What is an ∞-category?

Doug Ravenel
University of Rochester

4 August, 2023

Image appearing in an article by Emily Riehl in *Scientific American*, October 2021
Introduction

This is an expository talk on ∞-categories.
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

• Higher Topos Theory published in 2009 (949 pages), which we denote by [HTT].
• Higher Algebra last edited in 2017 (1553 pages), which we denote by [HA].

We will adhere to the following color convention:

• Ordinary categories will be written in green.
• ∞-categories (that are not ordinary categories) will be written in lilac.
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

- **Higher Topos Theory** published in 2009 (949 pages), which we denote by [HTT].
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

- **Higher Topos Theory** published in 2009 (949 pages), which we denote by [HTT].
- **Higher Algebra** last edited in 2017 (1553 pages), which we denote by [HA].
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

- **Higher Topos Theory** published in 2009 (949 pages), which we denote by [HTT].
- **Higher Algebra** last edited in 2017 (1553 pages), which we denote by [HA].

We will adhere to the following color convention:
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

- **Higher Topos Theory** published in 2009 (949 pages), which we denote by [HTT].
- **Higher Algebra** last edited in 2017 (1553 pages), which we denote by [HA].

We will adhere to the following color convention:

- Ordinary categories will be written in **green**.
This is an expository talk on ∞-categories.

The main references for this topic are two remarkable books by Jacob Lurie:

- **Higher Topos Theory** published in 2009 (949 pages), which we denote by [HTT].
- **Higher Algebra** last edited in 2017 (1553 pages), which we denote by [HA].

We will adhere to the following color convention:

- Ordinary categories will be written in **green**.
- ∞-categories (that are not ordinary categories) will be written in **lilac**.
Before defining ∞-categories we note some of their general features.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Introduction (continued)

Before defining ∞-categories we note some of their general features.

- An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category.
Introduction (continued)

Before defining ∞-categories we note some of their general features.

• An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms),
Before defining ∞-categories we note some of their general features.

- An ∞-category C is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined.
Before defining ∞-categories we note some of their general features.

- An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but **composition of morphisms is not well defined**. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later.
Before defining ∞-categories we note some of their general features.

- An ∞-category C is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.
Before defining ∞-categories we note some of their general features.

- An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.

- There is nothing easy about ∞-categories.
Before defining ∞-categories we note some of their general features.

- An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.

- There is nothing easy about ∞-categories. Most concepts and results from ordinary category theory have ∞-categorical analogs,
Before defining ∞-categories we note some of their general features.

- An ∞-category C is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.

- There is nothing easy about ∞-categories. Most concepts and results from ordinary category theory have ∞-categorical analogs, but the definitions are less obvious and the proofs are harder.
Before defining ∞-categories we note some of their general features.

- An ∞-category C is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.

- There is nothing easy about ∞-categories. Most concepts and results from ordinary category theory have ∞-categorical analogs, but the definitions are less obvious and the proofs are harder. For example, the definition of a symmetric monoidal ∞-category C.

References
Before defining ∞-categories we note some of their general features.

- An ∞-category \mathcal{C} is a generalization of an ordinary category, also known as a 1-category. Like an ordinary category, it has objects and morphisms (also known as 1-morphisms), but composition of morphisms is not well defined. It also has higher structures called k-morphisms for $k > 1$, to be spelled out later. ∞-categories provide a convenient setting for doing homotopy theory.

- There is nothing easy about ∞-categories. Most concepts and results from ordinary category theory have ∞-categorical analogs, but the definitions are less obvious and the proofs are harder. For example, the definition of a symmetric monoidal ∞-category \mathcal{C} requires far more than a functor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$ with the expected properties.
For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Introduction (continued)

- For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y), C(W, Y)$ and $C(W, X)$, with a composition map.
For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \longrightarrow C(W, Y)$$

$$(g, f) \longrightarrow gf.$$
For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \rightarrow C(W, Y)$$

$$(g, f) \mapsto gf.$$

In an ∞-category C, these three sets are topological spaces or simplicial sets, specifically Kan complexes.
For objects W, X and Y in an ordinary category C, one has morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \rightarrow C(W, Y)$$

$$(g, f) \rightarrow gf.$$

In an ∞-category C, these three sets are topological spaces or simplicial sets, specifically Kan complexes. Given morphisms $f : W \rightarrow X$ and $g : X \rightarrow Y$, A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References
Introduction (continued)

- For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y), C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \longrightarrow C(W, Y)$$

$$(g, f) \longmapsto gf.$$

In an ∞-category C, these three sets are topological spaces or simplicial sets, specifically Kan complexes. Given morphisms $f : W \rightarrow X$ and $g : X \rightarrow Y$, instead of a well defined composite $gf \in C(W, Y)$,
What is an \(\infty\)-category?

Doug Ravenel

Introduction (continued)

- For objects \(W, X\) and \(Y\) in an ordinary category \(\mathcal{C}\), one has a morphism sets \(\mathcal{C}(X, Y), \mathcal{C}(W, Y)\) and \(\mathcal{C}(W, X)\), with a composition map

\[
\mathcal{C}(X, Y) \times \mathcal{C}(W, X) \xrightarrow{(g, f)} \mathcal{C}(W, Y)
\]

\[
(g, f) \mapsto gf.
\]

In an \(\infty\)-category \(\mathcal{C}\), these three sets are topological spaces or simplicial sets, specifically Kan complexes. Given morphisms \(f : W \to X\) and \(g : X \to Y\), instead of a well defined composite \(gf \in \mathcal{C}(W, Y)\), we get a contractible subspace of \(\mathcal{C}(W, Y)\).
Introduction (continued)

For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \longrightarrow C(W, Y)$$

$$(g, f) \mapsto gf.$$

In an ∞-category C, these three sets are topological spaces or simplicial sets, specifically Kan complexes. Given morphisms $f : W \to X$ and $g : X \to Y$, instead of a well defined composite $gf \in C(W, Y)$, we get a contractible subspace of $C(W, Y)$. All morphisms in this subspace are homotopic to each other,
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n \geq 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Introduction (continued)

For objects W, X and Y in an ordinary category C, one has a morphism sets $C(X, Y)$, $C(W, Y)$ and $C(W, X)$, with a composition map

$$C(X, Y) \times C(W, X) \rightarrow C(W, Y)$$

$$(g, f) \mapsto gf.$$

In an ∞-category C, these three sets are topological spaces or simplicial sets, specifically Kan complexes. Given morphisms $f : W \rightarrow X$ and $g : X \rightarrow Y$, instead of a well defined composite $gf \in C(W, Y)$, we get a contractible subspace of $C(W, Y)$. All morphisms in this subspace are homotopic to each other, meaning that they all lie in the same path component.
Introduction (continued)

- Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets.
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.
• Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

• In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

• In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Introduction (continued)

- Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

- In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

- In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

- An ∞-category is a certain kind of simplicial set
What is an ∞-category?

Doug Ravenel

Introduction

• Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

• In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

• In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

• An ∞-category is a certain kind of simplicial set (but not generally a Kan complex),

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References
• Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

• **In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.**

• In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

• An ∞-category is a certain kind of simplicial set (but not generally a Kan complex), so it is sort of like a topological space.
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

An ∞-category is a certain kind of simplicial set (but not generally a Kan complex), so it is sort of like a topological space. There is a model structure on the category of simplicial sets due to Joyal.
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in \mathcal{C} is one for which $\mathcal{C}(X, Y)$ is contractible for all Y.

- In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

- In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

- An ∞-category is a certain kind of simplicial set (but not generally a Kan complex), so it is sort of like a topological space. There is a model structure on the category of simplicial sets due to Joyal in which the fibrant objects are the ∞-categories.
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

An ∞-category is a certain kind of simplicial set (but not generally a Kan complex), so it is sort of like a topological space. There is a model structure on the category of simplicial sets due to Joyal in which the fibrant objects are the ∞-categories. Hence one can speak of limits of ∞-categories,
Many definitions involve weak equivalences of morphism spaces rather than isomorphisms of morphism sets. For example, an initial object X in C is one for which $C(X, Y)$ is contractible for all Y.

In an ∞-category, homotopy limits/colimits are the same as ordinary limits/colimits when they exist.

In an ∞-category one need not worry about a model structure, but concepts of model category theory are needed to develop the theory of ∞-categories.

An ∞-category is a certain kind of simplicial set (but not generally a Kan complex), so it is sort of like a topological space. There is a model structure on the category of simplicial sets due to Joyal in which the fibrant objects are the ∞-categories. Hence one can speak of limits of ∞-categories, and certain functors between them are Joyal fibrations, aka inner fibrations.
The simplicial category Δ is that of finite ordered sets and order preserving maps.
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set-valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \to X_{k-1}$ (called face maps) and $X_k \to X_{k+1}$ (degeneracies), each indexed by i for $0 \leq i \leq k$. The ith such maps are induced by

- the order preserving monomorphism $[k-1] \to [k]$ whose image does not contain i and
- the order preserving epimorphism $[k+1] \to [k]$ sending both i and $i+1$ to i.

References
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ.
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k.

References
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \rightarrow X_{k-1}$ (called face maps) and
Review of simplicial sets

The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \to X_{k-1}$ (called face maps) and $X_k \to X_{k+1}$ (degeneracies), each indexed by i for $0 \leq i \leq k$.
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \to X_{k-1}$ (called face maps) and $X_k \to X_{k+1}$ (degeneracies), each indexed by i for $0 \leq i \leq k$. The ith such maps are induced by

- the order preserving monomorphism $[k-1] \to [k]$ whose image does not contain i, and
- the order preserving epimorphism $[k+1] \to [k]$ sending both i and $i+1$ to i.
Review of simplicial sets

The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \to X_{k-1}$ (called face maps) and $X_k \to X_{k+1}$ (degeneracies), each indexed by i for $0 \leq i \leq k$. The ith such maps are induced by

- the order preserving monomorphism $[k - 1] \to [k]$ whose image does not contain i
The simplicial category Δ is that of finite ordered sets and order preserving maps. For each integer $n \geq 0$, $[n]$ denotes the ordered set $\{0, 1, \ldots, n\}$.

A simplicial set X is a contravariant Set valued functor on Δ. Its value on $[k]$, its set of k-simplices, is denoted by X_k. X comes equipped with families of maps $X_k \to X_{k-1}$ (called face maps) and $X_k \to X_{k+1}$ (degeneracies), each indexed by i for $0 \leq i \leq k$. The ith such maps are induced by

- the order preserving monomorphism $[k - 1] \to [k]$ whose image does not contain i and
- the order preserving epimorphism $[k + 1] \to [k]$ sending both i and $i + 1$ to i.

