Semin Yoo

Department of Mathematics University of Rochester

March 27th, 2018

▲□▶▲□▶▲□▶▲□▶ □ のQ@

"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology. - D. Ravenel

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology. - D. Ravenel

Moreover, you can check

About 66,300 results (0.36 seconds)

[POP] The Steenrod Algebra and Its Dual John Milnor The Annals of ... - Math www.math.venrovedi.taksen/Teaching/Courses/10W-7520/Steenrod.pdf → by J Milnor - Cited by 599 - Telated articles Jul 1 2007 - WE STEENRO ALGEBRA AND ITS DUAL' BY JOHN MILNOR (Received May 15

▲□▶▲□▶▲□▶▲□▶ □ のQで

"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology. - D. Ravenel

Moreover, you can check

PPT The Steenrod Algebra and Its Dual John Milnor The Annals of ... - Math www.math.ware.ub.itsgksenf-teaching/Courses/10W-7520/Siteenrod.pdf by J Ming Colled by 599. Jealed articles Jul 1. 2007 · use: Stream OA Lagebra ALD ITS DUAL: BY JOHN MILNOR. (Received May 15, Jul 1. 2007 · use: Stream OA Lagebra ALD ITS DUAL: BY JOHN MILNOR, (Received May 15, 1957). 1. Summary. Let 9th denote the Steerrod algebra corresponding to an odd prime p. (See 32 or definitions). Durbasir esult (S3) is that 0th is a Hord paten. That is in addition to the product of the Prod

operation there is a

Goal : What was Milnor's work and its importance.

(日)

Motivation and Summary [9] : A cohomology operation is a natural transformation between cohomology functors.

Motivation and Summary [9] : A **cohomology operation** is a natural transformation between cohomology functors.

Example : The cup product squaring operation makes a family of cohomology operations:

$$H^{n}(X;R) \longrightarrow H^{2n}(X;R)$$
$$x \mapsto x \cup x$$

But, cohomology operations need not be homomorphisms of graded rings. Moreover, these operations do not commute with suspension. (It is called **unstable**.)

(ロ) (同) (三) (三) (三) (○) (○)

Motivation and Summary [9] : A **cohomology operation** is a natural transformation between cohomology functors.

Example : The cup product squaring operation makes a family of cohomology operations:

$$H^{n}(X;R) \longrightarrow H^{2n}(X;R)$$
$$x \mapsto x \cup x$$

But, cohomology operations need not be homomorphisms of graded rings. Moreover, these operations do not commute with suspension. (It is called **unstable**.)

Norman Steenrod constructed stable operations

$$Sq^i: H^n(X; \mathbb{Z}_2) \longrightarrow H^{n+i}(X; \mathbb{Z}_2)$$

(ロ) (同) (三) (三) (三) (○) (○)

for all *i* greater than zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for A.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for A.
- However, it is still complicated to know what the Steenrod algebra is.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for A.
- However, it is still complicated to know what the Steenrod algebra is.
- Milnor employed a more global view of the Steenrod algebra, recognizing the structure theorems of Cartan and Adem as aspects of the structure of a Hopf algebra.

Milnor's work

- 1. \mathcal{A} has the structure of Hopf algebra.
- 2. Furthermore, Milnor has a beautiful description of its dual, giving to a construction of the Milnor basis for \mathcal{A} .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Goal :

1. Review the Steenrod algebra A over p = 2 and study Hopf algebra and Dual Steenrod algebra A^* .

- 2. Show that \mathcal{A} has the structure of Hopf algebra.
- 3. Obtain a beautiful description of \mathcal{A}^* :

$$\mathcal{A}^* \cong \mathbb{Z}_2\left[\xi_1, \xi_2, \cdots, \xi_j, \cdots\right],$$

where $deg\xi_j = 2^j - 1$.

4. Describe explicitly the comultiplication ϕ^* for \mathcal{A}^* :

$$\phi^*(\xi_k) = \sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i$$

(日) (日) (日) (日) (日) (日) (日)

5. Study some properties of $\mathcal{A}, \mathcal{A}^*$.

Outline

1 The Structure of the Steenrod Algebra

- The Steenrod Algebra \mathcal{A}
- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra

- The Dual Steenrod Algebra A*
- Comultiplication φ^* for \mathcal{A}^*

3 More properties of the Steenrod algebra \mathcal{A}

(日)

- Revisited Primitive Elements
- $\blacksquare \ \text{Milnor Basis for } \mathcal{A}$
- Other Remarks

- L The Structure of the Steenrod Algebra
 - \Box The Steenrod Algebra \mathcal{A}

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra A*
 - Comultiplication φ^{*} for A^{*}
- 3 More properties of the Steenrod algebra A

(日)

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}
- Other Remarks

L The Steenrod Algebra \mathcal{A}

Review[9] the mod 2 Steenrod algebra with the operations Sq^i .

Let K be the chain complex of a simplicial complex. Then the operations ${\cal S}q^i$ is the natural homomorphisms

$$Sq^i: H^p(K; \mathbb{Z}_2) \longrightarrow H^{p+i}(K; \mathbb{Z}_2)$$

satisfying the following properties:

- **1** Sq^i is an additive homomorphism and is functorial with respect to any $f: X \longrightarrow Y$, so $f^*(Sq^i(x)) = Sq^i(f^*(x))$.
- **2** Sq^0 is the identity homomorphism.

3
$$Sq^i(x) = x \cup x$$
 for $x \in H^i(X; \mathbb{Z}_2)$.

4 If
$$i > p$$
, $Sq^i(x) = 0$.

5 Cartan Formula:

$$Sq^i(x\cup y) = \sum_j (Sq^jx) \cup (Sq^{i-j}y)$$

(日) (日) (日) (日) (日) (日) (日)

L The Structure of the Steenrod Algebra

 \Box The Steenrod Algebra \mathcal{A}

 Sq^i have more properties.

1 Sq^1 is the Bockstein homomorphism β of the exact sequence

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2 \longrightarrow 0.$$

(It gives a long exact sequence

$$\cdots \longrightarrow H^n(K;\mathbb{Z}_2) \longrightarrow H^n(K;\mathbb{Z}_2) \stackrel{\beta}{\longrightarrow} H^{n+1}(K;\mathbb{Z}_2) \longrightarrow \cdots$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

The Structure of the Steenrod Algebra

 \Box The Steenrod Algebra \mathcal{A}

 Sq^i have more properties.

