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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years.
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• πn+k(S
n) is defined to be the set of homotopy

classes of maps fromSn+k (the unit sphere in
R

n+k+1) to Sn. The set has a natural abelian
group structure.
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n+k+1) to Sn. The set has a natural abelian
group structure.
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k or πk(S
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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

• πn+k(S
n) is known to be independent ofn for

n > k + 1. We denote this group byπS
k or πk(S

0).
• Here are its values for smallk.

k 0 1 2 3 4 5 6 7
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240
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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

• Here are its values for smallk.

k 0 1 2 3 4 5 6 7
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240

• πS
k is known to be finite fork > 0.
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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

• Here are its values for smallk.

k 0 1 2 3 4 5 6 7
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240

• πS
k is known to be finite fork > 0.

• Elements of arbitrarily large order are known to
occur for largek.
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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

• Here are its values for smallk.

k 0 1 2 3 4 5 6 7
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240

• Thep-component ofπS
k is known for

∗ k ≤ 60 for p = 2
∗ k ≤ 100 for p = 3
∗ k ≤ 1000 for p = 5
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1. Brief introduction
Determining the stable homotopy groups of spheres
has been a vexing and fascinating problem in
algebraic topology for the past 70 years. Recall

• Here are its values for smallk.

k 0 1 2 3 4 5 6 7
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240

• Thep-component ofπS
k is known for

∗ k ≤ 60 for p = 2
∗ k ≤ 100 for p = 3
∗ k ≤ 1000 for p = 5

Many more details can be found in [Rav86].
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2. Chromatic theory
Elaborate algebraic machinery has been developed for
studying this problem. It involves homological
algebra and ever increasing amounts of algebraic
geometry and algebraic number theory.
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2. Chromatic theory
Elaborate algebraic machinery has been developed for
studying this problem. It involves homological
algebra and ever increasing amounts of algebraic
geometry and algebraic number theory.

The values ofk mentioned above have not changed in
the past 20 years. Research has focused instead on
understanding the overall structure of the groups and
of the stable homotopy category.
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2. Chromatic theory
Forty years ago there was very little one could have
said or even guessed about this overall structure. Now
we have thechromatic approachto stable homotopy
theory.
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2. Chromatic theory
Forty years ago there was very little one could have
said or even guessed about this overall structure. Now
we have thechromatic approachto stable homotopy
theory.

Roughly speaking it says that, after localizing at a
primep, the problem can be broken up into various
“layers,” one for each nonnegative integern, which
can be analyzed separately.

University of Rochester Topology Seminar – p. 7/32



2. Chromatic theory
Forty years ago there was very little one could have
said or even guessed about this overall structure. Now
we have thechromatic approachto stable homotopy
theory.

Roughly speaking it says that, after localizing at a
primep, the problem can be broken up into various
“layers,” one for each nonnegative integern, which
can be analyzed separately.

Each of them can be completely determined with a
finite amount of work.
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2. Chromatic theory
These layers can be thought of in at least two different
ways:

University of Rochester Topology Seminar – p. 8/32



2. Chromatic theory
These layers can be thought of in at least two different
ways:

• Thinking ofπS
∗ as a complicated function, the

first n layers can be assembled into an “nth order
approximation” toπS

∗ , similar to the firstn terms
in a power series.
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ways:

• Thinking ofπS
∗ as a complicated function, the

first n layers can be assembled into an “nth order
approximation” toπS

∗ , similar to the firstn terms
in a power series.

• Thinking ofπS
∗ as a complicated radio signal, the

chromatic layers can be thought of as messages
being broadcast at various frequencies. They can
be decoded separately. Each layer is said to be
monochromatic, meaning that its information is
all on the same frequency.
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2. Chromatic theory
These layers can be thought of in at least two different
ways:

• Thinking ofπS
∗ as a complicated function, the

first n layers can be assembled into an “nth order
approximation” toπS

∗ , similar to the firstn terms
in a power series.

• Thinking ofπS
∗ as a complicated radio signal, the

chromatic layers can be thought of as messages
being broadcast at various frequencies. They can
be decoded separately. Each layer is said to be
monochromatic, meaning that its information is
all on the same frequency.

