Final exam

December 14, 2020

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature:

SCAN THIS PAGE WITH THE HONOR PLEDGE SIGNEDAND UPLOAD IT WITH YOUR EXAM

Use a separate page (or pages) for each problem. Show all of your work.

1. Fermat curve question. (20 POINTS) Consider the subset V_d of the complex projective plane $\mathbb{C}P^2$ defined by the equation

$$x^d + y^d + z^d = 0$$
 for a positive integer d.

It is known as the *Fermat curve* of degree d. Define a map $f: V_d \to \mathbb{C}P^1$ by

$$[x, y, z] \mapsto [x, y].$$

A map of this type is called a *branched covering*. It does *not* extend to all of $\mathbb{C}P^2$ because it is not defined on the point [0, 0, 1].

- (a) Find and count the points in the target whose preimage is *not* a set of d points in V_d . Let $K \subseteq \mathbb{C}P^1$ denote the set of these points. They are called BRANCH POINTS.
- (b) You may assume that the restriction of f to the preimage of $\mathbb{C}P^1 K$ is a d-fold covering of $\mathbb{C}P^1 K$. Use this fact to find the Euler characteristic of V_d . You may also use the fact that under suitable hypotheses, $\chi(A \cup B) = \chi(A) + \chi(B) \chi(A \cap B)$.

Solution:

(a) The preimage of [x, y] is the set

$$\left\{ [x, y, z] \colon z^d = -x^d - y^d \right\}$$

There are d such values of z unless $x^d + y^d = 0$. There are d such points in $\mathbb{C}P^1$, namely

$$\left\{ [1, -e^{2\pi i k/d}] : 0 \le k < d \right\},$$

so K has d points.

(b) The Euler characteristic of $\mathbb{C}P^1 - K$ is 2 - d, so that of its preimage is $2d - d^2$. The preimage of d small disks around the points of K is d. It follows that $\chi(V_d) = d + 2d - d^2 = 3d - d^2$.

2. Complete bipartite graph question. 20 POINTS A *bipartite graph* is one in which the vertices fall into two disjoint sets, say red and blue vertices, and each edge connects a red vertex to a blue one. It is *complete* if there is a unique edge connecting each red vertex to each blue one.

Let $K_{m,n}$ denote the complete bipartite graph with m red vertices and n blue ones. Hence it has mn edges. For example, $K_{3,3}$ is the houses and utilities graph, which is known to be nonplanar.

Show that if $K_{m,n}$ can be embedded in a closed oriented surface of genus g, then

$$g \ge \frac{(m-2)(n-2)}{4}.$$

Solution: If $K_{m,n}$ is embedded in such a surface, we get a polyhedron with V = m + n vertices, E = mn edges and F faces. If we add the number of edges on each face, we get 2mn since each edge is shared by two faces two faces. Each face must have at least four edges, so $2mn \ge 4F$ and $F \le mn/2$. Thus the Euler characteristic of the surface is

$$2 - 2g = V - E + F = m + n - mn + F$$

$$\leq m + n - mn + mn/2 = m + n - mn/2$$

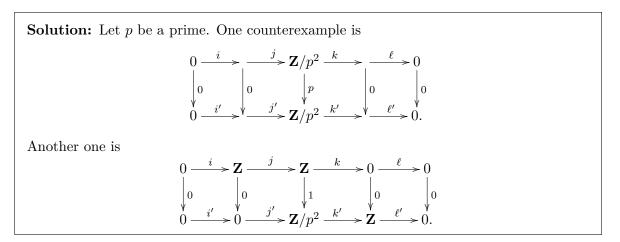
$$2 - m + n + mn/2 \leq 2g$$

$$g \geq \frac{2 - m + n + mn/2}{2} = \frac{(m - 2)(n - 2)}{4}$$

3. Five lemma question. (20 POINTS) The 5-lemma says that given a commutative diagram of abelian groups with exact rows,

$$\begin{array}{cccc} A & \stackrel{i}{\longrightarrow} B & \stackrel{j}{\longrightarrow} C & \stackrel{k}{\longrightarrow} D & \stackrel{\ell}{\longrightarrow} E \\ & & & & & & & & \\ \downarrow \alpha & & & & & & & \\ A' & \stackrel{i'}{\longrightarrow} B' & \stackrel{j'}{\longrightarrow} C' & \stackrel{k'}{\longrightarrow} D' & \stackrel{\ell'}{\longrightarrow} E', \end{array}$$

