ell-j} \delta_1^{2\ell} \in E_2^{2j,8\ell}(G/G) \quad \text{for } 0 < j \leq 2\ell \text{ and } a_{\lambda}^j u_{2\sigma} u_{\lambda}^{2\ell-j} \delta_1^{2\ell} \in E_2^{2k+4\ell,8\ell} \quad \text{for } 0 < k \leq \ell.\]

(2) $\{(r_{1,0} r_{1,1})^{2\ell+1}\}$ leading to $X_{2\ell+1,2\ell+1}$ for $\ell \geq 0$; see the leftmost diagonal in Figure 6. On the ∂-line we have a copy of \Box generated under restrictions by

$\delta_1^{2\ell+1} = u_{\sigma}^{2\ell+1} \text{Res}_2^4(u_{\lambda_1} \delta_1) \in E_2^{0,8\ell+4}(G/G').$

In positive filtrations we have

- $u_{\sigma}^{2\ell+1} \text{Res}_2^4(u_{\lambda_1} \delta_1) \in E_2^{2j,8\ell+4} \quad \text{generated by}$
- $a_{\sigma} a_{\lambda}^j u_{2\sigma} u_{\lambda}^{2\ell-j} \delta_1^{2\ell+1} \in E_2^{2j+1,8\ell+4} \quad \text{for } 0 < j \leq 2\ell + 1,$
- $a_{\sigma} a_{\lambda}^j u_{2\sigma} u_{\lambda}^{2\ell-j} \delta_1^{2\ell+1} \in E_2^{2k+1,8\ell+4} \quad \text{for } 0 < k \leq \ell.$
(3) \(\{r_{1,0} r_{1,1}^{2t-i}, r_{1,0} r_{1,1}^{2t-i-1} \} \) leading to \(X_{1,2t-i} \) for \(0 \leq i < \ell \); see other diagonals in Figure 4. On the 0-line we have a copy of \(\hat{\mathbb{F}} \) generated (under \(\text{Tr}^2, \text{Res}^2 \) and the group action) by

\[
u_{1}^{i} s_{2}^{-i} \text{Res}^{2}_{2}(u_{\lambda}^{j} \delta_{1}^{i}) \in \bar{E}^{2,4}_{2}(G/G')
\]

In positive filtrations we have

- \(\subseteq \bar{E}^{2,4}_{2} \) generated by
\[
u_{1}^{i} s_{2}^{-i} \text{Res}^{2}_{2}(u_{\lambda}^{j} \delta_{1}^{i}) \in \bar{E}^{2,4}_{2}(G/G')
\]

for \(0 < j \leq \ell \) and
\[
u_{1}^{i} s_{2}^{-i} \text{Res}^{2}_{2}(u_{\lambda}^{j} \delta_{1}^{i}) \in \bar{E}^{2,4}_{2}(G/G')
\]

for \(0 < j < \ell - i \).

(4) \(\{r_{1,0} r_{1,1}^{2t+1-i}, r_{1,0} r_{1,1}^{2t+1-i-1} \} \) leading to \(X_{1,2t+1-i} \) for \(0 \leq i < \ell \); see other diagonals in Figure 4. On the 0-line we have a copy of \(\hat{\mathbb{F}} \) generated (under transfers and the group action) by

\[
r_{1,0} \text{Res}^{2}_{1}(u_{\sigma}^{i} \delta_{2}^{i}) \text{Res}^{4}_{2}(u_{\lambda}^{j} \delta_{1}^{i}) \in \bar{E}^{2,4}_{2}+2(G/e)
\]

In positive filtrations we have

- \(\subseteq \bar{E}^{2,4}_{2}+2 \) generated by
\[
\nu_{1}^{i} s_{2}^{-i} \text{Res}^{2}_{2}(u_{\lambda}^{j} \delta_{1}^{i})
\]

for \(0 \leq j \leq \ell \) and
\[
\nu_{1}^{i} s_{2}^{-i} \text{Res}^{2}_{2}(u_{\lambda}^{j} \delta_{1}^{i})
\]

for \(0 < j < \ell - i \).

Corollary 28. A subring of the slice \(E_{2}-\text{term} \). The ring \(\bar{E}_{2} k_{\mathbb{H}}(G/G') \) is (see Tables 3 and 4)

\[
\mathbb{Z}[\delta_{1}, \Sigma_{2}, \epsilon] := \mathbb{Z}[\epsilon = 0, 1]/(2\epsilon_{r}, \epsilon_{t} - \Sigma_{2,0} \Sigma_{2,1}, \eta_{r} \Sigma_{2,1} + \eta_{1+2} \delta_{1})
\]

In particular the elements \(\eta_{r} \) and \(\eta_{1} \) are algebraically independent mod 2 with

\[
\gamma_{r}(\eta_{r}^{m} \eta_{1}^{n}) \in \mathbb{Z}_{m+n} X_{m,n}(G/G')
\]

for \(m \leq n \).

The element \((\eta_{r} \eta_{1})^{2} \) is the fixed point restriction of

\[
u_{1}^{i} a_{1}^{2} \delta_{1}^{i} \in \bar{E}_{2}^{4,8} k_{\mathbb{H}}(G/G),
\]

which has order 4, and the transfer of the former is twice the latter. The element \(\eta_{r} \eta_{1} \) is not in the image of \(\text{Res}^{4}_{2} \) and has trivial transfer in \(\bar{E}_{2} \).

Proof. We detect this subring with the monomorphism

\[
\bar{E}_{2} k_{\mathbb{H}}(G/G') \xrightarrow{\gamma_{r}^{2}} \bar{E}_{2} k_{\mathbb{H}}(G'/G')
\]

in which all the relations are transparent. \(\square \)
Corollary 29. Slices for $K_\mathbb{H}$. The slices of $k_\mathbb{H}$ are

$$P_s^k k_\mathbb{H} = \begin{cases} \bigvee_{m \leq s/4} X_{m,s/2-m} & \text{for } s \text{ even and } s \geq 0 \\ \ast & \text{otherwise} \end{cases}$$

where $X_{m,n}$ is as in Theorem 27. Here m can be any integer, and we still require that $m \leq n$.

