$$
\begin{aligned}
& \cong \int_{\mathcal{D} \times \mathcal{D}} \mathcal{D}(A \oplus B, D) \otimes \mathcal{D}\left(D_{1}, A\right) \otimes \mathcal{D}\left(D_{2}, B\right) \\
& \cong \int_{\mathcal{D} \times \mathcal{D}} \mathcal{D}\left(D_{1}, A\right) \otimes \mathcal{D}\left(D_{2}, B\right) \otimes \mathcal{D}(A \oplus B, D) \\
& \cong \int_{\mathcal{C}} \mathcal{C}\left(\left(D_{1}, D_{2}\right),(A, B)\right) \otimes F((A, B)) \\
& \quad \text { where } \mathcal{C}:=\mathcal{D} \times \mathcal{D} \text { and } F((A, B)):=\mathcal{D}(A \oplus B, D) \\
& \cong F\left(\left(D_{1}, D_{2}\right)\right) \quad \text { by Proposition 3.2.25 } \\
& \cong \mathcal{D}\left(D_{1} \oplus D_{2}, D\right)=\left(\text { よ }^{D_{1} \oplus D_{2}}\right)_{D} .
\end{aligned}
$$

The following is proved by Mandell et al in [MMSS01, 22.1] in the case of topological categories.

Proposition 3.3.15. Lax symmetric monoidal functors and commutative algebras. The category of (commutative) monoids in $[\mathcal{D}, \mathcal{V}]$ is isomorphic to that of lax (symmetric) monoidal functors $\mathcal{D} \rightarrow \mathcal{V}$ (Definition 2.6.19).

Proof Let $R: \mathcal{D} \rightarrow \mathcal{V}$ be lax (symmetric) monoidal. Then, in the notation of Definition 2.6.19, we have a unit map $\iota: \mathbf{1} \rightarrow R(\mathbf{0})$ and a natural transformation μ from $R(-) \otimes R(-)$ to $R(-\oplus-)$. By the definition of the tensored Yoneda functor $F^{\mathbf{0}}$ and the Yoneda functor $\mathbf{1}=よ^{\mathbf{0}}$ of Yoneda Lemma 2.2.10, the maps ι and μ determine and are determined by the maps $\eta: \mathbf{1} \rightarrow R$ and $m: R \otimes R \rightarrow R$ of Definition 2.6.58 that give R the structure of a (commutative) monoid.

3.4 Simplicial sets and simplicial spaces

The category of simplicial sets is a convenient combinatorial substitute for that of topological spaces and a widely used tool in homotopy theory. A thorough modern account can be found in [GJ99].

3.4A The category of finite ordered sets

Let $\boldsymbol{\Delta}$ be the category of finite ordered sets $[n]=\{0,1, \ldots, n\}$ and order preserving maps. It is an easy exercise to show that any such map can be written as a composite of the following ones:

- the face maps $d_{i}:[n-1] \rightarrow[n]$ for $0 \leqslant i \leqslant n$, where d_{i} is the order preserving monomorphism that does not have i in its image and
- the degeneracy maps $s_{i}:[n+1] \rightarrow[n]$ for $0 \leqslant i \leqslant n$, where s_{i} is the order preserving epimorphism sending i and $i+1$ to i.

These satisfy the simplicial identities:
(i) $d_{i} d_{j}=d_{j-1} d_{i}$ for $i<j$
(ii) $d_{i} s_{j}=s_{j-1} d_{i}$ for $i<j$
(iii) $d_{i} s_{j}=i d$ for $i=j$ and for $i=j+1$
(iv) $d_{i} s_{j}=s_{j} d_{i-1}$ for $i>j+1$
(v) $s_{i} s_{j}=s_{j} s_{i-1}$ for $i>j$.

