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“The Steenrod Algebra and its Dual” by Milnor
is a crucial paper in algebraic topology.

- D. Ravenel

Moreover, you can check

GoalGoalGoal : What was Milnor’s work and its importance.
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Motivation and SummaryMotivation and SummaryMotivation and Summary [9] : A cohomology operation is a
natural transformation between cohomology functors.

ExampleExampleExample : The cup product squaring operation makes a family
of cohomology operations:

Hn(X;R) −→ H2n(X;R)

x 7→ x ∪ x

But, cohomology operations need not be homomorphisms of
graded rings. Moreover, these operations do not commute with
suspension. (It is called unstable.)
Norman Steenrod constructed stable operations

Sqi : Hn(X;Z2) −→ Hn+i(X;Z2)

for all i greater than zero.
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Thus it is important to study the mod 2 Steenrod algebra A. I
am only going to consider the case of p = 2 in this presentation.

The properties of these operations were studied by Henri
Cartan and Jose Adem. Also, these relations lead to the
existence of the Serre-Cartan basis for A.
However, it is still complicated to know what the Steenrod
algebra is.
Milnor employed a more global view of the Steenrod
algebra, recognizing the structure theorems of Cartan and
Adem as aspects of the structure of a Hopf algebra.
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Milnor’s work
1. A has the structure of Hopf algebra.
2. Furthermore, Milnor has a beautiful description of its dual,
giving to a construction of the Milnor basis for A.
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GoalGoalGoal :
1. Review the Steenrod algebra A over p = 2 and study Hopf
algebra and Dual Steenrod algebra A∗.
2. Show that A has the structure of Hopf algebra.
3. Obtain a beautiful description of A∗:

A∗ ∼= Z2 [ξ1, ξ2, · · · , ξj , · · · ] ,

where degξj = 2j − 1.
4. Describe explicitly the comultiplication ϕ∗ for A∗:

ϕ∗(ξk) =
k∑
i=0

(ξk−i)
2i ⊗ ξi

5. Study some properties of A,A∗.
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Outline

1 The Structure of the Steenrod Algebra
The Steenrod Algebra A
Hopf Algebras

2 The Structure of the Dual Steenrod Algebra
The Dual Steenrod Algebra A∗

Comultiplication φ∗ for A∗

3 More properties of the Steenrod algebra A
Revisited Primitive Elements
Milnor Basis for A
Other Remarks
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Review[9] the mod 2 Steenrod algebra with the operations Sqi.
Let K be the chain complex of a simplicial complex. Then the
operations Sqi is the natural homomorphisms

Sqi : Hp(K;Z2) −→ Hp+i(K;Z2)

satisfying the following properties:
1 Sqi is an additive homomorphism and is functorial with

respect to any f : X −→ Y , so f∗(Sqi(x)) = Sqi(f∗(x)).
2 Sq0 is the identity homomorphism.
3 Sqi(x) = x ∪ x for x ∈ H i(X;Z2).
4 If i > p, Sqi(x) = 0.
5 Cartan Formula:

Sqi(x ∪ y) =
∑
j

(Sqjx) ∪ (Sqi−jy)
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Sqi have more properties.
1 Sq1 is the Bockstein homomorphism β of the exact

sequence
0 −→ Z2 −→ Z4 −→ Z2 −→ 0.

(It gives a long exact sequence

· · · −→ Hn(K;Z2) −→ Hn(K;Z2)
β−→ Hn+1(K;Z2) −→ · · ·

2 Sqi ◦ δ∗ = δ∗ ◦ Sqi where δ∗ is the connecting
homomorphism δ∗ : H∗(L;Z2) −→ H∗(K,L;Z2). In
particular, it commutes with the suspension isomorphism
for cohomology Hk(K;Z2) ∼= Hk+1(K;Z2).

3 Satisfy Adem’s relations: For i < 2j,

SqiSqj =

[i/2]∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk

where the binomial coefficient is taken mod 2.
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

(1) is used as one of the generators of the Steenrod algebra.

(2) is especially important because it says that the Steenrod
squares is a stable cohomology operation, and so holds a
central position in stable homotopy theory.

(3) The Adem relations allow one to write an arbitrary
composition of Steenrod squares as a sum of Serre-Cartan
basis elements.
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Miscellaneous Algebraic Definitions.Miscellaneous Algebraic Definitions.Miscellaneous Algebraic Definitions.[7] Let R be a commutative
ring with unit.

1 A graded R-algebra A is a graded R-module with a
multiplication φ : A⊗A −→ A, where φ is a homomorphism
of graded R-mudules and has a two sided unit.

2 A graded R-algebra A is associative if
φ ◦ (φ⊗ 1) = φ ◦ (1⊗ φ). i.e., the following diagram is
commute

A⊗A⊗A A⊗A

A⊗A A

φ⊗1

1⊗φ φ

φ

.

