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Preface

This research leading to this book began in Princeton in 1974–75,
when Haynes Miller, Steve Wilson and I joined forces with the
goal of understanding what the ideas of Jack Morava meant for
the stable homotopy groups of spheres. Due to widely differing
personal schedules, our efforts spanned nearly 24 hours of each
day; we met during the brief afternoon intervals when all three of
us were awake. Our collaboration led to [MRW77] and Morava
eventually published his work in [Mor85] (and I gave a broader
account of it in my first book, [Rav86]), but that was not the end
of the story.

I suspected that there was some deeper structure in the stable
homotopy category itself that was reflected in the pleasing alge-
braic patterns described in the two papers cited above. I first
aired these suspicions in a lecture at the homotopy theory confer-
ence at Northwestern University in 1977, and later published them
in [Rav84], which ended with a list of seven conjectures. Their
formulation was greatly helped by the notions of localization and
equivalence defined by Bousfield in [Bou79b] and [Bou79a].

I had some vague ideas about how to approach the conjec-
tures, but in 1982 when Waldhausen asked me if I expected to see
them settled before the end of the century, I could offer him no
assurances. It was therefore very gratifying to see all but one of
them proved by the end of 1986, due largely to the seminal work of
Devinatz, Hopkins and Smith, [DHS88]. The mathematics sur-
rounding these conjectures and their proofs is the subject of this
book.

The one conjecture of [Rav84] not proved here is the telescope
conjecture (7.5.5). I disproved a representative special case of it in
1990; an outline of the argument can be found in [Rav92]. I find
this development equally satisfying. If the telescope conjecture
had been proved, the subject might have died. Its failure leads
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to interesting questions for future work. On the other hand, had
I not believed it in 1977, I would not have had the heart to go
through with [Rav84].

This book has two goals: to make this material accessible to a
general mathematical audience, and to provide algebraic topolo-
gists with a coherent and reasonably self-contained account of this
material. The nine chapters of the book are directed toward the
first goal. The technicalities are suppressed as much as possible,
at least in the earlier chapters. The three appendices give descrip-
tions of the tools needed to perform the necessary computations.

In essence almost all of the material of this book can be found
in previously published papers. The major exceptions are Chap-
ter 8 (excluding the first section), which hopefully will appear in
more detailed form in joint work with Mike Hopkins [HR], and
Appendix C, which was recently written up by Jeff Smith [Smi].
In both cases the results were known to their authors by 1986.

This book itself began as a series of twelve lectures given at
Northwestern University in 1988, then repeated at the University
of Rochester and MSRI (Berkeley) in 1989, at New Mexico State
University in 1990, and again at Rochester and Northwestern in
1991. I want to thank all of my listeners for the encouragement
that their patience and enthusiasm gave me. Special thanks are
due to Sam Gitler and Hal Sadofsky for their careful attention to
certain parts of the manuscript.

I am also grateful to all four institutions and to the National
Science Foundation for helpful financial support.

D. C. Ravenel
June, 1992

xii



Introduction

In Chapter 1 we will give the elementary definitions in ho-
motopy theory needed to state the main results, the nilpotence
theorem (1.4.2) and the periodicity theorem (1.5.4). The latter
implies the existence of a global structure in the homotopy groups
of many spaces called the chromatic filtration. This is the subject
of Chapter 2, which begins with a review of some classical results
about homotopy groups.

The nilpotence theorem says that the complex bordism functor
reveals a great deal about the homotopy category. This functor
and the algebraic category (CΓ, defined in 3.3.2) in which it takes
its values are the subject of Chapters 3 and 4. This discussion is
of necessity quite algebraic with the theory of formal group laws
playing a major role.

In CΓ it is easy to enumerate all the thick subcategories (de-
fined in 3.4.1). The thick subcategory theorem (3.4.3) says that
there is a similar enumeration in the homotopy category itself.
This result is extremely useful; it means that certain statements
about a large class of spaces can be proved by verifying them
only for very carefully chosen examples. The thick subcategory
theorem is derived from the nilpotence theorem in Chapter 5.

In Chapter 6 we prove the periodicity theorem, using the thick
subcategory theorem. First we prove that the set of spaces satis-
fying the periodicity theorem forms a thick subcategory; this re-
quires some computations in certain noncommutative rings. This
thickness statement reduces the proof of the theorem to the con-
struction of a few examples; this requires some modular represen-
tation theory due to Jeff Smith.

In Chapter 7 we introduce the concepts of Bousfield localiza-
tion (7.1.1 and 7.1.3) and Bousfield equivalence (7.2.1). These are
useful both for understanding the structure of the homotopy cat-
egory and for proving the nilpotence theorem. The proof of the
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nilpotence theorem itself is given in Chapter 9, modulo certain
details, for which the reader must consult [DHS88].

There are three appendices which give more technical back-
ground for many of the ideas discussed in the text. Appendix
A recalls relevant facts known to most homotopy theorists while
Appendix B gives more specialized information related to com-
plex bordism theory and BP -theory. Appendix C, which is still
more technical, describes some results about representations of
the symmetric group due to Jeff Smith [Smi].

The appendices are intended to enable a (sufficiently moti-
vated) nonspecialist to follow the proofs of the text in detail.
However, as an introduction to homotopy theory they are very
unbalanced. By no means should they be regarded as a substitute
for a more thorough study of the subject.

We will now spell out the relation between the conjectures
stated in the last section (and listed on the last page) of [Rav84]
and the theorems proved here, in the order in which they were
stated there. Part (a) of the nilpotence conjecture is the self-map
form of the nilpotence theorem, 1.4.2, and part (b) is essentially
the smash product form, 5.1.4. Part (c) is the periodicity theo-
rem, 1.5.4, of which the realizability conjecture is an immediate
consequence. (This is not quite true since we do not prove that
the self-map can be chosen so that its cofibre is a ring spectrum.
This has been proved recently by Devinatz [Dev].) The class in-
variance conjecture is Theorem 7.2.7. The telescope conjecture
is stated here as 7.5.5, but is likely to be false in general. The
smashing conjecture is the smash product theorem, 7.5.6, and the
localization conjecture is Theorem 7.5.2. Finally, the Boolean al-
gebra conjecture, slightly modified to avoid problems with the
telescope conjecture, is Theorem 7.2.9.

Two major results proved here that were not conjectured in
[Rav84] are the thick subcategory theorem (3.4.3) and the chro-
matic convergence theorem (7.5.7).
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CHAPTER 1

The main theorems

The aim of this chapter is to state the nilpotence and period-
icity theorems (1.4.2 and 1.5.4) with as little technical fussing as
possible. Readers familiar with homotopy theory can skip the first
three sections, which contain some very elementary definitions.

1.1. Homotopy

A basic problem in homotopy theory is to classify continuous
maps up to homotopy. Two continuous maps from a topological
space X to Y are homotopic if one can be continuously deformed
into the other. A more precise definition is the following.

Definition 1.1.1. Two continuous maps f0 and f1 from X to
Y are homotopic if there is a continuous map (called a homo-
topy)

X × [0, 1]
h−→ Y

such that for t = 0 or 1, the restriction of h to X×{t} is ft. If f1
is a constant map, i.e., one that sends all of X to a single point
in Y , then we say that f0 is null homotopic and that h is a null
homotopy. A map which is not homotopic to a constant map is
essential. The set of homotopy classes of maps from X to Y is
denoted by [X,Y ].

For technical reasons it is often convenient to consider maps
which send a specified point x0 ∈ X (called the base point) to a
given point y0 ∈ Y , and to require that homotopies between such
maps send all of {x0} × [0, 1] to y0. Such maps and homotopies
are said to be base point preserving. The set of equivalence
classes of such maps (under base point preserving homotopies) is
denoted by [(X,x0), (Y, y0)].

1



2 1. THE MAIN THEOREMS

Under mild hypotheses (needed to exclude pathological cases),
if X and Y are both path-connected and Y is simply connected,
the sets [X,Y ] and [(X,x0), (Y, y0)] are naturally isomorphic.

In many cases, e.g. when X and Y are compact manifolds
or algebraic varieties over the real or complex numbers, this set is
countable. In certain cases, such as when Y is a topological group,
it has a natural group structure. This is also the case when X is
a suspension (1.3.1 and 2.1.2).

In topology two spaces are considered identical if there is a
homeomorphism (a continuous map which is one-to-one and onto
and which has a continuous inverse) between them. A homo-
topy theorist is less discriminating than a point set topologist;
two spaces are identical in his eyes if they satisfy a much weaker
equivalence relation defined as follows.

Definition 1.1.2. Two spaces X and Y are homotopy equiv-
alent if there are continuous maps f : X → Y and g : Y → X such
that gf and fg are homotopic to the identity maps on X and Y .
The maps f and g are homotopy equivalences. A space that
is homotopy equivalent to a single point is contractible. Spaces
which are homotopy equivalent have the same homotopy type.

For example, every real vector space is contractible and a solid
torus is homotopy equivalent to a circle.

1.2. Functors

In algebraic topology one devises ways to associate various al-
gebraic structures (groups, rings, modules, etc.) with topological
spaces and homomorphisms of the appropriate sort with continu-
ous maps.

Definition 1.2.1. A covariant functor F from the category
of topological spaces T to some algebraic category A (such as that
of groups, rings, modules, etc.) is a function which assigns to
each space X an object F (X) in A and to each continuous map
f : X → Y a homomorphism F (f) : F (X)→ F (Y ) in such a way
that F (fg) = F (f)F (g) and F sends identity maps to identity ho-
momorphisms. A contravariant functor G is similar function
which reverses the direction of arrows, i.e., G(f) is a homomor-
phism from G(Y ) to G(X) instead of the other way around. In
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either case a functor is homotopy invariant if it takes isomor-
phic values on homotopy equivalent spaces and sends homotopic
maps to the same homomorphism.

Familiar examples of such functors include ordinary homology,
which is covariant and cohomology, which is contravariant. Both
of these take values in the category of graded abelian groups.
Definitions of them can be found in any textbook on algebraic
topology. We will describe some less familiar functors which have
proved to be extremely useful below.

These functors are typically used to prove that some geomet-
ric construction does not exist. For example one can show that
the 2-sphere S2 and the torus T 2 (doughnut-shaped surface) are
not homeomorphic by computing their homology groups and ob-
serving that they are not the same.

Each of these functors has that property that if the continuous
map f is null homotopic then the homomorphism F (f) is trivial,
but the converse is rarely true. Some of the best theorems in the
subject concern special situations where it is. One such result is
the nilpotence theorem (1.4.2), which is the main subject of the
book.

Other results of this type in the past decade concern cases
where at least one of the spaces is the classifying space of a finite
or compact Lie group. A comprehensive book on this topic has
yet to be written. A good starting point in the literature is the
J. F. Adams issue of Topology (Vol. 31, No. 1, January 1992),
specifically [Car92], [DMW92], [JM92], [MP92], and [BF92].

The dream of every homotopy theorist is a solution to the
following.

Problem 1.2.2. Find a functor F from the category of topo-
logical spaces to some algebraic category which is reasonably easy
to compute and which has the property that F (f) = 0 if and only
if f is null homotopic.

We know that this is impossible for several reasons. First,
the category of topological spaces is too large. One must limit
oneself to a restricted class of spaces in order to exclude many
pathological examples which would otherwise make the problem
hopeless. Experience has shown that a reasonable class is that
of CW-complexes. A definition (A.1.1) is given in the Appendix.
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This class includes all the spaces that one is ever likely to want to
study in a geometric way, e.g. all manifolds and algebraic varieties
(with or without singularities) over the real or complex numbers.
It does not include spaces such as the rational numbers, the p-adic
integers or the Cantor set. An old result of Milnor [Mil59] (stated
below in Appendix A as A.1.4) asserts that the space of maps from
one compact CW-complex to another is homotopy equivalent to
a CW-complex. Thus we can include, for example, the space of
closed curves on a manifold.

The category of CW-complexes (and spaces homotopy equiv-
alent to them) is a convenient place to do homotopy theory, but
in order to have any chance of solving 1.2.2 we must restrict our-
selves further by requiring that our complexes be finite, which
essentially means compact up to homotopy equivalence.

It is convenient to weaken the problem somewhat further. We
need another elementary definition from homotopy theory.

1.3. Suspension

Definition 1.3.1. The suspension of X, ΣX is the space
obtained from X × [0, 1] by identifying all of X × {0} to a single
point and all of X × {1} to another point. Given a continuous
map f : X → Y , we define

X × [0, 1]
f̃−→ Y × [0, 1]

by f̃(x, t) = (f(x), t). This f̃ is compatible with the identifications
above and gives a map

ΣX
Σf−→ ΣY.

This construction can be iterated and the ith iterate is denoted by
Σi. If Σif is null homotopic for some i we say that f is stably
null homotopic; otherwise it is stably essential.

One can use the suspension to convert [X,Y ] to a graded object
[X,Y ]∗, where [X,Y ]i = [ΣiX,Y ]. (We will see below in 2.1.2 that
this set has a natural group structure for i > 0.) It is also useful
to consider the group of stable homotopy classes of maps,
[X,Y ]Si = lim→[Σi+jX,ΣjY ].

If X has a base point x0, we will understand ΣX to be the
reduced suspension, which is obtained from the suspension de-
fined above by collapsing all of {x0}× [0, 1] to (along with X×{1}
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and X×{0} ) a single point, which is the base point of ΣX. (Un-
der mild hypotheses on X, the reduced and unreduced suspensions
are homotopy equivalent, so we will not distinguish them notation-
ally.)

Thus ΣX can be thought of as the double cone on X. If Sn

(the n-sphere) denotes the space of unit vectors in Rn+1, then it
is an easy exercise to show that ΣSn is homeomorphic to Sn+1.

Most of the functors we will consider are homology theories or,
if they are contravariant, cohomology theories; the definition will
be given below in A.3.3. Ordinary homology and cohomology are
examples of such, while homotopy groups (to be defined below in
2.1.1) are not. Classical K-theory is an example of a cohomology
theory. Now we will point out the properties of such functors that
are critical to this discussion.

A homology theory E∗ is a functor from the category of topo-
logical spaces and homotopy classes of maps to the category of
graded abelian groups. This means that for each spaceX and each
integer i, we have an abelian group Ei(X). E∗(X) denotes the col-
lection of these groups for all i. A continuous map f : X → Y
induces a homomorphism

Ei(X)
Ei(f)−→ Ei(Y )

which depends only on the homotopy class of f .
In particular one has a canonical homomorphism

E∗(X)
ε−→ E∗(pt.),

called the augmentation map, induced by the constant map on X.
Its kernel, denoted by E∗(X), is called the reduced homology of X,
while E∗(X) is sometimes called the unreduced homology of X.

Note that the augmentation is the projection onto a direct
summand because one always has maps

pt. −→ X −→ pt.

whose composite is the identity. E∗(pt.) is nontrivial as long as
E∗ is not identically zero. A reduced homology theory vanishes
on every contractible space.

One of the defining axioms of a homology theory (see A.3.3)
implies that there is a natural isomorphism

(1.3.2) Ei(X)
σ−→ Ei+1(ΣX).
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A multiplicative homology theory is one equipped with a ring
structure on E∗(pt.) (which is called the coefficient ring and usu-
ally denoted simply by E∗), over which E∗(X) has a functorial
module structure.

Problem 1.3.3. Find a reduced homology theory E∗ on the
category of finite CW-complexes which is reasonably easy to com-
pute and which has the property that E∗(f) = 0 if and only if Σif
is null homotopic for some i.

In this case there is a long standing conjecture of Freyd [Fre66,
§9], known as the generating hypothesis, which says that stable
homotopy (to be defined in 2.2.3) is such a homology theory. A
partial solution to the problem, that is very much in the spirit of
this book, is given by Devinatz in [Dev90].

(The generating hypothesis was arrived in the following way.
The stable homotopy category FH of finite complexes is addi-
tive, that is the set of morphisms between any two objects has
a natural abelian group structure. Freyd gives a construction for
embedding any additive category into an abelian category, i.e.,
one with kernels and cokernels. It is known that any abelian cat-
egory is equivalent to a category of modules over some ring. This
raises the question of identifying the ring thus associated with
FH. It is natural to guess that it is πS∗ , the stable homotopy
groups of spheres. This statement is equivalent to the generating
hypothesis.)

Even if the generating hypothesis were known to be true, it
would not be a satisfactory solution to 1.3.3 because stable homo-
topy groups are anything but easy to compute.

1.4. Self-maps and the nilpotence theorem

Now suppose that the map we want to study has the form

ΣdX
f−→ X

for some d ≥ 0. Then we can iterate it up to suspension by
considering the composites

· · ·Σ3dX
Σ2df−−−−−−−−→ Σ2dX

Σdf−−−−−−−−→ ΣdX
f−−−−−−−−→ X

For brevity we denote these composite maps to X by f , f2, f3,
etc.
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Definition 1.4.1. A map f : ΣdX → X is a self-map of X.
It is nilpotent if some suspension of f t for some t > 0 is null
homotopic. Otherwise we say that f is periodic .

If we apply a reduced homology theory E∗ to a self-map f , by
1.3.2 we get an endomorphism of E∗(X) that raises the grading
by d.

Now we can state the nilpotence theorem of Devinatz-Hopkins-
Smith [DHS88].

Theorem 1.4.2 (Nilpotence theorem, self-map form). There
is a homology theory MU∗ such that a self-map f of a finite CW-
complex X is stably nilpotent if and only if some iterate ofMU∗(f)
is trivial.

Actually this is the weakest of the three forms of the nilpotence
theorem; the other two (5.1.4 and 9.0.1) are equivalent and imply
this one.

The functor MU∗, known as complex bordism theory , takes
values in the category of graded modules over a certain graded
ring L, which is isomorphic to MU∗(pt.). These modules come
equipped with an action by a certain infinite group Γ, which also
acts on L. The ring L and the group Γ are closely related to the
theory of formal group laws. MU∗(X) was originally defined in
terms of maps from certain manifolds to X, but this definition
sheds little light on its algebraic structure. It is the algebra rather
than the geometry which is central to our discussion. We will
discuss this in more detail in Chapter 3 and more background can
be found in [Rav86, Chapter 4]. In practice it is not difficult to
compute, although there are still plenty of interesting spaces for
which it is still unknown.

1.5. Morava K-theories and the periodicity theorem

We can also say something about periodic self-maps.
Before doing so we must discuss localization at a prime p. In

algebra one does this by tensoring everything in sight by Z(p), the
integers localized at the prime p; it is the subring of the rationals
consisting of fractions with denominator prime to p. If A is a finite
abelian group, then A⊗Z(p) is the p-component of A. Z(p) is flat
as a module over the integers Z; this means that tensoring with
it preserves exact sequences.
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There is an analogous procedure in homotopy theory. The de-
finitive reference is [BK72]; a less formal account can be found
in [Ada75]. For each CW-complex X there is a unique X(p)

with the property that for any homology theory E∗, E∗(X(p)) ∼=
E∗(X)⊗ Z(p). We call X(p) the p-localization of X. If X is finite
we say X(p) is a p-local finite CW-complex.

Proposition 1.5.1. Suppose X is a simply connected CW-
complex such that H∗(X) consists entirely of torsion.

(i) If this torsion is prime to p then X(p) is contractible.
(ii) If it is all p-torsion then X is p-local, i.e., X(p) is equiva-

lent to X. (In this case we say that X is a p-torsion complex.)
(iii) In general X is homotopy equivalent to the one-point

union of its p-localizations for all the primes p in this torsion.

If X is as above and is finite, then its p-localization will be
nontrivial only for finitely many primes p. The cartesian product
of any two of them will be the same as the one-point union. The
smash product (defined below in 5.1.2)

X(p) ∧X(q)

is contractible for distinct primes p and q.
The most interesting periodic self-maps occur when X is a

finite p-torsion complex. In these cases it is convenient to replace
MU∗ by the Morava K-theories. These were invented by Jack
Morava, but he never published an account of them. Most of the
following result is proved in [JW75]; a proof of (v) can be found
in [Rav84].

Proposition 1.5.2. For each prime p there is a sequence of
homology theories K(n)∗ for n ≥ 0 with the following properties.
(We follow the standard practice of omitting p from the notation.)

(i) K(0)∗(X) = H∗(X;Q) and K(0)∗(X) = 0 when H∗(X) is
all torsion.

(ii) K(1)∗(X) is one of p− 1 isomorphic summands of mod p
complex K-theory.

(iii) K(0)∗(pt.) = Q and for n > 0, K(n)∗(pt.) = Z/(p)[vn, v
−1
n ]

where the dimension of vn is 2pn − 2. This ring is a graded field
in the sense that every graded module over it is free. K(n)∗(X) is
a module over K(n)∗(pt.).
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(iv) There is a Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗(pt.) K(n)∗(Y ).

(v) Let X be a p-local finite CW-complex. If K(n)∗(X) van-

ishes , then so does K(n− 1)∗(X).
(vi) If X is as above then

K(n)∗(X) = K(n)∗(pt.)⊗H∗(X;Z/(p))

for n sufficiently large. In particular it is nontrivial if X is simply
connected and not contractible.

Definition 1.5.3. A p-local finite complex X has type n if n
is the smallest integer such that K(n)∗(X) is nontrivial. If X is
contractible it has type ∞.

Because of the Künneth isomorphism, K(n)∗(X) is easier to
compute than MU∗(X). Again there are still many interesting
spaces for which this has not been done. See [RW80] and [HKR].
A corollary of the nilpotence theorem (1.4.2) says that the Morava
K-theories, along with ordinary homology with coefficients in a
field, are essentially the only homology theories with Künneth
isomorphisms.

The Morava K-theories for n > 0 have another property which
we will say more about below. Suppose we ignore the grading on
K(n)∗(X) and consider the tensor product

K(n)∗(X)⊗K(n)∗(pt.) Fpn

where Fpn denotes the field with pn elements, which is regarded as
a module overK(n)∗(pt.) by sending vn to 1. Then this Fpn-vector
space is acted upon by a certain p-adic Lie group Sn (not to be
confused with the n-sphere Sn) which is contained in a certain
p-adic division algebra.

The Morava K-theories are especially useful for detecting pe-
riodic self-maps. This is the subject of the second major result of
this book, the periodicity theorem of Hopkins-Smith [HS]. The
proof is outlined in [Hop87] and in Chapter 6.

Theorem 1.5.4 (Periodicity theorem). Let X and Y be p-local
finite CW-complexes of type n (1.5.3) for n finite.

(i) There is a self-map f : Σd+iX → ΣiX for some i ≥ 0
such that K(n)∗(f) is an isomorphism and K(m)∗(f) is trivial
for m > n. (We will refer to such a map as a vn-map; see page
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53.) When n = 0 then d = 0, and when n > 0 then d is a multiple
of 2pn − 2.

(ii) Suppose h : X → Y is a continuous map. Assume that
both have already been suspended enough times to be the target of
a vn-map. Let g : ΣeY → Y be a self-map as in (i). Then there
are positive integers i and j with di = ej such that the following
diagram commutes up to homotopy.

ΣdiX
Σdih //

f i

��

ΣdiY

gj

��
X

h // Y

(The integers i and j can be chosen independently of the map h.)

Some comments are in order about the definition of a vn-map
given in the theorem. First, X is not logically required to have
type n, but that is the only case of interest. If X has type > n,
then the trivial map satisfies the definition, and if X has type < n,
it is not difficult to show that no map satisfies it (3.3.11). Second,
it does not matter if we require K(m)∗(f) to be trivial or merely
nilpotent for m > n. If it is nilpotent for each m > n, then some
iterate of it will be trivial for all m > n. For d > 0 this follows
because some iterate of H∗(f) must be trivial for dimensional
reasons, and K(m)∗(f) = K(m)∗ ⊗ H∗(f) for m � 0. The case
d = 0 occurs only when n = 0, for which the theorem is trivially
true since the degree p map satisfies the definition.

The map h in (ii) could be the identity map, which shows
that f is asymptotically unique in the following sense. Suppose g
is another such periodic self-map. Then there are positive integers
i and j such that f i is homotopic to gj . If X is a suspension of
Y and f is a suspension of g, this shows that f is asymptotically
central in that any map h commutes with some iterate of f .



CHAPTER 2

Homotopy groups and the chromatic
filtration

In this chapter we will describe the homotopy groups of spheres,
which make up one of the messiest but most fundamental objects
in algebraic topology. First we must define them.

2.1. The definition of homotopy groups

The following definition is originally due to Čech [Cec32]. Ho-
motopy groups were first studied sytematically byWitold Hurewicz
in [Hur35] and [Hur36].

Definition 2.1.1. The nth homotopy group of X, πn(X)
is the set of homotopy classes of maps from the n-sphere Sn (the
space of unit vectors in Rn+1) to X which send a fixed point in
Sn (called the base point) to a fixed point in X. (If X is not
path-connected, then we must specify in which component its base
point x0 is chosen to lie. In this case the group is denoted by
πn(X,x0).) π1(X) is the fundamental group of X.

We define a group structure on πn(X) as follows. Consider
the pinch map

Sn
pinch−−−−−−−−→ Sn ∨ Sn

obtained by collapsing the equator in the source to a single point.
Here X ∨ Y denotes the one-point union of X and Y , i.e., the
union obtained by identifying the base point in X with the one
in Y . We assume that the base point in the source Sn has been
chosen to lie on the equator, so that the map above is base point
preserving.

Now let α, β ∈ πn(X) be represented by maps f, g : Sn → X.
Define α · β ∈ πn(X) to be the class of the composite

Sn
pinch−−−−−−−−→ Sn ∨ Sn

f∨g−−−−−−−−→ X.

11
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The inverse α−1 is obtained by composing f with a base point
preserving reflection map on Sn.

It is easy to verify that this group structure is well defined and
that it is abelian for n > 1.

It is easy to construct a finite CW-complex of dimension ≤
2 whose π1 is any given finitely presented group. This means
that certain classification problems in homotopy theory contain
problems in group theory that are known to be unsolvable.

Remark 2.1.2. In a similar way one can define a group struc-
ture on the set of base point preserving maps from ΣX to Y for
any space X (not just X = Sn−1 as above) and show that it is
abelian whenever X is a suspension, i.e., whenever the source of
the maps is a double suspension.

These groups are easy to define but, unless one is very lucky,
quite difficult to compute. Of particular interest are the homotopy
groups of the spheres themselves. These have been the subject of
a great deal of effort by many algebraic topologists who have de-
veloped an arsenal of techniques for calculating them. Many refer-
ences and details can be found in [Rav86]. We will not discuss any
of these methods here, but we will describe a general approach to
the problem suggested by the nilpotence and periodicity theorems
known as the chromatic filtration.

2.2. Classical theorems

First we need to recall some classical theorems on the subject.

Theorem 2.2.1 (Hurewicz theorem, 1935). The groups πn(S
m)

are trivial for n < m, and πn(S
n) ∼= Z; this group is generated by

the homotopy class of the identity map.

The next result is due to Hans Freudenthal [Fre37].

Theorem 2.2.2 (Freudenthal suspension theorem, 1937). The
suspension homomorphism (see 1.3.1)

σ : πn+k(S
n)→ πn+k+1(S

n+1)

is an isomorphism for k < n−1. The same is true if we replace Sn

by any (n−1)-connected space X, i.e., any space X with πi(X) ∼= 0
for i < n.
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This means that πn+k(Σ
nX) depends only on k if n > k + 1.

Definition 2.2.3. The kth stable homotopy group of X,
πSk (X), is

πn+k(Σ
nX) for n > k + 1.

In particular πSk (S
0) = πn+k(S

n), for n large, is called the stable

k-stem and will be abbreviated by πSk .

The stable homotopy groups of spheres are easier to com-
pute than the unstable ones. They are finite for k > 0. The
p-component of πSk is known for p = 2 for k < 60 and for p odd for
k < 2p3(p−1). Tables for p = 2, 3 and 5 can be found in [Rav86].
Empirically we find that logp |(πSk )(p)| grows linearly with k.

The next result is due to Serre [Ser53] and gives a complete
description of π∗(S

n) mod torsion.

Theorem 2.2.4 (Serre finiteness theorem, 1953). The homo-
topy groups of spheres are finite abelian except in the following
cases:

πn(S
n) ∼= Z and

π4m−1(S
2m) ∼= Z⊕ Fm

where Fm is finite abelian.

Before stating the next result we need to observe that πS∗ is
a graded ring. If α ∈ πSk and β ∈ πS` are represented by maps

f : Sn+k → Sn and g : Sn+` → Sn, then αβ ∈ πSk+` is represented
by the composite

Sn+k+`
Σkg−−−−−−−−→ Sn+k

f−−−−−−−−→ Sn.

This product is commutative up to the usual sign in algebraic
topology, i.e., βα = (−1)k+`αβ.

The following was proved in [Nis73].

Theorem 2.2.5 (Nishida’s theorem, 1973). Each element in
πSk for k > 0 is nilpotent, i.e., some power of it is zero.

This is the special case of the nilpotence theorem for X = Sn.
It also shows that πS∗ as a ring is very bad; it has no prime ideals
other than (p). It would not be a good idea to try to describe
it in terms of generators and relations. We will outline another
approach to it at the end of this section.

The following result was proved in [CMN79].
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Theorem 2.2.6 (Cohen-Moore-Neisendorfer theorem, 1979).
For p odd and k > 0, the exponent of π2n+1+k(S

2n+1)(p) is pn,

i.e., there are no elements of order pn+1.

2.3. Cofibres

By the early 1970’s several examples of periodic maps had been
discovered and used to construct infinite families of elements in the
stable homotopy groups of spheres. Before we can describe them
we need another elementary definition from homotopy theory.

Definition 2.3.1. Let f : X → Y be a continuous map. Its
mapping cone, or cofibre, Cf , is the space obtained from the
disjoint union of X × [0, 1] and Y by identifying all of X ×{0} to
a single point and (x, 1) ∈ X × [0, 1] with f(x) ∈ Y .

If X and Y have base points x0 and y0 respectively with f(x0) =
y0, then we define Cf to be as above but with all of {x0} × [0, 1]
collapsed to a single point, which is defined to be the base point of
Cf . (This Cf is homotopy equivalent to the one defined above.)

In either case, Y is a subspace of Cf , and the evident inclusion
map will be denoted by i.

The following result is an elementary exercise.

Proposition 2.3.2. Let i : Y → Cf be the map given by 2.3.1.
Then Ci is homotopy equivalent to ΣX.

Definition 2.3.3. A cofibre sequence is a sequence of spaces
and maps of the form

X
f−→ Y

i−→ Cf
j−→ ΣX

Σf−→ ΣY −→ · · ·
in which each space to the right of Y is the mapping cone of the
map preceding the map to it, and each map to the right of f is the
canonical inclusion of a map’s target into its mapping cone, as in
2.3.1.

If one has a homotopy commutative diagram

X
f // Y

y // Cf

X ′
f ′ //

g1

OO

Y ′
i′ //

g2

OO

Cf ′

OO



3. COFIBRES 15

then the missing map always exists, although it is not unique up
to homotopy. Special care must be taken if f ′ is a suspension of
f . Then the diagram extends to

X
f // Y

y // Cf
j //ΣX

ΣdX
f ′ //

g1

OO

ΣdY
i′ //

g2

OO

ΣdCf ′
(−1)dΣdj //

g3

OO

Σd+1X

Σg1

OO

and the sign in the suspension of j is unavoidable.
Now suppose g : Y → Z is continuous and that gf is null

homotopic. Then g can be extended to a map g̃ : Cf → Z, i.e.,
there exists a g̃ whose restriction to Y (which can be thought of as
a subspace of Cf ) is g. More explicitly, suppose h : X× [0, 1]→ Z
is a null homotopy of gf , i.e., a map whose restriction to X ×{0}
is constant and whose restriction to X × {1} is gf . Combining
h and g we have a map to Z from the union of X × [0, 1] with
Y which is compatible with the identifications of 2.3.1. Hence we
can use h and g to define g̃.

Note that g̃ depends on the homotopy h; a different h can
lead to a different (up to homotopy) g̃. The precise nature of this
ambiguity is clarified by the following result, which describes three
of the fundamental long exact sequences in homotopy theory.

Proposition 2.3.4. Let X and Y be path connected CW-
complexes.

(i) For any space Z the cofibre sequence of 2.3.3 induces a long
exact sequence

[X,Z]
f∗←− [Y, Z]

i∗←− [Cf , Z]
j∗←− [ΣX,Z]

Σf∗←− [ΣY, Z]←− · · ·

Note that each set to the right of [Cf , Z] is a group, so exactness is
defined in the usual way, but the first three sets need not have group
structures. However each of them has a distinguished element,
namely the homotopy class of the constant map. Exactness in
this case means that the image of one map is the preimage of the
constant element under the next map.

(ii) Let E∗ be a homology theory. Then there is a long exact
sequence

· · · j∗−→ Em(X)
f∗−→ Em(Y )

i∗−→ Em(Cf )
j∗−→ Em−1(X)

f∗−→ · · ·
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(iii) Suppose X and Y are each (k − 1)-connected (i.e., their
homotopy groups vanish below dimension k) and let W be a finite
CW-complex (see A.1.1) which is a double suspension with top cell
in dimension less than 2k−1. Then there is a long exact sequence
of abelian groups

[W,X]
f∗−→ [W,Y ]

i∗−→ [W,Cf ]
j∗−→ [W,ΣX]

Σf∗−→ [W,ΣY ] −→ · · · .
This sequence will terminate at the point where the connectivity
of the target exceeds the dimension of W .

Corollary 2.3.5. Suppose X as in the periodicity theorem
(1.5.4) has type n. Then the cofibre of the map given by 1.5.4 has
type n+ 1.

Proof. Assume that X has been suspended enough times to be
the target of a vn-map f and let W be its cofibre. We will study
the long exact sequence

· · · j∗−→ K(m)t(Σ
dX)

f∗−→ K(m)t(X)
i∗−→ K(m)t(W )

j∗−→ K(m)t−1(Σ
dX)

f∗−→ · · ·
for various m.

For m < n, K(m)∗(X) = 0, so K(m)∗(W ) = 0. For m = n, f∗
is an isomorphism, so again K(m)∗(W ) = 0. For m > n, f∗ = 0

and K(m)∗(X) 6= 0 by 1.5.2(v). It follows that

K(m)∗(W ) ∼= K(m)∗(X)⊕K(m)∗(Σ
d+1X),

so W has type n+ 1. �

2.4. Motivating examples

The following examples of periodic maps led us to conjecture
the nilpotence and periodicity theorems.

Example 2.4.1 (The earliest known periodic maps). (i) Re-
gard S1 as the unit circle in the complex numbers C. The degree
p map on S1 is the one which sends z to zp. This map is periodic
in the sense of 1.4.1, as is each of its suspensions. In this case n
(as in the periodicity theorem) is zero.

(ii) Let V (0)k (known as the mod pMoore space) be the cofibre
of the degree p map on Sk. Adams [Ada66a] and Toda [Tod60]
showed that for sufficiently large k there is a periodic map

ΣqV (0)k
α−→ V (0)k
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where q is 8 when p = 2 and 2p−2 for p odd. In this case the n of
1.5.4 is one. The induced map in K(1)∗(V (0)k) is multiplication
by v1 when p is odd and by v41 for p = 2.

For p = 2 there is no self-map inducing multiplication by a
smaller power of v1. One could replace the mod 2 Moore space by
the mod 16 Moore space and still have a map α as above.

(iii) For p ≥ 5, let V (1)k denote the cofibre of the map in
(ii). Larry Smith [Smi71] and H. Toda [Tod71] showed that for
sufficiently large k there is a periodic map

Σ2p2−2V (1)k
β−→ V (1)k

which induces multiplication by v2 in K(2)-theory.
(iv) For p ≥ 7, let V (2)k denote the cofibre of the map in

(iii). Smith and Toda showed that for sufficiently large k there is
a periodic map

Σ2p3−2V (2)k
γ−→ V (2)k

which induces multiplication by v3 in K(3)-theory. We denote its
cofibre by V (3)k.

These results were not originally stated in terms of Morava
K-theory, but in terms of complex K-theory in the case of (ii)
and complex bordism in the case of (iii) and (iv). Attempts to
find a self-map on V (3) inducing multiplication by v4 have been
unsuccessful. The Periodicity Theorem guarantees that there is
a map inducing multiplication by some power of v4, but gives no
upper bound on the exponent. References to some other explicit
examples of periodic maps can be found in [Rav86, Chapter 5].

Each of the maps in 2.4.1 led to an infinite family (which we
also call periodic) of elements in the stable homotopy groups of
spheres as follows.

Example 2.4.2 (Periodic families from periodic maps). (i)
We can iterate the degree p map of 2.4.1(i) and get multiples of
the identity map on Sk by powers of p, all of which are essential.

(ii) With the map α of 2.4.1(ii) we can form the following
composite:

Sk+qt
i1−→ ΣqtV (0)k

αt

−→ V (0)k
j1−→ Sk+1

where i1 : S
k → V (0)k and j1 : V (0)k → Sk+1 are maps in the

cofibre sequence associated with the degree p map. (We are using
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the same notation for a map and each of its suspensions.) This
composite was shown by Adams [Ada66a] to be essential for all
t > 0. The resulting element in πSqt−1 is denoted by αt for p odd
and by α4t for p = 2.

(iii) Let i2 : V (0)k → V (1)k and j2 : V (1)k → Σq+1V (0)k de-
note the maps in the cofibre sequence associated with α. Using the
map β of 2.4.1(iii) for p ≥ 5 we have the composite

Sk+2(p2−1)t i2i1−→ Σk+2(p2−1)tV (1)k
βt

−→ V (1)k
j1j2−→ Sk+2p

which is denoted by βt ∈ π2(p2−1)t−2p. Smith [Smi71] showed it is
essential for all t > 0.

(iv) For p ≥ 7 there is a similarly defined composite

Sk+2(p3−1)t −→ Σk+2(p3−1)tV (2)k
γt−→ V (2)k −→ Sk+(p+2)q+3

which is denoted by γt. It was shown to be nontrivial for all t > 0
in [MRW77].

In general a periodic map on a finite CW-complex leads to a
periodic family of elements in πS∗ , although the procedure is not
always as simple as in the above examples. Each of them has
the following features. We have a CW-complex (defined below in
A.1.1) X of type n with bottom cell in dimension k and top cell
in some higher dimension, say k + e. Thus we have an inclusion
map i0 : Sk → X and a pinch map j0 : X → Sk+e. Furthermore
the composite

(2.4.3) Sk+td
i0−→ ΣtdX

f t−→ X
j0−→ Sk+e

is essential for each t > 0, giving us a nontrivial element in πStd−e.

This fact does not follow from the nontriviality of f t; in each case a
separate argument (very difficult in the case of the γt) is required.

If the composite (2.4.3) is null, we can still get a nontrivial
element in πStd−ε (for some ε between e and −e) as follows. At this
point we need to be in the stable range, i.e., we need k > td + e,
so we can use 2.3.4(iii). This can be accomplished by suspending
everything in sight enough times.

For k ≤ r ≤ s ≤ k + e, Xs
r will denote the cofibre of the

inclusion map Xr−1 → Xs. In particular, Xk+e
k = X and Xs

s is
a wedge of s-spheres, one for each s-cell in X. We will use the
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letter i to denote any inclusion map Xs
r → Xs′

r with s′ > s, and
the letter j to denote any pinch map Xs

r → Xs
r′ with s ≥ r′ > r.

Now let fe = f t and consider the diagram

(2.4.4) ΣtdX
fe //

fe−1

##

fe−2

��

Xk+e
k

j //Xk+e
k+e

Xk+e−1
k

j //

i

OO

Xk+e−1
k+e−1

Xk+e−2
k

j //

i

OO

Xk+e−2
k+e−2

i

OO

If the composite jfe is null, then by 2.3.4(iii) there is a map
fe−1 with ife−1 = fe. Similarly if jfe−1 is null then there is a
map fe−2 with ife−2 = fe−1. We proceed in this way until the
composite

ΣtdX
fe1−→ Xk+e1

k

j−→ Xk+e1
k+e1

is essential. This must be the case for some e1 between 0 and e,
because if all of those composites were null, then 2.3.4(iii) would
imply that f t is null.

Now let g0 = jfe1 and consider the diagram

(2.4.5) ΣtdXk
k

i //ΣtdX
g0 //

j

��

Xk+e1
k+e1

ΣtdXk−1
k−1

i //ΣtdXk+e
k+1

g1

88

j

��
ΣtdXk−2

k−2
i //ΣtdXk+e

k+2

g2

AA

j

��
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This time we use 2.3.4(i) instead of 2.3.4(iii). It says that if
g0i is null then there is a map g1 with g1j = g0. Similarly if g1i
is null there is a map g2 with g1 = g2j. The composites gmi for
0 ≤ m ≤ e cannot all be null because g0 is essential. Let e2 be the
integer between 0 and e such that ge2i is essential.

Summing up, we have a diagram

ΣtdX
fe1 //

j
��

Xk+e1
k

i //

j
��

X

ΣtdXk+e2
k+e2

i //ΣtdXk+e
k+e2

ge2 //ΣtdXk+e1
k+e1

where ife1 = f t. The source and target of ge2i are both wedges
of spheres, so this is the promised stable homotopy element. Its
dimension is td+ e2 − e1 with 0 ≤ e1, e2 ≤ e.

The simplest possible outcome of this procedure is the case
e1 = e and e2 = 0; this occurs in each of the examples in 2.4.2. In
any other outcome, the construction is riddled with indeterminacy,
because the maps fe1 and ge2 are not unique.

In any case the outcome may vary with the exponent t. In
every example that we have been able to analyze, the behavior is as
follows. With a finite number of exceptions (i.e., for t sufficiently
large), the outcome depends only on the congruence class of t
modulo some power of the prime p.

2.5. The chromatic filtration

These examples led us to ask if every element in the stable ho-
motopy groups of spheres is part of such a family. In [MRW77]
we explored an algebraic analog of this question. The Adams-
Novikov spectral sequence (A.6.3) is a device for computing πS∗
and its E2-term was shown there to have such an organization us-
ing a device called the chromatic spectral sequence(see B.8), which
is also described in [Rav86, Chapter 5]. In [Rav84] we explored
the question of making this algebraic structure more geometric.
It was clear that the periodicity theorem would be essential to
this program, and that the former would be false if there were a
counter example to the nilpotence theorem. Now that the nilpo-
tence and periodicity theorems have been proved, we can proceed
directly to the geometric construction that we were looking for in
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[Rav84] without dwelling on the details of the chromatic spectral
sequence.

Suppose Y is a p-local complex and y ∈ πk(Y ) is represented
by a map g : Sk → Y . If all suspensions of y have infinite order,
then it has a nontrivial image in πSk (Y ) ⊗Q. In the case where
Y is a sphere, this group can be read off from 2.2.4. In general
this group is easy to compute since it is known to be isomorphic
to H∗(Y ;Q).

On the other hand, if some suspension of y has order pi, then
it factors through the cofibre of the map of degree pi on the cor-
responding suspension of Sk, which we denote here by W (1). For
the sake of simplicity we will ignore suspensions in the rest of this
discussion. The map from W (1) to Y will be denoted by g1.

The complex W (1) has type 1 and therefore a periodic self-
map

f1 : Σ
d1W (1)→W (1)

which induces a K(1)∗-equivalence. Now we can ask whether g1
becomes null homotopic when composed with some iterate of f1
or not. If all such composites are stably essential then g1 has a
nontrivial image in the direct limit obtained by taking homotopy
classes of maps from the inverse system

W (1)
f1←− Σd1W (1)

f1←− Σ2d1W (1)←− · · ·

which gives a direct system of groups
(2.5.1)

[W (1), Y ]S∗
f∗1−→ [Σd1W (1), Y ]S∗

f∗1−→ [Σ2d1W (1), Y ]S∗
f∗1−→ · · · ,

which we denote by v−11 [W (1), Y ]S∗ . Note that the second part of
the periodicity theorem implies that this limit is independent of
the choice of f1.

This group was determined in the case when Y is a sphere
for the prime 2 by Mahowald in [Mah81] and for odd primes
by Miller in [Mil81]. More precise calculations not requiring any
suspensions of the spaces in question in the case when Y is an odd-
dimensional sphere were done for p = 2 by Mahowald in [Mah82]
and for p odd by Thompson in [Tho90]. In general it appears to
be an accessible problem. For more details, see [Ben92], [BD92],
[BDM], [Dav91] and [DM].
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There is a definition of v−11 π∗(Y ) which is independent of the
exponent i. We have an inverse system of cofibre sequences

Sk

pi
��

Sk

pi+1

��

poo · · ·oo

Sk

��

Sk'
oo

��

· · ·oo

Cpi Cpi+1

ρoo · · ·oo

which induces a direct system of long exact sequences

· · · // [Cpi , Y ] //

ρ∗

��

πk(Y )
pi //

'
��

πk(Y ) //

p

��

· · ·

· · · // [Cpi+1 , Y ] //

ρ∗

��

πk(Y )
pi+1

//

'
��

πk(Y ) //

p

��

· · ·

The limit of these is a long exact sequence of the form

· · · −→ πk(Y ) −→ p−1πk(Y ) −→ πk(Y )/(p∞) −→ · · ·

where

πk(Y )/(p∞) = lim
→

[Σ−1Cpi , Y ].

Note that since Y is p-local,

p−1πk(Y ) = πk(Y )⊗Q.

We can define v−11 π∗(Y )/(p∞) by using some more detailed in-
formation about v1-maps on the Moore spaces Cpi . For sufficiently
large k (independent of i), there are v1-maps

Σ2pi−1(p−1)Cpi
f1,i−→ Cpi

such that the following diagram commutes.

Σ2pi(p−1)Cpi+1

ρ
��

f1,i+1 //Cpi+1

ρ

��
Σ2pi(p−1)Cpi

fp1,i // Cpi
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This means we can define the groups v−11 [Cpi , Y ]∗ compatibly for

various i, and their direct limit is v−11 π∗(Y )/(p∞). More details
of this construction can be found in [DM].

Returning to (2.5.1), suppose that some power of f1 anni-

hilates g1, i.e., some composite of the form g1f
i1
1 is stably null

homotopic. In this case, let W (2) be the cofibre of f i11 and let g2
be an extension of g1 to W (2).

Then W (2) has type 2 and therefore it admits a periodic self-
map

Σd2W (2)
f2−→W (2)

which is detected by K(2)∗. This leads us to consider the group

v−12 [W (2), Y ]S∗ .

This group is not yet known for any Y . There is some machinery
(see 7.5 and B.8) available for computing what was thought to
be a close algebraic approximation. The relation of this approx-
imation to the actual group in question was the subject of the
telescope conjecture (7.5.5), which has recently been disproved by
the author. (It is known to be true in the v1 case.) The algebraic
computation in the case where Y is a sphere, W (1) is a mod p
Moore space and p ≥ 5 has been done by Shimomura and Tamura
in [Shi86] and [ST86].

Summing up, we have a diagram

Y Sk
goo

��

Sk
pioo

W (1) = Cpi

g1

gg

��

Σd1W (1)
f1oo

W (2) = Cf1

g2

__

��

Σd2W (1)
f2oo

One could continue this process indefinitely. At the nth stage
one has an extension gn of the original map g to a complex W (n)
of type n which has a periodic self-map fn. Then one asks if gn
is annihilated stably by some iterate of fn. If the answer is no,
then the process stops and gn has a nontrivial image in the group
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v−1n [W (n), Y ]S∗ . On the other hand, if gn is annihilated by a power
of fn then we can move on to the (n+ 1)th stage.

In view of this we make the following definitions.

Definition 2.5.2. If an element y ∈ πS∗ (Y ) extends to a com-
plex W (n) of type n as above, then y is vn−1-torsion. If in addi-
tion y does not extend to a complex of type n+1, it is vn-periodic.
The chromatic filtration of πS∗ (Y ) is the decreasing family of
subgroups consisting of the vn-torsion elements for various n ≥ 0.

We use the word ‘chromatic’ here for the following reason. The
nth subquotients in the chromatic filtration consists of vn-periodic
elements. As illustrated in 2.4.2, these elements fall into periodic
families. The chromatic filtration is thus like a spectrum in the
astronomical sense in that it resolves the stable homotopy groups
of a finite complex into periodic families of various periods. Com-
paring these to the colors of the rainbow led us to the word ‘chro-
matic.’

The construction outlined above differs slightly from that used
in 2.4.2. Suppose for example that we apply chromatic analysis
to the map

α1 : S
m+2p−3 → Sm

for an odd prime p. This element in πSq−1 has order p so the

map extends to the mod p Moore space V (0)m+q−1, which has
the Adams self-map α of 2.4.1(ii). We find that all iterates of α
when composed with α1 are essential, so α1 is v1-periodic. The
composite

Sm+qi+q−1 −→ V (0)m+qi+q−1
αi

−→ V (0)m+q−1
α̃1−→ Sm

is the map αi+1 of 2.4.1(ii). In the chromatic analysis no use is
made of the map j : V (0)m → Sm+1.

More generally, suppose g : Sk → Y is vn-periodic and that
it extends to gn : W (n) → Y . There is no guarantee that the
composite

SK
e−→ ΣdniW (n)

f in−→W (n)
gn−→ Y

(where e is the inclusion of the bottom cell in W (n)) is essential,
even though gnf

i
n is essential by assumption. (This is the case in

each of the examples of 2.4.2.) If this composite is null homotopic
then gnf

i
n extends to the cofibre of e. Again, this extension may

or may not be essential on the bottom cell of Ce. However, gnf
i
n
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must be nontrivial on one of the 2n cells of W (n) since it is an
essential map. (To see this, one can make a construction similar
to that shown in (2.4.4) and (2.4.5).) Thus for each i we get some
nontrivial element in πS∗ (Y ).

Definition 2.5.3. Given a vn-periodic element y ∈ πS∗ (Y ),
the elements described above for various i > 0 constitute the vn-periodic
family associated with y.

One can ask if the chromatic analysis of a given element ter-
minates after a finite number of steps. For a reformulation of this
question, see the chromatic convergence theorem, 7.5.7.





CHAPTER 3

MU-theory and formal group laws

In this chapter we will discuss the homology theoryMU∗ used
in the nilpotence theorem. MU∗(X) is defined in terms of maps
of manifolds into X as will be explained presently. Unfortunately
the geometry in this definition does not appear to be relevant
to the applications we have in mind. We will be more concerned
with some algebraic properties of the functor which are intimately
related to the theory of formal group laws.

3.1. Complex bordism

Definition 3.1.1. LetM1 andM2 be smooth closed n-dimensional
manifolds, and let fi : Mi → X be continuous maps for i = 1, 2.
These maps are bordant if there is a map f : W → X, where
W is a compact smooth manifold whose boundary is the disjoint
union of M1 and M2, such that the restriction of f to Mi is fi. f
is a bordism between f1 and f2.

Bordism is an equivalence relation and the set of bordism
classes forms a group under disjoint union, called the nth bor-
dism group of X.

A manifold is stably complex if it admits a complex lin-
ear structure in its stable normal bundle, i.e., the normal bundle
obtained by embedding in a large dimensional Euclidean space.
(The term stably almost complex is often used in the literature.)
A complex analytic manifold (e.g. a nonsingular complex alge-
braic variety) is stably complex, but the notion of stably complex
is far weaker than that of complex analytic.

Definition 3.1.2. MUn(X), the nth complex bordism group
of X, is the bordism group obtained by requiring that all manifolds
in sight be stably complex.

The fact that these groups are accessible is due to some re-
markable work of Thom in the 1950’s [Tho54]. More details can
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be found below in B.2. A general reference for cobordism theory
is Stong’s book [Sto68]. More information can be found below in
B.2.

The groups MU∗(X) satisfy all but one of the axioms used by
Eilenberg-Steenrod to characterize ordinary homology; see A.3.
They fail to satisfy the dimension axiom, which describes the ho-
mology of a point. If X is a single point, then the map from the
manifold to X is unique, and MU∗(pt.) is the group of bordism
classes of stably complex manifolds, which we will denote simply
by MU∗. It is a graded ring under Cartesian product and its
structure was determined independently by Milnor [Mil60] and
Novikov ([Nov60] and [Nov62]).

Theorem 3.1.3. The complex bordism ring, MU∗ is isomor-
phic to

Z[x1, x2, . . .]

where dim xi = 2i.

It is possible to describe the generators xi as complex man-
ifolds, but this is more trouble than it is worth. The complex
projective spaces CP i serve as polynomial generators of Q⊗MU∗.

Note that MU∗(X) is an MU∗-module as follows. Given x ∈
MU∗(X) represented by f : M → X and λ ∈MU∗ represented by
a manifold N , λx is represented by the composite map

M ×N −→M
f−→ X.

3.2. Formal group laws

Definition 3.2.1. A formal group law over a commutative
ring with unit R is a power series F(x, y) over R that satisfies the
following three conditions.

(i) F (x, 0) = F (0, x) = x (identity),
(ii) F (x, y) = F (y, x) (commutativity) and
(iii) F (F (x, y), z) = F (x, F (y, z)) (associativity).

(The existence of an inverse is automatic. It is the power series
i(x) determined by the equation F (x, i(x)) = 0.)

Example 3.2.2. (i) F (x, y) = x+ y. This is called the addi-
tive formal group law.
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(ii) F (x, y) = x+ y + xy = (1 + x)(1 + y)− 1. This is called
the multiplicative formal group law.

(iii)

F (x, y) =
x
√
R(y) + y

√
R(x)

1− εx2y2
where

R(x) = 1− 2δx2 + εx4.

This is the formal group law associated with the elliptic curve

y2 = R(x),

a Jacobi quartic, so we call it the elliptic formal group law. It is
defined over Z[1/2][δ, ε]. This curve is nonsingular mod p (for p
odd) if the discriminant ∆ = ε(δ2−ε)2 is invertible. This example
figures prominently in elliptic cohomology theory; see [LRS] for
more details.

The theory of formal group laws from the power series point
of view is treated comprehensively in [Haz78]. A short account
containing all that is relevant for the current discussion can be
found in [Rav86, Appendix 2].

The following result is due to Lazard [Laz55a].

Theorem 3.2.3 (Lazard’s theorem). (i) There is a universal
formal group law defined over a ring L of the form

G(x, y) =
∑
i,j

ai,jx
iyj with ai,j ∈ L

such that for any formal group law F over R there is a unique
ring homomorphism θ from L to R such that

F (x, y) =
∑
i,j

θ(ai,j)x
iyj .

(ii) L is a polynomial algebra Z[x1, x2, . . .]. If we put a grading
on L such that ai,j has degree 2(1− i− j) then xi has degree −2i.

The grading above is chosen so that if x and y have degree 2,
then G(x, y) is a homogeneous expression of degree 2. Note that L
is isomorphic to MU∗ except that the grading is reversed. There
is an important connection between the two.

Associated with the homology theory MU∗ there is a coho-
mology theory MU∗. This is a contravariant functor bearing the
same relation toMU∗ that ordinary cohomology bears to ordinary
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homology. When X is an m-dimensional manifold, MU∗(X) has
a geometric description; an element in MUk(X) is represented by
a map to X from an (m − k)-dimensional manifold with certain
properties. The conventions in force in algebraic topology require
that MU∗(pt.) (which we will denote by MU∗) be the same as
MU∗(pt.) but with the grading reversed. Thus MU∗ is isomor-
phic to the Lazard ring L.

This isomorphism is natural in the following sense. MU∗(X),
likeH∗(X), comes equipped with cup products, making it a graded
algebra over MU∗. Of particular interest is the case when X is
the infinite-dimensional complex projective space CP∞. We have

MU∗(CP∞) ∼=MU∗[[x]]

where dim x = 2, and

MU∗(CP∞ ×CP∞) ∼=MU∗[[x⊗ 1, 1⊗ x]].

The space CP∞ is an abelian topological group, so there is a map

CP∞ ×CP∞
f−→ CP∞

with certain properties. (CP∞ is also the classifying space for
complex line bundles and the map in question corresponds to the
tensor product.) Since MU∗ is contravariant we get a map

MU∗(CP∞ ×CP∞)
f∗←−MU∗(CP∞)

which is determined by its behavior on the generator x ∈MU2(CP∞).
The power series

f∗(x) = F (x⊗ 1, 1⊗ x)

can easily be shown to be a formal group law. Hence by Lazard’s
theorem (3.2.3) it corresponds to a ring homomorphism θ : L →
MU∗. The following was proved by Quillen [Qui69] in 1969.

Theorem 3.2.4 (Quillen’s theorem). The homomorphism

θ : L→MU∗

above is an isomorphism. In other words, the formal group law
associated with complex cobordism is the universal one.

Given this isomorphism (and ignoring the reversal of the grad-
ing), we can regard MU∗(X) as an L-module.
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3.3. The category CΓ

Now we define a group Γ which acts in an interesting way on
L.

Definition 3.3.1. Let Γ be the group of power series over Z
having the form

γ = x+ b1x
2 + b2x

3 + · · ·
where the group operation is functional composition. Γ acts on
the Lazard ring L of 1.5 as follows. Let G(x, y) be the universal
formal group law as above and let γ ∈ Γ. Then γ−1(G(γ(x), γ(y)))
is another formal group law over L, and therefore is induced by a
homomorphism from L to itself. Since γ is invertible, this homo-
morphism is an automorphism, giving the desired action of Γ on
L.

For reasons too difficult to explain here, Γ also acts natu-
rally onMU∗(X) compatibly with the action onMU∗(pt.) defined
above. (For more information about this, see B.3 and B.4.) That
is, given x ∈MU∗(X), γ ∈ Γ and λ ∈ L, we have

γ(λx) = γ(λ)γ(x)

and the action of Γ commutes with homomorphisms induced by
continuous maps.

For algebraic topologists we can offer some explanation for
this action of Γ. It is analogous to the action of the Steenrod
algebra in ordinary cohomology. More precisely, it is analogous to
the action of the group of multiplicative cohomology operations,
such as (in the mod 2 case) the total Steenrod square,

∑
i≥0 Sq

i.
Such an operation is determined by its effect on the generator
of H1(RP∞;Z/(2)). Thus the group of multiplicative mod 2 co-
homology operations embeds in ΓZ/(2), the group of power series
over Z/(2) analogous to Γ over the integers.

Definition 3.3.2. Let CΓ denote the category of finitely pre-
sented graded L-modules equipped with an action of Γ compatible
with its action on L as above, and let FH denote the category of
finite CW-complexes and homotopy classes of maps between them.

Thus we can regard MU∗ as a functor from FH to CΓ. The
latter category is much more accessible. We will see that it has
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some structural features which reflect those of FH very well. The
nilpotence, periodicity and chromatic convergence theorems are
examples of this.

In order to study CΓ further we need some more facts about
formal group laws. Here are some power series associated with
them.

Definition 3.3.3. For each integer n the n-series [n](x) is
given by

[1] (x) = x,

[n] (x) = F (x, [n− 1] (x)) for n > 1 and

[−n] (x) = i([n] (x)).

These satisfy

[n] (x) ≡ nx mod (x2),

[m+ n] (x) = F ([m] (x), [n] (x)) and

[mn] (x) = [m] ([n] (x)).

For the additive formal group law (3.2.2), we have [n](x) = nx,
and for the multiplicative formal group law, [n](x) = (1+x)n− 1.

Of particular interest is the p-series. In characteristic p it
always has leading term axq where q = ph for some integer h.
This leads to the following.

Definition 3.3.4. Let F (x, y) be a formal group law over a
ring in which the prime p is not a unit. If the mod p reduction of
[p](x) has the form

[p](x) = axp
h
+ higher terms

with a invertible, then we say that F has height h at p. If
[p](x) ≡ 0 mod p then the height is infinity.

For the additive formal group law we have [p](x) = 0 so the
height is ∞. The multiplicative formal group law has height 1
since [p](x) = xp. The mod p reduction (for p odd) of the elliptic
formal group law of 3.2.2(iii) has height one or two depending on
the values of δ and ε. For example if δ = 0 and ε = 1 then the
height is one for p ≡ 1 mod 4 and two for p ≡ 3 mod 4. (See
[Rav86, pages 373–374])

The following classification theorem is due to Lazard [Laz55b].
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Theorem 3.3.5 (Classification of formal group laws). Two
formal group laws over the algebraic closure of Fp are isomorphic
if and only if they have the same height.

Let vn ∈ L denote the coefficient of xp
n
in the p-series for the

universal formal group law; the prime p is omitted from the nota-
tion. This vn is closely related to the vn in the Morava K-theories
(1.5.2); the precise relation is explained in B.7. It can be shown
that vn is an indecomposable element in L, i.e., it could serve as
a polynomial generator in dimension 2pn− 2. Let Ip,n ⊂ L denote
the prime ideal (p, v1, . . . vn−1).

The following result is due to Morava [Mor85] and Landweber
[Lan73a].

Theorem 3.3.6 (Invariant prime ideal theorem). The only
prime ideals in L which are invariant under the action of Γ are
the Ip,n defined above, where p is a prime integer and n is a
nonnegative integer, possibly ∞. (Ip,∞ is by definition the ideal
(p, v1, v2, . . .) and Ip,0 is the zero ideal.)

Moreover in L/Ip,n for n > 0 the subgroup fixed by Γ is Z/(p)[vn].
In L itself the invariant subgroup is Z.

This shows that the action of Γ on L is very rigid. L has a
bewildering collection of prime ideals, but the only ones we ever
have to consider are the ones listed in the theorem. This places
severe restriction on the structure of modules in CΓ.

Recall that a finitely generated module M over a Noetherian
ring R has a finite filtration

0 = F0M ⊂ F1M ⊂ F2M ⊂ · · ·FkM =M

in which each subquotient FiM/Fi−1M is isomorphic to R/Ii for
some prime ideal Ii ⊂ R. Now L is not Noetherian, but it is a
direct limit of Noetherian rings, so finitely presented modules over
it admit similar filtrations. For a module in CΓ, the filtration can
be chosen so that the submodules, and therefore the prime ideals,
are all invariant under Γ. The following result is due to Landweber
[Lan73b].

Theorem 3.3.7 (Landweber filtration theorem). Every mod-
ule M in CΓ admits a finite filtration by submodules in CΓ as
above in which each subquotient is isomorphic to a suspension
(recall that the modules are graded) of L/Ip,n for some prime p
and some finite n.
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These results suggest that, once we have localized at a prime
p, the only polynomial generators ofMU∗ which really matter are
the vn = xpn−1. In fact the other generators act freely on any
module in CΓ and hence provide no information. We might as
well tensor them away and replace the theory of L-modules with
Γ-action by a corresponding theory of modules over the ring

(3.3.8) Vp = Z(p)[v1, v2, · · · ].

This has been done and the ring Vp is commonly known as BP∗,
the coefficient ring for Brown-Peterson theory. There are good
reasons for doing this from the topological standpoint, from the
formal group law theoretic standpoint, and for the purpose of
making explicit calculations useful in homotopy theory. Indeed
all of the current literature on this subject is written in terms of
BP -theory rather than MU -theory.

However it is not necessary to use this language in order to
describe the subject conceptually as we are doing here. Hence we
will confine our treatment of BP to the Appendix (B.5). There is
one technical problem with BP -theory which makes it awkward
to discuss in general terms. There is no BP -theoretic analogue of
the group Γ. It has to be replaced instead by a certain groupoid,
and certain Hopf algebras associated with MU -theory have to be
replaced by Hopf algebroids (see B.3).

The following are easy consequences of the Landweber filtra-
tion theorem.

Corollary 3.3.9. Suppose M is a p-local module in CΓ and
x ∈M .

(i) If x is annihilated by some power of vn, then it is annihi-
lated by some power of vn−1, so if v−1n M = 0, i.e., if each element
in M is annihilated by some power of vn, then v

−1
n−1M = 0.

(ii) If x is nonzero, then there is an n so that vknx 6= 0 for all
k, so if M is nontrivial, then so is v−1n M for all sufficiently large
n.

(iii) If v−1n−1M = 0, then there is a positive integer k such that

multiplication by vkn in M commutes with the action of Γ.
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(iv) Conversely, if v−1n−1M is nontrivial, then there is no posi-

tive integer k such that multiplication by vkn in M commutes with
the action of Γ on x.

The first two statements should be compared to the last two
statements in 1.5.2. In fact the functor v−1n MU∗(X)(p) is a ho-
mology theory (see B.6.2) which vanishes on a finite p-local CW-

complexX if and only ifK(n)∗(X) does. One could replaceK(n)∗
by v−1n MU(p)∗ in the statement of the periodicity theorem. The
third statement is an algebraic analogue of the periodicity theo-
rem.

We can mimic the definition of type n finite spectra (1.5.3)
and vn-maps (1.5.4) in CΓ.

Definition 3.3.10. A p-local module M in CΓ has type n if
n is the smallest integer with v−1n M nontrivial. A homomorphism
f : ΣdM → M in CΓ is a vn-map if it induces an isomorphism
in v−1n M and the trivial homomorphism in v−1m M for m 6= n.

Another consequence of the Landweber filtration theorem is
the following.

Corollary 3.3.11. If M in CΓ is a p-local module with
v−1n−1M nontrivial, then M does not admit a vn-map.

Sketch of proof of 3.3.9. (i) The statement about x is proved
by Johnson-Yosimura in [JY80]. The statement about M can be
proved independently as follows. The condition implies that each
subquotient in the Landweber filtration is a suspension of L/Ip,m
for some m > n. It follows that each element is annihilated by
some power of vn−1 as claimed.

(ii) We can choose n so that each Landweber subquotient of
M is a suspension of L/Ip,m for some m ≤ n. Then no element of
M is annihilated by any power of vn.

(iii) If v−1n−1M = 0, then each Landweber subquotient is a
suspension of L/Ip,m for m ≥ n. It follows that if the length of

the filtration is j, then M is annihilated by Ijp,n. For any γ ∈ Γ
we have

γ(vn) = vn + e with e ∈ Ip,n.
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It follows easily that

γ(vp
j−1

n ) = (vn + e)p
j−1

= vp
j−1

n + e′ with e′ ∈ Ijp,n.

This means that multiplication by vp
j−1

n is Γ-equivariant in L/Ijp,n
and hence in M .

(iv) Suppose such an integer k exists. Then multiplication by
vkn is Γ-equivariant on each Landweber subquotient. However by
3.3.6 this is not the case on L/Ip,m for m < n. It follows that

v−1n−1M = 0, which is a contradiction. �
Proof of 3.3.11. Suppose M has type m for m < n. This means
that each Landweber subquotient of M is a suspension of L/Ip,k
for some k ≥ m. Hence we see that v−1m M , v−1n M and hence
v−1m v−1n M are all nontrivial. On the other hand, if f is a vn-map,
then v−1m v−1n f must be both trivial and an isomorphism, which is
a contradiction. �

3.4. Thick subcategories

Now we need to consider certain full subcategories of CΓ and
FH.

Definition 3.4.1. A full subcategory C of CΓ is thick if it
satisfies the following axiom:

If

0 −→M ′ −→M −→M ′′ −→ 0

is a short exact sequence in CΓ, then M is in C if and only if
M ′ and M ′′ are. (In other words C is closed under subobjects,
quotient objects, and extensions.)

A full subcategory F of FH is thick if it satisfies the following
two axioms:

(i) If

X
f−→ Y −→ Cf

is a cofibre sequence in which two of the three spaces are in F,
then so is the third.

(ii) If X ∨ Y is in F then so are X and Y .

Thick subcategories were called generic subcategories by Hop-
kins in [Hop87].
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Using the Landweber filtration theorem, one can classify the
thick subcategories of CΓ(p).

Theorem 3.4.2. Let C be a thick subcategory of CΓ(p) (the
category of all p-local modules in CΓ). Then C is either all of
CΓ(p), the trivial subcategory (in which the only object is the trivial

module), or consists of all p-local modulesM in CΓ with v−1n−1M =
0. We denote the latter category by Cp,n.

We will give the proof of this result below.
There is an analogous result about thick subcategories of FH(p),

which is a very useful consequence of the nilpotence theorem.

Theorem 3.4.3 (Thick subcategory theorem). Let F be a thick
subcategory of FH(p), the category of p-local finite CW-complexes.
Then F is either all of FH(p), the trivial subcategory (in which the
only object is a point) or consists of all p-local finite CW-complexes
X with v−1n−1MU∗(X) = 0. We denote the latter category by Fp,n.

The condition v−1n−1MU∗(X) = 0 is equivalent toK(n− 1)∗(X) =
0, in view of 1.5.2(v) and 7.3.2(d) below.

Thus we have two nested sequences of thick subcategories,

(3.4.4) FH(p) = Fp,0 ⊃ Fp,1 ⊃ Fp,2 · · · {pt.}

and

(3.4.5) CΓ(p) = Cp,0 ⊃ Cp,1 ⊃ Cp,2 · · · {0}.

The functor MU∗(·) sends one to the other. Until 1983 it was
not even known that the Fp,n were nontrivial for all but a few
small values of n. Mitchell [Mit85] first showed that all of the
inclusions of the Fp,n are proper. Now it is a corollary of the
periodicity theorem.

In Chapter 4 we will describe another algebraic paradigm anal-
ogous to 3.4.3 discovered in the early 70’s by Jack Morava. It
points to some interesting connections with number theory and
was the original inspiration behind this circle of ideas.
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In Chapter 5 we will derive the thick subcategory theorem
from another form of the nilpotence theorem. This is easy since it
uses nothing more than elementary tools from homotopy theory.

In Chapter 6 we will sketch the proof of the periodicity the-
orem. It is not difficult to show that the collection of complexes
admitting periodic self maps for given p and n forms a thick sub-
category. Given the thick subcategory theorem, it suffices to find
just one nontrivial example of a complex of type n with a peri-
odic self-map. This involves some hard homotopy theory. There
are two major ingredients in the construction. One is the Adams
spectral sequence, a computational tool that one would expect to
see used in such a situation. The other is a novel application of the
modular representation theory of the symmetric group described
in as yet unpublished work of Jeff Smith.
Proof of Theorem 3.4.2. Note that Cp,0 = CΓ(p) by convention
and we have a decreasing filtration

CΓ(p) = Cp,0 ⊃ Cp,1 ⊃ · · ·Cp,n ⊃ · · ·

with ∩n≥0Cp,n = {0} by Corollary 3.3.9(ii).
Now suppose C ⊂ CΓ(p) is thick. If C 6= {0}, choose the

largest n so that Cp,n ⊃ C. Then C 6⊂ Cp,n+1, and we want to
show that C = Cp,n, so we need to verify that C ⊃ Cp,n.

LetM be a comodule in C but not in Cp,n+1. Thus v
−1
m M = 0

for m < n but v−1n M 6= 0. Choosing a Landweber filtration of M
in CΓ,

0 = F0M ⊂ F1M ⊂ · · · ⊂ FkM =M,

all FsM are in C, hence so are all the subquotients

FsM/Fs−1M = ΣdsMU∗/Ip,ms .

Since v−1n M 6= 0, we must have

v−1n (MU∗/Ip,ms) 6= 0

for some s, so somems is no more than n. Thisms must be n, since
a smaller value would contradict the assumption that C ⊂ Cp,n.
Hence we conclude that

(3.4.6) MU∗/Ip,n ∈ C.

Now let N be in Cp,n; we want to show that it is also in C.

Then v−1n−1M = 0, so each subquotient of a Landweber filtration of
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N is a suspension ofMU∗/Ip,m for somem ≥ n. SinceMU∗/Ip,n ∈
C by (3.4.6), it follows that MU∗/Ip,n ∈ C for all m ≥ n. Hence
the Landweber subquotients of N are all in C, so N itself is in
C. �





CHAPTER 4

Morava’s orbit picture and Morava
stabilizer groups

In this chapter we will describe some ideas conceived by Jack
Morava in the early 70’s. It is a pleasure to acknowledge once
again his inspiring role in this area.

4.1. The action of Γ on L

The action of the group Γ on the Lazard ring L (3.3.1) is
central to this theory and the picture we will describe here sheds
considerable light on it. Let HZL denote the set of ring homo-
morphisms L → Z. By 3.2.3 this is the set of formal group laws
over the integers. Since L is a polynomial ring, a homomorphism
θ ∈ HZL is determined by its values on the polynomial generators
xi ∈ L. Hence HZL can be regarded as an infinite dimensional
affine space over Z. The action of Γ on L induces one on HZL.
The following facts about it are straightforward.

Proposition 4.1.1. Let HZL and the action of the group Γ
on it be as above. Then

(i) Points in HZL correspond to formal group laws over Z.
(ii) Two points are in the same Γ-orbit if and only if the two

corresponding formal group laws are isomorphic over Z.
(iii) The subgroup of Γ fixing point θ ∈ HZL is the strict

automorphism group of the corresponding formal group law.
(iv) The strict automorphism groups of isomorphic formal group

laws are conjugate in Γ.

We have not yet said what a strict automorphism of a formal
group law F is.

An automorphism is a power series f(x) satisfying

f(F (x, y)) = F (f(x), f(y))

41
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and f(x) is strict if it has the form

f(x) = x+ higher terms.

The classification of formal group laws over the integers is
quite complicated, but we have a nice classification theorem (3.3.5)
over k, the algebraic closure of Fp. Hence we want to replace Z by
k in the discussion above. Let HkL denote the set of ring homo-
morphisms L → k; it can be regarded as an infinite dimensional
vector space over k. Let Γk denote the corresponding group of
power series. Then it follows that there is one Γk-orbit for each
height n. Since θ(vi) ∈ k is the coefficient of xpi in the power series
[p](x), the following is a consequence of the relevant definitions.

Proposition 4.1.2. The formal group law over k correspond-
ing to θ ∈ HkL has height n if and only if θ(vi) = 0 for i < n and
θ(vn) 6= 0. Moreover, each vn ∈ L is indecomposable, i.e., it is a
unit (in Z(p)) multiple of

xpn−1 + decomposables.

Let Yn ⊂ HkL denote the height n orbit. It is the subset
defined by the equations vi = 0 for i < n and vn 6= 0 for finite n,
and for n =∞ it is defined by vi = 0 for all n <∞. Let

Xn =
⋃
n≤i

Yi

so we have a nested sequence of subsets

(4.1.3) HkL = X1 ⊃ X2 ⊃ X3 · · ·X∞

which is analogous to (3.4.4) and (3.4.5).

4.2. Morava stabilizer groups

Now we want to describe the strict automorphism group Sn
(called the nth Morava stabilizer group) of a height n formal
group law over k. It is contained in the multiplicative group over
a certain division algebra Dn over the p-adic numbers Qp. To
describe it we need to define several other algebraic objects.

Recall that Fpn , the field with pn elements, is obtained from

Fp by adjoining a primitive (pn−1)st root of unity ζ, which is the
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root of some irreducible polynomial of degree n. The Galois group
of this extension is cyclic of order n generated by the Frobenius
automorphism which sends an element x to xp.

There is a corresponding degree n extension W (Fpn) of the
p-adic integers Zp, obtained by adjoining a primitive (pn − 1)st

root of unity ζ (whose mod p reduction is ζ), which is also the
root of some irreducible polynomial of degree n. The Frobenius
automorphism has a lifting σ fixing Zp with σ(ζ) = ζp and

σ(x) ≡ xp mod p

for any x ∈W (Fpn).
We denote the fraction field ofW (Fpn) by Kn; it is the unique

unramified extension of Qp of degree n. Let Kn〈S〉 denote the
ring obtained by adjoining a noncommuting power series variable
S subject to the rule

Sx = σ(x)S

for x ∈ Kn. Thus S commutes with everything in Qp and Sn

commutes with all of Kn. The division algebra Dn is defined by

(4.2.1) Dn = Kn〈S〉/(Sn − p).

It is an algebra over Qp of rank n2 with center Qp. It is known
to contain each degree n field extension of Qp as a subfield. (This
statement is 6.2.12 of [Rav86], where appropriate references are
given.)

It also contains a maximal order

(4.2.2) En =W (Fpn)〈S〉/(Sn − p).

En is a complete local ring with maximal ideal (S) and residue
field Fpn . Each element in a ∈ En can be written uniquely as

(4.2.3) a =
∑

0≤i≤n−1
aiS

i

with ai ∈W (Fpn), and also as

(4.2.4) a =
∑
i≥0

eiS
i
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where each ei ∈W (Fpn) satisfies the equation

ep
n

i − ei = 0,

i.e., ei is either zero or a root of unity. The groups of units E×n ⊂
En is the set of elements with e0 6= 0, or equivalently with a0 a
unit in W (Fpn).

Proposition 4.2.5. The full automorphism group of a formal
group law over k of height n is isomorphic to E×n above, and the
strict automorphism group Sn is isomorphic to the subgroup of E×n
with e0 = 1.

If we regard each coefficient ei as a continuous Fpn-valued
function on Sn, then it can be shown that the ring of all such
functions is

(4.2.6) S(n) = Fpn [ei : i ≥ 1]/(ep
n

i − ei).

This is a Hopf algebra over Fpn with coproduct induced by the
group structure of Sn. It should be compared to the Hopf algebra
Σ(n) of (B.7.5). This is a factor of K(n)∗(K(n)), the Morava
K-theory analog of the dual Steenrod algebra. Its multiplicative
structure is given by

Σ(n) = K(n)∗[t1, t2, · · · ]/(tp
n

i − v
pi−1
n ti).

Hence we have

S(n) = Σ(n)⊗K(n)∗ Fpn

under the isomorphism sending ti to ei and vn to 1.
Now we will describe the action of Sn on a particular height

n formal group law Fn. To define Fn, let F be the formal group
law over Z(p) with logarithm

(4.2.7) logF (x) =
∑
i≥0

xp
in

pi
.

Fn is obtained by reducing F mod p and tensoring with Fpn .
Now an automorphism e of Fn is a power series e(x) over Fpn

satisfying

e(Fn(x, y)) = Fn(e(x), e(y)).
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For

e =
∑
i≥0

eiS
i ∈ Sn

(with e0 = 1) we define e(x) by

(4.2.8) e(x) =
∑
i≥0

Fneix
pi .

More details can be found in [Rav86, Appendix 2].

4.3. Cohomological properties of Sn

We will see below in Sections 7.5, 8.3 and 8.4 that the cohomol-
ogy of the group Sn figures prominently in the stable homotopy
groups of finite complexes. For future reference we will record
some facts about this cohomology here. Proofs and more precise
statements can be found in [Rav86, Chapter 6].

First we will say something about why this cohomology is
relevant. At the beginning of 3.3 we remarked that the group Γ
is essentially the group of multiplicative cohomology operations
in MU -theory. The same can be said of Sn in Morava K-theory.
More precisely, consider the functor

(4.3.1) FK(n)∗(X) = K(n)∗(X)⊗K(n)∗ Fpn ,

where Fpn (the field with pn elements) is made into aK(n)∗-module
by sending vn to 1. Hence we must ignore the grading in order
to define this tensor product. FK(n)∗ takes values in the cat-
egory of Z/(2)-graded vector spaces over Fpn . It can be shown
that the group of multiplicative operations in this theory is pre-
cisely Sn. The field Fpn is essential here; if we were to replace
it by the prime field, we would not have the same result. More-
over, replacing it by a larger field would not enlarge the group of
multiplicative operations.

In ordinary cohomology and inMU -theory, one cannot recover
the action of the full algebra of cohomology operations from that of
the multiplicative operations. However, one can do this in Morava
K-theory, after making suitable allowances for the Bockstein op-
eration. Classically one uses ordinary cohomology operations to
compute homotopy groups via the Adams spectral sequence; see
A.6 for a brief introduction. This requires the computations of
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various Ext groups over the algebra of cohomology operations.
Analogous computations in Morava K-theory amount to finding
the cohomology of Sn with various coefficients.

Sn is a profinite group, which means that its topology must
be taken into account in order to do sensible cohomological com-
putations. It can also be described as a “p-adic Lie group;” see
[Laz65]. These technicalities can be avoided by formulating its
cohomology in Hopf-algebra theoretic terms. For now we will sim-
ply write H∗(Sn) to denote the continuous mod p cohomology of
Sn and refer the interested reader to [Rav86, Chapter 6] for a pre-
cise definition. H∗(Sn) is computed there explicitly at all primes
for n = 1 and 2, and for n = 3 when p ≥ 5.

Theorem 4.3.2. (a) H∗(Sn) is finitely generated as an alge-
bra.

(b) If n is not divisible by p− 1, then H i(Sn) = 0 for i > n2,
and for 0 ≤ i ≤ n2,

H i(Sn) = Hn2−i(Sn),

i.e., H∗(Sn) has cohomogical dimension n2 and satisfies Poincaré
duality.

(c) If p− 1 does divide n, then H∗(Sn) is periodic, i.e., there
is an x ∈ H2i(Sn) for some i > 0 such that H∗(Sn) is a finitely
generated free module over Z/(p)[x].

(d) Every sufficiently small open subgroup of Sn is cohomolog-

ically abelian in the sense that it has the same cohomology as Zn
2

p ,

i.e., an exterior algebra on n2 generators.

We will describe some of the small open subgroups of Sn re-
ferred to above in 4.3.2(d). Recall (4.2.5) that Sn is the group
of units in En that are congruent to 1 modulo the maximal ideal
(S). The following result is essentially 6.3.7 of [Rav86].

Theorem 4.3.3. Let Sn,i ⊂ Sn for i ≥ 1 be the subgroup of
units in En congruent to 1 modulo (S)i. (In particular Sn,1 = Sn
and the intersection of all the Sn,i is trivial.)

(i) The Sn,i are cofinal in the set of all open subgroups of Sn.
(ii) The corresponding ring of Fpn-valued functions is

S(n, i) = S(n)/(ej : j < i).

(iii) When i > pn/(2p− 2), the cohomology of Sn,i is an exte-
rior algebra on n2 generators .
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(iv) Each Sn,i is open and normal in Sn, and Sn,i/Sn,i+1 is an
elementary abelian p-group of rank n. In particular the index of
Sn,i+1 in Sn is pni.

The following result will be used in Chapter 8.

Theorem 4.3.4. All finite abelian subgroups of Sn are cyclic.
Sn contains an element of order pi+1 if and only if n is divisible
by (p − 1)pi. (Since Sn is a pro-p-group, it has no elements of
finite order prime to p.)

Proof. Since Sn is contained in the multiplicative group of the
division algebra Dn, an abelian subgroup of Sn will generate a
subfield of Dn. Elements of finite order are roots of unity, so they
must form a cyclic subgroup. If there is an element of order pi+1,
Dn must contain the field Ki+1 obtained from Qp by adjoining
the (pi+1)th roots of unity. The degree of this field over Qp is
(p− 1)pi.