References
The simplicial set Δ^n, the standard n-simplex, is defined by

$$(\Delta^n)_k = \Delta([k], [n]).$$
The simplicial set Δ^n, the standard n-simplex, is defined by

$$(\Delta^n)_k = \Delta([k], [n]).$$

In its boundary $\partial \Delta^n$, the set of k-simplices is the set of such morphisms in Δ which are not surjective.
The simplicial set Δ^n, the standard n-simplex, is defined by

$$(\Delta^n)_k = \Delta([k], [n]).$$

In its boundary $\partial\Delta^n$, the set of k-simplices is the set of such morphisms in Δ which are not surjective.

In its ith face, the set of k-simplices is the set of such morphisms whose image does not contain i.
Review of simplicial sets (continued)

The simplicial set Δ^n, the standard n-simplex, is defined by

$$(\Delta^n)_k = \Delta([k], [n]).$$

In its boundary $\partial\Delta^n$, the set of k-simplices is the set of such morphisms in Δ which are not surjective.

In its ith face, the set of k-simplices is the set of such morphisms whose image does not contain i.

In the ith horn $\Lambda^i_n \subseteq \partial\Delta^n$ for $0 \leq i \leq n$, the set of k-simplices is the set of nonsurjective morphisms whose image does contain i.

References
The simplicial set Δ^n, the **standard n-simplex**, is defined by

$$(\Delta^n)_k = \Delta([k],[n]).$$

In its **boundary** $\partial\Delta^n$, the set of k-simplices is the set of such morphisms in Δ which are not surjective.

In its **ith face**, the set of k-simplices is the set of such morphisms whose image does not contain i.

In the **ith horn** $\Lambda^n_i \subseteq \partial\Delta^n$ for $0 \leq i \leq n$, the set of k-simplices is the set of nonsurjective morphisms whose image does contain i.

The **inner faces and horns** are those for which $0 < i < n$.
Here are the three horns of a 2-simplex.
Here are the three horns of a 2-simplex.

\[
\begin{align*}
\Lambda^2_0 & \quad \Lambda^2_1 & \quad \Lambda^2_2 \\
0 & \rightarrow & 2 \\
& \downarrow & \\
1 & \rightarrow & 2 \\
0 & \rightarrow & 2
\end{align*}
\]
Review of simplicial sets (continued)

Here are the three horns of a 2-simplex.

\[\Lambda^2_0 \quad \Lambda^2_1 \quad \Lambda^2_2 \]

In the \(i\)th horn, the missing face is opposite the \(i\)th vertex.
Here are the three horns of a 2-simplex.

\[
\begin{array}{ccc}
\Lambda^2_0 & \Lambda^2_1 & \Lambda^2_2 \\
0 & 1 & 1 \\
\end{array}
\]

In the \(i\)th horn, the missing face is opposite the \(i\)th vertex.

A Kan complex is a simplicial set \(X\) for which every map from a horn \(\Lambda^n_i \to X\) extends to \(\Delta^n\).
The **topological** n-simplex Δ_{top}^n is the space
Review of simplicial sets (continued)

The topological \(n \)-simplex \(\Delta^n_{\text{top}} \) is the space

\[
\left\{(x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1\right\}.
\]
Review of simplicial sets (continued)

The topological n-simplex Δ^n_{top} is the space

$$\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.$$

The geometric realization $|X|$ of a simplicial set X is the colimit of the Top-valued functor

$$[k] \mapsto X_k \times \Delta^k_{\text{top}}.$$
Review of simplicial sets (continued)

The topological n-simplex Δ^n_{top} is the space

$$\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.$$

The geometric realization $|X|$ of a simplicial set X is the colimit of the Top-valued functor

$$[k] \mapsto X_k \times \Delta^k_{\text{top}}.$$

This space turns out to be the union of geometric realizations of the nondegenerate topological simplices of X,

References
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for n > 3

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Review of simplicial sets (continued)

The topological n-simplex \(\Delta^n_{\text{top}} \) is the space

\[
\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.
\]

The geometric realization \(|X| \) of a simplicial set \(X \) is the colimit of the Top-valued functor

\[
[k] \mapsto X_k \times \Delta^k_{\text{top}}.
\]

This space turns out to be the union of geometric realizations of the nondegenerate topological simplices of \(X \), meaning ones not in the image of any degeneracy map.
Review of simplicial sets (continued)

The topological n-simplex Δ_{top}^n is the space

$$\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.$$

The geometric realization $|X|$ of a simplicial set X is the colimit of the Top-valued functor

$$[k] \mapsto X_k \times \Delta_{\text{top}}^k.$$

This space turns out to be the union of geometric realizations of the nondegenerate topological simplices of X, meaning ones not in the image of any degeneracy map. In particular,

$$|\Delta^n| = \Delta_{\text{top}}^n \approx D^n,$$
The topological n-simplex Δ^n_{top} is the space

$$\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.$$

The geometric realization $|X|$ of a simplicial set X is the colimit of the Top-valued functor

$$[k] \mapsto X_k \times \Delta^k_{\text{top}}.$$

This space turns out to be the union of geometric realizations of the nondegenerate topological simplices of X, meaning ones not in the image of any degeneracy map. In particular,

$$|\Delta^n| = \Delta^n_{\text{top}} \approx D^n, \quad |\partial \Delta^n| \approx S^{n-1},$$
The topological \(n \)-simplex \(\Delta^N_{\text{top}} \) is the space

\[
\left\{ (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1} : x_i \geq 0 \text{ and } \sum x_i = 1 \right\}.
\]

The geometric realization \(|X| \) of a simplicial set \(X \) is the colimit of the \(\text{Top} \)-valued functor

\[
[k] \mapsto X_k \times \Delta^k_{\text{top}}.
\]

This space turns out to be the union of geometric realizations of the nondegenerate topological simplices of \(X \), meaning ones not in the image of any degeneracy map. In particular,

\[
|\Delta^n| = \Delta^n_{\text{top}} \approx D^n, \quad |\partial\Delta^n| \approx S^{n-1}, \text{ and } |\Lambda_i^n| \approx D^{n-1}.
\]
Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \coprod_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$
Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \coprod_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$

The category of simplicial sets is denoted by Set_Δ.

References
Review of simplicial sets (continued)

Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \bigsqcup_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$

The category of simplicial sets is denoted by Set_Δ.

A simplicial map $X \to Y$ is a natural transformation of contravariant functors on Δ.
Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \bigsqcup_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$

The category of simplicial sets is denoted by Set_Δ.

A simplicial map $X \to Y$ is a natural transformation of contravariant functors on Δ. The set of such maps is $\text{Set}_\Delta(X, Y)$.

References
Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \bigsqcap_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$

The category of simplicial sets is denoted by Set_Δ.

A simplicial map $X \to Y$ is a natural transformation of contravariant functors on Δ. The set of such maps is $\text{Set}_\Delta(X, Y)$. This can be thickened up to a simplicial set $\text{Set}_\Delta(X, Y)$ in which the set of k-simplices is $\text{Set}_\Delta(X \times \Delta^k, Y)$.

References
Review of simplicial sets (continued)

Given simplicial sets X and Y, one can define a simplicial set $X \times Y$ in which

$$(X \times Y)_n = \coprod_{0 \leq i \leq n} X_i \times Y_{n-i} \quad \text{and} \quad |X \times Y| = |X| \times |Y|.$$

The category of simplicial sets is denoted by Set_Δ.

A simplicial map $X \to Y$ is a natural transformation of contravariant functors on Δ. The set of such maps is $\text{Set}_\Delta(X, Y)$. This can be thickened up to a simplicial set $\text{Set}_\Delta(X, Y)$ in which the set of k-simplices is $\text{Set}_\Delta(X \times \Delta^k, Y)$.

Hence Set_Δ is enriched over itself.
The nerve $\mathcal{N}C$ of a small category C is the simplicial set

\[\text{Of all the nerve!} \]

Doug Ravenel

Introduction

Review of simplicial sets

The main definition

The ∞-category of topological spaces

The set of 3-simplices in \mathcal{S}

The set of 4-simplices in \mathcal{S}

The set \mathcal{S}_{n+1} for $n > 3$

A colimit in \mathcal{S}

Bousfield localization in ∞-categories

The ∞-category of spectra

References
The nerve NC of a small category C is the simplicial set in which the set of n-simplices NC_n is the set of diagrams

$$X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n$$

in C.
The nerve NC of a small category C is the simplicial set in which the set of n-simplices NC_n is the set of diagrams

$$X_0 \to X_1 \to \cdots \to X_n$$

in C. Face and degeneracy maps are defined by composing adjacent morphisms and inserting identity maps.
The nerve NC of a small category C is the simplicial set in which the set of n-simplices NC_n is the set of diagrams

$$X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n$$

in C. Face and degeneracy maps are defined by composing adjacent morphisms and inserting identity maps. Equivalently we can regard $[n]$ as the category

$$0 \rightarrow 1 \rightarrow \cdots \rightarrow n$$
The nerve NC of a small category C is the simplicial set in which the set of n-simplices NC_n is the set of diagrams

$$X_0 \to X_1 \to \cdots \to X_n$$

in C. Face and degeneracy maps are defined by composing adjacent morphisms and inserting identity maps. Equivalently we can regard $[n]$ as the category

$$0 \to 1 \to \cdots \to n$$

and define NC_n to be the set of functors from $[n]$ to C.

References
This simplicial set has the following property: Any simplicial map $\Lambda^n_i \to NC$ for $0 < i < n$ extends uniquely to Δ^n.
This simplicial set has the following property: Any simplicial map $\Lambda^n_i \to NC$ for $0 < i < n$ extends uniquely to Δ^n.

Of all the nerve! (continued)
This simplicial set has the following property: Any simplicial map $\Lambda^n_i \to NC$ for $0 < i < n$ extends uniquely to Δ^n.

It is known that the category C is determined by its nerve, and that any simplicial set with property above is the nerve of some small category.
This simplicial set has the following property: Any simplicial map $\Lambda_i^n \to NC$ for $0 < i < n$ extends uniquely to Δ^n.

\[
\begin{array}{ccc}
X_0 & \xrightarrow{g} & X_2 \\
\downarrow & & \downarrow \quad \text{or} \quad \text{extends uniquely}
\end{array}
\]

It is known that the category C is determined by its nerve, and that any simplicial set with property above is the nerve of some small category.

A small category is thus equivalent to a simplicial set (its nerve) in which each map from an inner horn Λ_i^n extends uniquely to a map from Δ^n.
Definition

An \(\infty\)-category (also called a quasicategory) \(\mathcal{C}\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C}\) for \(0 < i < n\) extends to some map \(\Delta^n \to \mathcal{C}\).
The main definition

Definition

An \(\infty \)-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \to \mathcal{C} \). A functor \(F : \mathcal{C} \to \mathcal{C}' \) from one \(\infty \)-category to another is a simplicial map.
Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda^n_i \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

There are several features of this definition worth noting.
The main definition

Definition

An \(\infty\)-category (also called a quasicategory) \(\mathcal{C}\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C}\) for \(0 < i < n\) extends to some map \(\Delta^n \to \mathcal{C}\). A functor \(F : \mathcal{C} \to \mathcal{C}'\) from one \(\infty\)-category to another is a simplicial map.

