December 19, 2022

Name:

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature:

\qquad
Problems begin below, and there are two blank pages to write your answer on following each of three problems.

1. Infinite graph question. (40 Points.) Consider the infinite graph K in \mathbf{R}^{3} with vertex set

$$
\left\{(i, j, k) \in \mathbf{R}^{3}: i, j, k \in \mathbf{Z}\right\} \cup\left\{\left(\frac{2 i+1}{2}, \frac{2 j+1}{2}, \frac{2 k+1}{2}\right) \in \mathbf{R}^{3}: i, j, k \in \mathbf{Z}\right\}
$$

in which each vertex of the form (x, y, z) is connected by an edge to the eight neighboring vertices

$$
\left\{\left(x \pm \frac{1}{2}, y \pm \frac{1}{2}, y \pm \frac{1}{2}\right)\right\}
$$

Thus the center of each edge is a point in the set

$$
\left\{\left(i \pm \frac{1}{4}, j \pm \frac{1}{4}, k \pm \frac{1}{4}\right): i, j, k \in \mathbf{Z}\right\} .
$$

The two endpoints for such an edge with a given combination of signs are

$$
(i, j, k) \quad \text { and } \quad\left(i \pm \frac{1}{2}, j \pm \frac{1}{2}, k \pm \frac{1}{2}\right)
$$

with the same combination of signs in the second point.
Let L be the set of points within ϵ of K, for some positive $\epsilon<1 / 4$. It is a noncompact compact 3-manifold with boundary in \mathbf{R}^{3}. Its boundary M is a noncompact surface.
The group $G=\mathbf{Z}^{3}$ acts freely \mathbf{R}^{3} by translation, with $(i, j, k) \in \mathbf{Z}^{3}$ sending $(x, y, z) \in \mathbf{R}^{3}$ to $(x+i, y+j, z+k)$. Hence it acts freely on both K and M. Describe the finite orbit graph K / G and find the genus of the compact orbit surface M / G. Both K / G and M / G are contained in the 3-dimensional torus $\mathbf{R}^{3} / G \cong S^{1} \times S^{1} \times S^{1}$, which is also a quotient of the unit cube.

Workspace for problem 1 continued.

Workspace for problem 1 continued.
2. Complete bipartite graph question. (30 points.) A bipartite graph is one in which the vertices fall into two disjoint sets, say red and blue vertices, and each edge connects a red vertex to a blue one. It is complete if there is a unique edge connecting each red vertex to each blue one.

Let $K_{m, n}$ denote the complete bipartite graph with m red vertices and n blue ones. Hence it has $m n$ edges.
Show that if $K_{m, n}$ can be embedded in a closed oriented surface of genus g, then

$$
g \geq \frac{(m-2)(n-2)}{4} .
$$

In particular, $g>0$, so the graph is nonplanar, for $m=n=3 . K_{3,3}$ is known as the houses and utilities graph.

Workspace for problem 2 continued.

Workspace for problem 2 continued.
3. (30 POINTS) Covering space question. Let $\zeta=e^{2 \pi i / 3}$, let \tilde{X} be the complement of the set

$$
\left\{z_{0}=0, z_{1}=1, z_{2}=\zeta, z_{3}=\zeta^{2}\right\}
$$

in \mathbf{C} (the complex numbers), and let X be the complement of the set $\{0,1\}$ in \mathbf{C}. Let $p: \tilde{X} \rightarrow X$ be defined by $p(z)=z^{3}$. Using the point $\tilde{x}_{0}=1 / 2 \in \tilde{X}$ as a base point, we define four closed paths ω_{k} for $0 \leq k \leq 3$ in \tilde{X} as follows:

$$
\begin{aligned}
& \omega_{0}(t)=e^{2 \pi i t} / 2 \\
& \omega_{1}(t)=1-\left(e^{2 \pi i t} / 2\right) \\
& \omega_{2}(t)= \begin{cases}e^{2 \pi i t} / 2 & \text { for } 0 \leq t \leq 1 \\
\zeta\left(1-\left(e^{6 \pi i t} / 2\right)\right) & \text { for } 0 \leq t \leq 1 / 3 \\
e^{-2 \pi i t} / 2 & \text { for } 1 / 3 \leq t \leq 2 / 3\end{cases} \\
& \omega_{3}(t)= \begin{cases}e^{-2 \pi i t} / 2 & \text { for } 2 / 3 \leq t \leq 1 \\
\zeta^{2}\left(1-\left(e^{6 \pi i t} / 2\right)\right) & \text { for } 1 / 3 \leq t \leq 2 / 3 \\
e^{2 \pi i t} / 2 & \text { for } 2 / 3 \leq t \leq 1\end{cases}
\end{aligned}
$$

(I suggest you draw a picture of these paths.)
(a) (5 POINTS) Find $\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ and describe the elements in it represented by the 4 closed paths ω_{k}.
(b) (5 POINTS) Show that p is a 3 -sheeted covering.
(c) (5 POINTS) Let $x_{0}=p\left(\tilde{x}_{0}\right) \in X$ and find $\pi_{1}\left(X, x_{0}\right)$. Describe the elements in it represented by the 4 closed paths $p \omega_{k}$. You may assume that the image under p of a circle of radius $1 / 2$ about a cube root of unity is a simple closed curve going counterclockwise around 1 and not going around 0 .
(d) (5 POINTS) Find a homomorphism $\varphi: \pi_{1}\left(X, x_{0}\right) \rightarrow C_{3}$ whose kernel contains $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$.

Workspace for problem 3 continued.

Workspace for problem 3 continued.