3 A graded R-algebra is commutative if φ ◦ T = φ, where
T :M ⊗N −→ N ⊗M by T (m⊗n) = (−1)degndegm(n⊗m).



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual

The Structure of the Steenrod Algebra

The Steenrod Algebra A

1 A graded R-algebra is augmented if there is an algebra
homomorphism ε : A −→ R.

2 An augmented R-algebra is connected if ε : A0 −→ R is
isomorphic.

3 Let M be an R-module. Write M0 = R and
M r =M ⊗ · · · ⊗M , r times. Then the tensor algebra
T (M) is the graded R-algebra defined by T (M)r =M r.

Remark. T (M) is associative, but not commutative.
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Let R = Z2, M be the graded Z2-module such that Mi = Z2

generated by Sqi. Then T (M) is graded.
Let Q be the ideal generated by all R(a, b), where

R(a, b) = Sqa ⊗ Sqb +
∑
c

(
b− c− 1

a− 2c

)
Sqa+b−c ⊗ Sqc.

Definition.Definition.Definition.[7] The mod 2 Steenrod algebra A is the quotient
algebra T (M)/Q.

Simply, we can say that the mod 2 Steenrod algebra A is a
graded algebra over Z2 generated by Sqi, subject to the Adem
relations.
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Let us look at the properties of the mod 2 Steenrod algebra.

Note that I = (i1, i2, · · · , ir) is called admissible if is ≥ 2is+1

for s < r. We write SqI = Sqi1Sqi2 · · ·Sqir .

Theorem. (Serre-Cartan basis)Theorem. (Serre-Cartan basis)Theorem. (Serre-Cartan basis) SqI form a basis for A as a Z2

module, where I runs through all admissible sequences.

For example, A7 has as basis Sq7, Sq6Sq1, Sq5Sq2, Sq4Sq2Sq1.
Theorem.Theorem.Theorem. Sq2i generate A as an algebra, where i ≥ 0.

Remark. These elements do not generate A freely since it is
subjected by Adem’s relations.

For example, Sq2Sq2 = Sq3Sq1 = Sq1Sq2Sq1 and Sq1Sq1 = 0.
Now we are done with reviewing the contents that we learned in
Doug’s class.
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The Steenrod Algebra A
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Theorem.Theorem.Theorem. Sq2i generate A as an algebra, where i ≥ 0.

Remark. These elements do not generate A freely since it is
subjected by Adem’s relations.

For example, Sq2Sq2 = Sq3Sq1 = Sq1Sq2Sq1 and Sq1Sq1 = 0.
Now we are done with reviewing the contents that we learned in
Doug’s class.
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The Steenrod Algebra and Its Dual

The Structure of the Steenrod Algebra

The Steenrod Algebra A

Furthemore, A has one more additional structure.
Let M be the graded Z2-module generated by Sqi. Define an
algebra homomorphism ψ : T (M) −→ T (M)⊗ T (M) by

ψ(Sqi) =
∑
j

Sqj ⊗ Sqi−j .

Lemma.Lemma.Lemma. The map ψ extends to an algebra homomorphism

ψ : A −→ A⊗A.

Sketch of Proof. Let p : T (M) −→ A be the projection. It
suffices to show that kerp ⊂kerψ. Then we can extend ψ as
follows.

T (M) A := T (M)/Q

A⊗A

p

ψ
ψ
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Let M be the graded Z2-module generated by Sqi. Define an
algebra homomorphism ψ : T (M) −→ T (M)⊗ T (M) by

ψ(Sqi) =
∑
j

Sqj ⊗ Sqi−j .

Lemma.Lemma.Lemma. The map ψ extends to an algebra homomorphism

ψ : A −→ A⊗A.

Sketch of Proof. Let p : T (M) −→ A be the projection. It
suffices to show that kerp ⊂kerψ. Then we can extend ψ as
follows.
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Denote Kn be the n-fold cartesian product of K(Z2, 1).
Define a map w : A −→ H∗(Kn;Z2) by w(θ) = θ(σn).
Define a map w′ : A −→ H∗(K2n;Z2) by w(θ) = θ(σ2n).
To show the following diagram commutes.

T (M) A

A⊗A H∗(Kn)⊗H∗(Kn) H∗(Kn ×Kn = K2n)

p

ψ w×w
w′

w⊗w α

Let z ∈ T (M) with p(z) = 0. By the diagram, we get

0 = w′(p(z)) = α(w ⊗ w)(ψ)(z)

Since w ⊗ w is 1-1 for some n, we have ψ(z) = 0. □
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The Structure of the Steenrod Algebra

The Steenrod Algebra A

Example.Example.Example. Let us calculate some elements of the Steenrod
algebra of ψ.

ψ(Sq3) = 1⊗ Sq3 + Sq1 ⊗ Sq2 + Sq2 ⊗ Sq1 + Sq3 ⊗ 1.
ψ(Sq2Sq1) = Sq2Sq1⊗1+Sq1⊗Sq2+Sq2⊗Sq1+1⊗Sq2Sq1.
ψ(Sq3+Sq2Sq1) = (Sq3+Sq2Sq1)⊗1+1⊗ (Sq3+Sq2Sq1).