There are several features of this definition worth noting.

- We are not requiring extensions of maps from \(\Lambda^n_0\) and \(\Lambda^n_n\) (known as the left and right outer horns) as in the definition of a Kan complex.
Definition

An \(\infty \)-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \to \mathcal{C} \). A functor \(F : \mathcal{C} \to \mathcal{C}' \) from one \(\infty \)-category to another is a simplicial map.

There are several features of this definition worth noting.

- We are not requiring extensions of maps from \(\Lambda^n_0 \) and \(\Lambda^n_n \) (known as the left and right outer horns) as in the definition of a Kan complex. Boardman and Vogt [BV73, Definition 4.8] called this the restricted Kan condition.
The main definition

Definition

An \(\infty \)-category (also called a quasicategory) \(C \) is a simplicial set in which each simplicial map \(\Lambda^i_n \rightarrow C \) for \(0 < i < n \) extends to some map \(\Delta^n \rightarrow C \). A functor \(F : C \rightarrow C' \) from one \(\infty \)-category to another is a simplicial map.

There are several features of this definition worth noting.

- We are not requiring extensions of maps from \(\Lambda^0_n \) and \(\Lambda^n_n \) (known as the left and right outer horns) as in the definition of a Kan complex. Boardman and Vogt [BV73, Definition 4.8] called this the restricted Kan condition.
- The extension of each map from an inner horn is not required to be unique, as it is in the nerve of an ordinary category.

References
The main definition

Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda^n_i \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

There are several features of this definition worth noting.

- We are not requiring extensions of maps from Λ^n_0 and Λ^n_n (known as the left and right outer horns) as in the definition of a Kan complex. Boardman and Vogt [BV73, Definition 4.8] called this the restricted Kan condition.

- The extension of each map from an inner horn is not required to be unique, as it is in the nerve of an ordinary category. This means that this notion is more general than that of an ordinary category as seen through its nerve.

References
An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda^n_i \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

There are several features of this definition worth noting.

- We are not requiring extensions of maps from Λ^n_0 and Λ^n_n (known as the left and right outer horns) as in the definition of a Kan complex. Boardman and Vogt [BV73, Definition 4.8] called this the restricted Kan condition.

- The extension of each map from an inner horn is not required to be unique, as it is in the nerve of an ordinary category. This means that this notion is more general than that of an ordinary category as seen through its nerve. Hence an ordinary category is a special case of an ∞-category.
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) C is a simplicial set in which each simplicial map $\Lambda^n_i \to C$ for $0 < i < n$ extends to some map $\Delta^n \to C$. A functor $F : C \to C'$ from one ∞-category to another is a simplicial map.
Definition

An \(\infty\)-category (also called a quasicategory) \(C\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to C\) for \(0 < i < n\) extends to some map \(\Delta^n \to C\). A functor \(F : C \to C'\) from one \(\infty\)-category to another is a simplicial map.

- Given such a simplicial set \(C\), we can think of elements of the sets \(C_0\) and \(C_1\) as objects and morphisms.
The main definition (continued)

Definition

An \(\infty\)-category (also called a quasicategory) \(C\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to C\) for \(0 < i < n\) extends to some map \(\Delta^n \to C\). A functor \(F : C \to C'\) from one \(\infty\)-category to another is a simplicial map.

- Given such a simplicial set \(C\), we can think of elements of the sets \(C_0\) and \(C_1\) as objects and morphisms. The two face maps \(C_1 \rightrightarrows C_0\) define the source and target (aka domain and codomain) of each morphism.
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) C is a simplicial set in which each simplicial map $\Lambda^n_i \to C$ for $0 < i < n$ extends to some map $\Delta^n \to C$. A functor $F : C \to C'$ from one ∞-category to another is a simplicial map.

- Given such a simplicial set C, we can think of elements of the sets C_0 and C_1 as objects and morphisms. The two face maps $C_1 \rightrightarrows C_0$ define the source and target (aka domain and codomain) of each morphism. Elements in the sets C_k for $k > 1$ can be thought of as higher morphisms in C.
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) C is a simplicial set in which each simplicial map $\Lambda^i_n \to C$ for $0 < i < n$ extends to some map $\Delta^n \to C$. A functor $F : C \to C'$ from one ∞-category to another is a simplicial map.
The main definition (continued)

Definition

An \(\infty\)-category (also called a quasicategory) \(\mathcal{C}\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C}\) for \(0 < i < n\) extends to some map \(\Delta^n \to \mathcal{C}\). A functor \(F : \mathcal{C} \to \mathcal{C}'\) from one \(\infty\)-category to another is a simplicial map.

- A diagram

\[
\begin{array}{c}
X_0 \\
\downarrow f_{0,2} \\
X_1 & \xrightarrow{f_{0,1}} & X_2 \\
\downarrow f_{1,2} \\
\end{array}
\]

References
A diagram

```
X_0 \rightarrow X_1 \rightarrow X_2
```

without the dashed arrow is equivalent to a map \(\Lambda^2_1 \rightarrow \mathcal{C} \).

Definition

An \(\infty \)-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda^i_n \rightarrow \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \rightarrow \mathcal{C} \). A functor \(F : \mathcal{C} \rightarrow \mathcal{C}' \) from one \(\infty \)-category to another is a simplicial map.

What is an \(\infty \)-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The \(\infty \)-category of topological spaces

The set of 3-simplices in \(\mathcal{S} \)

The set of 4-simplices in \(\mathcal{S} \)

The set \(\mathcal{S}_{n+1} \) for \(n > 3 \)

A colimit in \(\mathcal{S} \)

Bousfield localization in \(\infty \)-categories

The \(\infty \)-category of spectra

References
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) C is a simplicial set in which each simplicial map $\Lambda_i^n \to C$ for $0 < i < n$ extends to some map $\Delta^n \to C$. A functor $F : C \to C'$ from one ∞-category to another is a simplicial map.

- A diagram

\[
\begin{array}{ccc}
X_0 & - & - & - & - & - & - & \rightarrow & X_2 \\
| & f_{0,1} & \downarrow & f_{1,2} & \downarrow & \downarrow & f_{0,2} & \\
X_1 & & & & & & & \\
\end{array}
\]

without the dashed arrow is equivalent to a map $\Lambda_1^2 \to C$. Choosing a dashed arrow is equivalent to extending this map to $\partial\Delta^2$.

References
The main definition (continued)

Definition

An \(\infty\)-category (also called a quasicategory) \(C\) is a simplicial set in which each simplicial map \(\Lambda^i_n \to C\) for \(0 < i < n\) extends to some map \(\Delta^n \to C\). A functor \(F : C \to C'\) from one \(\infty\)-category to another is a simplicial map.

- A diagram

\[
\begin{array}{c}
\quad X_1 \\
& f_{0,1} \quad f_{1,2} \\
X_0 \quad - \quad - \quad - \quad - \quad - \quad - \quad \Rightarrow \quad X_2 \\
& f_{0,2}
\end{array}
\]

without the dashed arrow is equivalent to a map \(\Lambda^2_1 \to C\). Choosing a dashed arrow is equivalent to extending this map to \(\partial \Delta^2\). Choosing a homotopy between \(f_{1,2}f_{0,1}\) and \(f_{0,2}\) is equivalent to extending this map to all of \(\Delta^2\).
The main definition (continued)

Definition

An \(\infty\)-category (also called a quasicategory) \(\mathcal{C}\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C}\) for \(0 < i < n\) extends to some map \(\Delta^n \to \mathcal{C}\). A functor \(F : \mathcal{C} \to \mathcal{C}'\) from one \(\infty\)-category to another is a simplicial map.

- A diagram

\[
\begin{array}{ccc}
\mathcal{X}_0 & \xrightarrow{f_{0,1}} & \mathcal{X}_1 \\
\mathcal{X}_0 & \xrightarrow{f_{0,2}} & \mathcal{X}_2 \\
\end{array}
\]

without the dashed arrow is equivalent to a map \(\Lambda^2_1 \to \mathcal{C}\). Choosing a dashed arrow is equivalent to extending this map to \(\partial\Delta^2\). Choosing a homotopy between \(f_{1,2}f_{0,1}\) and \(f_{0,2}\) is equivalent to extending this map to all of \(\Delta^2\). Such an extension is guaranteed to exist, but it is not unique.
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) \mathbb{C} is a simplicial set in which each simplicial map $\Lambda^i_n \to \mathbb{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathbb{C}$. A functor $F : \mathbb{C} \to \mathbb{C}'$ from one ∞-category to another is a simplicial map.

- A diagram

```
X_0 \rightarrow X_2
f_{0,2} \quad f_{0,1} \quad f_{1,2}
```

without the dashed arrow is equivalent to a map $\Lambda^2_1 \to \mathbb{C}$. Choosing a dashed arrow is equivalent to extending this map to $\partial \Delta^2$. Choosing a homotopy between $f_{1,2}f_{0,1}$ and $f_{0,2}$ is equivalent to extending this map to all of Δ^2. Such an extension is guaranteed to exist, but it is not unique. This means composition of morphisms in an ∞-category is not well defined.
Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda_i^n \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.
What is an \(\infty\)-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The \(\infty\)-category of topological spaces

The set of 3-simplices in \(S\)

The set of 4-simplices in \(S\)

The set \(S_{n+1}\) for \(n \geq 3\)

A colimit in \(S\)

Bousfield localization in \(\infty\)-categories

The \(\infty\)-category of spectra

References

Definition

An \(\infty\)-category (also called a quasicategory) \(C\) is a simplicial set in which each simplicial map \(\Lambda^n_i \to C\) for \(0 < i < n\) extends to some map \(\Delta^n \to C\). A functor \(F : C \to C'\) from one \(\infty\)-category to another is a simplicial map.

- The simplicial set \(\text{Set}_\Delta(K, D)\) of simplicial maps from a simplicial set \(K\) to an \(\infty\)-category \(D\) is itself an \(\infty\)-category.
The main definition (continued)

Definition

An \(\infty \)-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda_i^n \to \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \to \mathcal{C} \). A functor \(F : \mathcal{C} \to \mathcal{C}' \) from one \(\infty \)-category to another is a simplicial map.

- The simplicial set \(\text{Set}_\Delta(K, \mathcal{D}) \) of simplicial maps from a simplicial set \(K \) to an \(\infty \)-category \(\mathcal{D} \) is itself an \(\infty \)-category.
- \(K \) itself could be an \(\infty \)-category \(\mathcal{C} \),
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda_i^n \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

- The simplicial set $\text{Set}_\Delta(K, \mathcal{D})$ of simplicial maps from a simplicial set K to an ∞-category \mathcal{D} is itself an ∞-category.
- K itself could be an ∞-category \mathcal{C}, in particular it could be $N\mathcal{C}$ for an ordinary category \mathcal{C}.