Proof. Recall that $K_\mathbb{H}$ is obtained from $k_\mathbb{H}$ by inverting a certain element $D \in \pi_{4,4} k_\mathbb{H}$ described in Table 3. Thus $K_\mathbb{H}$ is the homotopy colimit of the diagram

$$k_\mathbb{H} \xrightarrow{D} \Sigma^{-4 \rho_4} k_\mathbb{H} \xrightarrow{D} \Sigma^{-8 \rho_4} k_\mathbb{H} \xrightarrow{D} \cdots$$

Desuspending by $4 \rho_4$ converts slices to slices, so for even s we have

$$P_s^k K_\mathbb{H} = \lim_{k \to \infty} \Sigma^{-4 \rho_4} P_{s+16k}^k k_\mathbb{H}$$

$$= \lim_{k \to \infty} \Sigma^{-4 \rho_4} \bigvee_{0 \leq m \leq s/4+8k} X_{m,s/2+8k-m}$$

$$= \lim_{k \to \infty} \bigvee_{0 \leq m \leq s/4+4k} X_{m-4k,s/2+4k-m}$$

$$= \lim_{k \to \infty} \bigvee_{-4k \leq m \leq s/4} X_{m,s/2-m}.$$

□

7. Generalities on differentials

Now we turn to differentials. Our starting point is the Slice Differentials Theorem of [HHR, 9.9], which says that in the slice spectral sequence for $MU^{((G))}$ for an arbitrary finite cyclic 2-group G of order g, the first nontrivial differential on various powers of $u_{2\sigma}$ is

$$d_r(u_{2\sigma}^{s-1}) = a_{\sigma}^{r} a_{\sigma}^{s-1} N_{r}^{(\sigma G)} (\tau_{2^{r+4(1-\sigma)-1}}) \in E_r^{r,r+2^k(1-\sigma)-1} MU^{((G))}(G/G),$$

where $r = 1 + (2^k - 1)g$ and τ is the reduced regular representation of G. In particular

$$\begin{cases} d_3(u_{2\sigma}) = a_{\sigma}^{4\sigma} \tau_1 & \in E_3^{3,4-2\sigma} MU_R(G/G) \quad \text{for } G = C_2 \\
 d_5(u_{2\sigma}) = a_{\sigma}^{2\sigma} a_3 \delta_1 & \in E_5^{5,6-2\sigma} MU^{((G))}(G/G) \quad \text{for } G = C_4 \\
 d_7(u_{2\sigma}) = a_7 \tau_3 & \in E_7^{7,10-4\sigma} MU_R(G/G) \quad \text{for } G = C_2. \end{cases}$$

Now, as before, let $G = C_2$ and $G' = C_2 \subseteq G$. We need to translate the d_j above in the slice spectral sequence for MU_R into a statement about the one for $k_\mathbb{H}$. We
have an equivariant multiplication map m of G'-spectra

$$
\begin{array}{c}
MU^{((G))} \\
MU_R \xrightarrow{\eta^L} MU_R \wedge MU_R \xrightarrow{m} MU_R \\
\tau_1^G \xrightarrow{\sigma} \tau_1^G + \tau_1^G \\
a^3_2(\tau_1^G, \tau_1^G) \xrightarrow{d_2} a^3_2 \tau_1^G \\
\tau_3^G \xrightarrow{\sigma} \left(\frac{5\tau_1^G}{\pi_1^G} \tau_1^G, \tau_1^G + \tau_1^G \right) \xrightarrow{d_3} \tau_3^G
\end{array}
$$

where the elements lie in $\pi_1^G(\cdot)(G'/G')$. In the slice spectral sequence for $MU^{((G))}$, $d_3(u_{2\sigma})$ and $d_7(u_{2\sigma}^2)$ must be G-invariant since $u_{2\sigma}$ is, and they must map respectively to $a^3_2 \tau_1^G$ and $a^7_2 \tau_3^G$, so we have

$$
d_3(u_{2\sigma}) = a^3_2(\tau_1^G, \tau_1^G) = a^2_2(\eta_0 + \eta_1)
$$

and similarly for k_H where the missing terms in $d_2(u_{2\sigma}^2)$ vanish. Pulling back along the isomorphism τ_4^G and the monomorphism Res_4^G leads to the following.

Proposition 32. The differentials on u_{λ} and $u_{2\sigma}$. The following differentials occur in the slice spectral sequence for k_H.

$$
\begin{align*}
d_3(u_{\lambda}) &= a_3\eta \\
d_3(\text{Res}_2^4(u_{\lambda})) &= \text{Res}_2^4(a_\lambda)(\eta_0 + \eta_1) \\
d_3(u_{\lambda}\text{Res}_2^4(u_{\lambda})) &= u_{\lambda}\text{Res}_2^4(a_\lambda)(\eta_0 + \eta_1) = \eta_0^2 \eta_1 + \eta_0 \eta_1^2 \\
d_3(u_{\lambda}\eta) &= a_3\eta^2 = a_3\text{Tr}_2^4(u_{\lambda}\pi_2^e) \\
d_3(\text{Res}_2^4(u_{\lambda})\eta_e) &= \text{Res}_2^4(a_\lambda)(\eta_0 + \eta_1)\eta_e \\
d_3(u_{\lambda}\text{Res}_2^4(u_{\lambda})\eta_e) &= u_{\lambda}\text{Res}_2^4(a_\lambda)(\eta_0 + \eta_1)\eta_e = (\eta_0 \eta_1)^2 + \eta_0 \eta_1 \eta_e^2 \\
d_5(u_{2\sigma}) &= a^3_2d_1 \\
d_5(u_{2\sigma}^2) &= a^5_2d_1 \xi_1 = a_\lambda u_1 f_1 \\
d_7(\text{Res}_2^4(u_{\lambda})^2) &= \text{Res}_2^4(a_3^2)\eta_0^2.
\end{align*}
$$

The elements u_σ, $u_{2\sigma}$, and $\text{Res}_2^4(u_{\lambda})^2$ are permanent cycles. The first satisfies

$$
\text{Tr}_2^4(u_{\lambda}\text{Res}_2^4(x)) = a_\sigma f_1 x \in \xi_1 + |x|k_H(G/G).
$$

Since the slice filtrations of $u_{\lambda}\text{Res}_2^4(x)$ and its transfer exceed those of x by 0 and 4 respectively, we have an exotic Mackey functor extension.