Sq2Sq1(yz) = Sq2(Sq1(yz))

= Sq2((Sq1y)z + ySq1z)

= Sq2(Sq1yz) + Sq2(ySq1z)

= Sq2Sq1yz + Sq1Sq1ySq1z + Sq1ySq2z + Sq2ySq1z

+ Sq1ySq1Sq1z + ySq2Sq1z

= Sq2Sq1 ⊗ 1 + Sq1 ⊗ Sq2 + Sq2 ⊗ Sq1 + 1⊗ Sq2Sq1

by Sq1Sq1 = 0 from Adem’s relation
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The Steenrod Algebra A

Question.Question.Question. What does ψ tell us about?

We already have the Steenrod algebra (A, φ) where φ is a
multiplication in A. We can see

A ψ−→ A⊗A φ−→ A.

Answer. (A, φ, ψ) has the structure of a Hopf algebra.

Question.Question.Question. What is Hopf algebra?
Answer. Roughly speaking, a Hopf algebra is a bigraded
algebra with a multiplication and comultiplication.
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Question.Question.Question. What does ψ tell us about?
We already have the Steenrod algebra (A, φ) where φ is a
multiplication in A. We can see

A ψ−→ A⊗A φ−→ A.

Answer. (A, φ, ψ) has the structure of a Hopf algebra.

Question.Question.Question. What is Hopf algebra?
Answer. Roughly speaking, a Hopf algebra is a bigraded
algebra with a multiplication and comultiplication.
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Question.Question.Question. What does ψ tell us about?
We already have the Steenrod algebra (A, φ) where φ is a
multiplication in A. We can see

A ψ−→ A⊗A φ−→ A.

Answer. (A, φ, ψ) has the structure of a Hopf algebra.

Question.Question.Question. What is Hopf algebra?
Answer. Roughly speaking, a Hopf algebra is a bigraded
algebra with a multiplication and comultiplication.
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The Steenrod Algebra A

Question.Question.Question. What does ψ tell us about?
We already have the Steenrod algebra (A, φ) where φ is a
multiplication in A. We can see

A ψ−→ A⊗A φ−→ A.

Answer. (A, φ, ψ) has the structure of a Hopf algebra.

Question.Question.Question. What is Hopf algebra?
Answer. Roughly speaking, a Hopf algebra is a bigraded
algebra with a multiplication and comultiplication.
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Hopf Algebras

Outline

1 The Structure of the Steenrod Algebra
The Steenrod Algebra A
Hopf Algebras

2 The Structure of the Dual Steenrod Algebra
The Dual Steenrod Algebra A∗

Comultiplication φ∗ for A∗

3 More properties of the Steenrod algebra A
Revisited Primitive Elements
Milnor Basis for A
Other Remarks
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The Structure of the Steenrod Algebra

Hopf Algebras

Let A be a connected graded R-module with a given
R-homomorphism ε : A −→ R. Then ε|A0 : A0 −→ R is an
isomorphism.

Note that when we show the existence of unit (looks like 1), we
consider the following diagram.

A⊗R

A A⊗A A

R⊗A

1⊗η≃

≃

φ

η⊗1

Both compositions are both the identity, where η is called
coagumentation, is the inverse of the isomorphism
ε|A0 : A0 −→ R.
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The Structure of the Steenrod Algebra

Hopf Algebras

A is a coalgebra (with co-unit) if there is an R-homomorphism
ψ : A −→ A⊗A both compositions are both the identity in the
following dual diagram.

A⊗R

A A⊗A A

R⊗A

≃ 1⊗ε

ε⊗1

ψ

≃

i.e., For dima > 0, the element ψ(a) has the form

ψ(a) = a⊗ 1 + 1⊗ a+
∑

bi ⊗ ci.

Definition.Definition.Definition. An element a in a coalgebra is called primitive if

ψ(a) = a⊗ 1 + 1⊗ a.
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The Structure of the Steenrod Algebra

Hopf Algebras

Definition.Definition.Definition. Let A be an augmented graded algebra over a
commutative ring R with a unit. We say A is a Hopf algebra if

1 A has a coalgebra structure with co-unit ε.
2 A has the comultiplication map ψ : A −→ A⊗A.

with several commutative diagrams.

Example.Example.Example. Let X be a connected topological group, with the
group multiplication map m : X ×X −→ X and the diagonal
map ∆ : X −→ X ×X.

H∗(X;F ) is a Hopf algebra with multiplication m∗ and
comultiplication map ∆∗.
H∗(X;F ) is a Hopf algebra with multiplication ∆∗ and
comultiplication map m∗.