References
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda^n_i \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

- The simplicial set $\text{Set}_\Delta(K, D)$ of simplicial maps from a simplicial set K to an ∞-category D is itself an ∞-category.
- K itself could be an ∞-category \mathcal{C}, in particular it could be $N\mathcal{C}$ for an ordinary category \mathcal{C}. In other words, the collection of functors $\mathcal{C} \to \mathcal{D}$ is an ∞-category $\text{Fun}(\mathcal{C}, \mathcal{D})$.
The main definition (continued)

Definition

An ∞-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda^n_i \to \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \to \mathcal{C} \). A functor \(F : \mathcal{C} \to \mathcal{C}' \) from one ∞-category to another is a simplicial map.

To a topological space \(X \) we can associate an ∞-category \(X \) (also known as \(\text{Sing} X \), the singular simplicial set of \(X \))
Definition

An ∞-category (also called a quasicategory) \(C \) is a simplicial set in which each simplicial map \(\Lambda^n_i \rightarrow C \) for \(0 < i < n \) extends to some map \(\Delta^n \rightarrow C \). A functor \(F : C \rightarrow C' \) from one ∞-category to another is a simplicial map.

To a topological space \(X \) we can associate an ∞-category \(X \) (also known as \(\text{Sing} \) \(X \), the singular simplicial set of \(X \)) in which \(X_n \) is the set of continuous maps \(|\Delta^n| \rightarrow X \).
Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda^n_i \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

To a topological space X we can associate an ∞-category X (also known as $\text{Sing} X$, the singular simplicial set of X) in which X_n is the set of continuous maps $|\Delta^n| \to X$. X is also a Kan complex since a map $|\Lambda^n_i| \to X$, for any horn Λ^n_i, extends to $|\Delta^n|$.
Definition

An ∞-category (also called a quasicategory) \mathcal{C} is a simplicial set in which each simplicial map $\Lambda_i^n \to \mathcal{C}$ for $0 < i < n$ extends to some map $\Delta^n \to \mathcal{C}$. A functor $F : \mathcal{C} \to \mathcal{C}'$ from one ∞-category to another is a simplicial map.

To a topological space X we can associate an ∞-category X (also known as $\text{Sing} X$, the singular simplicial set of X) in which X_n is the set of continuous maps $|\Delta^n| \to X$. X is also a Kan complex since a map $|\Lambda_i^n| \to X$, for any horn Λ_i^n, extends to $|\Delta^n|$.

Such an ∞-category is called an ∞-groupoid.
Definition

An \(\infty \)-category (also called a quasicategory) \(\mathcal{C} \) is a simplicial set in which each simplicial map \(\Lambda^n_i \rightarrow \mathcal{C} \) for \(0 < i < n \) extends to some map \(\Delta^n \rightarrow \mathcal{C} \). A functor \(F : \mathcal{C} \rightarrow \mathcal{C}' \) from one \(\infty \)-category to another is a simplicial map.

To a topological space \(X \) we can associate an \(\infty \)-category \(X \) (also known as \(\text{Sing} X \), the singular simplicial set of \(X \)) in which \(X_n \) is the set of continuous maps \(|\Delta^n| \rightarrow X \). \(X \) is also a Kan complex since a map \(|\Lambda^n_i| \rightarrow X \), for any horn \(\Lambda^n_i \), extends to \(|\Delta^n| \).

Such an \(\infty \)-category is called an \(\infty \)-groupoid because all morphisms, i.e., paths in \(X \), are invertible up to homotopy.
Let Top denote the category of compactly generated weak Hausdorff spaces \textbf{with cardinality less than κ},
Let \textbf{Top} denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal.
The ∞-category of topological spaces

Let \mathbf{Top} denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years.
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving it here, I will describe the ∞-category S (Lurie’s notation of [HTT, Definition 1.2.16.1]) one gets by applying it to Top.
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving it here, I will describe the ∞-category S (Lurie's notation of [HTT, Definition 1.2.16.1]) one gets by applying it to Top. This is the ∞-category of topological spaces.
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving it here, I will describe the ∞-category S (Lurie’s notation of [HTT, Definition 1.2.16.1]) one gets by applying it to Top. This is the ∞-category of topological spaces.

Lurie’s S is actually the homotopy coherent nerve of the category \mathcal{Kan} of Kan complexes,
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving it here, I will describe the ∞-category S (Lurie’s notation of [HTT, Definition 1.2.16.1]) one gets by applying it to Top. This is the ∞-category of topological spaces.

Lurie’s S is actually the homotopy coherent nerve of the category Kan of Kan complexes, which is equivalent to the category of CW-complexes.
Let Top denote the category of compactly generated weak Hausdorff spaces with cardinality less than κ, where κ is a sufficiently large regular cardinal. This version of the category of topological spaces is small, so we could consider its nerve.

There is another construction called the homotopy coherent nerve whose definition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving it here, I will describe the ∞-category S (Lurie’s notation of [HTT, Definition 1.2.16.1]) one gets by applying it to Top. This is the ∞-category of topological spaces.

Lurie’s S is actually the homotopy coherent nerve of the category \mathcal{Kan} of Kan complexes, which is equivalent to the category of CW-complexes. The distinction between CW-complexes and more general spaces does not matter in what follows.
As in our main definition, S is a simplicial set.
As in our main definition, S is a simplicial set. Its vertices and edges are objects and morphisms in Top, meaning spaces and continuous maps.
As in our main definition, S is a simplicial set. Its vertices and edges are objects and morphisms in Top, meaning spaces and continuous maps.

The set of 2-simplices is more interesting. In the subcategory $N\text{Top}$ (the ordinary nerve), it is the set of commutative diagrams of the form

$$
\begin{array}{ccc}
X_0 & \rightarrow & X_1 \\
\downarrow^{f_{1,2}} & & \downarrow^{f_{0,1}} \\
X_2 & \rightarrow & X_2.
\end{array}
$$

The top two edges can be viewed as a map $\Lambda^2 \rightarrow N\text{Top}$, with the full diagram being its unique extension to Δ^2.
The ∞-category of topological spaces (continued)

As in our main definition, S is a simplicial set. Its vertices and edges are objects and morphisms in Top, meaning spaces and continuous maps.

The set of 2-simplices is more interesting. In the subcategory $\mathcal{N}\text{Top}$ (the ordinary nerve), it is the set of commutative diagrams of the form

```
\begin{tikzcd}
X_0 & X_1 & X_2 \\
& f_{0,1} & f_{1,2} \\
X_0 & f_{1,2}f_{0,1} & X_2.
\end{tikzcd}
```

The top two edges can be viewed as a map $\Lambda^1_2 \to \mathcal{N}\text{Top}$,
As in our main definition, S is a simplicial set. Its vertices and edges are objects and morphisms in Top, meaning spaces and continuous maps.

The set of 2-simplices is more interesting. In the subcategory $N\text{Top}$ (the ordinary nerve), it is the set of commutative diagrams of the form

$$
\begin{array}{ccc}
X_0 & \xrightarrow{f_0,1} & X_1 & \xrightarrow{f_1,2} & X_2 \\
& & f_1,2f_0,1 & \nearrow \\
X_2 & \\
\end{array}
$$

The top two edges can be viewed as a map $\Lambda_2^1 \to N\text{Top}$, with the full diagram being its unique extension to Δ^2.
The ∞-category of topological spaces (continued)

$N\text{Top}_2$ is the set of commutative diagrams of the form

\begin{align*}
 X_0 \xrightarrow{f_{1,2}f_{0,1}} X_1 \xleftarrow{f_{0,1}} X_0 \xrightarrow{f_{1,2}} X_2.
\end{align*}

The set of 2-simplices S_2 consists of similar diagrams

The ∞-category of topological spaces

References
The ∞-category of topological spaces (continued)

$\mathcal{N}\text{Top}_2$ is the set of commutative diagrams of the form

$$
\begin{array}{ccc}
X_0 & \xymatrix{ & X_1 \ar[dl]_{f_{0,1}} \ar[dr]^{f_{1,2}} } & X_2. \\
& f_{1,2}f_{0,1} & \\
X_0 & \xymatrix{ & X_1 \ar[dl]_{f_{0,1}} \ar[dr]^{f_{1,2}} } & X_2. \\
& f_{1,2}f_{0,1} & \\
\end{array}
$$

The set of 2-simplices S_2 consists of similar diagrams in which the bottom arrow is replaced by any map $f_{0,2}$ homotopic to $f_{1,2}f_{0,1}$, with the homotopy $h_{0,2}$ being part of the datum.
The ∞-category of topological spaces (continued)

$\mathscr{N}Top_2$ is the set of commutative diagrams of the form

$$
\begin{array}{ccc}
X_0 & \longrightarrow & X_1 \\
| & \downarrow & | \\
| & f_{1,2} & f_{0,1} \\
\downarrow & \downarrow & \downarrow \\
X_0 & \longrightarrow & X_2.
\end{array}
$$

The set of 2-simplices S_2 consists of similar diagrams in which the bottom arrow is replaced by any map $f_{0,2}$ homotopic to $f_{1,2}f_{0,1}$, with the homotopy $h_{0,2}$ being part of the datum. Thus we have a diagram

$$
\begin{array}{ccc}
X_0 & \longrightarrow & X_1 \\
| & \downarrow & | \\
| & f_{0,2} & f_{0,1} \\
\downarrow & \downarrow & \downarrow \\
X_0 & \longrightarrow & X_2.
\end{array}
$$
What is an \(\infty \)-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The \(\infty \)-category of topological spaces

The set of 3-simplices in \(S \)

The set of 4-simplices in \(S \)

The set \(S_{n+1} \) for \(n > 3 \)

A colimit in \(S \)

Bousfield localization in \(\infty \)-categories

The \(\infty \)-category of spectra

References

\(\mathcal{N} \text{Top}_{2} \) is the set of commutative diagrams of the form

\[
\begin{array}{ccc}
X_0 & \xrightarrow{f_{0,1}} & X_1 \\
\downarrow f_{1,2} & & \downarrow f_{1,2} \\
X_0 & \xrightarrow{f_{1,2}f_{0,1}} & X_2.
\end{array}
\]

The set of 2-simplices \(S_2 \) consists of similar diagrams in which the bottom arrow is replaced by any map \(f_{0,2} \) homotopic to \(f_{1,2}f_{0,1} \), with the homotopy \(h_{0,2} \) being part of the datum. Thus we have a diagram

\[
\begin{array}{ccc}
X_0 & \xrightarrow{f_{0,2}} & X_2 \\
\downarrow h_{0,2} & & \downarrow h_{0,2} \\
X_1 & \xrightarrow{f_{0,1}} & X_1 \\
\downarrow f_{1,2} & & \downarrow f_{1,2} \\
X_0 & \xrightarrow{f_{1,2}f_{0,1}} & X_2.
\end{array}
\]

