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What does “chromatic” mean?
The stable homotopy category localized at a prime p
can be studied via a series of increasingly complicated
localization functors Ln for n ≥ 0, which detect
“vn-periodic” phenomena.

• L0 is rationalization. Rational stable homotopy
theory is very well understood. It detects only the
0-stem in the stable homotopy groups of spheres.

• L1 is localization with respect to K-theory. It
detects the image of J and the α family in the
stable homotopy groups of spheres. The
Lichtenbaum-Quillen conjecture is a statement
about L1 of algebraic K-theory.
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What does “chromatic” mean?
The stable homotopy category localized a prime p can
be studied via a series of increasingly complicated
localization functors Ln for n ≥ 0, which detect
“vn-periodic” phenomena.

• L2 is equivalent to localization with respect to
elliptic cohomology as defined above. It detects
the β family in the stable homotopy groups of
spheres. Davis’ nonimmersion theorem for real
projective spaces was proved using related
methods. The theory of topological modular
forms of Hopkins et al is a refinement of elliptic
cohomology.
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What does “chromatic” mean?
The stable homotopy category localized a prime p can
be studied via a series of increasingly complicated
localization functors Ln for n ≥ 0, which detect
“vn-periodic” phenomena.

• For n > 2 there is no comparable geometric
definition of Ln, which can only be constructed
by less illuminating algebraic methods related to
BP -theory. It detects higher Greek letter families
in the stable homotopy groups of spheres. The
nth Morava K-theory is closely related to it.
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The height of a formal group law
Definition 1 Let F be 1-dimensional formal group
law. For a positive integer m, the m-series is defined
inductively by

[m]F (x) = F (x, [m− 1]F (x))

where [1]F (x) = x.

Over a field k of characteristic
p, the p-series is either 0 or has the form

[p]F (x) = axpn

+ . . .

for some nonzero a ∈ k. The height of F is the
integer n. If [p]F (x) = 0 (which happens when
F (x, y) = x+ y), the height is defined to be ∞.

Wayne State Topology Seminar – p.5/43



The height of a formal group law
Definition 1 Let F be 1-dimensional formal group
law. For a positive integer m, the m-series is defined
inductively by

[m]F (x) = F (x, [m− 1]F (x))

where [1]F (x) = x. Over a field k of characteristic
p, the p-series is either 0 or has the form

[p]F (x) = axpn

+ . . .

for some nonzero a ∈ k.

The height of F is the
integer n. If [p]F (x) = 0 (which happens when
F (x, y) = x+ y), the height is defined to be ∞.

Wayne State Topology Seminar – p.5/43



The height of a formal group law
Definition 1 Let F be 1-dimensional formal group
law. For a positive integer m, the m-series is defined
inductively by

[m]F (x) = F (x, [m− 1]F (x))

where [1]F (x) = x. Over a field k of characteristic
p, the p-series is either 0 or has the form

[p]F (x) = axpn

+ . . .

for some nonzero a ∈ k. The height of F is the
integer n. If [p]F (x) = 0 (which happens when
F (x, y) = x+ y), the height is defined to be ∞.

Wayne State Topology Seminar – p.5/43



Examples of m-series
• For the additive formal group law, [m](x) = mx.

• For the multiplicative formal group law,

[m](x) = (1 + x)m − 1

= mx+
(m

2

)
x2 + . . . .

• For F (x, y) = x+y
1+xy , we have

[m](x) =
∑

i

(
m

2i+1

)
x2i+1

/ ∑
i

(
m
2i

)
x2i

=
mx+

(
m
3

)
x3 + . . .

1 +
(

m
2

)
x2 + . . .
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Examples of heights
• The multiplicative formal group law ( which is

associated with K-theory) has height 1.

• The formal group law associated with an elliptic
curve is known to have height at most 2.

• vn-periodic phenomena (the nth layer in the
chroatic tower) are related to formal group laws
of height n.
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Question
How can we attach formal group laws of height > 2

to geometric objects (such as algebraic curves) and

use them get insight into cohomology theories that go

deeper into the chromatic tower?
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PROGRAM:
• Let C be a curve of genus g over some ring R.

• Its Jacobian J(C) is an abelian variety of
dimension g.