1 Sq^1 is the Bockstein homomorphism β of the exact sequence

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2 \longrightarrow 0.$$

(It gives a long exact sequence

$$\cdots \longrightarrow H^n(K;\mathbb{Z}_2) \longrightarrow H^n(K;\mathbb{Z}_2) \stackrel{\beta}{\longrightarrow} H^{n+1}(K;\mathbb{Z}_2) \longrightarrow \cdots$$

(日) (日) (日) (日) (日) (日) (日)

2 $Sq^i \circ \delta^* = \delta^* \circ Sq^i$ where δ^* is the connecting homomorphism $\delta^* : H^*(L; \mathbb{Z}_2) \longrightarrow H^*(K, L; \mathbb{Z}_2)$. In particular, it commutes with the suspension isomorphism for cohomology $H^k(K; \mathbb{Z}_2) \cong H^{k+1}(K; \mathbb{Z}_2)$.

The Structure of the Steenrod Algebra

L The Steenrod Algebra \mathcal{A}

 Sq^i have more properties.

1 Sq^1 is the Bockstein homomorphism β of the exact sequence

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2 \longrightarrow 0.$$

(It gives a long exact sequence

$$\cdots \longrightarrow H^n(K;\mathbb{Z}_2) \longrightarrow H^n(K;\mathbb{Z}_2) \stackrel{\beta}{\longrightarrow} H^{n+1}(K;\mathbb{Z}_2) \longrightarrow \cdots$$

2 $Sq^i \circ \delta^* = \delta^* \circ Sq^i$ where δ^* is the connecting homomorphism $\delta^* : H^*(L; \mathbb{Z}_2) \longrightarrow H^*(K, L; \mathbb{Z}_2)$. In particular, it commutes with the suspension isomorphism for cohomology $H^k(K; \mathbb{Z}_2) \cong H^{k+1}(K; \mathbb{Z}_2)$.

3 Satisfy Adem's relations: For i < 2j,

$$Sq^{i}Sq^{j} = \sum_{k=0}^{[i/2]} {j-k-1 \choose i-2k} Sq^{i+j-k}Sq^{k}$$

where the binomial coefficient is taken mod_{2} , mod_{2} , mo

L The Steenrod Algebra \mathcal{A}

(1) is used as one of the generators of the Steenrod algebra.

(2) is especially important because it says that the Steenrod squares is a stable cohomology operation, and so holds a central position in stable homotopy theory.

(3) The Adem relations allow one to write an arbitrary composition of Steenrod squares as a sum of Serre-Cartan basis elements.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

L The Steenrod Algebra \mathcal{A}

Miscellaneous Algebraic Definitions.[7] Let R be a commutative ring with unit.

- **1** A graded *R*-algebra *A* is a graded *R*-module with a multiplication $\varphi : A \otimes A \longrightarrow A$, where φ is a homomorphism of graded *R*-mudules and has a two sided unit.
- 2 A graded *R*-algebra *A* is **associative** if $\varphi \circ (\varphi \otimes 1) = \varphi \circ (1 \otimes \varphi)$. i.e., the following diagram is commute

$$\begin{array}{ccc} A \otimes A \otimes A & \xrightarrow{\varphi \otimes 1} & A \otimes A \\ & & \downarrow^{1 \otimes \varphi} & & \downarrow^{\varphi} \\ A \otimes A & \xrightarrow{\varphi} & A \end{array}$$

3 A graded *R*-algebra is **commutative** if $\varphi \circ T = \varphi$, where $T: M \otimes N \longrightarrow N \otimes M$ by $T(m \otimes n) = (-1)^{\text{deg}n\text{deg}m}(n \otimes m)$.

 \Box The Steenrod Algebra \mathcal{A}

- 1 A graded *R*-algebra is **augmented** if there is an algebra homomorphism $\varepsilon : A \longrightarrow R$.
- 2 An augmented *R*-algebra is **connected** if $\varepsilon : A_0 \longrightarrow R$ is isomorphic.
- 3 Let *M* be an *R*-module. Write $M^0 = R$ and $M^r = M \otimes \cdots \otimes M$, *r* times. Then the **tensor algebra** T(M) is the graded *R*-algebra defined by $T(M)_r = M^r$.

(ロ) (同) (三) (三) (三) (○) (○)

Remark. T(M) is associative, but not commutative.

L The Steenrod Algebra \mathcal{A}

Let $R = \mathbb{Z}_2$, M be the graded \mathbb{Z}_2 -module such that $M_i = \mathbb{Z}_2$ generated by Sq^i . Then T(M) is graded.

Let Q be the ideal generated by all R(a, b), where

$$R(a,b) = Sq^a \otimes Sq^b + \sum_c {\binom{b-c-1}{a-2c}}Sq^{a+b-c} \otimes Sq^c.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L The Steenrod Algebra \mathcal{A}

Let $R = \mathbb{Z}_2$, M be the graded \mathbb{Z}_2 -module such that $M_i = \mathbb{Z}_2$ generated by Sq^i . Then T(M) is graded.

Let Q be the ideal generated by all R(a, b), where

$$R(a,b) = Sq^a \otimes Sq^b + \sum_c {b-c-1 \choose a-2c} Sq^{a+b-c} \otimes Sq^c.$$

Definition.[7] **The mod 2 Steenrod algebra** \mathcal{A} is the quotient algebra T(M)/Q.

Simply, we can say that **the mod 2 Steenrod algebra** A is a graded algebra over \mathbb{Z}_2 generated by Sq^i , subject to the Adem relations.

L The Steenrod Algebra \mathcal{A}

Let us look at the properties of the mod 2 Steenrod algebra.

Note that $I = (i_1, i_2, \cdots, i_r)$ is called **admissible** if $i_s \ge 2i_{s+1}$ for s < r. We write $Sq^I = Sq^{i_1}Sq^{i_2}\cdots Sq^{i_r}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへで

L The Steenrod Algebra \mathcal{A}

Let us look at the properties of the mod 2 Steenrod algebra.

Note that $I = (i_1, i_2, \cdots, i_r)$ is called **admissible** if $i_s \ge 2i_{s+1}$ for s < r. We write $Sq^I = Sq^{i_1}Sq^{i_2}\cdots Sq^{i_r}$.

Theorem. (Serre-Cartan basis) Sq^I form a basis for \mathcal{A} as a \mathbb{Z}_2 module, where *I* runs through all admissible sequences.

For example, A_7 has as basis Sq^7 , Sq^6Sq^1 , Sq^5Sq^2 , $Sq^4Sq^2Sq^1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L The Steenrod Algebra \mathcal{A}

Let us look at the properties of the mod 2 Steenrod algebra.

Note that $I = (i_1, i_2, \cdots, i_r)$ is called **admissible** if $i_s \ge 2i_{s+1}$ for s < r. We write $Sq^I = Sq^{i_1}Sq^{i_2}\cdots Sq^{i_r}$.

Theorem. (Serre-Cartan basis) Sq^I form a basis for \mathcal{A} as a \mathbb{Z}_2 module, where *I* runs through all admissible sequences.

