Recall G-CW complexes.

For an ordinary CW X we have cellular chain $C_n(X)$ defined:

\[C_n(X) = \text{free abelian gp on } n \text{-cells}. \]

- free abelian gp on the set S_n.

In equiv case, S_n is a G-set, making $C_n(X)$ a $\mathbb{Z}[G]$-algebra, the gp ring of G.

Def. The gp ring $\mathbb{Z}[G]$ of a gp G is the free abelian gp in the set G. For $x \in G$, let $[x]$ be the corresponding generator of $\mathbb{Z}[G]$.
The multiplication in $\mathbb{Z}[G]$ is given by $[g_1][g_2] = [g_1 g_2]$. For a G-set S, the free abelian gp generated by S is a $\mathbb{Z}[G]$-module. Such a $\mathbb{Z}[G]$-module is called a permutation module.

Example: $G = C_n$ with generator g.

$\mathbb{Z}[G] = \mathbb{Z}[\{g^i\}] = \mathbb{Z}[g]/(g^n - 1)$

For a subgroup $H \leq G$,

let $G/H = \text{set of left cosets} = G \text{-set} \mathbb{Z}[G/H] = \text{free abz on } G/H
For \(H \leq K \leq G \)
\[
\mathbb{C}[G/H] \rightarrow \mathbb{C}[G/K] \quad \text{map of } G\text{-sets}
\]
\[
\mathbb{C}[G/H] \xrightarrow{\Delta} \mathbb{C}[G/K]
\]
\[
\nabla = \Delta \quad \Delta = \nabla
\]

Let \(\{ \chi_1, \chi_2, \ldots \} \) be a set of unit reps for \(K/H \). Given \(x \in G/K \),
we have \(\sum \chi(k)(x) \in G/H \).

E.g. \(H = e \) and \(K = G \).\[
\mathbb{C}[G/K] = \mathbb{C} \quad \text{with trivial } G\text{-action}\]
\[\mathbb{Z}[G]/H \cong \mathbb{Z}[G] \]

The diagonal map \(\triangle : \mathbb{Z}[G] \to \mathbb{Z}[G] \)

Assume \(G \) is finite.

Exercise: Find the endomorphisms \(\Delta \) and \(\nabla \) above.

\(H_*(C(x)) \) is a graded \(\mathbb{Z}[G] \)-module.

More about this later.

Homotopy groups. We need a base point that is fixed by \(G \).
Given a G-space X, let X^+ be the disjoint union of X with a base point fixed by G.

The nth entry of a pointed G-space is a functor $[finite \, G\text{-sets } S] \to [abelian \, g/f]$ such that $S \mapsto [S \cup S^n, X]_*$.

This represents homotopy classes of equivariant base pt preserving maps.

Call this $\Pi^G_*(X)$.
Formal properties of this function

1) Contravariant

2) Converts disjoint unions to direct sums.

The function $\pi_i^G(x)$ is determined by its values on the G-sets G/H for conjugacy classes of subgroups of G.

For $H < K < G$, we have a map of G-sets $G/H \rightarrow G/K$, giving

$$\Pi_m X(G/H) \xrightarrow{\text{Res}^K_H} \Pi_m X(G/K)$$
This is called a restriction map.

If a Mackey function \(M \) is a function

finite \(G \)-sets \(\rightarrow \) abelian \(G \)-gps

1) contravariant

2) additive on disjoint unions.

In addition to the restriction maps above, we have

\[
\begin{align*}
M(\mathbb{C}_G/H) & \xrightarrow{\text{Res}^H_K} M(\mathbb{C}_G/K) \\
\text{Tr}^K_H & \xrightarrow{\text{Tr}^K_H}
\end{align*}
\]
This is called a transfer map.

Example 1 \(M(G/H) = \mathbb{Z}[G/H] \)
with \(\text{Res}_{N}^{G} = \nabla \quad \text{Tr}_{N}^{G} = \Delta \)

2. Let \(M \) be a \(\mathbb{Z}[G] \)-module, i.e. an abelian group equipped with a \(G \)-action. Define a Mackey function \(\hat{M} \) by \(\hat{M}(G/H) = M \). Can define transfer explicitly.
Call this a fixed point Macky function.