Corollary.Corollary.Corollary. The Steenrod algebra (A, ϕ, ψ) is a Hopf algebra.
This proof follows from the previous theorem that ψ is an
algebra homomorphism.
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Hopf Algebras

Definition.Definition.Definition. Let A be an augmented graded algebra over a
commutative ring R with a unit. We say A is a Hopf algebra if

1 A has a coalgebra structure with co-unit ε.
2 A has the comultiplication map ψ : A −→ A⊗A.

with several commutative diagrams.

Example.Example.Example. Let X be a connected topological group, with the
group multiplication map m : X ×X −→ X and the diagonal
map ∆ : X −→ X ×X.

H∗(X;F ) is a Hopf algebra with multiplication m∗ and
comultiplication map ∆∗.
H∗(X;F ) is a Hopf algebra with multiplication ∆∗ and
comultiplication map m∗.

Corollary.Corollary.Corollary. The Steenrod algebra (A, ϕ, ψ) is a Hopf algebra.
This proof follows from the previous theorem that ψ is an
algebra homomorphism.
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The Structure of the Steenrod Algebra

Hopf Algebras

Definition.Definition.Definition. Let A be an augmented graded algebra over a
commutative ring R with a unit. We say A is a Hopf algebra if

1 A has a coalgebra structure with co-unit ε.
2 A has the comultiplication map ψ : A −→ A⊗A.

with several commutative diagrams.

Example.Example.Example. Let X be a connected topological group, with the
group multiplication map m : X ×X −→ X and the diagonal
map ∆ : X −→ X ×X.

H∗(X;F ) is a Hopf algebra with multiplication m∗ and
comultiplication map ∆∗.
H∗(X;F ) is a Hopf algebra with multiplication ∆∗ and
comultiplication map m∗.

Corollary.Corollary.Corollary. The Steenrod algebra (A, ϕ, ψ) is a Hopf algebra.
This proof follows from the previous theorem that ψ is an
algebra homomorphism.
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The Steenrod Algebra and Its Dual

The Structure of the Steenrod Algebra

Hopf Algebras

Moreover, ψ has more good properties.
Recall that associativity and commutativity. By dualizing,

ψ is coassociative if (ψ ⊗ 1) ◦ ψ = (1⊗ ψ) ◦ ψ. i.e., the
following diagram is commutative:

A A⊗A

A⊗A A⊗A⊗A

ψ

ψ ψ⊗1

1⊗ψ

ψ is cocommutative if T ◦ ψ = ψ.
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The Structure of the Steenrod Algebra

Hopf Algebras

Note that the multiplication of the Steenrod algebra A is
associative but not commutative. However,

Theorem.Theorem.Theorem. Comultiplication ψ of the Steenrod algebra A is
coassociative and cocommutative.

Proof. Since ψ is an algebra homomorphism, it suffices to
check on the generators. □
Remark. In general, as for Hopf algebra, comultiplication need
not be cocommutative. But always satisfy coassociative.
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The Structure of the Steenrod Algebra

Hopf Algebras

To sum up, the Steenrod algebra A is an

φ associative,
φ noncommutative,
ψ coassociative,
ψ cocommutative
(A, φ, ψ) Hopf algebra.
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Revisited Primitive Elements
Milnor Basis for A
Other Remarks
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

To every connected Hopf algebra (A,φ, ψ), there is associated
the daul Hopf algebra (A∗, ψ∗, φ∗), where the homomorphisms

A∗ φ∗
−→ A∗ ⊗A∗ ψ∗

−→ A∗

are the duals in the sense explained below:

Let R be a field.
(A∗) = (Ai)

∗. i.e., dual vector over R.
The mulitpication φ of A gives the diagonal map φ∗ of A∗.
The comulitpication map ψ of A gives the multiplication
map ψ∗ of A∗.

Remark. The daul Hopf algebra is Hopf algebra.
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are the duals in the sense explained below: Let R be a field.
(A∗) = (Ai)

∗. i.e., dual vector over R.
The mulitpication φ of A gives the diagonal map φ∗ of A∗.
The comulitpication map ψ of A gives the multiplication
map ψ∗ of A∗.

Remark. The daul Hopf algebra is Hopf algebra.
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the daul Hopf algebra (A∗, ψ∗, φ∗), where the homomorphisms

A∗ φ∗
−→ A∗ ⊗A∗ ψ∗

−→ A∗

are the duals in the sense explained below: Let R be a field.
(A∗) = (Ai)

∗. i.e., dual vector over R.
The mulitpication φ of A gives the diagonal map φ∗ of A∗.
The comulitpication map ψ of A gives the multiplication
map ψ∗ of A∗.

Remark. The daul Hopf algebra is Hopf algebra.
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Question.Question.Question. Why Dual?

It is natural to study the dual Steenrod algebra.

A the Steenrod Al-
gebra

A∗ the Dual Steen-
rod Algebra

Multiplication φ Associative ψ∗ Coassociative
φ Noncommutative ψ∗ Commutative!!

Comultiplication ψ Coassociative φ∗ Coassociative
ψ Cocommutaive φ∗ Noncocomutative

Hopf algebra O O

Table: The comparison the Steenrod algebra A with its dual A∗
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Question.Question.Question. Why Dual?
It is natural to study the dual Steenrod algebra.