For example, A_7 has as basis $Sq^7, Sq^6Sq^1, Sq^5Sq^2, Sq^4Sq^2Sq^1$. Theorem. Sq^{2^i} generate A as an algebra, where $i \ge 0$.

Remark. These elements do not generate A freely since it is subjected by Adem's relations.

For example, $Sq^2Sq^2 = Sq^3Sq^1 = Sq^1Sq^2Sq^1$ and $Sq^1Sq^1 = 0$.

L The Steenrod Algebra \mathcal{A}

Let us look at the properties of the mod 2 Steenrod algebra.

Note that $I = (i_1, i_2, \cdots, i_r)$ is called **admissible** if $i_s \ge 2i_{s+1}$ for s < r. We write $Sq^I = Sq^{i_1}Sq^{i_2}\cdots Sq^{i_r}$.

Theorem. (Serre-Cartan basis) Sq^I form a basis for \mathcal{A} as a \mathbb{Z}_2 module, where *I* runs through all admissible sequences.

For example, A_7 has as basis $Sq^7, Sq^6Sq^1, Sq^5Sq^2, Sq^4Sq^2Sq^1$. Theorem. Sq^{2^i} generate A as an algebra, where $i \ge 0$.

Remark. These elements do not generate A freely since it is subjected by Adem's relations.

For example, $Sq^2Sq^2 = Sq^3Sq^1 = Sq^1Sq^2Sq^1$ and $Sq^1Sq^1 = 0$.

Now we are done with reviewing the contents that we learned in Doug's class.

L The Structure of the Steenrod Algebra

L The Steenrod Algebra \mathcal{A}

Furthemore, A has one more additional structure.

Let M be the graded \mathbb{Z}_2 -module generated by Sq^i . Define an algebra homomorphism $\psi: T(M) \longrightarrow T(M) \otimes T(M)$ by

$$\psi(Sq^i) = \sum_j Sq^j \otimes Sq^{i-j}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The Structure of the Steenrod Algebra

L The Steenrod Algebra \mathcal{A}

Furthemore, A has one more additional structure.

Let *M* be the graded \mathbb{Z}_2 -module generated by Sq^i . Define an algebra homomorphism $\psi: T(M) \longrightarrow T(M) \otimes T(M)$ by

$$\psi(Sq^i) = \sum_j Sq^j \otimes Sq^{i-j}.$$

Lemma. The map ψ extends to an algebra homomorphism

$$\psi:\mathcal{A}\longrightarrow\mathcal{A}\otimes\mathcal{A}.$$

Sketch of Proof. Let $p : T(M) \longrightarrow A$ be the projection. It suffices to show that ker $p \subset \text{ker}\psi$. Then we can extend ψ as follows.

L The Steenrod Algebra \mathcal{A}

Denote K_n be the *n*-fold cartesian product of $K(\mathbb{Z}_2, 1)$.

- Define a map $w : \mathcal{A} \longrightarrow H^*(K_n; \mathbb{Z}_2)$ by $w(\theta) = \theta(\sigma_n)$.
- Define a map $w' : \mathcal{A} \longrightarrow H^*(K_{2n}; \mathbb{Z}_2)$ by $w(\theta) = \theta(\sigma_{2n})$.

To show the following diagram commutes.

• Let $z \in T(M)$ with p(z) = 0. By the diagram, we get

$$0 = w'(p(z)) = \alpha(w \otimes w)(\psi)(z)$$

Since $w \otimes w$ is 1-1 for some *n*, we have $\psi(z) = 0$. \Box

L The Structure of the Steenrod Algebra

 \Box The Steenrod Algebra \mathcal{A}

Example. Let us calculate some elements of the Steenrod algebra of ψ .

$$\begin{array}{l} \bullet \ \psi(Sq^3) = 1 \otimes Sq^3 + Sq^1 \otimes Sq^2 + Sq^2 \otimes Sq^1 + Sq^3 \otimes 1. \\ \bullet \ \psi(Sq^2Sq^1) = Sq^2Sq^1 \otimes 1 + Sq^1 \otimes Sq^2 + Sq^2 \otimes Sq^1 + 1 \otimes Sq^2Sq^1. \\ \bullet \ \psi(Sq^3 + Sq^2Sq^1) = (Sq^3 + Sq^2Sq^1) \otimes 1 + 1 \otimes (Sq^3 + Sq^2Sq^1). \end{array}$$

L The Structure of the Steenrod Algebra

 \Box The Steenrod Algebra \mathcal{A}

Question. What does ψ tell us about?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 \Box The Steenrod Algebra \mathcal{A}

Question. What does ψ tell us about?

We already have the Steenrod algebra (A, φ) where φ is a multiplication in A. We can see

$$\mathcal{A} \stackrel{\psi}{\longrightarrow} \mathcal{A} \otimes \mathcal{A} \stackrel{\varphi}{\longrightarrow} \mathcal{A}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \Box The Steenrod Algebra \mathcal{A}

Question. What does ψ tell us about?

We already have the Steenrod algebra (A, φ) where φ is a multiplication in A. We can see

$$\mathcal{A} \stackrel{\psi}{\longrightarrow} \mathcal{A} \otimes \mathcal{A} \stackrel{\varphi}{\longrightarrow} \mathcal{A}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Answer. $(\mathcal{A}, \varphi, \psi)$ has the structure of a Hopf algebra.
\Box The Steenrod Algebra \mathcal{A}

Question. What does ψ tell us about?

We already have the Steenrod algebra (A, φ) where φ is a multiplication in A. We can see

$$\mathcal{A} \stackrel{\psi}{\longrightarrow} \mathcal{A} \otimes \mathcal{A} \stackrel{\varphi}{\longrightarrow} \mathcal{A}.$$

Answer. $(\mathcal{A}, \varphi, \psi)$ has the structure of a Hopf algebra.

Question. What is Hopf algebra?

Answer. Roughly speaking, a Hopf algebra is a bigraded algebra with a multiplication and comultiplication.

- L The Structure of the Steenrod Algebra
 - Hopf Algebras

Outline

The Structure of the Steenrod Algebra ■ The Steenrod Algebra A ■ Hopf Algebras

- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra *A**
 - Comultiplication φ^* for \mathcal{A}^*

3 More properties of the Steenrod algebra A

(日)

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}
- Other Remarks

Hopf Algebras

Let *A* be a connected graded *R*-module with a given *R*-homomorphism $\varepsilon : A \longrightarrow R$. Then $\varepsilon|_{A_0} : A_0 \longrightarrow R$ is an isomorphism.

Note that when we show the existence of unit (looks like 1), we consider the following diagram.

