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J is final in K. A cofinal or initial functor J Ñ K is one that induces a
final functor Jop Ñ Kop.

For more details, see [KS06, §2.5], where the term “co-cofinal” is used for
final.
The nonemptiness of pkÓαq means that for each object k in K there is an

object j in J such that there is a morphism k Ñ αpjq. Its connectivity means
that for any two such js there is a finite commutative diagram in K of the
form

k

yyttt
ttt

ttt
t

��











�� &&NN
NNN

NNN
NNN

αpj0q // � �oo // � � � αpjnq.oo

(2.3.81)

where the morphisms in the bottom row are in the image of α, and the left
and right morphisms from k are given.
The following was proved by Mac Lane as [ML98, Theorem IX.3.1].

Theorem 2.3.82. Colimit maps induced by final functors. For a final
functor α : J Ñ K as in Definition 2.3.80, if X : K Ñ C is a functor for
which colim

J
Xα exists, then colim

K
X also exists and the induced map φα of

(2.3.79) is an isomorphism.

Corollary 2.3.83. Colimits indexed by categories with terminal ob-
jects. Suppose the small category K has a terminal object k as in Exam-
ple 2.1.16(ii) and X : K Ñ C is a functor. Then colim

K
X exists and is equal

to the value of X on k.

Proof Let J be the trivial category and let α : J Ñ K send its one object to
k. This functor is easily seen to be final as in Definition 2.3.80, so the result
is a special case of Theorem 2.3.82.

2.4 Ends and coends

Yoneda originally introduced ends and coends in the context of functors en-
riched (see §3.1 below) over Ab in [Yon60, §4, page 545]. He called them the
“integration” and “cointegration” and denoted them by»

J

H and
» �
J

H

or a functor H : Jop � J Ñ C from a small category J to a complete or
cocomplete category C. In this book we will denote the end and coend by» J

H and
»
J

H
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respectively. We will use a superscript for an end and a subscript
for a coend. This differs from the notation of [ML71, pages 222–223] and
most other works in category theory, where the opposite convention is used.
However it agrees with the notation used for coends by Jacob Lurie in [Lur09,
Chapter 2 and Appendix A], and in some papers on factorization homology
such as [AF19].
Thus H is a functor of two variables in J , contravariant in the first and

covariant in the second. For example we could have C � Set and Hpj, j1q :�
Jpj, j1q, the set of morphisms j Ñ j1.
Given such a functor H, for each morphism f : j Ñ j1 in J we have a

diagram in C,

Hpj, jq
f�
��

Hpj1, j1q f� // Hpj, j1q.

which has a limit (the pullback) when C is complete. We use the Yoneda’s
symbol » J

Hpj, jq,

now called an end, to denote the limit obtained by considering such diagrams
for all morphisms f in J , assuming that the target category is complete. More
explicitly, for each morphism f P Arr J we get a morphism

HpDom f,Dom fq f� // HpDom f,Cod fq

in C. Hence we get a morphism to the product of such sets over all f having
domain j,

Hpj, jq φ� //
¹

fPArr J
Dom f�j

Hpj,Cod fq.

given by pfφ� � f�, where pf denotes the projection of the product onto the
factor corresponding to f . Now we take the product of these morphisms over
all objects j in J and get¹

jPOb J
Hpj, jq φ� //

¹
fPArr J

HpDom f,Cod fq. (2.4.1)

In a similar fashion the morphism

HpCod f,Cod fq f� // HpDom f,Cod fq
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leads to ¹
jPOb J

Hpj, jq φ� //
¹

fPArr J
HpDom f,Cod fq. (2.4.2)

In other words, we have the following diagram in which the products on
the right are over all objects or all morphisms in J .

Hpj, jq

f�

��

¹
j

Hpj, jq

φ�
��

///o/o/o/o/o/o

Hpj1, j1q f� // Hpj, j1q
¹
j1

Hpj1, j1q φ� //
¹

f :jÑj1

Hpj, j1q.

(2.4.3)

Dually, when C is cocomplete, we have a similar diagram with coproducts
over all objects or all morphisms in J .

