Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature:

\qquad
SCAN THIS PAGE WITH THE HONOR PLEDGE SIGNED AND UPLOAD IT WITH YOUR EXAM

Use a separate page (or pages) for each problem. Show all of your work.

1. Fermat curve question. (20 POINTS) Consider the subset V_{d} of the complex projective plane $\mathbf{C} P^{2}$ defined by the equation

$$
x^{d}+y^{d}+z^{d}=0 \quad \text { for a positive integer } d .
$$

It is known as the Fermat curve of degree d. Define a map $f: V_{d} \rightarrow \mathbf{C} P^{1}$ by

$$
[x, y, z] \mapsto[x, y] .
$$

A map of this type is called a branched covering. It does not extend to all of $\mathbf{C} P^{2}$ because it is not defined on the point $[0,0,1]$.
(a) Find and count the points in the target whose preimage is not a set of d points in V_{d}. Let $K \subseteq \mathbf{C} P^{1}$ denote the set of these points. They are called Branch points.
(b) You may assume that the restriction of f to the preimage of $\mathbf{C} P^{1}-K$ is a d-fold covering of $\mathbf{C} P^{1}-K$. Use this fact to find the Euler characteristic of V_{d}. You may also use the fact that under suitable hypotheses, $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$.
2. Complete bipartite graph question. 20 Points A bipartite graph is one in which the vertices fall into two disjoint sets, say red and blue vertices, and each edge connects a red vertex to a blue one. It is complete if there is a unique edge connecting each red vertex to each blue one.
Let $K_{m, n}$ denote the complete bipartite graph with m red vertices and n blue ones. Hence it has $m n$ edges. For example, $K_{3,3}$ is the houses and utilities graph, which is known to be nonplanar.
Show that if $K_{m, n}$ can be embedded in a closed oriented surface of genus g, then

$$
g \geq \frac{(m-2)(n-2)}{4}
$$

3. Five lemma question. (20 POINTS) The 5 -lemma says that given a commutative diagram of abelian groups with exact rows,

if α, β, δ and ϵ are isomorphisms, then so is γ. Show by counterexample that the triviality of α, β, δ and ϵ does not imply the triviality of γ.
4. Brouwer Fixed Point question. (20 Points) Prove the 2-dimensional case of the Brouwer Fixed Point Theorem, i.e., that any continuous map of the 2-dimensional disk D^{2} to itself has a fixed point. You may assume $\pi_{1} S^{1}=\mathbf{Z}$.
5. James reduced product question. (20 Points) Let the 2 -sphere S^{2} have base point x_{0}. Define an equivalence relation on the n-fold Cartesian product $\left(S^{2}\right)^{\times n}$ by saying that when a coordinate in a point

$$
\left(x_{1}, x_{2}, \ldots x_{n}\right) \in\left(S^{2}\right)^{\times n}
$$

is the base point x_{0}, it may be transposed with either the coordinate on its left or the one its right. For example the points

$$
\left(x_{0}, x_{1}, x_{2}\right),\left(x_{1}, x_{0}, x_{2}\right) \text { and }\left(x_{1}, x_{2}, x_{0}\right) \in\left(S^{2}\right)^{\times 3}
$$

are all equivalent for arbitrary points $x_{1}, x_{2} \in S^{2}$. The space $J_{n} S^{2}$ of equivalence classes in $\left(S^{2}\right)^{\times n}$ is called the nth James reduced product of S^{2}, having first been studied by Ioan James in the 1950s. One could make a similar definition with S^{2} replaced by any pointed space. Thus there is a surjective map $f_{n}:\left(S^{2}\right)^{\times n} \rightarrow J_{n} S^{2}$.
We know that $\left(S^{2}\right)^{n}$ has a CW-structure with $\binom{n}{k}$ cells in dimension $2 k$ for $0 \leq k \leq n$. We also know that as a ring under cup product,

$$
H^{*}\left(\left(S^{2}\right)^{\times n} ; \mathbf{Z}\right) \cong \mathbf{Z}\left[y_{i}: 1 \leq i \leq n\right] /\left(y_{i}^{2}\right),
$$

with $y_{i} \in H^{2}$ being the generator associated with the i th factor of the Cartesian product.
It can be shown that $J_{n} S^{2}$ has a CW-structure with a single cell in every even dimension up to $2 n$. For $1 \leq k \leq n$, the group $H^{2 k}\left(J_{n} S^{2} ; \mathbf{Z}\right) \cong \mathbf{Z}$ has a generator u_{k} whose image under f_{n}^{*} is the sum of all square free k-fold products of the y_{i} s.
Use this information to determine the cup product structure of $H^{*}\left(J_{n} S^{2} ; \mathbf{Z}\right)$. Give a formula for $u_{k} u_{\ell}$ as a multiple of $u_{k+\ell}$ for $k+\ell \leq n$. In particular f_{n} induces a monomorphism in cohomology.

Hint: Try doing this first for small values of n such as 2,3 and 4 .