Both compositions are both the identity, where η is called **coagumentation**, is the inverse of the isomorphism $\varepsilon|_{A_0}: A_0 \longrightarrow R.$

- The Structure of the Steenrod Algebra

Hopf Algebras

A is a **coalgebra** (with co-unit) if there is an *R*-homomorphism $\psi : A \longrightarrow A \otimes A$ both compositions are both the identity in the following dual diagram.

i.e., For dima > 0, the element $\psi(a)$ has the form

$$\psi(a) = a \otimes 1 + 1 \otimes a + \sum b_i \otimes c_i.$$

Definition. An element *a* in a coalgebra is called **primitive** if

$$\psi(a) = a \otimes 1 + 1 \otimes a.$$

・ロト・日本・日本・日本・日本・日本

Hopf Algebras

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a **Hopf algebra** if

(ロ) (同) (三) (三) (三) (○) (○)

- 1 A has a coalgebra structure with co-unit ε .
- **2** *A* has the comultiplication map $\psi : A \longrightarrow A \otimes A$.

with several commutative diagrams.

Hopf Algebras

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a **Hopf algebra** if

1 A has a coalgebra structure with co-unit ε .

2 *A* has the comultiplication map $\psi : A \longrightarrow A \otimes A$.

with several commutative diagrams.

Example. Let *X* be a connected topological group, with the group multiplication map $m : X \times X \longrightarrow X$ and the diagonal map $\Delta : X \longrightarrow X \times X$.

- $H_*(X; F)$ is a Hopf algebra with multiplication m_* and comultiplication map Δ_* .
- $H^*(X; F)$ is a Hopf algebra with multiplication Δ^* and comultiplication map m^* .

(ロ) (同) (三) (三) (三) (○) (○)

Hopf Algebras

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a **Hopf algebra** if

1 A has a coalgebra structure with co-unit ε .

2 *A* has the comultiplication map $\psi : A \longrightarrow A \otimes A$.

with several commutative diagrams.

Example. Let *X* be a connected topological group, with the group multiplication map $m : X \times X \longrightarrow X$ and the diagonal map $\Delta : X \longrightarrow X \times X$.

- $H_*(X; F)$ is a Hopf algebra with multiplication m_* and comultiplication map Δ_* .
- $H^*(X; F)$ is a Hopf algebra with multiplication Δ^* and comultiplication map m^* .

Corollary. The Steenrod algebra $(\mathcal{A}, \phi, \psi)$ is a Hopf algebra.

This proof follows from the previous theorem that ψ is an algebra homomorphism.

Hopf Algebras

Moreover, ψ has more good properties.

Recall that associativity and commutativity. By dualizing,

• ψ is **coassociative** if $(\psi \otimes 1) \circ \psi = (1 \otimes \psi) \circ \psi$. i.e., the following diagram is commutative:

$$\begin{array}{ccc} A & \stackrel{\psi}{\longrightarrow} & A \otimes A \\ \downarrow^{\psi} & \psi \otimes 1 \\ A \otimes A & \stackrel{1}{\longrightarrow} & A \otimes A \otimes A \end{array}$$

(日)

• ψ is cocommutative if $T \circ \psi = \psi$.

Hopf Algebras

Note that the multiplication of the Steenrod algebra ${\cal A}$ is associative but not commutative. However,

Theorem. Comultiplication ψ of the Steenrod algebra \mathcal{A} is coassociative and cocommutative.

Proof. Since ψ is an algebra homomorphism, it suffices to check on the generators.

Remark. In general, as for Hopf algebra, comultiplication need not be cocommutative. But always satisfy coassociative.

(ロ) (同) (三) (三) (三) (○) (○)

Hopf Algebras

To sum up, the Steenrod algebra $\ensuremath{\mathcal{A}}$ is an

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- φ associative,
- $\blacksquare \varphi$ noncommutative,
- ψ coassociative,
- ψ cocommutative
- $\label{eq:constraint} \blacksquare \ (\mathcal{A}, \varphi, \psi) \ \text{Hopf algebra}.$

- L The Structure of the Dual Steenrod Algebra
 - L The Dual Steenrod Algebra \mathcal{A}^*

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra A*
 - Comultiplication φ^* for \mathcal{A}^*
- 3 More properties of the Steenrod algebra \mathcal{A}

(日)

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}
- Other Remarks

L The Dual Steenrod Algebra \mathcal{A}^*

To every connected Hopf algebra (A, φ, ψ) , there is associated the **daul Hopf algebra** (A^*, ψ^*, φ^*) , where the homomorphisms

$$A^* \xrightarrow{\varphi^*} A^* \otimes A^* \xrightarrow{\psi^*} A^*$$

(日)

are the duals in the sense explained below:

L The Dual Steenrod Algebra \mathcal{A}^*

To every connected Hopf algebra (A, φ, ψ) , there is associated the **daul Hopf algebra** (A^*, ψ^*, φ^*) , where the homomorphisms

$$A^* \xrightarrow{\varphi^*} A^* \otimes A^* \xrightarrow{\psi^*} A^*$$

are the duals in the sense explained below: Let R be a field.

- $(A^*) = (A_i)^*$. i.e., dual vector over R.
- The mulitpication φ of A gives the diagonal map φ^* of A^* .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The comulitpication map ψ of A gives the multiplication map ψ* of A*.

L The Dual Steenrod Algebra \mathcal{A}^*

To every connected Hopf algebra (A, φ, ψ) , there is associated the **daul Hopf algebra** (A^*, ψ^*, φ^*) , where the homomorphisms

$$A^* \xrightarrow{\varphi^*} A^* \otimes A^* \xrightarrow{\psi^*} A^*$$

are the duals in the sense explained below: Let R be a field.

- $(A^*) = (A_i)^*$. i.e., dual vector over R.
- The mulitpication φ of A gives the diagonal map φ^* of A^* .
- The comulitpication map ψ of A gives the multiplication map ψ^* of A^* .

Remark. The daul Hopf algebra is Hopf algebra.

L The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Question. Why Dual?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

L The Dual Steenrod Algebra \mathcal{A}^*

Question. Why Dual?

It is natural to study the dual Steenrod algebra.

	${\cal A}$ the Steenrod Al-	\mathcal{A}^* the Dual Steen-
	gebra	rod Algebra
Multiplication	φ Associative	ψ^* Coassociative
	φ Noncommutative	ψ^* Commutative!!
Comultiplication	ψ Coassociative	φ^* Coassociative
	ψ Cocommutaive	φ^* Noncocomutative
Hopf algebra	0	0

Table: The comparison the Steenrod algebra \mathcal{A} with its dual \mathcal{A}^*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

From now on, let us study a beautiful description of the dual Steenrod algebra \mathcal{A}^* .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

L The Dual Steenrod Algebra \mathcal{A}^*

Denote

 $\mathcal{R} := \{(i_1, i_2, \cdots) \mid i_k \in \mathbb{Z}_{\geq 0}, \text{ finitely many } i_k \text{ are non-zero}\}.$

Definition. A sequence $I \in \mathcal{R}$ is called **admissible** if there exists $r \ge 0$ such that

$$\begin{cases} i_r > 0, i_q \ge 2i_{q+1} & \text{ for } 1 \le q < r \\ i_s = 0 & \text{ for } s > r. \end{cases}$$

Denote $\mathcal{J} \subset \mathcal{R}$ be the set of all admissible sequenceses.

