The Steenrod Algebra and Its Dual

Semin Yoo

Department of Mathematics
University of Rochester

March 27th, 2018
"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology.
"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology. - D. Ravenel

"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology. - D. Ravenel

Moreover, you can check

the steenrod algebra and its dual
All Shopping Maps News Images More Settings Tools

[^0]
"The Steenrod Algebra and its Dual" by Milnor is a crucial paper in algebraic topology.
 - D. Ravenel

Moreover, you can check

the steenrod algebra and its dual
All Shopping Maps News Images More Settings Tools

About 66,300 results (0.36 seconds)
${ }^{[P D F]}$ The Steenrod Algebra and Its Dual John Milnor The Annals of ... - Math www.math.wannerowisaksen/Teaching/Courses/10W-7520/Steenrod.pdf v
by J Milno Cited by 599 - Related articles
Jul 1, 2007 STrentod ALGEBRA AND ITS DUAL'. BY JOHN MILNOR. (Received May 15 ,
1957). 1. Summary. Let 9^{\star} denote the Steenrod algebra corrresponding to an odd prime p. (See \$2 for definitions.) Our basic results ($\$ 3$) is that $\mathrm{c}^{\prime}!^{*}$ is a Hopf algebra. That is in addition to the product
operation there is a

Goal : What was Milnor's work and its importance.

Motivation and Summary [9] : A cohomology operation is a natural transformation between cohomology functors.

Motivation and Summary [9] : A cohomology operation is a natural transformation between cohomology functors.
Example : The cup product squaring operation makes a family of cohomology operations:

$$
\begin{aligned}
H^{n}(X ; R) & \longrightarrow H^{2 n}(X ; R) \\
x & \mapsto x \cup x
\end{aligned}
$$

But, cohomology operations need not be homomorphisms of graded rings. Moreover, these operations do not commute with suspension. (It is called unstable.)

Motivation and Summary [9] : A cohomology operation is a natural transformation between cohomology functors.
Example : The cup product squaring operation makes a family of cohomology operations:

$$
\begin{aligned}
H^{n}(X ; R) & \longrightarrow H^{2 n}(X ; R) \\
x & \mapsto x \cup x
\end{aligned}
$$

But, cohomology operations need not be homomorphisms of graded rings. Moreover, these operations do not commute with suspension. (It is called unstable.)
Norman Steenrod constructed stable operations

$$
S q^{i}: H^{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H^{n+i}\left(X ; \mathbb{Z}_{2}\right)
$$

for all i greater than zero.

Thus it is important to study the mod 2 Steenrod algebra \mathcal{A}. I am only going to consider the case of $p=2$ in this presentation.

Thus it is important to study the mod 2 Steenrod algebra \mathcal{A}. I am only going to consider the case of $p=2$ in this presentation.

■ The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for \mathcal{A}.

Thus it is important to study the mod 2 Steenrod algebra \mathcal{A}. I am only going to consider the case of $p=2$ in this presentation.

■ The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for \mathcal{A}.
■ However, it is still complicated to know what the Steenrod algebra is.

Thus it is important to study the $\bmod 2$ Steenrod algebra \mathcal{A}. I am only going to consider the case of $p=2$ in this presentation.

■ The properties of these operations were studied by Henri Cartan and Jose Adem. Also, these relations lead to the existence of the Serre-Cartan basis for \mathcal{A}.
■ However, it is still complicated to know what the Steenrod algebra is.

- Milnor employed a more global view of the Steenrod algebra, recognizing the structure theorems of Cartan and Adem as aspects of the structure of a Hopf algebra.

Milnor's work

1. \mathcal{A} has the structure of Hopf algebra.
2. Furthermore, Milnor has a beautiful description of its dual, giving to a construction of the Milnor basis for \mathcal{A}.

Goal :

1. Review the Steenrod algebra \mathcal{A} over $p=2$ and study Hopf algebra and Dual Steenrod algebra \mathcal{A}^{*}.
2. Show that \mathcal{A} has the structure of Hopf algebra.
3. Obtain a beautiful description of \mathcal{A}^{*} :

$$
\mathcal{A}^{*} \cong \mathbb{Z}_{2}\left[\xi_{1}, \xi_{2}, \cdots, \xi_{j}, \cdots\right]
$$

where $\operatorname{deg} \xi_{j}=2^{j}-1$.
4. Describe explicitly the comultiplication ϕ^{*} for \mathcal{A}^{*} :

$$
\phi^{*}\left(\xi_{k}\right)=\sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}
$$

5. Study some properties of $\mathcal{A}, \mathcal{A}^{*}$.

Outline

1 The Structure of the Steenrod Algebra
■ The Steenrod Algebra \mathcal{A}

- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra
■ The Dual Steenrod Algebra \mathcal{A}^{*}
■ Comultiplication φ^{*} for \mathcal{A}^{*}
3 More properties of the Steenrod algebra \mathcal{A}
■ Revisited Primitive Elements
■ Milnor Basis for \mathcal{A}
■ Other Remarks

Outline

1 The Structure of the Steenrod Algebra ■ The Steenrod Algebra \mathcal{A}

- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra - The Dual Steenrod Algebra \mathcal{A}^{*} - Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A}
■ Revisited Primitive Elements

- Milnor Basis for \mathcal{A}

■ Other Remarks

-The Steenrod Algebra \mathcal{A}

Review[9] the mod 2 Steenrod algebra with the operations $S q^{i}$.
Let K be the chain complex of a simplicial complex. Then the operations $S q^{i}$ is the natural homomorphisms

$$
S q^{i}: H^{p}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow H^{p+i}\left(K ; \mathbb{Z}_{2}\right)
$$

satisfying the following properties:
$1 S q^{i}$ is an additive homomorphism and is functorial with respect to any $f: X \longrightarrow Y$, so $f^{*}\left(S q^{i}(x)\right)=S q^{i}\left(f^{*}(x)\right)$.
$2 S q^{0}$ is the identity homomorphism.
$3 S q^{i}(x)=x \cup x$ for $x \in H^{i}\left(X ; \mathbb{Z}_{2}\right)$.
4 If $i>p, S q^{i}(x)=0$.
5 Cartan Formula:

$$
S q^{i}(x \cup y)=\sum_{j}\left(S q^{j} x\right) \cup\left(S q^{i-j} y\right)
$$

$\left\llcorner_{\text {The Steenrod Algebra }} \mathcal{A}\right.$

$S q^{i}$ have more properties.
$1 S q^{1}$ is the Bockstein homomorphism β of the exact sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

(It gives a long exact sequence
$\cdots \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{n+1}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow \cdots$

$\left\llcorner_{\text {The Steenrod Algebra } \mathcal{A}}\right.$

$S q^{i}$ have more properties.
$1 S q^{1}$ is the Bockstein homomorphism β of the exact sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

(It gives a long exact sequence
$\cdots \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{n+1}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow \cdots$
$2 S q^{i} \circ \delta^{*}=\delta^{*} \circ S q^{i}$ where δ^{*} is the connecting homomorphism $\delta^{*}: H^{*}\left(L ; \mathbb{Z}_{2}\right) \longrightarrow H^{*}\left(K, L ; \mathbb{Z}_{2}\right)$. In particular, it commutes with the suspension isomorphism for cohomology $H^{k}\left(K ; \mathbb{Z}_{2}\right) \cong H^{k+1}\left(K ; \mathbb{Z}_{2}\right)$.