Hpj1, jq f� //

f�

��

Hpj1, j1q
º

f :jÑj1

Hpj1, jq ϕ� //

ϕ�

��

º
j1

Hpj1, j1q

///o/o/o/o/o/o

Hpj, jq
º
j

Hpj, jq

(2.4.4)

Definition 2.4.5. For a functor H : Jop � J Ñ C for a small category J to
a complete category C, the end » J

Hpj, jq

is the equalizer of» J
Hpj, jq //_____

¹
jPOb J

Hpj, jq
φ� //
φ�

//
¹

fPArr J
HpDom f,Cod fq.

for φ� and φ� as in (2.4.1) and (2.4.2).
For a similar functor to a cocomplete category C, the coend»

J

Hpj, jq

is the coequalizer ofº
fPArr J

HpCod f,Dom fq
ϕ� //
ϕ�
//
º

jPOb J
Hpj, jq //___

»
J

Hpj, jq, (2.4.6)

with ϕ� and ϕ� as in (2.4.4).
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In both cases the “variable of integration” j appears twice in the “integrand”
and could be replaced by any other symbol for an object in J .

Alternatively, for each morphism f : j Ñ j1 in J , we have a diagram in C,

Hpj1, jq f� //

f�

��

Hpj, jq
f�

��
Hpj1, j1q f� // Hpj, j1q.

Suppose for the moment that C is bicomplete. For a fixed pair of objects
pj, j1q in J we could combine the above for all morphisms j Ñ j1 and getº

Jpj,j1q

Hpj1, jq ϕ� //

ϕ�

��

Hpj, jq

φ�

��
Hpj1, j1q φ� //

¹
Jpj,j1q

Hpj, j1q.

(2.4.7)

For cocomplete C this leads to a coequalizer diagramº
fPArr J

Hpj1, jq
ϕ� //
ϕ�

//
º

kPOb J
Hpk, kq //_____

»
J

Hpk, kq,

and for complete C we have an equalizer diagram» J
Hpk, kq //_____

¹
kPOb J

Hpk, kq
φ� //
φ�

//
¹

fPArr J
Hpj, j1q.

Proposition 2.4.8. Ends and coends on the walking arrow category.
Let J be walking arrow category p0 Ñ 1q as in Definition 2.1.6, let C be a
cocomplete category and let : H : Jop � J Ñ C be a functor. Then»

J

Hpj, jq � Hp0, 0q >
Hp1,0q

Hp1, 1q,

the pushout of the diagram

Hp1, 0q
α�

xxrrr
rrr α�

&&MM
MMM

M

Hp0, 0q Hp1, 1q,
(2.4.9)

where α : 0Ñ 1 denotes the unique nonidentity morphism in J .
Dually, for complete C,» J

Jpc, cq � Hp0, 0q �
Hp0,1q

Hp1, 1q,
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the pullback of the diagram

Hp0, 0q
α� &&MM
MMM

M
Hp1, 1q

α�xxqqq
qqq

Hp0, 1q.

Proof The diagram of (2.4.6) is

Hp0, 0q >Hp1, 0q >Hp1, 1q
ϕ���

ϕ�
��

Hp0, 0q >Hp1, 1q
���
�»

J

Hpj, jq.

The restrictions of both ϕ� and ϕ� to Hp0, 0q send it identically to Hp0, 0q,
and similarly for their restrictions to H1,1. This means that they contribute
nothing to the coend, which is therefore the pushout of (2.4.9).
The dual case is similar.

For a related result, see Proposition 2.4.18 below.
The following are immediate consequences of the definitions.

Proposition 2.4.10. Functoriality of ends and coends. Given two func-
tors H,H 1 : Jop � J Ñ C, a natural transformation θ : H ñ H 1 induces
morphisms »

J

θ :

»
J

H Ñ
»
J

H 1 and
» J

θ :

» J
H Ñ

» J
H 1

with composition of natural transformations inducing composition of such
morphisms.

Proposition 2.4.11. Limits (colimits) as ends (coends). When the func-
tor H is constant on the first variable, then its end (coend) is the usual limit
(colimit) of H as a functor of the second variable for complete (cocomplete)
C.

Remark 2.4.12. Ends (coends) as limits (colimits). Every end (coend) is
a limit (colimit) since it an equalizer (coequalizer) by definition. The statement
at hand concerns the case when an end (coend) over a small category J is
also an ordinary limit (colimit) over J .

