Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel
University of Rochester

March 23, 2023
This is joint work with Mike Hill and Mike Hopkins.
This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8,
This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got distracted by the Kervaire invariant.
This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got distracted by the Kervaire invariant.

For several years after that we could not remember what we had proved about C_p fixed points.
Historical introduction

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got distracted by the Kervaire invariant.

For several years after that we could not remember what we had proved about C_p fixed points.

Fortunately Mark Behrens took some careful notes for us.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$. A theorem of Goerss-Hopkins-Miller identifies it as E_{hG_n}, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n on the nth Lubin-Tate spectrum E_n, also known as Morava E-theory. For any closed subgroup $H \subseteq G_n$, one also has a homotopy fixed point spectrum E_{hH} under $S^0_{K(n)}$. G_n is known to have a subgroup of order p when $p - 1$ divides n. Our goal is to study $E_{hC_p}(p - 1)^f$ for positive integers f.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E^{hG_n}_n$, where G_n is known to have a subgroup of order p when $p-1$ divides n. Our goal is to study $E^{hC_p}_{p^{p-1}}$ for positive integers f.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E_{hG_n}^n$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n.

A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n on the nth Lubin-Tate spectrum E_n.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E^n_{h\mathbb{G}_n}$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group \mathbb{G}_n on the nth Lubin-Tate spectrum E_n, also known as Morava E-theory.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n on the nth Lubin-Tate spectrum E_n, also known as Morava E-theory.

For any closed subgroup $H \subseteq G_n$, one also has a homotopy fixed point spectrum E_n^{hH} under $S^0_{K(n)}$.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E^n_{hG_n}$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n on the nth Lubin-Tate spectrum E_n, also known as Morava E-theory.

For any closed subgroup $H \subseteq G_n$, one also has a homotopy fixed point spectrum E^n_{hH} under $S^0_{K(n)}$. G_n is known to have a subgroup of order p when $p - 1$ divides n.
A central object of study in chromatic homotopy theory is $S^0_{K(n)}$, the Bousfield localization of the sphere spectrum S^0 with respect to the nth Morava K-theory $K(n)$.

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the nth extended Morava stabilizer group G_n on the nth Lubin-Tate spectrum E_n, also known as Morava E-theory.

For any closed subgroup $H \subseteq G_n$, one also has a homotopy fixed point spectrum E_n^{hH} under $S^0_{K(n)}$. G_n is known to have a subgroup of order p when $p - 1$ divides n. Our goal is to study $E_n^{hC_{p}^{f}}$ for positive integers f.

$K(n)$ localization
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum.
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[[u_1, \ldots u_{n-1}]][u^{-1}]^\wedge$$
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[[u_1, \ldots u_{n-1}][u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(\mathbb{F}_{p^n})$ of the field with p^n elements.
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[[u_1, \ldots, u_{n-1}]] [u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(\mathbb{F}_p^n)$ of the field with p^n elements. This is a degree n extension of the ring \mathbb{Z}_p of p-adic integers

- \wedge denotes completion with respect to the maximal ideal $I_n = (p, u_1, \ldots, u_{n-1})$.
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(\mathbb{F}_{p^n})$ of the field with p^n elements. This is a degree n extension of the ring \mathbb{Z}_p of p-adic integers that lifts \mathbb{F}_{p^n} as a degree n extension of the prime field \mathbb{F}_p.

Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[[u_1, \ldots, u_{n-1}]] [u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(F_p^n)$ of the field with p^n elements. This is a degree n extension of the ring \mathbb{Z}_p of p-adic integers that lifts F_p^n as a degree n extension of the prime field F_p.
- The power series variables u_i each have degree 0.
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[[u_1, \ldots, u_{n-1}]][u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(\mathbb{F}_{p^n})$ of the field with p^n elements. This is a degree n extension of the ring \mathbb{Z}_p of p-adic integers that lifts \mathbb{F}_{p^n} as a degree n extension of the prime field \mathbb{F}_p.
- The power series variables u_i each have degree 0.
- The invertible variable u has degree -2.
Properties of E_n and G_n