-The Steenrod Algebra \mathcal{A}

$S q^{i}$ have more properties.
$1 S q^{1}$ is the Bockstein homomorphism β of the exact sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

(It gives a long exact sequence
$\cdots \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow H^{n}\left(K ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H^{n+1}\left(K ; \mathbb{Z}_{2}\right) \longrightarrow \cdots$
$2 S q^{i} \circ \delta^{*}=\delta^{*} \circ S q^{i}$ where δ^{*} is the connecting homomorphism $\delta^{*}: H^{*}\left(L ; \mathbb{Z}_{2}\right) \longrightarrow H^{*}\left(K, L ; \mathbb{Z}_{2}\right)$. In particular, it commutes with the suspension isomorphism for cohomology $H^{k}\left(K ; \mathbb{Z}_{2}\right) \cong H^{k+1}\left(K ; \mathbb{Z}_{2}\right)$.
3 Satisfy Adem's relations: For $i<2 j$,

$$
S q^{i} S q^{j}=\sum_{k=0}^{[i / 2]}\binom{j-k-1}{i-2 k} S q^{i+j-k} S q^{k}
$$

where the binomial coefficient is taken $\bmod 2$.
(1) is used as one of the generators of the Steenrod algebra.
(2) is especially important because it says that the Steenrod squares is a stable cohomology operation, and so holds a central position in stable homotopy theory.
(3) The Adem relations allow one to write an arbitrary composition of Steenrod squares as a sum of Serre-Cartan basis elements.

Miscellaneous Algebraic Definitions.[7] Let R be a commutative ring with unit.
1 A graded R-algebra A is a graded R-module with a multiplication $\varphi: A \otimes A \longrightarrow A$, where φ is a homomorphism of graded R-mudules and has a two sided unit.
2 A graded R-algebra A is associative if $\varphi \circ(\varphi \otimes 1)=\varphi \circ(1 \otimes \varphi)$. i.e., the following diagram is commute

3 A graded R-algebra is commutative if $\varphi \circ T=\varphi$, where $T: M \otimes N \longrightarrow N \otimes M$ by $T(m \otimes n)=(-1)^{\operatorname{deg} n \operatorname{deg} m}(n \otimes m)$.

1 A graded R-algebra is augmented if there is an algebra homomorphism $\varepsilon: A \longrightarrow R$.
2 An augmented R-algebra is connected if $\varepsilon: A_{0} \longrightarrow R$ is isomorphic.
3 Let M be an R-module. Write $M^{0}=R$ and $M^{r}=M \otimes \cdots \otimes M, r$ times. Then the tensor algebra $T(M)$ is the graded R-algebra defined by $T(M)_{r}=M^{r}$.

Remark. $T(M)$ is associative, but not commutative.

Let $R=\mathbb{Z}_{2}, M$ be the graded \mathbb{Z}_{2}-module such that $M_{i}=\mathbb{Z}_{2}$ generated by $S q^{i}$. Then $T(M)$ is graded.
Let Q be the ideal generated by all $R(a, b)$, where

$$
R(a, b)=S q^{a} \otimes S q^{b}+\sum_{c}\binom{b-c-1}{a-2 c} S q^{a+b-c} \otimes S q^{c}
$$

Let $R=\mathbb{Z}_{2}, M$ be the graded \mathbb{Z}_{2}-module such that $M_{i}=\mathbb{Z}_{2}$ generated by $S q^{i}$. Then $T(M)$ is graded.
Let Q be the ideal generated by all $R(a, b)$, where

$$
R(a, b)=S q^{a} \otimes S q^{b}+\sum_{c}\binom{b-c-1}{a-2 c} S q^{a+b-c} \otimes S q^{c}
$$

Definition.[7] The mod 2 Steenrod algebra \mathcal{A} is the quotient algebra $T(M) / Q$.
Simply, we can say that the mod 2 Steenrod algebra \mathcal{A} is a graded algebra over \mathbb{Z}_{2} generated by $S q^{i}$, subject to the Adem relations.

Let us look at the properties of the mod 2 Steenrod algebra.
Note that $I=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ is called admissible if $i_{s} \geq 2 i_{s+1}$ for $s<r$. We write $S q^{I}=S q^{i_{1}} S q^{i_{2}} \cdots S q^{i_{r}}$.

Let us look at the properties of the mod 2 Steenrod algebra.
Note that $I=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ is called admissible if $i_{s} \geq 2 i_{s+1}$ for $s<r$. We write $S q^{I}=S q^{i_{1}} S q^{i_{2}} \cdots S q^{i_{r}}$.
Theorem. (Serre-Cartan basis) $S q^{I}$ form a basis for \mathcal{A} as a \mathbb{Z}_{2} module, where I runs through all admissible sequences.
For example, \mathcal{A}_{7} has as basis $S q^{7}, S q^{6} S q^{1}, S q^{5} S q^{2}, S q^{4} S q^{2} S q^{1}$.

Let us look at the properties of the mod 2 Steenrod algebra.
Note that $I=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ is called admissible if $i_{s} \geq 2 i_{s+1}$ for $s<r$. We write $S q^{I}=S q^{i_{1}} S q^{i_{2}} \cdots S q^{i_{r}}$.
Theorem. (Serre-Cartan basis) $S q^{I}$ form a basis for \mathcal{A} as a \mathbb{Z}_{2} module, where I runs through all admissible sequences.

For example, \mathcal{A}_{7} has as basis $S q^{7}, S q^{6} S q^{1}, S q^{5} S q^{2}, S q^{4} S q^{2} S q^{1}$.
Theorem. $S q^{2^{i}}$ generate \mathcal{A} as an algebra, where $i \geq 0$.
Remark. These elements do not generate \mathcal{A} freely since it is subjected by Adem's relations.
For example, $S q^{2} S q^{2}=S q^{3} S q^{1}=S q^{1} S q^{2} S q^{1}$ and $S q^{1} S q^{1}=0$.

Let us look at the properties of the mod 2 Steenrod algebra.
Note that $I=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$ is called admissible if $i_{s} \geq 2 i_{s+1}$ for $s<r$. We write $S q^{I}=S q^{i_{1}} S q^{i_{2}} \cdots S q^{i_{r}}$.
Theorem. (Serre-Cartan basis) $S q^{I}$ form a basis for \mathcal{A} as a \mathbb{Z}_{2} module, where I runs through all admissible sequences.
For example, \mathcal{A}_{7} has as basis $S q^{7}, S q^{6} S q^{1}, S q^{5} S q^{2}, S q^{4} S q^{2} S q^{1}$.
Theorem. $S q^{2^{i}}$ generate \mathcal{A} as an algebra, where $i \geq 0$.
Remark. These elements do not generate \mathcal{A} freely since it is subjected by Adem's relations.
For example, $S q^{2} S q^{2}=S q^{3} S q^{1}=S q^{1} S q^{2} S q^{1}$ and $S q^{1} S q^{1}=0$.
Now we are done with reviewing the contents that we learned in Doug's class.