Definition 3.4.1. A simplicial set X is a functor $\boldsymbol{\Delta}^{o p} \rightarrow \mathcal{S e t}$. It is common to denote its value on $[n]$ by X_{n} and call it the set of n-simplices of X. A simplicial set X thus consists of a collection of sets X_{n} for $n \geqslant 0$, along with face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ and degeneracy maps $s_{i}: X_{n} \rightarrow X_{n+1}$ for $0 \leqslant i \leqslant n$ satisfying the identities (i)-(v) above. A simplex is nondegenerate if it is not in the image of any degeneracy map s_{i}. The category $\operatorname{Set}_{\boldsymbol{\Delta}}$ of simplicial sets is the category of such functors with natural transformations as morphisms.

More generally a simplicial object X in a category \mathcal{C} is a functor $X: \boldsymbol{\Delta}^{o p} \rightarrow \mathcal{C}$. It is common to write it as X_{\bullet} to emphasize its simplicial nature. We denote the category of simplicial objects in \mathcal{C} by $\mathcal{C}_{\boldsymbol{\Delta}}$.

Similarly a cosimplicial object Y in a category \mathcal{C}, sometimes denoted by Y^{\bullet}, is a \mathcal{C} valued functor on $\boldsymbol{\Delta}$ whose value on $[n]$ is denoted by Y^{n}. It consists of a collection of objects Y^{n} in \mathcal{C} for $n \geqslant 0$, along with coface maps d^{i} : $Y^{n-1} \rightarrow Y^{n}$ and codegeneracy maps $s^{i}: Y^{n+1} \rightarrow Y^{n}$ for $0 \leqslant i \leqslant n$ satisfying identities dual to (i)-(v) above. We denote the category of cosimplicial objects in \mathcal{C} by $\mathcal{C}^{\boldsymbol{\Delta}}$. In particular, a cosimplicial space is an object in the category \mathcal{T} op ${ }^{\boldsymbol{\Delta}}$ of functors $\boldsymbol{\Delta} \rightarrow \mathcal{T}$ op.

For an object C in \mathcal{C}, we denote by $c s_{*}(C)$ the constant simplicial object at C, the functor $\boldsymbol{\Delta}^{o p} \rightarrow \mathcal{C}$ sending each object to C and each morphism to 1_{C}. The constant cosimplicial object at $C, c c_{*}(X)$ is similarly defined.

Simplicial sets are ubiquitous in homotopy theory, but cosimplicial sets are rarely considered. Cosimplicial spaces are more common.

Definition 3.4.2. The cosimplicial space Δ^{\bullet}, the cosimplicial standard simplex, is the functor $[n] \mapsto \Delta^{n}$, where the standard n-simplex Δ^{n} is the space

$$
\Delta^{n}=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbf{R}^{n+1}: t_{i} \geqslant 0 \text { and } \sum_{i} t_{i}=1\right\}
$$

It is homeomorphic to the n-disk D^{n}. Its boundary $\partial \Delta^{n}$ is the set of points with at least one coordinate equal to 0 ; it is homeomorphic to S^{n-1}. The i th face Δ_{i}^{n} for $0 \leqslant i \leqslant n$ is the set of points with $t_{i}=0$; it is homeomorphic to D^{n-1}. The i th horn Λ_{i}^{n} is the complement of the interior of the ith face in the boundary, the set of points with at least one vanishing coordinate and with $t_{i}>0$. It is also homeomorphic to D^{n-1}. It is an inner horn if $0<i<n$; otherwise it is an outer horn.

The cosimplicial standard simplicial set $\Delta[\bullet]$ (called the cosimplicial standard simplex in [Hir03, Definition 15.1.15]) is the functor $[n] \mapsto \Delta[n]$, where the simplicial set $\Delta[n]$ (also called the standard n-simplex) is given by

$$
\Delta[n]_{k}=\boldsymbol{\Delta}([k],[n])
$$

The singular chain complex for Y is obtained from the free abelian groups on these sets by defining a boundary operator in terms of the face maps d_{i}.

Definition 3.4.3. The geometric realization $|X|$ (or $\mathcal{R} e(X)$) of a simplicial set X is the coend (Definition 2.4.5)

$$
|X|:=\int_{\Delta} X_{n} \times \Delta^{n}
$$

This means the topological space $|X|$ is the quotient of the union of all of the simplices of X,

$$
\coprod_{n} X_{n} \times \Delta^{n}
$$

obtained by gluing them together appropriately. Equivalently it is the quotient of a similar disjoint union using only the nondegenerate simplices of X. In particular the space Δ^{n} is $|\Delta[n]|$ for the simplicial set $\Delta[n]$ of Definition 3.4.2.