Proof. The differentials were established above.

Note that $u_{\sigma} \in E^{0,1}_2(G/G')$ since the maximal subgroup for which the sign representation σ is oriented is G', on which it restricts to the trivial representation of degree 1. This group depends only on the restriction of the $RO(G)$-grading to
Proof needed for $\text{Tr}_2^4(u_\sigma)$

G', and the isomorphism extends to differentials as well. This means that u_σ is a place holder corresponding to the permanent cycle $1 \in E^{0,0}_2(G/G')$.

As remarked above, we lose no information by inverting the class D, which is divisible by δ_1. It is shown in [HHR 9.11] that inverting the latter makes u^2_σ a permanent cycle.

\[\square \]

8. $k_\mathbf{H}$ as a C_2-spectrum

It is helpful to explore the restriction of the slice spectral sequence to G', for which the \mathbb{Z}-brigraded portion $E_2(G'/G')$ is the isomorphic image of the ring of Corollary 28. In the following we identify Σ_2, δ_1 and τ_1 with their images under r_4^4. From the differentials of (31) we get

\[
\begin{align*}
d_3(\Sigma_2, \epsilon) &= \eta^3 + \eta^2 \eta_{1, \epsilon} \\
d_3(\delta_1) &= \eta^2 \eta_1 + \eta \eta_1^2 \\
d_7(\delta_1^2) &= d_7(u_{2,0}) \tau_{1,0}^2 \tau_{1,1}^2 = a_7^2 \gamma \tau_{1,0}^2 \tau_{1,1}^2 \\
&= a_7^2 (5 \tau_{1,0}^2 \gamma (r_1) + 5 \tau_{1,0}^2 \gamma (r_1) + 2 \gamma (r_1)) \tau_{1,0}^2 \tau_{1,1}^2.
\end{align*}
\]

The d_3s above make all monomials in η_0 and η_1 of any given degree ≥ 3 the same in $E_3(G/G')$ and $E_3(G'/G')$, so $d_7(\delta_1^2) = \eta_0^7$. Similar calculations show that

\[d_7(\Sigma_2, \epsilon) = \eta_0^7. \]

This leads to the following, for which Figure 4 is a visual aid.

Theorem 33. The slice spectral sequence for $k_\mathbf{H}$ as a C_2-spectrum. Using the notation of Table 3 and Definition 4 we have

\[
\begin{align*}
E^{s,t}_2(G'/\epsilon) &= \mathbb{Z}[\tau_{1,0}, \tau_{1,1}] \quad \text{with } \tau_{1,\epsilon} \in E_2^{0,2}(G'/\epsilon) \\
E^{s,t}_2(G'/G') &= \mathbb{Z}[\delta_1, \Sigma_2, \epsilon; \epsilon = 0, 1]/(2 \eta_0, \delta_1^2 - \Sigma_2, \eta_0, \Sigma_2 + 1 + \eta_1, \delta_1),
\end{align*}
\]

so

\[
\begin{align*}
E^{s,t}_2 &= \left\{ \begin{array}{ll}
\square \oplus \bigcirc_{t+1} \bigcirc & \text{for } (s, t) = (0, 4\ell) \text{ with } \ell \geq 0 \\
\bigcirc_{t+1} \bigcirc & \text{for } (s, t) = (0, 4\ell + 2) \text{ with } \ell \geq 0 \\
\bigcirc_{t+1} \bigcirc & \text{for } (s, t) = (2u, 4\ell + 4u) \text{ with } \ell \geq 0 \text{ and } u > 0 \\
\bigcirc & \text{for } (s, t) = (2u - 1, 4\ell + 4u - 2) \text{ with } \ell \geq 0 \text{ and } u > 0 \\
0 & \text{otherwise.}
\end{array} \right.
\end{align*}
\]

The first differentials are determined by

\[
\begin{align*}
d_3(\Sigma_2, \epsilon) &= \eta^2_0 (\eta_0 + \eta_1) \quad \text{and} \quad d_3(\delta_1) = \eta_0 \eta_1 (\eta_0 + \eta_1)
\end{align*}
\]
resulting in

\[
E_{4}^{s,t} = \begin{cases}
\begin{array}{ll}
\bigoplus \bigoplus_{t} \circ & \text{for } (s,t) = (0,4\ell) \text{ with } \ell \geq 0 \text{ and } \ell \text{ even} \\
\bigoplus \bigoplus_{t} \circ & \text{for } (s,t) = (0,4\ell) \text{ with } \ell \geq 0 \text{ and } \ell \text{ odd} \\
\bigoplus_{t+1} \circ & \text{for } (s,t) = (0,4\ell+2) \text{ with } \ell \geq 0 \\
\bigoplus_{t+1} \circ & \text{for } (s,t) = (2,4\ell+4) \text{ with } \ell \geq 0 \text{ even} \\
\bigoplus_{t+1} \circ & \text{for } (s,t) = (1,4\ell+2) \text{ with } \ell \geq 0 \text{ even} \\
\bigoplus_{t+1} \circ & \text{for } (s,t) = (s,4\ell+2s) \text{ with } s \geq 3 \text{ and } \ell \geq 0 \text{ even} \\
0 & \text{otherwise}.
\end{array}
\end{cases}
\]

\[
E_{8}^{s,t} = E_{\infty}^{s,t} = \begin{cases}
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (0,4\ell) \text{ with } \ell \geq 0 \text{ and } \ell \text{ divisible by 4} \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (0,4\ell) \text{ with } \ell \equiv 2 \text{ mod 4} \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (0,4\ell+2) \text{ with } \ell \geq 0 \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (2,4\ell+4) \text{ with } \ell \geq 0 \text{ and } \ell \equiv 2 \text{ mod 4} \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (1,4\ell+2) \text{ with } \ell \geq 0 \text{ divisible by 4} \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (1,4\ell+2) \text{ with } \ell \geq 0 \text{ and } \ell \equiv 2 \text{ mod 4} \\
\bigoplus_{t} \bigoplus_{t} \circ & \text{for } (s,t) = (s,4\ell+2s) \text{ with } 3 \leq s \leq 6 \text{ and } \ell \geq 0 \text{ divisible by 4} \\
0 & \text{otherwise}.
\end{cases}
\]