Furthemore, \mathcal{A} has one more additional structure.
Let M be the graded \mathbb{Z}_{2}-module generated by $S q^{i}$. Define an algebra homomorphism $\psi: T(M) \longrightarrow T(M) \otimes T(M)$ by

$$
\psi\left(S q^{i}\right)=\sum_{j} S q^{j} \otimes S q^{i-j}
$$

LThe Steenrod Algebra \mathcal{A}

Furthemore, \mathcal{A} has one more additional structure.
Let M be the graded \mathbb{Z}_{2}-module generated by $S q^{i}$. Define an algebra homomorphism $\psi: T(M) \longrightarrow T(M) \otimes T(M)$ by

$$
\psi\left(S q^{i}\right)=\sum_{j} S q^{j} \otimes S q^{i-j}
$$

Lemma. The map ψ extends to an algebra homomorphism

$$
\psi: \mathcal{A} \longrightarrow \mathcal{A} \otimes \mathcal{A}
$$

Sketch of Proof. Let $p: T(M) \longrightarrow \mathcal{A}$ be the projection. It suffices to show that $\operatorname{ker} p \subset \operatorname{ker} \psi$. Then we can extend ψ as follows.

Denote K_{n} be the n-fold cartesian product of $K\left(\mathbb{Z}_{2}, 1\right)$.
■ Define a map $w: \mathcal{A} \longrightarrow H^{*}\left(K_{n} ; \mathbb{Z}_{2}\right)$ by $w(\theta)=\theta\left(\sigma_{n}\right)$.
■ Define a map $w^{\prime}: \mathcal{A} \longrightarrow H^{*}\left(K_{2 n} ; \mathbb{Z}_{2}\right)$ by $w(\theta)=\theta\left(\sigma_{2 n}\right)$.
■ To show the following diagram commutes.

■ Let $z \in T(M)$ with $p(z)=0$. By the diagram, we get

$$
0=w^{\prime}(p(z))=\alpha(w \otimes w)(\psi)(z)
$$

Since $w \otimes w$ is $1-1$ for some n, we have $\psi(z)=0$.

Example. Let us calculate some elements of the Steenrod algebra of ψ.

$$
\begin{aligned}
& \square \psi\left(S q^{3}\right)=1 \otimes S q^{3}+S q^{1} \otimes S q^{2}+S q^{2} \otimes S q^{1}+S q^{3} \otimes 1 . \\
& \square \psi\left(S q^{2} S q^{1}\right)=S q^{2} S q^{1} \otimes 1+S q^{1} \otimes S q^{2}+S q^{2} \otimes S q^{1}+1 \otimes S q^{2} S q^{1} \\
& \square \psi\left(S q^{3}+S q^{2} S q^{1}\right)=\left(S q^{3}+S q^{2} S q^{1}\right) \otimes 1+1 \otimes\left(S q^{3}+S q^{2} S q^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
S q^{2} S q^{1}(y z)= & S q^{2}\left(S q^{1}(y z)\right) \\
= & S q^{2}\left(\left(S q^{1} y\right) z+y S q^{1} z\right) \\
= & S q^{2}\left(S q^{1} y z\right)+S q^{2}\left(y S q^{1} z\right) \\
= & S q^{2} S q^{1} y z+S q^{1} S q^{1} y S q^{1} z+S q^{1} y S q^{2} z+S q^{2} y S q^{1} z \\
& +S q^{1} y S q^{1} S q^{1} z+y S q^{2} S q^{1} z \\
= & S q^{2} S q^{1} \otimes 1+S q^{1} \otimes S q^{2}+S q^{2} \otimes S q^{1}+1 \otimes S q^{2} S q^{1}
\end{aligned}
$$

by $S q^{1} S q^{1}=0$ from Adem's relation

LThe Structure of the Steenrod Algebra The Steenrod Algebra \mathcal{A}

Question. What does ψ tell us about?

Question. What does ψ tell us about?
We already have the Steenrod algebra (\mathcal{A}, φ) where φ is a multiplication in \mathcal{A}. We can see

$$
\mathcal{A} \xrightarrow{\psi} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\varphi} \mathcal{A} .
$$

Question. What does ψ tell us about?
We already have the Steenrod algebra (\mathcal{A}, φ) where φ is a multiplication in \mathcal{A}. We can see

$$
\mathcal{A} \xrightarrow{\psi} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\varphi} \mathcal{A} .
$$

Answer. $(\mathcal{A}, \varphi, \psi)$ has the structure of a Hopf algebra.

Question. What does ψ tell us about?
We already have the Steenrod algebra (\mathcal{A}, φ) where φ is a multiplication in \mathcal{A}. We can see

$$
\mathcal{A} \xrightarrow{\psi} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\varphi} \mathcal{A} .
$$

Answer. $(\mathcal{A}, \varphi, \psi)$ has the structure of a Hopf algebra.
Question. What is Hopf algebra?
Answer. Roughly speaking, a Hopf algebra is a bigraded algebra with a multiplication and comultiplication.

LThe Structure of the Steenrod Algebra
-Hopf Algebras

Outline

1 The Structure of the Steenrod Algebra - The Steenrod Algebra \mathcal{A}

■ Hopf Algebras
2 The Structure of the Dual Steenrod Algebra ■ The Dual Steenrod Algebra \mathcal{A}^{*} ■ Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A} ■ Revisited Primitive Elements
■ Milnor Basis for \mathcal{A}

- Other Remarks

Let A be a connected graded R-module with a given R-homomorphism $\varepsilon: A \longrightarrow R$. Then $\left.\varepsilon\right|_{A_{0}}: A_{0} \longrightarrow R$ is an isomorphism.

Note that when we show the existence of unit (looks like 1), we consider the following diagram.

Both compositions are both the identity, where η is called coagumentation, is the inverse of the isomorphism
$\left.\varepsilon\right|_{A_{0}}: A_{0} \longrightarrow R$.

-Hopf Algebras

A is a coalgebra (with co-unit) if there is an R-homomorphism $\psi: A \longrightarrow A \otimes A$ both compositions are both the identity in the following dual diagram.

i.e., For $\operatorname{dim} a>0$, the element $\psi(a)$ has the form

$$
\psi(a)=a \otimes 1+1 \otimes a+\sum b_{i} \otimes c_{i}
$$

Definition. An element a in a coalgebra is called primitive if

$$
\psi(a)=a \otimes 1+1 \otimes a .
$$

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a Hopf algebra if
$1 A$ has a coalgebra structure with co-unit ε.
$2 A$ has the comultiplication map $\psi: A \longrightarrow A \otimes A$.
with several commutative diagrams.

- Hopf Algebras

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a Hopf algebra if
$1 A$ has a coalgebra structure with co-unit ε.
$2 A$ has the comultiplication map $\psi: A \longrightarrow A \otimes A$.
with several commutative diagrams.
Example. Let X be a connected topological group, with the group multiplication map $m: X \times X \longrightarrow X$ and the diagonal $\operatorname{map} \Delta: X \longrightarrow X \times X$.

- $H_{*}(X ; F)$ is a Hopf algebra with multiplication m_{*} and comultiplication map Δ_{*}.
- $H^{*}(X ; F)$ is a Hopf algebra with multiplication Δ^{*} and comultiplication map m^{*}.

Definition. Let A be an augmented graded algebra over a commutative ring R with a unit. We say A is a Hopf algebra if
$1 A$ has a coalgebra structure with co-unit ε.
$2 A$ has the comultiplication map $\psi: A \longrightarrow A \otimes A$.
with several commutative diagrams.
Example. Let X be a connected topological group, with the group multiplication map $m: X \times X \longrightarrow X$ and the diagonal $\operatorname{map} \Delta: X \longrightarrow X \times X$.