Now we use the fact [Rav86, 6.2.12] that Dn contains every
extension of Qp of degree n, and these are all the maximal sub-
fields. Hence Ki can be embedded in Dn (i.e., Sn can have an
element of order pi+1) if and only if n is divisible by (p − 1)pi as
claimed. �





CHAPTER 5

The thick subcategory theorem

In this chapter we will derive the thick subcategory theorem
(3.4.3) from a variant of the nilpotence theorem (5.1.4 below) with
the use of some standard tools from homotopy theory, which we
must introduce before we can give the proof. The proof itself is
identical to the one given by Hopkins in [Hop87].

5.1. Spectra

First we have to introduce the category of spectra. These
objects are similar to spaces and were invented to avoid qualifying
statements (such as Definition 1.4.1) with phrases such as ‘up to
some suspension’ and ‘stably.’ Since the category was introduced
around 1960 [Lim60], it has taken on a life of its own, as will be
seen later in this book. We will say as little about it here as we can
get away with, confining more details to the Appendix (A.2). The
use of the word ‘spectrum’ in homotopy theory has no connection
with its use in analysis (the spectrum of a differential operator)
or in algebraic geometry (the spectrum of a commutative ring).
It also has no direct connection with the term ‘SS’.

Most of the theorems in this paper that are stated in terms of
spaces are really theorems about spectra that we have done our
best to disguise. However we cannot keep up this act any longer.

Definition 5.1.1. A spectrum X is a collection of spaces
{Xn} (defined for all large values of n) and maps ΣXn → Xn+1.
The suspension spectrum of a space X is defined by Xn = ΣnX
with each map being the identity. The sphere spectrum S0 is
the suspension spectrum of the space S0, i.e., the nth space is Sn.
The ith suspension ΣiX of X is defined by

(ΣiX)n = Xn+i

49
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for any integer i. Thus any spectrum can be suspended or desus-
pended any number of times.

The homotopy groups of X are defined by

πk(X) = lim
→
πn+k(Xn)

and the generalized homology E∗(X) is defined by

Ek(X) = lim
→
En+k(Xn);

note that the homology groups on the right are reduced while those
on the left are not. In the category of spectra there is no need to
distinguish between reduced and unreduced homology.

In particular, πk(S
0) is the stable k-stem πSk of 2.2.3.

The generalized cohomology of a spectrum can be similarly de-
fined.

A spectrum X is connective if its homotopy groups are bounded
below, i.e., if π−k(X) = 0 for k � 0. It has finite type if πk(X)
is finitely generated for each k. It is finite if some suspension of
it is equivalent to the suspension spectrum of a finite CW-complex
(A.1.1).

The homotopy groups of spectra are much more manageable
than those of spaces. For example, one has

πk(Σ
iE) = πk−i(E)

for all k and i, and a cofibre sequence (2.3.3) of spectra leads to a
long exact sequence of homotopy groups as well as the usual long
exact sequence of homology groups (2.3.4).

It is surprisingly difficult to give a correct definition of a map
E → F of spectra. One’s first guess, namely a collection of maps
En → Fn for n� 0 making the obvious diagrams commute, turns
out to be too restrictive. While such data does give a map of
spectra, there are some maps one would dearly like to have that
do not come from any such data. However this naive definition
is adequate in the case where E and F are suspension spectra of
finite CW-complexes, which is all we will need for this section. A
correct definition is given in A.2.5.

Next we need to discuss smash products. For spaces the defi-
nition is as follows.

Definition 5.1.2. Let X and Y be spaces equipped with base
points x0 and y0. The smash product X ∧ Y is the quotient of
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X×Y obtained by collapsing X×{y0}∪{x0}×Y to a single point.
The k-fold iterated smash product of X with itself is denoted by
X(k). For f : X → Y , f (k) denote the evident map from X(k) to
Y (k). The map f is smash nilpotent if f (k) is null homotopic
for some k.

The k-fold suspension ΣkX is the same as Sk ∧X. For CW-
complexes X and Y there is an equivalence

Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Defining the smash product of two spectra is not as easy as
one would like. If E is a suspension spectrum, then there is an
obvious definition of the smash product E ∧ F , namely

(E ∧ F )n = E0 ∧ Fn.
A somewhat more flexible but still unsatisfactory definition is

the following.

Definition 5.1.3. For spectra E and F , the naive smash
product is defined by

(E ∧ F )2n = En ∧ Fn
(E ∧ F )2n+1 = ΣEn ∧ Fn

where the map

ΣEn ∧ ΣFn = Σ(E ∧ F )2n+1 → (E ∧ F )2n+2 = En+1 ∧ Fn+1

is the smash product of the maps ΣEn → En+1 and ΣFn → Fn+1.

However the correct definition of the smash product of two
spectra is very difficult; we refer the interested reader to the
lengthy discussion in Adams [Ada74, III.4]. In this section at
least, the only smash products we need are with finite spectra,
which are always suspension spectra, so the naive definition is
adequate.

The nilpotence theorem can be stated in terms of smash prod-
ucts as follows.

Theorem 5.1.4 (Nilpotence theorem, smash product form).
Let

F
f−→ X

be a map of spectra where F is finite. Then f is smash nilpotent
if MU ∧ f (i.e., the evident map MU ∧ F → MU ∧ X) is null
homotopic.
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Both this and 1.4.2 will be derived from a third form of the
nilpotence theorem in Chapter 9. A more useful form of it for
our purposes is the following, which we will prove at the end of
Section 5.2, usning some methods from Chapter 7.

Corollary 5.1.5. Let W , X and Y be p-local finite spectra
with f : X → Y . Then W ∧ f (k) is null homotopic for k � 0 if
K(n)∗(W ∧ f) = 0 for all n ≥ 0.

It is from this result that we will derive the thick subcategory
theorem.

5.2. Spanier-Whitehead duality

Next we need to discuss Spanier-Whitehead duality, which is
treated in more detail in [Ada74, III.5].

Theorem 5.2.1. For a finite spectrum X there is a unique
finite spectrum DX (the Spanier-Whitehead dual of X) with
the following properties.

(i) For any spectrum Y , the graded group [X,Y ]∗ is isomorphic
to π∗(DX∧Y ), and this isomorphism is natural in both X and Y .
In particular, DS0 = S0. We say that the maps Sn → DX∧Y and
ΣnX → Y that correspond under this isomorphism are adjoint
to each other. In particular when Y = X, the identity map on X
is adjoint to a map e : S0 → DX ∧X.

(ii) This isomorphism is reflected in Morava K-theory, namely
(since K(n)∗(X) is free over K(n)∗)

HomK(n)∗(K(n)∗(X),K(n)∗(Y )) ∼= K(n)∗(DX ∧ Y ).

In particular for Y = X, K(n)∗(e) 6= 0 when K(n)∗(X) 6= 0.
Similar statements hold for ordinary mod p homology. For X =
S0, this isomorphism is the identity.

(iii) DDX ' X and [X,Y ]∗ ∼= [DY,DX]∗.
(iv) For a homology theory E∗, there is a natural isomorphism

between Ek(X) and E−k(DX).
(v) Spanier-Whitehead duality commutes with smash products,

i.e., for finite spectra X and Y , D(X ∧ Y ) = DX ∧DY .
(vi) The functor X 7→ DX is contravariant.

The Spanier-Whitehead dual DX of a finite complex X is
analogous to the linear dual V ∗ = Hom(V, k) of a finite dimen-
sional vector space V over a field k. 5.2.1(i) is analogous to the
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isomorphism

Hom(V,W ) ∼= V ∗ ⊗W

for any vector space W . 5.2.1(iii) is analogous to the statement
that (V ∗)∗ = V and 5.2.1(v) is analogous to the isomorphism

(V ⊗W )∗ ∼= V ∗ ⊗W ∗.

The geometric idea behind Spanier-Whitehead duality is as
follows. A finite spectrum X is the suspension spectrum of a finite
CW-complex, which we also denote by X. The latter can always
be embedded in some Euclidean space RN and hence in SN . Then
DX is a suitable suspension of the suspension spectrum of the
complement SN −X. 5.2.1(iv) is a generalization of the classical
Alexander duality theorem, which says that Hk(X) is isomorphic
to HN−1−k(SN −X). A simple example of this is the case where
X = Sk and it it linearly embedded in SN . Then its complement is
homotopy equivalent to SN−1−k. The Alexander duality theorem
says that the complement has the same cohomology as SN−1−k

even when the embedding of Sk in SN is not linear, e.g. when
k = 1, n = 3 and S1 ⊂ S3 is knotted.

Before we can proceed with the proof of the thick subcategory
theorem we need an elementary lemma about Spanier-Whitehead
duality. For a finite spectrum X, let f : W → S0 be the map such
that

W
f−→ S0 e−→ DX ∧X

is a cofibre sequence. In the category of spectra, such maps always
exist. W in this case is finite, and Cf = DX ∧X.

Lemma 5.2.2. With notation as above, there is a cofibre se-
quence

Cf (k) −→ Cf (k−1) −→ ΣW (k−1) ∧ Cf

for each k > 1.

Proof. A standard lemma in homotopy theory says that given
maps

X
f−→ Y

g−→ Z
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there is a diagram

Cf // pt. //ΣCf

Y
g //

OO

Z //

OO

Cg

OO

X
gf //

f

OO

Z //

'

OO

Cgf

OO

in which each row and column is a cofibre sequence. Setting X =
W (k), Y =W (k−1), Z = S0 and g = f (k−1), this diagram becomes

W (k−1) ∧ Cf // pt. //ΣW (k−1) ∧ Cf

W (k−1) f (k−1)

//

OO

S0 //

OO

Cf (k−1)

OO

W (k) f (k) //

f

OO

S0 //

'

OO

Cf (k)

OO

and the right hand column is the desired cofibre sequence. �
Proof of Corollary 5.1.5. Let R = DW ∧W and let e : S0 → R
be the adjoint of the identity map. R is a ring spectrum (A.2.8)
whose unit is e and whose multiplication is the composite

R ∧R = DW ∧W ∧DW ∧W DW∧De∧W−−−−−−−−→ DW ∧ S0 ∧W = R.

The map f : X → Y is adjoint to f̂ : S0 → DX ∧ Y , and
W ∧ f is adjoint to the composite

S0 f̂−→ DX ∧ Y e∧DX∧Y−−−−−−−−→ R ∧DX ∧ Y = F,

which we denote by g. The map W ∧ f (i) is adjoint to the com-
posite

S0 g(i)−−−−−−−−→ F (i) = R(i) ∧DX(i) ∧ Y (i) −→ R ∧DX(i) ∧ Y (i),

the latter map being induced by the multiplication in R.
By 5.1.4 it suffices to show that MU ∧ g(i) is null for large i.

Let Ti = R ∧DX(i) ∧ Y (i) and let T be the direct limit of

S0 g−→ T1
T1∧f̂−→ T2

T2∧f̂−→ T3 −→ · · · .
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The desired conclusion will follow from showing that MU ∧ T is
contractible, and our hypothesis implies that K(n) ∧ T is con-
tractible for each n.

Now we need to use the methods of Chapter 7. Since we are in
a p- local situation, it suffices to show that BP ∧T is contractible.
Using 7.3.2 and the fact that K(n) ∧ T is contractible, it suffices
to show that P (m) ∧ T is contractible for large m.

Now for large enough m,

K(m)∗(W ∧ f) = K(m)∗ ⊗H∗(W ∧ f) and

P (m)∗(W ∧ f) = P (m)∗ ⊗H∗(W ∧ f).
Our hypothesis implies that both of these homomorphisms are
trivial, so P (m) ∧ T is contractible as required. �

5.3. The proof of the thick subcategory theorem

Let C ⊂ FH(p) be a thick subcategory. Choose n to be the
smallest integer such that C contains a p-local finite spectrum X
with K(n)∗(X) 6= 0. Equivalently (by 7.3.2(d) and 1.5.2(v)), n is
the smallest integer such thatC contains anX with v−1n BP∗(X) 6=
0. We want to show that C = Fp,n. It is clear from the choice of
n that C ⊂ Fp,n, so it suffices to show that C ⊃ Fp,n.

Let Y be a p-local finite CW-spectrum in Fp,n. From the fact
that C is thick, it follows that X ∧ F is in C for any finite F , so
X ∧DX ∧ Y (or Cf ∧ Y in the notation of 5.2.2) is in C. Thus
5.2.2 implies that Cf (k) ∧ Y is in C for all k > 0.

It follows from 5.2.1(ii) thatK(i)∗(f) = 0 whenK(i)∗(X) 6= 0,
i.e., for i ≥ n. Since K(i)∗(Y ) = 0 for i < n, it follows that

K(i)∗(Y ∧ f) = 0 for all i. Therefore by 5.1.5, Y ∧ f (k) is null
homotopic for some k > 0.

Now the cofibre of a null homotopic map is equivalent to the
wedge of its target and the suspension of its source, so we have

Y ∧ Cf (k) ' Y ∨ (ΣY ∧W (k)).

Since C is thick and contains Y ∧Cf (k) , it follows that Y is in C,
so C contains Fp,n as desired. �





CHAPTER 6

The periodicity theorem

In this chapter we will outline the proof of the periodicity
theorem (Theorem 1.5.4). Recall that a vn-map f : ΣdX → X
on a p-local finite complex X is a map such that K(n)∗(f) is an
isomorphism and K(m)∗(f) = 0 for m 6= n. The case n = 0 is
uninteresting; Theorem 1.5.4 is trivial because the degree p map,
which is defined for any spectrum (finite or infinite), is a v0-map.
Hence we assume throughout this chapter that n > 0.

Let Vn denote the collection of p-local finite spectra admitting
such maps. If K(n)∗(X) = 0, then the trivial map is a vn-map,
so we have

Vn ⊃ Fp,n+1.

On the other hand, we know for algebraic reasons (3.3.11) that X
cannot admit a vn-map if K(n− 1)∗(X) 6= 0, so

Fp,n ⊃ Vn.

The periodicity theorem says that Vn = Fp,n. The proof
falls into two steps. The first is to show that Vn is thick; this
is Theorem 6.1.5. Thus by the thick subcategory theorem, this
category is either Fp,n, as asserted in the periodicity theorem, or
Fp,n+1.

The second and harder step in the proof is to construct an
example of a spectrum of type n with a vn-map. This requires
the use of the Adams spectral sequence. A brief introduction to
it is given below in A.6. Its E2-term is an Ext group for a certain
module over the Steenrod algebra A. Some relevant properties
of A are recalled in Section 6.2, whose main purpose is to state
Theorem 6.2.4. It says that a finite complex Y satisfying certain
conditions always has a vn-map. This result is proved in Section
6.3.

It then remains to construct a finite spectrum Y meeting the
conditions of 6.2.4. This requires the Smith construction, which

57
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is described in Section 6.4. It is based on some work of Jeff Smith
[Smi], which the author heard him lecture on in 1985 and in 1990.

6.1. Properties of vn-maps

In this section we will prove that Vn is thick. We begin by ob-
serving that a self-map f : ΣdX → X is adjoint to f̂ : Sd → DX ∧
X. We will abbreviate DX ∧X by R. Now R is a ring spectrum;
see A.2.8 for a definition. The unit is the map e : S0 → DX ∧X
adjoint to the identity map on X (5.2.1). Since DDX = X and
Spanier-Whitehead duality commutes with smash products, e is
dual to

X ∧DX De−→ S0.

The multiplication on R is the composite

DX ∧X ∧DX ∧X DX∧De∧X−−−−−−−−→ DX ∧ S0 ∧X = DX ∧X.
Now we will state four lemmas, the second and fourth of which

are used directly in the proof of 6.1.5. They will be proved below,
and each one depends on the previous one.

Lemma 6.1.1. For a vn-map f as above, there is an i > 0
such the map induced on K(n)∗(X) by f i is multiplication by some
power of vn.

Lemma 6.1.2. For a vn-map f as above, there is an i > 0 such
that f̂ i is in the center of π∗(R).

Lemma 6.1.3 (Uniqueness of vn-maps). If X has two vn-maps
f and g then there are integers i and j such that f i = gj.

Lemma 6.1.4 (Extended uniqueness). If X and Y have vn-maps
f and g, then there are integers i and j such that the following
diagram commutes for any map h : X → Y .

Σ
?
X

f //

f i

��

Σ
?
Y

gj

��
X

h // Y

Note that 6.1.3 is the special case of this where h is the identity
map on X. However, we will derive 6.1.4 from 6.1.3.

Theorem 6.1.5. The category Vn ⊂ FH(p) of finite p-local
CW-spectra admitting vn-maps is thick.
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Proof. Suppose X ∨ Y is in Vn and

Σd(X ∨ Y )
f−→ X ∨ Y

is a vn-map. By 6.1.2 we can assume that f commutes with the
idempotent

X ∨ Y −→ X −→ X ∨ Y
and it follows that the composite

ΣdX −→ Σd(X ∨ Y )
f−→ X ∨ Y −→ X

is a vn-map, so X is in Vn.
Now suppose h : X → Y where X and Y have vn-maps f and

g. By 6.1.4 we can assume that hf ' gh, so there is a map

ΣdCh
`−→ Ch

making the following diagram commute.

X
h // Y // Ch

ΣdX
h //

f

OO

ΣdY //

g

OO

ΣdCh

`

OO

The 5-lemma implies that K(n)∗(`) is an isomorphism.
We also need to show that K(m)∗(`) = 0 for m 6= n. This is

not implied by the facts that K(m)∗(f) = 0 and K(m)∗(g) = 0.
However, an easy diagram chase shows that they do imply that
K(m)∗(`

2) = 0, so `2 is the desired vn-map on Ch. It follows that
Ch is in Vn, so Vn is thick. �

Now we will give the proofs of the four lemmas stated earlier.

Proof of Lemma 6.1.1. The ring K(n)∗(R) is a finite-dimensional
K(n)∗-algebra, so the ungraded quotient K(n)∗(R)/(vn − 1) is a
finite ring with a finite group of units. It follows that the group
of units in K(n)∗(R) itself is an extension of the group of units of

K(n)∗ by this finite group. Therefore some power of the unit f̂∗
is in K(n)∗, and the result follows. �
Proof of Lemma 6.1.2. Let A be a noncommutative ring, such as
π∗(R). Given a ∈ A we define a map

ad(a) : A −→ A

by
ad(a)(b) = ab− ba.
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Thus a is in the center of A if ad(a) = 0.
There is a formula relating ad(ai) to adj(a), the jth iterate of

ad(a), which we will prove below, namely

(6.1.6) ad(ai)(x) =

i∑
j=1

(
i

j

)
adj(a)(x)ai−j .

Now suppose ad(a) is nilpotent and pka = 0 for some k. We set
i = pN for some large N . Then the terms on the right for large
j are zero because ad(a) is nilpotent, and the terms for small j
vanish because the binomial coefficient is divisible by pk. Hence
ad(ai) = 0 so ai is in the center of A.

To apply this to the situation at hand, define

ΣdR
ad(f̂)−−−−−−−−→ R

to be the composite

Sd ∧R
f̂∧R−−−−−−−−→ R ∧R 1−T−−−−−−−−→ R ∧R m−−−−−−−−→ R

where T is the map that interchanges the two factors. Then for
x ∈ π∗(R), π∗(ad(f̂))(x) = ad(f̂)(x). By 6.1.1 (after replacing f̂
by a suitable iterate if necessary), we can assume that K(n)∗(f)

is multiplication by a power of vn, so K(n)∗(f̂) is in the center of

K(n)∗(R) and K(n)∗(ad(f̂)) = 0. Hence 5.1.5 tells us that ad(f̂)
is nilpotent and the argument above applies to give the desired
result.

It remains to prove (6.1.6). We have

ad(ai+1)(x) = ai+1x− xai+1

= axai − xai+1 + ai+1x− axai

= ad(a)(x)ai + aad(ai)(x)

= ad(a)(x)ai + ad(a)(ad(ai)(x)) + ad(ai)(x)a.
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Now we argue by induction on i, the formula being obvious for
i = 1. From the above we have

ad(ai+1)(x) = ad(a)(x)ai + ad(a)

 i∑
j=1

(
i

j

)
adj(a)(x)ai−j


+

i∑
j=1

(
i

j

)
adj(a)(x)ai+1−j .

Now ad(a) is a derivation, i.e.,

ad(a)(xy) = ad(a)(x)y + xad(a)(y),

and it vanishes on any power of a. Hence we have

ad(ai+1)(x) = ad(a)(x)ai +
i∑

j=1

(
i

j

)
adj+1(a)(x)ai−j

+

i∑
j=1

(
i

j

)
adj(a)(x)ai+1−j

=

i∑
j=0

(
i

j

)
adj+1(a)(x)ai−j

+

i+1∑
j=1

(
i

j

)
adj(a)(x)ai+1−j

=

i+1∑
j=1

(
i

j − 1

)
adj(a)(x)ai+1−j

+
i+1∑
j=1

(
i

j

)
adj(a)(x)ai+1−j

=
i+1∑
j=1

(
i+ 1

j

)
adj(a)(x)ai+1−j .

�
Proof of Lemma 6.1.3. Replacing f and g by suitable powers if
necessary, we may assume that they commute with each other and
that K(m)∗(f) = K(m)∗(g) for all m. Hence K(m)∗(f − g) = 0
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so f − g is nilpotent. Hence there is an i > 0 with

(f − g)pi = 0.

Since f and g commute, we can expand this with the binomial
theorem and get

fp
i ≡ gpi mod p

from which it follows that

fp
i+k ≡ gpi+k

mod pk+1

for any k > 0, so for sufficiently large k the two maps are homo-
topic. �
Proof of Lemma 6.1.4. Let W = DX ∧ Y , so h is adjoint to an
element ĥ ∈ π∗(W ). W has two vn-maps, namely DX ∧ g and
Df ∧ Y , so by 6.1.3,

DX ∧ gj ' Df i ∧ Y

for suitable i and j.
Observe that W is a module spectrum over DX ∧X, and the

product

f̂ iĥ = (Df i ∧ Y )ĥ

is the adjoint of hf i. Moreover gjh is adjoint to (DX∧gj)ĥ. Since
these two maps are homotopic, the diagram of 6.1.4 commutes. �

6.2. The Steenrod algebra and Margolis homology
groups

Having proved 6.1.5, we need only to construct one nontrivial
example of a vn-map in order to complete the proof of the peri-
odicity theorem. For this we will have to bring in some heavier
machinery, including the Adams spectral sequence. In this sec-
tion we will recall some relevant facts about the Steenrod algebra
A, over which H∗(X;Z/(p)) (for any space or spectrum X) is a
module. The best reference for its properties is the classic [SE62].
This structure is crucial to what follows, as it is for most homotopy
theoretic calculations.

A is a noncommutative Hopf algebra. For p = 2 it is gener-
ated by elements Sqi of dimension i for i > 0 called Steenrod
squaring operations. Sqi gives a natural homomorphism

Hm(X) −→ Hm+i(X)
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for all X and all m. The linear dual of A, A∗ is easier to describe
because it is a commutative algebra, namely

A∗ = Z/(2)[ξ1, ξ2, · · · ]

where the dimension of ξi is 2
i − 1.

The coproduct ∆ in A∗ is given by

∆(ξn) =
∑

0≤i≤n
ξ2

i

n−i ⊗ ξi

where it is understood that ξ0 = 1. One can show that the only

primitive elements are the ξ2
i

1 , and these are dual to the generators

Sq2
i
.
For odd primes we have

A∗ = Z/(p)[ξ1, ξ2, · · · ]⊗ E(τ0, τ1, · · · )

with |ξi| = 2pi − 2 and |τi| = 2pi − 1. The coproduct is given by

∆(ξn) =
∑

0≤i≤n
ξp

i

n−i ⊗ ξi and

∆(τn) = τn ⊗ 1 +
∑

0≤i≤n
ξp

i

n−i ⊗ τi.

Here the only primitives are τ0 and ξ
pi

1 . The corresponding algebra
generators of A are denoted by β (called the Bockstein operation)

and P p
i
.

Let P st ∈ A denote the dual (with respect to the monomial

basis of A∗) to ξp
s

t for t > s ≥ 0, and (for p odd) Qi the dual to
τi. For p = 2 we will write Qi for P

0
i+1. These elements and their

properties have been studied by Margolis extensively in [Mar83].
They satisfy (P st )

p = 0 and Q2
i = 0.

These conditions allow us to construct chain complexes from
M in the following way. Multiplication by Qi (and by P st for
p = 2) can be thought of as a boundary operator on M since
Q2
i = 0. For P st for p odd, let M+ and M− each be isomorphic to

M and define a boundary operator d on M+⊕M− as follows. For
m ∈M let m+ and m− denote the corresponding elements in M+

and M− respectively. Then we define

d(m+) = (P stm)− and

d(m−) = ((P st )
p−1m)+.
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Then d2 = 0 since (P st )
p = 0.

Definition 6.2.1. For an A-moduleM , H∗(M ;Qi) and H∗(M ;P st )
are the homology groups of the chain complexes defined above.
These are the Margolis homology groups of M . If M =
H∗(X) we will abbreviate H∗(M ;P st ) by H∗(X;P st ) and H∗(M ;Qi)
by H∗(X;Qi).

The subalgebra of A generated by P st is a truncated polyno-
mial algebra of height p (since (P st )

p = 0) on a single generator,
while the one generated by Qi is an exterior algebra. In both cases
this subalgebra is a principal ideal domain over which any module
is a direct sum of cyclic modules. There are p distinct isomor-
phism classes of cyclic modules (two in the Qi case) and one sees
easily that each of them other than the free one has a nontrivial
Margolis homology group. Thus we have

Proposition 6.2.2. An A-module M is free over the subal-
gebra generated by one of the P st with s < t or one of the Qi if
and only if the corresponding Margolis homology group (6.2.1) is
trivial.

The reason for our interest in these homology groups is The-
orem 6.2.4 below, which combines the work of Adams-Margolis
[AM71] and Anderson-Davis [AD73] (p = 2) or Miller-Wilkerson
[MW81] (p odd). We will outline the proof in the next section.

Definition 6.2.3. A p-local finite CW-complex Y is strongly
type n if it satisfies the following conditions:

(a) If p = 2, the Margolis homology groups H∗(Y ;P st ) vanish
for s + t ≤ n + 1 and (s, t) 6= (0, n + 1). For p > 2, H∗(Y ;P st )
vanishes for s+ t ≤ n and H∗(Y ;Qi) vanishes for i < n.

(b) Qn acts trivially on H∗(Y ).
(c) H∗(Y ) and K(n)∗(Y ) have the same rank.

Condition (b) above is actually a consequence of (c). For fi-
nite Y one can compute K(n)∗(Y ) from H∗(Y ) by means of the
Atiyah-Hirzebruch spectral sequence (see Theorem A.3.7 below),
in which the first possibly nontrivial differential is induced by
Qn. Condition (c) is that this SS collapses, so in particular, Qn
acts trivially. The higher differentials correspond to higher order
cohomology operations, so condition (c) is more subtle than the
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A-module structure of H∗(X). Note that a strongly type n spec-
trum has type n (unless it is contractible) in the sense of 1.5.3
because (a) insures that K(m)∗(X) = 0 for m < n. In general a
type n spectrum need not be strongly type n.

Theorem 6.2.4. If Y is strongly type n (6.2.3) then it admits
a vn-map.

It is easy to find finite spectra satisfying conditions (b) and (c)
of 6.2.3. In particular they hold whenever the difference between
the dimensions of the top and bottom cells of Y is no more than
2pn−2. On the other hand condition (a) is very difficult to satisfy.
Consider the following weaker condition.

Definition 6.2.5. A finite p-local spectrum X is partially
type n if it satisfies conditions (b) and (c) of 6.2.3 along with

(a) Each of the Qi’s and P
0
t ’s in 6.2.3(a) acts nontrivially on

H∗(X).

Note that 6.2.5(a) is weaker than 6.2.3(a) because the latter
requires H∗(Y ) to be free over the subalgebras generated by each
of the elements in question. Moreover, 6.2.5(a) says nothing about
the action of the P st for s > 0. A partially type n spectrum need
not have type n as in 1.5.3 because (a) does not guarantee that
K(m)∗(X) = 0 for m < n.

In Section 6.4 we will describe a construction which converts
a partially type n spectrum to one satisfying the conditions of
6.2.3, thereby proving the periodicity theorem. The following is
an example of a partially type n spectrum.

Lemma 6.2.6. Let B = BZ/(p) denote the classifying space for
the group with p elements, Bk its k-skeleton, and Bk

j = Bk/Bj−1

(the subquotient with bottom cell in dimension j and top cell in
dimension k). It can be constructed as a CW-complex with exactly

one cell in each positive dimension. Then B2pn

2 is partially type
n.

Proof. We will assume that p is odd, leaving the case p = 2 as

an exercise. B is the space L described in [SE62, V.5]. B2pn

2 sat-
isfies condition (b) for dimensional reasons. For (c), the Atiyah-

Hirzebruch spectral sequence (A.3.7) for K(n)∗(B
2pn

2 ) collapses
for dimensional reasons.
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For condition (a) we have

H∗(B) = Z/(p)[x]⊗ E(y)

with |x| = 2 and |y| = 1. It follows that a basis for H∗(B2pn

2 )
maps injectively to

{xk : 1 ≤ k ≤ pn} ∪ {yxk : 1 ≤ k ≤ pn − 1}.
The actions of the Qi and P

0
t are given by

Qi(x
k) = 0

Qi(yx
k) = xk+p

i

P 0
t (x

k) = kxk+p
t−1

P 0
t (yx

k) = kyxk+p
t−1

It follows that Qi(y) and P
0
t (x) are each nontrivial. �

6.3. The Adams spectral sequence and the vn-map on Y

Now we will outline the proof of 6.2.4, which relies heavily on
the Adams spectral sequence.

Suppose

ΣdY
f−→ Y

is a vn-map; it is adjoint to an element f̂ ∈ πd(R) where R =
DY ∧ Y .

The standard device for computing these homotopy groups is
the Adams spectral sequence. This is an elaborate machine and
our aim here is to say as little about it as we can get away with. A
short account of it is given below in A.6 and the interested reader
can learn much more in [Rav86]. Briefly, its E2-term is

Es,t2 = Exts,tA (H∗(R),Z/(p))

where A is the mod p Steenrod algebra and it is understood that
all cohomology groups have coefficients in Z/(p). The Ext group
is bigraded because H∗(R) itself is graded.

The differentials in the Adams spectral sequence have the form

Es,tr
dr−→ Es+r,t+r−1r .

Note that this raises s by r and lowers t − s by one. In our
situation, Es,t2 for a fixed value of t− s vanishes for large s, so for
a given (s, t), only finitely many of the dr can be nontrivial. Thus
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Es,tr is independent of r if r is large enough and we call this group
Es,t∞ . The number t− s corresponds to the topological dimension
since Es,t∞ is a subquotient of πt−s(R). Since R is a ring spectrum,
the Adams SS is a SS of algebras, i.e., for each r E∗,∗r is a bigraded
algebra and each dr is a derivation.

The multiplication in these algebras need not be commutative,
not even up to sign. However there is a simple way to produce
central elements in them. An element g ∈ πe(R) is central if it
is in the image of α ∈ πe(S

0) under the unit map u : S0 → R,
because for any self-map f : ΣdY → Y , the following diagram
commutes up to sign.

Σd+eY
Σef //

Σdg
��

ΣeY

g=α∧Y
��

ΣdY
f // Y

This happens because the diagram is obtained by smashing the
maps f and α. The analogous algebraic statement is that elements
in

ExtA(H
∗(R),Z/(p))

are central if they are in the image of

ExtA(Z/(p),Z/(p)),

which is the E2-term of the Adams spectral sequence converging
to the p-component of the stable homotopy groups of spheres.

The main result of [AM71] says that an A-module M (such
as H∗(Y )) is free over a certain subalgebra of A if a certain set
of Margolis homology groups vanish. The main result of [AD73]
for p = 2 and [MW81] for p odd says that if M is free over this
subalgebra, then certain Ext groups vanish. More precisely,

Lemma 6.3.1. Let Y be strongly type n (6.2.3) and R = DY ∧
Y . Then the Adams Ext group for R has a vanishing line of slope
1/|vn|, i.e., there is a constant c such that the group

Exts,tA (H∗(R),Z/(p))

vanishes whenever s > c+ (t− s)/(2pn − 2).

This means that if one depicts this Ext group in a chart where
the vertical axis is s and the horizontal axis is t − s, then all the



68 6. THE PERIODICITY THEOREM

groups above a line with slope 1/(2pn − 2) and vertical intercept
c are zero.

For each integer N ≥ 0 we define AN ⊂ A to be the subalgebra
generated by the first N + 1 generators of A, namely by{

Sq1, Sq2, · · · Sq2N
}

for p = 2 and by {
β, P 1, P p, · · ·P pN−1

}
If N ≥ n, then AN contains the P st of 6.2.3. One can approximate
the group ExtA(M,Z/(p)) by the groups ExtAN

(M,Z/(p)) in the
sense of the following result, which is essentially due to Adams
[Ada66b].

Lemma 6.3.2. If M is an A-module satisfying the conditions
on H∗(Y ) in 6.2.3, then for each N > n there is a constant kN > 0
such that the map

Exts,tA (M,Z/(p))
φ−→ Exts,tAN

(M,Z/(p))

is an isomorphism when s > (t − s)/(2pn − 2) − kN , and these
constants tend to infinity as N does.

The proof of this is not difficult and will be given at the end
of the section.

Now consider the diagram

ExtA(Z/(p),Z/(p))
i //

φ
��

ExtA(H
∗(R),Z/(p))

φ
��

ExtAN
(Z/(p),Z/(p))

i //

λ
��

ExtAN
(H∗(R),Z/(p))

λ
��

ExtE(Qn)(Z/(p),Z/(p))
i //

∼=
��

ExtE(Qn)(H
∗(R),Z/(p))

∼=
��

P (vn)
i //

��

P (vn)⊗H∗(R)

��
K(n)∗

i //K(n)∗(R)
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The isomorphism

ExtE(Qn)(Z/(p),Z/(p))
∼= P (vn)

is a standard calculation and

ExtE(Qn)(H
∗(R),Z/(p)) ∼= P (vn)⊗H∗(R)

follows from the fact that Qn acts trivially on H∗(R). The fact
that H∗(R) and K(n)∗(R) have the same rank gives us the injec-
tion

P (vn)⊗H∗(R) −→ K(n)∗(R).

We need the following lemma.

Lemma 6.3.3. For each N ≥ n there is an integer t > 0 such
that vtn = λ(x) for some x ∈ ExtAN

(H∗(R),Z/(p)).

The proof is similar to that of [Rav86, 3.4.10].
Now for any N ≥ n, the element x provided by 6.3.3 and its

image under i lie on a line of slope 1/|vn| through the origin. This
means that for N sufficiently large, 6.3.2 tells us that i(x) is in
the zone in which φ is an isomorphism. Hence there is an element
y ∈ ExtA(H

∗(R),Z/(p)) such that φ(y) = i(x). The situation
is illustrated by the following picture, which represents the Ext
chart for R.

6

s

-
t− s

��
���

���
���

���
���

����

��
��

��
��

��
��

��
��

��
��

��
��

��
��

uy

The three lines shown each have slope 1/|vn|. The upper one
is the vanishing line given by 6.3.1. The middle one is the line
through the origin, on which y lies. The bottom one is the bound-
ary of the zone in which φ is an isomorphism by 6.3.2.
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Lemma 6.3.4. Some power yp
i
of y ∈ ExtA(H

∗(R),Z/(p)) is
a permanent cycle in the Adams spectral sequence for π∗(R).

We will prove this later in this section.

Now yp
i
projects to a nontrivial element in

K(n)∗(R) = End(K(n)∗(Y ))

corresponding to multiplication by some power of vn, because the
same is true of

xp
i ∈ ExtAN

(H∗(R),Z/(p)).

It follows that yp
i
corresponds to the desired vn-map on Y . This

completes our outline of the proof of 6.2.4.

Proof of Lemma 6.3.2. (Compare with [Rav86, 3.4.9]) Consider
the short exact sequence

(6.3.5) 0←−M ←− A⊗AN
M ←− C ←− 0.

Now the structure of C an an An-module is given by

C ≈M ⊗A//AN .
In particular C is free over An and its connectivity increases ex-
ponentially with N . This means it has a vanishing line of slope
1/|vn| whose vertical intercept decreases exponentially as N in-
creases. We also have a change-of-rings isomorphism (see [Rav86,
A1.3.13])

ExtA(A⊗AN
M,Z/(p)) = ExtAN

(M,Z/(p)).

Now we look at the long exact sequence of Ext groups associ-
ated with (6.3.5). We have

Exts−1A (C,Z/(p))

��
ExtsA(M,Z/(p))

��

φ

**
ExtsA(A⊗AN

M,Z/(p))

��

∼= //ExtsAN
(M,Z/(p))

ExtsA(C,Z/(p))
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where the column is exact. From this we see that the homomor-
phism φ is an isomorphism above the vanishing line of C, which
is the desired result. �
Proof of Lemma 6.3.4. φ(y) = i(x) is central in ExtAN

(H∗(R),Z/(p)).
This means that y commutes with all elements in ExtA(H

∗(R),Z/(p))
above the lower line in the picture.

Suppose that y is not a permanent cycle, i.e., that

dr(y) = u 6= 0

for some integer r. Then u is above the line on which y lies, so it
commutes with y. Since dr is a derivation, this means that

dr(y
p) = pyp−1u = 0,

i.e., yp is a cycle in Er. However, it could support a higher differ-
ential; we could have

dr1(y
p) = u1 6= 0

for some r1 > r. Again, u1 commutes with yp and we deduce that

dr1(y
p2) = 0.

Continuing in this way, we get a sequence of integers

r < r1 < r2 < · · ·

with

dri(y
pi) = ui.

For some i this differential has to be trivial because ui must lie
above the vanishing line. It follows that yp

i
is a permanent cycle

as claimed. �

6.4. The Smith construction

In this section we will describe a new construction due to Jeff
Smith which uses modular (characteristic p) representations of the
symmetric group. It will enable us to construct a finite spectrum
Y satisfying the conditions of 6.2.3.

Suppose X is a finite spectrum, and X(k) is its k-fold smash
product. The symmetric group Σk acts on X(k) by permuting
coordinates. Since we are in the stable category, it is possible
to add maps, so we get an action of the group ring Z[Σk] on

X(k). If X is p-local, we have an action of the p-local group ring
R = Z(p)[Σk]. Now suppose e is an idempotent element (e2 = e) in
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this group ring. Then 1−e is also idempotent. For any R-module
M (such as π∗(X

(k))) we get a splitting

M ∼= eM ⊕ (1− e)M.

There is a standard construction in homotopy theory which
gives a similar splitting of X(k) or any other spectrum on which
R acts, which we write as

X(k) ' eX(k) ∨ (1− e)X(k).

In some cases one of the two summands may be trivial.
eX(k) can be obtained as the direct limit (see Section A.5) of

the system

X(k) e−→ X(k) e−→ · · ·
and similarly for (1−e)X(k). Since π∗(X

(k)) splits up in the same
way, the evident map

X(k) −→ eX(k) ∨ (1− e)X(k).

is a homotopy equivalence.
Thus each idempotent element e ∈ Z(p)[Σk] leads to a splitting

of the smash product X(k) for any X. We can use this to convert a
partially type n spectrum X (6.2.5) to a strongly type n spectrum

Y (6.2.3). Actually we will use the action of Σk on X(k`) for a
sufficiently large `.

Now suppose V is a finite dimensional vector space Z/(p).
Then W = V ⊗k is an R-module so we have a splitting

W ∼= eW ⊕ (1− e)W
and the rank of eW is determined by that of V . There are enough
idempotents e to give the following.

Theorem 6.4.1. For each positive integer m there is an idem-
potent em ∈ R (where the number k depends on m) such that the
rank of eW above is nonzero if and only if the rank of V is at least
m.

For a proof, see C.1.5.
The example we have in mind is V = H∗(X(`)) for a partially

type n spectrum X. When p is odd, the action of Σk on V
⊗k is not

the expected one since a minus sign must be introduced each time
two odd dimensional elements are interchanged. This problem will
be dealt with in C.2. In C.3 we will prove that for sufficiently large
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` and a suitable idempotent e, the resulting spectrum is strongly
type n.





CHAPTER 7

Bousfield localization and equivalence

In this chapter we will discuss localization with respect to
a generalized homology theory. We attach Bousfield’s name to
it because the main theorem in the subject is due to him. He
did invent the equivalence relation associated with it. It provides
us with a very convenient language for discussing some of the
concepts of this subject. A general reference for this material is
[Rav84].

7.1. Basic definitions and examples

Definition 7.1.1. Let E∗ be a generalized homology theory
(A.3.3). A space Y is E∗-local if whenever a map f : X1 → X2

is such that E∗(f) is an isomorphism, the map

[X1, Y ]
f∗←−−−−−−−− [X2, Y ]

is also an isomorphism. (For spectra, this is equivalent to the fol-
lowing condition: Y is E∗-local if [X,Y ]∗ = 0 whenever E∗(X) =
0.)