E_n is a complex oriented 2-periodic E_∞ (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$

where

- W denotes the Witt ring $W(\mathbb{F}_{p^n})$ of the field with p^n elements. This is a degree n extension of the ring \mathbb{Z}_p of p-adic integers that lifts \mathbb{F}_{p^n} as a degree n extension of the prime field \mathbb{F}_p.
- The power series variables u_i each have degree 0.
- The invertible variable u has degree -2.
- The symbol $^\wedge$ at the end denotes completion with respect to the maximal ideal $I_n = (p, u_1, \ldots, u_{n-1})$.
Properties of E_n and G_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$
Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge \]
Properties of E_n and G_n (continued)

\[
\pi_* E_n = W[u_1, \ldots, u_{n-1}] [u^{\pm 1}]^\wedge
\]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
Properties of E_n and G_n (continued)

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^\pm 1] \]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdot \cdots \cdot x_{n-1}$.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal. We will come back to this later.
Properties of E_n and \mathbb{G}_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^\pm 1]^\wedge$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, ...
Properties of E_n and G_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$.
Properties of E_n and G_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]$$
Properties of E_n and G_n (continued)

$$\pi_* E_n = \mathcal{W}[u_1, \ldots, u_{n-1}][u^{\pm 1}]$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = \mathcal{W}[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = \mathcal{W}[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p [u^{\pm 1}]$ sending each x_i to u.

Doug Ravenel

Hiking in the Alps: C_p fixed points of Lubin-Tate spectra

Historical introduction

$K(n)$ localization

Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

$\text{TMF} \text{ at } p = 3$

Larger primes
Properties of E_n and G_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$

Here is an alternate description of this ring as a **completed localization** of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

- Let \mathfrak{m} be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_{p^n}[u^{\pm 1}]$ sending each x_i to u.

Doug Ravenel

Hiking in the Alps: G_p fixed points of Lubin-Tate spectra

Historical introduction

$K(n)$ localization

Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at $p = 3$

Larger primes
Properties of E_n and G_n (continued)

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}] [u^{\pm 1}]^\wedge \]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i)^{-1}$ for $1 \leq i \leq n-1$, and $u := x_0^n/(x_1 \ldots x_{n-1})$. Then we have

\[R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}] [u^{\pm 1}] \]

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_{p^n}[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m.
Properties of E_n and G_n (continued)

$$\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i)^{-1}$ for $1 \leq i \leq n-1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m. The result is isomorphic to $\pi_* E_n$.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal. We will come back to this later.
Properties of E_n and G_n (continued)

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^{\wedge} \]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

\[R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]. \]

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p^n[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m. The result is isomorphic to $\pi_* E_n$.

In short, we start with a graded polynomial local ring,

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^{\wedge} \]
Properties of E_n and G_n (continued)

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}]^\wedge \]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

\[R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}] \]

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p^n[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m. The result is isomorphic to $\pi_* E_n$.

In short, we start with a graded polynomial local ring, invert each of its specified generators,
Properties of E_n and G_n (continued)

\[
\pi_* E_n = W[u_1, \ldots, u_{n-1}]|u^{\pm 1}|
\]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n-1$, and $u := x_0^n/(x_1 \cdots x_{n-1})$. Then we have

\[
R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}]|u^{\pm 1}|.
\]

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p^n[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m. The result is isomorphic to $\pi_* E_n$.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal.
Properties of E_n and G_n (continued)

\[\pi_* E_n = W[u_1, \ldots, u_{n-1}][u^{\pm 1}] \]

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) - 1$ for $1 \leq i \leq n - 1$, and $u := x_0^n/(x_1 \ldots x_{n-1})$. Then we have
 \[R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}] \]

- Let m be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_p^n[u^{\pm 1}]$ sending each x_i to u. Then complete with respect to m. The result is isomorphic to $\pi_* E_n$.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal. We will come back to this later.
The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height n formal group law F_n over \mathbb{F}_{p^n}.

It is known that this group does change if we enlarge the field over which F_n is defined. To describe \mathbb{G}_n, we describe the endomorphism ring of F_n, $\text{End}(F_n)$.