There is a second set of differentials determined by

\[
d_{7}(\Sigma_{2,\epsilon}) = d_{7}(\delta_{1}) = \eta^{7}
\]

resulting in

Corollary 34. Some nontrivial permanent cycles. The following elements in

\[E_{2}^{s,3i+2s} \pi_{1+2s,\mathcal{H}}(G/G')\]

and their transfers are nontrivial permanent cycles:

\begin{itemize}
 \item \(\Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} \text{ for } 0 \leq j \leq 2i \) (4i + 1 elements of infinite order including \(\delta_{1}^{2i}\)), \(i\) even and \(s = 0\).
 \item \(\eta_{0} \Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} \text{ for } 0 \leq j < 2i \text{ and } \eta_{0} \delta_{1}^{2i} (4i + 2 \text{ elements or order } 2) \text{ for } i \text{ even and } s = 1\).
 \item \(\eta_{i} \Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} \text{ for } 0 \leq j < 2i \text{ and } \delta_{1}^{2i} \{\eta_{0}, \eta_{1}, \eta_{2}^{2}\} (4i + 3 \text{ elements or order } 2) \text{ for } i \text{ even and } s = 2\).
 \item \(\eta_{i} \delta_{1}^{2i} \text{ for } 3 \leq s \leq 6 \) (4 elements or order 2) and \(i\) even.
 \item \(\Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} + \delta_{1}^{2i} \text{ for } 0 \leq j \leq 2i \) (4i + 1 elements of infinite order including \(2\delta_{1}^{2i}\)), \(i\) odd and \(s = 0\).
 \item \(\eta_{i} \Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} + \delta_{1}^{2i} \text{ for } 0 \leq j < 2i-1 \text{ and } \eta_{0} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) = \eta_{1} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) (4i + 1 \text{ elements of order } 2) \text{, } i \text{ odd and } s = 1\).
 \item \(\eta_{i} \Sigma_{2,\epsilon}^{2i-1} \delta_{1}^{2i} + \delta_{1}^{2i} \text{ for } 0 \leq j < 2i-1 \), \(\eta_{0} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) = \eta_{0} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) \) and \(\eta_{i} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) = \eta_{1} \delta_{1}^{2i-1} (\Sigma_{2,\epsilon}^{2i} + \delta_{1}) (4i + 2 \text{ elements of order } 2) \text{ for } i \text{ odd and } s = 2\).
\end{itemize}
THE SLICE SPECTRAL SEQUENCE FOR THE C_4 ANALOG OF REAL K-THEORY

Figure 4. The slice spectral sequence for k_H as a C_2-spectrum. The Mackey functor symbols are as in Table 2. The C_4-structure of the Mackey functors is not indicated here. In each bidegree we have a direct sum of the indicated number of the indicated Mackey functor. Each d_3 has maximal rank, leaving a cokernel of rank 1, and each d_7 has rank 1. Blue lines indicate exotic transfers, which also have maximal rank.

In $E_2^{0,8i+4} k_H(G/G')$ we have $2\Sigma_{2,2}^{2i+1-j} \delta_1^j$ for $0 \leq j \leq 2i$ and $2\delta_1^i$, $4i+3$ elements of infinite order, each in the image of the transfer $T_{1,1}$.

9. THE FIRST DIFFERENTIALS OVER C_4

Theorem 27 lists elements in the slice spectral sequence for k_H over C_4 in terms of

$r_1, \bar{r}_2, \delta_1; \eta, a_\sigma, a_\lambda; u_\lambda, u_\sigma$, and $u_{2\sigma}$.

All but the u's are permanent cycles, and the action of d_3 on u_λ, u_σ and $u_{2\sigma}$ is described above in Proposition 32.

Proposition 35. d_3 on elements in Theorem 27. We have the following d_3s, subject to the conditions on i, j, k and ℓ of Theorem 27.
• On $X_{2t,2t}$:

$$d_3(a_\lambda^i u_\sigma^j u_\lambda^{2t-j} \bar{\delta}_1^i) = \begin{cases}
\eta u_\sigma^{2t-i+1} \Res_{\sigma}^4(a_\lambda^i u_\lambda^{2t-j} \bar{\delta}_1^i) & \in \pi_* X_{2t,2t+1}(G/G) \\
0 & \text{for } j \text{ odd} \\
0 & \text{for } j \text{ even}
\end{cases}$$

$$d_3(a_\sigma^k a_\lambda^i u_\sigma^j u_\lambda^{2t-j} \bar{\delta}_1^i) = 0$$

• On $X_{2t+1,2t+1}$:

$$d_3(\delta_1^{2t+1}) = \eta u_\sigma^{2t-i+1} \Res_{\sigma}^4(a_\lambda^i u_\lambda^{2t-j} \bar{\delta}_1^i) \in \pi_* X_{2t+1,2t+2}(G/G')$$

$$d_3(u_\sigma^{2t+1} \Res_{\sigma}^4(a_\lambda^{2t-i+1} u_\lambda^{2t-j} \bar{\delta}_1^i)) = \begin{cases}
\eta u_\sigma^{2t-i+1} \Res_{\sigma}^4(a_\lambda^{2t-i+1} u_\lambda^{2t-j} \bar{\delta}_1^i) & \in \pi_* X_{2t+1,2t+2}(G/G') \\
0 & \text{for } j \text{ even} \\
0 & \text{for } j \text{ odd}
\end{cases}$$