A the Steenrod Al-
gebra

A∗ the Dual Steen-
rod Algebra

Multiplication φ Associative ψ∗ Coassociative
φ Noncommutative ψ∗ Commutative!!

Comultiplication ψ Coassociative φ∗ Coassociative
ψ Cocommutaive φ∗ Noncocomutative

Hopf algebra O O

Table: The comparison the Steenrod algebra A with its dual A∗
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

From now on, let us study a beautiful description of
the dual Steenrod algebra A∗.
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The Dual Steenrod Algebra A∗

Denote
R := {(i1, i2, · · · ) | ik ∈ Z≥0, finitely many ik are non-zero}.

Definition.Definition.Definition. A sequence I ∈ R is called admissible if there
exists r ≥ 0 such that{

ir > 0, iq ≥ 2iq+1 for 1 ≤ q < r

is = 0 for s > r.

Denote J ⊂ R be the set of all admissible sequenceses.

Example.Example.Example. Let Ik := (2k−1, · · · , 2, 1, 0, 0, · · · ). Then Ik are
admissible.
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The Dual Steenrod Algebra A∗

Let us do some combinatorics to obtain our main theorem.

Definition.Definition.Definition. Let ξi be the element of A∗
2i−1

such that

⟨
ξk, Sq

I
⟩
=

{
1 for I = Ik

0 Otherwise

where I be admissible and k ≥ 1.
Furthemore, for arbitrary I,

⟨
ξk, Sq

I
⟩
= 0 unless I is obtained

from Ik by interspersion of zeros.

Question.Question.Question. {ξk} form a basis of A∗?
Answer. No, remember

{
SqI | I adimissible

}
form a basis of

A. Then who can be a basis of A∗? Also, I am going to show
it’s true they generate A∗ as an algebra.
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The Dual Steenrod Algebra A∗

Let us do some combinatorics to obtain our main theorem.

Definition.Definition.Definition. Let ξi be the element of A∗
2i−1

such that

⟨
ξk, Sq

I
⟩
=

{
1 for I = Ik

0 Otherwise

where I be admissible and k ≥ 1.
Furthemore, for arbitrary I,

⟨
ξk, Sq

I
⟩
= 0 unless I is obtained

from Ik by interspersion of zeros.

Question.Question.Question. {ξk} form a basis of A∗?

Answer. No, remember
{
SqI | I adimissible

}
form a basis of

A. Then who can be a basis of A∗? Also, I am going to show
it’s true they generate A∗ as an algebra.
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Define
For each R = (r1, r2, · · · ) ∈ R,

ξR := (ξ1)
r1(ξ2)

r2 · · · ∈ A∗.

a set bijection γ : J −→ R by

γ((a1, · · · , ak, 0, 0, · · · )) := (a1−2a2, a2−2a3, · · · , ak, 0, 0, · · · ).

Note that for I ∈ J , degSqI =degξγ(I).

Let us give an order to the sequences of J lexicographically
from the right.

Example.Example.Example.

{7, 3, 2, 0, 0, · · · } > {8, 3, 1, 0, 0, · · · } > {8, 3, 0, 0, · · · } > {10, 2, 0, 0, · · · }
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Define
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Define
For each R = (r1, r2, · · · ) ∈ R,

ξR := (ξ1)
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a set bijection γ : J −→ R by
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Note that for I ∈ J , degSqI =degξγ(I).
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Theorem.Theorem.Theorem. For I, J ∈ J ,⟨
ξγ(J), SqI

⟩
=

{
0 for I < J

1 for I = J

In particular,
{
ξγ(J)

}
form a vector space basis for A∗.

Sketch of Proof. Proof by a downward induction.

Step 1. For J = (a1, · · · , ak, 0, 0, · · · ), I = (b1, · · · , bk, 0, 0, · · · ),
J ≥ I, define

J ′ := (a1 − 2k−1, a2 − 2k−2, · · · , ak − 1, 0, 0, · · · ).

Then γ(J) = γ(J ′) except for k component.
Step 2. Show that⟨

ξγ(J), SqI
⟩
=

⟨
ξγ(J

′), SqI−I
k
⟩

Descent on bk and k completes the proof. □



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual

The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Theorem.Theorem.Theorem. For I, J ∈ J ,⟨
ξγ(J), SqI

⟩
=

{
0 for I < J

1 for I = J

In particular,
{
ξγ(J)

}
form a vector space basis for A∗.

Sketch of Proof. Proof by a downward induction.
Step 1. For J = (a1, · · · , ak, 0, 0, · · · ), I = (b1, · · · , bk, 0, 0, · · · ),
J ≥ I, define

J ′ := (a1 − 2k−1, a2 − 2k−2, · · · , ak − 1, 0, 0, · · · ).

Then γ(J) = γ(J ′) except for k component.