The homotopy \(h_{0,2} \) is a map \(I \times X_0 \to X_2 \) with certain properties.
The ∞-category of topological spaces (continued)

The homotopy is a map

$$I \times X_0 \xrightarrow{h_{0,2}} X_2$$

with certain properties.
The ∞-category of topological spaces (continued)

What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in \mathcal{S}

The set of 4-simplices in \mathcal{S}

The set \mathcal{S}_{n+1} for $n > 3$

A colimit in \mathcal{S}

Bousfield localization in ∞-categories

The ∞-category of spectra

References

The homotopy is a map

$$I \times X_0 \xrightarrow{h_{0,2}} X_2$$

with certain properties. It is adjoint to a path (which we denote by the same symbol)

$$I \xrightarrow{h_{0,2}} \text{Top}(X_0, X_2)$$
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

The ∞-category of topological spaces (continued)

$X_0 \xrightarrow{f_0, 2} X_1 \xleftarrow{f_0, 1} X_2$

As in the ordinary case, the top two edges of the diagram can be viewed as a map $\Lambda_{2,1} \to S$. Now there is an extension of it to Δ_2 for each path $h_{0,2}$ in $\text{Top}(X_0, X_2)$ starting at the point $f_{0,2} = f_{0,1}$. The space of such paths is contractible.
As in the ordinary case, the top two edges of the diagram can be viewed as a map $\Lambda^2 \rightarrow S$.
As in the ordinary case, the top two edges of the diagram can be viewed as a map \(\Lambda^2_1 \to S \). Now there is an extension of it to \(\Delta^2 \) for each path \(h_{0,2} \) in \(\text{Top}(X_0, X_2) \) starting at the point \(f_{1,2}f_{0,1} \).
As in the ordinary case, the top two edges of the diagram can be viewed as a map $\Lambda^2_1 \to S$. Now there is an extension of it to Δ^2 for each path $h_{0,2}$ in $\text{Top}(X_0, X_2)$ starting at the point $f_{1,2}f_{0,1}$. The space of such paths is contractible.
The following diagram shows four 2-simplices with their homotopies.
The set of 3-simplices in S

The following diagram shows four 2-simplices with their homotopies.

This is the boundary of a 3-simplex in S.

If there is a certain double homotopy $h_0,3: I^2 \to \text{Top}(X_0,X_3)$ shown on the next slide.
The set of 3-simplices in S

The following diagram shows four 2-simplices with their homotopies.

This is the boundary of a 3-simplex in S iff there is a certain double homotopy
The set of 3-simplices in S

The following diagram shows four 2-simplices with their homotopies.

This is the boundary of a 3-simplex in S iff there is a certain double homotopy adjoint to a map $h_{0,3} : I^2 \to \text{Top}(X_0, X_3)$ shown on the next slide.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

The diagram on the previous is the boundary of a 3-simplex in S iff there a map $h_{0,3} : I^2 \to \text{Top}(X_0, X_3)$ of the form

$$f_{2,3}f_{1,2}f_{0,1} \quad \quad f_{2,3}h_{0,2} \quad \quad f_{2,3}f_{0,2}$$

$$h_{1,3}f_{0,1} \quad \quad h_{0,3}^1$$

$$f_{1,3}f_{0,1} \quad \quad h_{0,3}^2 \quad \quad f_{0,3}$$

This is a picture rather than a diagram. Each vertex of the square is a point in $\text{Top}(X_0, X_3)$, while the upper and left edges are the indicated composites. The other edges are the homotopies shown in the previous slide.
The set of 3-simplices in S (continued)

The diagram on the previous is the boundary of a 3-simplex in S iff there a map $h_{0,3} : I^2 \to \text{Top}(X_0, X_3)$ of the form

This is a picture rather than a diagram.
The diagram on the previous is the boundary of a 3-simplex in \(S \) iff there a map \(h_{0,3} : I^2 \to \text{Top}(X_0, X_3) \) of the form

\[
\begin{array}{c}
\bullet & - & \bullet \\
\downarrow & & \downarrow \\
\bullet & - & \bullet \\
\end{array}
\]

This is a picture rather than a diagram. Each vertex of the square is a point in \(\text{Top}(X_0, X_3) \), while the upper and left edges are the indicated composites.
The set of 3-simplices in \mathcal{S} (continued)

The diagram on the previous is the boundary of a 3-simplex in \mathcal{S} iff there a map $h_{0,3} : I^2 \to \text{Top}(X_0, X_3)$ of the form

$$f_{2,3}, f_{1,2}, f_{0,1} \quad \xrightarrow{f_{2,3}h_{0,2}} \quad f_{2,3}, f_{0,2}$$

$$h_{1,3}f_{0,1} \quad \quad \quad \quad \quad \quad \quad h_{1,3}^1$$

$$f_{1,3}f_{0,1} \quad \xrightarrow{h_{2,3}^2} \quad f_{0,3}$$

This is a picture rather than a diagram. Each vertex of the square is a point in $\text{Top}(X_0, X_3)$, while the upper and left edges are the indicated composites. The other edges are the homotopies shown in the previous slide.
The set of 4-simplices in S

For each 4-simplex, the additional datum is a map $h_{0,4} : I^3 \to \text{Top}(X_0, X_4)$ of the form...
The set of 4-simplices in S

For each 4-simplex, the additional datum is a map $h_{0,4} : I^3 \to \text{Top}(X_0, X_4)$ of the form

\[h_{0,4} = h_{0,4}^{(0)} + h_{0,4}^{(1)} + h_{0,4}^{(2)} + h_{0,4}^{(3)} \]

\[f_{3,4} f_{2,3} f_{1,2} f_{0,1} \rightarrow f_{3,4} f_{2,3} h_{0,2} \rightarrow f_{3,4} h_{1,3} f_{0,1} \rightarrow f_{3,4} h_{0,3} \rightarrow f_{3,4} f_{2,3} f_{0,2} \rightarrow f_{3,4} f_{0,3} \]

\[f_{2,4} h_{0,2} \rightarrow h_{1,4} f_{0,1} \rightarrow f_{3,4} h_{1,3} f_{0,1} \rightarrow f_{3,4} h_{0,3} \rightarrow f_{2,4} f_{0,2} \rightarrow f_{0,4} \]

\[h_{1,4} f_{0,1} \rightarrow f_{2,4} h_{0,2} \rightarrow f_{2,4} f_{0,2} \]

\[f_{1,2} f_{0,1} \rightarrow f_{1,4} f_{0,1} \rightarrow f_{1,4} f_{0,1} \rightarrow f_{0,4} \]

The restrictions of $h_{0,4}$ to the left and top faces are the composite double homotopies indicated in green. The restrictions to the three faces abutting $f_{0,4}$ are double homotopies indicated in blue.
What is an ∞-category?

Doug Ravenel

Introduction
Review of simplicial sets
Of all the nerve!
The main definition
The ∞-category of topological spaces
The set of 3-simplices in S
A colimit in S
Bousfield localization in ∞-categories
The ∞-category of spectra
References

The set of 4-simplices in S

For each 4-simplex, the additional datum is a map $h_{0,4} : l^3 \to \text{Top}(X_0, X_4)$ of the form

$$h_{0,4} = h_{0,4}^1 f_{3,4} + h_{0,4}^2 f_{2,4} + h_{0,4}^3 f_{1,4}$$

The restriction of $h_{0,4}$ to the left and top faces are the composite double homotopies indicated in green.
The set of 4-simplices in S

For each 4-simplex, the additional datum is a map $h_{0,4} : I^3 \to \text{Top}(X_0, X_4)$ of the form

$$h_{0,4} : f_{3,4}f_{2,3}f_{1,2}f_{0,1} \xrightarrow{f_{3,4}f_{2,3}h_{0,2}} f_{3,4}f_{2,3}f_{0,2} \xrightarrow{f_{3,4}h_{0,3}} f_{3,4}f_{0,3}$$

The restriction of $h_{0,4}$ to the left and top faces are the composite double homotopies indicated in green. The restrictions to the three faces abuting $f_{0,4}$ are double homotopies indicated in blue.

The set of 4-simplices in S

The restriction of $h_{0,4}$ to the left and top faces are the composite double homotopies indicated in green. The restrictions to the three faces abuting $f_{0,4}$ are double homotopies indicated in blue.
The set of 4-simplices in S (continued)
The set of 4-simplices in S (continued)

The restriction of $h_{0,4}$ to the back face (not labeled) is the composite

$$I \times I \xrightarrow{h_{2,4} \times h_{0,2}} \text{Top}(X_2, X_4) \times \text{Top}(X_0, X_2) \xrightarrow{\text{comp}} \text{Top}(X_0, X_4).$$
The set of 4-simplices in S (continued)

The five labeled faces are associated with the five 3-dimensional faces of the corresponding 4-simplex in S.
The set of 4-simplices in \mathcal{S} (continued)

The five labeled faces are associated with the five 3-dimensional faces of the corresponding 4-simplex in \mathcal{S}.

The five labeled faces are associated with the five 3-dimensional faces of the corresponding 4-simplex in \mathcal{S}.

The set of 4-simplices in \mathcal{S}

The set \mathcal{S}_{n+1} for $n > 3$

A colimit in \mathcal{S}

Bousfield localization in ∞-categories

The ∞-category of spectra

References
The set S_{n+1} for $n > 3$

For each $(n + 1)$-simplex there is a sequence of spaces and continuous maps.
The set S_{n+1} for $n > 3$

For each $(n + 1)$-simplex there is a sequence of spaces and continuous maps

$$
X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}
$$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References
The set S_{n+1} for $n > 3$

For each $(n+1)$-simplex there is a sequence of spaces and continuous maps

\[
X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}
\]

and a map

\[
l^n \xrightarrow{h_{0,n}} \text{Top}(X_0, X_{n+1})
\]

\[
(0, \ldots, 0) \xrightarrow{} f_{n,n+1} \cdots f_{0,1}
\]

\[
(1, \ldots, 1) \xrightarrow{} f_{0,n+1}
\]
The set S_{n+1} for $n > 3$

For each $(n + 1)$-simplex there is a sequence of spaces and continuous maps

$$X_0 \overset{f_{0,1}}{\longrightarrow} X_1 \overset{f_{1,2}}{\longrightarrow} \cdots \overset{f_{n,n+1}}{\longrightarrow} X_{n+1}$$

and a map

$$I^n \overset{h_{0,n}}{\longrightarrow} \text{Top}(X_0, X_{n+1})$$

$$(0, \ldots, 0) \overset{f_{n,n+1} \cdots f_{0,1}}{\longrightarrow}$$

$$(1, \ldots, 1) \overset{f_{0,n+1}}{\longrightarrow}$$

We refer to these two points as the left and right vertices of the n-cube,
The set S_{n+1} for $n > 3$

For each $(n + 1)$-simplex there is a sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}$$

and a map

$$I^n \xrightarrow{h_{0,n}} \text{Top}(X_0, X_{n+1})$$

$$(0, \ldots, 0) \xrightarrow{f_{n,n+1} \cdots f_{0,1}} f_{0,n+1}$$

$$(1, \ldots, 1) \xleftarrow{f_{0,n+1} \cdots f_{n,n+1}}$$

We refer to these two points as the left and right vertices of the n-cube, and the n faces meeting each of them as the left and right faces.
The set S_{n+1} for $n > 3$

For each $(n+1)$-simplex there is a sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}$$

and a map

$$I^n \xrightarrow{h_{0,n}} \text{Top}(X_0, X_{n+1})$$

$$(0, \ldots, 0) \xrightarrow{f_{n,n+1} \cdots f_{0,1}} (1, \ldots, 1)$$

We refer to these two points as the left and right vertices of the n-cube, and the n faces meeting each of them as the left and right faces.

