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2.1

1 The spectrum Ω

The spectrum Ω

Our goal is to prove

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2(S
0) do not exist for j ≥ 7.

2.2
Our strategy is to find a map S0→M to a nonconnective spectrum Ω with the following proper-

ties.
(i) It has an Adams-Novikov spectral sequence in which the image of each θ j is nontrivial.

(ii) It is 256-periodic, meaning Σ256M ∼= M.
(iii) π−2(M) = 0.

The spectrum Ω (continued)
We will construct an equivariant C8-spectrum Ω̃ and show that its homotopy fixed point set Ω̃hC∗

(to be defined below) and its actual fixed point set Ω̃C8 are equivalent.
∙ The homotopy of Ω̃hC∗ can be computed using a spectral sequence similar to that of Hopkins-

Miller. Twenty year old algebraic methods can be used to show that it detects the θ js.
∙ In order to establish (ii) and (iii), we will use equivariant methods to construct a new spectral

sequence (the slice spectral sequence) converging to the homotopy of the actual fixed point set
Ω̃C8 . 2.3

2 MU

The complex cobordism spectrum

MU is the Thom spectrum for the univer-
sal complex vector bundle, which is defined
over the classifying space of the stable uni-
tary group, BU .

∙ MU has an action of the group C2 via complex conjugation. The fixed point set is MO, the
Thom spectrum for the universal real vector bundle.
∙ H∗(MU ;Z) = Z[bi : i > 0] where ∣bi∣= 2i.
∙ H∗(MO;Z/2) = Z/2[ai : i > 0] where ∣ai∣= i.
∙ π∗(MU) = Z[xi : i > 0] where ∣xi∣= 2i. This is the complex cobordism ring.
∙ π∗(MO) = Z/2[yi : i > 0, i ∕= 2k−1] where ∣yi∣= i. This is the unoriented cobordism ring. 2.4
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3 Formal group laws

Formal group laws
The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

F(x,y) = ∑
i, j≥0

ai, jxiy j ∈ R[[x,y]]

satisfying
(i) (Commutativity) F(y,x) = F(x,y). This implies a j,i = ai, j.

(ii) (Identity element) F(x,0) = F(0,x) = x. This implies a1,0 = a0,1 = 1 and ai,0 = a0,i = 0 for
i ∕= 1.

(iii) (Associativity) F(x,F(y,z)) = F(F(x,y),z). This implies more complicated relations among
the ai, j. 2.5

Examples of formal group laws
∙ x+ y, the additive formal group law.
∙ x+ y+ xy, the multiplicative formal group law. Note here that 1+F(x,y) = (1+ x)(1+ y).
∙ (x+ y)/(1− xy), the addition formula for the tangent function.

2.6

Another example of a formal group law

x
√

1− y4 + y
√

1− x4

1+ x2y2 ,

This formal group law is defined over Z[1/2]. It is the addition formula for the elliptic integral∫ x

0

dt√
1− t4

.

It is originally due to Euler, see De integratione aequationis differentialis (mdx)/
√

1− x4 =
(ndy)/

√
1− x4, 1753.

2.7

The Lazard ring and the universal formal group law
Let

L = Z[ai, j]/(relations)

where the relations are those implied by the definition of a formal group law. We give this ring a
grading by ∣ai, j∣= 2(i+ j−1).

There is formal group law G over L given by the formula in the definition. It is universal in the
following sense.

Given any formal group law F over any ring R, there is a unique ring homomorphism λ : L→ R
such that

F(x,y) = λ (G(x,y)),

where λ (G(x,y)) is the formal group law over R obtained from G by applying λ to each of the ai, j. 2.8
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Quillen’s theorem
Lazard showed that L and π∗(MU) are isomorphic as graded rings. Quillen showed that this is

not an accident. The isomorphism is defined by a formal group law over π∗(MU) defined as follows.

There is a cohomology theory associated with MU under which

MU∗(CP∞) = π∗(MU)[[x]]

and MU∗(CP∞×CP∞) = π∗(MU)[[x⊗1,1⊗ x]].

The map CP∞×CP∞→CP∞ (corresponding to tensor product of complex line bundles) induces
a homomorphism

MU∗(CP∞)→MU∗(CP∞×CP∞)

that sends x to a power series in x⊗1 and 1⊗ x which is a formal group law over π∗(MU). 2.9

Quillen’s theorem (continued)

Quillen’s Theorem (1969). The homomorphism θ : L→ π∗(MU) induced by the formal group law
over π∗(MU) defined above is an isomorphism.

2.10

This means that the internal structure of MU , and the associated homology and cohomology
theories, is intimately related to the structure of formal group laws.

4 Some relatives of MU

Some relatives of MU
Here is an example of this connection.

After localizing at a prime p, MU splits into a wedge of suspensions of smaller spectra (Brown-
Peterson) BP with

π∗(BP) = Z(p)[vn : n > 0] where ∣vn∣= 2pn−2.

Brown and Peterson orig-
inally constructed it (in
1967) via its Postnikov
tower.

2.11

More relatives of MU
Quillen’s 1969 paper gave a more elegant construction in terms of p-typical formal group laws.