if α , β , δ and ϵ are isomorphisms, then so is γ . Show by counterexample that the triviality of α , β , δ and ϵ does *not* imply the triviality of γ .



4. Brouwer Fixed Point question. (20 POINTS) Prove the 2-dimensional case of the Brouwer Fixed Point Theorem, i.e., that any continuous map of the 2-dimensional disk D^2 to itself has a fixed point. You may assume $\pi_1 S^1 = \mathbf{Z}$.

Solution: See page 32 of Hatcher.

5. James reduced product question. (20 POINTS) Let the 2-sphere S^2 have base point x_0 . Define an equivalence relation on the *n*-fold Cartesian product $(S^2)^{\times n}$ by saying that when a coordinate in a point

$$(x_1, x_2, \dots x_n) \in (S^2)^{\times n}$$

is the base point x_0 , it may be transposed with either the coordinate on its left or the one its right. For example the points

$$(x_0, x_1, x_2), (x_1, x_0, x_2) \text{ and } (x_1, x_2, x_0) \in (S^2)^{\times 3}$$

are all equivalent for arbitrary points $x_1, x_2 \in S^2$. The space $J_n S^2$ of equivalence classes in $(S^2)^{\times n}$ is called the *nth James reduced product of* S^2 , having first been studied by Ioan James in the 1950s. One could make a similar definition with S^2 replaced by any pointed space. Thus there is a surjective map $f_n : (S^2)^{\times n} \to J_n S^2$.

We know that $(S^2)^n$ has a CW-structure with $\binom{n}{k}$ cells in dimension 2k for $0 \le k \le n$. We also know that as a ring under cup product,

$$H^*((S^2)^{\times n}; \mathbf{Z}) \cong \mathbf{Z}[y_i : 1 \le i \le n]/(y_i^2),$$

with $y_i \in H^2$ being the generator associated with the *i*th factor of the Cartesian product.

It can be shown that $J_n S^2$ has a CW-structure with a single cell in every even dimension up to 2n. For $1 \le k \le n$, the group $H^{2k}(J_n S^2; \mathbf{Z}) \cong \mathbf{Z}$ has a generator u_k whose image under f_n^* is the sum of all square free k-fold products of the y_i s.

Use this information to determine the cup product structure of $H^*(J_n S^2; \mathbb{Z})$. Give a formula for $u_k u_\ell$ as a multiple of $u_{k+\ell}$ for $k + \ell \leq n$. In particular f_n induces a monomorphism in cohomology.

HINT: Try doing this first for small values of n such as 2, 3 and 4.

Solution: The binomial theorem implies that in $H^*((S^2)^{\times n}; \mathbf{Z})$,

$$\left(\sum_{1\le i\le n} y_i\right)^k = k! f_n^* u_k.$$

Since the sum on the left is $f_n^* u_1$, this implies that

 $u_1^k = k! u_k.$

Formally we can write

$$u_k = \frac{u_1^k}{k!}, \qquad u_\ell = \frac{u_1^\ell}{\ell!} \qquad \text{and} \qquad u_{k+\ell} = \frac{u_1^{k+\ell}}{(k+\ell)!},$$

which implies that

$$u_k u_\ell = \frac{(k+\ell)!}{k!\ell!} u_{k+\ell} = \binom{k+\ell}{k} u_{k+\ell}.$$