• J(C) has a formal completion Ĵ(C) which is a
g-dimensional formal group law.

• If Ĵ(C) has a 1-dimensional summand, then
Quillen’s theorem gives us a genus (in the sense
of the talk or 2/27) associated with the curve C.
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Caveat
Note that a 1-dimensional summand of the for-

mal completion Ĵ(C) is not the same thing as 1-

dimensional factor of the Jacobian J(C). The latter

would be an elliptic curve, whose formal completion

can have height at most 2. There is a theorem that

says if an abelian varietyA has a 1-dimensional formal

summand of height n for n > 2, then the dimension of

A (and the genus of the curve, if A is a Jacobian) is at

least n.
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Artin-Schreier curves
Theorem 2 Let C(p, f) be the curve over Fp defined
by the affine equation

ye = xp − x where e = pf − 1.

(Assume that f > 1 when p = 2.) Then its Jacobian
has a 1-dimensional formal summand of height
(p− 1)f .

The resulting genus is not Landweber exact, so this

does not lead to a cohomology theory.
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The Lubin-Tate lifting
Theorem 3 Let C ′(p, f) be the curve over over the
ring E∗ = Zp[[u1, . . . , uh−1]][u, u

−1] defined by

ye = xp − umx+
h−2∑

i=0

ui+1x
p−1−[i/f ]ypf−1−pi−[i/f ]f

where m = (p− 1)e.

Then its Jacobian has a formal 1-dimensional
subgroup isomorphic to the Lubin-Tate [LT65] lifting
of the formal group law above. The resulting genus
satisfies Landweber’s exactness criteria, so we get a
cohomology theory.
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My dream curve
Conjecture 4 Let C ′′(p, f) be the curve over over the
ring

R = Zp[u, u
−1][[a(p−s)e−qt : s, t ≥ 0, es+ pt < pe]]

defined by

ye = xp − umx+
∑

s,t

a(p−s)e−ptx
syt

where |u| = 2 and |ai| = 2i.

Then its Jacobian has a formal 1-dimensional
subgroup, subject to certain divisibility conditions
among the ai for f > 2. The resulting genus also
satisfies Landweber’s exactness criteria.
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My dream curve
This last curve is amenable to change of coordi-

nates and possibly to a calculation generalizing that of

Hopkins-Mahowald for tmf.
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Properties of C(p, f )

Recall that C(p, f) is the Artin-Schreier curve over
Fp defined by the affine equation

ye = xp − x, where e = pf − 1,

and its Jacobian has a 1-dimensional formal summand
of height h = (p− 1)f .

• Its genus is (p− 1)(e− 1)/2. (Thus it is zero in
the excluded case (p, f) = (2, 1).)
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Properties of C(p, f )
• It has an action by the group

G = Fp o µm where m = (p− 1)e

and µm is the group of mth roots of unity, given
by

(x, y) 7→ (ζex+ a, ζy)

for a ∈ Fp and ζ ∈ µm. This group is a maximal
finite subgroup of the hth Morava stabilizer
group, and it acts appropriately on the
1-dimensional formal summand.

• For f = 1 (and p > 2) Theorem 3 was proved by
Gorbunov-Mahowald [GM00].
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Examples of these curves
• C(2, 2) and C(3, 1) are elliptic curves whose

formal group laws have height 2.

• C(2, 3) has genus 3 and a 1-dimensional formal
summand of height 3.

• C(2, 4) and C(3, 2) each have genus 7 and a
1-dimensional formal summand of height 4.
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Remarks
• Theorem 2 was known to and cited by Manin in

1963 [Man63]. Most of what is needed for the
proof can be found in Katz’s 1979 Bombay
Colloquium paper [Kat81] and in Koblitz’ Hanoi
notes [Kob80].

