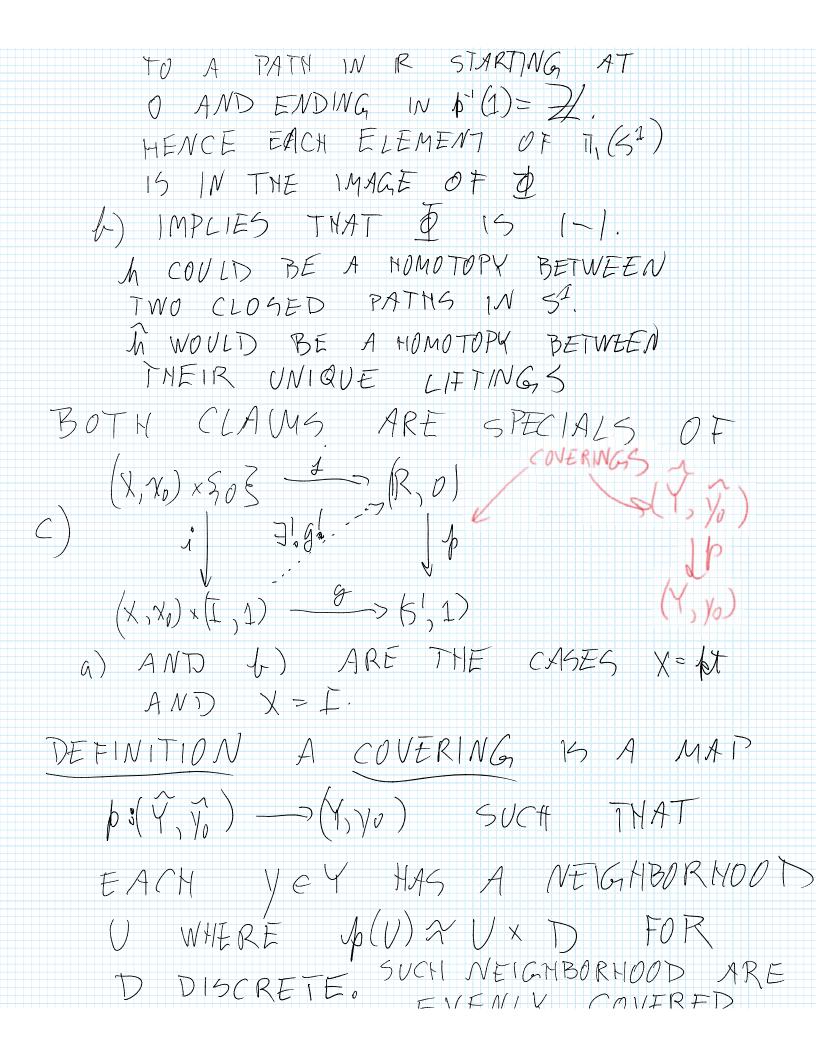
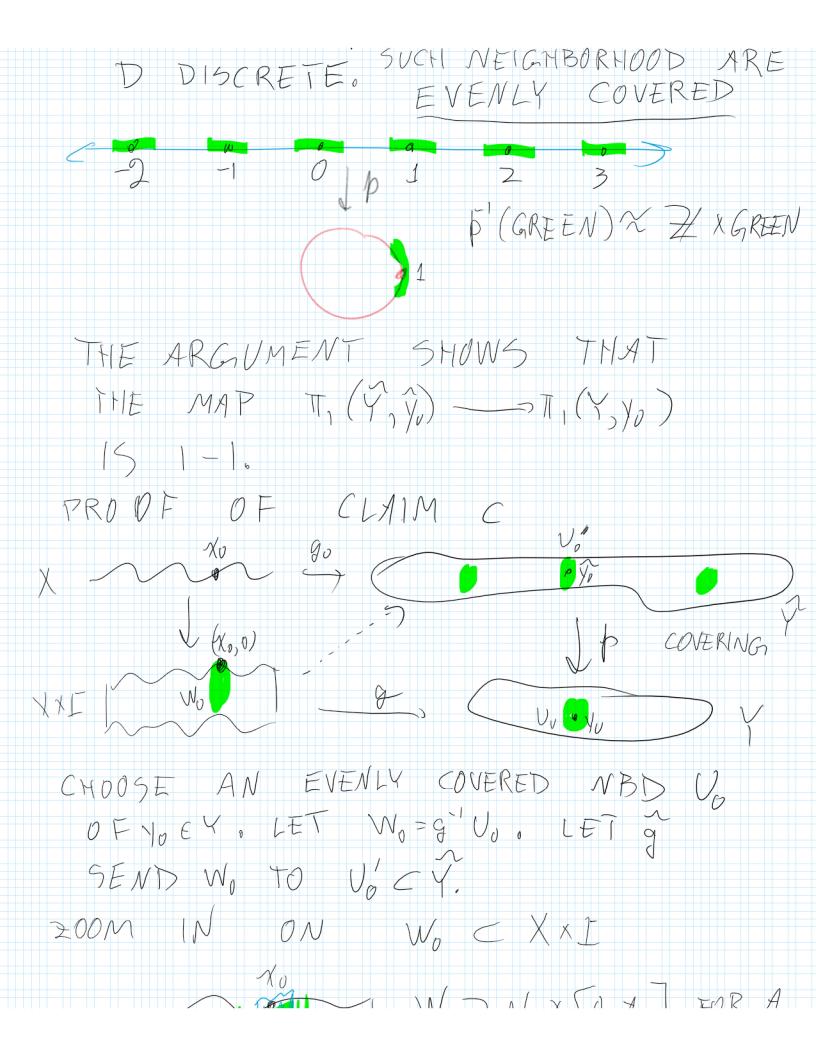
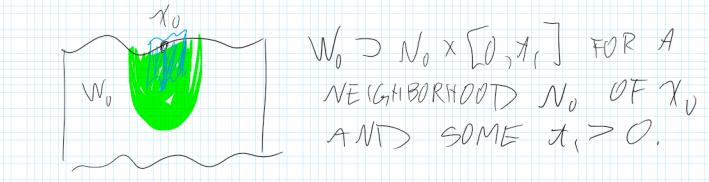
THEOREM TI, (G') A Z = INTEGERS PROOF: WILL USE p: IR->SI CC t poemit p'(1) ~ ZCR, FOR ANY PATH Wn IN IR FROM O TO M, p(Wm) is A CLOGED PATH IN SE REPRESENTING €(n) ETT, (G'). ANY TWO SUCH PATHS IN IR ARE NOMOTOPIC, SO & Z->T,G') IS WELL DEFINED TWO CLAIMS ABOUT & THAT IMPLY IT IS AN ISOMORPHISM a) FOR ANY PATH (I.O) 1-(52,1) STARTING AT LEST, 7! PATH \widehat{R} : $(\underline{\Gamma}, 0) \rightarrow (\widehat{R}, 0)$ with $\widehat{P}\widehat{f} = f$ $\begin{array}{c} \widehat{S} \cup \widehat{S} \longrightarrow (\widehat{R}, O) & \widehat{B} & IS & A \\ \widehat{L} & \widehat{J} & \widehat{L} & \widehat{L} & \widehat{L} & \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{J} & \widehat{L} & \widehat{L} & \widehat{L} & \widehat{L} & \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{L} \\ \widehat{L} & \widehat{$ $(I, p) \xrightarrow{\forall} (R, p)$ $\mathcal{b})$ $(\underline{I}^2, \underline{I}) \xrightarrow{h} (\underline{5}', \underline{1})$ a) IMPLIES & IS ONTO, ANY

