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1. Brief introduction

Determining the stable homotopy groups of sphere
has been a vexing and fascinating problem in
algebraic topology for the past 70 years.
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« m,.1(S™) Is defined to be the set of homotopy
classes of maps froi" " (the unit sphere in

R 1) to S”. The set has a natural abelian
group structure.
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1. Brief introduction

Determining the stable homotopy groups of sphere
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall
« m,.1(S™) Is defined to be the set of homotopy
classes of maps frofi"** (the unit sphere in

R 1) to S”. The set has a natural abelian
group structure.

* m,11(S™) Is known to be independent effor
n > k+ 1. We denote this group by, or m;,(S°).
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1. Brief introduction

Determining the stable homotopy groups of sphere
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

* m11(S™) Is known to be independent effor
n > k+ 1. We denote this group by, or m(S°).

« Here are its values for smail

k(O 1 | 2 3 |4|/5| 6 7
| Z|Z/2|Z/2|7/24 0|0 Z/2 | Z/240
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Here are Its values for smail

k|Ool 1 | 2 3 |4/ 5| 6 7
o | Z | Z/2 | Z/2|Z/24|0|0|Z/2 | Z/240

- 7 is known to be finite fok > 0.
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1. Brief introduction
Determining the stable homotopy groups of sphere

has
alge

peen a vexing and fascinating problem in
oraic topology for the past 70 years. Recall

Here are Its values for smail

k|Ool 1 | 2 3 |4/ 5| 6 7
o | Z | Z/2 | Z/2|Z/24|0|0|Z/2 | Z/240

- 7 is known to be finite fok > 0.

« Elements of arbitrarily large order are known t
occur for largek.
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1. Brief introduction
Determining the stable homotopy groups of sphere

has
alge

peen a vexing and fascinating problem in
oraic topology for the past 70 years. Recall

Here are Its values for smail

k|Ool 1 | 2 3 |4/ 5| 6 7
o | Z | Z/2 | Z/2|Z/24|0|0|Z/2 | Z/240

» Thep-component ofr; is known for

*x k <60 forp =2
x k<100 forp =3

x k£ <1000 forp =5
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1. Brief introduction

Determining the stable homotopy groups of sphere
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

« Here are its values for smail

k|0 1 2 3 4|5 6 7
o | Z | Z/2 | Z/2|Z/24|0|0|Z/2 | Z/240
» Thep-component ofr; is known for
*x k <60 forp =2
*x k£ <100 forp =3
x k <1000 forp =5
Many more details can be found in [RaVv86].
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2. Chromatic theory

Elaborate algebraic machinery has been develope
studying this problem. It involves homological
algebra and ever increasing amounts of algebraic
geometry and algebraic number theory.
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2. Chromatic theory

Elaborate algebraic machinery has been develope
studying this problem. It involves homological
algebra and ever increasing amounts of algebraic
geometry and algebraic number theory.

The values ok mentioned above have not changec
the past 20 years. Research has focused instead
understanding the overall structure of the groups &
of the stable homotopy category.
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2. Chromatic theory

Forty years ago there was very little one could hav
said or even guessed about this overall structure.
we have thehromatic approactho stable homotopy
theory.
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2. Chromatic theory

Forty years ago there was very little one could hav
said or even guessed about this overall structure.
we have thehromatic approactho stable homotopy
theory.

Roughly speaking it says that, after localizing at a
primep, the problem can be broken up into various
“layers,” one for each nonnegative integermwhich
can be analyzed separately.

Universitv of Rochester Topoloav Seminar — b.



2. Chromatic theory

Forty years ago there was very little one could hav
said or even guessed about this overall structure.

we have thehromatic approactho stable homotopy
theory.

Roughly speaking it says that, after localizing at a
primep, the problem can be broken up into various
“layers,” one for each nonnegative integermwhich
can be analyzed separately.

Each of them can be completely determined with &
finite amount of work.
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2. Chromatic theory

These layers can be thought of in at least two diffe
ways:
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2. Chromatic theory
These layers can be thought of in at least two diffe
ways:

» Thinking of ° as a complicated function, the
first n layers can be assembled into artlf order

approximation” tor?, similar to the first: terms
INn a power series.
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2. Chromatic theory

These layers can be thought of in at least two diffe
ways:

» Thinking of ° as a complicated function, the
first n layers can be assembled into artlf order

approximation” tor?, similar to the first: terms
INn a power series.