The Frobenius automorphism, the pth power map of \mathbb{F}_{p^n}, lifts to an ring automorphism of W which we denote by $w \mapsto w \sigma$.

Theorem $\text{End}(F_n)$ is the algebra obtained from W by adjoining a noncommuting indeterminate F with $F_n = p$ and $Fw = w \sigma F$ for $w \in W$.

Properties of E_n and G_n (continued)
The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathfrak{S}_n of the Honda height n formal group law F_n over \mathbb{F}_{p^n}. It is known that this group does change if we enlarge the field over which F_n is defined.
Properties of E_n and G_n (continued)

The extended Morava stabilizer group G_n is related to the automorphism group S_n of the Honda height n formal group law F_n over \mathbb{F}_p^n. It is known that this group does change if we enlarge the field over which F_n is defined.

To describe G_n, we describe the endomorphism ring of F_n, $\text{End}(F_n)$.
The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathfrak{S}_n of the Honda height n formal group law F_n over \mathbb{F}_p^n. It is known that this group does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n, we describe the endomorphism ring of F_n, $\text{End}(F_n)$. The Frobenius automorphism, the pth power map of \mathbb{F}_p^n,

$$
\text{End}(F_n) = \text{End}(\mathbb{F}_p^n)
$$
The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height n formal group law F_n over \mathbb{F}_{p^n}. It is known that this group does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n, we describe the endomorphism ring of F_n, $\text{End}(F_n)$. The Frobenius automorphism, the pth power map of \mathbb{F}_{p^n}, lifts to an automorphism of W which we denote by $w \mapsto w^\sigma$.
The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group S_n of the Honda height n formal group law F_n over \mathbb{F}_{p^n}. It is known that this group does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n, we describe the endomorphism ring of F_n, $\text{End}(F_n)$. The Frobenius automorphism, the pth power map of \mathbb{F}_{p^n}, lifts to an endomorphism of W which we denote by $w \mapsto w^\sigma$.

Theorem

$\text{End}(F_n)$ is the algebra obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.
Properties of E_n and G_n (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2. An element of the form $e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1}$ with $e_i \in W$ is invertible if e_0 is a unit in W. They form a group under multiplication. This is the automorphism group $\text{Aut}(F_n)$ of F_n, commonly known as the nth Morava stabilizer group S_n. G_n is its extension by the Galois group $\text{Gal}(F_p^n, F_p) \cong \text{Gal}(W, \mathbb{Z}_p) \cong C_n$.

Historical introduction

$K(n)$ localization

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at $p = 3$

Larger primes
Theorem

\(\text{End}(F_n)\) is the algebra \(W\langle\langle F\rangle\rangle\) obtained from \(W\) by adjoining a noncommuting indeterminate \(F\) with \(F^n = p\) and \(Fw = w^\sigma F\) for \(w \in W\).

This algebra is a free module over \(W\) of rank \(n\),
Theorem

End(F_n) is the algebra $W \langle \langle F \rangle \rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2.
Properties of E_n and G_n (continued)

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2. An element of the form

$$e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1}$$

with $e_i \in W$
Properties of E_n and G_n (continued)

Theorem

\[\text{End}(F_n) \text{ is the algebra } W \langle \langle F \rangle \rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W. \]

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2. An element of the form

\[e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1} \]

with $e_i \in W$ is invertible if e_0 is a unit in W.

Properties of E_n and G_n (continued)

Theorem

End(F_n) is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2. An element of the form

$$e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1}$$

with $e_i \in W$

is invertible if e_0 is a unit in W. They form a group under multiplication. This is the automorphism group $\text{Aut}(F_n)$ of F_n, commonly known as the nth Morava stabilizer group S_n.
Properties of \(E_n \) and \(G_n \) (continued)

Theorem

\[
\text{End}(F_n) \text{ is the algebra } W\langle\langle F \rangle\rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W.
\]

This algebra is a free module over \(W \) of rank \(n \), and hence a free module over \(\mathbb{Z}_p \) of rank \(n^2 \). An element of the form

\[
e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1}
\]

is invertible if \(e_0 \) is a unit in \(W \). They form a group under multiplication. This is the automorphism group \(\text{Aut}(F_n) \) of \(F_n \), commonly known as the \(n \)th Morava stabilizer group \(S_n \). \(G_n \) is its extension by the Galois group.
Theorem

\[\text{End}(F_n) \text{ is the algebra } W\langle\langle F \rangle\rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W. \]