An E∗-localization of a space or spectrum X is a map η from
X to an E∗-local space or spectrum XE (which we will usually
denote by LEX) such that E∗(η) is an isomorphism.

It is easy to show that if such a localization exists, it is unique
up to homotopy equivalence. The following properties are imme-
diate consequences of the definition.

Proposition 7.1.2. For any homology theory E∗,
(i) Any inverse limit (A.5.14) of E∗-local spectra is E∗-local.
(ii) If

W −→ X −→ Y −→ ΣW

is a cofibre sequence and any two of W , X and Y are E∗-local,
then so is the third.

(iii) If X ∨ Y is E∗-local, then so are X and Y .

75
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On the other hand, a homotopy direct limit (A.5.6) of local
spectra need not be local.

The main theorem in this subject, that localizations always ex-
ist, was proved by Bousfield for spaces in [Bou75] and for spectra
in [Bou79b].

Theorem 7.1.3 (Bousfield localization theorem). For any ho-
mology theory E∗ and any space or spectrum X, the localization
LEX of 7.1.1 exists and is functorial in X.

The idea of the proof is the following. It is easy to see that
if LEX exists, then for any map f : X → X ′ with E∗(f) an iso-
morphism (such a map is called an E∗-equivalence), the map
η : X → LEX extends uniquely to X ′. In other words the map η
is terminal among E∗-equivalences out of X. This suggests con-
structing LEX as the direct limit of all such X ′; this idea is due
to Adams. Unfortunately it does not work because there are too
many suchX ′; they form a class rather than a set. Bousfield found
a way around these set theoretic difficulties.

If E∗ is represented by a connective spectrum E (i.e., all of its
homotopy groups below a given dimension are trivial), and if X is
connective spectrum or a simply connected space, then the local-
ization is relatively straightforward; it is the same as localization
or completion with respect to some set of primes. The homo-
topy and generalized homology groups of LEX are arithmetically
determined by those of X.

If either E or X fails to be connective, then LEX is far more
mysterious and deserving of further study. We offer two important
examples.

Example 7.1.4. (i) X is the sphere spectrum S0 and E∗ is the
homology theory associated with classical complex K-theory. LKS

0

was described in [Rav84, Section 8] and it is not connective. In
particular π−2(LKS

0) ∼= Q/Z.
(ii) Let E∗ be ordinary homology H∗. Let X be a finite spec-

trum (such as one of the examples of 2.4.1) satisfying K(n)∗(X) 6=
0 with a vn-map f (1.5.4) and let X̂ be the telescope obtained by

iterating f , i.e., X̂ is the direct limit of the system

X
f−→ Σ−dX

f−→ Σ−2dX · · · .
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Then LHX̂ is contractible since H∗(f) = 0 and therefore H∗(X̂) =

0. On the other hand X̂ is not contractible since

K(n)∗(X̂) ∼= K(n)∗(X) 6= 0.

Lemma 7.1.5. If E is a ring spectrum (A.2.8) then E ∧X is
E∗-local for any spectrum X.

Proof. We need to show that for any spectrumW with E∗(W ) =
0,

[W,E ∧X] = 0.

Given any map f :W → E ∧X, we have a diagram

W
f //

η∧W

��

E ∧X

η∧X

��

E∧X

&&
E ∧W

E∧f //E ∧ E ∧X m∧X //E ∧X.

Since E ∧W is contractible, f is null. �

Definition 7.1.6. For a ring spectrum E, the class of E-nilpotent
spectra is the smallest class satisfying the following conditions.

(i) E is E-nilpotent.
(ii) If N is E-nilpotent then so is N ∧X for any X.
(iii) The cofibre of any map between E-nilpotent spectra is

E-nilpotent.
(iv) Any retract of an E-nilpotent spectrum is E-nilpotent.

A spectrum is E-prenilpotent if it is E∗-equivalent to an
E-nilpotent one.

The definition of an E-nilpotent spectrum generalizes the no-
tion of a finite Postnikov system; we replace Eilenberg-MacLane
spectra by retracts of smash products E ∧ X. The following
([Bou79b, 3.8]) is an easy consequence of 7.1.5.

Proposition 7.1.7. Every E-nilpotent spectrum is E∗-local.

7.2. Bousfield equivalence

Recall the smash product X ∧ Y was defined in 5.1.2 and the
wedge X ∨ Y was defined in 2.1.1.
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Definition 7.2.1. Two spectra E and F are Bousfield equiv-
alent if for each spectrum X, E ∧ X is contractible if and only
if F ∧ X is contractible. The Bousfield equivalence class of E is
denoted by 〈E〉.
〈E〉 ≥ 〈F 〉 if for each spectrum X, the contractibility of E∧X

implies that of F ∧ X. We say 〈E〉 > 〈F 〉 if 〈E〉 ≥ 〈F 〉 but
〈E〉 6= 〈F 〉.
〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉 and 〈E〉 ∨ 〈F 〉 = 〈E ∨ F 〉. (We leave it

to the reader to verify that these classes are well defined. )
A class 〈E〉 has a complement 〈E〉c if 〈E〉 ∧ 〈E〉c = 〈pt.〉

and 〈E〉 ∨ 〈E〉c = 〈S0〉, where S0 is the sphere spectrum.

The operations ∧ and ∨ satisfy the obvious distributive laws,
namely

(〈X〉 ∨ 〈Y 〉) ∧ 〈Z〉 = (〈X〉 ∧ 〈Z〉) ∨ (〈Y 〉 ∧ 〈Z〉) and

(〈X〉 ∧ 〈Y 〉) ∨ 〈Z〉 = (〈X〉 ∨ 〈Z〉) ∧ (〈Y 〉 ∨ 〈Z〉)
The following result is an immediate consequence of the defi-

nitions.

Proposition 7.2.2. The localization functors LE and LF are
the same if and only if 〈E〉 = 〈F 〉. If 〈E〉 ≤ 〈F 〉 then LELF = LE
and there is a natural transformation LF → LE.

Notice that for any spectrum E,

〈S0〉 ≥ 〈E〉 ≥ 〈pt.〉,
〈S0〉 ∧ 〈E〉 = 〈E〉,
〈S0〉 ∨ 〈E〉 = 〈S0〉,
〈pt.〉 ∨ 〈E〉 = 〈E〉 and

〈pt.〉 ∧ 〈E〉 = 〈pt.〉,
i.e., 〈S0〉 is the biggest class and 〈pt.〉 is the smallest.

Not all classes have complements, and there are even classes
〈E〉 which do not satisfy

(7.2.3) 〈E〉 ∧ 〈E〉 = 〈E〉.

The following definition is due to Bousfield [Bou79a].

Definition 7.2.4. A is the collection of all Bousfield classes.
DL (for distributive lattice) is the collection of classes satisfying
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(7.2.3). BA (for Boolean algebra) is the collection of classes with
complements.

Thus we have

BA ⊂ DL ⊂ A

and both inclusions are proper. (Counterexamples illustrating this
can be found in [Rav84].) If E is connective then 〈E〉 ∈ DL,
and if E is a (possibly infinite) wedge of finite complexes, then
〈E〉 ∈ BA. A partial description of BA is given below in 7.2.9.

Let S0Q denote the rational sphere spectrum, S0
(p) the p-local

sphere spectrum, and S0/(p) the mod p Moore spectrum. Then
we have

Proposition 7.2.5.

〈S0
(p)〉 = 〈S0Q〉 ∨ 〈S0/(p)〉,

〈S0Q〉 ∧ 〈S0/(p)〉 = 〈pt.〉,
〈S0/(q)〉 ∧ 〈S0/(p)〉 = 〈pt.〉 for p 6= q, and

〈S0〉 = 〈S0Q〉 ∨
∨
p

〈S0/(p)〉.

In particular each of these classes is in BA.
The following result is proved in [Rav84].

Proposition 7.2.6. (i) If

W −→ X
f−→ Y −→ ΣW

is a cofibre sequence (2.3.3), then

〈W 〉 ≤ 〈X〉 ∨ 〈Y 〉.
(ii) If f is smash nilpotent (5.1.2) then

〈W 〉 = 〈X〉 ∨ 〈Y 〉.
(iii) For a self-map f : ΣdX → X, let Cf denote its cofibre

and let

X̂ = lim
→
f

Σ−idX

be the telescope obtained by iterating f . Then

〈X〉 = 〈X̂〉 ∨ 〈Cf 〉 and
〈X̂〉 ∧ 〈Cf 〉 = 〈pt.〉.
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Two pleasant consequences of the thick subcategory theorem
(3.4.3) are the following, which were the class invariance and
Boolean algebra conjectures of [Rav84].

Theorem 7.2.7 (Class invariance theorem). Let X and Y be
p-local finite CW-complexes of types m and n respectively (1.5.3).
Then 〈X〉 = 〈Y 〉 if and only if m = n, and 〈X〉 < 〈Y 〉 if and only
if m > n.

Proof. Let CX and CY be the smallest thick subcategories
of FH(p) containing X and Y respectively. In other words, CX

contains all finite complexes which can be built up from X by
cofibrations and retracts. Hence each X ′ in CX satisfies

〈X ′〉 ≤ 〈X〉.

Since K(m − 1)∗(X) = 0, all complexes in CX are K(m −
1)∗-acyclic, so CX is contained in Fm. On the other hand, CX is
not contained in Fm+1 since K(m)∗(X) 6= 0. Hence CX must be
Fm by the thick subcategory theorem. Similarly, CY = Fn.

It follows that if m = n then CX = CY so 〈X〉 = 〈Y 〉 as
claimed. The inequalities follow similarly. �

For a p-local finite CW-complex Xn of type n (1.5.3), the
periodicity theorem (1.5.4) says there is a vn-map f : ΣdXn → Xn.

We define the telescope X̂n to be the direct limit of the system

(7.2.8) Xn
f−→ Σ−dXn

f−→ Σ−2dXn
f−→ · · ·

Since any two choices of f agree up to iteration (6.1.3), this tele-
scope is independent of the choice of f . Moreover, 7.2.7 implies
that its Bousfield classes 〈Xn〉 and 〈X̂n〉 are independent of the
choice of Xn, for a fixed n and p.

Theorem 7.2.9 (Boolean algebra theorem). Let FBA ⊂ BA
be the Boolean subalgebra generated by finite spectra and their com-
plements, and let FBA(p) ⊂ FBA denote the subalgebra of p-local

finite spectra and their complements in 〈S0
(p)〉. Then FBA(p) is

the free (under complements, finite unions and finite intersections)

Boolean algebra generated by the classes of the telescopes 〈X̂n〉 de-
fined above for n ≥ 0. In particular, the classes represented by
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finite spectra are

〈Xn〉 =
∧

0≤i<n
〈X̂i〉c.

In other words FBA(p) is isomorphic to the Boolean algebra of fi-

nite and cofinite sets of natural numbers, with 〈X̂n〉 corresponding
to the set {n}.

Note that this is very similar to the Boolean algebra conjecture
of [Rav84, 10.8], in which 〈X̂n〉 was replaced by 〈K(n)〉. The now
doubtful telescope conjecture (7.5.5) says that these two classes
are the same, and 7.2.9 is phrased so that it is independent of
7.5.5.

Proof of 7.2.9. 7.2.6(iii) gives

〈Xn〉 = 〈X̂n〉 ∨ 〈Xn+1〉 and

〈X̂n〉 ∧ 〈Xn+1〉 = 〈pt.〉.
This implies that

〈X̂n〉 = 〈X̂n〉 ∧ 〈Xn+1〉c,
so FBA(p) contains the indicated Boolean algebra.

On the other hand, 7.2.6(iii) also implies that

〈S0
(p)〉 = 〈X0〉 = 〈Xn〉 ∨

∨
0≤i<n

〈X̂i〉,

from which the identification of 〈Xn〉 follows. Hence the indicated
Boolean algebra contains FBA(p). �

7.3. The structure of 〈MU〉

The spectrum MU is described in B.2. It is known that
its p-localization MU(p) splits into a wedge of suspensions of a
‘smaller’ spectrum BP , which is described in B.5. It follows that
〈MU(p)〉 = 〈BP 〉 and 7.2.5 implies that

〈MU〉 =
∨
p

〈MU(p)〉 =
∨
p

〈BP 〉

where the wedge on the right is over the BP ’s associated with the
various primes p.

The class 〈BP 〉 can be broken up further in terms of various
spectra related to BP . A detailed account of this can be found in
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Section 2 of [Rav84]. The relevant spectra for our purposes are
all module spectra (see A.2.8) over BP , which means that they
are characterized by the structure of their homotopy groups as
modules over BP∗. First we have P (n) with

π∗(P (n)) = BP∗/In.

In particular P (0) is BP by definition. Würgler [Wur77] has
shown that each P (n) is a ring spectrum. Using the construction
of A.2.10, we can form the telescopes v−1n BP and v−1n P (n), which
is denoted in the literature by B(n). Closely related to these are
E(n) and K(n) (Morava K-theory) with

E(n)∗ = Z(p)[v1, v2, . . . , vn, v
−1
n ] and(7.3.1)

K(n)∗ = Z/(p)[vn, v
−1
n ].

Finally we have H/(p) the mod p Eilenberg-MacLane spectrum
representing ordinary mod p homology.

The following result was proved in [Rav84].

Theorem 7.3.2. With notation as above,
(a) 〈B(n)〉 = 〈K(n)〉.
(b) 〈v−1n BP 〉 = 〈E(n)〉.
(c) 〈P (n)〉 = 〈K(n)〉 ∨ 〈P (n+ 1)〉.
(d) 〈E(n)〉 =

∨n
i=0〈K(i)〉.

(e) 〈K(m)〉∧〈K(n)〉 = 〈pt.〉 form 6= n and 〈H/(p)〉∧〈K(n)〉 =
〈pt.〉.

(f) For E = K(n) or E = H/(p) and for any X, 〈X〉 ∧ 〈E〉 is
either 〈E〉 or 〈pt.〉.

7.4. Some classes bigger than 〈MU〉

For some time after conjecturing the nilpotence theorem, we
tried to prove it by showing that 〈MU〉 = 〈S0〉. Eventually we
disproved the latter by producing a nontrivial spectrum X with
MU∗(X) = 0. The main tool in this construction is Brown-
Comenetz duality, which was introduced in [BC76]. Their main
result is the following.

Theorem 7.4.1 (Brown-Comenetz duality theorem). Let Y be
a spectrum with finite homotopy groups. Then there is a spectrum
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cY (the Brown-Comenetz dual of Y ) such that for any spectrum
X,

[X, cY ]−i = Hom(πi(X ∧ Y ), R/Z).

In particular, π−i(cY ) = Hom(πi(Y ), R/Z) and cH/(p) = H/(p).
Moreover c is a contravariant functor on spectra with finite homo-
topy groups which preserves cofibre sequences and satisfies ccY =
Y .

From this it easily follows that if [X, cY ] = 0, then π∗(X ∧
ccY ) = π∗(X∧Y ) = 0. Replacing Y by cY we see that if [X,Y ] =
0 then π∗(X ∧ cY ) = 0. Now if Y is a finite complex with trivial
rational homology and X =MU , one can show by Adams spectral
sequence methods that [X,Y ] = 0, so we conclude that

Proposition 7.4.2. If Y is a finite complex with trivial ratio-
nal homology then MU∗(cY ) = 0.

More details can be found in [Rav84].
The existence of a nontrivial spectrum cY with MU∗(cY ) = 0

means that 〈MU〉 < 〈S0〉.
Actually the situation is more drastic, as the following result

(also proved in [Rav84]) indicates.

Theorem 7.4.3. There are spectra X(n) for 1 ≤ n ≤ ∞ with
X(1) = S0 and X(∞) =MU such that

〈X(n)〉 ≥ 〈X(n+ 1)〉

for each n, with

〈X(pk − 1)(p)〉 > 〈X(pk)(p)〉

for each prime p and each k ≥ 0.

The spectra X(n) also figure in the proof of the nilpotence
theorem, so we will describe them now. They are constructed in
terms of vector bundles and Thom spectra. Some of the relevant
background is given in B.1. Let SU denote the infinite special uni-
tary group, i.e., the union of all the SU(n)’s. The Bott periodicity
theorem gives us a homotopy equivalence

ΩSU −→ BU

where BU is the classifying space of the infinite unitary group.
Composing this with the loops on the inclusion of SU(n) into SU ,



84 7. BOUSFIELD LOCALIZATION AND EQUIVALENCE

we get a map

ΩSU(n) −→ BU.

The associated Thom spectrum (B.1.12) is X(n). A routine cal-
culation gives

H∗(X(n)) = Z[b1, . . . , bn−1]

where |bi| = 2i and these generators map to generators of the same
name in H∗(MU) as described in B.4.1.

7.5. E(n)-localization and the chromatic filtration

Bousfield’s theorem gives us a lot of interesting localization
functors. Experience has shown that the case E = E(n) (7.3.1),
or equivalently (by 7.3.2(b)) v−1n BP , is particularly useful.

Definition 7.5.1. LnX is LE(n)X and CnX denotes the fibre
of the map X → LnX.

The following result enables us to computeBP∗(LnX) in terms
of BP∗(X).

Theorem 7.5.2 (Localization theorem). For any spectrum Y ,

BP ∧ LnY = Y ∧ LnBP.

In particular, if v−1n−1BP∗(Y ) = 0, then

BP ∧ LnY = Y ∧ v−1n BP,

i.e., BP∗(LnY ) = v−1n BP∗(Y ).

The proof of this theorem and a description of LnBP will be
given in Chapter 8.

Using 7.2.2 and 7.3.2(d) we get a natural transformation Ln →
Ln−1.

Definition 7.5.3. The chromatic tower for a p-local spec-
trum X is the inverse system

L0X ←− L1X ←− L2X ←− · · ·X.

The chromatic filtration of π∗(X) is given by the subgroups

ker (π∗(X)→ π∗(LnX)).
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This definition of the chromatic filtration is not obviously the
same as the one given in 2.5.2, which was in terms of periodic
maps of finite complexes. The two definitions are equivalent if
the telescope conjecture 7.5.5 is true. We will refer to these as the
geometric (2.5.2) and algebraic (7.5.3) definitions of the chromatic
filtration.

The geometric definition is the more natural of the two. The
advantage of the algebraic one is that there are methods of com-
puting π∗(LnX). In particular, suppose X is a p-local finite CW-

complex of type n (1.5.3) with vn-map f . Let X̂ be the telescope
as in (7.2.8). Then K(n)∗(f) is an isomorphism. The same is
true of K(i)∗(f) for i < n since K(i)∗(X) = 0. Hence E(n)∗(f) is
an equivalence by 7.3.2(d). This means that the map X → LnX

factors uniquely through the telescope X̂, i.e., we have a map

(7.5.4) X̂
λ−→ LnX.

Moreover

BP∗(LnX) = v−1n BP∗(X)

and λ is a BP∗-equivalence.

Conjecture 7.5.5 (Telescope conjecture). Let X be a p-local
finite CW-complex of type n. Then the map λ of (7.5.4) is an
equivalence.

For n = 0 this statement is a triviality. The map f can be
taken to be the degree p map and it is clear that X̂ = L0 for any
p-local spectrum X.

For general n it is clear that the collection of p-local type n
finite complexes satisfying 7.5.5 is thick, so by the thick subcat-
egory theorem it suffices to prove or disprove it for a single such
complex. For n = 1, tt was proved for the mod p Moore spectrum
by Mahowald [Mah82] for p = 2 and by Haynes Miller [Mil81]
for p > 2. The author has recently disproved it for the type 2
complex V (1) for p ≥ 5; see [Rav92] and [Rava]. In light of this,
there is no reason to think it is true for n > 2.

Now the vn-torsion subgroup of π∗(X) as defined geometrically

in 2.5.2 is the kernel of the map to π∗(X̂), while the corresponding
subgroup defined algebraically by 7.5.3 is the kernel of the map to
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π∗(LnX). These two subgroups would be the same if the telescope
conjecture were true.

What can we say when the telescope conjecture is false? The
existence of the map λ of (7.5.4) means that the algebraically
defined subgroup contains the geometrically defined one. However
we do not know that π∗(λ) is either one-to-one or onto.

The localization LnX is much better understood than the tele-
scope X̂. It was shown in [Rav87] that in general π∗(LnY ) can
be computed with the Adams-Novikov spectral sequence. This is
particularly pleasant in the case of a type n finite complex X. In
that case there is some nice algebraic machinery for computing
the E2-term of the Adams-Novikov spectral sequence. Indeed, it
was this computability that motivated this whole program in the
first place.

We will illustrate first with the simplest possible example.
Suppose our finite complex X is such that

BP∗(X) ∼= BP∗/In.

Then BP∗(LnX) = v−1n BP∗/In and the E2-term is

ExtBP∗(BP )(BP∗, v
−1
n BP∗/In).

This is known to be essentially the mod p continuous cohomology
of the nth Morava stabilizer group Sn, described in 4.2. This iso-
morphism is the subject of [Rav86, Chapter 6] and a more precise
statement (which would entail a distracting technical digression
here) can be found there and in the change-of-rings isomorphism
of B.8.8. There is also a discussion above in 4.3.

More generally, if X is a p-local finite complex of type n, then
the Landweber filtration theorem (3.3.7) tells us that BP∗(X)
has a finite filtration in which each subquotient is a suspension of
BP∗/In+i for i ≥ 0. When we pass to v−1n BP∗(X), we lose the
subquotients with i > 0 and the remaining ones get converted to
suspensions of v−1n BP∗/In.

Hence the Landweber filtration leads to a SS for computing
the Adams-Novikov spectral sequence E2-term,

ExtBP∗(BP )(BP∗, BP∗(LnX)),

in terms of H∗(Sn). It is possible to formulate its E2-term as the
cohomology of Sn with suitable twisted coefficients.
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Finally, we remark that the nature of the functor Ln is par-
tially clarified by the following.

Theorem 7.5.6 (Smash product theorem). For any spectrum
X,

LnX ∼= X ∧ LnS0.

This will be proved in Chapter 8. We should point out here
that in general LEX is not equivalent to X ∧ LES0. Here is
a simple example. Let E = H, the integer Eilenberg-MacLane
spectrum. Then it is easy to show that LHS

0 = S0. On the other
hand we have seen examples (7.1.4(ii)) of nontrivial Y for which
LH is contractible, so

LHX 6∼= X ∧ LHS0

in general.
The smash product theorem is a special property of the func-

tors Ln. They may be the only localization functors with this
property. The spectrum L1S

0 is well understood; its homotopy
groups are given in [Rav84]. Its connective cover is essentially
(precisely at odd primes) the spectrum J . π∗(LnS

0) is not known
for any larger value of n. The computations of Shimomura-Tamura
([Shi86] and [ST86]) determine π∗(L2V (0)) for p ≥ 5, where V (0)
denotes the mod p Moore spectrum.

A consequence of the smash product theorem is the following,
which will also be proved in Chapter 8.

Theorem 7.5.7 (Chromatic convergence theorem). For a p-local
finite CW-complex X, the chromatic tower of 7.5.3 converges in
the sense that

X ' lim
←
LnX.





CHAPTER 8

The proofs of the localization, smash
product and chromatic convergence

theorems

In this chapter we will prove Theorems 7.5.2, 7.5.6 and 7.5.7.
We will describe LnBP and outline the proof of the localization
theorem in Section 8.1. The proof of the smash product theorem
is similar in spirit to that of the periodicity theorem outlined in
Chapter 6. In Section 8.2 we will explain how the thick subcat-
egory theorem along with a theorem of Bousfield (8.2.6) can be
used to reduce the problem to constructing some finite torsion
free spectra with certain properties spelled out in Theorem 8.2.7.
Then in Section 8.3 we will use Smith’s construction along with
cohomological properties of the Morava stabilizer groups to con-
struct the required spectra. Sections 8.4 and 8.5 contain the proofs
of two lemmas needed in Section 8.3. The chromatic convergence
theorem (7.5.7) is proven in Section 8.6.

Apart from Section 8.1 (which is taken from [Rav87]), the
material in this chapter has not appeared in print before. It is
joint work with Mike Hopkins dating from 1986.

8.1. LnBP and the localization theorem

In order to describe LnBP we need to introduce the chromatic
resolution. It is a long exact sequence of BP∗(BP )-comodules of
the form

0 −→ BP∗ −→M0 −→M1 −→ · · ·
obtained by splicing together short exact sequences

0 −→ Nn −→Mn −→ Nn+1 −→ 0.

These are defined in B.8. In [Rav84, Theorem 6.1] it is shown
that the short exact sequence of (B.8.3) can be realized as the

89
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homotopy groups of a cofibre sequence of BP -module spectra

NnBP −→MnBP −→ Nn+1BP,

where N0BP = BP and MnBP is obtained from NnBP by a
telescope construction which inverts vn in homotopy.

Thus we have maps

BP ←− Σ−1N1BP ←− Σ−2N2BP ←− · · ·
The following result was proved as Theorem 6.2 in [Rav84].

Theorem 8.1.1. LnBP is the cofibre of the map

Σ−n−1Nn+1BP −→ BP

described above, and there is a short exact sequence

0 −→ BP∗ −→ π∗(LnBP ) −→ Σ−nNn+1 −→ 0

which is split for n > 0.

To prove the localization theorem, consider the two cofibre
sequences

CnBP ∧ LnY −→ BP ∧ LnY −→ LnBP ∧ LnY and

LnBP ∧ CnY −→ LnBP ∧ Y −→ LnBP ∧ LnY
If we can show that

LnBP ∧ CnY ' pt. and(8.1.2)

CnBP ∧ LnY ' pt.,(8.1.3)

it will follow that

BP ∧ LnY ' LnBP ∧ LnY ' LnBP ∧ Y
as asserted in 7.5.2.

For (8.1.2), we need

Lemma 8.1.4. 〈LnBP 〉 = 〈v−1n BP 〉.

This is an easy consequence of 8.1.1 and 7.3.2; details can be
found in [Rav87].

Now CnY is v−1n BP∗-acyclic since it is the fibre of the map

Y −→ LnY,

which is a v−1n BP∗-equivalence. It follows that v−1n BP ∧ CnY is
contractible, so (8.1.2) follows from 8.1.4.



1. LnBP AND THE LOCALIZATION THEOREM 91

(8.1.3) is more difficult to prove. We know that

LnY
∗(CnBP ) = [CnBP,LnY ]∗ = 0

since CnBP is v−1n BP∗-acyclic and LnY is v−1n BP∗-local. This is
a cohomological statement, but we need the corresponding homo-
logical statement, namely

LnY∗(CnBP ) = π∗(LnY ∧ CnBP ) = 0.

Unfortunately, generalized homology is not determined by gener-
alized cohomology except when we are computing it on a finite
complex. We will need to replace CnBP by a finite complex,
namely one of type n + 1. For this reason the proof of the local-
ization theorem requires the existence of type n complexes for all
n, which was first proved by Mitchell in [Mit85]. Now it is of
course a corollary of the periodicity theorem, but Mitchell’s result
was proved earlier.

More precisely, we need

Lemma 8.1.5. If X is a p-local finite complex of type n + 1,
then

〈CnBP 〉 = 〈CnBP ∧X〉.

Again, this is an easy consequence of 7.3.2 and the details can
be found in [Rav87].

Now using Spanier-Whitehead duality (5.2.1), we have

π∗(X ∧ LnY ) = [DX,LnY ]∗.

If X has type n + 1, it is easy to see that DX does also. Hence
DX is v−1n BP∗-acyclic so the group above is trivial. It follows that
CnBP ∧X ∧ LnY is contractible, so (8.1.3) follows from 8.1.5.

This completes the proof of the main assertion of the localiza-
tion theorem, namely that

BP ∧ LnY = Y ∧ LnBP.
We still need to prove that when v−1n−1BP∗(Y ) = 0, then

(8.1.6) BP∗(LnY ) = v−1n BP∗(Y ).

In this case Ln−1Y is contractible, so 8.1.1 gives

(8.1.7) BP ∧ Y = Y ∧ Σ−nNnBP.



92 8. THE SMASH PRODUCT THEOREM

8.1.1 also gives a cofibre sequence

Σ−nMnBP −→ LnBP −→ Ln−1BP.

Smashing this with Y gives

(8.1.8) BP ∧ LnY = Y ∧ Σ−nMnBP.

Now MnBP is obtained from NnBP by a telescope construc-
tion which inverts vn in its homotopy. Hence (8.1.7) and (8.1.8)
imply that BP∗(LnY ) is obtained in a similar way from BP∗(Y ),
thereby proving (8.1.6).

8.2. Reducing the smash product theorem to a special
example

Definition 8.2.1. A spectrum E is smashing if the Bousfield
localization LEX is equivalent to the smash product X ∧LES0 for
all spectra X.

Note that since LEX depends only on the Bousfield class 〈E〉,
the same is true of the question of whether E is smashing.

The following is proved in [Rav84, 1.27].

Proposition 8.2.2. Let E be a ring spectrum and let T be
LES

0. Then the following are equivalent:

(i) E is smashing.
(ii) 〈E〉 = 〈T 〉.
(iii) Every direct limit of E∗-local spectra is E∗-local.
(iv) LE commutes with direct limits.

Bousfield has proved the following in [Bou79b, 3.5] and [Bou79a,
2.9].

Theorem 8.2.3. Let B be a possibly infinite wedge of finite
spectra. Then 〈B〉 is in the Boolean algebra BA (7.2.4). If 〈E〉 =
〈B〉c then E is smashing.

In [Bou79b, 3.4] he conjectured that all smashing spectra
arise in this way. However, the failure of the telescope conjecture
for n = 2 means that 〈E(2)〉, which is smashing by 7.5.6, is not
the expected complement of an infinite wedge of finite spectra, so
Bousfield’s conjecture also fails.
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For any spectrum X, one has an E∗-equivalence

X −→ X ∧ LES0.

The difficulty is that the target may not be local in general; it will
be if X is finite.

Recall (7.1.6) that a spectrum is E-prenilpotent if its localiza-
tion is E-nilpotent, i.e. if it can be built up in a finite number of
stages from retracts of spectra of the form E ∧ X. If the sphere
spectrum is E-prenilpotent, LES

0 is E-nilpotent, so X ∧ LES0

is local for any spectrum X, so we have the following ([Bou79b,
3.9]).

Proposition 8.2.4. A ring spectrum E is smashing if the
sphere spectrum is E-prenilpotent.

It follows immediately from the definitions that the set of
p-local finite spectra which are E-prenilpotent is thick. Hence
the thick subcategory theorem 3.4.3 gives us the following result,
which is the starting point of our proof of 7.5.6.

Proposition 8.2.5. A p-local ring spectrum E is smashing if
there is a nontrivial E-prenilpotent p-local finite spectrum Y with
torsion free homology.

Such spectra will be constructed in the next section.
When π∗(E) is countable (which it is in the cases of inter-

est), Bousfield’s convergence theorem A.6.11 gives a condition on
the E-based Adams spectral sequence which guarantees that all
spectra are E-prenilpotent and E is therefore smashing. A.6.11 is
actually a characterization; for a countable ring spectrum E, all
spectra are E-prenilpotent if and only the convergence condition
is satisfied. The condition requires the existence of a horizontal
vanishing line in E∞(X) for every finite X. In the classical case
(E = H/p) the E∞-term for the sphere spectrum is known to have
a vanishing line of positive slope, so we see again that H/p is not
smashing.

We will need the following relative form of A.6.11.

Theorem 8.2.6. Let E be a ring spectrum with π∗(E) count-
able. Then all spectra of the form Y ∧ W for a fixed Y are
E-prenilpotent if and only if the E-based Adams spectral sequence
satisfies the following condition: There exists a positive integer s0
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and a function ϕ such that for every finite spectrum X,

Es,∗∞ (Y ∧X) = 0 for s > s0

and

Es,∗r (Y ∧X) = Es,∗∞ (Y ∧X) for r > ϕ(s).

Corollary 8.2.7. Let E be a ring spectrum with π∗(E) count-
able. Then a spectrum Y is E-prenilpotent if the E-based Adams
spectral sequence satisfies the following condition: There exist pos-
itive integers r0 and s0 such that for every finite spectrum X,

Es,∗r0 (Y ∧X) = 0 for s > s0,

i.e., there is a horizontal vanishing line of height s0 in Er0(Y ∧X)
for every finite X.

Proof. The condition given here is stronger than that of 8.2.6
since it implies that Es,ts0 = Es,t∞ for all s and t. �
Outline of proof of Theorem 8.2.6. We will describe how the proof
of A.6.11 given in [Bou79b] can be modified to prove 8.2.6. It is
observed there that the Adams spectral sequence condition follows
easily from the prenilpotence assumption, and that it suffices to
show that the sphere spectrum is prenilpotent. In our case it
suffices for similar reasons to show that Y is E-prenilpotent.

In Bousfield’s proof, various constructions are made involving
the canonical Adams resolution for S0. If we replace it with the
one for Y , then a similar argument implies that Y is E-prenilpotent
as claimed. �

8.3. Constructing a finite torsion free prenilpotent
spectrum

In this section we will construct a finite p-local torsion free
spectrum Y satisfying the condition of 8.2.7 for E = LnBP . The
smash product theorem will follow by 8.2.5. The construction will
depend on two lemmas (8.3.5 and 8.3.7) that will be proved in
Sections 8.4 and 8.5.

We will need to study various Ext groups. As in (B.8.1) we
will use the notation

Ext(M) = ExtBP∗(BP )(BP∗,M)

for a BP∗(BP )-comodule M .
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The first step in constructing the desired spectrum is the fol-
lowing.

Lemma 8.3.1. A finite p-local spectrum Y with torsion free
homology is LnBP -prenilpotent if there is a positive integer s0
with

Exts(v−1m BP∗(Y )/Im) = 0

for s > s0 and 0 ≤ m ≤ n.
To prove this we need to study the Adams spectral sequence

based on LnBP∗ for a spectrum Y . In [Rav87, Lemma 10] it is
shown that this coincides with the Adams spectral sequence for
LnY based on BP∗. Hence 7.5.2 implies

Proposition 8.3.2. A spectrum Y is LnBP -prenilpotent if
and only if LnY is BP -prenilpotent.

Proof. Since LnBP and v−1n BP have the same Bousfield type, the
LnBP -localization of Y is LnY . Thus to say that Y is LnBP -prenilpotent
is to say that LnY can be built up with a finite number of cofi-
brations from retracts of smash products X ∧ LnBP for various
X. Now by 7.5.2,

X ∧ LnBP = LnX ∧BP,
so the same construction shows that LnY is BP -nilpotent and
hence BP -prenilpotent.

Conversely, suppose that LnY isBP -prenilpotent. It isBP -local
and hence BP -nilpotent, i.e., it can be built up with a finite num-
ber of cofibrations from retracts of smash products X ∧ BP for
various X. If we apply Ln to everything in sight, we see that
LnLnY = LnY is built up from retracts of

Ln(X ∧BP ),
so it suffices to show that this is the same as X ∧ LnBP . To see
this, observe that the latter is LnBP∗-equivalent to X ∧BP , and
it is local by 7.1.5. It follows that there is a factorization

X ∧ LnBP

))
X ∧BP

66

//Ln(X ∧BP )

and the factorization is the desired equivalence, since both spectra
are local and LnBP∗-equivalent to X ∧BP . �
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Let MnY be nth suspension of the fibre of the map

LnY −→ Ln−1Y

for n > 0, and let M0Y = L0Y . (See [Rav84, 5.10] for more
discussion.) We can reformulate 8.3.2 as

Proposition 8.3.3. A spectrum Y is LnBP -prenilpotent if
MmY is BP -prenilpotent for 0 ≤ m ≤ n.

Proof. LnY is built up from the spectra MmY by a series of
cofibre sequences. It follows that if eachMmY is BP -prenilpotent,
then so is LnY . The result then follows from 8.3.2. �

An easy consequence of the localization theorem 7.5.2 is the
following.

Corollary 8.3.4. If Y is as in 8.3.1, then

BP∗(MmY ) = BP∗(Y )⊗Mm

where Mm is as in (B.8.5).

Proof of Lemma 8.3.1. By 8.3.3 it suffices to show that MmY
is BP -prenilpotent for 0 ≤ m ≤ n. Hence we need to look at the
Adams-Novikov spectral sequence for MmY ∧X for finite X. The
localization theorem (7.5.2) implies that

BP ∧MmY ∧X =MmBP ∧ Y ∧X
where MmBP is a BP -module spectrum with

π∗(MmBP ) =Mm.

Now Mm is related to v−1m BP∗/Im by a series of short exact
sequences (B.8.6). In a similar way (using cofibre sequences anal-
ogous to (B.8.6)), MmBP is related to the spectrum B(m), the
BP -module spectrum with

π∗(B(m)) = v−1m BP/Im.

It follows that

Exts(BP∗(MmY ∧X)) = 0 for s > s0

for all finite X if

Exts(v−1m BP∗(Y )/Im) = 0 for s > s0.

The former condition makes MmY BP -prenilpotent by 8.2.6 and
the result follows. �
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As remarked elsewhere, the Ext groups of 8.3.1 can be com-
puted with the help of the change-of-rings isomorphism B.8.8 and
the results quoted in Section 4.3. In particular, 4.3.2(b) tells us
that for n < p− 1, the condition of 8.3.1 holds for any Y . Hence,
as indicated in [Rav87], the smash product theorem (7.5.6) for
n < p− 1 follows from A.6.11.

For n ≥ p − 1 it is more difficult to find a Y meeting the
conditions of 8.3.1. 4.3.2(b) tells us that for any Y the condition
will be satisfied for values of m not divisible by p − 1, but when
p−1 does dividem one needs some new property of Y to guarantee
the condition. We know by B.8.8 that the condition of 8.3.1 is
equivalent to

Hs(Sm;FK(m)∗(Y )) = 0 for 0 ≤ m ≤ n

for large s, where FK(m)∗(Y ) is as in (4.3.1). According to 4.3.4,
Sm has a subgroup H of order p when p − 1 divides m. We are
indebted to L. Evens for the proof of the following, which will be
given in Section 8.4.

Lemma 8.3.5. Let m be divisible by p − 1. If every sub-
group H ⊂ Sm of order p acts freely on the Fpm-vector space
FK(m)∗(Y ) (i.e., if the vector space is a free module over Fpm [H])
for a finite spectrum Y , then

Hs(Sm;FK(m)∗(Y )) = 0

for large s.

We can use Jeff Smith’s methods to prove the following, which
is a corollary of C.3.3.

Lemma 8.3.6. Let m be divisible by p−1 and let W be a finite
torsion free spectrum such that every subgroup H ⊂ Sm of order
p acts nontrivially on FK(m)∗(W ). Then Σk acts on

(W (p−1))(k) =W (k(p−1))

and for some k there is an idempotent e ∈ Z(p)[Σk] such that H
acts freely on

FK(m)∗(eW
(k(p−1))) = eFK(m)∗(W )⊗k(p−1).

It is easy to find a spectrum W meeting the requirements of
8.3.6, namely
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Lemma 8.3.7. The suspension spectrum of the complex projec-
tive space CP j for large j satisfies the conditions for W in 8.3.6
for all m ≤ n.

This will be proved below in Section 8.5. Combining Lemmas
8.3.5, 8.3.6 and 8.3.7 we get the finite torsion free spectrum Y
needed in 8.3.1, thereby completing the proof of the smash product
theorem.

8.4. Some cohomological properties of profinite groups

In this section we will give the proof of 8.3.5, which is due to
L. Evens. We will use some results of Serre [Ser65] on the co-
homology of profinite groups, suitably modified for our purposes.
First recall the following fact.

Lemma 8.4.1. If M is a G-module with H∗(G;M) finite, then
H∗(G′;M) is finite for any subgroup G′ ⊂ G.

Proof. The hypotheses can be shown to imply that M has reso-
lution of finite length by finitely generated projective G-modules.
This is also a projective resolution over G′, so H∗(G′;M) is as
claimed. �

Now suppose M is an Fpm-vector space and a module over a
pro-p-group G and U ⊂ G is a normal subgroup of index p, i.e.,
we have a group extension

(8.4.2) 1 −→ U −→ G
z−→ Z/(p) −→ 1.

There is a Hochschild-Serre spectral sequence [CE56, page 350]
converging to H∗(G;M) with
(8.4.3)

Es,t2 = Hs(Z/(p);Ht(U ;M)) and dr : E
s,t
r −→ Es+r,t−r+1

r ,

and it is a SS of modules over H∗(Z/(p);Fp). The latter is

(8.4.4) E(z)⊗ P (β(z))

where z ∈ H1 corresponds to the homomorphism z in (8.4.2), and
β is the Bockstein operation.

The following is Proposition 5 of [Ser65] and can easily be
deduced from the Hochschild-Serre spectral sequence.
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Proposition 8.4.5. Suppose U , G and M are as in (8.4.3).
Suppose further that H∗(U ;M) is finite and H∗(G;M) is infi-
nite. Then multiplication by β(z) (8.4.4) is an isomorphism on
H i(G;M) for large i.

In Lemma 8.3.5 we have a finite dimensional Fpm-vector space
M on which the group Sm acts in such a way that every subgroup
H ⊂ Sm of order p acts freely. We want to show thatH∗(Sm;M) is
finite. We will assume that it is infinite and derive a contradiction.

