December 19, 2022

Name:

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature:

\qquad
Problems begin below, and there are two blank pages to write your answer on following each of three problems.

1. Infinite graph question. (40 Points.) Consider the infinite graph K in \mathbf{R}^{3} with vertex set

$$
\left\{(i, j, k) \in \mathbf{R}^{3}: i, j, k \in \mathbf{Z}\right\} \cup\left\{\left(\frac{2 i+1}{2}, \frac{2 j+1}{2}, \frac{2 k+1}{2}\right) \in \mathbf{R}^{3}: i, j, k \in \mathbf{Z}\right\}
$$

in which each vertex of the form (x, y, z) is connected by an edge to the eight neighboring vertices

$$
\left\{\left(x \pm \frac{1}{2}, y \pm \frac{1}{2}, y \pm \frac{1}{2}\right)\right\}
$$

Thus the center of each edge is a point in the set

$$
\left\{\left(i \pm \frac{1}{4}, j \pm \frac{1}{4}, k \pm \frac{1}{4}\right): i, j, k \in \mathbf{Z}\right\} .
$$

The two endpoints for such an edge with a given combination of signs are

$$
(i, j, k) \quad \text { and } \quad\left(i \pm \frac{1}{2}, j \pm \frac{1}{2}, k \pm \frac{1}{2}\right)
$$

with the same combination of signs in the second point.
Let L be the set of points within ϵ of K, for some positive $\epsilon<1 / 4$. It is a noncompact compact 3-manifold with boundary in \mathbf{R}^{3}. Its boundary M is a noncompact surface.
The group $G=\mathbf{Z}^{3}$ acts freely \mathbf{R}^{3} by translation, with $(i, j, k) \in \mathbf{Z}^{3}$ sending $(x, y, z) \in \mathbf{R}^{3}$ to $(x+i, y+j, z+k)$. Hence it acts freely on both K and M. Describe the finite orbit graph K / G and find the genus of the compact orbit surface M / G. Both K / G and M / G are contained in the 3-dimensional torus $\mathbf{R}^{3} / G \cong S^{1} \times S^{1} \times S^{1}$, which is also a quotient of the unit cube.

Solution: The orbit graph has two vertices, the orbits of

$$
(0,0,0) \quad \text { and } \quad\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) .
$$

They are connected to each other by 8 edges, the orbits of the ones centered at the points

$$
\left(\pm \frac{1}{4}, \pm \frac{1}{4}, \pm \frac{1}{4}\right)
$$

hence $V=2$ and $E=8$. Thus the surface is fiormed by taking two copies of S^{2} and attaching them with 8 tubes. Each tube, and each cicle where it meets either sphere, has Euler characteristic 0 . It follows that the Euler characteristic of the surface is the same as that of the two spheres with 8 disks removed from each. Hence it is

$$
2(2-8)=-12=2-2 g,
$$

so the genus g is 7 .
Suppose we take the cube $[-1 / 2,1 / 2]^{3}$ as a fundamental domain for the group action on \mathbf{R}^{3}. Then the point $(0,0,0)$ is its center and each vertex maps to the orbit of $(1 / 2,1 / 2,1 / 2)$. The edges of K / G correspond to the 8 lines connecting the center of the cube to the cube's vertices.

Workspace for problem 1 continued.

Workspace for problem 1 continued.
2. Complete bipartite graph question. (30 points.) A bipartite graph is one in which the vertices fall into two disjoint sets, say red and blue vertices, and each edge connects a red vertex to a blue one. It is complete if there is a unique edge connecting each red vertex to each blue one.
Let $K_{m, n}$ denote the complete bipartite graph with m red vertices and n blue ones. Hence it has $m n$ edges.
Show that if $K_{m, n}$ can be embedded in a closed oriented surface of genus g, then

$$
g \geq \frac{(m-2)(n-2)}{4} .
$$

In particular, $g>0$, so the graph is nonplanar, for $m=n=3 . K_{3,3}$ is known as the houses and utilities graph.