This algebra is a free module over \(W \) of rank \(n \), and hence a free module over \(\mathbb{Z}_p \) of rank \(n^2 \). An element of the form

\[e = e_0 + e_1 F + \cdots + e_{n-1} F^{n-1} \]

with \(e_i \in W \)

is invertible if \(e_0 \) is a unit in \(W \). They form a group under multiplication. This is the automorphism group \(\text{Aut}(F_n) \) of \(F_n \), commonly known as the \(n \)th Morava stabilizer group \(S_n \). \(G_n \) is its extension by the Galois group

\[\text{Gal}(\mathbb{F}_{p^n}, \mathbb{F}_p) \cong \text{Gal}(W, \mathbb{Z}_p) \cong C_n. \]
Properties of E_n and G_n (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Let $\omega \in W$ be a primitive (p^n-1)th root of unity, and let $\bar{\omega} \in F_p$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms $x \mapsto \omega x$ and $x \mapsto x^p$ of F_n.

Our algebra $\text{End}(F_n)$ is a complete discrete valuation ring in which the valuation of F is $1/n$. This valuation extends the usual one on W, in which the valuation of p is 1.
Properties of E_n and G_n (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction.
Theorem

\[\text{End}(F_n) \text{ is the algebra } W\langle\langle F \rangle\rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W. \]

Let \(\omega \in W \) be a primitive \((p^n - 1)\)th root of unity, and let \(\bar{\omega} \in \mathbb{F}_p^n \) be its mod \(p \) reduction. Then the elements \(\omega \) and \(F \) in \(\text{End}(F_n) \) correspond to the endomorphisms
Theorem

\(\text{End}(F_n) \) is the algebra \(W\langle \langle F \rangle \rangle \) obtained from \(W \) by adjoining a noncommuting indeterminate \(F \) with \(F^n = p \) and \(Fw = w^\sigma F \) for \(w \in W \).

Let \(\omega \in W \) be a primitive \((p^n - 1)\)th root of unity, and let \(\overline{\omega} \in \mathbb{F}_{p^n} \) be its mod \(p \) reduction. Then the elements \(\omega \) and \(F \) in \(\text{End}(F_n) \) correspond to the endomorphisms

\[
\begin{align*}
x & \mapsto \overline{\omega}x \\
& \text{ and } \\
x & \mapsto x^p
\end{align*}
\]

of \(F_n \).
Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms

$$x \mapsto \overline{\omega}x \quad \text{and} \quad x \mapsto x^p$$

of F_n.

Our algebra $\text{End}(F_n)$ is a complete discrete valuation ring in which the valuation of F is $1/n$.
Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms

$$x \mapsto \overline{\omega}x \quad \text{and} \quad x \mapsto x^p$$

of F_n.

Our algebra $\text{End}(F_n)$ is a complete discrete valuation ring in which the valuation of F is $1/n$. This valuation extends the usual one on W, in which the valuation of p is 1.
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W\langle \langle F \rangle \rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in S_n,

• $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
• D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n.
• The valuation we have defined on D_n restricts to the usual one on each such K.
• The field $L = \mathbb{Q}_p \left[\sqrt[p]{1}\right]$ has degree $p-1$, and is thus contained in D_n iff $p-1$ divides n.
• Its maximal ideal is generated by an element π with valuation $1/(p-1)$.
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in S_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.
Finding a pth root of unity

Theorem

\(\text{End}(F_n) \) is the algebra \(W \langle \langle F \rangle \rangle \) obtained from \(W \) by adjoining a noncommuting indeterminate \(F \) with \(F^n = p \) and \(Fw = w^\sigma F \) for \(w \in W \).

Finding an element of order \(p \) in \(S_n \), is equivalent to finding a pth root of unity in \(\text{End}(F_n) \). For this we will use the following facts about it.

- \(\text{End}(F_n) \otimes \mathbb{Q}_p \) is a division algebra \(D_n \) with center \(\mathbb{Q}_p \).
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W \langle \langle F \rangle \rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in \mathbb{S}_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

- $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
- D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n.

Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W \langle \langle F \rangle \rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in S_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

- $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
- D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n. The valuation we have defined on D_n restricts to the usual one on each such K.
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in S_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

- $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
- D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n. The valuation we have defined on D_n restricts to the usual one on each such K.
- The field $L = \mathbb{Q}_p[\sqrt[1]{1}]$ has degree $p - 1$,
Finding a pth root of unity

Theorem

\[\text{End}(F_n) \text{ is the algebra } W\langle\langle F \rangle\rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W. \]

Finding an element of order p in S_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

- $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
- D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n. The valuation we have defined on D_n restricts to the usual one on each such K.
- The field $L = \mathbb{Q}_p[\sqrt[p-1]{1}]$ has degree $p - 1$, and is thus contained in D_n iff $p - 1$ divides n.
Finding a pth root of unity

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

Finding an element of order p in S_n, is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

- $\text{End}(F_n) \otimes \mathbb{Q}_p$ is a division algebra D_n with center \mathbb{Q}_p.
- D_n is known to contain every field K that is a finite extension of \mathbb{Q}_p whose degree divides n. The valuation we have defined on D_n restricts to the usual one on each such K.
- The field $L = \mathbb{Q}_p[\sqrt[\varphi]{1}]$ has degree $p - 1$, and is thus contained in D_n iff $p - 1$ divides n. Its maximal ideal is generated by an element π with valuation $1/(p - 1)$.
Finding a pth root of unity (continued)

Theorem

\[\text{End}(F_n) \text{ is the algebra } W \langle \langle F \rangle \rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^\sigma F \text{ for } w \in W. \]
Finding a pth root of unity (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

The above discussion implies that for $n = (p - 1)f$ for a positive integer f,
Theorem

\[\text{End}(F_n) \text{ is the algebra } W\langle F \rangle \text{ obtained from } W \text{ by adjoining a noncommuting indeterminate } F \text{ with } F^n = p \text{ and } Fw = w^{\sigma} F \text{ for } w \in W. \]

The above discussion implies that for \(n = (p - 1)f \) for a positive integer \(f \), a primitive \(p \)th root of unity exists in the sub \(W \)-algebra of \(\text{End}(F_n) \) generated by \(F^f \).
Finding a pth root of unity (continued)

Theorem

End(F_n) is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

The above discussion implies that for $n = (p - 1)f$ for a positive integer f, a primitive pth root of unity exists in the sub W-algebra of End(F_n) generated by F^f. It thus has the form

$$\zeta = 1 + z_1 F^f + \cdots + z_{p-2} F^{(p-2)f} + pz_{p-1}$$

with $z_i \in W$.

Recall that $F^{(p - 1)f} = p$. There are many such elements ζ.

Hiking in the Alps: C_p fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction

$K(n)$ localization

Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at $p = 3$

Larger primes
Theorem

End\(\left(F_n \right) \) is the algebra \(W \langle \langle F \rangle \rangle \) obtained from \(W \) by adjoining a noncommuting indeterminate \(F \) with \(F^n = p \) and \(Fw = w^\sigma F \) for \(w \in W \).

The above discussion implies that for \(n = (p - 1)f \) for a positive integer \(f \), a primitive \(p \)th root of unity exists in the sub \(W \)-algebra of \(\text{End}(F_n) \) generated by \(F^f \). It thus has the form

\[
\zeta = 1 + z_1 F^f + \cdots + z_{p-2} F^{(p-2)f} + p z_{p-1}
\]

with \(z_i \in W \), where \(z_1 \) is a unit.
Finding a pth root of unity (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F\rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

The above discussion implies that for $n = (p - 1)f$ for a positive integer f, a primitive pth root of unity exists in the sub W-algebra of $\text{End}(F_n)$ generated by F^f. It thus has the form

$$
\zeta = 1 + z_1 F^f + \cdots + z_{p-2} F^{(p-2)f} + pz_{p-1}
$$

with $z_i \in W$, where z_1 is a unit. Recall that $F^{(p-1)f} = p$.
Finding a pth root of unity (continued)

Theorem

$\text{End}(F_n)$ is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^\sigma F$ for $w \in W$.

The above discussion implies that for $n = (p - 1)f$ for a positive integer f, a primitive pth root of unity exists in the sub W-algebra of $\text{End}(F_n)$ generated by F^f. It thus has the form

$$\zeta = 1 + z_1 F^f + \cdots + z_{p-2} F^{(p-2)f} + pz_{p-1}$$

with $z_i \in W$, where z_1 is a unit. Recall that $F^{(p-1)f} = p$. There are many such elements ζ.

The main tool for computing the homotopy groups of the homotopy fixed point spectrum of E^hG for a group G acting on a spectrum E is the homotopy fixed point spectral sequence

$$E_2^{s,t} = H^s(G; \pi_t E) \Rightarrow \pi_{t-s} E^hG$$
The main tool for computing the homotopy groups of the homotopy fixed point spectrum of E^{hG} for a group G acting on a spectrum E is the homotopy fixed point spectral sequence

$$E_2^{s,t} = H^s(G; \pi_t E) \Rightarrow \pi_{t-s}E^{hG}$$

Its use requires knowledge of the action of G on $\pi_* E$.
The main tool for computing the homotopy groups of the homotopy fixed point spectrum of E^{hG} for a group G acting on a spectrum E is the homotopy fixed point spectral sequence

$$E_2^{s,t} = H^s(G; \pi_t E) \Rightarrow \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on $\pi_* E$. In the case of \mathbb{G}_t acting on $\pi_* E_n$ this is far from easy,
Group cohomology

The main tool for computing the homotopy groups of the homotopy fixed point spectrum of E^{hG} for a group G acting on a spectrum E is the homotopy fixed point spectral sequence

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on $\pi_* E$. In the case of G acting on $\pi_* E_n$ this is far from easy, despite the identification of the above with the E_2-term of the Adams-Novikov spectral sequence.
The main tool for computing the homotopy groups of the homotopy fixed point spectrum of E^{hG} for a group G acting on a spectrum E is the homotopy fixed point spectral sequence

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on $\pi_* E$. In the case of G acting on $\pi_* E_n$ this is far from easy, despite the identification of the above with the E_2-term of the Adams-Novikov spectral sequence. It is more manageable when we replace G by a subgroup of order p.

Group cohomology
Group cohomology (continued)

We recall some facts about group cohomology for $G = C_p$.

We recall some facts about group cohomology for $G = C_p$.

For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & \cdots \\
0 & \mathbb{Z} & 0 & 0 & \cdots \\
\mathbb{Z}C_p & \nabla & 0 & 0 & \cdots \\
\mathbb{Z}C_p & T & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^p - 1$ is the trace. Applying the functor $\text{Hom}_{\mathbb{Z}C_p}(-, \mathbb{Z}_p)$ to this chain complex gives the cochain complex $\mathbb{Z}_p^i/C_p; \mathbb{Z}_p^i$ leading to the expected $H^i(C_p; \mathbb{Z}_p) = \begin{cases}
\mathbb{Z}_p & \text{for } i = 0 \\
\mathbb{Z}/p & \text{for } i > 0 \text{ even} \\
0 & \text{otherwise}.
\end{cases}$
We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$.

$\textbf{Group cohomology (continued)}$
Group cohomology (continued)

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

\[
\begin{array}{c}
0 & 1 & 2 \\
0 & \mathbb{Z} & \mathbb{Z}C_p \\
\mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p \\
\mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p \\
\cdot & \cdot & \cdot \\
\end{array}
\]

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace. Applying the functor $\text{Hom}_{\mathbb{Z}C_p}(-, \mathbb{Z}_p)$ to this chain complex gives the cochain complex \mathbb{Z}_p leading to the expected $H^i(C_p; \mathbb{Z}_p) = \begin{cases}
\mathbb{Z}_p & \text{for } i = 0 \\
\mathbb{Z}_p/\mathbb{Z} & \text{for } i > 0 \text{ even} \\
0 & \text{otherwise.}
\end{cases}$
We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

$$
\begin{array}{cccc}
0 & 1 & 2 \\
0 & \mathbb{Z} & \mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p & \ldots
\end{array}
$$

