Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work.

1. (20 points) Consider the subset V_{d} of the complex projective plane $\mathbf{C} P^{2}$ defined by the equation

$$
x^{d}+y^{d}+z^{d}=0 \quad \text { for a positive integer } d
$$

It is known as the Fermat curve of degree d. Define a map $f: V_{d} \rightarrow \mathbf{C} P^{1}$ by

$$
[x, y, z] \mapsto[x, y]
$$

A map of this type is called a BRANCHED COVERING. It does not extend to all of $\mathbf{C} P^{2}$ because it is not defined on the point $[0,0,1]$.
(a) Find and count the points in the target whose preimage is not a set of d points in V_{d}. Let $K \subseteq \mathbf{C} P^{1}$ denote the set of these points. They are called BRANCH POINTS.
(b) You may assume that the restriction of f to the preimage of $\mathbf{C} P^{1}-K$ is a d-fold covering of $\mathbf{C} P^{1}-K$. Use this fact to find the Euler characteristic of V_{d}. You may also use the fact that under suitable hypotheses, $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$.

Solution:

(a) The preimage of $[x, y]$ is the set

$$
\left\{[x, y, z]: z^{d}=-x^{d}-y^{d}\right\}
$$

There are d such values of z unless $x^{d}+y^{d}=0$. There are d such points in $\mathbf{C} P^{1}$, namely

$$
\left\{\left[1,-e^{2 \pi i k / d}\right]: 0 \leq k<d\right\}
$$

so K has d points.
(b) The Euler characteristic of $\mathbf{C} P^{1}-K$ is $2-d$, so that of its preimage is $2 d-d^{2}$. The preimage of d small disks around the points of K is d. It follows that $\chi\left(V_{d}\right)=d+2 d-d^{2}=$ $3 d-d^{2}$.
2. (20 POINTS) Let K be the complete graph on six vertices, meaning that there is a single edge connecting each pair of vertices. Use an Euler characteristic argument to prove that K cannot be embedded in the plane.

Solution: A face cannot be bounded by just two edges, because they would have to connect the same pair of vertices. Hence every face has at least 3 edges, so $E \geq 3 F / 2$, where E and F denote the number of edges and faces.

A spherical polyhedron with 6 vertices and 15 edges must have 11 faces in order to have Euler characteristic 2 . Since $E \geq 3 F / 2$, this is a contradiction.
3. (20 Points) Prove the 2-dimensional case of the Brouwer Fixed Point Theorem, i.e., that any continuous map of the 2-dimensional disk D^{2} to itself has a fixed point. You may assume $\pi_{1} S^{1}=\mathbf{Z}$.

Solution: See page 32 of Hatcher.
4. (20 Points) Let X be the quotient of the unit disk in the complex numbers \mathbf{C} obtained by identifying each point z on the boundary with ζz, where $\zeta=e^{2 \pi i / 5}$. Find $\pi_{1} X$ and prove your answer.

Solution: Let $A \subseteq X$ be the closed disk of radius $1 / 2$ centered at 0 , and let B be the complement of its interior in X. Then $A \cap B=S^{1}, A$ is contractible, and B is homotopy equivalent to a circle. The inclusion of $A \cap B$ into B is a map of degree 5 . Thus the van Kampen diagram is

The pushout group is $\mathbf{Z} / 5$.
5. (20 POINTS)
(a) Describe the space X of the previous problem as a CW-complex and find the homology of its cellular chain complex.
(b) Use the Künneth Theorem to find $H_{*}(X \times X)$ and $H_{*}\left(X \times \mathbf{R} P^{2}\right)$.

Solution: (a) X has a single cell in dimensions 0,1 and 2 . The 1 -skeleton is a circle and the 2 -cell is attached by a map of degree 5 . Hence the cellular chain complex is

and its homology is

$$
H_{i}(X)= \begin{cases}\mathbf{Z} & \text { for } i=0 \\ \mathbf{Z} / 5 & \text { for } i=1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Note that $\operatorname{Tor}_{1}(\mathbf{Z} / 5, \mathbf{Z} / 5)=\mathbf{Z} / 5$ and $\operatorname{Tor}_{1}(\mathbf{Z} / 5, \mathbf{Z} / 2)=0$. It follows that

$$
\begin{aligned}
& H_{i}(X \times X)= \begin{cases}\mathbf{Z} & \text { for } i=0 \\
\mathbf{Z} / 5 \oplus \mathbf{Z} / 5 & \text { for } i=1 \\
\mathbf{Z} / 5 \otimes \mathbf{Z} / 5=\mathbf{Z} / 5 & \text { for } i=2 \\
\operatorname{Tor}_{1}(\mathbf{Z} / 5, \mathbf{Z} / 5)=\mathbf{Z} / 5 & \text { for } i=3 \\
0 & \text { otherwise }\end{cases} \\
& H_{i}\left(X \times \mathbf{R} P^{2}\right)= \begin{cases}\mathbf{Z} & \text { for } i=0 \\
\mathbf{Z} / 5 \oplus \mathbf{Z} / 2=\mathbf{Z} / 10 & \text { for } i=1 \\
\mathbf{Z} / 5 \otimes \mathbf{Z} / 2=0 & \text { for } i=2 \\
\operatorname{Tor}_{1}(\mathbf{Z} / 5, \mathbf{Z} / 2)=0 & \text { for } i=3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