Example. Let $I^k := (2^{k-1}, \dots, 2, 1, 0, 0, \dots)$. Then I^k are admissible.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

L The Dual Steenrod Algebra \mathcal{A}^*

Let us do some combinatorics to obtain our main theorem.

Definition. Let ξ_i be the element of $\mathcal{A}_{2^i-1}^*$ such that

$$\left< \xi_k, Sq^I \right> = egin{cases} 1 & ext{ for } I = I^k \ 0 & ext{ Otherwise } \end{cases}$$

where *I* be admissible and $k \ge 1$.

Furthemore, for arbitrary I, $\langle \xi_k, Sq^I \rangle = 0$ unless I is obtained from I^k by interspersion of zeros.

(日) (日) (日) (日) (日) (日) (日)

L The Dual Steenrod Algebra \mathcal{A}^*

Let us do some combinatorics to obtain our main theorem.

Definition. Let ξ_i be the element of $\mathcal{A}_{2^i-1}^*$ such that

$$\left< \xi_k, Sq^I \right> = egin{cases} 1 & ext{ for } I = I^k \ 0 & ext{ Otherwise} \end{cases}$$

where *I* be admissible and $k \ge 1$. Furthemore, for arbitrary *I*, $\langle \xi_k, Sq^I \rangle = 0$ unless *I* is obtained from I^k by interspersion of zeros.

(日) (日) (日) (日) (日) (日) (日)

Question. $\{\xi_k\}$ form a basis of \mathcal{A}^* ?

L The Dual Steenrod Algebra \mathcal{A}^*

Let us do some combinatorics to obtain our main theorem.

Definition. Let ξ_i be the element of $\mathcal{A}_{2^i-1}^*$ such that

$$\left< \xi_k, Sq^I \right> = egin{cases} 1 & ext{ for } I = I^k \ 0 & ext{ Otherwise} \end{cases}$$

where *I* be admissible and $k \ge 1$.

Furthemore, for arbitrary I, $\langle \xi_k, Sq^I \rangle = 0$ unless I is obtained from I^k by interspersion of zeros.

Question. $\{\xi_k\}$ form a basis of \mathcal{A}^* ?

Answer. No, remember $\{Sq^I | I \text{ adimissible}\}$ form a basis of \mathcal{A} . Then who can be a basis of \mathcal{A}^* ? Also, I am going to show it's true they generate \mathcal{A}^* as an algebra.

- The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Define

For each
$$R = (r_1, r_2, \cdots) \in \mathcal{R}$$
,

$$\xi^R := (\xi_1)^{r_1} (\xi_2)^{r_2} \dots \in \mathcal{A}^*.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

L The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Define

For each
$$R = (r_1, r_2, \cdots) \in \mathcal{R}$$
,

$$\xi^R := (\xi_1)^{r_1} (\xi_2)^{r_2} \cdots \in \mathcal{A}^*.$$

a set bijection $\gamma : \mathcal{J} \longrightarrow \mathcal{R}$ by

$$\gamma((a_1,\cdots,a_k,0,0,\cdots)) := (a_1 - 2a_2, a_2 - 2a_3,\cdots,a_k,0,0,\cdots).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note that for $I \in \mathcal{J}$, deg $Sq^I = \text{deg}\xi^{\gamma(I)}$.

L The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Define

For each
$$R = (r_1, r_2, \cdots) \in \mathcal{R}$$
,

$$\xi^R := (\xi_1)^{r_1} (\xi_2)^{r_2} \cdots \in \mathcal{A}^*.$$

a set bijection $\gamma : \mathcal{J} \longrightarrow \mathcal{R}$ by

$$\gamma((a_1,\cdots,a_k,0,0,\cdots)):=(a_1-2a_2,a_2-2a_3,\cdots,a_k,0,0,\cdots).$$

Note that for $I \in \mathcal{J}$, deg $Sq^I = \text{deg}\xi^{\gamma(I)}$.

Let us give an order to the sequences of \mathcal{J} lexicographically from the right.

Example.

$$\{7,3,2,0,0,\cdots\}>\{8,3,1,0,0,\cdots\}>\{8,3,0,0,\cdots\}>\{10,2,0,0,\cdots\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Theorem. For $I, J \in \mathcal{J}$,

$$\left\langle \xi^{\gamma(J)}, Sq^{I} \right\rangle = \begin{cases} 0 & \text{ for } I < J \\ 1 & \text{ for } I = J \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In particular, $\{\xi^{\gamma(J)}\}$ form a vector space basis for \mathcal{A}^* . **Sketch of Proof.** Proof by a downward induction.

L The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Theorem. For $I, J \in \mathcal{J}$,

$$\left\langle \xi^{\gamma(J)}, Sq^{I} \right\rangle = \begin{cases} 0 & \text{ for } I < J \\ 1 & \text{ for } I = J \end{cases}$$

In particular, $\{\xi^{\gamma(J)}\}$ form a vector space basis for \mathcal{A}^* .

Sketch of Proof. Proof by a downward induction.

Step 1. For $J = (a_1, \dots, a_k, 0, 0, \dots), I = (b_1, \dots, b_k, 0, 0, \dots), J \ge I$, define

$$J' := (a_1 - 2^{k-1}, a_2 - 2^{k-2}, \cdots, a_k - 1, 0, 0, \cdots).$$

Then $\gamma(J) = \gamma(J')$ except for k component.

The Structure of the Dual Steenrod Algebra

L The Dual Steenrod Algebra \mathcal{A}^*

Theorem. For $I, J \in \mathcal{J}$,

$$\left\langle \xi^{\gamma(J)}, Sq^{I} \right\rangle = \begin{cases} 0 & \text{ for } I < J \\ 1 & \text{ for } I = J \end{cases}$$

In particular, $\{\xi^{\gamma(J)}\}$ form a vector space basis for \mathcal{A}^* .

Sketch of Proof. Proof by a downward induction.

Step 1. For $J = (a_1, \dots, a_k, 0, 0, \dots), I = (b_1, \dots, b_k, 0, 0, \dots), J \ge I$, define

$$J' := (a_1 - 2^{k-1}, a_2 - 2^{k-2}, \cdots, a_k - 1, 0, 0, \cdots).$$

Then $\gamma(J) = \gamma(J')$ except for k component.