Recall the open normal subgroups of finite index Sm,i ⊂ Sm
of 4.3.3. Using these we can produce a sequence of open normal
subgroups

(8.4.6) U = U0 C U1 C · · ·Us = Sm

such that H∗(U ;M) is finite and each Ui has index p in Ui+1. Let
r be the smallest integer such that H∗(Ur;M) is infinite.

Lemma 8.4.7. With notation as above, let Σ denote the set of
closed subgroups V ⊂ Ur such that H∗(V ;M) is infinite. Then Σ
has a minimal element.

This is similar to Lemma 4 of [Ser65], which is stated in terms
of the cohomological dimensions of the groups in question, rather
than the cohomological properties of a specific module M .

The following result, which is similar in spirit to Lemma 3 of
[Ser65], shows that each minimal subgroup V provided by 8.4.7
must have order p.

Lemma 8.4.8. Let V ⊂ Ur be a closed subgroup such that for
each subgroup U ⊂ V of index p, H∗(U ;M) is finite. Then either
H∗(V ;M) is finite or V has order p.

We will prove these two lemmas below.

Proof of Lemma 8.3.5. Let M = FK(m)∗(Y ) for a finite spec-
trum Y . This is a finite dimensional vector space over Fpm on
which Sm acts. Suppose that the lemma is false and H∗(Sm;M)
is infinite. Using the setup of (8.4.6), let r be the smallest integer
such that H∗(Ur;M) is infinite.

According to 8.4.7, there is a minimal closed subgroup V ⊂ Ur
with H∗(V ;M) infinite. According to 8.4.8 this subgroup must
have order p. However each subgroup of order p acts freely on



100 8. THE SMASH PRODUCT THEOREM

M by hypothesis, so its cohomology is finite. This is the desired
contradiction and the result follows. �
Proof of Lemma 8.4.7. We can use Zorn’s lemma if we know that
each totally ordered subset in Σ has a lower bound in Σ. If {Vλ}
is such a subset, then let

V0 =
⋂
λ

Vλ.

We need to show that V0 ∈ Σ, i.e., that H∗(V0;M) is infinite.
As noted above, the group extension

1 −→ Ur−1 −→ Ur
z−→ Z/(p) −→ 1

induces a H∗(Z/(p);Fp)-module structure on H∗(Ur;M). By

8.4.5, multiplication by β(z)k is nontrivial for all k > 0. By 8.4.1
no Vλ is contained in Ur−1, so we can say the same about mul-
tiplication by β(z)k in H∗(Vλ;M) for each λ. Hence the same is
true in

H∗(V0;M) = lim
→
H∗(Vλ;M),

so H∗(V0;M) is infinite and V0 ∈ Σ as desired. �
Proof of Lemma 8.4.8. Let {zi} be a basis of H1(V ;Fp). This
basis is finite by 4.3.2(a) and 8.4.1. Each zi defines a homomor-
phism V → Z/(p) whose kernel is a subgroup U of index p with
H∗(U ;M) finite. If H∗(V ;M) is infinite then by 8.4.5, multipli-
cation by each β(zi) is an isomorphism in large degrees. It follows
that the product of all these elements in H∗(V ;Fp) is nontrivial.
According to [Ser65, Proposition 4], this means that V is ele-
mentary abelian. By 4.3.4, all finite abelian subgroups of Sm are
cyclic, so V must have order p.

Alternatively (without making use of 4.3.4 or other special
properties of Sm) one could argue that if the rank of V exceeds 1,
then V is the direct sum of subgroups whose cohomology with co-
efficients in M is finite. From this one can deduce that H∗(V ;M)
itself is finite. �

8.5. The action of Sm on FK(m)∗(CP
∞)

The purpose of this section is to prove Lemma 8.3.7 by describ-
ing the action of Sm on FK(m)∗(CP

∞). We need to describe the
structure of FK(m)∗(CP

∞) as a comodule over S(m). Recall
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that FK(m)∗(CP
∞) has basis

{bi : i ≥ 0}
(see (B.1.14)) where bi is in the image of FK(m)∗(CP

j) if and
only if i ≤ j. We introduce a dummy variable x and let

b(x) =
∑
i≥0

bix
i.

The right coaction

FK(m)∗(CP
∞)

ψ−→ FK(m)∗(CP
∞)⊗ S(m)

is given formally by

(8.5.1) ψ(b(x)) = b(
∑
i≥0

Fmeix
pi)

with notation as in (4.2.6) and (4.2.7). (This is proved on page
279 of [RW77].) We obtain a formula for ψ(bi) from (8.5.1) by
equating the coefficients of xi, each of which is a finite sum.

The inclusion map H → Sm (where H has order p) induces a
restriction homomorphism

S(m)
ρ−→ C

where C is the ring of Fpm-valued functions on H. C is the linear
dual of the group ring Fpm [H]. In [Rav86, 6.4.9] it was shown
that its structure as a Hopf algebra is

C = Fpm [t]/(t
p − t) with ∆(t) = t⊗ 1 + 1⊗ t.

M = FK(m)∗(CP
j) is a comodule over C where the comodule

structure map ψ′ is the composite

M
ψ−→M ⊗ S(m)

M⊗ρ−−−−−−−−→ M ⊗ C.

Lemma 8.5.2. Let m = j(p − 1) and let H ⊂ Sm be any
subgroup of order p. Then j is the smallest value of i such that
ρ(ei) ∈ C is nontrivial.

Proof. We will use the notation of (4.2.4). The subgroup H is
generated by a pth root of unity a ∈ Em, and we can write

a = 1 + e1S + e2S
2 + · · · .

Recall that Sm = p and Sei = epiS. We have

(8.5.3) 1 = ap = (1 + e1S + e2S
2 + · · · )p
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We will show by induction on k that ρ(ek) = 0 for k < j. Note
that for these k, pk < m + k. For k = 1 (assuming j > 1), we
expand (8.5.3) modulo (S1+p) and get

1 ≡ (1 + e1S + e2S
2 + · · · )p

≡ 1 + (e1S)
p

≡ 1 + e1+p+p
2+···pp−1

1 Sp

so e1 = 0.
Now we assume inductively that e1 = e2 = · · · ek−1 = 0,

expand (8.5.3) modulo (S)pk+1 and get

1 ≡ (1 + ekS
k + ek+1S

k+1 + · · · )p

≡ 1 + (ekS
k)p

≡ 1 + e1+p
k+p2k+···pk(p−1)

k Spk

so ek = 0 for all k < j.
Now we expand (8.5.3) modulo (S)pj+1 and get

1 ≡ (1 + ejS
j + ej+1S

j+1 + · · · )p

≡ 1 + pejS
j + (ejS

j)p

≡ 1 + (ej + e1+p
j+p2j+···pj(p−1)

j )Spj

so we have

ej + e1+p
j+p2j+···pj(p−1)

j = 0.

This equation shows that ej could be nontrivial. To complete the
proof we need to show that ej = 0 implies that ek = 0 for all
k > j, i.e., that the element a of (8.5.3) is 1.

Again we argue by induction on k. For k > j, m+ k < pk, so
expanding (8.5.3) modulo (S)m+k+1 gives

1 ≡ (1 + ekS
k + ek+1S

k+1 + · · · )p

≡ 1 + pekS
k

≡ 1 + ekS
k+m,

so ek = 0 as desired. �
Proof of Lemma 8.3.7. Let i = m/(p − 1); by 8.5.2, this is the
smallest i such that ρ(ei) ∈ C is nontrivial. Then (8.5.1) gives

ψ′(bpi) = bpi ⊗ 1 + b1 ⊗ ρ(ei),
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so H acts nontrivially on FK(m)∗(CP
j) for any j ≥ pi. By

choosing j sufficiently large we can assure that this nontriviality
condition holds for all m divisible by p− 1 and ≤ n. �

8.6. Chromatic convergence

In this section we will prove the chromatic convergence theo-
rem, 7.5.7. It says that for a p-local finite CW-complex X

(8.6.1) X ' lim
←
LnX

Recall (7.5.1) that CnX is the fibre of the localization map
X → LnX, so (8.6.1) is equivalent to

(8.6.2) lim
←
πi(CnX) = lim

←
1πi(CnX) = 0

for each i (see A.5.15 and the preceding discussion of lim←
1).

We need the following definition.

Definition 8.6.3. A spectrum Y is E-convergent if the E-based
Adams spectral sequence for Y converges to π∗(Y ) and there is a
nondecreasing function s(i) such that,

Es,s+i∞ (Y ) = 0 for s > s(i).

This condition says that the E-based Adams spectral sequence
for Y has a vanishing curve at E∞. We know that it holds for any
connective spectrum Y when E = BP .

Note that this condition is weaker than that of Bousfield’s
convergence theorem (A.6.11), which requires the function s(i) to
be constant.

The following two lemmas will enable us to prove the chro-
matic convergence theorem.

Lemma 8.6.4. If E is connective and

W −→ X −→ Y −→ ΣW

is a cofibre sequence in which W and Y are E-convergent, then X
is also.

Lemma 8.6.5. For a finite spectrum Y , the map Cn+1Y →
CnY has positive BP -Adams filtration for large n.
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Proof of the chromatic convergence theorem, 7.5.7. We know
that LnY is BP -prenilpotent and hence BP -convergent by the
smash product theorem (7.5.6), 8.2.4 and 8.3.2. Hence CnY is
BP -convergent by 8.6.4.

We will prove 7.5.7 by proving (8.6.2). Using 8.6.5, choose n
large enough so that Cm+1Y → CmY has positive Adams filtration
for each m ≥ n. This means that the map Cn+kY → CnY has
filtration ≥ k. Since CnY is BP -convergent, the homomorphism

πi(Cn+kY ) −→ πi(CnY )

is trivial for large k. This means both that the inverse limit of
(8.6.2) is trivial, and that the system is Mittag-Leffler, so lim←

1

vanishes as desired by A.5.12. �
Proof of Lemma 8.6.5. We need to show that the induced homo-
morphism

BP∗(Cn+1Y ) −→ BP∗(CnY )

is trivial for large n. From the localization theorem (7.5.2) we see
that

BP ∧ CnY = Σ−1−nNn+1BP ∧ Y,
so we need to look at the cofibre sequence

NnBP ∧ Y −→MnBP ∧ Y −→ Nn+1BP ∧ Y −→ ΣNnBP ∧ Y

and show that the first map is one-to-one in homotopy. This will
be the case if BP∗(Y ) is vn-torsion free, which it is for large n by
the Landweber filtration theorem (3.3.7 and (B.5.19)). �

We now turn to the proof of 8.6.4. We will use the canonical
Adams resolutions (A.6.1) for W , X and Y . Let is denote the

canonical map E
(s) → S0. The convergence condition on Y is

equivalent to the statement that for s > s(i), any composite of
the form

(8.6.6) F −→ E
(s) ∧ Y is∧Y−−−−−−−−→ Y,

where F is a finite complex with top cell in dimension ≤ i, is null.
One could say that is ∧ Y is ‘phantom below dimension i.’ Such
maps have properties similar to phantom maps (maps which are
null when composed with any map from a finite spectrum to the
source), as the following result shows.
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Lemma 8.6.7. Let f : X → Y be phantom below dimension n
as in (8.6.6). Then for any (−1)-connected spectrum W , the map
f ∧W is also phantom below dimension n.

Proof. Consider the composite

(8.6.8) F
e−→ X ∧W

f∧W−−−−−−−−→ Y ∧W

where F is a finite spectrum with top cell in dimension ≤ n. Now
W is a direct limit of finite (−1)-connected spectra Wα (A.5.8).
Since F is finite, e factors through X ∧Wα for some α, and we
can replace (8.6.8) by

F
e−→ X ∧Wα

f∧Wα−−−−−−−−→ Y ∧Wα.

The triviality of this composite is equivalent to that of the com-
posite

(8.6.9) F ∧DWα −→ X
f−→ Y

where DWα is the Spanier-Whitehead dual (5.2.1) of the finite
spectrum Wα. Since Wα is (−1)-connected, F ∧DWα has top cell
in dimension ≤ n, so the composite (8.6.9) is null as desired. �
Proof of Lemma 8.6.4. Choose s large enough so that both
is ∧W and is ∧ Y are phantom below dimension i. We will prove
the lemma by showing that i2s∧X is phantom below dimension i.

By 8.6.7, the map E
(s) ∧ is ∧ Y is also phantom below dimension

i, since E
(s)

is (−1)-connected.
Consider the diagram

F

ê

}}

e��

!!

E
(2s) ∧X

��

//E
(2s) ∧ Y

E
(s)∧is∧Y��

E
(2) ∧W //

is∧W
��

E
(s) ∧X

��

//E
(s) ∧ Y

��
W //X // Y
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where F is a finite complex with top cell in dimension ≤ i. Since
E

(s)∧is∧Y is phantom below dimension i, the composite map F →
E

(s) ∧ Y is null, so the indicated lifting ê exists. Its composition
with is ∧W is null since the latter is phantom below dimension i.

It follows that the composite (i2s ∧ X)e is null, so i2s ∧ X is
phantom below dimension i and X is E-convergent. �



CHAPTER 9

The proof of the nilpotence theorem

In this chapter we will outline the proof of the nilpotence the-
orem; a more detailed account is given in [DHS88]. We have
previously stated it in two different guises, in terms of self-maps
(1.4.2) and in terms of smash products (5.1.4). For our purposes
here it is convenient to give a third statement, namely

Theorem 9.0.1 (Nilpotence theorem, ring spectrum form).
Let R be a connective ring spectrum of finite type (5.1.1 and A.2.8)
and let

π∗(R)
h−→MU∗(R)

be the Hurewicz map (A.3.4). Then α ∈ π∗(R) is nilpotent if
h(α) = 0.

In [DHS88] it is shown that the two previous statements are
consequences of the one above. To show that 9.0.1 implies 1.4.2,
let X be a finite complex and let R = DX ∧ X. Recall that a
self-map f : ΣdX → X is adjoint to a map f̂ : Sd → R. We claim
that h(f̂) is nilpotent if MU∗(f) is.

To see this, observe that if MU∗(f) = 0, then MU ∧ f−1X is
contractible, where f−1X denotes the homotopy direct limit of

X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · · .

Since X is finite, this means that for large enough m, the com-
posite

ΣmdX
fm−→ X −→MU ∧X

is null. Then h(f̂m) = h(f̂)m = 0, so h(f̂) is nilpotent.
Theorem 1.4.2 is a special case of the following statement,

which is derived from 9.0.1 in [DHS88]. Suppose we have a se-
quence of maps of CW-spectra

· · · −→ Xn
fn−→ Xn+1

fn+1−→ Xn+2 −→ · · ·
107
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with MU∗(fn) = 0 for each n, and suppose there are constants
m ≤ 0 and b such that each Xn is (mn+ b)-connected. Then the
homotopy direct limit lim→Xn is contractible.
Proof that 9.0.1 implies 5.1.4: (In the following argument, MU
could be replaced by any ring spectrum for which 9.0.1 holds.) In
the former we are given a map

F
f−→ X

with F finite. It is adjoint to a map

S0 f̂−→ X ∧DF
where DF is the Spanier-Whitehead dual (5.2.1) of F . Now f is

smash nilpotent if and only if f̂ is, and MU ∧ f is null if and only
if MU ∧ f̂ is.

This means that it suffices to prove 5.1.4 for the case F = S0.
The hypothesis that MU ∧ f is null is equivalent (since MU is a
ring spectrum) to the assumption that the composite

S0 f−→ X
η∧X−−−−−−−−→ MU ∧X

is null. Since X is a homotopy direct limit of finite subspectra Xα

(A.5.8), both the map f and the null homotopy for the composite
above factor through some finite Xα, i.e., we have

S0 f−→ Xα
η∧Xα−−−−−−−−→ MU ∧Xα

and the composite is null.
Now let Y = ΣnXα, where n is chosen so that Y is 0-connected.

Let
R =

∨
j≥0

Y (j);

this is a connective ring spectrum of finite type with multiplication
given by concatenation. Theorem 9.0.1 tells us that the element
in π∗(R) corresponding to f is nilpotent. This means that f itself
is smash nilpotent, thereby proving Theorem 5.1.4. �

9.1. The spectra X(n)

Recall the spectrum X(n) of 7.4.3, the Thom spectrum asso-
ciated with ΩSU(n). It is a ring spectrum so we have a Hurewicz
map

π∗(R)
h(n)−−−−−−−−→ X(n)∗(R).
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In particular X(1) = S0 so h(1) is the identity map. The map
X(n)→MU is a homotopy equivalence through dimension 2n−2.
It follows that if h(α) = 0, then h(n)(α) = 0 for large n. Hence,
the nilpotence theorem will follow from

Theorem 9.1.1. With notation as above, if h(n + 1)(α) = 0
then h(n)(α) is nilpotent.

In order to prove this we need to study the spectra X(n) more
closely. Consider the diagram

(9.1.2) ΩSU(n) //ΩSU(n+ 1) //ΩS2n+1

ΩSU(n) // Bk //

OO

JkS
2n

OO

in which each row is a fibration. The top row is obtained by
looping the fibration

SU(n) −→ SU(n+ 1)
e−→ S2n+1

where e is the evaluation map which sends a matrixm ∈ SU(n+1)
to mu where u ∈ Cn+1 is fixed unit vector.

The loop space ΩS2n+1 was analyzed by James [Jam55] and
shown to be homotopy equivalent to a CW-complex with one cell
in every dimension divisible by 2n. JkS

2n denotes the kth space
in the James construction on S2n, which is the same thing as
the 2nk-skeleton of ΩS2n+1. It can also be described as a cer-
tain quotient of the Cartesian product (S2n)k. The space Bk is
the pullback, i.e., the ΩSU(n)-bundle over JkS

2n induced by the
inclusion map into ΩS2n+1.

Proposition 9.1.3. H∗(ΩSU(n)) = Z[b1, b2, . . . , bn−1] with
|bi| = 2i, and

H∗(Bk) ⊂ H∗(ΩSU(n+ 1))

is the free module over it generated by bin for 0 ≤ i ≤ k.

Now the composite map

(9.1.4) Bk −→ ΩSU(n+ 1) −→ BU
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gives a stable bundle over Bk and we denote the Thom spectrum
by Fk. Thus we have F0 = X(n) and F∞ = X(n+ 1). We will be
especially interested in Fpj−1, which we will denote by Gj . These
spectra interpolate between X(n) and X(n+ 1).

The following three lemmas clearly imply 9.1.1 and hence the
nilpotence theorem. Their proofs will occupy the rest of this chap-
ter.

Lemma 9.1.5 (First lemma). Let α−1R be the telescope asso-
ciated with α ∈ π∗(R) (A.2.10). If α−1R ∧ X(n) is contractible
then h(n)∗(α) is nilpotent.

Lemma 9.1.6 (Second lemma). If h(n+ 1)(α) = 0 then Gj ∧
α−1R is contractible for large j.

The following is the hardest of the three and is the heart of
the nilpotence theorem.

Lemma 9.1.7 (Third lemma). For each j > 0, 〈Gj〉 = 〈X(n)〉.
In particular 〈Gj〉 = 〈Gj+1〉.

Proof of Theorem 9.1.1. We will now prove 9.1.1 assuming the
three lemmas above. If h(n+1)(α) = 0, then the telescope α−1R∧
Gj is contractible by 9.1.6. By 9.1.7 this means that α−1R∧X(n)
is also contractible. By 9.1.5, this means that h(n)(α) is nilpotent
as claimed. �

9.2. The proofs of the first two lemmas

First we will prove 9.1.5. The map α : Sd → R induces a
self-map

ΣdR
α−→ R.

The spectrum α−1R ∧X(n) is by definition the homotopy direct
limit of

R ∧X(n)
α∧X(n)−−−−−−−−→ Σ−dR ∧X(n)

α∧X(n)−−−−−−−−→ · · ·
It follows that each element of X(n)∗(R), including h(n)(α), is
annihilated after a finite number of steps, so h(n)(α) is nilpotent.

We will now outline the proof of 9.1.6. It requires the use of
the Adams spectral sequence for a generalized homology theory. It
is briefly introduced in A.6, and a more thorough account is given
in [Rav86]. Fortunately all we require of it here is certain formal
properties; we will not have to make any detailed computations.
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We need to look at the Adams spectral sequence for π∗(Y )
based on X(n+ 1)-theory, for Y = R ∧Gj , Gj and R. They have
the following properties:

(i) The E2-term, Es,t2 (Y ) can be identified with a certain
Ext group related to X(n+ 1)-theory, namely

Exts,tX(n+1)∗(X(n+1))(X(n+ 1)∗, X(n+ 1)∗(Y )).

This follows from the fact (proven in [DHS88]) that
X(n+ 1) is a flat ring spectrum (A.2.9).

(ii) Es,t2 (Y ) vanishes unless s is nonnegative and t − s ex-
ceeds the connectivity of Y

(iii) α corresponds to an element x ∈ Es,s+d2 (R) for some
s > 0. This follows from the fact (A.6.5) that h(n +

1)(α) = 0. The group of permanent cycle in E0,∗
2 (Y ) is

precisely the Hurewicz image of π∗(Y ) in X(n+1)∗(Y ).

In addition we have the following property.

Lemma 9.2.1. Es,t2 (Gj) and Es,t2 (R ∧ Gj) vanish for all (s, t)
above a certain line of slope

1

2pjn− 1
.

(This is called a vanishing line.)

We will prove this at the end of this section.
The situation is illustrated in the following picture, which is

intended to illustrate Es,t2 (R ∧ Gj). As usual the horizontal and
vertical coordinates are t − s and s respectively. The powers of
x all lie on a line through the origin with slope s/d. The broken

line represents the vanishing line for E2. E
s,t
2 = 0 for all points

(s, t) above it. For large enough j, the vanishing line has slope
less than s/d and the two lines intersect as shown. It follows that
x and hence α ∧Gj are nilpotent, thereby proving 9.1.6.
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Proof of Lemma 9.2.1. We will construct a noncanonical X(n+
1)-based Adams resolution for Gj , i.e. a diagram of the form
(9.2.2)

Gj X0

f0
��

X1

f1
��

g0oo X2

f2
��

g1oo . . .oo

K0 K1 K2

as in A.6.1, such that the spectrum Ks is (2spjn − s)-connected.
This will give the desired vanishing line for E2(Gj). We can get a
similar resolution for R ∧Gj by smashing (9.2.2) with R, thereby
proving the vanishing line for E2(R ∧Gj).

Recall that Gj is the p-local Thom spectrum of the bundle
over Bpj−1, which is the pullback of the fibre square

(9.2.3) Bpj−1

��

i0 //ΩSU(n+ 1)

��

f //ΩS2pjn+1

Jpj−1S
2n i //ΩS2n+1 H //ΩS2pjn+1

The space Jpj−1S
2n is known (after localizing at p) to be fibre of

the Hopf map H as shown. It follows that the same can be said
of Bpj−1.

The map f0 of (9.2.2) is the thomification of the map i0 of
(9.2.3). We will obtain the other maps fs of (9.2.2) in a similar
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way. Let

Y0 = Bpj−1

L0 = ΩSU(n+ 1)

Y1 = Ci0

For s ≥ 0 we will construct cofibre sequences

(9.2.4) Ys −→ Ls −→ Ys+1

which will thomify to

(9.2.5) ΣsXs
fs−→ ΣsKs −→ Σs+1Xs+1

where Ks is a wedge of suspensions of X(n+ 1) with the desired
connectivity.

Our definitions of Ys and Ls are rather longwinded. For sim-
plicity let

X = Bpj−1

E = ΩSU(n+ 1)

B = ΩS2pjn+1

and for s ≥ 0 let

Gs = E ×
s factors︷ ︸︸ ︷

B × · · · ×B .

Define maps it : Gs → Gs+1 for 0 ≤ t ≤ s+ 1 by

it(e, b1, b2, · · · , bs) =

 (e, b1, b2, · · · , bs, ∗) if t = 0
(e, b1, b2, · · · , bt, bt, bt+1, · · · bs) if 1 ≤ t ≤ s
(e, f(e), b1, b2, · · · , bs) if t = s+ 1.

(The astute reader will recognize this as the cosimplicial construc-
tion associated with the Eilenberg-Moore spectral sequence, due
to Larry Smith [Smi69] and Rector [Rec70].)

Then for s ≥ 1 we define

Ls = Gs/im i0 ∪ im i1 ∪ · · · ∪ im is−1

Ys+1 = Gs−1/im i0 ∪ im i1 ∪ · · · ∪ im is
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Then for s ≥ 0, is induces a map Ys → Ls giving the cofibre
sequences of (9.2.4). For s > 0 there are reduced homology iso-
morphisms

H∗(Ys) = H∗(X)⊗H∗(B(s))

H∗(Ls) = H∗(E)⊗H∗(B(s))

This shows Ls has the desired connectivity. Projection onto the
first coordinate gives compatible maps of the Gs to E, and hence
a stable vector bundle over each of them. This means that we
can Thomify the entire construction. To each of the quotients Ys
and Ls we associate a reduced Thom spectrum, which is defined as
follows. Given a space A with a vector bundle and a subspace B ⊂
A, the reduced Thom space for A/B is the space DA/(SA ∪DB)
where DX and SX denote disk and sphere bundles over the space
X. Thus we get the cofibre sequences (9.2.5) defining the desired
Adams resolution by Thomifying (9.2.4). �

One can also prove this result by more algebraic methods by
finding a vanishing line for the corresponding Ext groups; this is
the approach taken in [DHS88]. The slope one obtains is

1

pj+1n− 1

which is roughly 2/p times the slope obtained above. In particular
there is an element

bn,j ∈ Ext2,2p
j+1n

which is closely related to a self-map of Gj that will be given the
same name below in (9.5.3).

All that we need to know about the slope here is that it can
be made arbitrarily small by increasing n.

9.3. A paradigm for proving the third lemma

In this section we will warm up for the proof of 9.1.7 by proving
a simpler result that is similar in spirit. We start with the map

Sq
f−→ BU

(where q = 2p − 2) representing the generator of πq(BU) = Z.
We can extend f canonically to ΩS2p−1. We denote the resulting
p-local Thom spectrum by T (1). It has the form

T (1) = S0 ∪ eq ∪ e2q ∪ · · · ,
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i.e., it is a p-local CW-spectrum with one cell in every qth dimen-
sion. It can be shown that the qi-cell is attached to the q(i−1)-cell
by iα1 where

α1 ∈ π2p−3(S0)

is the generator of the first nontrivial homotopy group of S0
(p) in

positive dimensions.
Let

Fi = T (1)qi and Gj = Fpj−1 .

We use this notation to suggest the analogy with the Fi and Gj
of Section 9.1.

We will show that

(9.3.1) 〈G0〉 = 〈G1〉.

Now G0 = S0 by definition and G1 is the p-cell complex

G1 = S0 ∪α1 e
q ∪2α1 · · · e(p−1)q

There is a cofibre sequence

S0 i−→ G1
j−→ ΣqFp−2

where i is the evident inclusion map and j is the evident pinch
map. Let r denote the composite

G1
j−→ ΣqFp−2

i−→ ΣqG1

and let K be Σ−1Cr.
The following cell diagram illustrates this for p = 3. Each

small circle represents a cell in the indicated spectrum and the
numbers to the left indicate the dimensions of the various cells.
The maps j and i induce homology isomorphisms in the middle
dimensions, so the cofibre of r has cells only in dimensions 1 and
12.
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d
d
d

d
d

d
d
d

0

4

8

12

-
j

-i

G1

ΣqFp−2 ΣqG1

Thus we have a cofibre sequence

(9.3.2) G1
r−→ ΣqG1 −→ ΣK,

which shows that

(9.3.3) 〈G1〉 ≥ 〈K〉.

On the other hand, K is a 2-cell complex, i.e., there is a cofibre
sequence

(9.3.4) Spq−2
β1−→ S0 −→ K

where β1 is the generator of the (pq − 2)-stem. It is known to be
nilpotent, so 7.2.6(ii) gives

〈K〉 = 〈S0〉 = 〈G1〉.

This along with (9.3.3) proves (9.3.1).

9.4. The Snaith splitting of Ω2S2m+1

In this section we will recall some results of Snaith [Sna74]
concerning the homotopy type of Ω2S2m+1. This will be needed
to prove 9.1.7 and the nilpotence theorem.

We begin by recalling the mod p homology of Ω2S2m+1.
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Proposition 9.4.1. For any m > 0 and any odd prime p,

H∗(Ω
2S2m+1;Z/(p)) = E(x2m−1, x2pm−1, x2p2m−1, · · · )

⊗P (y2pm−2, y2p2m−2, · · · )

where the subscript of each generator indicates its dimension. For
p = 2,

H∗(Ω
2S2m+1;Z/(2)) = P (x2m−1, x4m−1, x8m−1, · · · ).

We can also describe the action of the Steenrod algebra on
this homology. Recall that for any space X, H∗(X;Z/(p)) is a
left A-module, where A denote the mod p Steenrod algebra. It
follows by duality that H∗(X;Z/(p)) is a right A-module, and the
Steenrod operations lower dimensions instead of raising them. In
particular, we have

Hn(X;Z/(2))
Sqi−−−−−−−−→ Hn−i(X;Z/(2))

Hn(X;Z/(p))
β−−−−−−−−→ Hn−1(X;Z/(p))

Hn(X;Z/(p))
P i−−−−−−−−→ Hn−i(2p−2)(X;Z/(p))

In the case of the double loop space, this action is described
by

Proposition 9.4.2. For p > 2,

(x2pi+1m−1)β = y2pi+1m−2 for i ≥ 0
(y2pi+1m−2)β = 0 for i ≥ 0
(x2pim−1)P

j = 0 for i, j ≥ 0
(y2pi+1m−2)P

1 = yp
2pim−2 for i ≥ 0

(y2pim−2)P
j = 0 for i ≥ 0, j > 1

For p = 2,

(x2i+1m−1)Sq
1 = x2

2im−1 for i ≥ 0

(x2i+1m−1)Sq
j = 0 for i ≥ 0, j > 1.

Snaith proved that the suspension spectrum Ω2S2m+1 is equiv-
alent to an infinite wedge of finite complexes which he described
explicitly, i.e., he gave a decomposition of the form

(9.4.3) Σ∞Ω2S2m+1
+ '

∨
i≥0

Dm,i
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for finite Dm,i. (X+ indicates a the space X disjoint basepoint
added, making H∗(Σ

∞X+) isomorphic to the unreduced homology
of X.) The Dm,i are independent of m up to suspension.

In order to describe this decomposition in homology, we assign
a weight to each generator of H∗(Ω

2S2m+1) by defining

(9.4.4) |x2pim−1| = |y2pim−2| = pi.

Theorem 9.4.5 (Snaith splitting theorem). The suspension
spectrum

Σ∞Ω2S2m+1

has a decomposition as in (9.4.3) where H∗(Dm,i;Z/(p)) is the
vector space spanned by the monomials of weight i.

From now on, we assume that everything in sight has been
localized at p. Inspection of (9.4.4) shows that every generator
has weight divisible by p except x2m−1. It follows that Dm,i is
contractible unless i is congruent to 0 or 1 mod p. We also see
that

Dm,0 = S0,

Dm,1 = S2m−1,

Dm,pi is (2i(pm− 1)− 1)-connected, and

H∗(Dm,pi+1) = Σ2m−1H∗(Dm,pi),

which suggests that

(9.4.6) Dm,pi+1 = Σ2m−1Dm,pi.

This is indeed the case, as one sees in the following way.
Ω2S2m+1 is an H-space, which means there is a map

Ω2S2m+1 × Ω2S2m+1 λ−→ Ω2S2m+1

with certain properties. Stably this induces maps

(9.4.7) Dm,i ∧Dm,j
λ−→ Dm,i+j .

In particular we have

Σ2m−1Dm,pi = Dm,1 ∧Dm,pi
λ−→ Dm,pi+1
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inducing multiplication by x2m−1 in homology, thereby proving
(9.4.6).

As remarked above, the complexes Dm,i are independent of
m up to suspension. Snaith’s theorem can be reformulated as
follows.

Theorem 9.4.8. For each m > 0 and any prime p,

Σ∞Ω2S2m+1
+

∼= (S0 ∨ S2m−1) ∧
∨
i≥0

Σ2i(pm−1)Di

where

Di = Σ−2i(pm−1)Dm,pi

and each Di is a finite (−1)-connected spectrum.

In particular,

D0 = S0

D1 = S0 ∪p e1,

i.e., D1 is the mod p Moore spectrum. Using the map λ of (9.4.7)
we get

(9.4.9) Di −→ D1 ∧Di
λ−→ Di+1.

We denote this map by `. It induces multiplication by y2pm−2 in
homology.

The following result, which is originally due to Mahowald
[Mah77], is at first glance somewhat surprising.

Theorem 9.4.10. The homotopy direct limit (A.5.6)

lim
→
`

Di

is the mod p Eilenberg-MacLane spectrum H/p.

This is actually rather easy to prove. We have all the tools
necessary to compute the homology of this limit. We find that it
can be identified with the subspace of weight 0 in

y−12pm−2H∗(Ω
2S2m+1),

which is

P (y−p
i−1

2pm−2y2pim−2 : i > 0)⊗ E(y−p
i−1

2pm−2x2pim−1 : i ≥ 0).
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As a ring this is isomorphic to the dual Steenrod algebra A∗ (see
B.3.4) and from 9.4.2 we can see that the right action of A on is
the same as in H∗(H/p).

9.5. The proof of the third lemma

We will now prove 9.1.7 using methods similar to that of Sec-
tion 9.3. We need to show that 〈Gj〉 = 〈Gj+1〉. Recall that
Gj = Fpj−1, and H∗(Fk) is the free module over H∗(X(n)) gener-

ated by bin for 0 ≤ i ≤ k. One has inclusion maps

X(n) = F0 ↪→ F1 ↪→ F2 ↪→ · · ·
with cofibre sequences

Fk−1 −→ Fk −→ Σ2knX(n).

From this it follows immediately that

〈Fk〉 ≤ 〈X(n)〉
for all k ≥ 0.

It can also be shown that (after localizing at p) there is a
cofibre sequence

Fkpj−1 −→ F(k+1)pj−1 −→ Σ2nkpjGj .

In particular we have

Gj = Fpj−1 ↪→ F2pj−1 ↪→ · · ·F(p−1)pj−1 ↪→ Fpj+1−1 = Gj+1

where the cofibre of each map is a suspension of Gj . This shows
that

(9.5.1) 〈Gj〉 ≥ 〈Gj+1〉.

It is also straightforward to show that there is a cofibre se-
quence

Gj −→ Gj+1 −→ Σ2npjF(p−1)pj−1
which induces a short exact sequence in homology. Thus we can
form the composite map

Gj+1 −→ Σ2npjF(p−1)pj−1 −→ Σ2npjGj+1

in which the first map is surjective in homology while the second
is monomorphic. We denote this map by rn,j . It is analogous to
the composite shown in the cell diagram on page 113. Each cell
there should be replaced by a copy of Gj.
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Then there are cofibre sequences

(9.5.2) Gj+1

rn,j−−−−−−−−→ Σ2npjGj+1 −→ Kn,j

analogous to (9.3.2) and

(9.5.3) Σ2npj+1−2Gj
bn,j−−−−−−−−→ Gj −→ Kn,j

analogous to (9.3.4). The first of these shows that

(9.5.4) 〈Gj+1〉 ≥ 〈Kn,j〉.

Using 7.2.6(iii), we see that if the telescope b−1n,jGj is con-
tractible then we will have

〈Kn,j〉 = 〈Gj〉 so

〈Gj+1〉 = 〈Gj〉 by (9.5.4) and (9.5.1)

Thus we have reduced the nilpotence theorem to the following.

Lemma 9.5.5. Let

Σ2npj+1−2Gj
bn,j−−−−−−−−→ Gj

be the map of (9.5.3). It has a contractible telescope for each n
and j.

This is equivalent to the statement that for each finite skeleton
of Gj , there is an iterate of bn,j whose restriction to the skeleton
is null.
Proof. We need to look again at (9.1.2) for k = pj − 1. The map

Jpj−1S
2n −→ ΩS2n+1

is known (after localizing at p) to be the inclusion of the fibre of
a map

ΩS2n+1 H−→ ΩS2npj+1.
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Thus the diagram (9.1.2) can be enlarged to

ΩS2pnj + 1 ΩS2pnj + 1

ΩSU(n) //ΩSU(n+ 1) //

OO

ΩS2n+1

H

OO

ΩSU(n) // Bk //

OO

JkS
2n

OO

Ω2S2pnj + 1

OO

Ω2S2pnj + 1

OO

in which each row and column is a fibre sequence.
Of particular interest is the map

Ω2S2npj+1 −→ Bpj−1.

We can think of the double loop space Ω2S2npj+1 as a topological
group acting on the space Bpj−1, so there is an action map

(9.5.6) Ω2S2npj+1 ×Bpj−1 −→ Bpj−1.

Recall that Gj is the Thom spectrum of a certain stable vector
bundle over Bpj−1. This means that (9.5.6) leads to a stable map

(9.5.7) Σ∞Ω2S2npj+1
+ ∧Gj

µ−→ Gj .

Here we are skipping over some technical details which can be
found in [DHS88, §3].

The space Ω2S2npj+1 was shown by Snaith [Sna74] to have a
stable splitting, which was described in 9.4.8. After localizing at
p, this splitting has the form

Σ∞Ω2S2npj+1
+ ' (S0 ∨ S2npj−1) ∧

∨
i≥0

Σi|bn,j |Di

where each Di is a certain finite complex (independent of n and
j) with bottom cell in dimension 0. Moreover there are maps

S0 = D0
`−→ D1

`−→ D2
`−→ · · ·

of degree 1 on the bottom cell, and the limit, lim→Di, is known
(9.4.10) to be the mod p Eilenberg-MacLane spectrum H/(p).
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In [DHS88, Prop. 3.19] it is shown that our map bn,j is the
composite

Σ|bn,j |Gj −→ Σ|bn,j |D1 ∧Gj −→ Σ∞Ω2S2npj+1
+ ∧Gj

µ−→ Gj .

and bmn,j is the composite

Σm|bn,j |Gj −→ Σm|bn,j |Dm ∧Gj −→ Σ∞Ω2S2npj+1
+ ∧Gj

µ−→ Gj .

Thus we get a diagram
(9.5.8)

Gj
`∧Gj //D1 ∧Gj

µ
��

`∧Gj //D2 ∧Gj
µ
��

// . . .

Gj
bn,j //Σ−|bn,j |Gj

bn,j //Σ−2|bn,j |Gj // . . .

This means that the map

Gj −→ b−1n,jGj

factors through Gj ∧H/(p).
Now consider the diagram

Gj //

bn,j

��

Gj ∧H/(p) //

bn,j∧H/(p)
��

b−1n,jGj

Σ−|bn,j |Gj //

bn,j
��

Σ−|bn,j |Gj ∧H/(p) //

bn,j∧H/(p)
��

b−1n,jGj

...
...

...

The middle vertical map is null because bn,j induces the trivial
map in homology. Passing to the limit, we get

b−1n,jGj −→ pt. −→ b−1n,jGj

with the composite being the identity map on the telescope b−1n,jGj .
This shows that the telescope is contractible as desired. �

9.6. Historical note: theorems of Nishida and Toda

The method used to prove 9.5.5 is similar to ones used ear-
lier by Toda and Nishida. Nishida’s theorem (2.2.5, [Nis73]) is
the special case of the nilpotence theorem (1.4.2) where X is the
sphere spectrum. It was an important motivation for conjecturing
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the nilpotence theorem. Nishida’s work was in turn inspired by
the extended power construction introduced by Toda in [Tod68].

We will sketch part of Nishida’s argument. Suppose α ∈
π2k(S

0) has order p. We wish to show that it is nilpotent. (There
is no loss of generality in assuming that the dimension of α is
even since we could replace α by α2.) The fact that α has order
p means we have an extension

S2k

��

α // S0

Σ2kD1

<<

where D1 is as in 9.4.8.
The extended power construction generalizes this to an exten-

sion

S2ki

��

αi
// S0

Σ2kiDi.

<<

This is similar to the extension

Σi|bn,j |Gj

��

bin,j //Gj

Σi|bn,j |Di ∧Gg.

::

given by (9.5.8). We did not need to introduce the extended power
construction there, because nature provided it for us in the form
of the Snaith splitting 9.4.8.

Now we know from 9.4.10 that the map Di → H/p is an
equivalence through a range of dimensions that increases with i.
(The computations used to prove 9.4.10 can be used to find this
range precisely.) We can choose i� 0 so that this range exceeds



6. THEOREMS OF NISHIDA AND TODA 125

2k. Now consider the diagram

S2k(i+1) α //

$$

S2ki

��

αi
// S0

Σ2kiDi.

<<

The map S2k(i+1) → Σ2kiDi is null since the target has no homo-
topy in that dimension. It follows that αi+1 = 0 and α is nilpotent,
so we have proved the following special case of Nishida’s theorem
2.2.5.

Theorem 9.6.2. If α ∈ π2k(S0) has order p then it is nilpo-
tent.

Prior to Nishida’s work, Toda [Tod68] used (??) in the case
i = p. Dp is a 4-cell complex of the form

Dp = S0 ∪p e1 ∪α1 e
2p−2 ∪p e2p−1.