Step 2. Show that⟨
ξγ(J), SqI

⟩
=

⟨
ξγ(J

′), SqI−I
k
⟩

Descent on bk and k completes the proof. □



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual
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J ≥ I, define
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The Structure of the Dual Steenrod Algebra

The Dual Steenrod Algebra A∗

Corollary.Corollary.Corollary. As an algebra,

A∗ ≃ Z2[ξ1, ξ2, · · · ].

Proof.
Note that

{
SqI

}
is a basis for A, where I is admissible.

If J runs through J , then ξγ(J) runs through all the
monomials in the ξi.{
ξγ(J)

}
form a vector space basis for A∗ by theorem.

Notice that a polynomial ring is characterized by the fact
that the monomials in the generators form a vector space
basis. □
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

The Steenrod Algebra A with
Multiplication map :

φ = ◦

Comultiplication map :

ψ(Sqi) =
∑
j

Sqj ⊗ Sqi−j

The dual Steenrod Algebra A∗ with
Multiplication map :

ψ∗(ξi ⊗ ξj) = ξiξj

Comultiplication map :

φ∗ = ?
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Definition.Definition.Definition. Set H∗ := H∗(X;Z2),H
∗ := H∗(X;Z2).

Given the trivial action µ : A⊗H∗ −→ H∗, by µ(θ, y) = θ(y),

Define λ : H∗ ⊗A −→ H∗ by

⟨λ(x, θ), y⟩ = ⟨x, µ(θ, y)⟩ ,

where y ∈ H∗, x ∈ H∗, θ ∈ A.

Denote λ∗ be the dual of λ. i.e.,

λ∗ : H∗ −→ (H∗ ⊗A)∗ = H∗ ⊗A∗.
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Proposition 1.Proposition 1.Proposition 1. λ is a module operation and λ∗ is an comodule
operation. i.e., The following diagrams commute.

H∗ ⊗A⊗A H∗ ⊗A

H∗ ⊗A H∗

λ⊗1

1⊗φ λ

λ

H∗ ⊗A∗ ⊗A∗ H∗ ⊗A∗

H∗ ⊗A∗ H∗

λ∗⊗1

1⊗φ∗

λ∗

λ∗

Proposition 2.Proposition 2.Proposition 2. λ is a coalgebra homomorphism and λ∗ is an
algebra homomorphism. i.e., The following diagrams commute.

H∗ ⊗H∗ ⊗A⊗A H∗ ⊗A⊗H∗ ⊗A H∗ ⊗H∗

H∗ ⊗A H∗

1⊗T⊗1 λ⊗λ

∆∗⊗ψ

λ

∆∗
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Theorem.Theorem.Theorem. The comultiplication map φ∗ of A∗ is given by

φ∗(ξk) =
k∑
i=0

(ξk−i)
2i ⊗ ξi.

Sketch of Proof.
Step 1. Prove the following are equivalent for y ∈ H∗:

1 λ∗(y) =
∑
yi ⊗ wi

2 µ(θ, y) =
∑
⟨θ, wi⟩ yi for all θ ∈ A.

Step 2. Let x generate H1(RP∞;Z2). Show that

λ∗(x) =
∑
i≥0

x2
i ⊗ ξi.

i.e.,show µ(SqI , x) =
∑⟨

SqI , ξi
⟩
x2

i and enough to check I is
admissible.
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Theorem.Theorem.Theorem. The comultiplication map φ∗ of A∗ is given by
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗
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1 λ∗(y) =
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2 µ(θ, y) =
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⟨θ, wi⟩ yi for all θ ∈ A.
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The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Theorem.Theorem.Theorem. The comultiplication map φ∗ of A∗ is given by

φ∗(ξk) =
k∑
i=0

(ξk−i)
2i ⊗ ξi.

Sketch of Proof.
Step 1. Prove the following are equivalent for y ∈ H∗:

1 λ∗(y) =
∑
yi ⊗ wi

2 µ(θ, y) =
∑
⟨θ, wi⟩ yi for all θ ∈ A.

Step 2. Let x generate H1(RP∞;Z2). Show that

λ∗(x) =
∑
i≥0

x2
i ⊗ ξi.

i.e.,show µ(SqI , x) =
∑⟨

SqI , ξi
⟩
x2

i and enough to check I is
admissible.
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The Steenrod Algebra and Its Dual

The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Step 3. Show that

λ∗(x2
i
) =

∑
j≥0

x2
i+j ⊗ (ξj)

2i .

Proof. λ∗(x2i) (2)
= (λ∗x)2

i
=

∑
j

(x2
j⊗ξj)2

i
=

∑
j

x2
i+j⊗(ξj)2

i □

Step 4. Use the commuting diagram in proposition 1.