The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

$$
\begin{array}{cccc}
0 & 1 & 2 \\
0 & \mathbb{Z} & \mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p & \ldots
\end{array}
$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace. Applying the functor $\text{Hom}_{\mathbb{Z}C_p}(\mathbb{Z}, \mathbb{Z}_p)$ to this chain complex gives the cochain complex

$$
\begin{array}{cccc}
0 & 1 & 2 \\
0 & \mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p & \cdots
\end{array}
$$

leading to the expected $H^i(C_p; \mathbb{Z}_p) =$\begin{cases} \mathbb{Z}_p & \text{for } i = 0 \\ \mathbb{Z}_p/\mathbb{Z} & \text{for } i > 0 \text{ even} \\ 0 & \text{otherwise} \end{cases}$
Group cohomology (continued)

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

$$
\begin{array}{cccccc}
0 & 1 & 2 & \ldots \\
\mathbb{Z} & \mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p & \mathbb{Z}C_p & \ldots \\
\xleftarrow{\nabla} & \xleftarrow{1-\gamma} & \xleftarrow{T} & & & \\
\end{array}
$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.
Group cohomology (continued)

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

\[
\begin{array}{cccc}
0 & 1 & 2 & \\
\mathbb{Z} & \mathbb{Z}C_p & \mathbb{Z}C_p & \\
\bigtriangleup & 1-\gamma & T & \\
\end{array}
\]

where \bigtriangleup is the augmentation defined by $\bigtriangleup(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.
Group cohomology (continued)

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z} C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z} C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

\[
\begin{array}{ccc}
0 & \xleftarrow{\nabla} & 1 & \xleftarrow{1 - \gamma} & 2 \\
0 & \xleftarrow{\nabla} & \mathbb{Z} C_p & \xleftarrow{1 - \gamma} & \mathbb{Z} C_p & \xleftarrow{T} & \mathbb{Z} C_p & \xleftarrow{T} & \ldots
\end{array}
\]

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.

Applying the functor $\text{Hom}_{\mathbb{Z} C_p}(-, \mathbb{Z}_p)$ to this chain complex gives the cochain complex

\[
\begin{array}{ccc}
\mathbb{Z}_p & \xrightarrow{0} & \mathbb{Z}_p & \xrightarrow{p} & \mathbb{Z}_p & \xrightarrow{0} & \ldots
\end{array}
\]
We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$-resolution of \mathbb{Z} with the trivial C_p-action.

\[
\begin{array}{cccccc}
0 & & 1 & & 2 & \\
& \mathbb{Z} & \xleftarrow{\nabla} & \mathbb{Z}C_p & \xleftarrow{1-\gamma} & \mathbb{Z}C_p & \xleftarrow{T} & \mathbb{Z}C_p & \xleftarrow{} & \ldots \\
\end{array}
\]

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.

Applying the functor $\text{Hom}_{\mathbb{Z}C_p}(-, \mathbb{Z}_p)$ to this chain complex gives the cochain complex

\[
\begin{array}{cccc}
\mathbb{Z}_p & \xrightarrow{0} & \mathbb{Z}_p & \xrightarrow{p} & \mathbb{Z}_p & \xrightarrow{0} & \ldots \\
\end{array}
\]

leading to the expected

\[
H^i(C_p; \mathbb{Z}_p) = \begin{cases}
\mathbb{Z}_p & \text{for } i = 0 \\
\mathbb{Z}/p & \text{for } i > 0 \text{ even} \\
0 & \text{otherwise.}
\end{cases}
\]
Group cohomology (continued)

\[
0 \leftarrow \mathbb{Z} \leftarrow \nabla \mathbb{Z}C_p \leftarrow^{1-\gamma} \mathbb{Z}C_p \leftarrow^{T} \mathbb{Z}C_p \leftarrow \ldots
\]
Group cohomology (continued)

The cokernel of T, also the kernel of ∇, is the reduced regular representation $\bar{\rho}$.
Group cohomology (continued)

The cokernel of T, also the kernel of ∇, is the reduced regular representation $\bar{\rho}$.