Step 2. Show that

$$\left\langle \xi^{\gamma(J)}, Sq^{I} \right\rangle = \left\langle \xi^{\gamma(J')}, Sq^{I-I^{k}} \right\rangle$$

Descent on b_k and k completes the proof.

L The Dual Steenrod Algebra \mathcal{A}^*

Corollary. As an algebra,

$$\mathcal{A}^* \simeq \mathbb{Z}_2[\xi_1, \xi_2, \cdots].$$

Proof.

- Note that $\{Sq^I\}$ is a basis for A, where I is admissible.
- If *J* runs through \mathcal{J} , then $\xi^{\gamma(J)}$ runs through all the monomials in the ξ_i .
- $\{\xi^{\gamma(J)}\}$ form a vector space basis for \mathcal{A}^* by theorem.
- Notice that a polynomial ring is characterized by the fact that the monomials in the generators form a vector space basis.

- L The Structure of the Dual Steenrod Algebra
 - $\ \ \Box Comultiplication \varphi^* \ \, for \ \ \mathcal{A}^*$

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 The Dual Steenrod Algebra A*
 - **Comultiplication** φ^* for \mathcal{A}^*
- 3 More properties of the Steenrod algebra A

(日)

- Revisited Primitive Elements
- $\blacksquare Milnor Basis for A$
- Other Remarks

L The Structure of the Dual Steenrod Algebra

The Steenrod Algebra \mathcal{A} with

Multiplication map :

$$\varphi = \circ$$

Comultiplication map :

$$\psi(Sq^i) = \sum_j Sq^j \otimes Sq^{i-j}$$

The dual Steenrod Algebra \mathcal{A}^* with

Multiplication map :

$$\psi^*(\xi_i\otimes\xi_j)=\xi_i\xi_j$$

Comultiplication map :

$$\varphi^* = ?$$

(日)

Definition. Set $H_* := H_*(X; \mathbb{Z}_2), H^* := H^*(X; \mathbb{Z}_2).$

Given the trivial action $\mu : \mathcal{A} \otimes H^* \longrightarrow H^*$, by $\mu(\theta, y) = \theta(y)$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. Set $H_* := H_*(X; \mathbb{Z}_2), H^* := H^*(X; \mathbb{Z}_2).$

Given the trivial action $\mu : \mathcal{A} \otimes H^* \longrightarrow H^*$, by $\mu(\theta, y) = \theta(y)$,

 $\blacksquare \text{ Define } \lambda: H_* \otimes \mathcal{A} \longrightarrow H_* \text{ by }$

$$\langle \lambda(x,\theta), y \rangle = \langle x, \mu(\theta, y) \rangle,$$

where $y \in H^*, x \in H_*, \theta \in \mathcal{A}$.

Denote λ^* be the dual of λ . i.e.,

$$\lambda^*: H^* \longrightarrow (H_* \otimes \mathcal{A})^* = H^* \otimes \mathcal{A}^*.$$

- The Structure of the Dual Steenrod Algebra

Proposition 1. λ is a module operation and λ^* is an comodule operation. i.e., The following diagrams commute.

Proposition 2. λ is a coalgebra homomorphism and λ^* is an algebra homomorphism. i.e., The following diagrams commute.

(日) (日) (日) (日) (日) (日) (日)

L The Structure of the Dual Steenrod Algebra

Theorem. The comultiplication map φ^* of \mathcal{A}^* is given by

$$\varphi^*(\xi_k) = \sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

L The Structure of the Dual Steenrod Algebra

Theorem. The comultiplication map φ^* of \mathcal{A}^* is given by

$$\varphi^*(\xi_k) = \sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sketch of Proof.

L The Structure of the Dual Steenrod Algebra

Theorem. The comultiplication map φ^* of \mathcal{A}^* is given by

$$\varphi^*(\xi_k) = \sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Sketch of Proof.

Step 1. Prove the following are equivalent for $y \in H^*$: 1 $\lambda^*(y) = \sum y_i \otimes w_i$ 2 $\mu(\theta, y) = \sum \langle \theta, w_i \rangle y_i$ for all $\theta \in \mathcal{A}$.
L The Structure of the Dual Steenrod Algebra

Theorem. The comultiplication map φ^* of \mathcal{A}^* is given by

$$\varphi^*(\xi_k) = \sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i.$$

Sketch of Proof.

Step 1. Prove the following are equivalent for $y \in H^*$:

1
$$\lambda^*(y) = \sum y_i \otimes w_i$$

2 $\mu(\theta, y) = \sum \langle \theta, w_i \rangle y_i \text{ for all } \theta \in \mathcal{A}.$

Step 2. Let *x* generate $H^1(\mathbb{RP}^{\infty}; \mathbb{Z}_2)$. Show that

$$\lambda^*(x) = \sum_{i \ge 0} x^{2^i} \otimes \xi_i.$$

i.e.,show $\mu(Sq^I, x) = \sum \langle Sq^I, \xi_i \rangle x^{2^i}$ and enough to check I is admissible.

L The Structure of the Dual Steenrod Algebra

Step 3. Show that

$$\lambda^*(x^{2^i}) = \sum_{j \ge 0} x^{2^{i+j}} \otimes (\xi_j)^{2^i}.$$

Proof.
$$\lambda^*(x^{2^i}) \stackrel{(2)}{=} (\lambda^* x)^{2^i} = \sum_j (x^{2^j} \otimes \xi_j)^{2^i} = \sum_j x^{2^{i+j}} \otimes (\xi_j)^{2^i} \square$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

L The Structure of the Dual Steenrod Algebra

Step 3. Show that

$$\lambda^*(x^{2^i}) = \sum_{j \ge 0} x^{2^{i+j}} \otimes (\xi_j)^{2^i}.$$

Proof.
$$\lambda^*(x^{2^i}) \stackrel{(2)}{=} (\lambda^* x)^{2^i} = \sum_j (x^{2^j} \otimes \xi_j)^{2^i} = \sum_j x^{2^{i+j}} \otimes (\xi_j)^{2^i} \square$$

Step 4. Use the commuting diagram in proposition 1.

$$(1 \otimes \varphi^*)\lambda^*(x) = (1 \otimes \varphi^*)(\sum_k x^{2^k} \otimes \xi_k) = \sum_k x^{2^k} \otimes \varphi^*(\xi_k)$$
$$(\lambda^* \otimes 1)\lambda^*(x) = (\lambda^* \otimes 1)(\sum_i x^{2^i} \otimes \xi_i) = \sum_i \lambda^*(x^{2^i}) \otimes \xi_i$$
$$= \sum_{i,j} x^{2^{i+j}} \otimes (\xi_j)^{2^i} \otimes \xi_i.$$

By comparing them, we get $\varphi^*(\xi_k) = \sum_i (\xi_{k-i})^{2^i} \bigotimes \xi_{i, i} \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}$

L The Structure of the Dual Steenrod Algebra

Summary.