» Thinking of 7> as a complicated radio signal, ti
chromatic layers can be thought of as messag
being broadcast at various frequencies. They
be decoded separately. Each layer is said to b
monochromaticmeaning that its information is
all on the same frequency.
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2. Chromatic theory

These layers can be thought of in at least two diffe
ways:

» Thinking of ° as a complicated function, the
first n layers can be assembled into artlf order

approximation” tor?, similar to the first: terms
INn a power series.

» Thinking of 7> as a complicated radio signal, ti
chromatic layers can be thought of as messag
being broadcast at various frequencies. They
be decoded separately. Each layer is said to b
monochromaticmeaning that its information is
all on the same frequency.

Many more details can be found in [Rav92].
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3. The Morava stabilizer group

Thenth layer in the chromatic filtration is the
Bousfield localization with respect to théh Morava

K-theory, denoted byl k() S°.
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3. The Morava stabilizer group

Thenth layer in the chromatic filtration is the
Bousfield localization with respect to théh Morava

K-theory, denoted byl k() S°.

It has been known since the late "70s that its struct
IS controlled by the continuous cohomology of a

certain profinite group,, called thenth Morava
stabilizer group
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3. The Morava stabilizer group

Thenth layer in the chromatic filtration is the
Bousfield localization with respect to théh Morava

K-theory, denoted byl k() S°.

It has been known since the late "70s that its struct
IS controlled by the continuous cohomology of a
certain profinite group,, called thenth Morava
stabilizer group

It Is the automorphism group of a certain
1-dimensional formal group law and can be descri
explicitly in terms of a certain division algebra over
the p-adic numbers.
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3. The Morava stabilizer group

Here are some of its properties.
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* Sy Is the trivial group.
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3. The Morava stabilizer group

Here are some of its properties.
* Sy Is the trivial group.

 Forn > 0, S,, Is an extension of a prp-group by
F ., the group of units in the fieltf',., which Is
cyclic of orderp™ — 1.
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3. The Morava stabilizer group

Here are some of its properties.
* Sy Is the trivial group.

 Forn > 0, S,, Is an extension of a prp-group by
F ., the group of units in the fieltf',., which Is
cyclic of orderp™ — 1.

* 51 1sZ;, the group of units in the-adic integers
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3. The Morava stabilizer group

Here are some of its properties.

So IS the trivial group.

Forn > 0, S, IS an extension of a prp-group by
F ., the group of units in the fieltf',., which Is
cyclic of orderp™ — 1.

S1 IS Z;, the group of units in the-adic integers

Forn > 1, S, and its prop-subgroup are
nonabelian.
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3. The Morava stabilizer group

Here are some more of its properties.
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3. The Morava stabilizer group

Here are some more of its properties.

* S, IS p-torsion free unlesg — 1 dividesn.
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3. The Morava stabilizer group

Here are some more of its properties.

* S, IS p-torsion free unlesg — 1 dividesn.

- S, has an element of ordef iff (p — 1)p*~!
dividesn.
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Here are some more of its properties.

* S, IS p-torsion free unlesg — 1 dividesn.

- S, has an element of ordef iff (p — 1)p*~!
dividesn.

» S,, has virtual cohomological dimensioi.
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3. The Morava stabilizer group

Here are some more of its properties.

* S, IS p-torsion free unlesg — 1 dividesn.

- S, has an element of ordef iff (p — 1)p*~!
dividesn.

» S,, has virtual cohomological dimensioi.

 Whenp — 1 dividesn, the cohomology ring of,,
has Krull dimension one. Equivalently, every
elementary abelian subgroup$f has ordep.
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3. The Morava stabilizer group

Here are some more of its properties.

* S, IS p-torsion free unlesg — 1 dividesn.

- S, has an element of ordef iff (p — 1)p*~!
dividesn.

» S,, has virtual cohomological dimensioi.

 Whenp — 1 dividesn, the cohomology ring of,,
has Krull dimension one. Equivalently, every
elementary abelian subgroup$f has ordep.

» The finite subgroups &, have been determine
by Hewett[Hew95].
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4. The Hopkins-Miller theorem

The relation between the Morava stabilizer grélip
and thenth chromatic layels,, became much more
precise with the advent of the Hopkins-Miller theor
In the early '90s. It concerns the action®f on a

certain spectrum callef,,, usually referred to as
Morava E-theory.
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and thenth chromatic layels,, became much more
precise with the advent of the Hopkins-Miller theor
In the early '90s. It concerns the action®f on a

certain spectrum callef,,, usually referred to as
Morava E-theory.

