CATEGORY THEORY
DEFINITION A CATEGORY CONSISTS OF A COUEEWODBJECYS tom, dick, -ally, amy,... AND MORPHISMS, WHICH ARE ARROWS BETWEEN OBJETS

FOR ANY TWO OBJECTS
 A SET POSTAL EMPMORPHISMS $X \rightarrow Y$ DENOTED BK C $C(X, Y)$, SUBJECT TO TWO AXIOMS 1) FOR EACH OBJECT $X \in C$ (SHORT HAND FOR X IS AN OBJECT INC) THERE IS AN IDENTITY MORPHISM $1_{T}: X \rightarrow X$.

$$
1_{\bar{\Sigma}}: X \rightarrow X .
$$

2) GIVEN MORPIISMS

$$
X \xrightarrow{b} Y \underset{a l}{g} Z
$$

TYERE IS A COMPOSITE MORPHISM $g f: X \longrightarrow \rightarrow$
such That
a)
$\underset{(\beta \alpha}{W} \underset{\sim}{\alpha} \underset{\rightarrow}{\beta} Y \xrightarrow{\gamma \beta} Z$

$$
(\gamma \beta) \alpha=\gamma(\beta \alpha)
$$

MORPMEM COMPOLITION IS ASSOCIATIVE.
f)

COMPOSITION WITH IDENTIYY MORPHISM BEHAVES AS EXXEEICD.

EXAMPLE OF A NONCONCRETE CATEGORY:

EVERY MORTHISM
LET G BE GROUP. IS INVERTiBLE
DG = CATEGORY WITH ONE OBJET X, AND A MORPUISM
$X \xrightarrow{\gamma} X$ FOR EACH $\gamma \in G$
WITH MORPHISM COMPOSITION GIVEN BY GROUP MULTIPLCAION
e.g. $G_{1}=C_{3}=$ CYCLIC GROUP OF

$$
=\left\{\begin{array}{c}
\left.e, \gamma, \gamma^{2}\right\} \\
\gamma^{3}=e
\end{array}\right.
$$

$\gamma^{3}=e$

DEFINITION A MORPNISM

$$
X \xrightarrow{t} \underset{\sim}{2} \text { IS INVERTIBLE }
$$

THERE IS A MDRPMISM

$$
b^{-1}: Y \rightarrow X \quad \text { SUCH THAT }
$$

j

SUCH A MORHISM IS CALLED AN ISOMOPFAIISM.

A GROUP IS TIE SAME AS A CATEGORY WITH ONE OBJECT IN WHICH EACH MORPHISM IS INVERTIBLE.
DEF A CATEGORY is SMALL IF ITS COLLECTION OF OBJECTS BA SET, IE IT IS "NOT TOO BIG"

DEF A GROUPOID is A SMALL CATEGORY IN WHICH EACH MORPHISM IS INVERTIBLE. LET 〕 BE A CATEGORY ITS OPPOSITE CATEGORY COO HAS THE SAME OBJECTS ASP AND MORPAISMS COOING IN THE OPPOSITE DIRECTION CD $(Y, X)=C(X, Y)$
C
$C^{Q p}$

$$
X \underset{\mathrm{gb}}{\stackrel{\mathrm{l}}{\longrightarrow}} \underset{Y}{\mathrm{~g}} Z
$$

NEXT BIG TOPIC: FUNCTOR

DEF A FUNCTOR C $\underset{\longrightarrow}{F} \theta$ FROM CATEGORY C TO CAIEGRYY DO CONSISTS OF

1) FOR EACH OBJECT $X \in C$, WE HAVE AN OBJECT EX $\in Q$
2) FOR EACH MORPHISM IN C

$$
\begin{gathered}
X \xrightarrow{q} Y \\
F X \xrightarrow{F(q)} F Y
\end{gathered}
$$

SUCH THAT

$$
\begin{aligned}
& \text { a) } F\left(1_{X}\right)=1_{F X} \\
& F\left(g_{2} g_{1}\right)=F\left(g_{2}\right) F\left(g_{1}\right) \\
& C \quad X \xrightarrow{g_{1}} Y_{1} \xrightarrow[g_{2} g_{1}]{g_{2}} z
\end{aligned}
$$

COVARIANT
$\theta \quad F X \xrightarrow{F\left(g_{i}\right)} F Y \xrightarrow[F\left(g_{2}\right)]{\rightarrow}, F Z$

$$
F\left(g_{2} g_{1}\right)=F\left(g_{2}\right) F\left(g_{1}\right)
$$

FUNCTORS PRESERVE
IDENTITY MORPHISMS ANT COMPOSITIONS.
LEMMA 1, 3, 8 (RIEML)
FUNCTORS PRESERVES ISOMORPHISMS.

EXAMPLE

$$
\begin{gathered}
C=\underline{\text { GROOP }}=\begin{array}{c}
\text { CATEGORK OF } \\
\text { GROOPS }
\end{array} \\
\mathscr{V}=\underline{\text { SET }}=\text { CATEGORL OF } \\
\text { SETS } \\
U: C \longrightarrow D \text { FORGETFLLL }
\end{gathered}
$$

DEF A CONTRAVARIANT
FUNCTOR $C \rightarrow \infty$
IS ONE THAT REVERSES ARROW FONIRECTION, II.

Dos