Solution: If $K_{m, n}$ is embedded in such a surface, we get a polyhedron with $V=m+n$ vertices, $E=m n$ edges and F faces. If we add the number of edges on each face, we get $2 m n$ since each edge is shared by two faces two faces. Each face must have at least four edges, so $2 m n \geq 4 F$ and $F \leq m n / 2$. Thus the Euler characteristic of the surface is

$$
\begin{aligned}
2-2 g & =V-E+F=m+n-m n+F \\
& \leq m+n-m n+m n / 2=m+n-m n / 2 \\
2-m+n+m n / 2 & \leq 2 g \\
g & \geq \frac{2-m+n+m n / 2}{2}=\frac{(m-2)(n-2)}{4}
\end{aligned}
$$

Workspace for problem 2 continued.

Workspace for problem 2 continued.
3. (30 POINTS) Covering space question. Let $\zeta=e^{2 \pi i / 3}$, let \tilde{X} be the complement of the set

$$
\left\{z_{0}=0, z_{1}=1, z_{2}=\zeta, z_{3}=\zeta^{2}\right\}
$$

in \mathbf{C} (the complex numbers), and let X be the complement of the set $\{0,1\}$ in \mathbf{C}. Let $p: \tilde{X} \rightarrow X$ be defined by $p(z)=z^{3}$. Using the point $\tilde{x}_{0}=1 / 2 \in \tilde{X}$ as a base point, we define four closed paths ω_{k} for $0 \leq k \leq 3$ in \tilde{X} as follows:

$$
\begin{aligned}
& \omega_{0}(t)=e^{2 \pi i t} / 2 \\
& \omega_{1}(t)=1-\left(e^{2 \pi i t} / 2\right) \\
& \omega_{2}(t)= \begin{cases}e^{2 \pi i t} / 2 & \text { for } 0 \leq t \leq 1 \\
\zeta\left(1-\left(e^{6 \pi i t} / 2\right)\right) & \text { for } 0 \leq t \leq 1 / 3 \\
e^{-2 \pi i t} / 2 & \text { for } 1 / 3 \leq t \leq 2 / 3\end{cases} \\
& \omega_{3}(t)= \begin{cases}e^{-2 \pi i t} / 2 & \text { for } 2 / 3 \leq t \leq 1 \\
\zeta^{2}\left(1-\left(e^{6 \pi i t} / 2\right)\right) & \text { for } 1 / 3 \leq t \leq 1 / 3 \\
e^{2 \pi i t} / 2 & \text { for } 2 / 3 \leq t \leq 1\end{cases}
\end{aligned}
$$

(I suggest you draw a picture of these paths.)
(a) (5 points) Find $\pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ and describe the elements in it represented by the 4 closed paths ω_{k}.

Solution: Since \tilde{X} is the complement of 4 points in the plane, its π_{1} is the free group on 4 generators, say a_{k} for $0 \leq k \leq 3$. The four paths each go around one of them in a counterclockwise direction, so each ω_{k} represents one of the generators a_{k}.
(b) (5 POINTS) Show that p is a 3 -sheeted covering.

Solution: The preimage of every every point in X is a set of three points in \tilde{X}.
(c) (5 points) Let $x_{0}=p\left(\tilde{x}_{0}\right) \in X$ and find $\pi_{1}\left(X, x_{0}\right)$. Describe the elements in it represented by the 4 closed paths $p \omega_{k}$. You may assume that the image under p of a circle of radius $1 / 2$ about a cube root of unity is a simple closed curve going counterclockwise around 1 and not going around 0 .

Solution: Since X is the complement of 2 points in the plane, its π_{1} is the free group on 2 generators, say x and y corresponding to 0 and 1 . Then drawing suitable pictures shows that

$$
\begin{aligned}
& p\left(a_{0}\right)=x^{3} \\
& p\left(a_{1}\right)=y \\
& p\left(a_{2}\right)=x y x^{-1} \\
& p\left(a_{3}\right)=x^{-1} y x
\end{aligned}
$$

(d) (5 POINTS) Find a homomorphism $\varphi: \pi_{1}\left(X, x_{0}\right) \rightarrow C_{3}$ whose kernel contains $p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$.

Solution: Let $\gamma \in C_{3}$ be a generator, and define φ by $\varphi(x)=\gamma$ and $\varphi(y)=e$.

Workspace for problem 3 continued.

Workspace for problem 3 continued.