Algebra	${\cal A}$ the Steenrod	\mathcal{A}^* the Dual
	Algebra	Steenrod Algebra
Structure	a graded	a graded
	noncommutative,	commutative, non-
	cocommutaive	cocommutative
	Hopf algebra	Hopf algebra
Basis	${Sq^I}$, where I :	$\{\xi^R\}$, where R :
	admissible	any sequence
As an algebra	$\left\{Sq^{2^k}\right\}$ generate	$\{\xi_k\}$ freely
	\mathcal{A} and subject to	generate \mathcal{A}^*
	Adem's realtions	
Comultiplication	$\psi(Sq^k) =$	$\varphi^*(\overline{\xi_k}) =$
	$\sum_j Sq^j \otimes Sq^{k-j}$	$\sum_{i=0}^k (\xi_{k-i})^{2^i} \otimes \xi_i$

Table: The comparison the Steenrod algebra \mathcal{A} with its dual \mathcal{A}^*

- \square More properties of the Steenrod algebra \mathcal{A}
 - Revisited Primitive Elements

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra A*
 - Comultiplication φ^* for \mathcal{A}^*

3 More properties of the Steenrod algebra \mathcal{A}

(日)

- Revisited Primitive Elements
- $\blacksquare Milnor Basis for A$
- Other Remarks

 \square More properties of the Steenrod algebra \mathcal{A}

Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in A and indecomposables in A^* .

(ロ) (同) (三) (三) (三) (○) (○)

 \square More properties of the Steenrod algebra $\mathcal A$

Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in A and indecomposables in A^* .

Observation.

Let
$$I = (10, 4, 2, 1), I^4 = (8, 4, 2, 1)$$
. Then we get

$$I - I^4 = (2, 0, 0, 0) = 2I^1.$$

So $I = I^4 + 2I^1$.

Let $I = (27, 13, 6, 2), 2I^4 = (16, 8, 4, 2), 2I^3 = (8, 4, 2)$. Then we get

$$I - 2I^4 - 2I^3 = (3, 1, 0, 0) = I^2 + I^1.$$

(日) (日) (日) (日) (日) (日) (日)

So $I = 2I^4 + 2I^3 + I^2 + I$.

 \square More properties of the Steenrod algebra \mathcal{A}

Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in A and indecomposables in A^* .

Observation.

Let
$$I = (10, 4, 2, 1), I^4 = (8, 4, 2, 1)$$
. Then we get

$$I - I^4 = (2, 0, 0, 0) = 2I^1.$$

So $I = I^4 + 2I^1$.

Let $I = (27, 13, 6, 2), 2I^4 = (16, 8, 4, 2), 2I^3 = (8, 4, 2)$. Then we get

$$I - 2I^4 - 2I^3 = (3, 1, 0, 0) = I^2 + I^1.$$

So $I = 2I^4 + 2I^3 + I^2 + I$.

Fact. Any admissible *I* can be written uniquely as a linear combination of I^k s.

 \square More properties of the Steenrod algebra ${\cal A}$

Revisited Primitive Elements

Note that
$$I^k \longleftrightarrow \xi_k$$
 by $\langle \xi_k, Sq^{I_k} \rangle = 1$.

Observation.

$$I = 2I^4 + 2I^3 + I^2 + I \iff \xi_4^2 \xi_3^2 \xi_2 \xi_1.$$

 \square More properties of the Steenrod algebra A

Revisited Primitive Elements

Note that
$$I^k \longleftrightarrow \xi_k$$
 by $\langle \xi_k, Sq^{I_k} \rangle = 1$.
Observation.

$$I = 2I^4 + 2I^3 + I^2 + I \iff \xi_4^2 \xi_3^2 \xi_2 \xi_1.$$

There is a bijection between admissible sequences and monomials in the ξ_k in a such way. (Here, $\xi_0 = 1$.)

Revisited Primitive Elements

Moreover, we have the following bijection.

 $\{ \text{Indecomposables in } \mathcal{A} \} \quad \longleftrightarrow \quad \{ \text{Primitives in } \mathcal{A}^* \}$ $Sq^{2^k} \quad \longleftrightarrow \quad \xi_1^{2^k}$

Remark. The only primitive elements in \mathcal{A}^* are $\xi_1^{2^k}$. It's more simpler than primitives in \mathcal{A} .

(日) (日) (日) (日) (日) (日) (日)

- \square More properties of the Steenrod algebra \mathcal{A}
 - \square Milnor Basis for \mathcal{A}

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra *A**
 - Comultiplication φ^* for \mathcal{A}^*

3 More properties of the Steenrod algebra \mathcal{A}

(日)

- Revisited Primitive Elements
- Milnor Basis for A
- Other Remarks

 \square More properties of the Steenrod algebra \mathcal{A}

 \square Milnor Basis for \mathcal{A}

One might wonder if we can use the dual basis of $\{\xi^R\}$ to study the Steenrod algebra instead of Cartan-Serre basis. It is called the **Milnor basis**.

(ロ) (同) (三) (三) (三) (○) (○)

 \square Milnor Basis for \mathcal{A}

Recall. $\{\xi^R\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^* . Now we can dualize back!

Definition. The dual basis of $\{\xi^R\}, R = (r_1, r_2, \cdots, r_k, 0, 0, \cdots) \in \mathcal{R}$, whose elements are denoted $\{Sq^R\}$ or $Sq(r_1, \cdots, r_k)$, is called the **Milnor basis** for the Steenrod algebra \mathcal{A} .

(日) (日) (日) (日) (日) (日) (日)

 \square Milnor Basis for \mathcal{A}

Recall. $\{\xi^R\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^* . Now we can dualize back!

Definition. The dual basis of $\{\xi^R\}, R = (r_1, r_2, \cdots, r_k, 0, 0, \cdots) \in \mathcal{R}$, whose elements are denoted $\{Sq^R\}$ or $Sq(r_1, \cdots, r_k)$, is called the **Milnor basis** for the Steenrod algebra \mathcal{A} .

Remark. 1) By difinition,
$$\left\langle \xi^{R}, Sq^{R'} \right\rangle = \begin{cases} 1 & \text{for } R = R' \\ 0 & \text{Otherwise} \end{cases}$$

2) This is different from the Serre-Cartan basis. i.e., not the same as the composite $Sq^{r_1}Sq^{r_2}\cdots Sq^{r_k}$.

(日) (日) (日) (日) (日) (日) (日)

 \square Milnor Basis for \mathcal{A}

Recall. $\{\xi^R\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^* . Now we can dualize back!