Many more details can be found in [Rav92].
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3. The Morava stabilizer group
Thenth layer in the chromatic filtration is the
Bousfield localization with respect to thenth Morava
K-theory, denoted byLK(n)S

0.
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3. The Morava stabilizer group
Thenth layer in the chromatic filtration is the
Bousfield localization with respect to thenth Morava
K-theory, denoted byLK(n)S

0.

It has been known since the late ’70s that its structure
is controlled by the continuous cohomology of a
certain profinite groupSn called thenth Morava
stabilizer group.
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3. The Morava stabilizer group
Thenth layer in the chromatic filtration is the
Bousfield localization with respect to thenth Morava
K-theory, denoted byLK(n)S

0.

It has been known since the late ’70s that its structure
is controlled by the continuous cohomology of a
certain profinite groupSn called thenth Morava
stabilizer group.

It is the automorphism group of a certain
1-dimensional formal group law and can be described
explicitly in terms of a certain division algebra over
thep-adic numbers.
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3. The Morava stabilizer group
Here are some of its properties.
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• S0 is the trivial group.
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3. The Morava stabilizer group
Here are some of its properties.

• S0 is the trivial group.

• Forn > 0, Sn is an extension of a pro-p-group by
F

×
pn, the group of units in the fieldFpn, which is

cyclic of orderpn − 1.
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3. The Morava stabilizer group
Here are some of its properties.

• S0 is the trivial group.

• Forn > 0, Sn is an extension of a pro-p-group by
F

×
pn, the group of units in the fieldFpn, which is

cyclic of orderpn − 1.

• S1 is Z
×
p , the group of units in thep-adic integers.

• Forn > 1, Sn and its pro-p-subgroup are
nonabelian.
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3. The Morava stabilizer group
Here are some more of its properties.
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3. The Morava stabilizer group
Here are some more of its properties.

• Sn is p-torsion free unlessp − 1 dividesn.
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• Sn is p-torsion free unlessp − 1 dividesn.

• Sn has an element of orderpk iff (p − 1)pk−1

dividesn.

• Sn has virtual cohomological dimensionn2.
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3. The Morava stabilizer group
Here are some more of its properties.

• Sn is p-torsion free unlessp − 1 dividesn.

• Sn has an element of orderpk iff (p − 1)pk−1

dividesn.

• Sn has virtual cohomological dimensionn2.

• Whenp − 1 dividesn, the cohomology ring ofSn

has Krull dimension one. Equivalently, every
elementary abelian subgroup ofSn has orderp.
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3. The Morava stabilizer group
Here are some more of its properties.

• Sn is p-torsion free unlessp − 1 dividesn.

• Sn has an element of orderpk iff (p − 1)pk−1

dividesn.

• Sn has virtual cohomological dimensionn2.

• Whenp − 1 dividesn, the cohomology ring ofSn

has Krull dimension one. Equivalently, every
elementary abelian subgroup ofSn has orderp.

• The finite subgroups ofSn have been determined
by Hewett[Hew95].
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4. The Hopkins-Miller theorem
The relation between the Morava stabilizer groupSn

and thenth chromatic layerSn became much more
precise with the advent of the Hopkins-Miller theorem
in the early ’90s. It concerns the action ofSn on a
certain spectrum calledEn, usually referred to as
MoravaE-theory.
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4. The Hopkins-Miller theorem
The relation between the Morava stabilizer groupSn

and thenth chromatic layerSn became much more
precise with the advent of the Hopkins-Miller theorem
in the early ’90s. It concerns the action ofSn on a
certain spectrum calledEn, usually referred to as
MoravaE-theory.

Its homotopy groups are explicitly known and easy to
describe.
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4. The Hopkins-Miller theorem
The relation between the Morava stabilizer groupSn

and thenth chromatic layerSn became much more
precise with the advent of the Hopkins-Miller theorem
in the early ’90s. It concerns the action ofSn on a
certain spectrum calledEn, usually referred to as
MoravaE-theory.

Its homotopy groups are explicitly known and easy to
describe.

Prior to their work we knew of anSn-action on it
defined only up to homotopy.
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4. The Hopkins-Miller theorem
Theorem 1 [Hopkins-Miller 1992, unpublished].
The action ofSn onEn is such that for any closed
subgroupG ⊂ Sn, there is a homotopy fixed point set
which we will denote byEOn(G) with the following
properties:
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4. The Hopkins-Miller theorem
Theorem 1 [Hopkins-Miller 1992, unpublished].
The action ofSn onEn is such that for any closed
subgroupG ⊂ Sn, there is a homotopy fixed point set
which we will denote byEOn(G) with the following
properties:

(i) For G = Sn, it is LK(n)S
0
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4. The Hopkins-Miller theorem
Theorem 1 [Hopkins-Miller 1992, unpublished].
The action ofSn onEn is such that for any closed
subgroupG ⊂ Sn, there is a homotopy fixed point set
which we will denote byEOn(G) with the following
properties:

(i) For G = Sn, it is LK(n)S
0.

(ii) It is contravariantly natural inG, i.e., given
subgroups

G1 ⊂ G2 ⊂ Sn

there is a restriction mapEOn(G2) → EOn(G1).
If G1 has finite index inG2, then there is a
transfer map going the other way.

University of Rochester Topology Seminar – p. 15/32



4. The Hopkins-Miller theorem
Theorem 1 [Hopkins-Miller 1992, unpublished].
The action ofSn onEn is such that for any closed
subgroupG ⊂ Sn, there is a homotopy fixed point set
which we will denote byEOn(G) with the following
properties:

(iii) There is a fixed point spectral sequence (also
natural inG) of the form

H∗(G;π∗(En)) =⇒ π∗(EOn(G))

which coincides with the Adams-Novikov spectral
sequence forπ∗(EOn(G)).
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4. The Hopkins-Miller theorem
Theorem 1 [Hopkins-Miller 1992, unpublished].
The action ofSn onEn is such that for any closed
subgroupG ⊂ Sn, there is a homotopy fixed point set
which we will denote byEOn(G) with the following
properties:

(iii) There is a fixed point spectral sequence (also
natural inG) of the form

H∗(G;π∗(En)) =⇒ π∗(EOn(G))

which coincides with the Adams-Novikov spectral
sequence forπ∗(EOn(G)).

The problem here is the difficulty of explicitly
describing the action ofSn onπ∗(En).
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Example: (p, n) = (2, 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” inEOn(G).
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motivation for the “O” inEOn(G).

• E1 is the 2-adic completion of complexK-theory.
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Example: (p, n) = (2, 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” inEOn(G).

• E1 is the 2-adic completion of complexK-theory.

• S1 ' Z
×
2 (the 2-adic units), which is isomorphic

to Z2 × Z/2, with Z/2 = {±1}.
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Example: (p, n) = (2, 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” inEOn(G).

• E1 is the 2-adic completion of complexK-theory.

• S1 ' Z
×
2 (the 2-adic units), which is isomorphic

to Z2 × Z/2, with Z/2 = {±1}.

• The action of the generator ofZ/2 is by complex
conjugation.
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A classical example: the case
(p, n) = (2, 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” inEOn(G).

• The fixed point setEO1(Z/2) is the 2-adic
completion of realK-theory,KO.
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A classical example: the case
(p, n) = (2, 1)

The following was known long before the
Hopkins-Miller theorem was proved, and is the
motivation for the “O” inEOn(G).

• The fixed point setEO1(Z/2) is the 2-adic
completion of realK-theory,KO.

• The relation betweenKO andLK(1)S
0 is well

understood. See [Rav84].
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5. New results
Near Theorem 1 [HHR 2007] LetG ⊂ Sn be a finite
subgroup.
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5. New results
Near Theorem 1 [HHR 2007] LetG ⊂ Sn be a finite
subgroup.

(i) The action ofG onπ∗(En) has a certain explicit
description which enables us to compute its
cohomology.
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5. New results
Near Theorem 1 [HHR 2007] LetG ⊂ Sn be a finite
subgroup.

(i) The action ofG onπ∗(En) has a certain explicit
description which enables us to compute its
cohomology.

(ii) When thep-Sylow subgroup ofG is Cp, then there
are certain differentials in the Hopkins-Miller
spectral sequence related to the geometry of the
classifying spaceBCp.
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5. New results
Near Theorem 1 [HHR 2007] LetG ⊂ Sn be a finite
subgroup.

(i) The action ofG onπ∗(En) has a certain explicit
description which enables us to compute its
cohomology.

(ii) When thep-Sylow subgroup ofG is Cp, then there
are certain differentials in the Hopkins-Miller
spectral sequence related to the geometry of the
classifying spaceBCp.

(iii) In this case the Hopkins-Miller spectral sequence
is rigid enough to preclude any other
differentials, so it is possible to describe
π∗(EOn(G)).
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Remarks
• Forn = (p − 1)f , the order the maximal

subgroup with an element of orderp is a
metacyclic group of orderp(p − 1)(pf − 1).
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• Forn = (p − 1)f , the order the maximal

subgroup with an element of orderp is a
metacyclic group of orderp(p − 1)(pf − 1).

• Forf = 1, p odd andG as above, the spectrum
EOp−1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald
[GM00], who denoted the spectrum simply by
EOp−1.
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Remarks
• Forf = 1, p odd andG as above, the spectrum

EOp−1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald
[GM00], who denoted the spectrum simply by
EOp−1.

• The differentials in that case are closely related to
ones discovered long ago by Toda; see [Tod67]
and [Tod68].
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Remarks
• Forf = 1, p odd andG as above, the spectrum

EOp−1(G) has been studied before by
Hopkins-Miller and Gorbunov-Mahowald
[GM00], who denoted the spectrum simply by
EOp−1.

• The differentials in that case are closely related to
ones discovered long ago by Toda; see [Tod67]
and [Tod68].

• The spectrum was used recently by Nave [Nav] to
prove the nonexistence of the Smith-Toda
complexV ((p + 1)/2) (see [Tod71]) forp ≥ 7.
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More remarks
• For (p, n) = (2, 2) there are two finite subgroups

of interest. One is an extension of the quaternion
group byC3. It fixed point spectrum is the
K(2)-localization of tmf, which was originally
introduced by Hopkins-Mahowald in [HM].
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More remarks
• For (p, n) = (2, 2) there are two finite subgroups

of interest. One is an extension of the quaternion
group byC3. It fixed point spectrum is the
K(2)-localization of tmf, which was originally
introduced by Hopkins-Mahowald in [HM].

• The other case is the abelian extension ofC2 by
C3, which yields theK(2)-localization of tmf(3),
spectrum related to elliptic curves equipped with
a point of order 3.
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More remarks
Forp = 2, let G be the maximal subgroup containing
an element of order 2. It is cyclic of order2(2n − 1).
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More remarks
Forp = 2, let G be the maximal subgroup containing
an element of order 2. It is cyclic of order2(2n − 1).

ThenEOn(G) has been studied previously by
Hu-Kriz [HK01] and Kitchloo-Wilson [KW07], who
call a variant of it the “real Johnson-Wilson spectrum”
ER(n).
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More remarks
Forp = 2, let G be the maximal subgroup containing
an element of order 2. It is cyclic of order2(2n − 1).

ThenEOn(G) has been studied previously by
Hu-Kriz [HK01] and Kitchloo-Wilson [KW07], who
call a variant of it the “real Johnson-Wilson spectrum”
ER(n).

Kitchloo and Wilson useER(2) (which is closely
related to tmf(3)) in [KWa] to prove some new
nonimmersion results for real projective spaces.
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Last remark
To my knowledge, no other fixed point spectra of
finite groups ofSn containing an element of orderp
have been studied before.

University of Rochester Topology Seminar – p. 27/32



Last remark
To my knowledge, no other fixed point spectra of
finite groups ofSn containing an element of orderp
have been studied before.

If n has the form(p − 1)pk−1s for s prime top, then
there arek maximal finite subgroups, havingp-Sylow
subgroupCpi for 1 ≤ i ≤ k.
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Last remark
To my knowledge, no other fixed point spectra of
finite groups ofSn containing an element of orderp
have been studied before.

If n has the form(p − 1)pk−1s for s prime top, then
there arek maximal finite subgroups, havingp-Sylow
subgroupCpi for 1 ≤ i ≤ k.

Their fixed point spectra form a pullback diagram
which we hope to study.
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