The notation is meant to suggest that the (2p−2)-cell is attached
to the 0-cell by

α1 ∈ π2p−3(S0)

and the (2p − 1)-cell is attached to the (2p − 2)-cell by a map of
degree p.

It follows that the composite

S2p−3 α1−→ S0 −→ Dp

is null. This means that for α as above, the composite

S2kp+2p−3 α1 //

$$

S2kp

��

αp
// S0

Σ2kpDp.

<<

is null, i.e., we have proved

Theorem 9.6.3 (Toda’s theorem). If α ∈ π2k(S0) has order
p for p odd then

α1α
p = 0.
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The first such α is

β1 ∈ π2p2−2p−2(S0)

so 9.6.3 gives

(9.6.4) α1β
p
1 = 0,

which was also proved in [Tod67]. This relation does not hold
in the E2-term of either the classical Adams spectral sequence or
the Adams-Novikov spectral sequence so (9.6.4) gives a nontrivial
differential in each of them. In the case of the Adams-Novikov
spectral sequence for an odd prime, it is the first nontrivial differ-
ential.



APPENDIX A

Some tools from homotopy theory

In this appendix we will give some more background on many
of the results quoted in the text. Before we begin we list some
standard references in the subject.

Eilenberg-Steenrod [ES52] is the first modern treatment of al-
gebraic topology. They introduce axioms for homology and coho-
mology. Forty years after its publication it is still worth looking at.
Spanier [Spa66] is useful as a reference. Less ambitious but more
readable are the books by Vick [Vic73] and Greenberg-Harper
[GH81]. Gray’s book [Gra75] introduces the subject from a
viewpoint more in tune with the way working homotopy theo-
rists actually think about it. The texts by Dold [Dol80] and
Switzer [Swi75] also cover all of the standard facts about ordi-
nary homology and CW-complexes. The latter treats some more
modern topics such as K-theory and the Adams spectral sequence.
Whitehead’s book [Whi78] is a thorough introduction to homo-
topy theory from an elementary point of view. For more advanced
topics, Adams’ books [Ada74] and [Ada78] are invaluable.

A.1. CW-complexes

Definition A.1.1. A CW-complex X is a topological space
built up out of subspaces

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X

called skeleta in the following way. X0 is a discrete set of points,
possibly infinite. Xk is obtained from Xk−1 by the process of
adjoining k-cells. One has a (possibly infinite) collection of
k-dimensional balls {Bk

α} (called k-cells) bounded by spheres {Sk−1α }
and attaching maps

fα : S
k−1
α −→ Xk−1;

127
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Xk is the quotient of the disjoint union of Xk−1 with the balls
Bk
α obtained by identifying the boundaries of these balls with their

images in Xk−1 under the attaching maps. Equivalently, Xk is
the cofibre of the map∐

Sk−1α

∐
fα−−−−−−−−→ Xk−1.

A bottom cell of X is one whose dimension is minimal
among all positive dimensional cells of X. (If this dimension is k
and X is path-connected, then X is (k − 1)-connected, i.e., all
homotopy groups below dimension k vanish.) X has finite type
if the number of cells in each dimension, including zero (i.e., the
number of points in X0), is finite. X is finite if the total num-
ber of cells is finite. In this case a top cell of X is one whose
dimension is maximal. Its dimension will be referred to as the
dimension of X.

Example A.1.2 (The torus as a CW-complex). The 2-dimensional
torus
T 2 = S1 × S1 is a CW-complex as follows. X0 is a single point
and there are two 1-cells, so X1 = S1 ∨ S1. Recall that the torus
can be regarded as the quotient obtained from the unit square by
identifying opposite pairs of edges in an orientation preserving
way. This identification can be thought of as a map f from the
boundary of the square (i.e., S1), to X1. This f is the attaching
map for a single 2-cell, and its cofibre is the torus T 2.

A simplicial complex is a special case of a CW-complex in
which the attaching maps are required to have certain special
properties. Hence objects which can be triangulated, such as
smooth or piecewise linear manifolds, algebraic varieties over the
real or complex numbers with the standard (rather than the Zariski)
topology, and classifying spaces of Lie groups, are CW-complexes.
On the other hand the Cantor set, the rational numbers, and alge-
braic varieties with the Zariski topology, are not CW-complexes,
not even up to homotopy equivalence. The class of spaces having
the homotopy type of a CW-complex is large enough to include
all the spaces one ever considers in homotopy theory.

The following two results indicate how convenient CW-complexes
are. The first is proved in [Spa66, 7.6.24].
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Theorem A.1.3. Let f : X → Y be a continuous map between
path-connected CW-complexes. If f induces an isomorphism in πi
for each i > 0, then f is a homotopy equivalence.

The next result is proved by Milnor in [Mil59].

Theorem A.1.4. Let X and Y (with X compact) be spaces
each homotopy equivalent to a CW-complex . Then the same is
true of the function space

Map(X,Y ),

the space of continuous maps from X to Y with the compact-open
topology.

This is surprising since such function spaces tend to be infinite
dimensional when X and Y are finite CW-complexes. A similar
result holds for the space of maps sending a prescribed collection
of subspaces (each homotopy equivalent to a CW-complex) of X
to a similar collection of subspaces of Y .

An important example of this phenomenon, proved earlier by
James [Jam55], concerns the loop space ΩSn+1 (defined below in
A.2.1) i.e., the space of base point preserving maps from the circle
S1 to Sn+1.

Theorem A.1.5. The loop space ΩSn+1 (for n > 0) is homo-
topy equivalent to a CW-complex of the form

Sn ∪ e2n ∪ e3n ∪ · · · ,

i.e., one with a single cell in each dimension divisible by n.

A.2. Loop spaces and spectra

Now we turn to spectra, which were defined in 5.1.1. In or-
der to give a better definition of a map of spectra, we must first
describe loop spaces and adjoint maps.

Definition A.2.1. The loop space of X, ΩX is the space
of basepoint-preserving maps of the circle S1 into X, with the
compact-open topology. The i iterated loop space of X, ΩiX is
defined inductively by Ω(Ωi−1X). Equivalently, it is the space of
base point preserving maps of Si into X, with the compact-open
topology.
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Definition A.2.2. Given a map f : ΣX → Y , for each point
in X we get a closed path in Y , since the suspension ΣX is a
quotient of X × [0, 1] (1.3.1). The resulting map f̂ : X → ΩY is
the adjoint of f . Similarly, a map ΣiX → Y is adjoint to a map
X → ΩiY .

Proposition A.2.3. The construction above gives a one-to-
one correspondence between maps ΣiX → Y and maps X → ΩiY
and an isomorphism

[ΣiX,Y ] −→ [X,ΩiY ].

In particular we have

πk+i(Y ) ∼= πk(Ω
iY ).

Now recall (5.1.1) that a spectrum E is defined to be a col-
lection of spaces {En} and maps ΣEn → En+1; we say that E is
a suspension spectrum if each of these maps is an equivalence.
Each such map is adjoint to a map En → ΩEn+1; if these are all
equivalences, we say that E is an Ω-spectrum. In this case it
follows that En is homotopy equivalent to ΩkEn+k for each k > 0.
In particular, each En is an infinite loop space. Such spaces
play a special role in homotopy theory; for more information, see
Adams’ excellent account, [Ada78].

The most familiar example of an Ω-spectrum is the Eilenberg-
MacLane spectrum, HA (where A is an abelian group) defined
by (HA)n = K(A,n).

If E and F are spectra with F an Ω-spectrum, then a map
f : E → F is precisely what one would expect: a collection of
maps fn : En → Fn such that fn = Ωfn+1.

However, for more general spectra, this definition is far too
restrictive. Here is a simple example which illustrates this point.
Let E be the Eilenberg-MacLane spectrum HA and let the spec-
trum F be defined by

Fn = K(A,n)2n,

the (2n)-skeleton of K(A,n). Then there is a map i : F → E
induced by the evident inclusions. It is easy to show that it induces
an isomorphism of homotopy groups, and should therefore be a
homotopy equivalence. This means that there should be some sort
of inverse map from E to F . On the other hand, there is no map
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En → Fn with suitable properties, i.e. which is an equivalence
below dimension 2n.

One way out of this difficulty is to replace the target spectrum
F by a homotopy equivalent Ω-spectrum F̃ as follows: set F̃n equal
to

(A.2.4) lim
→

ΩkFn+k.

Then the evident maps Fn → F̃n can be shown to map the homo-
topy groups of F isomorphically to those of F̃ , so the two spectra
are homotopy equivalent. Moreover we have isomorphisms

πk(F ) ∼= πn+k(F̃n)

whenever n+k > 0. On the other hand, H(F̃n) bears little resem-
blance toH∗(F ) for any n, or toH∗(Fn) if F is not an Ω-spectrum.

Hence we can make the following definition.

Definition A.2.5. A map of spectra f : E → F is a collection
of maps

En
fn−→ lim

→
k

ΩkFn+k

with fn = Ωfn+1.

We remark that in the case where E and F are suspension
spectra, then each such collection of maps is equivalent to one
induced from a single map En → Fn for some n.

Following Adams [Ada74, III.2], we will work in the following
category.

Definition A.2.6. The homotopy category of CW-spectra
is the category whose objects are CW-spectra (i.e. spectra as de-
fined in 5.1.1 in which all spaces in sight have the homotopy type
of CW-complexes), and whose morphisms are homotopy classes of
maps, as defined above.

One can form coproducts in the category of spectra as follows.
Recall that the coproduct in the category of pointed spaces is the
one point union or wedge. This means that given any collection
{Xα} of pointed spaces with pointed maps fα : Xα → Y , we get
a unique map ∨

α

Xα
f−→ Y.
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If we have spectra Xα we can define their coproduct by

(A.2.7) (
∨
α

Xα)n =
∨
α

(Xα)n,

and in view of our definition of a map of spectra (A.2.5), a collec-
tion of maps fα : Xα → Y leads to a unique map f :

∨
αXα → Y .

Moreover we have

E∗(
∨
α

Xα) =
⊕
α

E∗(Xα).

We can also define products in the category of spectra; this
will be done below in A.4.3.

Definition A.2.8. A ring spectrum E is a spectrum equipped
with maps η : S0 → E, called the unit map, and m : E ∧E → E,
called the multiplication map, such that the composites

E = S0 ∧ E η∧E−−−−−−−−→ E ∧ E m−−−−−−−−→ E and

E = E ∧ S0 E∧η−−−−−−−−→ E ∧ E m−−−−−−−−→ E

are each homotopic to the identity on E (this is analogous to the
unitary condition on a ring), and the following diagram commutes
up to homotopy.

E ∧ E ∧ E m∧E //

E∧E
��

E ∧ E
m
��

E ∧ E m // E

This is an associativity condition on m. If the multiplication m
is commutative up to homotopy, then E is homotopy commu-
tative.

A module spectrum M over E is one equipped with a map

E ∧M µ−→M

such that the following diagram commutes up to homotopy

E ∧ E ∧M m∧E //

E∧µ
��

E ∧ E
µ
��

E ∧M
µ //M
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and the composite

M = S0 ∧M
η∧M−−−−−−−−→ M ∧M µ−→M

is homotopic to the identity.

Definition A.2.9. A ring spectrum E is flat if E ∧ E is
equivalent to a wedge of suspensions of E.

Under these circumstances, π∗(E) is a ring and π∗(M) is a
module over it.

An element v ∈ πd(E) is represented by a map f : Sd → E.
Using the multiplication on E we have the composite

ΣdE = Sd ∧ E
f∧E−−−−−−−−→ E ∧ E m−→ E

and this composite induces multiplication by v in homotopy. We
will denote this map also by f . The following definition involves
a direct limit of spectra. These will be discussed below in A.5.

Definition A.2.10. With notation as above, v−1E is the di-
rect limit or telescope of

E
f−→ Σ−dE

f−→ Σ−2dE
f−→ · · · .

(Its homotopy is

v−1E∗ = E∗ ⊗Z[v] Z[v, v−1]
and it is a module spectrum over E.)

Recall that a spectrum is connective if its homotopy groups
vanish below some dimension. Every suspension spectrum is con-
nective. The inexperienced reader may find that some of his in-
tuition about spaces fails him when dealing with nonconnective
spectra. We will now give an important example which partly
illustrates this point.

LetX be a p-local finite complex of type n (with n > 0) (1.5.3)
with a vn-map (1.5.4)

ΣdX
f−→ X.

We will denote the corresponding suspension spectrum by X also.
Since spectra can be desuspended any number of times, we can
form a directed system

(A.2.11) X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · ·
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We want to look at the homotopy direct limit of this system.
Such limits are described below in A.5. We define

(A.2.12) X̂ = lim
→

Σ−diX,

which we call the telescope of f .

Proposition A.2.13. If X̂ is the telescope defined above, then

(i) K(n)∗(X̂) = K(n)∗(X),

(ii) K(m)∗(X̂) = 0 for m 6= n and

(iii) H∗(X̂) = 0.

Proof. Generalized homology commutes with homotopy direct
limits (A.5.7). By assumption, K(n)∗(f) is an isomorphism and
K(m)∗(f) = 0 form 6= n, which proves (i) and (ii). From 1.5.2(vi)
we see that H∗(f) = 0, which proves (iii). �

Hence X̂, which is nonconnective, has trivial ordinary homol-
ogy but it is not contractible, since it has nontrivial Morava K-
theory. On the other hand, any simply connected CW-complex
with trivial homology is contractible, and the same is true of any
connective spectrum. There is a Hurewicz theorem for connec-
tive spectra which says that the first nontrivial homology and
homotopy groups are isomorphic. There is no such theorem for
nonconnective spectra, where there is no first nontrivial homotopy
group.

A.3. Generalized homology and cohomology theories

Now we will discuss generalized homology theories. First we
need to recall some facts about ordinary homology, which is de-
scribed in detail in any textbook on algebraic topology.

For each space X one has a graded abelian group H∗(X),
i.e., an abelian group Hi(X) for each integer i. (These groups
vanish for negative i, but in generalized homology this need not
be the case.) Given a nonempty subspace A ⊂ X one has relative
homology groups H∗(X,A). In positive dimensions these are,
under mild hypotheses, the same as H∗(X/A), where X/A denotes
the topological quotient of X obtained by shrinking A to a single
point. A map f : (X,A) → (Y,B) is a continuous map from X
to Y that sends A ⊂ X to B ⊂ Y . It induces a homomorphism
f∗ : H∗(X,A)→ H∗(Y,B).
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A classical theorem of algebraic topology due to Eilenberg and
Steenrod [ES52] says that ordinary homology theory is character-
ized by the following axioms.

A.3.1. Eilenberg-Steenrod axioms
(a) Homotopy axiom: Homotopic maps f, g : (X,A)→ (Y,B)

induce the same homomorphism H∗(X,A)→ H∗(Y,B).
(b) Exactness axiom: For each pair (X,A) there is a natural

long exact sequence

· · · −→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂−→ Hn−1(A) −→ · · ·

where i∗ is the homomorphism induced by the inclusion map i : A→
X. Naturality means that given a map f : (X,A) → (Y,B), the
following diagram commutes.

Hn(A)
i∗ //

f∗
��

Hn(X)
j∗ //

f∗
��

Hn(X,A)
∂ //

f∗
��

Hn−1(A)

f∗
��

Hn(B)
i∗ //Hn(Y )

j∗ //Hn(Y,B)
∂ //Hn−1(B).

(c) Excision axiom: If C ⊂ A ⊂ X with the closure of C
contained in the interior of A, there is an isomorphism

H∗(X − C,A− C)
∼=−→ H∗(X,A).

(d) Dimension axiom: When X is a single point we have

Hi(X) =

{
Z if i = 0
0 otherwise.

Axioms for H∗(X;G), the homology of X with coefficients in
an abelian group G, can be obtained by modifying the Dimension
axiom. There are similar axioms for cohomology, obtained from
the above by reversing all the arrows.

If G is a ring R we have cup products in H∗(X;R), i.e.,
given u ∈ H i(X) and v ∈ Hj(X), their cup product u∪v (usually
denoted simply by uv) is defined in H i+j(X;R). This product is
commutative up to sign, i.e.,

vu = (−1)ijuv.
It comes from the composite

H∗(X)⊗H∗(X)
κ−→ H∗(X ×X)

∆∗
−→ H∗(X)
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where ∆∗ is induced by the diagonal embedding ∆ : X → X ×X
and κ is the Künneth homomorphism. The latter is an isomor-
phism if H∗(X) is flat as an R-module (in particular, if R is a
field or if H∗(X;Z) is torsion free) but not in general. One also
has cup product pairings in relative cohomology, namely

(A.3.2) H∗(X)⊗H∗(X,A) −→ H∗(X,A)

and

H∗(X,A)⊗H∗(X,B) −→ H∗(X,A ∪B).

The reduced homology of a space H∗(X) is the kernel of the

map H∗(X)→ H∗(pt.) and the reduced cohomology H
∗
(X) is

the cokernel of the map H∗(X)← H∗(pt.).
The following definition is due to G. W. Whitehead [Whi62].

Definition A.3.3. A generalized homology theory h∗ is
a covariant functor from the category of CW-complexes (or pairs
thereof) to the category of graded abelian groups that satisfies the
first three of the Eilenberg-Steenrod axioms. A generalized co-
homology theory h∗ is a contravariant functor with similar
properties.

Such theories can be constructed in the following way.

Definition A.3.4. Let E be an Ω-spectrum. The general-
ized cohomology theory associated with E, E∗, is defined
by

En(X) = [X,En]

and the generalized homology theory associated with E,
E∗, is defined by

En(X) = πn(E ∧X)

where E ∧ X denotes the smash product (5.1.3) of E with the
suspension spectrum associated with X.

Such a theory is multiplicative if E is a ring spectrum
(A.2.8). In that case there is a Hurewicz map

π∗(X) = π∗(S
0 ∧X)

h−→ E∗(X) = π∗(E ∧X)

induced by the unit map η : S0 → E.
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Notice that if X is also a ring spectrum then π∗(X) and E∗(X)
have natural ring structures and h is a ring homomorphism.

In particular ordinary homology and cohomology can be de-
fined in this way by taking E to be the Eilenberg-MacLane spec-
trum H. If E is the sphere spectrum S, the resulting homology
theory is stable homotopy, πS∗ (X). Another well known example
is classical complex K-theory; the Ω-spectrum K is defined by

Kn =

{
Z×BU if n is even
U if n is odd,

where U is the stable unitary group and BU is its classifying space.
A generalized cohomology theory E∗ has cup products similar

to the ones in ordinary cohomology provided that E is a ring spec-
trum (A.2.8). The multiplication on E, and therefore the product
in E∗(X), need not be commutative, even up to sign. For exam-
ple, the Morava K-theories at the prime 2 are noncommutative.

Theories constructed using A.3.4 also satisfy the following ax-
iom.

A.3.5 (Wedge axiom). If W is a (possibly infinite) wedge of
spaces ∨Xα then

h∗(W ) ∼=
∏

h∗(Xα)

and

h∗(W ) ∼=
⊕

h∗(Xα).

Note that for finite wedges this statement is a consequence of
the Eilenberg-Steenrod axioms.

The best tool for computing h∗(X) and h∗(X) for a space or
connective spectrumX is the Atiyah-Hirzebruch spectral sequence.
A more detailed account is given by Adams in [Ada74, III.7].

For homology it is constructed as follows. Assume for simplic-
ity that X is (−1)-connected if it is a spectrum. It has a skeletal
filtration

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
and each subquotient Xn/Xn−1 is a wedge of n-spheres. It follows
that

(A.3.6) h∗(X
n/Xn−1) = h∗(pt.)⊗H∗(Xn/Xn−1).
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Thus for each n there is a long exact sequence

−→ h∗(X
n−1) −→ h∗(X

n) −→ h∗(X
n/Xn−1) −→

in which every third term is known. These can be assembled into
an exact couple which gives the desired SS. Its E1-term consists
of the groups given in (A.3.6), which depends on the choice of
skeleta. However its E2-term depends only on H∗(X).

Theorem A.3.7. Let X be a space or a connective spectrum.
(a) For any generalized homology theory h∗ there is a SS con-

verging to h∗(X) with

Es,t2 = Hs(X;ht(pt.))

and

Es,tr
dr−→ Es−r,t+r−1r .

If h∗ is multiplicative and X is a ring spectrum or an H-space,
then this is a SS of algebras, i.e., each dr is a derivation.

(b) For any generalized cohomology theory h∗ there is a SS
converging to h∗(X) with

Es,t2 = Hs(X;ht(pt.))

and

Es,tr
dr−→ Es+r,t−r+1

r .

If h∗ is multiplicative and X is a space, then this is a SS of alge-
bras, i.e., each dr is a derivation.

A.4. Brown representability

The following extremely useful result is due to E. H. Brown
[Bro62]. A simplified proof is given by Spanier in [Spa66]. The
theorem was strengthened by Adams in [Ada71].

Theorem A.4.1 (Brown representability theorem). If h∗ is a
generalized cohomology theory satisfying the first three Eilenberg-
Steenrod axioms A.3.1 and the wedge axiom A.3.5 then there is
a spectrum E such that h∗ = E∗, and similarly for generalized
homology theories.
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Adams’ generalization requires h∗ to be defined only on the
category of finite CW-complexes.

This theorem can used to construct a spectrum by construct-
ing the cohomology theory it represents. For example, given spec-
tra X and Y , the graded group

[W ∧X,Y ]∗,

regarded as a functor on the spectrum W , is a cohomology theory
satisfying the wedge axiom. Therefore by A.4.1 there is a spec-
trum, denoted by F (X,Y ) and called the function spectrum,
such that

(A.4.2) [W ∧X,Y ]∗ ∼= [W,F (X,Y )]∗.

When X is finite and Y = S0, then F (X,Y ) is the Spanier-
Whitehead dual of X, DX.

We can also use A.4.1 to define products of spectra.

Proposition A.4.3. Given any collection of spectra {Xα}
there is a product spectrum

∏
αXα satisfying

[Y,
∏
α

Xα]∗ =
∏
α

[Y,Xα]∗

for any spectrum Y .

If there are only a finite number of factors, then the product
is the same as the coproduct, i.e., the wedge defined in (A.2.7).
Proof of A.4.3. The expression on the right, viewed as a functor
of Y , satisfies Brown’s axioms (i.e., the ones of A.4.1). It therefore
has a representing spectrum, which is the desired product.

Alternatively, assuming that each Xα in an Ω-spectrum, we
could define

∏
αXα explicilty by setting

(
∏
α

Xα)n =
∏
α

(Xα)n

and use A.2.5 (and the fact that looping commutes with infinite
Cartesian products) to show that it has the desired property. �
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A.5. Limits in the stable homotopy category

In this section we will give a brief review of homotopy di-
rect and inverse limits. A more detailed account can be found in
Bousfield-Kan [BK72].

Direct limits of abelian groups

First recall the definition of the direct limit of abelian groups.
Suppose we have groups and homomorphisms

A1
f1−→ A2

f2−→ A3
f3−→ · · ·

We have the shift homomorphism

(A.5.1)
⊕
i>0

Ai
s−→
⊕
i>0

Ai

defined by

s(ai) = ai − fi(ai)

for ai ∈ Ai. It is always a monomorphism. The direct limit is
defined by

(A.5.2) lim
→
Ai = coker s.

It has a universal property; for any collection of homomor-
phisms gi : Ai → B compatible under the fi there is a unique
homomorphism g : lim→Ai → B such that for each i the compos-
ite

(A.5.3) Ai −→ lim
→
Ai

g−→ B

is gi. To see this, note that the compatibility condition amounts
to requiring that the composite⊕

i>0

Ai
s−→
⊕
i>0

Ai
⊕gi−→ B

be trivial, so ⊕gi factors uniquely through coker s.
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Proposition A.5.4. Direct limits are exact, i.e., if we have a
commutative diagram

0 0 0
↓ ↓ ↓
A1 −→ A2 −→ A3 −→ · · ·
↓ ↓ ↓
B1 −→ B2 −→ B3 −→ · · ·
↓ ↓ ↓
C1 −→ C2 −→ C3 −→ · · ·
↓ ↓ ↓
0 0 0

where each column is exact, then we get a short exact sequence

0 −→ lim
→
Ai −→ lim

→
Bi −→ lim

→
Ci −→ 0.

Proposition A.5.5. Direct limits commute with tensor prod-
ucts, i.e.,

lim
→

(Ai ⊗B) = (lim
→
Ai)⊗B.

Homotopy direct limits of spectra

Now we want to mimic this construction in homotopy theory.
Let

X1
f1−→ X2

f2−→ X3
f3−→ · · ·

be a collection of spectra and continuous maps. As in (A.2.7) we
can define the infinite coproduct or wedge of these spectra,∨

i>0

Xi

with

π∗(
∨
i>0

Xi) =
⊕
i>0

π∗(Xi).

It distributes over smash products in the expected way, i.e.,

E ∧ (
∨
i>0

Xi) =
∨
i>0

(E ∧Xi),

so

E∗(
∨
i>0

Xi) =
⊕
i>0

E∗(Xi).
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Moreover, there is a shift map∨
i>0

Xi
σ−→
∨
i>0

Xi

inducing the shift homomorphism of (A.5.1) in homology.
Hence we can mimic (A.5.2) and define

(A.5.6) lim
→
Xi = Cσ,

the cofibre of σ. This gives

(A.5.7) E∗(lim→
Xi) = lim

→
E∗(Xi),

i.e., homology commutes with direct limits.
However, this limit does not have the universal property anal-

ogous to (A.5.3), i.e., compatible maps gi : Xi → Y do not lead
to a unique map g : lim→Xi → Y . Instead we have a long exact
sequence

· · · ←−
∏
i>0

[Xi, Y ]∗
σ∗
←−

∏
i>0

[Xi, Y ]∗
j∗←− [lim

→
Xi, Y ]∗ ←− · · ·

(We are using the fact that the group of maps from an infinite
coproduct is the infinite product of the groups of maps, i.e., co-
homology converts coproducts to products. This is essentially
Brown’s wedge axiom A.3.5.) The maps gi give us an element
in kerσ∗ and therefore in im j∗. However, σ∗ need not be onto,
so j∗ need not be one-to-one and we do not have a unique map
g : lim→Xi → Y .

This means that lim→Xi is not a categorical direct limit or
colimit. For this reason many authors, including Bousfield-Kan,
use the notation hocolim instead of lim→.

This construction can readily be generalized to other directed
systems of spectra. One of these is particularly useful. Given a
spectrum X, consider the set of all maps f : F → X with F
finite (5.1.1). We will call such a map a finite subspectrum of
X. These can be thought of as objects in a category in which a
morphism (F1, f1)→ (F2, f2) is a map g : F1 → F2 with f1 = f2g.
This category is directed because any pair of maps fi : Fi → X
(i = 1, 2) can be factored through the evident map F1 ∨ F2 → X.
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It follows that there is a canonical map

lim
→
Fα

λ−→ X.

Proposition A.5.8. The map λ above is a weak homotopy
equivalence for any spectrum X, i.e., every CW-spectrum is the
homotopy direct limit of its finite subspectra.

Sketch of proof. We need to show that π∗(λ) is an isomorphism.
It is onto because every element of π∗(X) is induced by a map
from a sphere (which is a finite spectrum) to X. To show that it
is one-to-one, let x ∈ ker λ. It is represented by as a map g from
a sphere to some finite subspectrum F of X, i.e., we have

Sn
g−→ F

f−→ X

with fg null. It follows that f factors through the mapping cone
Cg. Then x has trivial image in π∗(Cg) and hence in π∗(lim→ Fα).

�

Inverse limits of abelian groups

Homotopy inverse limits are defined in a similar way, once we
know that there are infinite products in the homotopy category
of spectra. Again we begin by recalling the definition for abelian
groups. Given

A1
f1←− A2

f2←− A3
f3←− · · · ,

there is a shift homomorphism∏
i>0

Ai
s←−
∏
i>0

Ai

defined by

s(a1, a2, a3, . . .) = (a1 − f1(a2), a2 − f2(a3), . . .).
This map is neither one-to-one nor onto in general, and the inverse
limit lim←Ai is ker s by definition. Its cokernel is denoted by
lim1
←Ai. Thus we have a 4-term exact sequence

0 −→ lim
←
Ai −→

∏
i>0

Ai
s−→
∏
i>0

Ai −→ lim
←

1Ai −→ 0.

Inverse limits have a universal property similar to that of direct
limits, namely a collection of homomorphisms gi : B → Ai with
figi+1 = gi induces a unique homomorphism g : B → lim→Ai.
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The failure of the shift map s to be onto means that inverse
limits do not preserve exactness. Instead we have the following
result.

Proposition A.5.9. If we have a commutative diagram

0 0 0
↓ ↓ ↓
A1 ←− A2 ←− A3 ←− · · ·
↓ ↓ ↓
B1 ←− B2 ←− B3 ←− · · ·
↓ ↓ ↓
C1 ←− C2 ←− C3 ←− · · ·
↓ ↓ ↓
0 0 0

where each column is exact, then we get a 6-term exact sequence

0 −→ lim
←
Ai −→ lim

←
Bi −→ lim

←
Ci −→ lim

←
1Ai −→ lim

←
1Bi −→ lim

←
1Ci −→ 0.

The group lim1
← is a nuisance. The following example is in-

structive.

Example A.5.10. Consider the commutative diagram

Z

p
��

Z

p2

��

poo Z

p3

��

poo . . .oo

Z

��

Z

��

∼=oo Z

��

∼=oo . . .oo

Z/(p) Z/(p2)
ρoo Z/(p3)

ρoo . . .oo

with exact columns. Then the inverse limit of the top row is trivial,
while those of the lower two rows are the integers Z and the p-adic
integers Zp. It follows from A.5.9 that lim1

← for the first row is
the group Zp/Z. It is uncountable, and the topology it inherits
from Zp is the trivial one since Z is dense in Zp.

If we tensor the bottom row with the rationals Q, we see that
tensor products do not commute with inverse limits since

lim
←

(Z/(pi)⊗Q) = lim
←

(0) = 0

but (
lim
←

Z/(pi)
)
⊗Q = Zp ⊗Q = Qp,
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the p-adic numbers.

There are some simple conditions which guarantee that lim1
←

vanishes.

Definition A.5.11. An inverse system of abelian groups

A1 ←− A2 ←− A3 ←− · · ·

is Mittag-Leffler if for each i the decreasing series of subgroups

Ai ⊃ im Ai+j

stabilizes after a finite number of steps, i.e., it is independent of
j for j � 0.

Proposition A.5.12. If the inverse system {Ai} as above is
Mittag-Leffler, then

lim
←

1Ai = 0.

In particular this is the case when

• each group Ai is finite or
• each homomorphism Ai ← Ai+1 is onto.

More information on this topic can be found in [Ada74, III.8].

Homotopy inverse limits of spectra

Now suppose we have an inverse system of spectra

X1
f1←− X2

f2←− X3
f3←− · · · .

Using A.4.3 we can form the infinite product
∏
Xi. It does

not behave well with respect to smash products, i.e., it is not true
that ∏

i

(Xi ∧ Y ) = (
∏
i

Xi) ∧ Y.

(This is analogous to the fact that infinite products of abelian
groups do not commute with tensor products.) One can construct
a map from the right hand side to the left hand side, but nothing
can be proved about it in general.

This means that in general we have no way of computing the
homology or cohomology of an infinite product. Two situations
where we can are the following.
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Proposition A.5.13. (a) Let E and all the Xi be connective
spectra and suppose that for each n, πn(Xi) = 0 for all but finitely
many i. (This occurs for example when the connectivity of Xi

increases without bound as i increases.) Then

E∗(
∏

Xi) =
⊕

E∗(Xi).

By this we mean that for each n, En(
∏
Xi) =

⊕
En(Xi). For

each n only finitely many En(Xi) are nontrivial.
(b) If the spectrum E is finite then we have

E∗(
∏

Xi) =
∏

E∗(Xi).

for any Xi.

We can construct a shift map∏
Xi

σ−→
∏

Xi

as follows. It suffices to describe the composite∏
Xi

σ−→
∏

Xi
pj−→ Xj

for each j > 0, where pj is the evident projection. The map we
want is given by

pjσ = pj − fjpj+1.

(The minus sign refers to the additive groups structure in [
∏
Xi, Xj ].)

Definition A.5.14. The inverse limit of spectra lim←Xi is
the fibre (i.e., the desuspension of the cofibre) of the shift map σ
defined above.

As in the case of the direct limit of spectra, this does not
have the universal property enjoyed by the inverse limit of abelian
groups, so it is not an inverse limit in the categorical sense.

From A.5.13(b) we can deduce the following.

Proposition A.5.15. For any finite spectrum E and each in-
teger n there is a functorial short exact sequence

0 −→ lim
←

1En+1(Xi) −→ En(lim←
Xi) −→ lim

←
En(Xi) −→ 0.

In particular there is such a short exact sequence for the homotopy
of an inverse limit.

This is closely related to the Milnor short exact sequence
[Mil62] for the cohomology of a direct limit.
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Proposition A.5.16. For any cohomology theory E∗ and each
integer n there is a short exact sequence

0 −→ lim
←

1En−1(Xi) −→ En(lim
→
Xi) −→ lim

←
En(Xi) −→ 0.

A.6. The Adams spectral sequence

The Adams spectral sequence is a device for computing the
homotopy groups of a spectrumX with the help of a ring spectrum
E. Our intention here is to give a minimal introduction to it, just
enough to make the references to it in the text intelligible. A much
more thorough treatment and numerous references can be found
in [Rav86].

The Adams spectral sequence is used three times in the text,
in two very different ways. In Chapter 6 it is used to prove the
periodicity theorem by constructing a map with certain properties.
In this case we are using the classical Adams spectral sequence,
i.e., the one based on ordinary mod p homology, in which the
E2-term can be identified with an Ext group over the Steenrod
algebra. The critical point here is that these groups have a certain
vanishing line, i.e., there are constants m and c such that Exts,t

vanishes when the point (s, t) lies above the line s = m(t− s) + c.
It is used in a similar way in Chapter 9 to prove 9.1.6. In this

case we are using a nonclassical Adams spectral sequence, i.e.,
one based on a generalized homology theory. The object here is
to show that a certain map is nilpotent. Again the crucial point is
to establish a vanishing line. This is done not by homological cal-
culations but by the construction of an Adams resolution (A.6.1)
with suitable connectivity properties.

In Chapter 8 the Adams spectral sequence is used in a very
different way to prove 7.5.6 and 7.5.7. Here the homology theory
being used is not connective, which means that the convergence
question is very delicate. We rely heavily on some results of Bous-
field [Bou79b].

The E2-term of the Adams spectral sequence can be defined
and computed in strictly algebraic terms, although these computa-
tions (especially when X is a finite complex) can be very difficult.
In the most favorable cases the SS can be shown to collapse for
formal reasons, i.e., there is no room for any nontrivial differen-
tials, but failing this, one needs some additional geometric insight
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to compute the differentials in it. The same can be said of group
extensions in the E∞-term. The SS is known to converge to π∗(X)
under certain easily verifiable hypotheses on X and E.

Definition A.6.1. The canonical Adams resolution for
X based on E is the diagram

X = X0

f0
��

X1

f1
��

g0oo X2

f2
��

g1oo . . .
g1oo

E ∧X0 E ∧X1 E ∧X2

where the map Xs → E ∧ Xs is induced by the unit in E, and
Xs+1 is its fibre.

More generally a (not necessarily canonical) Adams resolu-
tion for X based on E is a similar diagram with E ∧ Xs re-
placed by a spectrum Ks such that both it and E ∧Xs are retracts
of E ∧Ks. Xs+1 is still the fibre of fs.

See [Rav86, 2.2] for more discussion.
If we denote by E the fibre of the unit map S0 → E, in the

canonical case we have

Xs = E
(s) ∧X.

Each cofibre sequence

(A.6.2) Xs+1
gs−→ Xs

fs−→ Ks
∂s−→ ΣXs+1

gives a long exact sequence of homotopy groups. These consti-
tute an exact couple, and a standard construction in homological
algebra associates a SS with such data.

Definition A.6.3. The Adams spectral sequence for X
based on E is the SS based on the exact couple described above.
The Er-term will be denoted by Es,tr (X), with

dr : E
s,t
r (X) −→ Es+r,t+r−1r (X).

Es,tr (X) vanishes for s < 0, so

Es,tr+1(X) ⊂ Es,tr (X) for r > s

and we define

Es,t∞ (X) =
⋂
r>s

Es,tr (X).
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When E is the mod p Eilenberg-MacLane spectrum, we will
sometimes refer to the Adams spectral sequence as the classical
Adams spectral sequence. When E is MU or BP , it is often
called the Adams-Novikov spectral sequence.

There is a generalization of the Adams spectral sequence for
computing [W,X]∗ rather than π∗(X). In the E1-term, one re-
places π∗(Ks) by [W,Ks]∗. For finite W it will converge whenever
the Adams spectral sequence for π∗(X) does.

Under favorable circumstances (i.e., when the Adams spectral

sequence converges), Es,t∞ (X) is a subquotient of πt−s(X). These
subquotients are associated with the filtration of π∗(X) defined as
follows.

Definition A.6.4. A map f : Sd → X has Adams filtration
≥ s if it can be factored as

Sd
f1−→W1

f2−→W2 · · ·
fs−→ X

where E∗(fi) = 0 for each i. (The spectra Wi for 0 < i < s are
arbitrary.)

In particular, an element has Adams filtration 0 if it is detected
by homology and

(A.6.5) E0,∗
∞ = im

(
π∗(x)

η−→ E∗(X)
)
.

Having defined the Adams spectral sequence, there are two
questions we must deal with, namely

• identification of the E2-term, and
• convergence.

The E1 and E2-terms

Recall (A.2.9) that the ring spectrum E is flat if E ∧ E is
equivalent to a wedge of various suspensions of E. All of the
E we will use here, e.g. MU , BP , X(n), K(n) and the mod p
Eilenberg-MacLane spectrum H/(p), are flat. Being flat means
that

E∗(E ∧X) = E∗(E)⊗π∗(E) E∗(X).
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When E is flat we can identify the Adams E2-term as a certain
Ext group. We will describe this first in the classical case E =
H/(p). The Adams E1-term is the cochain complex
(A.6.6)
2.5em[E∗−2(X2)]E∗(X0)e, t(f1∂0)∗E∗−1(X1)e, t(f2∂1)∗E∗−2(X2)e, t(f3∂2)∗· · ·

The cofibre sequence of (A.6.2) induces a short exact sequence
in E-homology, namely

0 −→ E∗(Xs)
fs∗−→ E∗(E ∧Xs)

∂s∗−→ E∗−1(Xs−1)−→0.

We can splice these together and get a long exact sequence
(A.6.7)
0 −→ E∗(X)−→E∗(E∧X)−→E∗−1(E∧X1)−→E∗−2(E∧X2)−→· · · .

When E = H/(p) we can dualize this to
(A.6.8)
0←− H∗(X)←−H∗(E∧X)←−H∗−1(E∧X1)←−H∗−2(E∧X2)←−· · · .

H∗−1(E∧Xs) is a free module over the Steenrod algebra A, so we
have a free A-resolution of H∗(X). Furthermore,

π∗(E ∧ Y ) = HomA(H
∗(Y ),Z/(p)),

so applying the functor HomA(·,Z/(p)) to (A.6.8) gives the E1-term
(A.6.6). It follows that the E2-term, i.e., the cohomology of this
cochain complex, is ExtA(H

∗(X),Z/(p)). Thus we have

Theorem A.6.9 (Adams). If X is a connective p-local spec-
trum of finite type (i.e., each of its homotopy groups is finitely
generated), then there is a SS converging to π∗(X) with

Es,t2 (X) = Exts,tA (H∗(X),Z/(p))

(where the cohomology is mod p).

In order to identify the E2-term for more general E, we need
to recall the following. When E is flat, E∗(E) is a Hopf algebroid
(see B.3.7 below) over which E∗(X) is a comodule (B.3.9). The
Adams E2-term is Ext in the category of comodules over E∗(E).
This is defined and discussed at length in [Rav86, A1.2].

Very briefly, Ext in the category of R-modules can be de-
scribed in terms of derived functors of Hom. Ext in the category
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of comodules over a Hopf algebroid can be similarly described in
terms of derived functors of the cotensor product, defined below
in B.3.11.

Since the topological dimension is the number t−s, the Adams
spectral sequence is typically depicted in a chart where the hori-
zontal coordinate is t−s and the vertical one is s. The differential
dr is a line that goes up r units while going one unit to the left.

Convergence

Given an E-based Adams resolution {Xs} (A.6.1), let X ′s be
the cofibre of the map Xs → X. In particular, X ′0 = pt. and, in
the canonical case, X ′1 = E ∧X. Let

(A.6.10) E X̂ = lim
←
X ′s,

where the inverse limit is as defined in A.5.14. Bousfield calls
it the E-nilpotent completion of X. He shows in [Bou79b, 5.8]
that it is independent of the choice of resolution. The Adams
spectral sequence converges to its homotopy provided that certain
lim1 groups vanish; see [Bou79b, 6.3]. Therefore the convergence
question is that of the relation between X and E X̂.

When X is connective and E is a connective ring spectrum,
then E X̂ is a functor of X depending only on the arithmetic
properties of π0(E). Precise statements can be found in Theorems
6.5, 6.6 and 6.7 of [Bou79b]. Adams’ theorem A.6.9 above is a
special case.

