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�
»
D�D

DpA`B,Dq bDpD1, Aq bDpD2, Bq

�
»
D�D

DpD1, Aq bDpD2, Bq bDpA`B,Dq

�
»
C
CppD1, D2q, pA,Bqq b F ppA,Bqq

where C :� D �D and F ppA,Bqq :� DpA`B,Dq
� F ppD1, D2qq by Proposition 3.2.25

� DpD1 `D2, Dq � pHD1`D2qD.
The following is proved by Mandell et al in [MMSS01, 22.1] in the case of

topological categories.

Proposition 3.3.15. Lax symmetric monoidal functors and commu-
tative algebras. The category of (commutative) monoids in rD,Vs is isomor-
phic to that of lax (symmetric) monoidal functors D Ñ V (Definition 2.6.19).

Proof Let R : D Ñ V be lax (symmetric) monoidal. Then, in the notation
of Definition 2.6.19, we have a unit map ι : 1Ñ Rp0q and a natural transfor-
mation µ from Rp� qbRp� q to Rp�` �q. By the definition of the tensored
Yoneda functor F 0 and the Yoneda functor 1 � H0 of Yoneda Lemma 2.2.10,
the maps ι and µ determine and are determined by the maps η : 1 Ñ R and
m : RbRÑ R of Definition 2.6.58 that give R the structure of a (commuta-
tive) monoid.

3.4 Simplicial sets and simplicial spaces

The category of simplicial sets is a convenient combinatorial substitute for that
of topological spaces and a widely used tool in homotopy theory. A thorough
modern account can be found in [GJ99].

3.4A The category of finite ordered sets
Let ∆ be the category of finite ordered sets rns � t0, 1, . . . , nu and order
preserving maps. It is an easy exercise to show that any such map can be
written as a composite of the following ones:


 the face maps di : rn � 1s Ñ rns for 0 ¤ i ¤ n, where di is the order
preserving monomorphism that does not have i in its image and


 the degeneracy maps si : rn � 1s Ñ rns for 0 ¤ i ¤ n, where si is the
order preserving epimorphism sending i and i� 1 to i.

These satisfy the simplicial identities:
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(i) didj � dj�1di for i   j

(ii) disj � sj�1di for i   j

(iii) disj � id for i � j and for i � j � 1

(iv) disj � sjdi�1 for i ¡ j � 1

(v) sisj � sjsi�1 for i ¡ j.

Definition 3.4.1. A simplicial set X is a functor ∆op Ñ Set. It is common
to denote its value on rns by Xn and call it the set of n-simplices of X.
A simplicial set X thus consists of a collection of sets Xn for n ¥ 0, along
with face maps di : Xn Ñ Xn�1 and degeneracy maps si : Xn Ñ Xn�1 for
0 ¤ i ¤ n satisfying the identities (i)–(v) above. A simplex is nondegenerate
if it is not in the image of any degeneracy map si. The category Set∆ of
simplicial sets is the category of such functors with natural transformations
as morphisms.

More generally a simplicial object X in a category C is a functor
X : ∆op Ñ C. It is common to write it as X
 to emphasize its simplicial
nature. We denote the category of simplicial objects in C by C∆.

Similarly a cosimplicial object Y in a category C, sometimes denoted
by Y 
, is a C valued functor on ∆ whose value on rns is denoted by Y n. It
consists of a collection of objects Y n in C for n ¥ 0, along with coface maps di :
Y n�1 Ñ Y n and codegeneracy maps si : Y n�1 Ñ Y n for 0 ¤ i ¤ n satisfying
identities dual to (i)–(v) above. We denote the category of cosimplicial objects
in C by C∆. In particular, a cosimplicial space is an object in the category
T op∆ of functors ∆Ñ T op.

For an object C in C, we denote by cs�pCq the constant simplicial object
at C, the functor ∆op Ñ C sending each object to C and each morphism to
1C . The constant cosimplicial object at C, cc�pXq is similarly defined.

Simplicial sets are ubiquitous in homotopy theory, but cosimplicial sets are
rarely considered. Cosimplicial spaces are more common.

Definition 3.4.2. The cosimplicial space ∆
, the cosimplicial standard
simplex, is the functor rns ÞÑ ∆n, where the standard n-simplex ∆n is the
space

∆n �
#
pt0, t1, . . . , tnq P Rn�1 : ti ¥ 0 and

¸
i

ti � 1

+
.

It is homeomorphic to the n-disk Dn. Its boundary B∆n is the set of points
with at least one coordinate equal to 0; it is homeomorphic to Sn�1. The ith
face ∆n

i for 0 ¤ i ¤ n is the set of points with ti � 0; it is homeomorphic to
Dn�1. The ith horn Λni is the complement of the interior of the ith face in
the boundary, the set of points with at least one vanishing coordinate and with
ti ¡ 0. It is also homeomorphic to Dn�1. It is an inner horn if 0   i   n;
otherwise it is an outer horn.
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The cosimplicial standard simplicial set ∆r
s (called the cosimplicial
standard simplex in [Hir03, Definition 15.1.15]) is the functor rns ÞÑ ∆rns,
where the simplicial set ∆rns (also called the standard n-simplex) is given
by

∆rnsk �∆prks, rnsq.
The singular chain complex for Y is obtained from the free abelian groups

on these sets by defining a boundary operator in terms of the face maps di.

Definition 3.4.3. The geometric realization |X| (or RepXq) of a sim-
plicial set X is the coend (Definition 2.4.5)

|X| :�
»
∆

Xn �∆n.