A theorem of Cartier says that any formal group law over a Z(p)-algebra is canonically isomorphic
to one with certain special properties.
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The Brown-Peterson splitting is the topological analog of Cartier’s theorem. 2.12

More relatives of MU

The Morava spectrum En (for a pos-
itive integer n) is an E∞-ring spec-
trum such that π∗(En) obtained from
π∗(BP) as follows:

(i) Invert vn and kill the higher generators.
(ii) Complete with respect to the ideal In = (p,v1, . . . ,vn−1).

(iii) Tensor over Zp (the p-adic integers) with the Witt ring W (Fpn); this is equivalent to adjoining
(pn−1)th roots of unity.

The ring π∗(En) was studied by Lubin-Tate. They showed that it classifies liftings (to Artinian
rings) of a certain formal group law Fn over Fpn , the Honda formal group law. 2.13

5 The Hopkins-Miller theorem

The Morava stabilizer group Sn
Sn is the automorphism group of the Honda formal group law Fn. It a crucial ingredient in

chromatic stable homotopy theory.

Its action on Fn lifts to an action on π∗(En), the Lubin-Tate ring. This action is defined by certain
formulas but is mysterious in practice.

It is a pro-p-group isomorphic to a group of units in a certain division algebra Dn of rank n2 over
the p-adic numbers Qp.

Dn contains each degree n field extension of Qp, including the cyclotomic ones.

We will be interested in some finite subgroups of Sn. 2.14
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The Hopkins-Miller theorem
The algebraically defined action of Sn on π∗(En) leads to action on En itself, but it is defined only

up to homotopy.

In the early 90s Hopkins
and Miller showed that
the action can be rigidified
enough to construct homo-
topy fixed points sets EhG

n
for finite subgroups G.

EhSn
n is LK(n)S0, the localization of the sphere spectrum with respect to the nth Morava K-theory.

2.15

The Hopkins-Miller theorem (continued)

Hopkins-Miller Theorem (1992?). For each closed subgroup G ⊂ Sn there is a homotopy fixed
point set EhG

n and a spectral sequence

H∗(G;π∗(En)) =⇒ π∗(EhG
n ).

It coincides with the Adams-Novikov spectral sequence for EhG
n .

2.16

Finite subgroups of Sn
The finite subgroups of Sn have been completely classified by Hewett, but only three of them

concern us here. The prime is always 2.

∙ C2 = {±1} ⊂ S1, which is Z×2 , the units in the 2-adic integers.
∙ C4 ⊂ S2. The group S2 is in the division algebra D2 which contains each quadratic extension

of the 2-adic numbers. Hence it contains fourth roots of unity.
∙ C8 ⊂ S4. The division algebra D4 contains eighth roots of unity for similar reasons.

2.17

6 Our first guess at Ω

A first attempt to define the magic spectrum Ω

∙ The spectrum EhC8
4 can be shown to satisfy the first condition required of Ω, namely its Adams-

Novikov spectral sequence detects all of the θ js. EhC2
1 and EhC4

2 do not have this property.
∙ The Hopkins-Miller spectral sequence for EhC2

1 is very simple and we will describe it at the
end of the third lecture.
∙ The one for EhC4

2 is very rich and is similar to the one for tmf (topological modular forms),
whose K(2)-localization is the homotopy fixed point set for a certain subgroup of order 24.
∙ The one for EhC8

4 is too complicated for us to use it to prove that π−2 = 0.
2.18
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A C8-equivariant substitute for E4
A G-equivariant spectrum is more than a spectrum with an action of G. We will give the precise

definitions in the next lecture.

After describing a C8-equivariant substitute for E4, we will present a new spectral sequence, the
slice spectral sequence, for computing the homotopy of its fixed point set.

A convenient property of the slice spectral sequence is that π−2 vanishes at the E2-level, making
property (iii) immediate.

Property (ii) (periodicity) involves some differentials in the slice spectral sequence.

Property (i) (detection) requires some algebra that has been knonw for over 20 years. It will be
the subject of the last lecture. 2.19

7 Two spectral sequences for KO

The Hopkins-Miller spectral sequence for KO
The simplest case of a finite subgroup of Sn acting on En is that of C2 acting on E1 for p = 2.

It has been known since the 70s. E1 is 2-adic complex K-theory and the group action is complex
conjugation. The homotopy fixed point set is 2-adic real K-theory.

It has a slice spectral sequence that was the subject of Dan Dugger’s thesis.

2.20

The Hopkins-Miller spectral sequence for KO (continued)
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Here is the Hopkins-Miller spectral sequence it. 2.21
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The slice spectral sequence for KO
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Here is the slice spectral sequence for the actual fixed point set. 2.22

Actual fixed points and homotopy fixed points
These two spectral sequences are computing different things.

∙ The Hopkins-Miller spectral sequence converges to π∗(E
hC2
1 ), the homotopy of the homotopy

fixed point set, F(EC2,E1)
C2 , the spectrum of equivariant maps from a contractible free C2-

spectrum EC2 to E1.
∙ The slice spectral sequence converges to π∗(E

C2
1 ), the homotopy groups of the actual fixed

point set.

In general the homotopy and actual fixed point sets need not be equivalent, but in this case they
are.

With this in mind, comparing the two E2-terms enables us to determine the complete behavior of
each SS. 2.23

7


	The spectrum 
	MU
	Formal group laws
	MU's relatives
	The Hopkins-Miller theorem
	Our first guess at 
	Two spectral sequences for KO