(1⊗ φ∗)λ∗(x) = (1⊗ φ∗)(
∑
k

x2
k ⊗ ξk) =

∑
k

x2
k ⊗ φ∗(ξk)

(λ∗ ⊗ 1)λ∗(x) = (λ∗ ⊗ 1)(
∑
i

x2
i ⊗ ξi) =

∑
i

λ∗(x2
i
)⊗ ξi

=
∑
i,j

x2
i+j ⊗ (ξj)

2i ⊗ ξi.

By comparing them, we get φ∗(ξk) =
∑

i(ξk−i)
2i ⊗ ξi. □



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual

The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Step 3. Show that

λ∗(x2
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) =

∑
j≥0

x2
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2i .

Proof. λ∗(x2i) (2)
= (λ∗x)2

i
=

∑
j

(x2
j⊗ξj)2

i
=

∑
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x2
i+j⊗(ξj)2

i □

Step 4. Use the commuting diagram in proposition 1.

(1⊗ φ∗)λ∗(x) = (1⊗ φ∗)(
∑
k

x2
k ⊗ ξk) =

∑
k

x2
k ⊗ φ∗(ξk)

(λ∗ ⊗ 1)λ∗(x) = (λ∗ ⊗ 1)(
∑
i

x2
i ⊗ ξi) =

∑
i

λ∗(x2
i
)⊗ ξi

=
∑
i,j

x2
i+j ⊗ (ξj)

2i ⊗ ξi.

By comparing them, we get φ∗(ξk) =
∑

i(ξk−i)
2i ⊗ ξi. □
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The Steenrod Algebra and Its Dual

The Structure of the Dual Steenrod Algebra

Comultiplication φ∗ for A∗

Summary.Summary.Summary.
Algebra A the Steenrod

Algebra
A∗ the Dual

Steenrod Algebra
Structure a graded

noncommutative,
cocommutaive
Hopf algebra

a graded
commutative, non-

cocommutative
Hopf algebra

Basis
{
SqI

}
, where I :

admissible

{
ξR

}
, where R :

any sequence
As an algebra

{
Sq2

k
}

generate
A and subject to
Adem’s realtions

{ξk} freely
generate A∗

Comultiplication ψ(Sqk) =∑
j Sq

j ⊗ Sqk−j
φ∗(ξk) =∑k

i=0(ξk−i)
2i ⊗ ξi

Table: The comparison the Steenrod algebra A with its dual A∗
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The Steenrod Algebra and Its Dual

More properties of the Steenrod algebra A

Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a
nice 1-1 correspondence primitive elements in A and
indecomposables in A∗.

Observation.Observation.Observation.
Let I = (10, 4, 2, 1), I4 = (8, 4, 2, 1). Then we get

I − I4 = (2, 0, 0, 0) = 2I1.

So I = I4 + 2I1.
Let I = (27, 13, 6, 2), 2I4 = (16, 8, 4, 2), 2I3 = (8, 4, 2). Then
we get

I − 2I4 − 2I3 = (3, 1, 0, 0) = I2 + I1.

So I = 2I4 + 2I3 + I2 + I.

Fact. Any admissible I can be written uniquely as a linear
combination of Iks.
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Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a
nice 1-1 correspondence primitive elements in A and
indecomposables in A∗.

Observation.Observation.Observation.
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I − 2I4 − 2I3 = (3, 1, 0, 0) = I2 + I1.

So I = 2I4 + 2I3 + I2 + I.

Fact. Any admissible I can be written uniquely as a linear
combination of Iks.
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Revisited Primitive Elements

Note that Ik ←→ ξk by
⟨
ξk, Sq

Ik
⟩
= 1.

Observation.Observation.Observation.
I = 2I4 + 2I3 + I2 + I ←→ ξ24ξ

2
3ξ2ξ1.

There is a bijection between admissible sequences and
monomials in the ξk in a such way. (Here, ξ0 = 1.)
{Primitives in A} ←→ {Indecomposables in A∗}
Q1 := Sq1 ←→ ξ1

Q2 :=
[
Sq2, Sq1

]
←→ ξ2

= Sq2Sq1 + Sq1Sq2

= Sq2Sq1 + Sq3

=
[
Sq2, Q1

]
Q3 :=

[
Sq4, Q2

]
←→ ξ3

Qn+1 :=
[
Sq2

n
, Qn

]
←→ ξn+1
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Revisited Primitive Elements

Moreover, we have the following bijection.

{Indecomposables in A} ←→ {Primitives in A∗}

Sq2
k ←→ ξ2

k

1

Remark. The only primitive elements in A∗ are ξ2k1 . It’s more
simpler than primitives in A.
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Outline

1 The Structure of the Steenrod Algebra
The Steenrod Algebra A
Hopf Algebras

2 The Structure of the Dual Steenrod Algebra
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Comultiplication φ∗ for A∗
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Revisited Primitive Elements
Milnor Basis for A
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More properties of the Steenrod algebra A

Milnor Basis for A

One might wonder if we can use the dual basis of
{
ξR

}
to study the Steenrod algebra instead of Cartan-Serre basis.