The $n+2$ faces of the associated $(n+1)$-simplex correspond to the n right faces of this cube,
The set S_{n+1} for $n > 3$

For each $(n+1)$-simplex there is a sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}$$

and a map

$$I^n \xrightarrow{h_{0,n}} \text{Top}(X_0, X_{n+1})$$

$$(0, \ldots, 0) \mapsto f_{n,n+1} \cdots f_{0,1}$$

$$(1, \ldots, 1) \mapsto f_{0,n+1}$$

We refer to these two points as the left and right vertices of the n-cube, and the n faces meeting each of them as the left and right faces.

The $n+2$ faces of the associated $(n+1)$-simplex correspond to the n right faces of this cube, along with the two left faces.
The set S_{n+1} for $n > 3$

For each $(n + 1)$-simplex there is a sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_{0,1}} X_1 \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n,n+1}} X_{n+1}$$

and a map

$$I^n \xrightarrow{h_{0,n}} \text{Top}(X_0, X_{n+1})$$

$$\begin{array}{c}
(0, \ldots, 0) \\
\downarrow \\
(1, \ldots, 1)
\end{array} \xrightarrow{f_{n,n+1} \cdots f_{0,1}} \xrightarrow{f_{0,n+1}}$$

We refer to these two points as the left and right vertices of the n-cube, and the n faces meeting each of them as the left and right faces.

The $n + 2$ faces of the associated $(n + 1)$-simplex correspond to the n right faces of this cube, along with the two left faces

$$\{(t_1, \ldots, t_{n-1}, 0)\} \quad \text{and} \quad \{(0, t_2, \ldots, t_n)\}.$$
To sum up, the ∞-category S of topological spaces is a simplicial set in which
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
- there is an edge for each continuous map, and

This construction does not require any choices.
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
- there is an edge for each continuous map, and
- for $n > 0$, there is an $(n + 1)$-simplex for each sequence of spaces and continuous maps

\[X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} X_{n+1} \quad \text{and} \]

The set S_{n+1} for $n > 3$ (continued)
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
- there is an edge for each continuous map, and
- for $n > 0$, there is an $(n + 1)$-simplex for each sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} X_{n+1}$$

and

- each map $h_n : I^n \rightarrow \text{Top}(X_0, X_{n+1})$ meeting certain boundary conditions described above.
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
- there is an edge for each continuous map, and
- for $n > 0$, there is an $(n + 1)$-simplex for each sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} X_{n+1}$$

- each map $h_n : I^n \to \text{Top}(X_0, X_{n+1})$ meeting certain boundary conditions described above.

To repeat, there is an $(n + 1)$-simplex for every suitable datum.
To sum up, the ∞-category S of topological spaces is a simplicial set in which

- there is a vertex for each topological space in Top,
- there is an edge for each continuous map, and
- for $n > 0$, there is an $(n + 1)$-simplex for each sequence of spaces and continuous maps

$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} X_{n+1}$$

and

- each map $h_n : I^n \rightarrow \text{Top}(X_0, X_{n+1})$ meeting certain boundary conditions described above.

To repeat, there is an $(n + 1)$-simplex for every suitable datum. This construction does not require any choices.
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits.
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly recommended paper Dwyer-Spalinski [DS95].
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly recommended paper Dwyer-Spalinski [DS95]. Consider the following pushout diagrams in Top.

\[
\begin{array}{ccc}
S^{n-1} & \rightarrow & D^n \\
\downarrow & & \downarrow \\
D^n & \rightarrow & * \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
S^{n-1} & \rightarrow & * \\
\downarrow & \downarrow & \\
* & &
\end{array}
\]
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly recommended paper Dwyer-Spalinski [DS95]. Consider the following pushout diagrams in Top.

$$
\begin{array}{ccc}
S^{n-1} & \rightarrow & D^n \\
\downarrow & & \downarrow \\
D^n & & \ast
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
S^{n-1} & \rightarrow & \ast \\
\downarrow & & \downarrow \\
\ast & & \ast
\end{array}
$$

where the maps in the left diagram are inclusions of the boundary.
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly recommended paper Dwyer-Spalinski [DS95]. Consider the following pushout diagrams in Top.

\[
\begin{array}{ccc}
S^{n-1} & \longrightarrow & D^n \\
\downarrow & & \downarrow \\
D^n & \longrightarrow & * \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
S^{n-1} & \longrightarrow & * \\
\downarrow & & \downarrow \\
* & \longrightarrow & * \\
\end{array}
\]

where the maps in the left diagram are inclusions of the boundary. The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast.

A colimit in S
A pleasant feature of ∞-categories is the fact that limits and colimits are the same as homotopy limits and colimits. The “connective tissue” needed to pass from an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly recommended paper Dwyer-Spalinski [DS95]. Consider the following pushout diagrams in Top.

$$S^{n-1} \to D^n \quad \text{and} \quad S^{n-1} \to \ast$$

where the maps in the left diagram are inclusions of the boundary. The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?
The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?
A colimit in S (continued)

$S^{n-1} \longrightarrow D^n$ and $S^{n-1} \longrightarrow *$

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and *. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top,
A colimit in S (continued)

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations,
The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations, and cofibrations are defined in terms of lifting properties.
A colimit in S (continued)

\[
\begin{array}{ccc}
S^{n-1} & \rightarrow & D^n \\
\downarrow & & \downarrow \\
D^n & & * \\
\end{array}
\]

and

\[
\begin{array}{ccc}
S^{n-1} & \rightarrow & * \\
\downarrow & & \\
* & & \\
\end{array}
\]

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and $*$. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations, and cofibrations are defined in terms of lifting properties. It turns out that the left diagram above is cofibrant but the right one is not.
A colimit in S (continued)

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations, and cofibrations are defined in terms of lifting properties. It turns out that the left diagram above is cofibrant but the right one is not. The evident map from the left to the right is a cofibrant approximation.
The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations, and cofibrations are defined in terms of lifting properties. It turns out that the left diagram above is cofibrant but the right one is not. The evident map from the left to the right is a cofibrant approximation. The colimit functor on such diagrams is homotopy invariant on cofibrant objects.
A colimit in S (continued)

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and $. What to do?

One solution is to define a model structure on the category of pushout diagrams in Top, in which equivalences and fibrations are levelwise equivalences and fibrations, and cofibrations are defined in terms of lifting properties. It turns out that the left diagram above is cofibrant but the right one is not. The evident map from the left to the right is a cofibrant approximation. The colimit functor on such diagrams is homotopy invariant on cofibrant objects but not in general.
The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?
A colimit in S (continued)

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

Another solution is to develop the theory of homotopy limits and colimits as in the yellow monster of Bousfield-Kan [BK72].
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

A colimit in S (continued)

$$S^{n-1} \longrightarrow D^n \quad \text{and} \quad S^{n-1} \longrightarrow \ast$$

The two diagrams are homotopy equivalent but have distinct pushouts, namely S^n and \ast. What to do?

Another solution is to develop the theory of homotopy limits and colimits as in the yellow monster of Bousfield-Kan [BK72]. It turns out that the homotopy colimit of each diagram above is S^n.
A colimit in \mathcal{S} (continued)

In an ordinary category \mathcal{C}, the colimit of a diagram ρ is an initial object in the category of objects equipped with compatible maps from all the objects in ρ,
A colimit in S (continued)

In an ordinary category C, the colimit of a diagram ρ is an initial object in the category of objects equipped with compatible maps from all the objects in ρ, which we denote by $C_\rho/$, the category of objects under ρ.
In an ordinary category \mathcal{C}, the colimit of a diagram p is an initial object in the category of objects equipped with compatible maps from all the objects in p, which we denote by $\mathcal{C}_p/$, the category of objects under p.

In an ∞-category \mathcal{C}, an initial object X is one for which the mapping space $\mathcal{C}(X, Y)$ is contractible for each object Y.
A colimit in \mathcal{S} (continued)

In an ordinary category \mathcal{C}, the colimit of a diagram ρ is an initial object in the category of objects equipped with compatible maps from all the objects in ρ, which we denote by $\mathcal{C}_\rho /$, the category of objects under ρ.

In an ∞-category \mathcal{C}, an initial object X is one for which the mapping space $\mathcal{C}(X, Y)$ is contractible for each object Y. There is an ∞-category of objects equipped with compatible maps from all the objects in a diagram ρ in \mathcal{C}.
A colimit in S (continued)

In an ordinary category C, the colimit of a diagram ρ is an initial object in the category of objects equipped with compatible maps from all the objects in ρ, which we denote by $C_{\rho/}$, the category of objects under ρ.

In an ∞-category C, an initial object X is one for which the mapping space $C(X, Y)$ is contractible for each object Y. There is an ∞-category of objects equipped with compatible maps from all the objects in a diagram ρ in C, which we denote by $C_{\rho/}$, the ∞-category of objects under ρ.
A colimit in S (continued)

In an ordinary category C, the colimit of a diagram p is an initial object in the category of objects equipped with compatible maps from all the objects in p, which we denote by $C_{p/}$, the category of objects under p.

In an ∞-category C, an initial object X is one for which the mapping space $C(X, Y)$ is contractible for each object Y. There is an ∞-category of objects equipped with compatible maps from all the objects in a diagram p in C, which we denote by $C_{p/}$, the ∞-category of objects under p. It is contained in the functor ∞-category $\text{Set}_\Delta(K, C)$,
A colimit in S (continued)

In an ordinary category \mathcal{C}, the colimit of a diagram p is an initial object in the category of objects equipped with compatible maps from all the objects in p, which we denote by $\mathcal{C}_p/$, the category of objects under p.