• The original proof rests on the determination of
the zeta function of the curve by
Davenport-Hasse in 1934 [HD34], and on some
properties of Gauss sums proved by Stickelberger
in 1890 [Sti90]. The method leads to complete
determination of Ĵ(C(p, f)).
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Remarks
• We have reproved Theorem 2 using Honda’s

theory of commutative formal group laws
developed in the early ’70s. This proof does not
rely on knowledge of the zeta function and can be
modified to prove Theorem 3 and presumably
Conjecture 4.
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Notation for Honda Theory
• Given a power series f(x1, x2, . . .) in several

variables over Zp or Qp, let T n(f) be the power
series obtained from f by replacing each variable
by its pnth power. This leads to an action of the
ring Zp[T ] on the power series ring
R = Qp[[x1, x2, . . .]]. Similarly a vector of d such
power series admits an action by the matrix ring
Md(Zp[T ]).
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Notation for Honda Theory
• Suppose we have a d-dimensional formal group

law F over Zp. F is characterized by its
logarithm f , which is a vector of d power series
in d variables over the field Qp. Given a matrix
H =

∑
iCiT

i with Ci ∈Md(Zp), define

(H ∗ f)(x1, . . . , xd) =
∑

i

Cif(xpi

1 , . . . , x
pi

d ).
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Honda theory
Definition 5 We say that H is a Honda matrix for F
(or for the vector f ) and that F is of type H , if
H ≡ pId modulo T (Id is the d× d identity matrix)
and (H ∗ f)(x) ≡ 0 modulo (p). Two such matrices
are said to be equivalent if they differ by unit
multiplication on the left.
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Honda theory
Theorem 6 (Honda, 1970 [Hon70]) The strict
isomorphism classes of d-dimensional formal group
laws over Zp correspond bijectively to the
equivalence classes of matrices

H ∈Md(Zp)〈〈T 〉〉

congruent to pId modulo degree 1. H and f are
related by the formula

f(x) = (H−1 ∗ p)(x).
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Examples of Honda matrices
• For d = 1 , let H be the 1 × 1 matrix with entry
h = p− T n for a positive integer n. Then

f(x) =
∑

i≥0

xpni

pi

and F is the formal group law for the Morava
K-theory K(n)∗.
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Examples of Honda matrices
• Let A = Zp[[u1, u2, . . . un−1]] for a positive

integer m, and let Tui = up
i . Let H be the 1 × 1

matrix with entry

h = p− T n −
∑

0<i<n

uiT
i.

Then f(x) is the logarithm for the Lubin-Tate
lifting of the formal group law above.
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More Honda theory
Question: How can we find the Honda matrix for

the formal completion of the Jacobian of an algebraic

curve?
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More Honda theory
Theorem 7 (Honda, 1973 [Hon73]) Let C be a
curve of genus g over Zp with smooth reduction
modulo p, let

{ω1, . . . , ωg}

be a basis for the space of holomorphic 1-forms of C
written as power series in a local parameter y, and let

ψi =

∫ y

0

ωi.

Then if H is a Honda matrix for the vector
(ψ1, . . . , ψg), it is also one for Ĵ(C), the formal
completion of the Jacobian J(C).

Wayne State Topology Seminar – p.27/43



More Honda theory
Note that ψ above is a vector of power series in one

variable over Qp, while the logarithm of Ĵ(C) is a vec-

tor of power series in g variables. The theorem asserts

that they have the same Honda matrix.
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Honda theory for C(p, f )

Recall that our curve C(p, f) is defined by the affine
equation

ye = xp − x where e = pf − 1.

Its genus is g = (e− 1)(p− 1)/2. A basis for the
holomorphic 1-forms for C(p, f) is

{ωj,k: j, k ≥ 0, ej + pk < 2g − 1} ,

where

ωj,k =
xjykdy

1 − pxp−1
.
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Honda theory for C(p, f )

We denote the integral of its expansion in terms of y
by ψej+k+1, and we have

ψej+k+1 =
∑

i≥0

(
pi+ j

i

)
ymi+ej+k+1

mi+ ej + k + 1
.

This enables us to prove Theorem 2.
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The Honda matrix for C(2, 3)

For C(2, 3) (where g = 3 and m = 7), the integrals
have the form

ψ1 ∈ yQ2[[y
7]]

ψ2 ∈ y2Q2[[y
7]]

ψ3 ∈ y3Q2[[y
7]]

More explicitly

ψk =
∑

i≥0

(
2i

i

)
y7i+k

7i+ k
.
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The Honda matrix for C(2, 3)

This means that

Tψ1 ∈ y2Q2[[y
7]]

Tψ2 ∈ y4Q2[[y
7]]

Tψ3 ∈ y6Q2[[y
7]]