The geometric realization $|X|$ of a simplicial space X is similarly defined as a quotient of the union of the spaces $X_{n} \times \Delta^{n}$, whose topologies are determined by those of the spaces X_{n} as well the spaces Δ^{n}.

Remark 3.4.4. Following common practice, we are using the term"standard n-simplex" for both the topological space Δ^{n} and the simplicial set $\Delta[n]$ of Definition 3.4.2 in hopes that the distinction between the two will be clear from the context. Note that $|\Delta[n]| \cong \Delta^{n}$, so $|\Delta[\bullet]| \cong \Delta^{\bullet}$.

Remark 3.4.5. The realization of a bisimiplicial set. It follows from the definitions that the coend

$$
\int_{\Delta} X_{n} \times \Delta[n]
$$

is the simplicial set X itself. Now suppose that X is a bisimplicial set, meaning a simplicial object in the category of simplicial sets or equivalently set valued functor on $\boldsymbol{\Delta}^{o p} \times \boldsymbol{\Delta}^{o p}$. Then in the coend above, each X_{n} is itself a simplicial set, and the coend is another simplicial set $|X|$. Hirschhorn [Hir03, Definition 15.11.1] calls this the realization of the bisimplicial set X. In [Hir03, Theorem 15.11.6] he shows that it is naturally isomorphic to the diagonal simplicial set

$$
\begin{equation*}
\boldsymbol{\Delta}^{o p} \xrightarrow{\text { diag }} \boldsymbol{\Delta}^{o p} \times \boldsymbol{\Delta}^{o p} \xrightarrow{X} \text { Set. } \tag{3.4.6}
\end{equation*}
$$

Definition 3.4.7. The singular functor. For a topological space Y the simplicial set $\operatorname{Sing}(Y)$ (the singular complex of Y) is given by letting $\operatorname{Sing}(Y)_{n}$ be the set of all continuous maps $\Delta^{n} \rightarrow Y$. The face and degeneracy operators are defined in terms of the coface and codegeneracy operators on $\boldsymbol{\Delta}$.

The following is proved by May in [May67, 14.1].
Proposition 3.4.8. $|X|$ as a CW complex. The geometric realization $|X|$ of a simplicial set X is a CW complex with one n-cell for each nondegenerate n-simplex of X.

Similarly we have a map

$$
\coprod_{n} X_{n} \rightarrow \int_{\Delta} X_{n},
$$

which is the set $\pi_{0}|X|$ of path connected components of $|X|$. Thus collapsing each Δ^{n} to a point in Definition 3.4.3 gives a map

$$
\begin{equation*}
|X|=\int_{\Delta} \Delta^{n} \times X_{n} \xrightarrow{\epsilon} \int_{\Delta} X_{n}=\pi_{0}|X| \tag{3.4.9}
\end{equation*}
$$

A simplicial space X, i.e., a functor $X: \boldsymbol{\Delta}^{o p} \rightarrow \mathcal{T} o p$, has a geometric realization $|X|$ defined as in Definition 3.4.3, but with the not necessarily discrete topology of X_{n} taken into account.

For a simplicial set $X,\left|X^{[n]}\right|$ is the n-skeleton of the CW complex $|X|$.
The following was proved by Kan in [Kan58a].
Proposition 3.4.10. The equivalence of $\mathcal{S e t}_{\Delta}$ and $\mathcal{T} o p$ and of their pointed analogs. As a functor from $\mathcal{S e t}_{\boldsymbol{\Delta}}$ to \mathcal{T} op, geometric realization of Definition 3.4.3 is the left adjoint of Sing, the singular functor of Definition 3.4.7. The adjunction

$$
|\cdot|: \operatorname{Set}_{\Delta} \underset{\longleftarrow}{\rightleftarrows} \text { Top : Sing }
$$

and its pointed analog are equivalences of categories.
In particular for an arbitrary space X one has a weak homotopy equivalence $|\operatorname{Sing}(X)| \rightarrow X$ whose source is a CW complex. For this reason, e.g., in [BK72] (the "yellow monster"), the terms "space" and "simplicial set" are sometimes used interchangeably.