- $H_{*}(X ; F)$ is a Hopf algebra with multiplication m_{*} and comultiplication map Δ_{*}.
- $H^{*}(X ; F)$ is a Hopf algebra with multiplication Δ^{*} and comultiplication map m^{*}.
Corollary. The Steenrod algebra $(\mathcal{A}, \phi, \psi)$ is a Hopf algebra.
This proof follows from the previous theorem that ψ is an algebra homomorphism.

Moreover, ψ has more good properties.
Recall that associativity and commutativity. By dualizing,
■ ψ is coassociative if $(\psi \otimes 1) \circ \psi=(1 \otimes \psi) \circ \psi$. i.e., the following diagram is commutative:

■ ψ is cocommutative if $T \circ \psi=\psi$.

Note that the multiplication of the Steenrod algebra \mathcal{A} is associative but not commutative. However,

Theorem. Comultiplication ψ of the Steenrod algebra \mathcal{A} is coassociative and cocommutative.

Proof. Since ψ is an algebra homomorphism, it suffices to check on the generators. \square
Remark. In general, as for Hopf algebra, comultiplication need not be cocommutative. But always satisfy coassociative.

To sum up, the Steenrod algebra \mathcal{A} is an

- φ associative,

■ φ noncommutative,
■ ψ coassociative,

- ψ cocommutative
- $(\mathcal{A}, \varphi, \psi)$ Hopf algebra.

Outline

1 The Structure of the Steenrod Algebra ■ The Steenrod Algebra \mathcal{A} - Hopf Algebras

2 The Structure of the Dual Steenrod Algebra ■ The Dual Steenrod Algebra \mathcal{A}^{*}

- Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A}
■ Revisited Primitive Elements

- Milnor Basis for \mathcal{A}

■ Other Remarks

To every connected Hopf algebra (A, φ, ψ), there is associated the daul Hopf algebra $\left(A^{*}, \psi^{*}, \varphi^{*}\right)$, where the homomorphisms

$$
A^{*} \xrightarrow{\varphi^{*}} A^{*} \otimes A^{*} \xrightarrow{\psi^{*}} A^{*}
$$

are the duals in the sense explained below:

To every connected Hopf algebra (A, φ, ψ), there is associated the daul Hopf algebra $\left(A^{*}, \psi^{*}, \varphi^{*}\right)$, where the homomorphisms

$$
A^{*} \xrightarrow{\varphi^{*}} A^{*} \otimes A^{*} \xrightarrow{\psi^{*}} A^{*}
$$

are the duals in the sense explained below: Let R be a field.
$\square\left(A^{*}\right)=\left(A_{i}\right)^{*}$. i.e., dual vector over R.
■ The mulitpication φ of A gives the diagonal map φ^{*} of A^{*}.
■ The comulitpication map ψ of A gives the multiplication map ψ^{*} of A^{*}.

To every connected Hopf algebra (A, φ, ψ), there is associated the daul Hopf algebra $\left(A^{*}, \psi^{*}, \varphi^{*}\right)$, where the homomorphisms

$$
A^{*} \xrightarrow{\varphi^{*}} A^{*} \otimes A^{*} \xrightarrow{\psi^{*}} A^{*}
$$

are the duals in the sense explained below: Let R be a field.
$\square\left(A^{*}\right)=\left(A_{i}\right)^{*}$. i.e., dual vector over R.
■ The mulitpication φ of A gives the diagonal map φ^{*} of A^{*}.
■ The comulitpication map ψ of A gives the multiplication map ψ^{*} of A^{*}.

Remark. The daul Hopf algebra is Hopf algebra.

LThe Structure of the Dual Steenrod Algebra
The Dual Steenrod Algebra \mathcal{A}^{*}

Question. Why Dual?

Question. Why Dual?
It is natural to study the dual Steenrod algebra.

	\mathcal{A} the Steenrod Al- gebra	\mathcal{A}^{*} the Dual Steen- rod Algebra
Multiplication	φ Associative	ψ^{*} Coassociative
	φ Noncommutative	ψ^{*} Commutative!!
Comultiplication	ψ Coassociative	φ^{*} Coassociative
	ψ Cocommutaive	φ^{*} Noncocomutative
Hopf algebra	O	O

Table: The comparison the Steenrod algebra \mathcal{A} with its dual \mathcal{A}^{*}

From now on, let us study a beautiful description of the dual Steenrod algebra \mathcal{A}^{*}.

Denote
$\mathcal{R}:=\left\{\left(i_{1}, i_{2}, \cdots\right) \mid i_{k} \in \mathbb{Z}_{\geq 0}\right.$, finitely many i_{k} are non-zero $\}$.
Definition. A sequence $I \in \mathcal{R}$ is called admissible if there exists $r \geq 0$ such that

$$
\begin{cases}i_{r}>0, i_{q} \geq 2 i_{q+1} & \text { for } 1 \leq q<r \\ i_{s}=0 & \text { for } s>r .\end{cases}
$$

Denote $\mathcal{J} \subset \mathcal{R}$ be the set of all admissible sequenceses.
Example. Let $I^{k}:=\left(2^{k-1}, \cdots, 2,1,0,0, \cdots\right)$. Then I^{k} are admissible.

Let us do some combinatorics to obtain our main theorem.
Definition. Let ξ_{i} be the element of $\mathcal{A}_{2^{i}-1}^{*}$ such that

$$
\left\langle\xi_{k}, S q^{I}\right\rangle= \begin{cases}1 & \text { for } I=I^{k} \\ 0 & \text { Otherwise }\end{cases}
$$

where I be admissible and $k \geq 1$.
Furthemore, for arbitrary $I,\left\langle\xi_{k}, S q^{I}\right\rangle=0$ unless I is obtained from I^{k} by interspersion of zeros.

Let us do some combinatorics to obtain our main theorem.
Definition. Let ξ_{i} be the element of $\mathcal{A}_{2^{i}-1}^{*}$ such that

$$
\left\langle\xi_{k}, S q^{I}\right\rangle= \begin{cases}1 & \text { for } I=I^{k} \\ 0 & \text { Otherwise }\end{cases}
$$

where I be admissible and $k \geq 1$.
Furthemore, for arbitrary $I,\left\langle\xi_{k}, S q^{I}\right\rangle=0$ unless I is obtained from I^{k} by interspersion of zeros.
Question. $\left\{\xi_{k}\right\}$ form a basis of \mathcal{A}^{*} ?

Let us do some combinatorics to obtain our main theorem.
Definition. Let ξ_{i} be the element of $\mathcal{A}_{2^{i}-1}^{*}$ such that

$$
\left\langle\xi_{k}, S q^{I}\right\rangle= \begin{cases}1 & \text { for } I=I^{k} \\ 0 & \text { Otherwise }\end{cases}
$$

where I be admissible and $k \geq 1$.
Furthemore, for arbitrary $I,\left\langle\xi_{k}, S q^{I}\right\rangle=0$ unless I is obtained from I^{k} by interspersion of zeros.
Question. $\left\{\xi_{k}\right\}$ form a basis of \mathcal{A}^{*} ?
Answer. No, remember $\left\{S q^{I} \mid I\right.$ adimissible $\}$ form a basis of \mathcal{A}. Then who can be a basis of \mathcal{A}^{*} ? Also, I am going to show it's true they generate \mathcal{A}^{*} as an algebra.