T 2ψ1 ∈ y4Q2[[y
7]]

T 2ψ2 ∈ y8Q2[[y
7]] ⊂ yQ2[[y

7]]

T 2ψ3 ∈ y12Q2[[y
7]] ⊂ y5Q2[[y

7]]
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The Honda matrix for C(2, 3)

This implies that the Honda matrix has the form

H =




h1,1(T
3) T 2h1,2(T

3) 0

Th2,1(T
3) h2,2(T

3) 0

0 0 h3,3(T
3)




where
hi,j(T

3) =
∑

k≥0

hi,j,kT
3k

with hi,j,k ∈ Z(2) and hi,i,0 = 2.
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The Honda matrix for C(2, 3)

This means that the 3-dimensional formal group law
has a 1-dimensional summand. Since

ψ3 =
y3

3
+
y10

5
+

6y17

17
+

5y24

6
+ . . .

≡ y3 + y10 +
y24

2
+ . . . mod 2,

h3,3 is roughly 2−T 3, and the 1-dimensional summand

has height 3.
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The Honda matrix for C(3, 2)

For C(3, 2) (where g = 7 and m = 16), we get
integrals ψk for

k ∈ S = {1, 2, 3, 4, 5, 9, 10} .

Explicitly,

ψk =
∑

i≥0

(
3i+ [k/8]

i

)
y16i+k

16i+ k
.
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The Honda matrix for C(3, 2)

A similar computation shows that ψ5 corresponds to a

1-dimensional formal summand. The argument boils

down to seeing how the orbits O of Z/(16) under mul-

tiplication by 3 intersect the set S above. Each such

intersection corresponds to a formal summand whose

dimension is the cardinality ofO∩S and whose height

is the cardinality of O. One such orbit is {5, 15, 13, 7},

whose intersection with S is the singleton {5}.
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The Honda matrix for C(3, 2)

We find that

ψ5 ≡ −y5+y21−y117+y261+
2 y405

3
+. . . mod 3,

which leads to a Honda eigenvalue of roughly 3 − T 4,

so the height of the 1-dimensional formal summand is

4 as claimed.

Wayne State Topology Seminar – p.37/43



References

[GM00] V. Gorbounov and M. Mahowald. Formal
completion of the Jacobians of plane curves
and higher real K-theories. J. Pure Appl.
Algebra, 145(3):293–308, 2000.

[HD34] H. Hasse and H. Davenport. Die
Nullstellensatz der Kongruenz
zeta-funktionen in gewissn zyklischen
Fällen. J. Reine Angew. Math.,
172:151–182, 1934.

Wayne State Topology Seminar – p.38/43



References

[HM] M. J. Hopkins and M. A. Mahowald. From
elliptic curves to homotopy theory. Preprint
in Hopf archive.

[Hon70] Taira Honda. On the theory of commutative
formal groups. J. Math. Soc. Japan,
22:213–246, 1970.

Wayne State Topology Seminar – p.39/43



References

[Hon73] Taira Honda. On the formal structure of the
Jacobian variety of the Fermat curve over a
p-adic integer ring. In Symposia
Mathematica, Vol. XI (Convegno di
Geometria, INDAM, Rome, 1972), pages
271–284. Academic Press, London, 1973.

[Kat81] Nicholas M. Katz. Crystalline cohomology,
Dieudonné modules, and Jacobi sums. In
Automorphic forms, representation theory
and arithmetic (Bombay, 1979), volume 10
of Tata Inst. Fund. Res. Studies in Math.,
pages 165–246. Tata Inst. Fundamental
Res., Bombay, 1981.

[Kob80] Neal Koblitz. p-adic analysis: a short
course on recent work, volume 46 of
London Mathematical Society Lecture Note
Series. Cambridge University Press,
Cambridge, 1980.

Wayne State Topology Seminar – p.40/43



References

[Lan76] P. S. Landweber. Homological properties of
comodules over MU∗(MU) and BP∗(BP ).
American Journal of Mathematics,
98:591–610, 1976.

[LRS95] P. S. Landweber, D. C. Ravenel, and R. E.
Stong. Periodic cohomology theories
defined by elliptic curves. In Mila Cenkl
and Haynes Miller, editors, The Čech
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