Proof This follows from the definitions and the calculation of Example 2.3.35(iii).
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Given a functor H : Jop � J Ñ C and objects X and Y in C, there are
Set-valued functors on Jop � J ,

Jop � J
t // J � Jop

Hop
// Cop

Cp� ,Y q // Set (2.4.13)

and

J � Jop
H // C

CpX,�q // Set. (2.4.14)

The following is immediate from the definitions.

Proposition 2.4.15. End/coend duality. Given a functor H from Jop�J
(for a small category J) to a cocomplete category C, and an object Y in C,
there is a natural isomorphism

C
�»

J

H,Y



�

» J
CpH,Y q,

where the expression on the left is the set of morphisms from the indicated
coend to Y , and the expression on the right is the end of the Set-valued functor
of (2.4.13).

For an object X in C, there is a natural isomorphism

C

�
X,

» J
H

�
�

» J
CpX,Hq,

where the expression on the left is the set of morphisms from X to the indicated
end, and that on the right is the end for the functor of (2.4.14).

An enriched version of the above is Proposition 3.2.16 below.
There is a converse to Proposition 2.4.11. It is taken from [ML98, IX.5]

where it is stated for ends and limits. We will construct a new small category
J§ (Mac Lane’s notation for the opposite category is J§) such that the coend
of Definition 2.4.5 is the colimit of a certain C-valued functor on J§.

Definition 2.4.16. The cosubdivision category of a small category.
For a small category J , let J§ be the category whose objects are symbols j§
and f§ for objects j and arrows f in J . Note that j§ and p1jq§ are different
objects. The only nonidentity morphisms are arrows

j§ Ð f§ Ñ j1§

for each arrow f : j Ñ j1 in J .
Given a functor H : Jop � J Ñ C, let H§ : J§ Ñ C be the functor indicated

by the following diagram.

j§_

��

_

��

f§_

��

//oo _

��

j1§_

��
Hpj, jq Hpj1, jq

f�
oo

f�

// Hpj1, j1q
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Dually, let the subdivision category of J be J§ � pJ§qop. We denote the
corresponding objects in it by j§ and f§, and the only nonidentity morphisms
are arrows

j§ Ñ f§ Ð pj1q§

for each arrow f : j Ñ j1 in J . The functor H§ : J§ Ñ C is indicated by

j§_

��

//_

��

f§_

��

_

��

pj1q§
_

��

oo

Hpj, jq
f�

// Hpj, j1q Hpj1, j1q.
f�

oo

The following is stated for coends only. Its proof and that of its dual can
be found in [ML98, IX.8]

Proposition 2.4.17. Fubini theorem for coends. Let

H : Jop1 � Jop2 � J1 � J2 Ñ C

for small categories J1 and J2 and a cocomplete category C. Then for any pair
pa, bq P Jop1 � J1, we have the functor

Hpa,�, b, �q : Jop2 � J2 Ñ C,

and its coend »
J2

Hpa, c, b, cq

is a functor on Jop1 � J1, so the double coend»
J1

»
J2

Hpa, c, a, cq

is defined. Similarly we can define the double coend»
J2

»
J1

Hpa, c, a, cq.

We can also define the coend on the product category»
J1�J2

Hpa, c, a, cq.

These three objects in C are naturally isomorphic.

Note that if the functor H above is constant on the contravariant variables,
then Proposition 2.4.17 reduces to the statement that colimits over different
diagrams commute with each other. The corresponding result about ends
reduces to the commuting of limits.
The following is the double coend version of Proposition 2.4.8.
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Proposition 2.4.18. Double coends on the walking arrow category.
Let J1 and J2 each be the walking arrow category J � p0 Ñ 1q of Defini-
tion 2.1.6, and let

H : Jop1 � Jop2 � J1 � J2 Ñ C

be a functor to a cocomplete category C.
For each pa, bq P Jop � J , let

P pa, bq �
»
cPJ

Hpa, c, b, cq,

which was identified as a certain pushout in Proposition 2.4.8. Then»
J�J

Hpa, c, a, cq �
»
J

P pa, aq � P p0, 0q >
P p1,0q

P p1, 1q.

The following are special cases.

