Recall $\mathcal{A}_{\geq n} = \mathcal{A}_{\geq n+1} = \text{category of } n\text{-connected spectral }
\mathcal{A}_{\geq n}$

It leads (formally) to functors f^π_0 with Postnikov: kill π_i for $i \geq n$

P_{n+1} is n-connected cover.

We want to define subcategories $A_{\geq n}$ in the G-equivariant case.

Will define it in terms of basic building blocks as before.
Let $H \subset G$ be a subgroup.

$\rho_H = \text{regular rep of } H = R[H_H]\),

$S_{mH} = H$-space on spectrum $S(m,H)$.

$G_+ = G$ with disjoint base pt.

The underlying space (for $m > 0$) in a wedge of $|G/H|$ copies of S^{mH}. G acts by permuting the wedge summands, each of which is H-invariant. H acts as indicated on S^{mH}.
Let $A = \bigcup \{ S^2(m, H) \cup S^1 \mathbb{S}^2(m, H) : m \geq 2 \}$ and $H \in G$.

These are called slice cells.

E.g., for $H = e$, $S^2(m, e) = G_e \cup S^2_m = \text{wedge of } 16_e \text{ copies of } S^2_m$.

$S^2(m, e)^H = pt$ for $H \neq e$.

$\Sigma S^2(m, e) = \Sigma S^2(m-1, e)$.

The dimension of a slice cell is that
Def $A_{\geq n}^G$ is the subcategory of A^G (the category of G-spectra) "built" out of slice cells of dimension $\geq n$. This subcategory of A^G:

1) Full (all morphisms included)

2) Closed under cofibers

$x \rightarrow y \rightarrow z$ cofiber sequence

If $x, y \in A_{\geq n}^G$ then $z \in A_{\geq n}^G$

3) Closed under extensions

If $x, z \in A_{\geq n}^G$ then $y \in A_{\geq n}^G$
4) Not closed under fibers.
\[y \in A \Rightarrow x \in A \] does NOT IMPLY \(x \in A \).

5) Closed under infinite wedges and retracts.

6) Closed under direct limits.

\(A \) has similar properties.

This leads to functors \(P^n \) and \(P^{n-1} \) as before.

We will see later than if \(X \)
is a slice of dim \(-n \), then

\[P^n X = X \times H \]
We have looked at this for $G_i = C_i$ and $n=4$ $X = S^4$ and $G_i = C_2$ and $X = S^{kP_2}$, respectively. We found \[\prod_i P^i X = \bigvee_i X \] can be non-zero for $0 \leq i \leq n$. This differs from the classical case.

We have for a G-spectrum X

\[
\begin{array}{ccc}
P_{n+1}X & \to & X \\
\downarrow & & \downarrow \\
P_nX & \to & P^{n-1}X \\
\vdots & & \vdots \\
P_1X & \to & P^0X
\end{array}
\]
\(\mathcal{C}_G \) = category of \(G \)-spectra.

This leads to the diagram

\[\cdots \rightarrow \mathbb{P}^n X \rightarrow \mathbb{P}^{n-1} X \rightarrow \cdots \]

the slice tower for \(X \).

\(\lim \mathbb{P}^n X = \) point, and

\(\lim \mathbb{P}^n X = X \)

We also have slices

\(\mathbb{P}^n X = \) fiber of \(\mathbb{P}^n X \rightarrow \mathbb{P}^{n-1} \)

Classically, this is \(K(\pi_n X, n) \).

In this case, it is not
concentrated in dimension in.

We get a spectral sequence with

\[E_1^{s,t} = \prod_{t-s} P_t^s X \]

Classically

\[E_1^{s,t} = \prod_{t-s} P_t^s X \]

\[= \begin{cases} \prod_{t-s} X & \text{if } s = 0 \\ \emptyset & \text{if } s \neq 0 \end{cases} \]

This case is uninteresting.

Remarks about change of group.

Let \(H \leq \leq G \).
Let $X \equiv n$ if $X \in X_{\geq n}$ and $X \leq n$ if the map $X \to P^n X$ is an equivalence.

Classically, $X \equiv n$ means X is $(n+1)$-connected.

$\pi_i X = 0$ unless $i \geq n$.

$X \leq n$ if $\pi_i X = 0$ unless $i \leq n$.
In the general case
\[x \geq n \text{ means } [W, x]^G = \emptyset \]
when \(W \) is a slice cell of \(\dim < n \).
\[x \leq n \text{ means } [W, x]^G = \emptyset \]
when \(W \) is a slice cell of \(\dim > n \).