Its homotopy groups are explicitly known and eas)
describe.
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4. The Hopkins-Miller theorem

The relation between the Morava stabilizer grélip
and thenth chromatic layels,, became much more
precise with the advent of the Hopkins-Miller theor
In the early '90s. It concerns the actionXf on a
certain spectrum callef,,, usually referred to as
Morava E-theory.

Its homotopy groups are explicitly known and eas)
describe.

Prior to their work we knew of afi,,-action on it
defined only up to homotopy.
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4. The Hopkins-Miller theorem

Theorem 1 [Hopkins-Miller 1992, unpublis
The action of5,, on E,, IS such that for any c

ned].
osed

subgroupGG C S, there is a homotopy fixed point s

which we will denote by O,,(G) with the fol
properties:

owing
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4. The Hopkins-Miller theorem

Theorem 1 [Hopkins-Miller 1992, unpublis
The action of5,, on E,, IS such that for any c

ned].
osed

subgroupGG C S, there is a homotopy fixed point s

which we will denote by O,,(G) with the fol
properties:

(i) For G =S, itis LS.

owing

(1) Itis contravariantly natural inGG, 1.e., given

subgroups
G1 C Gy C Sn

there is a restriction map'O,,(G2) — EO,(Gy).

If G1 has finite index I, then there is
transfer map going the other way.

a
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4. The Hopkins-Miller theorem

Theorem 1 [Hopkins-Miller 1992, unpublis

ned].

The action of5,, on E,, Is such that for any closed
subgroupGG C S, there is a homotopy fixed point s

which we will denote by O,,(G) with the fol
properties:

owing

(i) There is a fixed point spectral sequence (also

natural in G) of the form

H*(G;m.(E,)) = m(FEO,(G))

which coincides with the Adams-Novikov spec

sequence for, (FO,(G)).
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4. The Hopkins-Miller theorem

Theorem 1 [Hopkins-Miller 1992, unpublis

ned].

The action of5,, on E,, Is such that for any closed
subgroupGG C S, there is a homotopy fixed point s

which we will denote by O,,(G) with the fol
properties:

owing

(i) There is a fixed point spectral sequence (also

natural in G) of the form

H*(G;m.(E,)) = m(FEO,(G))

which coincides with the Adams-Novikov spec

sequence for, (FO,(G)).

The problem here is the difficulty of explicitly

describing the action &, onr.(E,,).
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Example: (p,n) = (2,1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the

motivation for the “O” InEO,,(G).
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motivation for the “O” InEO,,(G).

« Fj Is the 2-adic completion of compleX-theory.
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Example: (p,n) = (2,1)

The following was known long

before the

Hopkins-Miller theorem was proved, and is the
motivation for the “O” InEO,,(G).

« Fj Is the 2-adic completion of compleX-theory.

* Sy ~ Z5 (the 2-adic units),
to0Zy X Z/2, with Z /2 = {-

which Is iIsomorphic

1),

Universitv of Rochester Topoloav Seminar — p.



Example: (p,n) = (2,1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the

motivation for the “O” InEO,,(G).

« Fj Is the 2-adic completion of compleX-theory.

* Sy >~ Z5 (the 2-adic units), which is isomorphic
to Z» X Z/Q, with Z/2 = {::1}.

« The action of the generator &/2 is by complex
conjugation.
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M\ uUlAaooiLAdl C)\ClllllJlC. LIIT LAoSC
(pv n) — (27 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the

motivation for the “O” InEO,,(G).

 The fixed point set’O,(Z/2) is the 2-adic
completion of real{-theory, KO.
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M\ uUlAaooiLAdl C)\ClllllJlC. LIIT LAoSC
(pv n) — (27 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” InEO,,(G).

 The fixed point set’O,(Z/2) is the 2-adic
completion of real{-theory, KO.

- The relation betwee O and Lk ;)S" is well
understood. See [Rav84].
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5. New results

Near Theorem 1 [HHR 2007] LetG C S,, be a finite
subgroup.
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Near Theorem 1 [HHR 2007] LetG C S,, be a finite
subgroup.

() The action ofG on,(FE,) has a certain explicit
description which enables us to compute its
cohomology.
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5. New results

Near Theorem 1 [HHR 2007] LetG C S,, be a finite
subgroup.