(i) When the value of H is nontrivial (meaning not equal to ∅) only when both
contravariant variables are 0, then the double coend is Hp0, 0, 0, 0q.

(ii) When the value of H is trivial when both contravariant variables are 1,
then the double coend is the pushout of the diagram

Hp0, 1, 0, 0q
Hp0,1,0,αq

||xx
xx
xx
xx
xx

Hp0,α,0,0q

""F
FF

FF
FF

FF
F

Hp1, 0, 0, 0q

Hpα,0,0,0q

||xx
xx
xx
xx
xx

Hp1,0,α,0q

##F
FF

FF
FF

FF
F

Hp0, 1, 0, 1q Hp0, 0, 0, 0q Hp1, 0, 1, 0q.

(iii) When the functor H is independent of the contravariant variables, then the
double coend is Hp� ,�, 1, 1, q.

Proof Using Proposition 2.4.17, we have»
pa,cqPJ�J

Hpa, c, a, cq �
»
aPJ

»
cPJ

Hpa, c, a, cq

�
»
aPJ

P pa, aq

� P p0, 0q >
P p1,0q

P p1, 1q.

For (i), »
J

Hp0, 0, b, 0q � Hp0, 0, 0, 0q >
Hp0,0,1,0q

∅

� Hp0, 0, 0, 0q
so »

J�J

Hpa, c, a, cq � Hp0, 0, 0, 0q.
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For (ii), since

P pa, bq � Hpa, 0, b, 0q >
Hpa,1,b,0q

Hpa, 1, b, 1q,

we have

P p1, 1q � Hp1, 0, 1, 0q >
Hp1,1,1,0q

Hp1, 1, 1, 1q

� Hp1, 0, 1, 0q >
∅
∅ � Hp1, 0, 1, 0q,

P p1, 0q � Hp1, 0, 0, 0q >
Hp1,1,0,0q

Hp1, 1, 0, 1q � Hp1, 0, 0, 0q

and P p0, 0q � Hp0, 0, 0, 0q >
Hp0,1,0,0q

Hp0, 1, 0, 1q

� Hp0, 1, 0, 1q >
Hp0,1,0,0q

Hp0, 0, 0, 0q.

It follows that the double coend is

P p0, 0q >
P p1,0q

P p1, 1q

�
�
Hp0, 1, 0, 1q >

Hp0,1,0,0q
Hp0, 0, 0, 0q



>

Hp1,0,0,0q
Hp1, 0, 1, 0q

� Hp0, 1, 0, 1q >
Hp0,1,0,0q

Hp0, 0, 0, 0q >
Hp1,0,0,0q

Hp1, 0, 1, 0q,

which is the indicated pushout.
For (iii), when the functor H of Proposition 2.4.17 is independent of the

contravariant variables, the coend is an ordinary colimit by Proposition 2.4.11.
Since J�J has terminal object p1, 1q, the coend in this case is Hp� ,�, 1, 1, q.

Proposition 2.4.19. The set of natural transformations as an end.
Suppose we have two functors F,G : J Ñ E where J is small and E is complete.
Let H : Jop � J Ñ Set be

HpC,C 1q � EpF pCq, GpC 1qq.
Then the end » J

HpC,Cq �
» J

EpF pCq, GpCqq

is the set of natural transformations from F to G,

NatpF,Gq � rJ, EspF,Gq.
Proof By Definition 2.4.5 the end is the equalizer of two morphisms from
the product ¹

XPJ

EpF pXq, GpXqq.
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A natural transformation θ : F Ñ G assigns to each object X of J a mor-
phism θX P EpF pXq, GpXqq, so θ defines an element in the same product. The
requirement that the diagrams (2.2.2) all commute is equivalent to requiring
this element to be in the equalizer.

When E � Set and F � HA, Proposition 2.4.19 reads» BPJ
SetpHApBq, GpBqq �

» BPJ
SetpJpA,Bq, GpBqq � NatpHA, Gq.

The right hand side is GpAq by the Yoneda Lemma 2.2.10, so we have the
following.

Proposition 2.4.20. The Yoneda reduction. Let J be a small category
and F : J Ñ Set. Then for each object A of J ,» BPJ

SetpJpA,Bq, F pBqq � F pAq.