In an ∞-category \mathcal{C}, an initial object X is one for which the mapping space $\mathcal{C}(X, Y)$ is contractible for each object Y. There is an ∞-category of objects equipped with compatible maps from all the objects in a diagram p in \mathcal{C}, which we denote by $\mathcal{C}_p/$, the ∞-category of objects under p. It is contained in the functor ∞-category $\text{Set}_\Delta(K, \mathcal{C})$, where the simplicial set K is the ordinary nerve of the small category from which the diagram p is a functor.
A colimit in \mathcal{S} (continued)

In an ordinary category \mathcal{C}, the colimit of a diagram ρ is an initial object in the category of objects equipped with compatible maps from all the objects in ρ, which we denote by $\mathcal{C}_\rho /$, the category of objects under ρ.

In an ∞-category \mathcal{C}, an initial object X is one for which the mapping space $\mathcal{C}(X, Y)$ is contractible for each object Y. There is an ∞-category of objects equipped with compatible maps from all the objects in a diagram ρ in \mathcal{C}, which we denote by $\mathcal{C}_\rho /$, the ∞-category of objects under ρ. It is contained in the functor ∞-category $\text{Set}_\Delta(K, \mathcal{C})$, where the simplicial set K is the ordinary nerve of the small category from which the diagram ρ is a functor. In the case at hand, K is the nerve of the pushout category

```
  ● ← ● → ●.
```

References
A colimit in \mathcal{S} (continued)

$$\begin{align*}
S^{n-1} & \longrightarrow D^n & \text{and} & & S^{n-1} & \longrightarrow * \\
\downarrow & & & & \downarrow \\
D^n & & & & *
\end{align*}$$

Let p be the diagram on the right. We are looking for an initial object in \mathcal{S}/p. An object in \mathcal{S}/p is a diagram $\ast \& \& \& \& S^{n-1}/o/o/o Y$, which is a pair of 2-simplices in \mathcal{S}. This amounts to a map $f: S^{n-1} \to Y$ equipped with a pair of null homotopies. These define extensions of f to the northern and southern hemispheres of S^n. It follows that S^n, which is the homotopy colimit of p in Top, is the ordinary colimit of p in \mathcal{S}.

More details can be found in [HTT, 4.2.4].
What is an \(\infty \)-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The \(\infty \)-category of topological spaces

The set of 3-simplices in \(\mathcal{S} \)

The set of 4-simplices in \(\mathcal{S} \)

The set \(\mathcal{S}_{n+1} \) for \(n > 3 \)

A colimit in \(\mathcal{S} \)

Bousfield localization in \(\infty \)-categories

The \(\infty \)-category of spectra

References

A colimit in \(\mathcal{S} \) (continued)

\[
\begin{array}{ccc}
S^{n-1} & \longrightarrow & D^n \\
\downarrow & & \downarrow \\
D^n & & * \\
\end{array}
\]

and

\[
\begin{array}{ccc}
S^{n-1} & \longrightarrow & * \\
\downarrow & & \\
* & & \\
\end{array}
\]

Let \(p \) be the diagram on the right.
A colimit in S (continued)

Let p be the diagram on the right. We are looking for an initial object in S/p.

$$
\begin{align*}
S^{n-1} & \longrightarrow D^n & \text{and} & \quad S^{n-1} & \longrightarrow * \\
\downarrow & \quad & \downarrow & \quad & \downarrow \\
D^n & \quad & *
\end{align*}
$$
A colimit in S (continued)

Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

\[S^{n-1} \xrightarrow{f} Y \xleftarrow{} \ast \]

\[D^n \xrightarrow{} \ast \]

\[S^n \xrightarrow{f} \ast \]

\[D^n \]

\[\ast \]

\[Y, \]

This amounts to a map $f: S^{n-1} \to Y$ equipped with a pair of null homotopies. These define extensions of f to the northern and southern hemispheres of S^n, which is the homotopy colimit of p in Top, is the ordinary colimit of p in S. More details can be found in [HTT, 4.2.4].
A colimit in \mathcal{S} (continued)

Let p be the diagram on the right. We are looking for an initial object in \mathcal{S}/p. An object in \mathcal{S}/p is a diagram

$$
\begin{array}{ccc}
\ast & \rightarrow & \ast \\
& \downarrow f & \\
& Y, & \\
\end{array}
$$

which is a pair of 2-simplices in \mathcal{S}.
A colimit in S (continued)

Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

$$
\begin{array}{c}
S^{n-1} \longrightarrow D^n \\
\downarrow \\
D^n
\end{array}
\quad \text{and} \quad
\begin{array}{c}
S^{n-1} \longrightarrow * \\
\downarrow \\
*
\end{array}
$$

which is a pair of 2-simplices in S. This amounts to a map $f: S^{n-1} \to Y$.

References

A colimit in S (continued)

$$
\begin{array}{c}
S^{n-1} \longrightarrow D^n \\
\downarrow \\
D^n
\end{array}
\quad \text{and} \quad
\begin{array}{c}
S^{n-1} \longrightarrow * \\
\downarrow \\
*
\end{array}
$$

$Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

$$
\begin{array}{c}
* \\
S^{n-1} \\
\downarrow f \\
Y
\end{array}
$$

which is a pair of 2-simplices in S. This amounts to a map $f: S^{n-1} \to Y$.

References
A colimit in S (continued)

Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

\[
\begin{array}{ccc}
* & \leftarrow & S^{n-1} \\
& \searrow & \\
& f & \\
& \downarrow & \\
& Y, & \\
\end{array}
\]

which is a pair of 2-simplices in S. This amounts to a map $f : S^{n-1} \to Y$ equipped with a pair of null homotopies.
Let \(p \) be the diagram on the right. We are looking for an initial object in \(S/p \). An object in \(S/p \) is a diagram

\[
\begin{array}{ccc}
* & \leftarrow & S^{n-1} \\
& f & \\
& \downarrow & \\
& Y, & \rightarrow *
\end{array}
\]

which is a pair of 2-simplices in \(S \). This amounts to a map \(f : S^{n-1} \rightarrow Y \) equipped with a pair of null homotopies. These define extensions of \(f \) to the northern and southern hemispheres of \(S^n \).
Let \(p \) be the diagram on the right. We are looking for an initial object in \(S/p \). An object in \(S/p \) is a diagram

\[
\begin{array}{ccc}
* & \leftarrow & S^{n-1} \\
\downarrow & & \downarrow f \\
& Y, & *
\end{array}
\]

which is a pair of 2-simplices in \(S \). This amounts to a map \(f : S^{n-1} \to Y \) equipped with a pair of null homotopies. These define extensions of \(f \) to the northern and southern hemispheres of \(S^n \). It follows that \(S^n \),
Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

\[
\begin{array}{ccc}
* & \xleftarrow{f} & S^{n-1} \\
\downarrow & & \downarrow \quad f\\
Y & \quad \nearrow & *
\end{array}
\]

which is a pair of 2-simplices in S. This amounts to a map $f : S^{n-1} \to Y$ equipped with a pair of null homotopies. These define extensions of f to the northern and southern hemispheres of S^n. It follows that S^n, which is the homotopy colimit of p in Top,

\[S^{n-1} \to D^n \quad \text{and} \quad S^{n-1} \to * \]

\[\downarrow \quad \quad \downarrow \quad \quad \downarrow \]

\[D^n \quad \quad \quad \quad *\]
Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

\[
\begin{array}{ccc}
* & \leftarrow & S^{n-1} \\
\downarrow & & \downarrow f \\
Y & \rightarrow & *
\end{array}
\]

which is a pair of 2-simplices in S. This amounts to a map $f : S^{n-1} \rightarrow Y$ equipped with a pair of null homotopies. These define extensions of f to the northern and southern hemispheres of S^n. It follows that S^n, which is the homotopy colimit of p in Top, is the ordinary colimit of p in S.
A colimit in S (continued)

Let p be the diagram on the right. We are looking for an initial object in S/p. An object in S/p is a diagram

\[
\begin{array}{ccc}
* & \leftarrow & S^{n-1} \\
| & \downarrow f & | \\
Y & \rightarrow & *
\end{array}
\]

which is a pair of 2-simplices in S. This amounts to a map $f : S^{n-1} \rightarrow Y$ equipped with a pair of null homotopies. These define extensions of f to the northern and southern hemispheres of S^n. It follows that S^n, which is the homotopy colimit of p in Top, is the ordinary colimit of p in S.

More details can be found in [HTT, 4.2.4].
IMHO, Bousfield localization is the best construction in model category theory.
Bousfield localization in ∞-categories

IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M},
IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations.
Bousfield localization in \(\infty\)-categories

IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \(\mathcal{M}\), and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).
IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \mathcal{M},
IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \mathcal{M}, but none on how we enlarge the class of weak equivalences,
IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \mathcal{M}, but none on how we enlarge the class of weak equivalences, this leads to a new model structure with a much more interesting fibrant replacement functor L.
Bousfield localization in ∞-categories

IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \mathcal{M}, but none on how we enlarge the class of weak equivalences, this leads to a new model structure with a much more interesting fibrant replacement functor L.

When we enlarge the class of weak equivalences (in the category of spaces or spectra)
IMHO, Bousfield localization is the best construction in model category theory. One starts with a model category \mathcal{M}, and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \mathcal{M}, but none on how we enlarge the class of weak equivalences, this leads to a new model structure with a much more interesting fibrant replacement functor L.

When we enlarge the class of weak equivalences (in the category of spaces or spectra) to those maps inducing an isomorphism in Morava E-theory (or Morava K-theory) for a fixed prime p and height n, we have...
Bousfield localization in \(\infty\)-categories

IMHO, **Bousfield localization is the best construction in model category theory**. One starts with a model category \(\mathcal{M}\), and enlarges the class of weak equivalences in some way without altering the class of cofibrations. This means there are more trivial cofibrations and hence fewer fibrations (but just as many trivial fibrations).

Under mild hypotheses on \(\mathcal{M}\), but none on how we enlarge the class of weak equivalences, this leads to a new model structure with a much more interesting fibrant replacement functor \(L\).

When we enlarge the class of weak equivalences (in the category of spaces or spectra) to those maps inducing an isomorphism in Morava \(E\)-theory (or Morava \(K\)-theory) for a fixed prime \(p\) and height \(n\), **this fibrant replacement functor is the \(L_n\) (or \(L_{K(n)}\)) of chromatic homotopy theory.**
What is an ∞-category?

Doug Ravenel

Introduction
Review of simplicial sets
Of all the nerve!
The main definition
The ∞-category of topological spaces
The set of 3-simplices in S
The set of 4-simplices in S
The set S_{n+1} for $n > 3$
A colimit in S

References

[HTT, Proposition 5.5.4.15] is statement about an analog of Bousfield localization. The input is a presentable ∞-category C with a set of morphisms S that are meant to be made into weak equivalences.
What is an ∞-category? (continued)

[HTT, Proposition 5.5.4.15] is a statement about an analog of Bousfield localization. The input is a presentable ∞-category \mathcal{C} with a set of morphisms S that are meant to be made into weak equivalences. **Presentable** means that \mathcal{C} has small colimits.
Bousfield localization in ∞-categories (continued)

[HTT, Proposition 5.5.4.15] is statement about an analog of Bousfield localization. The input is a presentable ∞-category \mathcal{C} with a set of morphisms S that are meant to be made into weak equivalences. Presentable means that \mathcal{C} has small colimits and every object is a colimit of small objects.
Bousfield localization in ∞-categories
(continued)

[HTT, Proposition 5.5.4.15] is statement about an analog of Bousfield localization. The input is a presentable ∞-category C with a set of morphisms S that are meant to be made into weak equivalences. Presentable means that C has small colimits and every object is a colimit of small objects.