() The action ofG on,(FE,) has a certain explicit
description which enables us to compute its
cohomology.

(i) When thep-Sylow subgroup dfr is C), then there

are certain differentials in the Hopkins-Miller
spectral sequence related to the geometry of tl
classifying spacé&C),,.
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5. New results

Near Theorem 1 [HHR 2007] LetG C S,, be a finite
subgroup.

() The action ofG on,(FE,) has a certain explicit
description which enables us to compute its
cohomology.

(i) When thep-Sylow subgroup dfr is C), then there
are certain differentials in the Hopkins-Miller
spectral sequence related to the geometry of tl
classifying spacé&C),,.

(i) In this case the Hopkins-Miller spectral sequen
IS rigid enough to preclude any other
differentials, so it is possible to describe

T.(FO,(G)).
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Remarks

« Forn = (p —1)f, the order the maximal
subgroup with an element of ordelrs a

metacyclic group of ordes(p — 1)(p/ — 1).
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Remarks

« Forn = (p —1)f, the order the maximal
subgroup with an element of ordelrs a

metacyclic group of ordes(p — 1)(p/ — 1).

 For f =1, p odd andG as above, the spectrum
FO,_1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald

[GMOOQ], who denoted the spectrum simply by
FO, ;.
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 For f =1, p odd andG as above, the spectrum
FO,_1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald
[GMOQ], who denoted the spectrum simply by
FEO,_;.

» The differentials in that case are closely relate
ones discovered long ago by Toda; see [Tod6
and [Tod68].
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Remarks

 For f =1, p odd andG as above, the spectrum

FO,_1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald

[GMOQ], who denoted the spectrum simply by

FEO,_;.
» The differentials in that case are closely re

ones discovered long ago by Toda; see |

and [Tod68].

» The spectrum was used recently by Nave

prove the nonexistence of the Smith-Toda

ate
d6

INay

complexV ((p + 1)/2) (see [Tod71]) fop > 7.
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Moreremarks

- For(p,n) = (2,2) there are two finite subgroup
of interest. One Is an extension of the quatern
group byCs. It fixed point spectrum is the

K (2)-localization of tmf, which was originally

iIntroduced by Hopkins-Mahowald |

1 -

AM].
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Moreremarks

« For(p,n) = (2,2) there are two finite subgroup
of interest. One Is an extension of the quatern
group byCs. It fixed point spectrum is the

K (2)-localization of tmf, which was originally
iIntroduced by Hopkins-Mahowald in [HM].

» The other case is the abelian extensiod'9by
C'3, which yields theK (2)-localization of tmf3),
spectrum related to elliptic curves equipped w
a point of order 3.
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Moreremarks

Forp = 2, let G be the maximal subgroup containir
an element of order 2. It is cyclic of orde(2" — 1).
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Moreremarks

Forp = 2, let G be the maximal subgroup containir
an element of order 2. It is cyclic of orde(2" — 1).

ThenEO,(G) has been studied previously by
Hu-Kriz [HKO1] and Kitchloo-Wilson [KWO7], who
call a variant of it the “real Johnson-Wilson spectrt

ER(n).
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Moreremarks

Forp = 2, let G be the maximal subgroup containir
an element of order 2. It is cyclic of orde(2" — 1).

ThenEO,(G) has been studied previously by

Hu-Kriz [H

K01] and Kitchloo-Wilson

KWO

], who

call a variant of it the “real Johnson-Wilson spectrt

ER(n).

Kitchloo and Wilson us&/ R(2) (which is closely

related to tmf3)) in [KWa

] to prove some new

nonimmersion results for real projective spaces.

Univers

itv of Rochester Topoloav Seminar —-bp. .



Last remark

To my knowledge, no other fixed point spectra of
finite groups ofS,, containing an element of order
have been studied before.
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Last remark

To my knowledge, no other fixed point spectra of

finite groups ofS,, containing an element of order
have been studied before.

If n has the form(p — 1)p*~!s for s prime top, then

there aré: maximal finite subgroups, havingSylow
subgroupC), for 1 < < k.
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Last remark

To my knowledge, no other fixed point spectra of

finite groups ofS,, containing an element of order
have been studied before.

If n has the form(p — 1)p*~!s for s prime top, then
there aré: maximal finite subgroups, havingSylow
subgroupC), for 1 < < k.

Their fixed point spectra form a pullback diagram
which we hope to study.
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