Now

SetpJpA,Bq, F pBqq � F pBqJpA,Bq,

the Cartesian power of the set F pBq indexed by the set JpA,Bq. The right
hand side is defined more generally for a functor F with valued in a complete
category E , and Proposition 2.4.20 has the following generalization.

Proposition 2.4.21. The generalized Yoneda reduction. Let F : J Ñ E
be a functor from a small category J to a complete category E. Then for each
object A of J , » BPJ

F pBqJpA,Bq � F pAq.

Proof For each f P JpA,Bq we get a map F pfq : F pAq Ñ F pBq. Collecting
these for all f gives an evaluation map

iB : F pAq Ñ F pBqJpA,Bq. (2.4.22)

Collecting these for all objects B in the small category J defines a map

i : F pAq ÝÑ
¹
BPJ

F pBqJpA,Bq.

The end in question also supports a morphism to this product. It is by Defi-
nition 2.4.5 the equalizer of

¹
BPOb J

F pBqJpA,Bq
φ� //
φ�

//
¹

h:BÑB1

F pB1qJpA,Bq.
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The equalizer is F pAq because for each morphism h : B Ñ B1 in J , the
following diagram commutes:

F pB1qJpA,B1q F pB1qh�

,,YYYYY
YYYY

F pAq
iB1 33fffffffff

iB
++XXXXX

XXXXX F pB1qJpA,Bq.
F pBqJpA,Bq F phqJpA,Bq

22eeeeeeeeee
(2.4.23)

There is a dual formula for coends, which is sometimes called the co-
Yoneda lemma. We will formulate and prove it simultaneously by dualizing
the proof of Proposition 2.4.21.
For a Set-valued functor F , map iB of (2.4.22) is adjoint to

jA : JpA,Bq � F pAq Ñ F pBq.

The Cartesian product on the left, the disjoint union of copies of F pAq indexed
by the set JpA,Bq, is defined whenever F takes values in a cocomplete
category E . We can take the coproduct of such things over all objects A of J
and get a map

j :
º
APJ

JpA,Bq � F pAq Ñ F pBq.

Then for each morphism g : A1 Ñ A in J , following diagram, which is dual to
(2.4.23), commutes:

JpA1, Bq � F pA1q
jA1

rrffffff
ffffff

f

F pBq JpA,Bq � F pA1q
g��F pA1qllYYYYYYYYYYYY

JpA,Bq�F pgqrreeeeeee
eeeee

JpA,Bq � F pAqjA

llXXXXXXXXXXXXX

This means that F pBq can be described as a coend, and we have proved the
following.

Proposition 2.4.24. The generalized Yoneda coreduction. Let F : J Ñ
E be a functor from small category J to a cocomplete category E. Then for
each object B of J , »

APJ

JpA,Bq � F pAq � F pBq.

We will describe another approach to this for Set-valued functors below in
Example 2.5.14.
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Remark 2.4.25. The case of a bicomplete category E. By interchanging
A and B, we can rewrite Proposition 2.4.21 as

F pBq �
» APJ

F pAqJpB,Aq,

while Proposition 2.4.24 gives

F pBq �
»
APJ

JpA,Bq � F pAq.

Note that the first formula for F pBq involves JpB,Aq while the second involves
JpA,Bq. It has to be this way because both expressions must be covariant in
B, which JpA,Bq is. The expression in the end is contravariant in JpB,Aq,
which itself is contravariant in B.

2.5 Kan extensions

The notion of Kan extensions subsumes all the other fundamental
concepts of category theory.

Saunders Mac Lane, [ML98, X.7]

2.5A Definitions and examples
Suppose we have functors F and K as in the diagram

C F //

K

��:
::

::
::

::
: E

ó η

D

L

AA�
�

�
�

�

(2.5.1)

and we wish to extend the functor F alongK to a new functor L : D Ñ E with
a natural transformation η : F ñ LK. We do not require L to be an actual
extension of F , meaing we do not require that LK � F , We only require that
the two be related by the natural transformation η : F ñ LK. We want it
to have the following universal property: given another such extension G and
natural transformation γ : F ñ GK

C F //

K

��:
::

::
::

::
::

E

ó γ

D,

G

AA�����������


