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2.2

Our strategy

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2(S0) do not exist for
j ≥ 7.

We will prove it by producing a map S0 → Ω, where Ω is a
nonconnective E∞-ring spectrum with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence. It will be the subject of tomorrow’s talk.
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2.3

How the theorem follows from the existence of Ω

Here again are the properties of Ω:

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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2.4

How we construct the spectrum Ω

The construction of Ω requires the use of equivariant stable
homotopy theory.

Roughly speaking, an equivariant G-spectrum is a spectrum X
with an action of the group G. For us the group of interest will
be C8. This leads to a fixed point spectrum X G and a homotopy
fixed point spectrum X hG, with a map X G → X hG.

For a G-space X , X G is the subspace fixed by all of G, which is
the same as the space of equivariant maps from a point to X ,
MapG(∗,X ). To get X hG, we replace the point here by an free
contractible G-space EG.

The homotopy type of X hG = MapG(EG,X ) is known to be
independent of the choice of EG. The unique map EG→ ∗
leads to the map X G → X hG.
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2.5

How we construct the spectrum Ω (continued)

We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.
• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an
equivalence.

We will come back to the definition of Ω̃ below.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.5

How we construct the spectrum Ω (continued)

We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.

• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an
equivalence.

We will come back to the definition of Ω̃ below.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.5

How we construct the spectrum Ω (continued)

We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.
• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an
equivalence.

We will come back to the definition of Ω̃ below.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.5

How we construct the spectrum Ω (continued)

We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.
• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an
equivalence.

We will come back to the definition of Ω̃ below.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.5

How we construct the spectrum Ω (continued)

We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.
• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an
equivalence.

We will come back to the definition of Ω̃ below.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.6

MU and its equivariant relatives

The starting point for the construction of Ω̃ is the action of C2
on the complex cobordism spectrum MU given by complex
conjugation.

The resulting C2-equivariant spectrum is denoted
by MUR and is called real cobordism theory. This terminology
follows Atiyah’s definition of real K -theory, by which he meant
complex K -theory equipped with complex conjugation.

Next we use a formal tool we call the norm NG
H for inducing up

from an H-spectrum to a G-spectrum when H is a subgroup of
G.
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2.7

MU and its equivariant relatives (continued)

For an H-space X , we have a G-space

MapH(G,X ),

where H acts on G by right multiplication and G acts on the
mapping space via right multiplication in G.

The underlying
space here is the Cartesian product X |G/H|. G permutes the
factors the same way it permutes cosets, and each factor is
invariant under H. The norm functor is an analogous
construction in the stable category.

The case of interest to us is X = MUR, H = C2 and G = C2n+1 .
This means that the underlying spectrum of NG

H X is MU(2n), the
2n-fold smash power of MU.
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2.8

MU and its equivariant relatives (continued)

In order to proceed further we need to introduce
RO(G)-graded homotopy,

where RO(G) denotes the
orthogonal representation ring of G. Let SV denote the one
point compactification of orthogonal representation V , and for
a G-space or spectrum X define

πG
V X = MapG(SV ,X ).

Note that when the action of G on V is trivial, an equivariant
map SV = SdimV → X must land in the fixed point set X G, so

πG
n X = πnX G.

In the stable category we can make sense of this for virtual as
well as actual representations, so we get homotopy groups
indexed by RO(G), which we denote collectively by πG

? X .
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2.9

MU and its equivariant relatives (continued)

Recall that

π∗(MU) = Z[x1, x2, . . . ] with |xi | = 2i .

It turns out that any choice of generator xi : S2i → MU is the
image under the forgetful functor of a map

Siρ
x i // MUR.

Here ρ denotes the regular real representation of C2, which is
the same thing as the complex numbers C acted on by
conjugation.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.9

MU and its equivariant relatives (continued)

Recall that

π∗(MU) = Z[x1, x2, . . . ] with |xi | = 2i .

It turns out that any choice of generator xi : S2i → MU is the
image under the forgetful functor of a map

Siρ
x i // MUR.

Here ρ denotes the regular real representation of C2, which is
the same thing as the complex numbers C acted on by
conjugation.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.9

MU and its equivariant relatives (continued)

Recall that

π∗(MU) = Z[x1, x2, . . . ] with |xi | = 2i .

It turns out that any choice of generator xi : S2i → MU is the
image under the forgetful functor of a map

Siρ
x i // MUR.

Here ρ denotes the regular real representation of C2,

which is
the same thing as the complex numbers C acted on by
conjugation.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.9

MU and its equivariant relatives (continued)

Recall that

π∗(MU) = Z[x1, x2, . . . ] with |xi | = 2i .

It turns out that any choice of generator xi : S2i → MU is the
image under the forgetful functor of a map

Siρ
x i // MUR.

Here ρ denotes the regular real representation of C2, which is
the same thing as the complex numbers C acted on by
conjugation.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.10

MU and its equivariant relatives (continued)

For G = C2n+1 , the G-spectrum NG
C2

MUR is underlain by MU(2n).

π∗MU(2n) is a graded polynomial algebra over Z where

• there are 2n generators in each positive even dimension
2i .

• they are acted on transitively by G.

For a group generator γ ∈ G and polynomial generator ri ∈ π2i ,
the set {

γ j ri : 0 ≤ j < 2n}
is algebraically independent, and γ2n

ri = (−1)i ri .
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2.11

The slice filtration

Now we introduce our main technical tool, the slice filtration.

First we need to recall some things about the classical
Postnikov tower. The mth Postnikov section PmX of a space or
spectrum X is obtained by killing all homotopy groups of X
above dimension m by attaching cells. The fiber of the map
X → PmX is PmX , the m-connected cover of X .

These two functors have some universal properties. Let S and
S>m denote the categories of spectra and m-connected
spectra. The functor Pm is Dror nullification with respect to the
subcategory S>m. This means

• For all spectra X , PmX ∈ S>m.
• For all A ∈ S>m and X ∈ S, map of function spectra
S(A,PmX )→ S(A,X ) is a weak equivalence.

In other words, the map PmX → X is universal among maps
from m-connected spectra to X .
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2.12

More about the Postnikov tower

Similarly the map X → PmX is universal among maps from X
to spectra which are S>m-null in the sense that all maps to
them from m-connected spectra are null. In other words,

• The spectrum PmX is S>m-null.
• For any S>m-null spectrum Z , the map
S(PmX ,Z )→ S(X ,Z ) is an equivalence.

Since S>m ⊂ S>m−1, there is a natural transformation
Pm → Pm−1, whose fiber is denoted by Pm

m X .

Thus we get a the Postnikov tower

. . . // Pm+1X // PmX // Pm−1X // . . .

Pm+1
m+1 X

OO

Pm
m X

OO

Pm−1
m−1 X

OO

in which the homotopy limit is X and the homotopy colimit is
contractible. The mth fiber Pm

m X is HπmX , the
Eilenberg-Mac Lane spectrum for the mth homotopy group of
X .
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2.13

An equivariant Postnikov tower

In what follows G will be an arbitrary finite cyclic 2-group, and
g = |G|.

Let SG denote the category of G-equivariant spectra.
We need an equivariant analog of S>m. Our choice for this is
somewhat novel.

Recall that S>m is the category of spectra built up out of
spheres of dimension > m using arbitrary wedges and
mapping cones.

For a subgroup H of G with |H| = h and an integer k , let

Ŝ(kρH) = G+ ∧H SkρH

where ρH denotes the regular real representation of H. Its
underlying spectrum is a wedge of g/h spheres of dimension
kh which are permuted by elements of G and are invariant
under H.
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Ŝ(kρH) = G+ ∧H SkρH

where ρH denotes the regular real representation of H. Its
underlying spectrum is a wedge of g/h spheres of dimension
kh which are permuted by elements of G and are invariant
under H.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.13

An equivariant Postnikov tower

In what follows G will be an arbitrary finite cyclic 2-group, and
g = |G|. Let SG denote the category of G-equivariant spectra.
We need an equivariant analog of S>m. Our choice for this is
somewhat novel.

Recall that S>m is the category of spectra built up out of
spheres of dimension > m using arbitrary wedges and
mapping cones.

For a subgroup H of G with |H| = h and an integer k , let
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2.14

An equivariant Postnikov tower (continued)

We will replace the set of sphere spectra by

A =
{

Ŝ(kρH), Σ−1Ŝ(kρH) : H ⊂ G, k ∈ Z
}
.

We will refer to the elements in this set as slice cells. Note that
Σ−2Ŝ(kρH) (and larger desuspensions) are not slice cells. A
free slice cell is one of the form Ŝ(kρ{e}), a wedge of g
k -spheres permuted by G. Note that

Σ−1Ŝ(kρ{e}) = Ŝ((k − 1)ρ{e}).

Nonfree slice cells are said to be isotropic.

In order to define SG
>m, we need to assign a dimension to each

element in A. We do this in terms of the underlying wedge
summands, namely

dim Ŝ(kρH) = kh and dim Σ−1Ŝ(kρH) = kh − 1.
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dim Ŝ(kρH) = kh and dim Σ−1Ŝ(kρH) = kh − 1.
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Σ−1Ŝ(kρ{e}) = Ŝ((k − 1)ρ{e}).

Nonfree slice cells are said to be isotropic.

In order to define SG
>m, we need to assign a dimension to each

element in A. We do this in terms of the underlying wedge
summands, namely
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An equivariant Postnikov tower (continued)
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An equivariant Postnikov tower (continued)

Then SG
>m is the category built up out of elements in A of

dimension > m using arbitrary wedges, mapping cones and
smash products with equivariant suspension spectra.

With this definition it is possible to construct functors PG
m and

Pm
G with the same formal properties as in the classical case.

Thus we get an equivariant analog of the Postnikov tower

. . . // Pm+1
G X // Pm

G X // Pm−1
G X // . . .

GPm+1
m+1 X

OO

GPm
m X

OO

GPm−1
m−1 X

OO

in which the homotopy limit is X and the homotopy colimit is
contractible.
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2.16

The slice spectral sequence

. . . // Pm+1
G X // Pm

G X // Pm−1
G X // . . .

GPm+1
m+1 X

OO

GPm
m X

OO

GPm−1
m−1 X

OO

We call this the slice tower. GPm
m X is the mth slice and the

decreasing sequence of subgroups of π∗(X ) is the slice
filtration. We also get slice filtrations of the RO(G)-graded
homotopy πG

? (X ) and the homotopy groups of fixed point sets
π∗(X H).

There is an important difference between this tower and the
classical one. In the classical case the map X → PmX does
not change homotopy groups in dimensions ≤ m. This is not
true in the equivariant case.
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2.17

The slice spectral sequence (continued)

Equivalently, in the classical case, Pm
m X is an

Eilenberg-Mac Lane spectrum whose mth homotopy group is
that of X .

In our case, π∗(GPm
m X ) need not be concentrated in

dimension m.

This means the slice filtration leads to a (possibly
noncollapsing) slice spectral sequence converging to π∗(X )
and its variants.

One variant has the form

Es,t
2 = πG

t−s(GP t
t X ) =⇒ πG

t−s(X ).

Recall that πG
∗ (X ) is by definition π∗(X G), the homotopy of the

fixed point set.

This is the spectral sequence we will use to study MU(4)
R and its

relatives.
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2.18

The slice spectral sequence (continued)

A large portion of our paper is devoted to proving that the slice
spectral sequence has the desired properties.

From now on we
will drop the symbol G from the functors Pm, Pm and Pm

m .

Slice Theorem

In the slice tower for NG
C2

MUR, every odd slice is contractible

and P2m
2m = Ŵm ∧ HZ, where Ŵm is a certain wedge of

2m-dimensional slice cells (to be discussed in tomorrow’s talk)
and HZ is the integer Eilenberg-Mac Lane spectrum. Ŵm never
has any free summands.

Our G-spectrum Ω̃ (where G = C8) is obtained from the
E∞-ring spectrum NG

C2
MUR by inverting a certain element

D ∈ πG
19ρG

NG
C2

MUR. The choices of G and D are the simplest
ones leading to a homotopy fixed point set with the detection
property. The slice tower for Ω̃ has similar properties to that of
NG

C2
MUR .
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2.19

Proving the gap theorem

The gap theorem follows from the fact that πG
−2 vanishes for

each isotropic slice,

i.e., for each one of the form

Ŝ(kρH) ∧ HZ

for any nontrivial subgroup H and any integer k . This will be
the subject of tomorrow’s talk.

In order to give a feel for these calculations we offer the
following picture of πG

∗ SkρG ∧ HZ for G = C8 and various
integers k .
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2.20

Some C8 slices

A picture of πG
∗ SkρG ∧ HZ for G = C8 and various integers k .
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2.21

Proving the Periodicity Theorem

We now outline the proof of the Periodicity Theorem, assuming
the Slice Theorem.

We establish some differentials in the slice spectral sequence
and show that certain elements become permanent cycles
after inverting a certain D ∈ πG

19ρG
NG

C2
MUR. This leads to an

equivariant self map
Σ256Ω̃→ Ω̃.

It is an ordinary homotopy equivalence, and this is known to
imply that it induces an equivalence on homotopy fixed point
sets.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.21

Proving the Periodicity Theorem

We now outline the proof of the Periodicity Theorem, assuming
the Slice Theorem.

We establish some differentials in the slice spectral sequence
and show that certain elements become permanent cycles
after inverting a certain D ∈ πG

19ρG
NG

C2
MUR.

This leads to an
equivariant self map

Σ256Ω̃→ Ω̃.

It is an ordinary homotopy equivalence, and this is known to
imply that it induces an equivalence on homotopy fixed point
sets.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.21

Proving the Periodicity Theorem

We now outline the proof of the Periodicity Theorem, assuming
the Slice Theorem.

We establish some differentials in the slice spectral sequence
and show that certain elements become permanent cycles
after inverting a certain D ∈ πG

19ρG
NG

C2
MUR. This leads to an

equivariant self map
Σ256Ω̃→ Ω̃.

It is an ordinary homotopy equivalence, and this is known to
imply that it induces an equivalence on homotopy fixed point
sets.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.21

Proving the Periodicity Theorem

We now outline the proof of the Periodicity Theorem, assuming
the Slice Theorem.

We establish some differentials in the slice spectral sequence
and show that certain elements become permanent cycles
after inverting a certain D ∈ πG

19ρG
NG

C2
MUR. This leads to an

equivariant self map
Σ256Ω̃→ Ω̃.

It is an ordinary homotopy equivalence,

and this is known to
imply that it induces an equivalence on homotopy fixed point
sets.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.21

Proving the Periodicity Theorem

We now outline the proof of the Periodicity Theorem, assuming
the Slice Theorem.

We establish some differentials in the slice spectral sequence
and show that certain elements become permanent cycles
after inverting a certain D ∈ πG

19ρG
NG

C2
MUR. This leads to an

equivariant self map
Σ256Ω̃→ Ω̃.

It is an ordinary homotopy equivalence, and this is known to
imply that it induces an equivalence on homotopy fixed point
sets.



Overview of the
proof

Mike Hill
Mike Hopkins
Doug Ravenel

Our strategy

The construction of Ω

MU and its equivariant
relatives

The slice filtration

The slice spectral
sequence

The gap theorem

The periodicity
theorem

The detection theorem

The slice and
reduction theorems

2.22

Digression on Geometric Fixed Points

The key tool for studying differentials in the slice spectral
sequence is the geometric fixed point spectrum, denoted by
ΦGX for a G-spectrum X .

It has much nicer properties than the
usual fixed point spectrum X G, which fails to commute with
smash products and infinite suspensions.

In order to define it we need the isotropy separation sequence,
which in the case of a finite cyclic 2-group G is the cofiber
sequence

EC2+ → S0 → ẼC2.

Here EC2 is a G-space via the projection G→ C2 and S0 has
the trivial action, so ẼC2 is also a G-space.
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2.23

Geometric Fixed Points (continued)

EC2+ → S0 → ẼC2.

Under this action ECG
2 is empty while for any proper subgroup

H of G, ECH
2 = EC2, which is contractible.

For an arbitrary
finite group G it is possible to construct a G-space with the
similar properties.

Definition

For a finite cyclic 2-group G and G-spectrum X, the geometric
fixed point spectrum is

ΦGX = (X ∧ ẼC2)G.
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Under this action ECG
2 is empty while for any proper subgroup

H of G, ECH
2 = EC2, which is contractible. For an arbitrary

finite group G it is possible to construct a G-space with the
similar properties.

Definition

For a finite cyclic 2-group G and G-spectrum X, the geometric
fixed point spectrum is

ΦGX = (X ∧ ẼC2)G.
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2.24

Geometric Fixed Points (continued)

ΦGX = (X ∧ ẼC2)G.

This functor has the following properties:

• For G-spectra X and Y , ΦG(X ∧ Y ) = ΦGX ∧ ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(X G).
• A map f : X → Y is a G-equivalence iff ΦH f is an ordinary

equivalence for each subgroup H ⊂ G.

From the suspension property we can deduce that

ΦC8MU(4) = MO,

the unoriented cobordism spectrum. Its homotopy type has
been well understood since Thom’s work in the 50s.

Moreover there is a theorem saying that inverting a certain
element in the slice spectral sequence converging to π∗X G

gives one converging to π∗ΦGX .
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2.25

Back to the Periodicity Theorem

Our knowledge of the slice spectral sequence converging to

π∗Φ
GMU(4) = π∗MO

gives us a very good handle on the one converging to
π∗(MU(4))G.

This enables us to prove the Periodicity Theorem.

Typically one proves theorems about differentials in such
spectral sequences by means of some sort of extended power
construction. In our case, all of the necessary geometry is
encoded in the relation between π∗MU and π∗MO!
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2.26

Proving the Detection Theorem

The proof of the detection theorem is a calculation with the
Adams-Novikov spectral sequence.

It is the one part of our
proof that could have been done 30 years ago.

Similar methods were used in the 70s to prove an odd primary
analog (for p > 3) of our theorem. In that proof a key tool is a
homomorphism{

Adams-Novikov
E2-term for S0

}
→ H∗

(
Cp;

certain
coefficients

)
It is based on the fact that a formal group law of height p − 1
can have nontrivial automorphisms of order p.
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2.27

Proving the Detection Theorem (continued)

For us it is a composite homomorphism{
E2-term

for S0

}
→
{

E2-term
for Ω

}
→ H∗

(
C8;

something
easy

)

in which each θj has a nontrivial image.

It is based on the fact that at the prime 2 a formal group law of
height 4 can have nontrivial automorphisms of order 8.
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2.28

Proving the Slice Theorem

Recall that a pivotal step in our proof is the Slice Theorem,
which identifies the layers in the slice tower for MUR and its
relatives.

For each cyclic 2-group G = C2n+1 there is a equivariant
(noncommutative) ring spectrum A which is a certain wedge of
slice cells. It maps to NG

C2
MUR in such a way that the underlying

wedge of spheres hits all of the underlying homotopy of MU(2n).
Thus both NG

C2
MUR and S0 are A-modules.

Reduction Theorem

The A-smash product NG
C2

MUR ∧A S0 is equivariantly equivalent
to the integer Eilenberg-Mac Lane spectrum HZ.

The proof of this is the hardest calculation in our paper.
Deriving the Slice Theorem from it is a formality.
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