3.4 Simplicial sets and simplicial spaces

$$\begin{split} &\cong \int_{\mathcal{D} \times \mathcal{D}} \mathcal{D}(A \oplus B, D) \otimes \mathcal{D}(D_1, A) \otimes \mathcal{D}(D_2, B) \\ &\cong \int_{\mathcal{D} \times \mathcal{D}} \mathcal{D}(D_1, A) \otimes \mathcal{D}(D_2, B) \otimes \mathcal{D}(A \oplus B, D) \\ &\cong \int_{\mathcal{C}} \mathcal{C}((D_1, D_2), (A, B)) \otimes F((A, B)) \\ & \text{where } \mathcal{C} := \mathcal{D} \times \mathcal{D} \text{ and } F((A, B)) := \mathcal{D}(A \oplus B, D) \\ &\cong F((D_1, D_2)) \qquad \text{by Proposition 3.2.25} \\ &\cong \mathcal{D}(D_1 \oplus D_2, D) = (\downarrow^{D_1 \oplus D_2})_D. \end{split}$$

The following is proved by Mandell $et \ al$ in [MMSS01, 22.1] in the case of topological categories.

Proposition 3.3.15. Lax symmetric monoidal functors and commutative algebras. The category of (commutative) monoids in $[\mathcal{D}, \mathcal{V}]$ is isomorphic to that of lax (symmetric) monoidal functors $\mathcal{D} \to \mathcal{V}$ (Definition 2.6.19).

Proof Let $R : \mathcal{D} \to \mathcal{V}$ be lax (symmetric) monoidal. Then, in the notation of Definition 2.6.19, we have a unit map $\iota : \mathbf{1} \to R(\mathbf{0})$ and a natural transformation μ from $R(-) \otimes R(-)$ to $R(-\oplus -)$. By the definition of the tensored Yoneda functor $F^{\mathbf{0}}$ and the Yoneda functor $\mathbf{1} = \mathbf{1}^{\mathbf{0}}$ of Yoneda Lemma 2.2.10, the maps ι and μ determine and are determined by the maps $\eta : \mathbf{1} \to R$ and $m : R \otimes R \to R$ of Definition 2.6.58 that give R the structure of a (commutative) monoid.

3.4 Simplicial sets and simplicial spaces

The category of simplicial sets is a convenient combinatorial substitute for that of topological spaces and a widely used tool in homotopy theory. A thorough modern account can be found in [GJ99].

3.4A The category of finite ordered sets

Let Δ be the category of finite ordered sets $[n] = \{0, 1, ..., n\}$ and order preserving maps. It is an easy exercise to show that any such map can be written as a composite of the following ones:

- the face maps $d_i : [n-1] \to [n]$ for $0 \le i \le n$, where d_i is the order preserving monomorphism that does not have i in its image and
- the degeneracy maps $s_i : [n+1] \rightarrow [n]$ for $0 \le i \le n$, where s_i is the order preserving epimorphism sending i and i + 1 to i.

These satisfy the simplicial identities:

241

Enriched category theory

- (i) $d_i d_j = d_{j-1} d_i$ for i < j
- (ii) $d_i s_j = s_{j-1} d_i$ for i < j
- (iii) $d_i s_j = id$ for i = j and for i = j + 1
- (iv) $d_i s_j = s_j d_{i-1}$ for i > j+1
- (v) $s_i s_j = s_j s_{i-1}$ for i > j.

Definition 3.4.1. A simplicial set X is a functor $\Delta^{op} \to Set$. It is common to denote its value on [n] by X_n and call it the set of n-simplices of X. A simplicial set X thus consists of a collection of sets X_n for $n \ge 0$, along with face maps $d_i : X_n \to X_{n-1}$ and degeneracy maps $s_i : X_n \to X_{n+1}$ for $0 \le i \le n$ satisfying the identities (i)-(v) above. A simplex is nondegenerate if it is not in the image of any degeneracy map s_i . The category Set_Δ of simplicial sets is the category of such functors with natural transformations as morphisms.

More generally a simplicial object X in a category C is a functor $X : \Delta^{op} \to C$. It is common to write it as X_{\bullet} to emphasize its simplicial nature. We denote the category of simplicial objects in C by C_{Δ} .

Similarly a cosimplicial object Y in a category C, sometimes denoted by Y^{\bullet} , is a C valued functor on Δ whose value on [n] is denoted by Y^n . It consists of a collection of objects Y^n in C for $n \ge 0$, along with coface maps d^i : $Y^{n-1} \to Y^n$ and codegeneracy maps $s^i : Y^{n+1} \to Y^n$ for $0 \le i \le n$ satisfying identities dual to (i)-(v) above. We denote the category of cosimplicial objects in C by C^{Δ} . In particular, a cosimplicial space is an object in the category $\mathcal{T}op^{\Delta}$ of functors $\Delta \to \mathcal{T}op$.

For an object C in C, we denote by $cs_*(C)$ the constant simplicial object at C, the functor $\Delta^{op} \to C$ sending each object to C and each morphism to 1_C . The constant cosimplicial object at C, $cc_*(X)$ is similarly defined.

Simplicial sets are ubiquitous in homotopy theory, but cosimplicial sets are rarely considered. Cosimplicial spaces are more common.

Definition 3.4.2. The cosimplicial space Δ^{\bullet} , the cosimplicial standard simplex, is the functor $[n] \mapsto \Delta^n$, where the standard *n*-simplex Δ^n is the space

$$\Delta^n = \left\{ (t_0, t_1, \dots, t_n) \in \mathbf{R}^{n+1} \colon t_i \ge 0 \text{ and } \sum_i t_i = 1 \right\}.$$

It is homeomorphic to the n-disk D^n . Its **boundary** $\partial \Delta^n$ is the set of points with at least one coordinate equal to 0; it is homeomorphic to S^{n-1} . The ith **face** Δ_i^n for $0 \leq i \leq n$ is the set of points with $t_i = 0$; it is homeomorphic to D^{n-1} . The ith horn Λ_i^n is the complement of the interior of the ith face in the boundary, the set of points with at least one vanishing coordinate and with $t_i > 0$. It is also homeomorphic to D^{n-1} . It is an **inner horn** if 0 < i < n; otherwise it is an **outer horn**.

242

The cosimplicial standard simplicial set $\Delta[\bullet]$ (called the cosimplicial standard simplex in [Hir03, Definition 15.1.15]) is the functor $[n] \mapsto \Delta[n]$, where the simplicial set $\Delta[n]$ (also called the standard *n*-simplex) is given by

$$\Delta[n]_k = \mathbf{\Delta}([k], [n]).$$

The singular chain complex for Y is obtained from the free abelian groups on these sets by defining a boundary operator in terms of the face maps d_i .

Definition 3.4.3. The geometric realization |X| (or $\mathcal{R}e(X)$) of a simplicial set X is the coend (*Definition 2.4.5*)

$$|X| := \int_{\Delta} X_n \times \Delta^n.$$

This means the topological space |X| is the quotient of the union of all of the simplices of X,

$$\coprod_n X_n \times \Delta^n,$$

obtained by gluing them together appropriately. Equivalently it is the quotient of a similar disjoint union using only the nondegenerate simplices of X. In particular the space Δ^n is $|\Delta[n]|$ for the simplicial set $\Delta[n]$ of Definition 3.4.2.

The geometric realization |X| of a simplicial space X is similarly defined as a quotient of the union of the spaces $X_n \times \Delta^n$, whose topologies are determined by those of the spaces X_n as well the spaces Δ^n .

Remark 3.4.4. Following common practice, we are using the term "standard *n*-simplex" for both the topological space Δ^n and the simplicial set $\Delta[n]$ of Definition 3.4.2 in hopes that the distinction between the two will be clear from the context. Note that $|\Delta[n]| \cong \Delta^n$, so $|\Delta[\bullet]| \cong \Delta^{\bullet}$.

Remark 3.4.5. The realization of a bisimiplicial set. It follows from the definitions that the coend

$$\int_{\Delta} X_n \times \Delta[n]$$

is the simplicial set X itself. Now suppose that X is a **bisimplicial set**, meaning a simplicial object in the category of simplicial sets or equivalently set valued functor on $\Delta^{op} \times \Delta^{op}$. Then in the coend above, each X_n is itself a simplicial set, and the coend is another simplicial set |X|. Hirschhorn [Hir03, Definition 15.11.1] calls this the **realization** of the bisimplicial set X. In [Hir03, Theorem 15.11.6] he shows that it is naturally isomorphic to the diagonal simplicial set

$$\Delta^{op} \xrightarrow{diag} \Delta^{op} \times \Delta^{op} \xrightarrow{X} \mathcal{S}et. \tag{3.4.6}$$

Definition 3.4.7. The singular functor. For a topological space Y the simplicial set Sing(Y) (the singular complex of Y) is given by letting $Sing(Y)_n$ be the set of all continuous maps $\Delta^n \to Y$. The face and degeneracy operators are defined in terms of the coface and codegeneracy operators on Δ .

The following is proved by May in [May67, 14.1].

Proposition 3.4.8. |X| as a CW complex. The geometric realization |X| of a simplicial set X is a CW complex with one n-cell for each nondegenerate *n*-simplex of X.

Similarly we have a map

$$\coprod_n X_n \to \int_{\Delta} X_n,$$

which is the set $\pi_0|X|$ of path connected components of |X|. Thus collapsing each Δ^n to a point in Definition 3.4.3 gives a map

$$|X| = \int_{\Delta} \Delta^n \times X_n \xrightarrow{\epsilon} \int_{\Delta} X_n = \pi_0 |X|.$$
(3.4.9)

A simplicial space X, i.e., a functor $X : \Delta^{op} \to \mathcal{T}op$, has a geometric realization |X| defined as in Definition 3.4.3, but with the not necessarily discrete topology of X_n taken into account.

For a simplicial set X, $|X^{[n]}|$ is the *n*-skeleton of the CW complex |X|.

The following was proved by Kan in [Kan58a].

Proposition 3.4.10. The equivalence of Set_{Δ} and $\mathcal{T}op$ and of their pointed analogs. As a functor from Set_{Δ} to $\mathcal{T}op$, geometric realization of Definition 3.4.3 is the left adjoint of Sing, the singular functor of Definition 3.4.7. The adjunction

$$|\cdot|: Set_{\Delta} \xrightarrow{\perp} Top: Sing$$

and its pointed analog are equivalences of categories.

In particular for an arbitrary space X one has a weak homotopy equivalence $|Sing(X)| \to X$ whose source is a CW complex. For this reason, e.g., in [BK72] (the "yellow monster"), the terms "space" and "simplicial set" are sometimes used interchangeably.

Definition 3.4.11. Topological and simplicial categories.

- (i) When V = (Top, ×, *), we say that a V-category is a topological category. We denote the category of topological categories by CAT_{Top} and that of small topological categories by Cat_{Top}.
- (ii) When $\mathcal{V} = (\mathcal{T}, \wedge, S^0)$, we say that a \mathcal{V} -category is a **pointed topological** category. We denote the category of pointed topological categories by $CAT_{\mathcal{T}}$ and that of small pointed topological categories by $Cat_{\mathcal{T}}$.

- (iii) When $\mathcal{V} = (Set_{\Delta}, \times, *)$, we say that a \mathcal{V} -category is a simplicial category. We denote the category of simplicial categories by CAT_{Δ} and that of small simplicial categories by Cat_{Δ} .
- (iv) When $\mathcal{V} = (Set_{\Delta*}, \wedge, S^0)$, we say that a \mathcal{V} -category is a **pointed simplicial category**. We denote the category of simplicial categories by $CAT_{\Delta*}$ and that of small pointed simplicial categories by $Cat_{\Delta*}$.

We will see below in Corollary 5.6.16 that every topological model category is also a simplicial one.

The adjunction

$$|\cdot|: \mathcal{S}et_{\Delta} \xrightarrow{} \mathcal{T}op: \mathcal{S}ing$$

leads to

$$|\cdot|: CAT_{\Delta} \xrightarrow{} CAT_{Top}: Sing$$

(see Definition 3.4.11) in the obvious way. Given a simplicial category C, we define the topological category |C| to have the same objects as C with morphism spaces

$$|\mathcal{C}|(X,Y) = |\mathcal{C}(X,Y)|,$$

and given a topological category \mathcal{D} , we define the simplicial category $Sing(\mathcal{D})$ to have the same objects as \mathcal{D} with simplicial morphisms sets

$$Sing(\mathcal{D})(X,Y) = Sing(\mathcal{D}(X,Y)).$$

3.4B The nerve of a small category

Definition 3.4.12. The nerve and classifying space of a small (topological) category. For a small category J, the nerve N(J) is the simplicial set given by

$$N(J)_n = Cat([n], J)$$

where [n] here denotes the linearly ordered set $\{0, ..., n\}$ regarded as a category. The classifying space BJ is the geometric realization of the nerve, |N(J)|.

For a small topological category D, the similarly defined nerve N(D) is a simplicial space whose geometric realization (see Definition 3.4.3) is the classifying space BD.

In other words, $N(J)_n$ is the set of diagrams in J of the form

$$j_0 \to j_1 \to \dots \to j_{n-1} \to j_n.$$
 (3.4.13)

Of the n + 1 face maps $N(J)_n \to N(J)_{n-1}$, n - 1 are obtained by composing each of the n-1 pairs of adjacent arrows above, and the other two are obtained