More generally one might hope that E X̂ is the Bousfield lo-
calization LEX (7.1.1). (It follows easily from 7.1.5 and 7.1.2 that
E X̂ is local.) Bousfield [Bou79b, 6.10] shows that this is the case
when X is E-prenilpotent (7.1.6). He also shows in that case that
the E∞ has a horizontal vanishing line, i.e., there is an integer s0
such that Es,t∞ = 0 for all s > s0. This is to be expected since
the E-nilpotent spectrum LEX has a finite ‘E-based Postnikov
system.’

A more delicate question is for which E the Adams spec-
tral sequence always converges to π∗(LEX), i.e., all spectra are
E-prenilpotent. The following result ([Bou79b, 6.12]) deals with
the case when π∗(E) is countable.



152 A. TOOLS FROM HOMOTOPY THEORY

Theorem A.6.11 (Bousfield’s convergence theorem). Let E
be a ring spectrum with π∗(E) countable. Then all spectra are
E-prenilpotent if and only if the E-based Adams spectral sequence
satisfies the following condition: There exists a positive integer s0
and a function ϕ such that for every finite spectrum X,

Es,∗∞ (X) = 0 for s > s0

and
Es,∗r (X) = Es,∗∞ (X) for r > ϕ(s).

This condition says that there is a fixed horizontal vanishing
line at E∞ for all finite complexes and that the rate of convergence
depends only on the filtration, not on the stem or the finite com-
plex in question. A stronger condition would require the existence
of integers r0, s0 > 0 such that for all finite X,

Es,∗r0 (X) = 0 for s > s0.

A relative form of this theorem is given in 8.2.6.



APPENDIX B

Complex bordism and BP -theory

In this Appendix we will outline the salient properties of com-
plex bordism theory and BP -theory from a more technical point of
view. The ideas presented here should make most of the literature
on the subject intelligible.

The first two sections outline the geometric foundations of
the theory, namely its connection with vector bundle and Thom
spectra. In Section B.3 we take a sharp turn toward algebra
and introduce Hopf algebroids, which are indispensable for the
computations we need to make. The Hopf algebroid MU∗(MU),
the complex bordism analog of the dual Steenrod algebra, is de-
scribed in Section B.4. BP -theory and the relevant Hopf alge-
broid, BP∗(BP ), are introduced in Section B.5.

In Section B.6 we discuss the Landweber exact functor the-
orem, a very useful tool for constructing certain new generalized
homology theories. Morava K-theory is introduced in Section B.7,
and in B.8 we introduce the chromatic spectral sequence and the
change-of-rings isomorphism.

B.1. Vector bundles and Thom spectra

The purpose of this section is to give the definition of the
MU -spectrum, B.1.11. In order to do this we must define vec-
tor bundles (B.1.1), their classifying spaces (B.1.6), Thom spaces
(B.1.8) and related constructions. The best reference for this ma-
terial is Milnor-Stasheff [MS74].

Definition B.1.1. A complex vector bundle ξ of dimen-
sion n over a space B is a map p : E → B such that each point
b ∈ B has a neighborhood U and a homeomorphism hU : p−1(U)→
U ×Cn such that the composite

p−1(U)
hU−→ U ×Cn p1−→ U

153
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(where p1 denotes projection onto the first factor U) is the re-
striction of p to p−1(U). Moreover when two such neighborhoods
U and V overlap, let h1 and h2 denote the restrictions of hU and
hV to p−1(U ∩ V ). Then the composite

(U ∩ V )×Cn h−1
2−→ p−1(U ∩ V )

h1−→ (U ∩ V )×Cn

has the form

h1h
−1
2 (b, z) = gU,V (b)(z)

for b ∈ U ∩V and z ∈ Cn, where gU,V is a map from U ∩V to the
general linear group Gl(n,C). B is the base space of ξ, E is its
total space, Cn is its fibre and p is its projection map. The
maps gU,V are called transition functions.

One can also define real vector bundles in a similar way. In
practice it is seldom necessary to describe the transition functions
explicitly.

We offer two examples of real and complex vector bundles.

Example B.1.2. (a) Let X be any space, E = X × Cn and
p : E → X the projection onto the first factor. The is the trivial
vector bundle over X. The transition functions for it are all
constant maps.

(b) Let X = GC
n,k, the space of n-dimensional complex linear

subspaces of Cn+k, topologized so that the set of subspaces inter-
secting a given open subset of Cn+k is open in GC

n,k. It is a smooth
compact orientable manifold without boundary of dimension 2nk
called the Grassmannian. (The real analogue Gn,k is unoriented
and has dimension nk.) Let

E = {(x, v) ∈ GC
n,k ×Cn+k : v ∈ x},

where ‘v ∈ x’ means that the vector v belongs to the subspace x.
The map p : E → X is defined by p(x, v) = x. We will denote this
bundle by γCn,k.

For the real case of B.1.2(b) with n = k = 1, the base space is
RP 1, the real projective line, which is homeomorphic to S1. The
total space E is homeomorphic to the interior of the Möbius strip.

Definition B.1.3. If p : E → Y is a complex vector bundle ξ
over Y and f : X → Y is continuous, then the induced bundle
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f∗(ξ) over X is the one with total space

f∗(E) = {(x, e) ∈ X × E : f(x) = p(e)}
and projection map given by p(x, e) = x.

Definition B.1.4. If ξ1 and ξ2 are vector bundles (real or
complex) of dimensions n1 and n2 over spaces X1 and X2 with
total spaces E1 and E2, then their external sum ξ1 × ξ2 is a
bundle of dimension n1 + n2 over X1 ×X2 given by the map

E1 × E2
p1×p2−−−−−−−−→ X1 ×X2

When X1 = X2 = X, the Whitney sum ξ1 ⊕ ξ2 is the bundle
over X induced from ξ1 × ξ2 by the diagonal map X → X ×X.

Proposition B.1.5. (a) Let i : GC
n,k → GC

n,k+1 be the map in-

duced by the standard inclusion of Cn+k into Cn+k+1, and sending
an n-dimensional subspace x of Cn+k to the corresponding one in
Cn+k+1. Then

i∗(γCn,k+1) = γCn,k.

(b) Let j : GC
n,k → GC

n+1,k be the map induced by the standard

inclusion of Cn+k into Cn+k+1, and sending an n-dimensional
subspace x of Cn+k to the (n+1)-dimensional subspace of Cn+k+1

spanned by x and a fixed vector not lying in Cn+k. Then

j∗(γCn,k+1) = γCn,k ⊕ ε,
where ε denotes the trivial complex line bundle.

Theorem B.1.6. Let BU(n) be the union of the spaces GC
n,k

under the inclusion maps i of B.1.5(a). (It is called the classi-
fying space for the unitary group U(n).) It is characterized
(up to homotopy equivalence) by the fact that ΩBU(n) ' U(n).

There is a unique n-dimensional complex vector bundle γCn
over it which induces each of the bundles γCn,k. This bundle is
universal in the sense that any such bundle over a paracompact
space X is induced by a map X → BU(n) and two such bundles
over X are isomorphic if and only they are induced by homotopic
maps.

Similar statements hold in the real case. The space is called
BO(n), the classifying space for the orthogonal group O(n),
and its loop space is equivalent to O(n). The corresponding uni-
versal bundle is denoted by γn.
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Theorem B.1.7. The cohomology of BU(n) is given by

H∗(BU(n);Z) = Z[c1, c2, · · · , cn]
with |ci| = 2i. The generator ci is called the i Chern class of the
bundle γCn .

In the real case we have

H∗(BO(n);Z/(2)) = Z/(2)[w1, w2, · · · , wn]
with |wi| = i. The generator wi is called the i Stiefel-Whitney
class of the bundle γn.

For a paracompact base space X one can define an inner prod-
uct on the vector space p−1(x) for each x ∈ X which varies con-
tinuously with b. Such a structure is called a Hermitian metric
on ξ.

Definition B.1.8. Given a complex vector bundle ξ with a
Hermitian metric over a space B, the disk bundle D(ξ) consists
of all vectors v with |v| ≤ 1 and the sphere bundle S(ξ) con-
sists of all vectors v with |v| = 1. The Thom space T (ξ) is the
topological quotient D(ξ)/S(ξ). (Its homeomorphism type is inde-
pendent of the choice of metric.) Equivalently, if the base space
B is compact, T (ξ) is the one-point compactification of the total
space E. In particular the Thom space T (γCn ) (B.1.6) is denoted
by MU(n), and its real analog by MO(n). A map f : X → B
leads to a map T (f) : T (f∗(ξ))→ T (ξ) called the Thomification
of f .

Proposition B.1.9. (a) If the complex vector bundle ξ is iso-
morphic to the Whitney sum ξ′⊕ε, where ε denotes the trivial line
bundle, then

x2T (ξ) = Σ2T (ξ′).

In the real case,
T (ξ) = ΣT (ξ′).

(b) If ξ1 × ξ2 is an external sum (as in B.1.4) then

T (ξ1 × ξ2) = T (ξ1) ∧ T (ξ2),
i.e., Thomification converts external sums to smash products.

Note that if the base space B is a single point, then the Thom
space is S2n. Thus for each point b ∈ B the inclusion map Thomi-
fies to a map S2n → T (ξ). There is an element u ∈ H2n(T (ξ);Z)
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(unique up to sign if B is path connected) called the Thom class
which restricts to a generator of H2n(S2n) under each of these
maps.

We remark that D(ξ) is homotopy equivalent to B, so we have
a relative cup product pairing (A.3.2)

H∗(B)⊗H∗(D(ξ), S(ξ)) ∼= H∗(D(ξ))⊗H∗(D(ξ), S(ξ)) −→ H∗(D(ξ), S(ξ))

and the latter is isomorphic to H∗(T (ξ)) in positive dimensions.
Using this we have

Theorem B.1.10 (Thom isomorphism theorem). (a) With no-
tation as above, cup product with the Thom class u ∈ H2n(T (ξ))
induces an isomorphism

H i(B)
Ψ−→ H2n+i(T (ξ))

called the Thom isomorphism.
(b) In the real case there is a Thom class

u ∈ Hn(T (ξ);Z/(2))

inducing a similar isomorphism in mod 2 cohomology. An integer
Thom class is defined if the bundle satisfies a certain orientability
condition. This condition is always met if the base space is sim-
ply connected, or more generally if the first Stiefel-Whitney class
w1(ξ) vanishes.

Now we are ready to define the Thom spectra MU and MO.

Definition B.1.11. MU , the Thom spectrum for the uni-
tary group, is defined by

MU2n = MU(n) and

MU2n+1 = ΣMU(n).

The required map ΣMU2n → MU2n+1 is the obvious one, while
the map

Σ2MU(n) = ΣMU2n+1 −→MU2n+2 =MU(n+ 1)

is as follows. There is a map j : BU(n)→ BU(n+ 1) induced by
the maps j : GC

n,k → GC
n+1,k of B.1.5(b), with

j∗(γCn+1) = γCn ⊕ ε.
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Hence the Thomification of j is (by B.1.9) the desired map

Σ2MU(n) −→MU(n+ 1).

In the real case, MO, the Thom spectrum for the orthog-
onal group, is given by

MOn =MO(n).

Definition B.1.12. Given a map f : Y → BU , the associ-
ated Thom spectrum X is defined as follows. The restriction
of f to the 2n-skeleton Y 2n of Y factors uniquely through BU(n)
and hence (B.1.6) defines an n-dimensional complex vector bundle
over Y 2n. X2n is its Thom space and X2n+1 = ΣX2n.

The Thom spectrum associated with a map Y → BO can be
defined similarly.

Note that MU and MO as we have defined them here are nei-
ther suspension spectra nor Ω-spectra, although they are equiva-
lent to the latter by (A.2.4).

We still need to explain the multiplicative structure on MU .
We need a map

MU ∧MU
m−→MU

satisfying the conditions of A.2.8. In this case the naive definition
(5.1.3) of the smash product of two spectra is sufficient, because
we will produce maps of spaces

MU(n1) ∧MU(n2)
m−→MU(n1 + n2).

We have a map

GC
n1,k1 ×G

C
n2,k2

m−→ GC
n1+n2,k1+k2

which sends a pair of subspaces to their direct sum, and

m∗(γCn1+n2,k1+k2) = γCn1,k1 × γ
C
n2,k2 .

Letting k1 and k2 go to ∞ we get

BU(n1)×BU(n2)
m−→ BU(n1 + n2)

with
m∗(γCn1+n2

) = γCn1
× γCn2

.

The induced map in cohomology (see B.1.7) is the Whitney
sum formula,

(B.1.13) m∗(ci) =
∑
j+k=i

cj ⊗ ck
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for 0 ≤ i ≤ n1 + n2, where it is understood that c0 = 1, and
cj ⊗ ck = 0 if j > n1 or k > n2. This can be rewritten as

m∗(
∑
i≥0

ci) =
∑
j≥0

cj ⊗
∑
k≥0

ck.

There is a similar formula in the real case involving Stiefel-
Whitney classes.

By B.1.9, m Thomifies to a map

MU(n1) ∧MU(n2)
T (m)−−−−−−−−→ MU(n1 + n2).

These are the maps needed to make MU a ring spectrum.
We can use the Whitney sum formula (B.1.13) to compute

H∗(MU) as a ring as follows. It tells us that the map H∗(m) is
monomorphic, so H∗(m) is onto. The same goes for the iterated
Whitney sum map

BU(1)×BU(1)× · · · ×BU(1)
m(n)−→ BU(n)

with n factors in the source. We know that

GC
1,n+1 = CPn (complex projective n-space), so

BU(1) = CP∞ and

H∗(BU(1)n) = Z[x1, x2, · · · , xn]

with |xi| = 2.
(B.1.13) implies that m(n)∗(cj) is the j elementary symmetric

function in the xi, i.e.,

m(n)∗(

n∑
j=0

cj) =

n∏
i=1

(1 + xi).

To describe the situation in homology, let

(B.1.14) bi ∈ H2i(BU(1))

be the generator dual to ci1. Equivalently, bi is the image of the
fundamental homology class in CP i under the usual inclusion
map.

We will denote the class

m(n)∗(bi1 ⊗ bi2 ⊗ · · · ⊗ bin) ∈ H∗(BU(n))
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by bi1bi2 · · · bin . A monomial of degree m < n will denote the
image of the corresponding class in H∗(BU(m)). This ‘multipli-
cation’ is commutative due to the symmetry in the Whitney sum
formula (B.1.13).

This notation is slightly misleading in that there is no natural
multiplication in H∗(BU(n)), i.e. there is no map

BU(n)×BU(n) −→ BU(n)

with suitable properties. However there is a natural multiplication
in H∗(MU). From these considerations and B.1.10 we can deduce
the following.

Theorem B.1.15. The homology of the spectrum MU is given
by

H∗(MU) = Z[b1, b2, · · · ]
with |bi| = 2i. Moreover, the image of H∗(MU(n)) is the subgroup
spanned by all monomials of degree ≤ n.

This notation is slightly abusive for the following reason. The
generator bi ∈ H2i(MU) pulls back to H2i+2MU(1). An easy
geometric exercise shows that

T (γC1,k) = CP k+1

so
MU(1) = CP∞.

The class here that maps to bi ∈ H2i(MU) is bi+1 ∈ H2i+2(CP
∞).

B.2. The Pontrjagin-Thom construction

In this section we will explain the relation between MU and
cobordism of complex manifolds. While this connection was im-
portant historically, from the point of view of this book it is merely
an amusing diversion. The results stated in this section are not
needed elsewhere. Again we refer the reader to [MS74] for a
more detailed account of what follows. Further information on
cobordism theory can be found in Stong’s book [Sto68].

Let Mk be a compact smooth k-dimensional manifold with-
out boundary smoothly embedded in the Euclidean space R2n+k.
The tubular neighborhood theorem asserts that M has an
open neighborhood V ⊂ R2n+k with a map p : V → M (which
is the identity on M itself) which is a 2n-dimensional real vector
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bundle over M called its normal bundle ν. One has a disk bun-
dle D(ν) ⊂ V , which is a (2n + k)-dimensional manifold whose
boundary is the sphere bundle S(ν). We get a map R2n+k → T (ν)
by sending everything outside of D(ν) to the base-point (i.e., the
image of S(ν)) in T (ν). This map extends to S2n+k, the one-point
compactification of R2n+k.

Suppose that this bundle admits a complex linear structure,
i.e., it is an n-dimensional complex vector bundle. Then ν is
induced by a mapM → BU(n), which Thomifies to a map T (ν)→
MU(n). The composition

S2n+k −→ T (ν) −→MU(n)

is denoted by ΦM , called the Pontrjagin-Thom construction
on M . (Strictly speaking, it is determined not just by M but by
the embedding ofM in R2n+k.) Note that we can recoverM from
ΦM as the preimage of BU(n) ⊂MU(n).

Now we wish to define an equivalence relation on embedded
manifolds which translates to homotopy under this Φ.

Definition B.2.1. Two compact smooth k-dimensional man-
ifolds without boundary smoothly embedded in the Euclidean space
R2n+k, M1 and M2 are cobordant if there is a compact smooth
(k + 1)-dimensional manifold

W ⊂ R2n+k × [0, 1]

such that

W ∩R2n+k × {0} =M1

and

W ∩R2n+k × {1} =M2.

W is called a cobordism between M1 and M2. It is a complex
cobordism if its normal bundle in R2n+k×[0, 1] admits a complex
linear structure.

This definition should be compared with 3.1.1; the difference
is that there the maps are not required to be embeddings. Cobor-
dism as defined in B.2.1 is also an equivalence relation and the set
of cobordism classes forms a group under disjoint union, which we
denote by ΩUk,n.
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We can apply the Pontrjagin-Thom construction to W and
obtain a map

ΦW : Sn+k × [0, 1] −→MU(n)

which is a homotopy between ΦM1 and ΦM2 . Thus we have a
homomorphism

ΩUk,n
Φ−→ πk+2n(MU(n)).

TheThom transversality theorem asserts that any map S2n+k →
MU(n) can be approximated by (and is therefore homotopic to)
one obtained by the Pontrjagin-Thom construction. This implies
that Φ is onto. A similar argument shows that every homotopy
between maps given by the Pontrjagin-Thom construction can be
approximated by one coming from a cobordism, which shows that
Φ is one-to-one. Hence we have

Theorem B.2.2 (Thom cobordism theorem). The Pontrjagin-
Thom homomorphism

Φ: ΩUk,n → π2n+k(MU(n))

above is an isomorphism.

This theorem translates the geometric problem of determining
the cobordism group ΩUk,n into that of computing the homotopy

group π2n+k(MU(n)). Both groups are known to be independent
of n if n is large enough (roughly if 2n > k). For large n the
cobordism group is denoted simply by ΩUk . These groups form a
graded ring under Cartesian product of manifolds.

The homotopy groups for large n are the homotopy groups of
the spectrum MU defined by MU2n = MU(n) and MU2n+1 =
ΣMU(n). Indeed it was this type of example that motivated the
definition of spectra (5.1.1) in the first place. π∗(MU) will be
described below in B.4.1.

B.3. Hopf algebroids

In this section we will give the definition of a Hopf algebroid
B.3.7, of which MU∗(MU) is the motivating example. This is a
generalization of the definition of a Hopf algebra, of which the
dual Steenrod algebra A∗ is a classical example. Much more in-
formation on this topic can be found in [Rav86, A1].
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In order to motivate the definition we need to recall some
classical ideas from algebraic topology. For more information, see
[Rav86, 2.2] and [Ada74, III.12].

Let E be H/p, the mod p Eilenberg-MacLane spectrum, so
E∗(X) = H∗(X;Z/(p)). This is a graded Z/(p)-vector space
whose structure is enriched by the action of certain natural opera-
tions called Steenrod operations. These form the Steenrod algebra
A over which H∗(X;Z/(p)) has a natural module structure. In
our notation this structure is a map

A⊗ E∗(X) −→ E∗(X)

with certain properties. Taking the Z/(p)-linear dual we get a
homomorphism

(B.3.1) A∗ ⊗ E∗(X)
ψ←− E∗(X)

with similar properties. Here A∗ denotes the linear dual of the
Steenrod algebra. We call ψ a comodule structure on E∗(X).

The Steenrod algebra A can be identified with the mod p co-
homology of the mod p Eilenberg-MacLane spectrum E, i.e., with
E∗(E). It follows that its dual A∗ can be identified with E∗(E)
and we can rewrite (B.3.1) as

(B.3.2) π∗(E ∧ E ∧X)
ψ←− π∗(E ∧X).

It can be shown that this is induced by the map

E ∧ E ∧X
E∧η∧X←−−−−−−−− E ∧ S0 ∧X = E ∧X

where η : S0 → E is the unit map for the ring spectrum E.
The homomorphism ψ of (B.3.2) can be defined for any ring

spectrum E, including MU . We have an isomorphism

π∗(E ∧ E ∧X) = E∗(E)⊗E∗ E∗(X)

under the assumption that E is flat in the sense of A.2.9. Both
H/p and MU are flat, while H (the integer Eilenberg-MacLane
spectrum) is not.

Now we will describe the formal properties of E∗(E) and the
map ψ of (B.3.2) for a flat ring spectrum (A.2.9) E. In the classical
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case (i.e., E = H/p), E∗(E), the dual Steenrod algebra A∗, is a
commutative Hopf algebra. This means it has structure maps

(B.3.3)

A∗
∆−→ A∗ ⊗A∗ (coproduct)

A∗ ⊗A∗
µ−→ A∗ (product)

A∗
c−→ A∗ (conjugation)

A∗
ε−→ Z/(p) (augmentation)

Z/(p)
η−→ A∗ (unit)

satisfying certain conditions.
The most concise way to specify these conditions is to say

that A∗ is a cogroup object in the category of graded commutative
Z/(p)-algebras with unit. This means that for any other such al-
gebra C, there is a natural group structure on the set Hom(A∗, C)
of graded algebra homomorphisms. In particular, the coproduct
∆ on A∗ induces a map

Hom(A∗, C)×Hom(A∗, C) = Hom(A∗ ⊗A∗, C)
∆∗
−→ Hom(A∗, C)

which is the group operation on Hom(A∗, C). The conjugation c
induces the map that sends each element to its inverse and the
augmentation ε gives the identity element. The other two maps,
the product µ and the unit η, define A∗ itself as a graded commuta-
tive algebra with unit. With this in mind, the defining properties
of a group can be translated into the properties of the structure
maps that define a graded commutative Hopf algebra such as A∗.

The following explicit description of the dual Steenrod algebra
A∗ is originally due to Milnor [Mil58].

Theorem B.3.4. For p = 2 the dual Steenrod algebra is

A∗ = Z/(2)[ξ1, ξ2, · · · ]

with |ξn| = 2n − 1 and the coproduct is given by

∆(ξn) =

n∑
i=0

ξ2
i

n−i ⊗ ξi

where ξ0 = 1.
For p > 2,

A∗ = Z/(p)[ξ1, ξ2, · · · ]⊗ E(τ0, τ1, · · · )
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with |ξn| = 2pn − 2 and |τn| = 2pn − 1. The coproduct is given by

∆(ξn) =
n∑
i=0

ξp
i

n−i ⊗ ξi

∆(τn) = τn ⊗ 1 +
n∑
i=0

ξp
i

n−i ⊗ τi.

All but the last of the five maps in (B.3.3) has a topological
counterpart. If we identify Z/(p) with π∗(E), A∗ with π∗(E ∧ E)
and A∗ ⊗A∗ with π∗(E ∧ E ∧ E), then the first four of the maps
are induced by

E ∧ E = E ∧ S0 ∧ E E∧η∧E−−−−−−−−→ E ∧ E ∧ E (coproduct)

E ∧ E ∧ E E∧m−−−−−−−−→ E ∧ E (product)

E ∧ E T−−−−−−−−→ E ∧ E (conjugation)
E ∧ E m−−−−−−−−→ E (augmentation),

where η and m are the unit and multiplication maps for the ring
spectrum E, and T is the map which interchanges the two factors.

This leaves the unit map η : π∗(E) → π∗(E ∧ E). For this
there are two natural choices, namely

E = S0 ∧ E η∧E−−−−−−−−→ E ∧ E and

E = E ∧ S0 E∧η−−−−−−−−→ E ∧ E.

When E = H/p, these two maps induce the same homomorphism
in homotopy, namely the unit map of (B.3.3), but in general they
will induce different maps, which are denoted by ηR and ηL, the
right and left units respectively.

For a flat ring spectrum E these two units figure in the iso-
morphism

(B.3.5) π∗(E ∧ E ∧ E) = E∗(E)⊗E∗ E∗(E)

as follows. ηR and ηL determine two different E∗-module struc-
tures on E∗(E), called the right and left module structures. In
other words, they make E∗(E) a two-sided E∗-module. This struc-
ture is used to define the tensor product in (B.3.5).

Thus in order to describe MU∗(MU) we need to generalize
the notion of a graded commutative Hopf algebra in such a way
as to accommodate the presence of distinct right and left units.
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We will do this by generalizing the notion of a group object in a
category.

For this we need some more category theory. A group can be
thought of as a category with one object in which every morphism
is invertible. The morphisms in this category correspond to the
elements in the group, and composition of morphisms corresponds
to multiplication.

With this in mind, a groupoid is a small category (i.e., a cate-
gory in which the collection of objects is a set rather than a class)
in which every morphism is invertible. It differs from a group in
that the category is allowed to have more than one object. There
are two sets associated with a groupoid, namely the set O of ob-
jects and the set M of morphisms. We will regard a groupoid as
a pair of sets (O,M) endowed with the following structure.

There is a map O→M which assigns to each object its iden-
tity morphism, a map M → M which assigns to each morphism
its inverse, and two maps M → O, assigning to each morphism
its source and target. Composition is a map D→M, where

(B.3.6) D = {(m1,m2) ∈M×M : target(m1) = source(m2)}

These maps must satisfy certain conditions which the interested
reader can easily spell out.

A general reference for groupoids is the book by Higgins [Hig71].

Definition B.3.7. A Hopf algebroid over K is a pair (S,Σ)
of graded commutative K-algebras with unit which is a cogroupoid
object in the category of such algebras, i.e., given any such algebra
C, the pair of sets

(Hom(S,C),Hom(Σ, C))

has a natural groupoid structure as described above. In other words
S and Σ are endowed with structure maps making Hom(S,C) and
Hom(Σ, C) the object and morphism sets of a groupoid. More
explicitly we have

Σ ∆−−−−−−−−→ Σ⊗S Σ (coproduct inducing composition)
Σ c−−−−−−−−→ Σ (conjugation inducing inverse)
Σ ε−−−−−−−−→ S (augmentation inducing identity morphism)

S
ηR−−−−−−−−→ Σ (right unit inducing target)

S
ηL−−−−−−−−→ Σ (left unit inducing source)
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satisfying conditions corresponding to the groupoid structure. As
before, the tensor product

Σ⊗S Σ

is defined in terms of the right and left units.

To see why Σ⊗S Σ is the appropriate target for ∆, recall that
composition of morphisms in a groupoid (O,M) is a map

M×M ⊃ D −→M

where the subset D ⊂M ×M is as in (B.3.6). This amounts to
saying that it is the difference kernel of the two maps

M×M −−−−−−−−→−−−−−−−−→ M×O×M

where the two maps send (m1,m2) to

(m1, target(m1), m2) and

(m1, source(m2), m2).

We need the dual to this construction. It is the difference
cokernel of

Σ⊗ Σ ←−−−−−−−−←−−−−−−−− Σ⊗ S ⊗ Σ

where the two maps send σ1 ⊗ s⊗ σ2 to

(σ1ηR(s), σ2) and

(σ1, ηL(s)σ2).

This cokernel is Σ⊗S Σ by definition.
The relevance of Hopf algebroids to homotopy theory is the

following.

Theorem B.3.8. If E is a flat (A.2.9) homotopy commutative
ring spectrum, then (π∗(E), E∗(E)) is a Hopf algebroid over Z. If
E is p-local, it is a Hopf algebroid over Z(p).

We also need a generalization of the comodule structure of
(B.3.1).

Definition B.3.9. A left comodule over a Hopf algebroid
(S,Σ) is a left S-module M together with a left S-linear map

M
ψ−→ Σ⊗S M
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which is counitary and coassociative, i.e., the composite

M
ψ−→ Σ⊗S M

ε⊗M−−−−−−−−→ S ⊗S M =M

is the identity on M and the diagram

M
ψ //

ψ
��

Σ⊗S M
Σ⊗ψ
��

Σ⊗S M
∆⊗ψ

//Σ
⊗

S Σ⊗S M

commutes.
A right comodule is defined similarly.
A comodule algebra is an S-algebra A which is a comodule

such that the map ψ is an algebra homomorphism.

Proposition B.3.10. If E is as in B.3.8 then for any X,
E∗(X) is a left comodule over E∗(E) with the homomorphism ψ
induced by the map

E ∧X = E ∧ S0 ∧X
E∧η∧X−−−−−−−−→ E ∧ E ∧X.

The homological algebra associated with Hopf algebroids is
discussed at length in [Rav86, A1.2]. In particular one can define
Ext groups in terms of derived functors of the cotensor product,
defined as follows.

Definition B.3.11. Let M be a right comodule over the Hopf
algebroid (S,Σ) with structure map φ : M → M ⊗S Σ and N a
left comodule with structure map ψ : N → Σ ⊗S N . Then the
cotensor product M�ΣN is the kernel of the map

5em[M ⊗S Σ⊗S N ]M ⊗S Ne, tφ⊗ 1N − 1M ⊗ ψM ⊗S Σ⊗S N

B.4. The structure of MU∗(MU)

In this section we will describe the Hopf algebroid (B.3.7)

(π∗(MU),MU∗(MU))

explicitly. More information can be found in [Rav86, 4.1] and
[Ada74, II.11].

This Hopf algebroid can be described in two different ways.
One can give explicit formulae for its structure maps, and one can
define the groupoid-valued functor represented by it. The value
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of this functor on a graded commutative algebra R is, roughly
speaking, the set of formal group laws over R and the groupoid of
isomorphisms between them.

π∗(MU) is the ring L of 3.2.3. ThusMU∗(X) is an L-module.
We will explain why the coaction over MU∗(MU) is equivalent to
an action of the group Γ of 3.3.1, so the category of comodules
over MU∗(MU) is equivalent to the category CΓ of 3.3.

While the notion of a Γ-action may be more conceptually con-
venient, a coaction of MU∗(MU) is more amenable to computa-
tion. For this reason it is the language used in almost all of the
literature on the subject. For p-local computations, the language
of BP -theory is still more convenient. It will be discussed below
in B.5.

π∗(MU) was computed independently by Milnor [Mil60] and
Novikov ([Nov60] and [Nov62]) using the Adams spectral se-
quence, which we introduced here in A.6. A proof is given in
[Rav86, Theorem 3.1.5]. Their result is

Theorem B.4.1 (Milnor-Novikov theorem). Let MU be the
Thom spectrum associated with the unitary group U as described
above.

(a)

π∗(MU) ∼= Z[x1, x2, . . .]

where dimxi = 2i, and
(b) the generators xi (which we shall not define here) can

be chosen in such a way that the Hurewicz map h : π∗(MU) →
H∗(MU) (see B.1.15) is given by

h(xi) =

{
pbi + decomposables if i = pk − 1 for some prime p
bi + decomposables otherwise.

The structure of MU∗(MU) is originally due to Landweber
[Lan67] and Novikov [Nov67]. In order to state it we need the
isomorphism of B.2.2 between the complex cobordism ring and
π∗(MU). With that in mind, let

(B.4.2) mn =
[CPn]

n+ 1
∈ π2n(MU)⊗Q

where [CPn] is the cobordism class represented by complex pro-
jective space CPn.
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Theorem B.4.3 (Landweber-Novikov theorem). As a ring,

MU∗(MU) =MU∗[b1, b2, · · · ]

with |bi| = 2i.
The coproduct is given by

∑
i≥0

∆(bi) =
∑
i≥0

bi ⊗

∑
j≥0

bj

i+1

where b0 = 1. (This means that ∆(bn) can be found by expanding
the right hand side and taking the terms in dimension 2n, of which
there are only a finite number.)

The left unit ηL is the standard inclusion

MU∗ −→MU∗(MU) =MU∗[b1, b2, · · · ]

while the right unit on MU∗(MU)⊗Q is given by

∑
i≥0

ηR(mi) =
∑
i≥0

mi

∑
j≥0

c(bj)

i+1

where m0 = 1 and c is the conjugation.
The conjugation c is given by c(mn) = ηR(mn) and

∑
i≥0

c(bi)

∑
j≥0

bj

i+1

= 1.

At first glance the above appears to be a description ofMU∗(MU)⊗
Q rather than MU∗(MU) itself. The theorem is meant to assert
that given conjugation and right unit on MU∗(MU) ⊗Q induce
ones on MU∗(MU).

The fact that the coproduct ∆ sends each bn to a polynomial
in the bi ⊗ bj with coefficients in the ground ring Z rather than
the object ring MU∗ is a special property of this particular Hopf
algebroid. It means that B = Z[b1, b2, · · · ] is a Hopf algebra over
Z and the Hopf algebroid structure is determined by B along with
the right unit map, which amounts to a B-comodule structure on
MU∗.

The term for this property is split. It corresponds to the fol-
lowing property of groupoids.
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Definition B.4.4. A groupoid is split if it is obtained in the
following way. Let X be a set acted on by a group G. Regard the
elements of X as objects in a category C whose morphism set is
G × X. The source and target of the morphism (g, x) are x and
g(x),and the composite of (g, x) and (g′, g(x)) is (g′g, x).

Definition B.4.5. A Hopf algebroid (S,Σ) over K is split if
Σ = S ⊗B where B is a Hopf algebra over which S is a comodule
algebra (B.3.9).

Note that when (S,Σ) is split, then for any graded commuta-
tive K-algebra C,

Hom(Σ, C) = Hom(S,C)×Hom(B,C)

and Hom(B,C) is a group (since B is a Hopf algebra) acting on
the set Hom(S,C).

Now consider the case at hand. For a moment we will ignore
the gradings on our algebras. Let R be a commutative ring. Then
by the theorems of Lazard 3.2.3 and Quillen 3.2.4 we can identify
the set

(B.4.6) Hom(MU∗, R)

with the set of formal group laws over R, which we will denote by
FGL(R).

The Hopf algebra B is a ring of integer valued algebraic func-
tions on Γ. To see this, write an element γ ∈ Γ as

γ =
∑
i≥0

bix
i+1

with b0 = 1. Then we can regard bi as the function which assigns
to γ the coefficient of xi+1 in its power series expansion.

Proposition B.4.7. Let B be the Hopf algebra Z[b1, b2, · · · ]
with the coproduct given in B.4.3. Then for a commutative ring
R, Hom(B,R) is the group ΓR of power series of the form

x+ b1x
2 + b2x

3 + · · ·

with coefficients in R under functional composition.

Proof. The notation is meant to indicate that the power series
associated with a homomorphism f : B → R is

∑
i≥0 f(bi)x

i+1
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with b0 = 1. We need only to check that the coproduct in B given
in B.4.3 induces the appropriate group structure. Suppose∑

i≥0
b′ix

i+1 and
∑
j≥0

b′′jx
j+1

are two such power series. Then their composite is∑
i≥0

b′i(
∑
j≥0

b′′jx
j+1)i+1

and this corresponds precisely to the coproduct in B. �
The action of the group ΓR on the set FGL(R) is as follows.

Given a formal group law F over R and a power series

f(x) =
∑
i≥0

bix
i+1

with b0 = 1 and bi ∈ R, it is easy to verify that the power series

(B.4.8) F f (x, y) = f(F (f−1(x), f−1(y)))

is another formal group law over R.
In order to interpret the right unit in MU∗(MU) in this light,

we need some more of the theory of formal group laws. Let F (x, y)
be a formal group law over a torsion free ring R. Let

F2(x, y) =
∂F

∂y

and define the logarithm of F by the formula

(B.4.9) logF (x) =

∫ x

0

dt

F2(t, 0)
.

This is a power series over R⊗Q since we must be able to divide
by exponents in order to integrate.

For example, for the multiplicative formal group law of 3.2.2
we have

F (x, y) = x+ y + xy

F2(x, y) = 1 + x

logF (x) =

∫ x

0

dt

1 + t
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We tell our calculus students that this is log(1 + x), hence the
notation logF (x). We recommend calculating it for other examples
3.2.2 as an exercise for the reader.

Proposition B.4.10. For any formal group law over a torsion
free ring R,

logF (F (x, y)) = logF (x) + logF (y).

Proof. Let

w(x, y) = logF (F (x, y))− logF (x)− logF (y).

In a moment we will show that

(B.4.11)
∂w

∂y
= 0.

Since w is symmetric in x and y it will follow that

∂w

∂x
= 0

and therefore w(x, y) is constant. It is clear from its definition
that the constant term in logF (x) is zero, so if w(x, y) is constant,
w(x, y) = 0 and the result follows.

Before we can prove (B.4.11), we need to consider the associa-
tivity condition

F (F (x, y), z) = F (x, F (y, z)).

Differentiating with respect to z and then setting z = 0 gives

(B.4.12) F2(F (x, y), 0) = F2(x, y)F2(y, 0).

Now we are ready to complete the proof by showing (B.4.11).
Using the fundamental theorem of calculus we have

∂w

∂y
=

∂

∂y

(∫ F (x,y)

0

dt

F2(t, 0)
−
∫ x

0

dt

F2(t, 0)
−
∫ y

0

dt

F2(t, 0)

)

=
F2(x, y)

F2(F (x, y), 0)
− 1

F2(y, 0)

=
F2(x, y)F2(y, 0)− F2(F (x, y), 0)

F2(F (x, y), 0)F2(y, 0)

and this vanishes by (B.4.12). �
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B.4.10 says that logF (x) is an isomorphism between an arbi-
trary formal group law F over a Q-algebra and the additive formal
group law. Since Lazard’s ring L is torsion free, the logarithm pro-
vides a convenient way of doing computations with it. A theorem
of Mischenko says that for the universal formal group law G(x, y)
of 3.2.3,

logG(x) =
∑
i≥0

mix
i+1

where mi is as in (B.4.2).
Now we want to compute the logarithm of the formal group

law F f of (B.4.8) in terms of that of F . We can rewrite (B.4.8) as

f−1(F f (x, y)) = F (f−1(x), f−1(y)).

Applying logF to both sides we get

logF (f
−1(F f (x, y))) = logF (F (f

−1(x), f−1(y)))

= logF (f
−1(x)) + logF (f

−1(y))

We also have

logF f (F f (x, y)) = logF f (x) + logF f (y)

Comparing these two and arguing by induction on degree we con-
clude that

logF f (x) = logF (f
−1(x))

(Compare with the proof of [Rav86, A2.1.16], which contains an
unfortunate misprint. The last displayed equation in the proof
should read mog(x) = log(f−1(x)).)

Now given a homomorphism θ :MU∗(MU)→ R, we have

B
↓

MU∗
ηL−−−−−−−−→−−−−−−−−→ηR

MU∗(MU)
θ−→ R

The composite map B → R gives the coefficients of the power
series f(x), θηL gives the formal group law F and θηR gives the
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formal group law F f . Hence

logF (x) =
∑
i≥0

θ(mi)x
i+1 and

logF f (x) =
∑
i≥0

θ(ηR(mi))x
i+1

=
∑
i≥0

θ(mi)(f
−1(x))i+1

=
∑
i≥0

θ(mi)(
∑
j≥0

θ(c(bj))x
j+1)i+1 since

f−1(x) =
∑
j≥0

θ(c(bj))x
j+1.

From this it follows that the right unit map in MU∗(MU) is as
stated in B.4.3.

We can interpret B.4.3 as saying that MU∗(X) is an object
in the category CΓ of 3.3, since a coaction of the Hopf algebroid
MU∗(MU) is equivalent to an L-module structure with a com-
patible coaction of the Hopf algebra B, and the latter coaction is
equivalent to an action of the group Γ.

B.5. BP -theory

Brown and Peterson [BP66] showed thatMU , when localized
at a prime p, is homotopy equivalent to an infinite wedge of various
suspensions of a ‘smaller’ spectrum BP (named after them). Its
basic properties are

Theorem B.5.1. Let BP be the Brown-Peterson spectrum de-
scribed above.

(a)

π∗(BP ) ∼= Z(p)[v1, v2, . . .]

where dim vi = 2pi − 2,
(b)

H∗(BP ) ∼= Z(p)[t1, t2, . . .]

where dim ti = 2pi − 2, and
(c) the generators vi can be chosen in such a way that the

Hurewicz map h : π∗(BP )→ H∗(BP ) is given by

h(vi) = pti + decomposables.
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These vn’s are essentially the same as the ones in 3.3.6 and
π∗(BP ), which we will denote by BP∗, is the same as the ring V
of (3.3.8). The role of BP was greatly clarified by the work of
Quillen [Qui69], which we will now outline. More details can be
found in [Rav86, A2 and 4.1].

Definition B.5.2. A formal group law F over a torsion free
ring R is p-typical if its logarithm has the form

logF (x) =
∑
i≥0

`ix
pi .

(A more general definition, which does not require R to be torsion
free, can be found in [Rav86, A2.1.22].)