Definition. The dual basis of $\{\xi^R\}, R = (r_1, r_2, \cdots, r_k, 0, 0, \cdots) \in \mathcal{R}$, whose elements are denoted $\{Sq^R\}$ or $Sq(r_1, \cdots, r_k)$, is called the **Milnor basis** for the Steenrod algebra \mathcal{A} .

Remark. 1) By difinition,
$$\left\langle \xi^R, Sq^{R'} \right\rangle = \begin{cases} 1 & \text{for } R = R' \\ 0 & \text{Otherwise} \end{cases}$$

2) This is different from the Serre-Cartan basis. i.e., not the same as the composite $Sq^{r_1}Sq^{r_2}\cdots Sq^{r_k}$.

But, in some case, they are same.

Proposition. $Sq(i, 0, 0, \cdots) = Sq^i$.

The Steenrod Algebra and Its Dual More properties of the Steenrod algebra A Milnor Basis for A

Formula.[6]

$$Sq(r_1, r_2, \cdots)Sq(s_1, s_2, \cdots) = \sum_X Sq(t_1, t_2, \cdots)$$

where the sum is taken over all matrices $X = \langle x_{ij} \rangle$ satisfying:

$$\sum_{i} x_{ij} = s_j, \quad \sum_{j} 2^j x_{ij} = r_i, \quad \prod_{h} (x_{h0}, x_{h-1,1}, \cdots, x_{0h}) \equiv 1 \pmod{2}$$

where (n_1, \dots, n_m) is the multinomial coefficient $(n_1 + \dots + n_m)!/(n_1! \dots n_m!)$. (The value of x_{00} is never used and may be taken to be 0.) Each such allowable matrix produces a summand $Sq(t_1, t_2, \dots)$ given by

$$t_h = \sum_{i+j=h} x_{ij}$$

 \square Milnor Basis for \mathcal{A}

Example. How to express Sq(4,2)Sq(2,1) using the Milnor basis?

Let R = (4, 2), S = (2, 1). Then we get

$$x_{10} + 2x_{11} + 4x_{12} + \dots = 4 = r_1$$

$$x_{20} + 2x_{21} + 4x_{22} + \dots = 2 = r_2$$

$$x_{01} + x_{11} + x_{21} + \dots = 2 = s_1$$

$$x_{02} + x_{12} + x_{22} + \dots = 1 = s_2$$

For row 1,

$$(4,0,0) < (2,1,0) < (0,2,0) < (0,0,1).$$

For row 2,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \square More properties of the Steenrod algebra $\mathcal A$

 \square Milnor Basis for \mathcal{A}

$$\begin{pmatrix} * & 2 & 1 \\ 4 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} (4,2)(2,0,1)Sq(6,3) = Sq(6,3)$$

$$\begin{pmatrix} * & 1 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} (2,1)(2,1,1)Sq(3,4) = 0$$

$$\begin{pmatrix} * & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{pmatrix} (0,0)(2,2,1)Sq(0,5) = 0$$

$$\begin{pmatrix} * & 2 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} (0,2)(2,0,0)(0,1)Sq(2,2,1) = Sq(2,2,1)$$

$$\begin{pmatrix} * & 1 & 1 \\ 4 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} (4,1)(0,0,1)(1,0)Sq(5,1,1) = Sq(5,1,1)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

 \square More properties of the Steenrod algebra $\mathcal A$

└_Milnor Basis for *A*

$$\begin{pmatrix} * & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} (2,0)(0,1,1)(1,0)Sq(2,2,1) = 0 \\ \begin{pmatrix} * & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} (0,1)(0,0,0)(1,1)Sq(1,0,2) = 0$$

Therefore, we find that

$$Sq(4,2)Sq(2,1) = Sq(6,3) + Sq(2,2,1) + Sq(5,1,1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- \square More properties of the Steenrod algebra \mathcal{A}
 - Cther Remarks

Outline

- The Structure of the Steenrod Algebra
 The Steenrod Algebra A
 Hopf Algebras
- 2 The Structure of the Dual Steenrod Algebra
 - The Dual Steenrod Algebra *A**
 - Comultiplication φ^* for \mathcal{A}^*

3 More properties of the Steenrod algebra \mathcal{A}

(日)

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}
- Other Remarks

 \square More properties of the Steenrod algebra \mathcal{A}

Cother Remarks

Further comments for the Steenrod algebra A.

- Every element of \mathcal{A} is nilpotent.
- There is a canonical anti-automorphism on A.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

These are in the chapter 7,8 of Milnor's paper.

 \square More properties of the Steenrod algebra \mathcal{A}

Conter Remarks

Further comments for the Steenrod algebra A.

- Every element of \mathcal{A} is nilpotent.
- There is a canonical anti-automorphism on \mathcal{A} .

These are in the chapter 7,8 of Milnor's paper.

An Influence of this work[5]

- Milnor's clear description of the rich structure of the Steenrod algebra played a key role in the development of the Adams spectral sequence (Adams [1958, 1960]).
- The Adams spectral sequence and its generalizations by Novikov [1967] are the tools of choice in the study of stable homotopy theory.
- A survey of this point of view is found in the book of Ravenel [2003].)

-John McCleary

 \square More properties of the Steenrod algebra \mathcal{A}

Conter Remarks

Further comments for the Steenrod algebra A.

- Every element of \mathcal{A} is nilpotent.
- There is a canonical anti-automorphism on \mathcal{A} .

These are in the chapter 7,8 of Milnor's paper.

An Influence of this work[5]

- Milnor's clear description of the rich structure of the Steenrod algebra played a key role in the development of the Adams spectral sequence (Adams [1958, 1960]).
- The Adams spectral sequence and its generalizations by Novikov [1967] are the tools of choice in the study of stable homotopy theory.
- A survey of this point of view is found in the book of Ravenel [2003].)

-John McCleary Not the end. It is only the beginning.

Conter Remarks

- R.R.Bruner, An Admas Spectral Sequence Primer, (2009).
- A. Gurjale, *Personal Discussion with him*, (2018).
- B. Guillou, *Class Notes*, (2017).
- J. Milnor, *The Steenrod Algebra and Its Dual*, Annals of Mathematics, (1958).
- J. Milnor, J. McCleary, *Homotopy, Homology, and Manifolds*, American Mathematical Society, (2009).
- K.G. Monks, *Change of Basis, Monomial Realtions, and P Bases for the Steenrod Algebra*, Journal of Pure and Applied Algebra, (1998), **125**, 235-260.
- R. Mosher, M. Tangora, Cohomology Operations and Applications in Homotopy Theory, American Mathematical Society, (2009).

 \square More properties of the Steenrod algebra \mathcal{A}

Other Remarks

D. Ravenel, Personal Discussion with him, (2018).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Wikipedia, The Free Encyclopedia.
- C. Woo, Steenrod algebra, A personal paper.

 \square More properties of the Steenrod algebra \mathcal{A}

Uther Remarks

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