Definition 3.4.11. Topological and simplicial categories.

(i) When $\mathcal{V}=(\mathcal{T}$ op,$\times, *)$, we say that a \mathcal{V}-category is a topological category. We denote the category of topological categories by $\mathcal{C} A T_{\mathcal{T} \text { op }}$ and that of small topological categories by \mathcal{C} at $\mathcal{T}_{\text {op }}$.
(ii) When $\mathcal{V}=\left(\mathcal{T}, \wedge, S^{0}\right)$, we say that a \mathcal{V}-category is a pointed topological category. We denote the category of pointed topological categories by $\mathcal{C} A T_{\mathcal{T}}$ and that of small pointed topological categories by \mathcal{C} at \mathcal{T}..
(iii) When $\mathcal{V}=\left(\operatorname{Set}_{\boldsymbol{\Delta}}, \times, *\right)$, we say that a \mathcal{V}-category is a simplicial category. We denote the category of simplicial categories by $\mathcal{C} A T_{\Delta}$ and that of small simplicial categories by \mathcal{C} at $\boldsymbol{\Delta}_{\boldsymbol{\Delta}}$.
(iv) When $\mathcal{V}=\left(\operatorname{Set}_{\Delta *}, \wedge, S^{0}\right)$, we say that a \mathcal{V}-category is a pointed simplicial category. We denote the category of simplicial categories by $\mathcal{C} A T_{\Delta *}$ and that of small pointed simplicial categories by \mathcal{C} at $\boldsymbol{\Delta t}^{*}$.

We will see below in Corollary 5.6.16 that every topological model category is also a simplicial one.

The adjunction

$$
|\cdot|: \operatorname{Set}_{\Delta} \underset{\longleftarrow}{\perp} \text { Top }: \operatorname{Sing}
$$

leads to

$$
|\cdot|: \mathcal{C} A T_{\Delta} \underset{\rightleftarrows}{ } \mathcal{C} A T_{\text {Top }}: \text { Sing }
$$

(see Definition 3.4.11) in the obvious way. Given a simplicial category \mathcal{C}, we define the topological category $|\mathcal{C}|$ to have the same objects as \mathcal{C} with morphism spaces

$$
|\mathcal{C}|(X, Y)=|\mathcal{C}(X, Y)|
$$

and given a topological category \mathcal{D}, we define the simplicial category $\operatorname{Sing}(\mathcal{D})$ to have the same objects as \mathcal{D} with simplicial morphisms sets

$$
\operatorname{Sing}(\mathcal{D})(X, Y)=\operatorname{Sing}(\mathcal{D}(X, Y))
$$

3.4B The nerve of a small category

Definition 3.4.12. The nerve and classifying space of a small (topological) category. For a small category J, the nerve $N(J)$ is the simplicial set given by

$$
N(J)_{n}=\mathcal{C} a t([n], J)
$$

where $[n]$ here denotes the linearly ordered set $\{0, \ldots, n\}$ regarded as a category. The classifying space $B J$ is the geometric realization of the nerve, $|N(J)|$.

For a small topological category D, the similarly defined nerve $N(D)$ is a simplicial space whose geometric realization (see Definition 3.4.3) is the classifying space $B D$.

In other words, $N(J)_{n}$ is the set of diagrams in J of the form

$$
\begin{equation*}
j_{0} \rightarrow j_{1} \rightarrow \cdots \rightarrow j_{n-1} \rightarrow j_{n} \tag{3.4.13}
\end{equation*}
$$

Of the $n+1$ face maps $N(J)_{n} \rightarrow N(J)_{n-1}, n-1$ are obtained by composing each of the $n-1$ pairs of adjacent arrows above, and the other two are obtained