There is a universal p-typical formal group law (as in 3.2.3)
defined over the ring V of (3.3.8). By Lazard’s theorem 3.2.3 it is
induced by a homomorphism

(B.5.3) L⊗ Z(p)
τ−→ V

The formal group law overBP ∗ topologically determined byBP ∗(CP∞)
is p-typical and the resulting homomorphism θ : V → BP ∗ is an
isomorphism.

A theorem of Cartier asserts that every formal group law over
a Z(p)-algebra R is a canonically isomorphic to a p-typical one.
In the universal example this means there is an idempotent endo-
morphism

(B.5.4) L⊗ Z(p)
εp−→ L⊗ Z(p)

which factors through the τ of (B.5.3). Quillen showed that this
homomorphism is induced (in homotopy) by a map of spectra

MU(p)
εp−→MU(p)

called the Quillen idempotent. It is characterized by its effect
on the coefficients mi (B.4.2) of the logarithm series, i.e., on the
complex projective spaces:

εp∗(mi) =

{
mi if i = pk − 1
0 otherwise.
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One then obtains the spectrum BP as the direct limit of the
system

MU(p)
εp−→MU(p)

εp−→ · · · .
Unfortunately there is no p-typical analog of the group Γ of

3.3.1, i.e., there is no nontrivial collection of power series γ(x)
such that

F γ(x, y) = γ(F (γ−1(x), γ−1(y)))

is p-typical whenever F is. For a fixed p-typical F there is a set
of power series γ(x) with this property, but this set varies with F .
This means that the groupoid of p-typical formal group laws over a
Z(p)-algebra R and isomorphisms between them is not split in the
sense of B.4.4. It follows that the Hopf algebroid BP∗(BP ) cannot
be constructed from a Hopf algebra over Z(p) the way MU∗(MU)
can be constructed from the Hopf algebra B. We will see an
explicit example of this below in (B.5.11).

Thus there is no p-typical analog of the category CΓ of 3.3.2,
but there is the category of comodules over BP∗(BP ), which we
will now describe. For the proof we refer the reader to [Rav86,
4.1 and A1] or [Ada74, II.16]. The result is originally due to
Quillen [Qui69].

Theorem B.5.5 (Quillen’s theorem). As a ring,

BP∗(BP ) = BP∗[t1, t2, · · · ]
with |ti| = 2pi − 2.

Let `i ∈ BP∗⊗Q denote the image of mpi−1 under the Quillen
idempotent εp of (B.5.4), with `0 = 1. The polynomial generators
vi ∈ BP∗ are related to the `i recursively by the formula of Araki,

(B.5.6) p`n =
∑

0≤i≤n
`iv

pi

n−i

where it is understood that v0 = p.
The coproduct in BP∗(BP )⊗Q is given by

(B.5.7)
∑
i,j≥0

li∆(tj)
pi =

∑
i,j,k≥0

`it
pi

j ⊗ t
pi+j

k

where t0 = 1.
The left unit ηL is the standard inclusion

BP∗ −→ BP∗(BP ) = BP∗[t1, t2, · · · ]
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while the right unit on BP∗(BP )⊗Q is given by

(B.5.8)
∑
i≥0

ηR(`i) =
∑
i,j≥0

`it
pi

j .

We will illustrate the use of these formulae in some simple
cases. First observe that in each of (B.5.6), (B.5.7) and (B.5.8), if
the sum of the subscripts is n, then the dimension is 2pn− 2. For
n = 1, (B.5.6) gives

p`1 = v1 + pp`1 so

`1 =
v1

p− pp
.

Numbers such as p−pp occur often in such formulae, so we define

πn = p− ppn ;
each of these is a unit (in Z(p)) multiple of p. Thus we have

(B.5.9) `1 =
v1
π1

and a similar computation using (B.5.6) for n = 2 gives

`2 =
v2
π2

+
vp+1
1

π1π2
.

Now we will consider the coproduct formula (B.5.7). For n = 1
we get

∆(t1) + `1∆(t0)
p = `1 ⊗ 1 + t1 ⊗ 1 + 1⊗ t1

so

(B.5.10) ∆(t1) = t1 ⊗ 1 + 1⊗ t1.

For n = 2, (B.5.7) gives

`1∆(t1)
p +∆(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 + `1(t

p
1 ⊗ 1 + 1⊗ tp1).

Using (B.5.9) and (B.5.10) we can rewrite this as

∆(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 + `1(t1 ⊗ 1 + 1⊗ tp1 −∆(t1)
p)

= t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 −
v1
π1

∑
0<i<p

(
p

i

)
ti1 ⊗ t

p−i
1 .

(B.5.11)
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Notice that the coefficient
(
p
i

)
/π1 is in Z(p) because both numer-

ator and denominator are unit multiples of p.
The formulae for ∆ and ηR can be restated if we use the fol-

lowing notation. The expression∑
i

Fxi

will denote the formal sum of the xi, i.e., it is characterized in a
torsion free setting by

logF

(∑
i

Fxi

)
=
∑
i

logF (xi).

Proposition B.5.12. (a) The coproduct is given by

(B.5.13)
∑
i≥0

F∆(ti) =
∑
i,j≥0

F ti ⊗ tp
i

j .

(b) The right unit is given by

(B.5.14)
∑
i,j≥0

F vit
pi

j =
∑
i,j≥0

F tiηR(vj)
pi .

Proof. (a) (B.5.7) can be rewritten as∑
i≥0

log(∆(ti)) =
∑
i,j≥0

log(ti ⊗ tp
i

j ),

from which the result follows immediately.
(b) (B.5.6) says

p
∑
i≥0

`i =
∑
i,j≥0

`iv
pi

j .

Applying ηR to both sides and using (B.5.8), we get

p
∑
i,j≥0

`it
pi

j =
∑
i,j,k

`it
pi

j ηR(vk)
pi+j

.

Using (B.5.6) again to rewrite the left hand side, we get∑
i,j,k≥0

`iv
pi

j t
pi+j

k =
∑
i,j,k

`it
pi

j ηR(vk)
pi+j

,

which gives the desired formula. �
These formulas demonstrate the integrality of (B.5.7) and (B.5.8)

but they are still awkward as stated since they are recursive rather
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than explicit. In general, explicit formulae in BP -theory are hard
to come by in all but the simplest cases, but they are seldom
needed for practical purposes. It is usually enough to know the
answer modulo some ideal J ⊂ BP∗. The art of computing with
BP -theory is knowing which ideal J to use. If the chosen J is too
large, then one loses the information one wants; if it is too small
then the computation is too difficult.

The following approximations are useful.

Proposition B.5.15. (a) Let

I = (p, v1, v2, · · · ) ⊂ BP∗.
Then

∆(tn) ≡
∑

0≤i≤n
ti ⊗ tp

i

n−i mod I

ηR(vn) ≡
∑

0≤i≤n
vi ⊗ tpn−i mod I2.

(b) Let
In = (p, v1, v2, · · · vn−1) ⊂ BP∗.

Then

ηR(vn) ≡ vn mod In

ηR(vn+1) ≡ vn+1 + vnt
pn

1 − v
p
nt1 mod In

(c) In BP∗(BP )/(p, v1, · · · vn−1, t1, t2, · · · ti−1) we have

ηR(vn+i) = vn+i + vnt
pn

i − v
pi

n ti.

Proof. (a) Reduction mod I converts formal sums to ordinary
sums, so the first formula follows immediately from (B.5.13). In
(B.5.14) each summand is in I, so we get an ordinary sum by
reducing mod I2. This will kill the terms on the right with i > 0,
so the equation becomes∑

i,j≥0
vit

pi

j ≡
∑
j≥0

ηR(vj)

as desired.
(b) If we reduce (B.5.14) modulo In, all terms in dimension

< |vn| vanish, and there is only one term on each side in that
dimension, giving

vn ≡ ηR(vn).
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This means that there are no cross terms in dimension |vn+1|, i.e.,
we could formally subtract vn from the left and ηR(vn) from the
right, giving

vn+1 + vnt
pn

1 ≡ ηR(vn+1) + t1ηR(vn)
p,

which gives the desired formula.
(c) If we kill the indicated tj as well as In, then in each dimen-

sion below |vn+i| there is at most one formal summand on each
side of (B.5.14), giving

ηR(vn+j) = vn+j for j < i.

These terms can be formally subtracted, giving the desired for-
mula in dimension |vn+i|. �

The formula for the coproduct ∆(tn) above should be com-
pared with the one for ∆(ξn) given in B.3.4. There is a homomor-
phism

BP∗(BP ) −→ A∗
induced by the map BP → H/(p). It sends tn to c(ξn).

Definition B.5.16. In a Hopf algebroid (S,Σ) (see B.3.7), an
ideal J ⊂ S is invariant if ηR(J) ⊂ JΣ.

The following result is an easy exercise.

Proposition B.5.17. If (S, S ⊗ B) is a split Hopf algebroid
over K (see B.4.5) then an ideal J ⊂ S is invariant in the sense of
B.5.16 if and only if it is invariant under the action of the group
Hom(B,K).

The ideals In are analogous to the ideals Ip,n of 3.3.6. One
can deduce the following analog of 3.3.6 from B.5.15(c).

Theorem B.5.18. The only invariant prime ideals in BP∗ are
the In of B.5.15(b), for 0 < n ≤ ∞.

We will outline the proof. From B.5.15(c) for n = 0 we get

ηR(vi) ≡ vi + (p− ppi)ti mod (t1, t2, · · · ti−1).
From this we can deduce that the only invariant principal ideals
in BP∗ are the (pj), so the only invariant principal prime ideal is
(p).

Arguing by induction on n we can show that the only invariant
ideals of the form

(p, v1, · · · vn−1, x)
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are

(p, v1, · · · vn−1, vjn),
and this is prime only when j = 1.

There is an analog of the Landweber filtration theorem 3.3.7
which says that every comoduleM over BP∗(BP ) which is finitely
presented as a BP∗-module has a finite filtration

(B.5.19) 0 = F0 ⊂ F1 ⊂ · · ·Fk =M

such that each subquotient Fi/Fi−1 is a suspension of BP∗/In for
some n depending on i.

B.6. The Landweber exact functor theorem

A useful consequence of the Landweber filtration theorem is
the Landweber exact functor theorem [Lan76], which we will now
describe. It can be stated either in the context of MU -theory or
BP -theory; we will do the latter. The question is this: given an
BP∗-module M , is the functor

X 7→ BP∗(X)⊗BP∗ M

a homology theory (A.3.3)? For the answer to be affirmative, the
functor must satisfy the appropriate axioms of A.3.1. The difficult
part of this requirement is the exactness axiom. In general, tensor-
ing an exact sequence of BP∗-modules with M does not preserve
exactness unless M happens to be flat. Instead, a short exact
sequence after tensoring with M leads to a long exact sequence of
Tor groups. However, all that we really need is that

TorBP∗
1 (M,BP∗(X)) = 0

for any finite complexX. Given the Landweber filtration theorem,
this reduces to showing that

(B.6.1) TorBP∗
1 (BP∗/In, BP∗(X)) = 0

for all n.
We can compute this group for n = 1 by tensoring M with

the short exact sequence

0 −→ BP∗
p−→ BP∗ −→ BP∗/(p) −→ 0.
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This gives a 4-term sequence

0 −→ TorBP∗
1 (M,BP∗/(p)) −→M

p−→M −→M/pM −→ 0.

Thus we see that TorBP∗
1 (M,BP∗/(p)) = 0 provided that M is

torsion free, i.e., that multiplication by p in M is monic.
To verify (B.6.1) for general n, we assume inductively that

TorBP∗
1 (M,BP∗/In−1) = 0.

We tensor the short exact sequence

0 −→ Σ|vn|BP∗/In−1
vn−→ BP∗/In−1 −→ BP∗/In −→ 0.

with M and get a 4-term sequence

0 −→ TorBP∗
1 (M,BP∗/InM) −→M/In−1M

p−→M/In−1M −→M/InM −→ 0.

Thus we see that TorBP∗
1 (M,BP∗/In) = 0 provided thatM/In−1M

is vn-torsion free, i.e., that multiplication by vn in M/In−1M is
monic.

Theorem B.6.2 (Landweber exact functor theorem). (a) The
functor

X 7→MU∗(X)⊗MU∗ M

for a fixed MU∗-module M is a generalized homology theory if and
only for each prime p and positive integer n, multiplication by vn
in

M ⊗MU∗ MU∗/Ip,n

is a monomorphism. In particular for such an M there is an
MU -module spectrum (see A.2.8) E with π∗(E) =M .

(b) The functor

X 7→ BP∗(X)⊗BP∗ M

for a fixed BP∗-module M is a generalized homology theory if and
only for each positive integer n, multiplication by vn in

M ⊗BP∗ BP∗/In

is a monomorphism. In particular for such an M there is an
BP -module spectrum (see A.2.8) E with π∗(E) =M .
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Notice that if M is also a Z(p)-module then the condition is
trivially satisfied for primes q other than p since

M ⊗MU∗ MU∗/(q) = 0.

The condition in the theorem is satisfied by BP∗, regarded
as an MU∗-module via the homomorphism τ of (B.5.3), giving
another proof of the existence of the spectrum BP . It is also
satisfied by v−1n MU(p)∗, by the BP∗-modules v−1n BP∗, and by

E(n)∗ = Z(p)[v1, v2, . . . vn, v
−1
n ].

In all three cases the mod Ip,n+1 reduction is trivial.
On the other hand the modules

BP 〈n〉∗ = Z(p)[v1, . . . vn],

P (n)∗ = BP∗/In,

B(n)∗ = v−1n BP∗/In, and

K(n)∗ = Z/(p)[vn, v
−1
n ]

do not satisfy Landweber’s condition. Each of these modules is the
coefficient ring of a homology theory, but these functors cannot
be described simply in terms of tensor products as above, e.g. in
general

K(n)∗(X) 6=MU∗(X)⊗MU∗ K(n)∗.

Instead there is a universal coefficient SS, which generalizes the
universal coefficient theorem expressing H∗(X;G) (for an abelian
group G) in terms of H∗(X;Z). It converges to K(n)∗(X) and its
E2-term is

TorMU∗(MU∗(X),K(n)∗).

There are similar SSs for BP 〈n〉∗(X) and P (n)∗(X).

B.7. Morava K-theories

As remarked above, the Morava K-theories cannot be con-
structed by simple use of the Landweber exact functor theorem.
However there is another way to construct a BP -module spectrum
(see A.2.8) P (n) with π∗(P (n)) = BP∗/In. Würgler ([Wur77]
and [Wur86]) showed that it is a ring spectrum with nice multi-
plicative properties. More precisely,
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Theorem B.7.1. For each prime p and each integer n > 0
there is a BP -module spectrum P (n) with

(i) π∗(P (n)) = BP∗/In;
(ii) P (n) is a ring spectrum. For p > 2 the multiplication

is unique and commutative. For p = 2 there are two
noncommutative multiplications m1 and m2 which are
opposite to each other, i.e., the diagram

P (n) ∧ P (n)
m1

((
T

��

P (n)

P (n) ∧ P (n)
m2

66

commutes, where T is the map which transposes the two
factors;

(iii) P (n) is flat (A.2.9), i.e. P (n) ∧ P (n) is a wedge of
suspensions of P (n); and

(iv) for p > 2, as a ring

(B.7.2) P (n)∗(P (n)) = BP∗(BP )/In ⊗ E(τ0, τ1, · · · τn−1)

with |τi| = 2pi − 1. For p = 2, (B.7.2) is an isomor-
phism of modules over BP∗(BP ) and comodules over
E(τ0, τ1, · · · τn−1), but τ2i = ti+1. For all primes the
coproduct on the first factor is induced by the one in
BP∗(BP ) and

∆(τi) = 1⊗ τi +
∑

0≤j≤i
τj ⊗ tp

j

i−j .

The notation τi here is slightly misleading since this elements
maps to the conjugate of τi in the dual Steenrod algebra.

The homology theory P (n)∗ enjoys many properties similar to
that of BP∗. Let

Im = (vn, vn+1, · · · vm−1) ⊂ P (n)∗
for m ≥ n. These are the only invariant prime ideals in P (n)∗.
There are analogs of the Landweber filtration theorem and the
Landweber exact functor theorem; the latter was proved by Yagita
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in [Yag76]. It says that if M is a module over P (n)∗ = BP∗/In
then the functor

X 7→ P (n)∗(X)⊗P (n)∗ M

is a generalized homology theory if M satisfies certain condi-
tions, namely if for each m ≥ n, multiplication by vm induces
a monomorphism in

M ⊗P (n)∗ BP∗/Im.

Now K(n)∗ can be regarded as a module over P (n)∗ in an
obvious way, and it satisfies the conditions. Morava (unpublished)
first showed that the functor

X 7→ P (n)∗(X)⊗P (n)∗ K(n)∗

is a generalized homology theory, i.e., it satisfies the exactness
axiom (A.3.1(b)). This is also proved in [JW75].

K(n)∗ is a graded field in the sense that every graded module
over it is free. One also has

K(n) ∧X ∼=
∨
α

Σd(α)K(n)

for any spectrum X. (Recall that a similar statement holds if
we replace K(n) by either the rational or the mod p Eilenberg-
MacLane spectrum.)

This leads to a Künneth isomorphism

(B.7.3) K(n)∗(X × Y ) = K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

This makes Morava K-theory much easier to compute with than
BP -theory. For examples of such computations, see [Rav82],
[RW80], [Yam88], [Kuh87], [Hun90], [HKR], [HKR92], and
[Ravb]. A corollary of the nilpotence theorem says that the
Morava K-theories, along with ordinary homology with field coef-
ficients, are essentially the only homology theories with Künneth
isomorphisms.

The analog of B.7.1 is

Theorem B.7.4. For each prime p and each integer n > 0
there is a BP -module spectrum K(n) with

(i) π∗(K(0)) = Q and π∗(K(n)) = Z/(p)[vn, v
−1
n ];
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(ii) K(n) is a ring spectrum. For p > 2 the multiplication
is unique and commutative. For p = 2 there are two
noncommutative multiplications m1 and m2 which are
opposite to each other, i.e., the diagram

K(n) ∧K(n)
m1

((
T

��

K(n)

K(n) ∧K(n)

m2

66

commutes, where T is the map which transposes the two
factors;

(iii) K(n) is flat (A.2.9), i.e. K(n) ∧ K(n) is a wedge of
suspensions of K(n); and

(iv) for p > 2, as a ring

(B.7.5) K(n)∗(K(n)) = Σ(n)⊗ E(τ0, τ1, · · · τn−1)

with |τi| = 2pi − 1 and

Σ(n) = K(n)∗ ⊗BP∗ BP∗(BP )⊗BP∗ K(n)∗

= K(n)∗[t1, t2, · · · ]/(tp
n

i − v
pi−1
n ti).(B.7.6)

For p = 2, (B.7.5) is an isomorphism of modules over
BP∗(BP ) and comodules over E(τ0, τ1, · · · τn−1), but
τ2i = ti+1. For all primes the coproduct on the first
factor is induced by the one in BP∗(BP ), and

∆(τi) = 1⊗ τi +
∑

0≤j≤i
τj ⊗ tp

j

i−j .

We will explain the multiplicative structure of Σ(n). We have

K(n)∗ ⊗BP∗ BP∗(BP ) = K(n)∗[t1, t2, · · · ],

i.e., tensoring on the left kills all of the vi’s (including v0 = p)
except vn. It is more difficult to analyze the effect of tensoring
on the right with K(n)∗. This has the effect of killing ηR(vi) for
i 6= n. In order to make this more explicit we use the right unit
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formula (B.5.14). If we set vi = 0 and ηR(vi) = 0 for i 6= n, then
(B.5.14) becomes∑

j≥0

F vnt
pn

j =
∑
i≥0

F tiηR(vn)
pi

=
∑
i≥0

F vp
i

n ti,

and this determines the structure of Σ(n).
Each side of this equation is a formal sum with at most one

summand in each dimension. This means that we can argue by
induction on dimension and equate each summand on the left with
the corresponding one on the right. This gives

vnt
pn

i = vp
i

n ti for i > 0,

as indicated in (B.7.6).

B.8. The change-of-rings isomorphism and the
chromatic spectral sequence

In this section we introduce the computational mainspring of
this theory, the chromatic spectral sequence. On the algebraic
level it is a procedure for getting information about the E2-term of
the Adams-Novikov spectral sequence, i.e., the BP -based Adams
spectral sequence (see A.6) converging to π∗(X). This E2-term is

ExtBP∗(BP )(BP∗, BP∗(X)).

Here BP∗(X) is a comodule over the Hopf algebroid BP∗(BP ), as
explained in B.3. In general if M is such a comodule, we will use
the notation

(B.8.1) Ext(M) = ExtBP∗(BP )(BP∗,M).

The first thing we need is the chromatic resolution. It is a long
exact sequence of BP∗(BP )-comodules of the form

(B.8.2) 0 −→ BP∗ −→M0 −→M1 −→ · · · .

It is a straightforward exercise in homological algebra [Rav86,
A1.3.2] to show that there is a SS converging to Ext(BP∗) with

En,s1 = Exts(Mn) with dr : E
n,s
r → En+r,s+1−r

r .
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This is the chromatic spectral sequence.
It is also clear that if BP∗(X) is flat over BP∗, then we can

tensor it with everything in sight and get a chromatic spectral
sequence converging to Ext(BP∗(X)).

(B.8.2) is obtained by splicing together short exact sequences

(B.8.3) 0 −→ Nn −→Mn −→ Nn+1 −→ 0.

These are defined inductively, starting with

N0 = BP∗,

M0 = BP∗ ⊗Q = p−1N0 and

N1 = BP∗ ⊗Q/Z(p) = BP∗/(p
∞).

We use the abusive notation BP∗/(p
∞) because the module can

also be described as

lim
→
i

BP∗/(p
i).

For n > 0 we define

Mn = v−1n Nn,

and using the same abusive notation we can write

Nn = BP∗/(p
∞, v∞1 , · · · v∞n−1) and(B.8.4)

Mn = v−1n BP∗/(p
∞, v∞1 , · · · v∞n−1).(B.8.5)

One has to check that these are actually comodules overBP∗(BP );
this done in [Rav86, 5.1.6]. In general if M is a comodule, v−1n M
need not be. The special property of Nn that makes v−1n Nn a co-
module is that each element in Nn is annihilated by some power
of the invariant prime ideal In (even though Nn as a whole is not).

Each Mn is p-divisible, so for n > 0 there is a short exact
sequence of comodules

0 −→Mn−1
1 −→Mn p−→Mn −→ 0

where

Mn−1
1 = v−1n BP∗/(p, v

∞
1 , · · · v∞n−1)

with no exponent over the p. Mn−1
1 is the subgroup of exponent

p in Mn.
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This short exact sequence leads to a long exact sequence of
Ext groups and a Bockstein spectral sequence. This means that
in principle we can derive Ext(Mn) from Ext(Mn−1

1 ).

In Mn−1
1 multiplication by v1 is a comodule map, so we have

another short exact sequence of comodules

0 −→Mn−2
2 −→ Σ2p−2Mn−1

1
v1−→Mn−1

1 −→ 0.

More generally we have

(B.8.6) 0 −→Mn−i−1
i+1 −→ Σ2pi−2Mn−i

i
vi−→Mn−i

i −→ 0

for 0 < i < n, where

Mn−i
i = v−1n BP∗/(p, v1, · · · vi−1, v∞i , · · · v∞n−1).

This means that we can get from

Ext(M0
n) to Ext(Mn)

by a sequence of n Bockstein spectral sequences. Note that

M0
n = v−1n BP∗/In.

In particular we have

Corollary B.8.7. If BP∗(X) is a free BP∗-module and there
is an integer s0 such that

Exts(v−1n BP∗(X)/In) = 0 for s > s0,

then

Exts(BP∗(X)⊗Mn) = 0 for s > s0.

The group Ext(v−1n BP∗(X)/In) is especially amenable to com-
putation in view of the following result. It was this computability
that motivated the study leading to the results of this book. The
original insight behind this theorem is due to Jack Morava, and it
is related to the constructions described in Chapter 4. The first
published proof was given in [MR77]; see also [Rav86, 6.1].

Theorem B.8.8 (Change-of-rings isomorphism). Let X be a
spectrum with BP∗(X) a free BP∗-module. Then there is a natural
isomorphism (using the shorthand of (B.8.1))

Ext(v−1n BP∗(X)/In) = ExtΣ(n)(K(n)∗,K(n)∗(X))
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where Σ(n) is the Hopf algebra of (B.7.5). (The restriction on X
implies that

K(n)∗(X) = BP∗(X)⊗BP∗ K(n)∗.)

Moreover, this Ext group is a module over K(n)∗ and

ExtΣ(n)(K(n)∗,K(n)∗(X))⊗K(n)∗Fpn = ExtS(n)(Fpn ,K(n)∗(X)⊗K(n)∗Fpn)

where S(n) is as in (4.2.6), i.e., the ring of continuous Fpn-valued
functions on the Morava stabilizer group Sn of 4.2.

This last Ext group can be identified with the cohomology
of the group Sn with coefficients in K(n)∗(X) ⊗K(n)∗ Fpn . Some
cohomological properties of Sn are discussed in 4.3.





APPENDIX C

Some idempotents associated with the
symmetric group

In this appendix we will give the technical details about the
representations of the symmetric group needed in 6.4 and 8.3.6.
The original source for this material is [Smi]. We are grateful to
Jeff Smith for explaining his work to us and to Samuel Gitler for
many helpful conversations.

C.1. Constructing the idempotents

In general, the connection between idempotents and represen-
tations is as follows. Given a finite group G, a field K and an
idempotent e ∈ K[G], the ideal (e) ⊂ K[G] is a K-vector space
with G-action, i.e., a representation of G over K. If K is alge-
braically closed and its characteristic is prime to the order of G,
then it is known that every irreducible representation can be ob-
tained in this way. When the characteristic of K does divide the
order of G, the situation is far more complicated even if K is al-
gebraically closed; this is the subject of modular representation
theory.

However our goal here is far more modest. We merely need to
construct some idempotent elements with certain properties in the
p-local group ring Z(p)[Σk], where Σk is the symmetric group on k
letters. We begin by recalling some classical constructions. More
details can be found in [Wey39, Chapter IV], [Jam78], [JK81]
and many other books on representation theory.

Consider the simplest case first: K is an algebraically closed
field and its characteristic does not divide the order of the finite
group G. Then the irreducible representations of G over K are in
(unnatural) one-to-one correspondence with the conjugacy classes
of elements of G. When G is the symmetric group Σk, these conju-
gacy classes are in one-to-one correspondence with the partitions
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of k. For each partition P of k, we can construct an idempotent
in Q[Σk] as follows. Suppose we have

k = k1 + k2 + · · · km with k1 ≥ k2 ≥ · · · km > 0.

We associate to this a Young diagram, which is an arrangement
of k boxes in m rows, with ki boxes in the i row. The boxes may
be labelled by the integers from 1 to k, and the left ends of the m
rows are vertically aligned.

For example if k = 12 and the partition is

12 = 5 + 4 + 2 + 1

then the Young diagram is

(C.1.1)

1 2 3 4 5
6 7 8 9
10 11
12

The symmetric group Σk acts by permuting the boxes (or the
labels therein) in the diagram. Let ΣR ⊂ Σk denote the subgroup
of permutations leaving the rows invariant, so

ΣR ∼= Σk1 × Σk2 × · · ·Σkm .

Let ΣC ⊂ Σk denote the subgroup of permutations leaving the
columns invariant. For σ ∈ Σk let (−1)σ denote the sign of σ.

Now define

ẽP =
∑
r∈ΣR
c∈ΣC

(−1)crc ∈ Z[Σk].

In [Wey39, Lemma 4.3.A] is it shown that ẽ2P = µP ẽP for some
integer µP . If µP 6= 0 then

eP =
ẽP
µP
∈ Q[Σk]

is an idempotent. [Wey39, Theorem 4.3.E] asserts that

µP gP = k!

where gP is degree of the representation associated with eP . A for-
mula for gP , and hence for µP can be found in [Jam78, 20.1] and
[JK81, 2.3.21]. Before stating it we need the following definition.
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Definition C.1.2. Given a Young diagram, the hook length
h(i, j) associated with the j box in the i row is one more than the
sum of the number of boxes to the right of, and the number of
boxes below the given box.

For example, the following table shows the hook lengths of the
boxes in the Young diagram of (C.1.1).

8 6 4 3 1
6 4 2 1
3 1
1

Theorem C.1.3. Let P be the partition of k given by

k = k1 + k2 + · · · km with k1 ≥ k2 ≥ · · · km > 0.

Then the integer µP defined above is

µP =
∏

h(i, j) =

∏
1≤i≤m

`i!∏
1≤i<j≤m

(`i − `j)

where `i = ki +m− i.

If we can choose the partition P so that µP is not divisible by
p, then the resulting idempotent eP will lie in the p-local group
ring Z(p)[Σk]. For each positive m, consider the partition P given
by

ki = (m+ 1− i)(p− 1) and k = (p− 1)

(
m+ 1

2

)
.

Lemma C.1.4. For the partition P defined above, the integer
µP of C.1.3 is not divisible by p.

Proof. We have

`i = ki +m− i
= (p− 1)(m+ 1− i) +m− i
= p(m− i) + p− 1
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so the second formula of C.1.3 gives

µP =

∏
1≤i≤m

`i!∏
1≤i<j≤m

(`i − `j)

=

∏
1≤i≤m

(p(m− i) + p− 1)!∏
1≤i<j≤m

p(j − i)

If we omit the factors of the numerator not divisible by p, we are
left with∏

1≤i≤m

 ∏
1≤j≤m−i

pj

 =
∏

1≤i≤m

 ∏
i+1≤j≤m

p(j − i)


=

∏
1≤i<j≤m

p(j − i),

which is precisely the denominator of µP . �
We will denote the resulting idempotent in Z(p)[Σk] by em.

Theorem C.1.5. Let em ∈ Z(p)[Σk] as above, and let V be
a finite dimensional vector space over a field of characteristic p.
Let Σk act on W = V ⊗k by permuting the factors. Then emW is
nontrivial if and only if the dimension of V is at least m.

Proof. We will prove that emW is nontrivial for large V by
producing a nontrivial vector in it. Let

{v1, v2, v3, · · · }
be a basis of V . Then one has a corresponding basis of W . One
of the basis vectors is

w = v⊗k11 ⊗ v⊗k22 ⊗ · · · v⊗kmm .

(Recall that ki = (p− 1)(m+ 1− i).)
To see how em acts on a basis vector of W , consider the cor-

responding Young diagram in which the integers from 1 to k are
replaced by basis vectors of V . For w this diagram has vi in each
box in the i row for each i. For example, when p = 3 and m = 3,
this diagram is
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v1 v1 v1 v1 v1 v1
v2 v2 v2 v2
v3 v3

Now let w′ be the basis vector corresponding to the diagram
obtained from that of w by reversing the order of the vectors
occurring within each column. In our example, its diagram is

v3 v3 v2 v2 v1 v1
v2 v2 v1 v1
v1 v1

Now consider the vector em(w
′). Notice first that no nontrivial

element of ΣC (the group of column-preserving permutations) fixes
w′. Moreover, since no basis vector of V appears p times in any
given row, the subgroup of ΣR fixing w′ has order prime to p.
Hence if we express em(w

′) as a linear combination of basis vectors,
the coefficient of w′ in this expression will be nontrivial. It follows
that em(w

′) is the desired nontrivial vector in emW .
On the other hand, if the dimension of V is less than m, then

each basis vector x of W will have a Young diagram in which
some basis vector of V appears at least p times in the top row. It
follows that p divides the order of the subgroup of ΣR fixing x,
and therefore em annihilates x. �

C.2. Idempotents for graded vector spaces

Now we need to discuss the role of signs in the case when V
is a graded vector space over a field of odd characteristic. Let

V = V + ⊕ V −

with V + concentrated in even dimensions and V − in odd dimen-
sions. The action of Σk on V ⊗k is subject to the usual signs,
i.e., a minus sign is introduced each time two vectors in V − are
interchanged.

This means that to get a nontrivial vector in eV ⊗k as in the
proof of C.1.5, we need a Young diagram labelled by basis vectors
of V in which

• the basis vectors within each column are distinct,
• within each row, no basis vector of V + appears p times,
and
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• no basis vector of V − appears twice in any row.

With this in mind, let

mV = dimV + +

[
dimV −

p− 1

]
kV = (p− 1)

(
mV + 1

2

)
eV = emV ∈ Z(p)[ΣkV ].

Theorem C.2.1. With notation as above, let emV ∈ Z(p)[ΣkV ]

be as in C.1.5 and W = V ⊗kV . Then eVW is nontrivial.
Moreover if U ⊂ V is a subspace with

dimU+ ≤ dimV + − 1 or

dimU− ≤ dimV − − (p− 1)

then eV U
⊗kV is trivial.

Proof. The argument is similar to that of C.1.5. Let {αi} and
{βj} be bases of V + and V −. Then let w ∈ W correspond to
the Young diagram labelled as follows. Label each box in the i
row with αi until the αi are exhausted. Then use p− 1 of the βj
in each subsequent row so that there is no repetition within each
successive block of p− 1 columns.

Suppose for example that p = 3, dimV + = 1 and dimV − = 5.
Then mV = 3 and kV = 12. The Young diagram for w is

α1 α1 α1 α1 α1 α1

β1 β2 β1 β2
β3 β4

As before we define a new basis vector w′ to be the one as-
sociated with the Young diagram obtained from that for w by
reversing all of the columns. Thus in our example it is

β3 β4 β1 β2 α1 α1

β1 β2 α1 α1

α1 α1

Now in each row, no αi appears p times and no βj appears
twice. It follows that eV (w

′) is nontrivial, so the vector space
eVW is nontrivial.
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On the other hand if U is as stated, then

dimU− + (p− 1) dimU+ < mV ,

so in the diagram for any basis vector u of U⊗kV , either a basis
vector of U− appears more than once or one of U+ appears at least
p times. This means that eV (u) = 0, so eV U

⊗kV is trivial. �
Now suppose that V is a module over either of two Hopf al-

gebras, namely the duals E and Tn of the primitively generated
Hopf algebras

E∗ = E(x) with |x| odd or
Tn∗ = P (x)/(xp

n
) with |x| even and n > 0.

Then we get a similar module structure on V ⊗m using the Cartan
formula.

Theorem C.2.2. Let V be as in C.1.5 be a module over either
E or Tn as defined above, and suppose

V = U ⊕ F
where F is a nontrivial free module. Then eV V

⊗kV is a free module
over E or Tn.

Proof. First, observe that

V ⊗kV = U⊗kV ⊕ F ′

where F ′ is free. Now U⊗kV is invariant under the action of the
symmetric group, so we have a short exact sequence

0 −→ eV U
⊗kV −→ eV V

⊗kV −→ eV F
′ −→ 0.

Next observe that the subspace U here satisfies the conditions
on U in C.2.1. In the E case, |x| is odd so we have

dimU+ < dimV + and dimU− < dimV −.

In the Tn case, |x| is even, so either

dimU+ < dimV +−(p−1) or dimU− < dimV −−(p−1).

It follows that eV U
⊗kV is trivial and

eV V
⊗kV = eV F

′.

This is a summand of the free module F ′. E and Tn are both local
rings and hence a direct summand of a free module over either of
them is free. �
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C.3. Getting strongly type n spectra from partially type
n spectra

In this section we will explain how to use the idempotents
discussed above to convert a partially type n spectrum (6.2.5) to
a strongly type n spectrum (6.2.3), thereby (using 6.2.6 and 6.2.4)
completing the proof of the periodicity theorem. At the end of the
section we will prove the result (C.3.3) for 8.3.6, which is needed
in the proof of the smash product theorem (7.5.6).

First we will describe some sub-Hopf algebras of the Steenrod
algebra A to which C.2.2 can be applied. V will of course be the
mod p cohomology of some spectrum of interest. We want to show
how some mild conditions on V can lead to an eV V

⊗mV on which
certain Margolis homology groups vanish.

Recall that Margolis homology groups are defined in terms of

the elements P st dual to ξp
s

t ∈ A∗ for s < t and (for p odd) Qi
dual to τi.

Lemma C.3.1. (i) For each i ≥ 0, the exterior algebra E(Qi)
is a sub-Hopf algebra of A.

(ii) For each n > 0 the subalgebra generated by P sn for s < n
is a sub-Hopf algebra isomorphic to the Tn of C.2.2.

Proof. We will give the proof for odd primes only, leaving p = 2
(which is easier) as an exercise. Showing that a subalgebra of A is
a Hopf algebra is equivalent to showing that its dual is a quotient
Hopf algebra of A∗. In the case of E(Qi), the dual is obtained
by setting Qj for j 6= i and all the ξn to zero. Inspection of the
coproduct in A∗ (B.3.4) shows that the ideal generated by these
elements is a Hopf ideal, i.e., it is closed under the coproduct.

More care is required for the subalgebra generated by the P sn.

It is dual to P (ξn)/(ξ
pn
n ). Hence we need to verify that

(τ0, τ1, · · · ; ξ1, · · · , ξn−1, ξp
n

n , ξn+1, · · · )

is a Hopf ideal. Let

Ji = (τ0, τ1, · · · ; ξ1, · · · , ξn−1, ξp
n

n , ξn+1, · · · ξn+i).
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It is clear from B.3.4 that J0 is a Hopf ideal. We will show by
induction on i that Ji is as well. Modulo Ji−1 we have

∆(ξn+i) =
∑

0≤j≤n+i
ξp

j

n+i−j ⊗ ξj

= ξn+i ⊗ 1 + 1⊗ ξn+i +
∑
n≤j≤i

ξp
j

n+i−j ⊗ ξj

and the cross terms are each in

Ji−1 ⊗A∗ +A∗ ⊗ Ji−1
as required. �

Theorem C.3.2. Let X be a partially type n spectrum (6.2.5)
and let

V = H∗(X(`))

for some ` > 0. Then the spectrum

Y = eV (X
(`kV ))

is strongly type n (6.2.3) if ` is sufficiently large.

Proof. By hypothesis, Qi for 0 ≤ i < n− 1 and P 0
t for 1 ≤ t ≤ n

act nontrivially on H∗(X). It follows that H∗(X)(`) for any ` > 0
contains a summand which is free over E(Qi).

In the subalgebra Tt of C.3.1(ii), let s
i
t denote the dual of ξit.

Then the Cartan formula gives

sit(u⊗ v) =
∑

0≤j≤i
sjt (u)⊗ s

i−j
t (v).

Now let x ∈ H∗(X) be a class with s1t (x) 6= 0. Then for
` ≥ pt − 1, the class

sit(x⊗ x⊗ · · ·x) ∈ H∗(X(`))

is nontrivial for 0 ≤ i ≤ pt − 1 by the Cartan formula.
It follows that the Tt-submodule of H∗(X(`)) generated by

x⊗ x⊗ · · ·x

is free. In order to meet the hypothesis of C.2.2, we need to show
that it is a free summand. According to Moore-Peterson [MP73],
Tt is self-injective, so a free submodule is always a direct summand.
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Hence C.2.2 tells us that H∗(Y ) is free over each E(Qi) and
Tt. This means that all of the Margolis homology groups specified
in 6.2.3 vanish on Y . �

Now we will prove the theorem needed for 8.3.6.

Theorem C.3.3. Let W be a spectrum where FK(m)∗(W )
(with m divisible by p−1; see 4.3) is such that the action of every
subgroup H ⊂ Sm of order p is nontrivial, and let

V = FK(m)∗(W
(p−1)) = FK(m)∗(W )⊗(p−1).

Then the spectrum eVW
(kV (p−1)) is such that

FK(m)∗(eVW
(kV (p−1))) = eV FK(m)∗(W

(kV (p−1)))

is a free module over Fpm [H] for every such H.

Proof. We need to show that for each H, V has a nontrivial
free summand over Fpm [H]. Then the result will follow by an
argument similar to that of C.2.2.

As a Hopf algebra,

Fpm [H] = Fpm [x]/(x
p − 1) with ∆(x) = x⊗ x.

Setting u = x− 1, we can write

Fpm [H] = Fpm [u]/(u
p) with ∆(u) = u⊗ 1 + u⊗ u+ 1⊗ u.

Since the action of Fpm [H] on FK(m)∗(W ) is nontrivial, we
can find nontrivial elements α, β ∈ FK(m)∗(W ) with

u(α) = β

u(β) = 0,

so we have

x(α) = α+ β

x(β) = β

xi(α) = α+ iβ.(C.3.4)

We will show that

v0 = α⊗(p−1) ∈ V

generates a free submodule over Fpm [H] by showing the the vec-
tors xi(v0) are linearly independent.
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Define vectors wj ∈ V for 0 ≤ j ≤ p− 1 formally (using t as a
dummy variable) by

(α+ tβ)⊗(p−1) =
∑
j

tjwj ,

i.e., wj is the sum of all tensor products with j factors equal to
β and p − 1 − j factors equal to α. The wj are clearly linearly
independent.

Then from (C.3.4) we have

xi(α⊗(p−1)) = (α+ iβ)⊗(p−1)

=
∑
j

ijwj .

These are linearly independent since the Vandermonde matrix
(
ij
)

is nonsingular, and the result follows. �
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72:299–400, 1955.

[Laz55b] M. Lazard. Sur les groupes de Lie formels á une paramètre. Bull.
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