Define

■ For each $R=\left(r_{1}, r_{2}, \cdots\right) \in \mathcal{R}$,

$$
\xi^{R}:=\left(\xi_{1}\right)^{r_{1}}\left(\xi_{2}\right)^{r_{2}} \cdots \in \mathcal{A}^{*} .
$$

L The Structure of the Dual Steenrod Algebra
$L_{\text {The Dual Steenrod Algebra }} \mathcal{A}^{*}$

Define

■ For each $R=\left(r_{1}, r_{2}, \cdots\right) \in \mathcal{R}$,

$$
\xi^{R}:=\left(\xi_{1}\right)^{r_{1}}\left(\xi_{2}\right)^{r_{2}} \cdots \in \mathcal{A}^{*}
$$

■ a set bijection $\gamma: \mathcal{J} \longrightarrow \mathcal{R}$ by

$$
\gamma\left(\left(a_{1}, \cdots, a_{k}, 0,0, \cdots\right)\right):=\left(a_{1}-2 a_{2}, a_{2}-2 a_{3}, \cdots, a_{k}, 0,0, \cdots\right)
$$

Note that for $I \in \mathcal{J}, \operatorname{deg} S q^{I}=\operatorname{deg} \xi^{\gamma(I)}$.

Define

■ For each $R=\left(r_{1}, r_{2}, \cdots\right) \in \mathcal{R}$,

$$
\xi^{R}:=\left(\xi_{1}\right)^{r_{1}}\left(\xi_{2}\right)^{r_{2}} \cdots \in \mathcal{A}^{*}
$$

■ a set bijection $\gamma: \mathcal{J} \longrightarrow \mathcal{R}$ by

$$
\gamma\left(\left(a_{1}, \cdots, a_{k}, 0,0, \cdots\right)\right):=\left(a_{1}-2 a_{2}, a_{2}-2 a_{3}, \cdots, a_{k}, 0,0, \cdots\right) .
$$

Note that for $I \in \mathcal{J}, \operatorname{deg} S q^{I}=\operatorname{deg} \xi^{\gamma(I)}$.
Let us give an order to the sequences of \mathcal{J} lexicographically from the right.

Example.

$\{7,3,2,0,0, \cdots\}>\{8,3,1,0,0, \cdots\}>\{8,3,0,0, \cdots\}>\{10,2,0,0, \cdots\}$

L The Structure of the Dual Steenrod Algebra
LThe Dual Steenrod Algebra \mathcal{A}^{*}
Theorem. For $I, J \in \mathcal{J}$,

$$
\left\langle\xi^{\gamma(J)}, S q^{I}\right\rangle= \begin{cases}0 & \text { for } I<J \\ 1 & \text { for } I=J\end{cases}
$$

In particular, $\left\{\xi^{\gamma(J)}\right\}$ form a vector space basis for \mathcal{A}^{*}. Sketch of Proof. Proof by a downward induction.

LThe Dual Steenrod Algebra \mathcal{A}^{*}

Theorem. For $I, J \in \mathcal{J}$,

$$
\left\langle\xi^{\gamma(J)}, S q^{I}\right\rangle= \begin{cases}0 & \text { for } I<J \\ 1 & \text { for } I=J\end{cases}
$$

In particular, $\left\{\xi^{\gamma(J)}\right\}$ form a vector space basis for \mathcal{A}^{*}.
Sketch of Proof. Proof by a downward induction.
Step 1. For $J=\left(a_{1}, \cdots, a_{k}, 0,0, \cdots\right), I=\left(b_{1}, \cdots, b_{k}, 0,0, \cdots\right)$, $J \geq I$, define

$$
J^{\prime}:=\left(a_{1}-2^{k-1}, a_{2}-2^{k-2}, \cdots, a_{k}-1,0,0, \cdots\right)
$$

Then $\gamma(J)=\gamma\left(J^{\prime}\right)$ except for k component.

LThe Dual Steenrod Algebra \mathcal{A}^{*}

Theorem. For $I, J \in \mathcal{J}$,

$$
\left\langle\xi^{\gamma(J)}, S q^{I}\right\rangle= \begin{cases}0 & \text { for } I<J \\ 1 & \text { for } I=J\end{cases}
$$

In particular, $\left\{\xi^{\gamma(J)}\right\}$ form a vector space basis for \mathcal{A}^{*}.
Sketch of Proof. Proof by a downward induction.
Step 1. For $J=\left(a_{1}, \cdots, a_{k}, 0,0, \cdots\right), I=\left(b_{1}, \cdots, b_{k}, 0,0, \cdots\right)$, $J \geq I$, define

$$
J^{\prime}:=\left(a_{1}-2^{k-1}, a_{2}-2^{k-2}, \cdots, a_{k}-1,0,0, \cdots\right)
$$

Then $\gamma(J)=\gamma\left(J^{\prime}\right)$ except for k component.
Step 2. Show that

$$
\left\langle\xi^{\gamma(J)}, S q^{I}\right\rangle=\left\langle\xi^{\gamma\left(J^{\prime}\right)}, S q^{I-I^{k}}\right\rangle
$$

Descent on b_{k} and k completes the proof.

Corollary. As an algebra,

$$
\mathcal{A}^{*} \simeq \mathbb{Z}_{2}\left[\xi_{1}, \xi_{2}, \cdots\right]
$$

Proof.

$■$ Note that $\left\{S q^{I}\right\}$ is a basis for \mathcal{A}, where I is admissible.
■ If J runs through \mathcal{J}, then $\xi^{\gamma(J)}$ runs through all the monomials in the ξ_{i}.
■ $\left\{\xi^{\gamma(J)}\right\}$ form a vector space basis for \mathcal{A}^{*} by theorem.
■ Notice that a polynomial ring is characterized by the fact that the monomials in the generators form a vector space basis.

Outline

1 The Structure of the Steenrod Algebra ■ The Steenrod Algebra \mathcal{A}

- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra - The Dual Steenrod Algebra \mathcal{A}^{*}

■ Comultiplication φ^{*} for \mathcal{A}^{*}
3 More properties of the Steenrod algebra \mathcal{A}

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}
- Other Remarks

L The Structure of the Dual Steenrod Algebra

Comultiplication φ^{*} for \mathcal{A}^{*}

The Steenrod Algebra \mathcal{A} with
■ Multiplication map :

$$
\varphi=0
$$

■ Comultiplication map :

$$
\psi\left(S q^{i}\right)=\sum_{j} S q^{j} \otimes S q^{i-j}
$$

The dual Steenrod Algebra \mathcal{A}^{*} with

■ Multiplication map :

$$
\psi^{*}\left(\xi_{i} \otimes \xi_{j}\right)=\xi_{i} \xi_{j}
$$

■ Comultiplication map :

$$
\varphi^{*}=?
$$

Definition. Set $H_{*}:=H_{*}\left(X ; \mathbb{Z}_{2}\right), H^{*}:=H^{*}\left(X ; \mathbb{Z}_{2}\right)$.
Given the trivial action $\mu: \mathcal{A} \otimes H^{*} \longrightarrow H^{*}$, by $\mu(\theta, y)=\theta(y)$,

Definition. Set $H_{*}:=H_{*}\left(X ; \mathbb{Z}_{2}\right), H^{*}:=H^{*}\left(X ; \mathbb{Z}_{2}\right)$.
Given the trivial action $\mu: \mathcal{A} \otimes H^{*} \longrightarrow H^{*}$, by $\mu(\theta, y)=\theta(y)$,
■ Define $\lambda: H_{*} \otimes \mathcal{A} \longrightarrow H_{*}$ by

$$
\langle\lambda(x, \theta), y\rangle=\langle x, \mu(\theta, y)\rangle
$$

where $y \in H^{*}, x \in H_{*}, \theta \in \mathcal{A}$.
■ Denote λ^{*} be the dual of λ. i.e.,

$$
\lambda^{*}: H^{*} \longrightarrow\left(H_{*} \otimes \mathcal{A}\right)^{*}=H^{*} \otimes \mathcal{A}^{*}
$$

Proposition 1. λ is a module operation and λ^{*} is an comodule operation. i.e., The following diagrams commute.

$$
\begin{gathered}
H_{*} \otimes \mathcal{A} \otimes \mathcal{A} \xrightarrow{\lambda \otimes 1} H_{*} \otimes \mathcal{A}
\end{gathered} \begin{gathered}
H^{*} \otimes \mathcal{A}^{*} \otimes \mathcal{A}^{*} \stackrel{\lambda^{*} \otimes 1}{\longleftrightarrow} H^{*} \otimes \mathcal{A}^{*} \\
1 \otimes \varphi \downarrow \\
H_{*} \otimes \mathcal{A} \xrightarrow{\lambda}
\end{gathered} \begin{gathered}
1 \otimes \varphi^{*} \uparrow
\end{gathered}
$$

Proposition 2. λ is a coalgebra homomorphism and λ^{*} is an algebra homomorphism. i.e., The following diagrams commute.

$$
\begin{aligned}
& H_{*} \otimes H_{*} \otimes \mathcal{A} \otimes \mathcal{A} \xrightarrow{1 \otimes T \otimes 1} H_{*} \otimes \mathcal{A} \otimes H_{*} \otimes \mathcal{A} \xrightarrow{\lambda \otimes \lambda} H_{*} \otimes H_{*} \\
& \Delta_{*} \otimes \psi \uparrow \\
& H_{*} \otimes \mathcal{A} \longrightarrow H_{*}
\end{aligned}
$$

Theorem. The comultiplication $\operatorname{map} \varphi^{*}$ of \mathcal{A}^{*} is given by

$$
\varphi^{*}\left(\xi_{k}\right)=\sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}
$$

Theorem. The comultiplication map φ^{*} of \mathcal{A}^{*} is given by

$$
\varphi^{*}\left(\xi_{k}\right)=\sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}
$$

Sketch of Proof.

L The Structure of the Dual Steenrod Algebra

Comultiplication φ^{*} for \mathcal{A}^{*}

Theorem. The comultiplication map φ^{*} of \mathcal{A}^{*} is given by

$$
\varphi^{*}\left(\xi_{k}\right)=\sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}
$$

Sketch of Proof.

Step 1. Prove the following are equivalent for $y \in H^{*}$:
$1 \lambda^{*}(y)=\sum y_{i} \otimes w_{i}$
$2 \mu(\theta, y)=\sum\left\langle\theta, w_{i}\right\rangle y_{i}$ for all $\theta \in \mathcal{A}$.

Comultiplication φ^{*} for \mathcal{A}^{*}

Theorem. The comultiplication $\operatorname{map} \varphi^{*}$ of \mathcal{A}^{*} is given by

$$
\varphi^{*}\left(\xi_{k}\right)=\sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}
$$

Sketch of Proof.

Step 1. Prove the following are equivalent for $y \in H^{*}$:
$1 \lambda^{*}(y)=\sum y_{i} \otimes w_{i}$
$2 \mu(\theta, y)=\sum\left\langle\theta, w_{i}\right\rangle y_{i}$ for all $\theta \in \mathcal{A}$.
Step 2. Let x generate $H^{1}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)$. Show that

$$
\lambda^{*}(x)=\sum_{i \geq 0} x^{2^{i}} \otimes \xi_{i} .
$$

i.e.,show $\mu\left(S q^{I}, x\right)=\sum\left\langle S q^{I}, \xi_{i}\right\rangle x^{2^{i}}$ and enough to check I is admissible.

L The Structure of the Dual Steenrod Algebra

Comultiplication φ^{*} for \mathcal{A}^{*}

Step 3. Show that

$$
\lambda^{*}\left(x^{2^{i}}\right)=\sum_{j \geq 0} x^{2^{i+j}} \otimes\left(\xi_{j}\right)^{2^{i}}
$$

Proof. $\lambda^{*}\left(x^{2^{i}}\right) \stackrel{(2)}{=}\left(\lambda^{*} x\right)^{2^{i}}=\sum_{j}\left(x^{2^{j}} \otimes \xi_{j}\right)^{2^{i}}=\sum_{j} x^{2^{i+j}} \otimes\left(\xi_{j}\right)^{2^{i}} \square$

L The Structure of the Dual Steenrod Algebra

Comultiplication φ^{*} for \mathcal{A}^{*}

Step 3. Show that

$$
\lambda^{*}\left(x^{2^{i}}\right)=\sum_{j \geq 0} x^{2^{i+j}} \otimes\left(\xi_{j}\right)^{2^{i}}
$$

Proof. $\lambda^{*}\left(x^{2^{i}}\right) \stackrel{(2)}{=}\left(\lambda^{*} x\right)^{2^{i}}=\sum_{j}\left(x^{2^{j}} \otimes \xi_{j}\right)^{2^{i}}=\sum_{j} x^{2^{i+j}} \otimes\left(\xi_{j}\right)^{2^{i}} \square$
Step 4. Use the commuting diagram in proposition 1.

$$
\begin{aligned}
\left(1 \otimes \varphi^{*}\right) \lambda^{*}(x) & =\left(1 \otimes \varphi^{*}\right)\left(\sum_{k} x^{2^{k}} \otimes \xi_{k}\right)=\sum_{k} x^{2^{k}} \otimes \varphi^{*}\left(\xi_{k}\right) \\
\left(\lambda^{*} \otimes 1\right) \lambda^{*}(x) & =\left(\lambda^{*} \otimes 1\right)\left(\sum_{i} x^{2^{i}} \otimes \xi_{i}\right)=\sum_{i} \lambda^{*}\left(x^{2^{i}}\right) \otimes \xi_{i} \\
& =\sum_{i, j} x^{2^{i+j}} \otimes\left(\xi_{j}\right)^{2^{i}} \otimes \xi_{i} .
\end{aligned}
$$

By comparing them, we get $\varphi^{*}\left(\xi_{k}\right)=\sum_{i}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i}$.

Summary.

Algebra	\mathcal{A} the Steenrod Algebra	\mathcal{A}^{*} the Dual Steenrod Algebra
Structure	a graded noncommutative, cocommutaive Hopf algebra	a graded commutative, noncocommutative Hopf algebra
Basis	$\left\{S q^{I}\right\}$, where I : admissible	$\left\{\xi^{R}\right\}$, where R : any sequence
As an algebra	$\left\{S q^{2^{k}}\right\}$ generate \mathcal{A} and subject to Adem's realtions	$\left\{\xi_{k}\right\}$ freely generate \mathcal{A}^{*}
Comultiplication	$\begin{gathered} \psi\left(S q^{k}\right)= \\ \sum_{j} S q^{j} \otimes S q^{k-j} \end{gathered}$	$\begin{gathered} \varphi^{*}\left(\xi_{k}\right)=\overline{=} \\ \sum_{i=0}^{k}\left(\xi_{k-i}\right)^{2^{i}} \otimes \xi_{i} \end{gathered}$

Table: The comparison the Steenrod algebra \mathcal{A} with its dual \mathcal{A}^{*}
$L_{\text {More properties of the Steenrod algebra } \mathcal{A}}$
$\square_{\text {Revisited Primitive Elements }}$

Outline

1 The Structure of the Steenrod Algebra - The Steenrod Algebra \mathcal{A} - Hopf Algebras

2 The Structure of the Dual Steenrod Algebra ■ The Dual Steenrod Algebra \mathcal{A}^{*} - Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A}
■ Revisited Primitive Elements

- Milnor Basis for \mathcal{A}
- Other Remarks

-Revisited Primitive Elements

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in \mathcal{A} and indecomposables in \mathcal{A}^{*}.

$L_{\text {Revisited Primitive Elements }}$

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in \mathcal{A} and indecomposables in \mathcal{A}^{*}.

Observation.
■ Let $I=(10,4,2,1), I^{4}=(8,4,2,1)$. Then we get

$$
I-I^{4}=(2,0,0,0)=2 I^{1} .
$$

So $I=I^{4}+2 I^{1}$.

- Let $I=(27,13,6,2), 2 I^{4}=(16,8,4,2), 2 I^{3}=(8,4,2)$. Then we get

$$
I-2 I^{4}-2 I^{3}=(3,1,0,0)=I^{2}+I^{1} .
$$

So $I=2 I^{4}+2 I^{3}+I^{2}+I$.

Remember finding primitive elements is difficult. But there is a nice 1-1 correspondence primitive elements in \mathcal{A} and indecomposables in \mathcal{A}^{*}.
Observation.
■ Let $I=(10,4,2,1), I^{4}=(8,4,2,1)$. Then we get

$$
I-I^{4}=(2,0,0,0)=2 I^{1}
$$

So $I=I^{4}+2 I^{1}$.
■ Let $I=(27,13,6,2), 2 I^{4}=(16,8,4,2), 2 I^{3}=(8,4,2)$. Then we get

$$
I-2 I^{4}-2 I^{3}=(3,1,0,0)=I^{2}+I^{1}
$$

So $I=2 I^{4}+2 I^{3}+I^{2}+I$.
Fact. Any admissible I can be written uniquely as a linear combination of $I^{k} \mathrm{~s}$.

The Steenrod Algebra and Its Dual
$L_{\text {More properties of the Steenrod algebra } \mathcal{A}}$
Levisited Primitive Elements
Note that $I^{k} \longleftrightarrow \xi_{k}$ by $\left\langle\xi_{k}, S q^{I_{k}}\right\rangle=1$.

Observation.

$$
I=2 I^{4}+2 I^{3}+I^{2}+I \longleftrightarrow \xi_{4}^{2} \xi_{3}^{2} \xi_{2} \xi_{1}
$$

$\square_{\text {Revisited Primitive Elements }}$

Note that $I^{k} \longleftrightarrow \xi_{k}$ by $\left\langle\xi_{k}, S q^{I_{k}}\right\rangle=1$.
Observation.

$$
I=2 I^{4}+2 I^{3}+I^{2}+I \longleftrightarrow \xi_{4}^{2} \xi_{3}^{2} \xi_{2} \xi_{1} .
$$

There is a bijection between admissible sequences and monomials in the ξ_{k} in a such way. (Here, $\xi_{0}=1$.)
$\{$ Primitives in $\mathcal{A}\} \quad \longleftrightarrow \quad\left\{\right.$ Indecomposables in $\left.\mathcal{A}^{*}\right\}$

$$
\begin{align*}
& Q_{1}:=S q^{1} \\
& Q_{2}:=\left[S q^{2}, S q^{1}\right] \\
& =S q^{2} S q^{1}+S q^{1} S q^{2} \\
& =S q^{2} S q^{1}+S q^{3} \\
& =\left[S q^{2}, Q_{1}\right] \\
& Q_{3}:=\left[S q^{4}, Q_{2}\right] \\
& Q_{n+1}:=\left[S q^{2^{2}}, Q_{n}\right]
\end{align*}
$$

Moreover, we have the following bijection.
$\{$ Indecomposables in $\mathcal{A}\} \quad \longleftrightarrow \quad$ \{Primitives in $\left.\mathcal{A}^{*}\right\}$

$$
S q^{2^{k}}
$$

Remark. The only primitive elements in \mathcal{A}^{*} are $\xi_{1}^{2^{k}}$. It's more simpler than primitives in \mathcal{A}.
$L_{\text {More properties of the Steenrod algebra } \mathcal{A}}$
$\square_{\text {Milnor Basis for } \mathcal{A}}$

Outline

1 The Structure of the Steenrod Algebra ■ The Steenrod Algebra \mathcal{A}

- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra - The Dual Steenrod Algebra \mathcal{A}^{*} - Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A}

- Revisited Primitive Elements

■ Milnor Basis for \mathcal{A}

- Other Remarks

One might wonder if we can use the dual basis of $\left\{\xi^{R}\right\}$ to study the Steenrod algebra instead of Cartan-Serre basis. It is called the Milnor basis.

Recall. $\left\{\xi^{R}\right\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^{*}. Now we can dualize back!
Definition. The dual basis of
$\left\{\xi^{R}\right\}, R=\left(r_{1}, r_{2}, \cdots, r_{k}, 0,0, \cdots\right) \in \mathcal{R}$, whose elements are denoted $\left\{S q^{R}\right\}$ or $S q\left(r_{1}, \cdots, r_{k}\right)$, is called the Milnor basis for the Steenrod algebra \mathcal{A}.

Recall. $\left\{\xi^{R}\right\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^{*}. Now we can dualize back!
Definition. The dual basis of
$\left\{\xi^{R}\right\}, R=\left(r_{1}, r_{2}, \cdots, r_{k}, 0,0, \cdots\right) \in \mathcal{R}$, whose elements are denoted $\left\{S q^{R}\right\}$ or $S q\left(r_{1}, \cdots, r_{k}\right)$, is called the Milnor basis for the Steenrod algebra \mathcal{A}.
Remark. 1) By difinition, $\left\langle\xi^{R}, S q^{R^{\prime}}\right\rangle=\left\{\begin{array}{ll}1 & \text { for } R=R^{\prime} \\ 0 & \text { Otherwise }\end{array}\right.$.
2) This is different from the Serre-Cartan basis. i.e., not the same as the composite $S q^{r_{1}} S q^{r_{2}} \cdots S q^{r_{k}}$.

Recall. $\left\{\xi^{R}\right\}, R \in \mathcal{R}$ forms a basis for \mathcal{A}^{*}. Now we can dualize back!
Definition. The dual basis of
$\left\{\xi^{R}\right\}, R=\left(r_{1}, r_{2}, \cdots, r_{k}, 0,0, \cdots\right) \in \mathcal{R}$, whose elements are denoted $\left\{S q^{R}\right\}$ or $S q\left(r_{1}, \cdots, r_{k}\right)$, is called the Milnor basis for the Steenrod algebra \mathcal{A}.
Remark. 1) By difinition, $\left\langle\xi^{R}, S q^{R^{\prime}}\right\rangle=\left\{\begin{array}{ll}1 & \text { for } R=R^{\prime} \\ 0 & \text { Otherwise }\end{array}\right.$.
2) This is different from the Serre-Cartan basis. i.e., not the same as the composite $S q^{r_{1}} S q^{r_{2}} \cdots S q^{r_{k}}$.