In [HTT, Definition 5.5.4.1] an object Z is said to be S-local if each morphism $s : X \to Y$ in S induces a homotopy equivalence $C(Y, Z) \to C(X, Z)$.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

Bousfield localization in ∞-categories (continued)

[HTT, Proposition 5.5.4.15] is statement about an analog of Bousfield localization. The input is a presentable ∞-category C with a set of morphisms S that are meant to be made into weak equivalences. **Presentable** means that C has small colimits and every object is a colimit of small objects.

In [HTT, Definition 5.5.4.1] an object Z is said to be S-local if each morphism $s : X \to Y$ in S induces a homotopy equivalence $C(Y, Z) \to C(X, Z)$. A morphism $s : A \to B$ is an S-equivalence if it induces a homotopy equivalence $C(B, Z) \to C(A, Z)$ for each S-local object Z.

Let \bar{S} be the set of all S-equivalences.
Let \tilde{S} be the set of all S-equivalences. It can be explicitly constructed from S.
Let \overline{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let C' be the full subcategory of S-local objects.
Let \mathcal{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let \mathcal{C}' be the full subcategory of S-local objects. Then
Let \mathcal{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let \mathcal{C}' be the full subcategory of S-local objects. Then

1. For each object $X \in \mathcal{C}$, there exists a morphism $s : X \to X'$ such that X' is S-local and s belongs to \mathcal{S}.
Let \mathcal{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let \mathcal{C}' be the full subcategory of S-local objects. Then

1. For each object $X \in \mathcal{C}$, there exists a morphism $s : X \to X'$ such that X' is S-local and s belongs to \mathcal{S}.
2. The ∞-category \mathcal{C}' is presentable.
Let \overline{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let C' be the full subcategory of S-local objects. Then

1. For each object $X \in C$, there exists a morphism $s : X \to X'$ such that X' is S-local and s belongs to \overline{S}.
2. The ∞-category C' is presentable.
3. The inclusion functor $C' \subseteq C$ has a left adjoint L.

Bousfield localization in ∞-categories (continued)
Let \overline{S} be the set of all S-equivalences. It can be explicitly constructed from S. Let C' be the full subcategory of S-local objects. Then

1. For each object $X \in C$, there exists a morphism $s : X \to X'$ such that X' is S-local and s belongs to \overline{S}.

2. The ∞-category C' is presentable.

3. The inclusion functor $C' \subseteq C$ has a left adjoint L. This is the analog of Bousfield’s fibrant replacement functor in model category theory.
The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4].
The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces.
The ∞-category of spectra

The passage from \mathcal{S}, the ∞-category of spaces, to \mathcal{Sp}, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to \mathcal{S}_*, the ∞-category of pointed spaces. This is straightforward.
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes).
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category C is pointed if it has a zero object 0 which is both initial and final,
The ∞-category of spectra

The passage from $\cal S$, the ∞-category of spaces, to $\cal Sp$, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to $\cal S_*$, the ∞-category of pointed spaces. This is straightforward. $\cal S_*$ is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category $\cal C$ is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $\cal C(X, 0)$ and $\cal C(0, Y)$ are contractible in all cases.
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category C is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $C(X, 0)$ and $C(0, Y)$ are contractible in all cases. This object need not be unique.
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to \Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category \mathcal{C} is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $\mathcal{C}(X, 0)$ and $\mathcal{C}(0, Y)$ are contractible in all cases. This object need not be unique.

- S_* has a loop functor Ω, leading to a tower

References

The passage from S, the ∞-category of spaces, to \Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category \mathcal{C} is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $\mathcal{C}(X, 0)$ and $\mathcal{C}(0, Y)$ are contractible in all cases. This object need not be unique.

- S_* has a loop functor Ω, leading to a tower

References
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category \mathcal{C} is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $\mathcal{C}(X, 0)$ and $\mathcal{C}(0, Y)$ are contractible in all cases. This object need not be unique.

- S_* has a loop functor Ω, leading to a tower

$$\ldots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*$$

of ∞-categories and functors.
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category C is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $C(X,0)$ and $C(0,Y)$ are contractible in all cases. This object need not be unique.

- S_* has a loop functor Ω, leading to a tower

$$\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*$$

of ∞-categories and functors.

- Then Sp is the homotopy limit of this tower,
The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra, is described by Lurie in [HA, 1.4]. We need to do the following.

- Pass to S_*, the ∞-category of pointed spaces. This is straightforward. S_* is the homotopy coherent nerve of the ordinary category of pointed spaces (or Kan complexes). An ∞-category C is pointed if it has a zero object 0 which is both initial and final, meaning that the spaces $C(X,0)$ and $C(0,Y)$ are contractible in all cases. This object need not be unique.

- S_* has a loop functor Ω, leading to a tower

 $$\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*$$

 of ∞-categories and functors.

- Then Sp is the homotopy limit of this tower, which is the same as the limit in the ∞-category of ∞-categories.
Sp is the homotopy limit of the tower

$$
\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*
$$

$X_2 \quad X_1 \quad X_0$
The \(∞\)-category of spectra (continued)

\[\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \]

\[X_2 \quad X_1 \quad X_0 \]

\(Sp\) is the homotopy limit of the tower

To unpack this definition, note that a vertex in this homotopy limit (meaning an object in the \(∞\)-category \(Sp\)) consists of a sequence of pointed spaces \(X_0, X_1, X_2, \ldots\),
The ∞-category of spectra (continued)

\mathbf{Sp} is the homotopy limit of the tower

$$
\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*
$$

$$
X_2 \quad X_1 \quad X_0
$$

To unpack this definition, note that a vertex in this homotopy limit (meaning an object in the ∞-category \mathbf{Sp}) consists of a sequence of pointed spaces X_0, X_1, X_2, \ldots, along with weak equivalences $X_i \to \Omega X_{i+1}$.
Sp is the homotopy limit of the tower

\[\cdots \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_* \]

\[X_2 \quad X_1 \quad X_0 \]

To unpack this definition, note that a vertex in this homotopy limit (meaning an object in the \(\infty \)-category \(Sp \)) consists of a sequence of pointed spaces \(X_0, X_1, X_2, \ldots \), along with weak equivalences \(X_i \rightarrow \Omega X_{i+1} \). This coincides with the original definition of an \(\Omega \)-spectrum.
The ∞-category of spectra (continued)

The ∞-category \mathcal{Sp} satisfies the following, which is [HA, Definition 1.1.1.9].
The ∞-category of spectra (continued)

The ∞-category Sp satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An ∞-category \mathcal{C} is **stable** if

1. It is pointed.
2. For each morphism $f: X \to Y$ there are pullback and pushout diagrams $W / f / X$ and $X f / / Y$ and $X f / / Z$, the fiber and cofiber sequences of f.
3. A diagram of the above form is a pushout if and only if it is a pullback, i.e., fiber sequences and cofiber sequences are the same.
The \(\infty\)-category of spectra (continued)

The \(\infty\)-category \(\text{Sp}\) satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An \(\infty\)-category \(\mathcal{C}\) is **stable** if

1. It is pointed.
What is an \(\infty\)-category?

Doug Ravenel

Introduction
Review of simplicial sets
Of all the nerve!
The main definition
The \(\infty\)-category of topological spaces
The set of 3-simplices in \(\mathcal{S}\)
The set of 4-simplices in \(\mathcal{S}\)
The set \(\mathcal{S}_{n+1}\) for \(n > 3\)
A colimit in \(\mathcal{S}\)
Bousfield localization in \(\infty\)-categories

The \(\infty\)-category of spectra (continued)

The \(\infty\)-category \(\mathcal{Sp}\) satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An \(\infty\)-category \(\mathcal{C}\) is **stable** if

1. It is pointed.
2. For each morphism \(f : X \to Y\) there are pullback and pushout diagrams

\[
\begin{array}{ccc}
W & \longrightarrow & X \\
\downarrow & & \downarrow f \\
0 & \longrightarrow & Y
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
0' & \longrightarrow & Z,
\end{array}
\]

References
The ∞-category of spectra (continued)

The ∞-category Sp satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An ∞-category \mathcal{C} is **stable** if

1. It is pointed.
2. For each morphism $f : X \to Y$ there are pullback and pushout diagrams

\[
\begin{array}{ccc}
W & \longrightarrow & X \\
\downarrow & & \downarrow f \\
0 & \longrightarrow & Y
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
0' & \longrightarrow & Z,
\end{array}
\]

the fiber and cofiber sequences of f.
The ∞-category of spectra (continued)

The ∞-category $\mathcal{S}p$ satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An ∞-category \mathcal{C} is **stable** if

1. It is pointed.
2. For each morphism $f : X \to Y$ there are pullback and pushout diagrams

 $\begin{array}{ccc}
 W & \longrightarrow & X \\
 \downarrow & & \downarrow f \\
 0 & \longrightarrow & Y
 \end{array}$

 $\begin{array}{ccc}
 X & \longrightarrow & Y \\
 \downarrow & & \downarrow \\
 0' & \longrightarrow & Z,
 \end{array}$

 the fiber and cofiber sequences of f.

3. A diagram of the above form is a pushout if and only if it is a pullback,
The ∞-category of spectra (continued)

The ∞-category Sp satisfies the following, which is [HA, Definition 1.1.1.9].

Definition

An ∞-category \mathcal{C} is **stable** if

1. It is pointed.
2. For each morphism $f : X \to Y$ there are pullback and pushout diagrams

\[
\begin{array}{ccc}
W & \longrightarrow & X \\
\downarrow & & \downarrow f \\
0 & \longrightarrow & Y \\
\end{array} \quad \text{and} \quad \begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow f & & \downarrow f \\
0' & \longrightarrow & Z, \\
\end{array}
\]

the **fiber** and **cofiber** sequences of f.

3. A diagram of the above form is a pushout if and only if it is a pullback, i.e., **fiber sequences and cofiber sequences are the same.**
Thank you and Happy Birthday Andy!
What is an ∞-category?

Doug Ravenel

Introduction

Review of simplicial sets

Of all the nerve!

The main definition

The ∞-category of topological spaces

The set of 3-simplices in S

The set of 4-simplices in S

The set S_{n+1} for $n > 3$

A colimit in S

Bousfield localization in ∞-categories

The ∞-category of spectra

References