CLOSED PATH IN (St, 1) LIFTS UNIQUELY







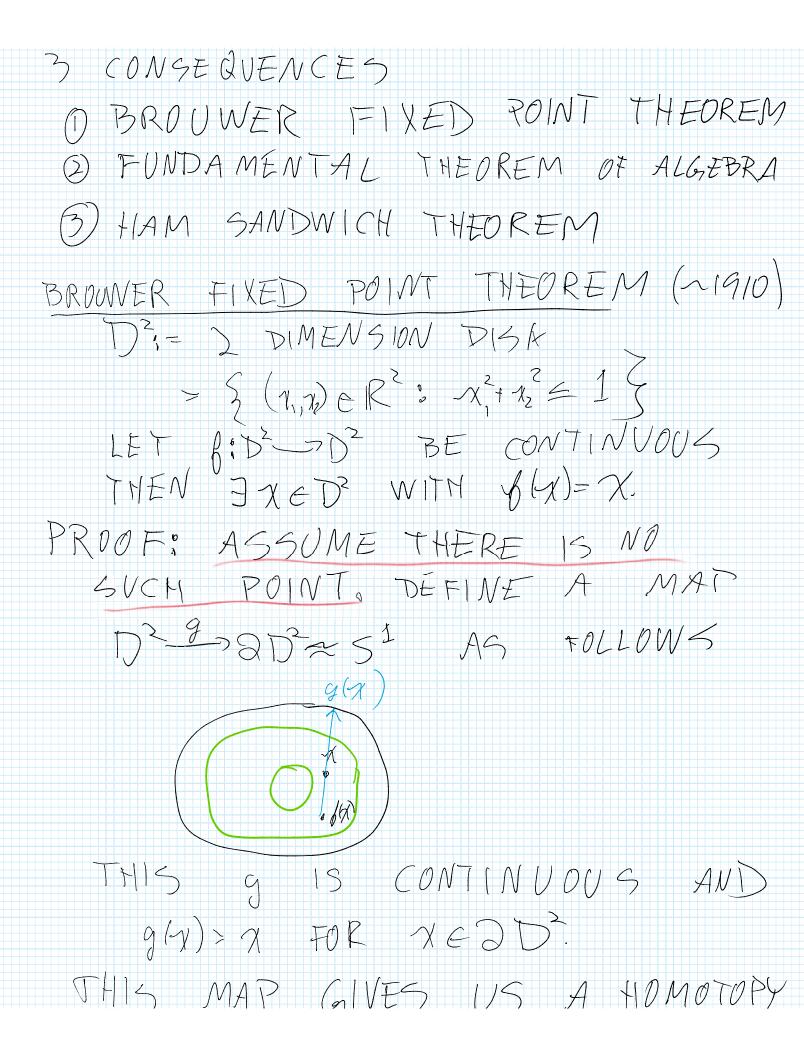
LET $g(\chi_0, \xi_1) = : \chi_1 \in Y$ NEAR YO

REPEAT AND GET A $J_2 > J_1$, WITH $V_2 = g(\chi_0, J_2)$. REPEAT THIS PROCESS UNTIL $J_n = 1$. WE HAVE EXTENDED \tilde{g} to $N_1 \times I$ FOR $\chi_0 \in N_1 \subset N_0$ AND N_1 A NEIGHBORHOOD OF χ_0 .

CAN CONTINUE AND EXTEND G TO ALL OF XXI. DETAILS ARE IN THE BOOK.

ECROLLARY: THE IDENTITY ON ST, EGI IS NOT HOMOTOPIC TO A CONSTANT MAP. E(0).

QED



THIS MAP GIVES US A HOMOTOPY BETWEEN 15, AND THE CONSTANT G(0)-VALUED MAP THIS IS EXCLUDED BY THE COROLLARY. CONTRADICTION.

KNOWN TO GENERALIZE TO MAPS DAG. FUNDAMENTAL THEOREM OF ALGEBRA (GAUSS ~ 1800). LET $p(z) \in \mathbb{C}[z]$ A POLYNOMIAL. THEN $\exists z_0 \in \mathbb{C}$ WITH p(z) = 0. Hence $p(z) = (z - z_0) g(z)$, z = 1

TOPOLOGICAL PROOF: ASSUME $p(0) \neq 0$ AND p(2) is MONIC, i.e. $p(2) = 2^{m} + LOWER$ SUPPOSE $p(2) \neq 0$ FOR $2 \in \mathbb{C}$. $\int p(2) \neq 0 = 5^{2} = 5^{2}$

FOR EACH MOO WE CAN RESTRICT

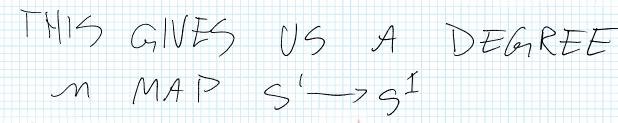
MP TO THE CIRCLE OF RADIUS ABOUT O. THESE MUST ALL BE HOMOTOPIC, I.E. HAVE THE SAME DEGREE.

IDEA. FOR SMALL M

 $p(Ac^{i\theta})$ is ELDSE TO $p(0)=C_0 \neq O$ THIS MAP HAS DEGREE O.

FOR LARGE M, p(neif) = (meif) + SMALLER TERMS

NEGLIGIBLE FOR MSDO.



CONTRADICTION GED

BORSOK-ULAM THEOREM LET S² ---> IR². UMIT A VECTORS R³

 $\exists x \in S^2$ such b(x) = f(-x),

JIXED DULH BIX) - JIXO (KNOWN TO GENERALIZE TO $\leq m \longrightarrow \mathbb{R}^m$

PROOF: ASSUME NO SUCH Y EXISTS DEFINE q: S² > S¹

 $\chi \longrightarrow f(\chi) - f(-\chi)$

 $g(-\chi) = -g(-\chi)$

|b(x) - b(-x)|

TO BE CONTINUED.