But, in some case, they are same.
Proposition. $S q(i, 0,0, \cdots)=S q^{i}$.

$\square_{\text {Milinor Basis for } \mathcal{A}}$

Formula.[6]

$$
S q\left(r_{1}, r_{2}, \cdots\right) S q\left(s_{1}, s_{2}, \cdots\right)=\sum_{X} S q\left(t_{1}, t_{2}, \cdots\right)
$$

where the sum is taken over all matrices $X=\left\langle x_{i j}\right\rangle$ satisfying:

$$
\sum_{i} x_{i j}=s_{j}, \quad \sum_{j} 2^{j} x_{i j}=r_{i}, \quad \prod_{h}\left(x_{h 0}, x_{h-1,1}, \cdots, x_{0 h}\right) \equiv 1(\bmod 2)
$$

where $\left(n_{1}, \cdots, n_{m}\right)$ is the multinomial coefficient $\left(n_{1}+\cdots+n_{m}\right)!/\left(n_{1}!\cdots n_{m}!\right)$. (The value of x_{00} is never used and may be taken to be 0 .) Each such allowable matrix produces a summand $S q\left(t_{1}, t_{2}, \cdots\right)$ given by

$$
t_{h}=\sum_{i+j=h} x_{i j} .
$$

Example. How to express $S q(4,2) S q(2,1)$ using the Milnor basis?
Let $R=(4,2), S=(2,1)$. Then we get

$$
\begin{aligned}
& x_{10}+2 x_{11}+4 x_{12}+\cdots=4=r_{1} \\
& x_{20}+2 x_{21}+4 x_{22}+\cdots=2=r_{2} \\
& x_{01}+x_{11}+x_{21}+\cdots=2=s_{1} \\
& x_{02}+x_{12}+x_{22}+\cdots=1=s_{2}
\end{aligned}
$$

For row 1,

$$
(4,0,0)<(2,1,0)<(0,2,0)<(0,0,1)
$$

For row 2,

$$
(2,0,0)<(0,1,0)
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
* & 2 & 1 \\
4 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)(4,2)(2,0,1) S q(6,3)=S q(6,3) \\
& \left(\begin{array}{lll}
* & 1 & 1 \\
2 & 1 & 0 \\
2 & 0 & 0
\end{array}\right)(2,1)(2,1,1) S q(3,4)=0 \\
& \left(\begin{array}{lll}
* & 0 & 1 \\
0 & 2 & 0 \\
2 & 0 & 0
\end{array}\right)(0,0)(2,2,1) S q(0,5)=0 \\
& \left(\begin{array}{lll}
* & 2 & 0 \\
0 & 0 & 1 \\
2 & 0 & 0
\end{array}\right)(0,2)(2,0,0)(0,1) S q(2,2,1)=S q(2,2,1) \\
& \left(\begin{array}{lll}
* & 1 & 1 \\
4 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)(4,1)(0,0,1)(1,0) S q(5,1,1)=S q(5,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
* & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)(2,0)(0,1,1)(1,0) S q(2,2,1)=0 \\
& \left(\begin{array}{lll}
* & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)(0,1)(0,0,0)(1,1) S q(1,0,2)=0
\end{aligned}
$$

Therefore, we find that

$$
S q(4,2) S q(2,1)=S q(6,3)+S q(2,2,1)+S q(5,1,1)
$$

$L_{\text {More properties of the Steenrod algebra } \mathcal{A}}$
-Other Remarks

Outline

1 The Structure of the Steenrod Algebra ■ The Steenrod Algebra \mathcal{A}

- Hopf Algebras

2 The Structure of the Dual Steenrod Algebra - The Dual Steenrod Algebra \mathcal{A}^{*} - Comultiplication φ^{*} for \mathcal{A}^{*}

3 More properties of the Steenrod algebra \mathcal{A}

- Revisited Primitive Elements
- Milnor Basis for \mathcal{A}

■ Other Remarks

Other Remarks

Further comments for the Steenrod algebra \mathcal{A}.
■ Every element of \mathcal{A} is nilpotent.

- There is a canonical anti-automorphism on \mathcal{A}.

These are in the chapter 7,8 of Milnor's paper.

- Other Remarks

Further comments for the Steenrod algebra \mathcal{A}.

- Every element of \mathcal{A} is nilpotent.
- There is a canonical anti-automorphism on \mathcal{A}.

These are in the chapter 7,8 of Milnor's paper.

An Influence of this work[5]

■ Milnor's clear description of the rich structure of the Steenrod algebra played a key role in the development of the Adams spectral sequence (Adams [1958, 1960]).

- The Adams spectral sequence and its generalizations by Novikov [1967] are the tools of choice in the study of stable homotopy theory.
■ A survey of this point of view is found in the book of Ravenel [2003].)
-John McCleary

- Other Remarks

Further comments for the Steenrod algebra \mathcal{A}.

- Every element of \mathcal{A} is nilpotent.
- There is a canonical anti-automorphism on \mathcal{A}.

These are in the chapter 7,8 of Milnor's paper.

An Influence of this work[5]

■ Milnor's clear description of the rich structure of the Steenrod algebra played a key role in the development of the Adams spectral sequence (Adams [1958, 1960]).

- The Adams spectral sequence and its generalizations by Novikov [1967] are the tools of choice in the study of stable homotopy theory.
■ A survey of this point of view is found in the book of Ravenel [2003].)
-John McCleary
Not the end. It is only the beginning.

R R．R．Bruner，An Admas Spectral Sequence Primer，（2009）．
囯 A．Gurjale，Personal Discussion with him，（2018）．
B．Guillou，Class Notes，（2017）．
© J．Milnor，The Steenrod Algebra and Its Dual，Annals of Mathematics，（1958）．

目 J．Milnor，J．McCleary，Homotopy，Homology，and Manifolds，American Mathematical Society，（2009）．

囦 K．G．Monks，Change of Basis，Monomial Realtions，and P Bases for the Steenrod Algebra，Journal of Pure and Applied Algebra，（1998），125，235－260 ．
R．Mosher，M．Tangora，Cohomology Operations and Applications in Homotopy Theory，American Mathematical Society，（2009）．

Other Remarks

嗇 D. Ravenel, Personal Discussion with him, (2018).
圆 Wikipedia, The Free Encyclopedia.
C. Woo, Steenrod algebra, A personal paper.

Other Remarks

Thank you for your attention!

[^0]: About 66,300 results (0.36 seconds)
 ${ }^{[P D F]}$ The Steenrod Algebra and Its Dual John Milnor The Annals of ... - Math www.math. warmeredobisaksen/Teaching/Courses/10W-7520/Steenrod.pdf v
 by J Milno - Cited by 599 - Related articles
 Jul 1, 2007 -4arestrank ALGEBRA AND ITS DUAL'. BY JOHN MILNOR. (Received May 15
 1957). 1. Summary. Let 9^{\star} denote the Steenrod algebra corrresponding to an odd prime p. (See $\$ 2$ for definitions.) Our basic results (\$3) is that $c^{\prime}!^{*}$ is a Hopf algebra. That is in addition to the product
 operation there is a