$$d_3(a_\sigma a_\lambda^i u_\sigma^{2t+1-j} \bar{\delta}_1^i) = \begin{cases}
\eta a_\sigma a_\lambda^{2t-2j} u_\lambda^{2t-j} \bar{\delta}_1^i & \in \pi_* X_{2t+1,2t+2}(G/G) \\
0 & \text{for } j \text{ even} \\
0 & \text{for } j \text{ odd}
\end{cases}$$

$$d_3(a_\sigma^{2t+1} a_\lambda^i u_\sigma^{2t-j} \bar{\delta}_1^i) = 0$$

• On $X_{1,2t-i}$:

$$d_3(u_\sigma^{t-i} \Res_{\sigma}^4(u_\lambda^{t-i} \bar{\delta}_1^i)) = \begin{cases}
\eta^{t-i} u_\sigma^{t-i} \Res_{\sigma}^4(u_\lambda^{t-i} \bar{\delta}_1^i) & \in \pi_* X_{1,2t+1-i}(G/G') \\
0 & \text{for } \ell \text{ odd} \\
0 & \text{for } \ell \text{ even}
\end{cases}$$

$$d_3(\eta^{t-i} u_\sigma^{t-i} \Res_{\sigma}^4(u_\lambda^{t-i} \bar{\delta}_1^i)) = \begin{cases}
\eta^{2t-i} u_\sigma^{t-i} \Res_{\sigma}^4(a_\lambda^{t-i} u_\lambda^{t-i} \bar{\delta}_1^i) & \in \pi_* X_{1,2t+1-i}(G/G') \\
0 & \text{for } \ell - j \text{ odd} \\
0 & \text{for } \ell - j \text{ even}
\end{cases}$$

• On $X_{1,2t+1-i}$:

$$d_3(r_1 \Res_{\sigma}^4(u_\sigma^{t-i} \Res_{\sigma}^4(u_\lambda^{t-i} \bar{\delta}_1^i))) = 0$$

$$d_3(\eta^{2t+1-i} u_\sigma^{t-i} \Res_{\sigma}^4(u_\lambda^{t-i} \bar{\delta}_1^i)) = \begin{cases}
\eta^{2t+1-i} u_\sigma^{t-i} \Res_{\sigma}^4(a_\lambda^{t-i} u_\lambda^{t-i} \bar{\delta}_1^i) & \in \pi_* X_{1,2t+2-i}(G/G') \\
0 & \text{for } \ell - j \text{ odd} \\
0 & \text{for } \ell - j \text{ even}
\end{cases}$$

Note that in each case the first index of X is unchanged by the differential, and the second one is increased by one. Since $X_{m,n}$ is a summand of the $2(m + n)$th slice, each d_3 raises the slice degree by 2 as expected.
These differentials are illustrated in Figures 5 and 6.

In order to pass to E_4, we need the following exact sequences of Mackey functors.

$$
\begin{align*}
0 \rightarrow & \bullet \rightarrow \circ \xrightarrow{d_3} \bullet \rightarrow 0 \\
0 \rightarrow & \widehat{\bullet} \rightarrow \widehat{\circ} \xrightarrow{d_3} \widehat{\bullet} \rightarrow 0 \\
0 \rightarrow & \widehat{\circ} \xrightarrow{d_3} \bullet \rightarrow \Box \rightarrow 0 \\
0 \rightarrow & \widehat{\Box} \xrightarrow{d_3} \widehat{\bullet} \rightarrow \widehat{\Box} \rightarrow 0
\end{align*}
$$

The resulting subquotients of E_4 are shown in Figures 7 and 8 and described below in Theorem 36. In the latter the slice summands are organized as shown in the Figures rather than by orbit type as in Theorem 27.

Theorem 36. The slice E_4-term for $k\mathbb{H}$. The elements of Theorem 27 surviving to E_4, which live in the appropriate subquotients of $\pi_* X_{m,n}$, are as follows.
Figure 7. The subquotient of the slice E_4-term for k-H for the slice summands $X_{4,n}$ for $n \geq 4$. Exotic transfers are shown in blue.

Figure 8. The subquotient of the slice E_4-term for k-H for the slice summands $X_{5,n}$ for $n \geq 5$. Exotic restrictions and transfers are shown in green and blue respectively.

(1) In $\pi_\ast X_{2\ell,2\ell}$ (see the leftmost diagonal in Figure 7), on the 0-line we still have a copy of \Box generated under fixed point restrictions by $\Delta_1^\ell \in E_4^{0,8\ell}$. In positive filtrations we have

\[
\begin{align*}
\circ \subseteq E_4^{2j,8\ell} & \text{ generated by } \\
a_\lambda^j u_\lambda^j u_2^\ell u_{2j}^{\ell-j} & \in E_4^{2j,8\ell}(G/G) \quad \text{for } j \text{ even and } 0 < j \leq 2\ell, \\
2a_\lambda^j u_\lambda^j u_2^\ell u_{2j}^{\ell-j} & \in E_4^{2j,8\ell}(G/G) \quad \text{for } j \text{ odd and } 0 < j \leq 2\ell \text{ and} \\
\bullet \subseteq E_4^{2k+2\ell,8\ell} & \text{ generated by } \\
a_\sigma^{2k} a_\lambda^{2\ell-k} u_2^\ell u_2^\ell & \in E_4^{2j+2k,8\ell}(G/G) \quad \text{for } 0 < k \leq \ell.
\end{align*}
\]
(2) In \mathbb{P}_*, $X_{2\ell,2\ell+1}$ (see the second leftmost diagonal in Figure 7), in filtration 0 we have $\hat{\mathfrak{g}}$, generated (under transfers and the group action) by

$$r_1\text{Res}_1^2(u_\sigma^2\text{Res}_1^4(u_\lambda^2\delta_1^{2\ell})) \in E_2^{0,8\ell+2}(G/e).$$

In positive filtrations we have

- $\bullet \subseteq E_4^{1,8\ell+2}$ generated (under transfers and the group action) by

$$\eta u_\sigma^2\text{Res}_2^4(u_\lambda^2\delta_1)^{2\ell} = E_4^{1,8\ell+2}(G/G')$$

- $\bullet \subseteq E_4^{1k+1,8\ell+2}$ for $0 < k \leq \ell$ generated by

$$x = \eta^{4k+1}u_\sigma^{2\ell-2k}\text{Res}_2^4(u_\lambda\delta_1)^{2\ell-2k} \in E_4^{1k+1,8\ell+2}(G/G') \text{ with } (1 - \gamma)x = T_1^2(x) = 0.$$

(3) In $\mathbb{P}_*, X_{2\ell+1,2\ell+1}$ (see the leftmost diagonal in Figure 8), on the 0-line we have a copy of $\hat{\mathfrak{g}}$ generated under fixed point $\Delta_{4}^{2\ell+1}/2 \in E_4^{0,8\ell+4}$. In positive filtrations we have

- $\bullet \subseteq E_2^{2j,8\ell+4}$ generated by

$$u_\sigma^{2\ell+1}\text{Res}_2^4(a_\lambda^2u_\lambda^{2\ell+1-j}\delta_1^{2\ell+1}) \in E_2^{2j,8\ell+4}(G/G') \text{ for } 0 < j \leq 2\ell + 1,$$

- $\bullet \subseteq E_2^{2j+1,8\ell+4}$ generated by

$$a_\sigma a_\lambda^j u_\sigma^{2\ell+1-j}\delta_1^{2\ell+1} \in E_2^{2j+2k,8\ell+4}(G/G) \text{ for } 0 \leq j \leq 2\ell + 1 \text{ and }$$

- $\bullet \subseteq E_2^{2k+4\ell+3,8\ell+4}$ generated by

$$a_{\sigma}^{2k+1}a_\lambda^{2\ell+1}u_\sigma^j\delta_1^{2\ell+1} \in E_2^{2k+4\ell+2,8\ell+4}(G/G) \text{ for } 0 < k \leq 2\ell + 1.$$

(4) In $\mathbb{P}_*, X_{2\ell+1,2\ell+2}$ (see the second leftmost diagonal in Figure 8), in filtration 0 we have $\hat{\mathfrak{g}}$, generated (under transfers and the group action) by

$$r_1\text{Res}_1^2(u_\sigma^{2\ell+1}\text{Res}_1^4(u_\lambda^{2\ell+1}\delta_1^{2\ell+1})) \in E_4^{0,8\ell+6}(G/e).$$

In positive filtrations we have

- $\nabla \subseteq E_4^{04k+3,8\ell+6}$ for $0 \leq k \leq \ell$ generated under transfer by

$$x = \eta^{4k+3}\Delta_{4}^{f-k} \in E_4^{04k+3,8\ell+6}(G/G') \text{ with } (1 - \gamma)x = 0.$$

(5) In $\mathbb{P}_*, X_{m,m+i}$ for $i \geq 2$ (see the rest of Figures 7 and 8), in filtration 0 we have

- $\hat{\mathfrak{g}} \subseteq E_4^{0,4m+4j+2}$ generated under transfers and group action by

$$r_1\text{Res}_1^2(u_\sigma^{m+j}\delta_1^2)\text{Res}_1^4(u_\lambda^{m+j}\delta_1^m) \in E_4^{0,4m+4j+2}(G/e) \text{ for } j \geq 0,$$

- $\hat{\mathfrak{g}} \subseteq E_4^{0,8\ell+4}$ generated under transfers and group action by

$$\text{Res}_1^2(u_\sigma^{2\ell+1}\delta_2^{2\ell+1-m})\text{Res}_1^4(u_\lambda^{2\ell+1}\delta_1^m)$$
Proposition 37. Some nontrivial permanent cycles. The elements listed in Theorem 36(5) other than \(\eta_0^2 \delta_1^{2\ell} \) are all nontrivial permanent cycles.

Proof. Each such element is either in the image of \(\mathcal{E}_4^{0,8\ell} \) under the transfer and therefore a nontrivial permanent cycle, or it is one of the ones listed in Corollary 34. \(\square \)

In subsequent discussions and charts, starting with Figure 13, we will omit the elements Proposition 37.

Analogous statements can be made about the slice spectral sequence for \(K_H \). Each of its slices is a certain infinite wedge spelled out in Corollary 29. Their homotopy groups are determined by the chain complex calculations of Section 4 and illustrated in Figures 2 and 3. Analogs of Figures 5–8 are shown in Figures 9–12. In each figure, exotic transfers and restrictions are indicated by blue and green lines respectively. As in the \(k_H \) case, most of the elements shown in this chart can be ignored for the purpose of calculating higher differentials.

The resulting reduced \(\mathcal{E}_4 \) for \(K_H \) is shown in Figure 14. The information shown there is very useful for computing differentials and extensions. The periodicity theorem tells us that \(\mathcal{E}_n K_H \) and \(\mathcal{E}_{n-32} K_H \) are isomorphic. For \(0 \leq n < 32 \) these groups appear in the first and third quadrants respectively, and the information visible in the spectral sequence can be quite different.

For example, we see that \(\mathcal{E}_0 K_H = \Box \) while \(\mathcal{E}_{-32} K_H \) has a subgroup isomorphic to \(\Box \). The quotient \(\Box / \Box \) is isomorphic to \(\circ \). This leads to the exotic restrictions and transfer in dimension \(-32\) shown in Figure 14. Information that is transparent in dimension 0 implies subtle information in dimension \(-32\). Conversely, we see easily that \(\mathcal{E}_{-4} K_H = \Box \) while \(\mathcal{E}_{28} K_H \) has a quotient isomorphic to \(\Box \). This leads to the “long transfer” in dimension 28.
The slice spectral sequence for the C_4 analog of real K-theory.

Figure 9. The d_3s on the slices $X_{-4,n}$ for $n \geq -4$.

Figure 10. The d_3s on the slices $X_{-5,n}$ for $n \geq -5$.

Figure 11. The subquotient of the slice E_4-term for $k_{\mathbb{H}}$ for the slice summands $X_{-4,n}$ for $n \geq -4$.
Figure 12. The subquotient of the slice E_{1}-term for k_{H} for the slice summands $X_{-5,n}$ for $n \geq -5$.

This technique will be used repeatedly in the proof of Theorem 40 below.
Figure 13. The E_4-term of the slice spectral sequence for kH with elements of Proposition 37 removed. Differentials are shown in red. Exotic transfers and restrictions are shown in blue and green respectively.
10. Higher differentials and exotic Mackey functor extensions

Theorem 38. The d_5s, d_7s and d_{11}s in the slice spectral sequence for k_H. The E_4-term of the slice spectral sequence for k_H with elements of Proposition 37 removed (shown in Figure 13) we have

\[\eta_e \in E_4^{1,2}(G/G') \text{ for } \epsilon = 0, 1 \text{ with } Tr^4_2(\eta_e) = \eta \in E_4^{1,4}(G/G) \]

\[\eta_1, \eta_0 \eta_1 \in E_4^{1,4}(G/G) \text{ with } Tr^4_2(\eta_1^2) = \eta^2 \text{ and } Tr^4_2(\eta_0 \eta_1) = f_1^2 \]

\[\eta_0 = \eta_0 \eta_1 = \eta_0 \]

\[\eta_0 \text{ with } \epsilon \in E_4^{3,6}(G/G') \text{ with } Tr^4_2(\eta_0^3) = x_3 \in E_4^{3,6}(G/G) \text{ and } \eta^3 = 0 \]

\[\nu \in E_4^{1,4}(G/G) \text{ with } Res^3_2(\nu) = \eta_0^3, 2\nu = x_3 \text{ and } Res^3_2(\nu^2) = \eta_0^6 \]

\[x_4 \in E_4^{1,8}(G/G) \text{ with } Res^3_2(x_4) = \eta_0^6 \]

\[y_4 = 2\delta_1 = Tr^4_2(\nu, f_1, x_4) \]

\[\Delta_1 \in E_4^{1,8}(G/G) \]

see Tables 3 and 4 for more information. All are torsion free under multiplication by x_4 or its restriction η_0^6, except

\[\eta_0 + \eta_1, \eta_e + \eta_0 \eta_1, \ y_4 \text{ and } 4\Delta_1, \]

which are killed by it. Thus the following are linearly independent up to 2-torsion:

\[\left\{ x_4 \left\{ x_3, \Delta_1^i, f_1 \Delta_1^i, \nu \Delta_1^i, \nu^2 \Delta_1^i, f_1^{-j} : i \geq 0 \right\} : j \geq 0 \right\} \]

\[\cup \{ \eta_0^i \{ \eta_0, \eta_1 \} : i \geq 0 \} \]

\[\cup \{ \text{Res}^3_2(\Delta_1)^i \{ y_4, \eta_e, \eta_0^2 \} : i \geq 0 \} \].

There are multiplicative relations

\[f_1 \nu = 2x_4, \nu x_4 = f_1^2 \Delta_1, \nu^3 = 0 \text{ and } y_4 \eta_e = 0. \]

There are differentials

\[d_5(x_4^{2i} f_1^j) = x_4^{2i} f_1^{j+3} \text{ for } i, j \geq 0 \]

\[d_5(\Delta_1^{2i} x_4^j) = \Delta_1^{2i} \nu x_4^j = \Delta_1^{2i} x_4^j (\nu, f_1, f_1) \]

\[d_5(f_1 \Delta_1^{2i+1} x_4^j) = 2 \Delta_1^{2i+2} x_4^j \]

\[d_7(2\Delta_1^{2i+1} x_4^j) = \Delta_1^{2i} x_3 x_4^{j+1} \]

\[d_7(\Delta_1^{4i+2} x_4^j) = x_4 \Delta_1^{4i+1} x_3 x_4^{j+1} \]

\[d_{11}(\Delta_1^{4i+1} x_3 x_4^{j+2}) = \Delta_1^{4i} f_1^2 x_4^{j+2} \]

Similar statements can be made about the third quadrant of the slice spectral sequence for K_H. They are indicated in Figure 14.

Proof. The structure of the reduced (meaning the elements of Proposition 37 are removed) E_4-term can be read off from previous calculations.

We have

\[2x_4 = 2a_\lambda^2 u_2 \sigma \delta_1^2 = a_\lambda a_\lambda u_1 \delta_1^2 \text{ since } a_\lambda^2 u_\lambda = 2a_\lambda u_2 \]

\[d_5(x_4) = a_\lambda^2 \delta_1^2 d_5(u_2) = a_\lambda^2 \delta_1^2 a_\lambda u_1 \delta_1 \text{ by Proposition 32} \]

\[= f_1^2 \]
\[d_5(\Delta_1) = d_5(u_2^3)u_{2\sigma} \delta_1^7 + u_2^2 d_5(u_{2\sigma}) \delta_1^7 \]
\[= a_\lambda u_\lambda f_{12\sigma} \delta_1^7 + a_\lambda^2 u_\lambda^2 \delta_1^1 \]
\[= a_\lambda u_\lambda f_{12\sigma} \delta_1^7 + 2a_{\sigma} a_\lambda^2 u_\lambda u_{2\sigma} \delta_1^1 \quad \text{since} \quad a_\lambda^2 u_\lambda = 2a_\lambda u_{2\sigma} \]
\[= a_\lambda u_\lambda f_{12\sigma} \delta_1^7 \quad \text{since} \quad 2a_\sigma = 0 \]
\[= \nu x_4 = (\nu, f_1, f_1) \]

\[d_5(f_1 \Delta_1) = a_\lambda u_\lambda f_1^2 u_{2\sigma} \delta_1^7 \]
\[= a_\lambda^2 a_\lambda^1 u_\lambda u_{2\sigma} \delta_1^1 \]
\[= 2x_4^2 \]

\[d_7(2\Delta_4) = d_7(\text{Tr}_4^2(\text{Res}_4^4(\Delta_1))) = \text{Tr}_4^2(d_7(\delta_1^7)) \]
\[= \text{Tr}_4^2(\eta_0^8) \quad \text{by Theorem 33} \]

In order to evaluate this transfer note that \(\eta_0^3 = \text{Res}_4^4(x_4) \), so
\[\text{Tr}_4^2(\eta_0^8) = \text{Tr}_4^2(\eta_0^3 \text{Res}_4^4(x_4)) = \text{Tr}_4^2(\eta_0^3 x_4) = x_3 x_4 \]
and \(d_7(2\Delta_4) = x_3 x_4 \).

Since \(\text{Res}_4^4(\Delta_1) = \delta_1^7 \), we have
\[\text{Res}_4^4(\nu x_4) = \text{Res}_4^4(\nu) \eta_0^3 \]
\[= \text{Res}_4^4(d_5(\Delta_1)) \]
\[= d_r(\text{Res}_4^4(\Delta_1)) \quad \text{for suitable} \quad r \]
\[= d_r(\delta_1^7) \]
\[= \eta_0^3 \quad \text{for} \quad r = 7. \]

It follows that
\[\eta_0^4(\text{Res}_4^4(\nu) - \eta_0^3) = 0. \]

Since multiplication by \(\eta_0^3 \) maps \(E_4^{3,6}(G/G') \) isomorphically to \(E_4^{-7,14}(G/G') \), we conclude that
\[(39) \quad \text{Res}_4^4(\nu) = \eta_0^3, \]

which implies that \(2\nu = x_3 \) and \(\text{Res}_4^4(\nu^2) = \eta_0^3 \).

Now consider the differential on \(\Delta_1^7 \). For suitable \(r \) we have
\[d_r(\Delta_1^7) = 2\Delta_1 d_5(\Delta_1) \]
\[= 2\Delta_1 \nu x_4 \]
\[= \Delta_1 x_3 x_4 \]

so \(d_7(\Delta_1^7) = \Delta_1 x_3 x_4 \).

Heuristically we have
\[d(\Delta_1^7 x_4) = d(\Delta_1^7) x_4 + d_7(\Delta_4) \]
\[= \Delta_1 x_3 x_4^2 + \Delta_1^2 f_1^3 \]
\[= \Delta_1 x_3 x_4^2 + \Delta_1 f_1(\Delta_1^2 f_1^2) \]
\[= \Delta_1 x_3 x_4^2 + \Delta_1 f_1(\nu^2 x_4) \]
\[= \Delta_1 x_3 x_4^2 + \Delta_1 (f_1(\nu) \nu x_4) \]
\[= \Delta_1 x_3 x_4^2 + \Delta_1 (2x_4) \nu x_4 \]

Is this rigorous enough?
and

\[\text{Proof.}\] In dimensions 8 and 9 we have exact sequences

\[
\begin{align*}
E^3_{12} \longrightarrow E^3_{12} \quad & \text{by} \quad d_5
\quad & \text{by} \quad E^8_{16} \longrightarrow E^8_{16} \longrightarrow 0
\end{align*}
\]

and

\[
\begin{align*}
0 \longrightarrow E^3_{12} \longrightarrow E^1_{10} \quad & \text{by} \quad d_7
\quad & \text{by} \quad E^8_{16} \longrightarrow E^8_{16} \longrightarrow 0
\end{align*}
\]

From Figure 14 we see that \(\pi_{-23}K_H = \circ \), so the same must be true of \(\pi_{-19}K_H \). This implies the exotic transfer.

In dimension 13 the exotic transfer is required to give a differential leading to \(\pi_{13}K_H = \pi_{-13}K_H = 0 \).
The two statements in dimension 17 are equivalent since
\[d_7(\delta^2_1 \eta_0) = \text{Res}^2_2(x_4^4). \]
The target of the long differential is the square of \(\epsilon \in \pi_8 K_H(G/G) \), which has filtration 8. The corresponding element in \(\pi_{-24} \) has filtration \(-4\), so its product with \(\epsilon \) would have filtration \(-4\) and is therefore 0. Hence \(\epsilon^2 \) must be hit by a differential, and this \(d_{13} \) is the only possibility.

The element \(x_4 \Delta^2_1 \) in dimension 20 is the image of \(\pi \in \pi_{20} S^0 \). It product with the exotic transfer in dimension 2 gives the one in dimension 22.

The Periodicity Theorem of \cite{HHR, 9.16} says that \(\Delta^1_4 \) is a permanent cycle inducing an isomorphism in homotopy. The absence of higher differentials and extensions can be established by careful inspection illustrated in Corollary \cite{41}.

Some of the other statements can be proved by comparison with third quadrant calculations in the slice spectral sequence for \(K_H \) which we have not described yet, but which is illustrated in Figure \cite{14}.

In dimension 9, we find that \(\pi_{-23} K_H = E^{-1,-24}_\infty = 0 \), so \(\pi_9 \) must have the same value.

In dimension 13 the indicated exotic transfer is need to get a torsion free \(\pi_{12} \). In the dimension \(-20\) we need a \(d_{13} \) to achieve the same result. """
Figure 14. The reduced E_4-term of the slice spectral sequence for the periodic spectrum $K_{\mathbb{H}}$. Differentials are shown in red. Exotic transfers and restrictions are shown in blue and green respectively.
Figure 15. The reduced E_∞-term of the slice spectral sequence for K_H. The exotic Mackey functor extensions lead to the Mackey functors shown in blue in the second and fourth quadrants.

Corollary 41. The E_∞-term of the slice spectral sequence for K_H. The surviving elements in the spectral sequence for K_H are shown in Figure 15.
References

Department of Mathematics, University of Virginia, Charlottesville, VA 22904
E-mail address: mikhill@virginia.edu

Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: mjh@math.harvard.edu

Department of Mathematics, Rochester University, Rochester, NY
E-mail address: doug+pi@math.rochester.edu
Figure 16. The 2008 poster. The first and third quadrants show $E_4(G/G)$ with the elements of Prop. 37 excluded. The second quadrant indicates d_3s as in Figures 5 and 6. The fourth quadrant indicates comparable d_3s in the third quadrant of the slice spectral sequence.