It is called the Milnor basis.
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Milnor Basis for A

Recall.
{
ξR

}
, R ∈ R forms a basis for A∗. Now we can dualize

back!
Definition.Definition.Definition. The dual basis of{
ξR

}
, R = (r1, r2, · · · , rk, 0, 0, · · · ) ∈ R, whose elements are

denoted
{
SqR

}
or Sq(r1, · · · , rk), is called the Milnor basis for

the Steenrod algebra A.

Remark. 1) By difinition,
⟨
ξR, SqR

′
⟩
=

{
1 for R = R′

0 Otherwise
.

2) This is different from the Serre-Cartan basis. i.e., not the
same as the composite Sqr1Sqr2 · · ·Sqrk .

But, in some case, they are same.
Proposition.Proposition.Proposition. Sq(i, 0, 0, · · · ) = Sqi.



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual

More properties of the Steenrod algebra A

Milnor Basis for A

Recall.
{
ξR

}
, R ∈ R forms a basis for A∗. Now we can dualize

back!
Definition.Definition.Definition. The dual basis of{
ξR

}
, R = (r1, r2, · · · , rk, 0, 0, · · · ) ∈ R, whose elements are

denoted
{
SqR

}
or Sq(r1, · · · , rk), is called the Milnor basis for

the Steenrod algebra A.

Remark. 1) By difinition,
⟨
ξR, SqR

′
⟩
=

{
1 for R = R′

0 Otherwise
.

2) This is different from the Serre-Cartan basis. i.e., not the
same as the composite Sqr1Sqr2 · · ·Sqrk .

But, in some case, they are same.
Proposition.Proposition.Proposition. Sq(i, 0, 0, · · · ) = Sqi.



university-logo-filename

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Steenrod Algebra and Its Dual

More properties of the Steenrod algebra A
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Recall.
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}
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}
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Milnor Basis for A

Formula.[6]

Sq(r1, r2, · · · )Sq(s1, s2, · · · ) =
∑
X

Sq(t1, t2, · · · )

where the sum is taken over all matrices X = ⟨xij⟩ satisfying:∑
i

xij = sj ,
∑
j

2jxij = ri,
∏
h

(xh0, xh−1,1, · · · , x0h) ≡ 1 (mod2)

where (n1, · · · , nm) is the multinomial coefficient
(n1 + · · ·+ nm)!/(n1! · · ·nm!). (The value of x00 is never used
and may be taken to be 0.) Each such allowable matrix
produces a summand Sq(t1, t2, · · · ) given by

th =
∑
i+j=h

xij .
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Milnor Basis for A

Example.Example.Example. How to express Sq(4, 2)Sq(2, 1) using the Milnor
basis?
Let R = (4, 2), S = (2, 1). Then we get

x10 + 2x11 + 4x12 + · · · = 4 = r1

x20 + 2x21 + 4x22 + · · · = 2 = r2

x01 + x11 + x21 + · · · = 2 = s1

x02 + x12 + x22 + · · · = 1 = s2

For row 1,

(4, 0, 0) < (2, 1, 0) < (0, 2, 0) < (0, 0, 1).

For row 2,
(2, 0, 0) < (0, 1, 0).
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Milnor Basis for A∗ 2 1
4 0 0
2 0 0

 (4, 2)(2, 0, 1)Sq(6, 3) = Sq(6, 3)∗ 1 1
2 1 0
2 0 0

 (2, 1)(2, 1, 1)Sq(3, 4) = 0∗ 0 1
0 2 0
2 0 0

 (0, 0)(2, 2, 1)Sq(0, 5) = 0∗ 2 0
0 0 1
2 0 0

 (0, 2)(2, 0, 0)(0, 1)Sq(2, 2, 1) = Sq(2, 2, 1)∗ 1 1
4 0 0
0 1 0

 (4, 1)(0, 0, 1)(1, 0)Sq(5, 1, 1) = Sq(5, 1, 1)
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Milnor Basis for A

∗ 0 1
2 1 0
0 1 0

 (2, 0)(0, 1, 1)(1, 0)Sq(2, 2, 1) = 0∗ 1 0
0 0 1
0 1 0

 (0, 1)(0, 0, 0)(1, 1)Sq(1, 0, 2) = 0

Therefore, we find that

Sq(4, 2)Sq(2, 1) = Sq(6, 3) + Sq(2, 2, 1) + Sq(5, 1, 1).
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Other Remarks

Further comments for the Steenrod algebra A.
Every element of A is nilpotent.
There is a canonical anti-automorphism on A.

These are in the chapter 7,8 of Milnor’s paper.

An Influence of this work[5]
Milnor’s clear description of the rich structure of the
Steenrod algebra played a key role in the development of
the Adams spectral sequence (Adams [1958, 1960]).
The Adams spectral sequence and its generalizations by
Novikov [1967] are the tools of choice in the study of stable
homotopy theory.
A survey of this point of view is found in the book of
Ravenel [2003].)

-John McCleary
Not the end. It is only the beginning.
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Thank you for your attention!
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