This means the topological space |X| is the quotient of the union of all of
the simplices of X, º

n

Xn �∆n,

obtained by gluing them together appropriately. Equivalently it is the quotient
of a similar disjoint union using only the nondegenerate simplices of X. In
particular the space ∆n is |∆rns| for the simplicial set ∆rns of Definition 3.4.2.

The geometric realization |X| of a simplicial space X is similarly
defined as a quotient of the union of the spaces Xn�∆n, whose topologies are
determined by those of the spaces Xn as well the spaces ∆n.

Remark 3.4.4. Following common practice, we are using the term “standard
n-simplex” for both the topological space ∆n and the simplicial set ∆rns of
Definition 3.4.2 in hopes that the distinction between the two will be clear from
the context. Note that |∆rns| � ∆n, so |∆r
s| � ∆
.

Remark 3.4.5. The realization of a bisimiplicial set. It follows from
the definitions that the coend »

∆

Xn �∆rns

is the simplicial set X itself. Now suppose that X is a bisimplicial set,
meaning a simplicial object in the category of simplicial sets or equivalently
set valued functor on ∆op�∆op. Then in the coend above, each Xn is itself a
simplicial set, and the coend is another simplicial set |X|. Hirschhorn [Hir03,
Definition 15.11.1] calls this the realization of the bisimplicial set X. In
[Hir03, Theorem 15.11.6] he shows that it is naturally isomorphic to the
diagonal simplicial set

∆op diag // ∆op �∆op X // Set. (3.4.6)
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Definition 3.4.7. The singular functor. For a topological space Y the sim-
plicial set SingpY q (the singular complex of Y ) is given by letting SingpY qn
be the set of all continuous maps ∆n Ñ Y . The face and degeneracy operators
are defined in terms of the coface and codegeneracy operators on ∆.

The following is proved by May in [May67, 14.1].

Proposition 3.4.8. |X| as a CW complex. The geometric realization |X|
of a simplicial set X is a CW complex with one n-cell for each nondegenerate
n-simplex of X.

Similarly we have a map º
n

Xn Ñ
»
∆

Xn,

which is the set π0|X| of path connected components of |X|. Thus collapsing
each ∆n to a point in Definition 3.4.3 gives a map

|X| �
»
∆

∆n �Xn
ε //

»
∆

Xn � π0|X|. (3.4.9)

A simplicial space X, i.e., a functor X : ∆op Ñ T op, has a geometric
realization |X| defined as in Definition 3.4.3, but with the not necessarily
discrete topology of Xn taken into account.
For a simplicial set X, |Xrns| is the n-skeleton of the CW complex |X|.
The following was proved by Kan in [Kan58a].

Proposition 3.4.10. The equivalence of Set∆ and T op and of their
pointed analogs. As a functor from Set∆ to T op, geometric realization of
Definition 3.4.3 is the left adjoint of Sing, the singular functor of Defini-
tion 3.4.7. The adjunction

| � | : Set∆ K
//
T op : Singoo

and its pointed analog are equivalences of categories.

In particular for an arbitrary space X one has a weak homotopy equivalence
|SingpXq| Ñ X whose source is a CW complex. For this reason, e.g., in [BK72]
(the “yellow monster”), the terms “space” and “simplicial set” are sometimes
used interchangeably.

Definition 3.4.11. Topological and simplicial categories.

(i) When V � pT op,�, �q, we say that a V-category is a topological cate-
gory. We denote the category of topological categories by CATT op and that
of small topological categories by CatT op.

(ii) When V � pT ,^, S0q, we say that a V-category is a pointed topological
category. We denote the category of pointed topological categories by CATT
and that of small pointed topological categories by CatT ..
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(iii) When V � pSet∆,�, �q, we say that a V-category is a simplicial cate-
gory. We denote the category of simplicial categories by CAT∆ and that
of small simplicial categories by Cat∆.

(iv) When V � pSet∆�,^, S0q, we say that a V-category is a pointed simpli-
cial category. We denote the category of simplicial categories by CAT∆�

and that of small pointed simplicial categories by Cat∆�.

We will see below in Corollary 5.6.16 that every topological model category
is also a simplicial one.
The adjunction

| � | : Set∆ K
//
T op : Singoo

leads to
| � | : CAT∆ K

//
CATTop : Singoo

(see Definition 3.4.11) in the obvious way. Given a simplicial category C, we
define the topological category |C| to have the same objects as C with mor-
phism spaces

|C|pX,Y q � |CpX,Y q|,
and given a topological category D, we define the simplicial category SingpDq
to have the same objects as D with simplicial morphisms sets

SingpDqpX,Y q � SingpDpX,Y qq.

3.4B The nerve of a small category
Definition 3.4.12. The nerve and classifying space of a small (topo-
logical) category. For a small category J , the nerve NpJq is the simplicial
set given by

NpJqn � Catprns, Jq
where rns here denotes the linearly ordered set t0, . . . , nu regarded as a category.
The classifying space BJ is the geometric realization of the nerve, |NpJq|.

For a small topological category D, the similarly defined nerve NpDq is
a simplicial space whose geometric realization (see Definition 3.4.3) is the
classifying space BD.

In other words, NpJqn is the set of diagrams in J of the form

j0 Ñ j1 Ñ � � � Ñ jn�1 Ñ jn. (3.4.13)

Of the n� 1 face maps NpJqn Ñ NpJqn�1, n� 1 are obtained by composing
each of the n�1 pairs of adjacent arrows above, and the other two are obtained