Similar computations give

$$H^i(C_p; \bar{\rho}) = \begin{cases}
0 & \text{for } i = 0 \\
\mathbb{Z}/p & \text{for } i \text{ odd} \\
0 & \text{otherwise.}
\end{cases}$$
Group cohomology (continued)

The cokernel of T, also the kernel of ∇, is the reduced regular representation $\bar{\rho}$.

Similar computations give

$$H^i(C_p; \bar{\rho}) = \begin{cases}
0 & \text{for } i = 0 \\
\mathbb{Z}/p & \text{for } i \text{ odd} \\
0 & \text{otherwise}
\end{cases}$$

and

$$H^i(C_p; \mathbb{Z}C_p) = \begin{cases}
\mathbb{Z} & \text{for } i = 0 \\
0 & \text{otherwise}
\end{cases}$$
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_p^n)$.
We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(F_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$. We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring $R_n = W[x_0, \ldots, x_{n-1}]$ with $|x_i| = -2$. Its component in degree -2 is a free W-module of rank n, as is our endomorphism ring $\text{End}(F_n)$. This isomorphism defines an action of H on the degree -2 component of R_n, which extends to an action on all of R_n and its completed localization by continuous ring homomorphisms.
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(F_p^n)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_p^n)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring \mathbb{R}_n. This isomorphism defines an action of H on the degree -2 component of \mathbb{R}_n, which extends to an action on all of \mathbb{R}_n and its completed localization by continuous ring homomorphisms.
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(F_p^n)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}]$$

with $|x_i| = -2$.

A classical example
TMF at $p = 3$
Larger primes
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}] \quad \text{with} \quad |x_i| = -2.$$

Its component in degree -2 is a free W-module of rank n,
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_p)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}] \quad \text{with} \quad |x_i| = -2.$$

Its component in degree -2 is a free W-module of rank n, as is our endomorphism ring $\text{End}(F_n)$.
The main theorem

We will now describe $\pi_* E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_p)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}] \quad \text{with} \quad |x_i| = -2.$$

Its component in degree -2 is a free W-module of rank n, as is our endomorphism ring $\text{End}(F_n)$. This isomorphism defines an action of H on the degree -2 component of R_n.
The main theorem

We will now describe $\pi_\ast E_n$ for $n = (p - 1)f$ as a module over the group ring WC_p, where $W = W(\mathbb{F}_p^n)$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $\text{Aut}(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_\ast E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}] \quad \text{with} \quad |x_i| = -2.$$

Its component in degree -2 is a free W-module of rank n, as is our endomorphism ring $\text{End}(F_n)$. This isomorphism defines an action of H on the degree -2 component of R_n, which extends to an action on all of R_n and its completed localization by continuous ring homomorphisms.
The main theorem (continued)

For the case $H = C_p$, R_n is isomorphic as a WC_p-algebra to
For the case $H = C_p$, R_n is isomorphic as a $W C_p$-algebra to

$$
\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] \bigg/ \left(\sum_j x_{i,j} : 1 \leq i \leq f \right)
$$

with $|x_{i,j}| = -2$.

The main theorem (continued)

For the case $H = C_p$, R_n is isomorphic as a WC_p-algebra to

$$\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] \bigg/ \left(\sum_j x_{i,j} : 1 \leq i \leq f \right)$$

with $|x_{i,j}| = -2$.

For a generator $\gamma \in C_p$ we have $\gamma x_{i,j} = x_{i,j+1}$, and the trace $Tx_{i,j}$ vanishes.
For the case $H = C_p$, R_n is isomorphic as a WC_p-algebra to

$$\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] \left/ \left(\sum_j x_{i,j} : 1 \leq i \leq f \right) \right.$$

with $|x_{i,j}| = -2$.

For a generator $\gamma \in C_p$ we have $\gamma x_{i,j} = x_{i,j+1}$, and the trace $Tx_{i,j}$ vanishes. It follows that the degree -2 component of \tilde{R}_n is the direct sum of f copies of $\rho \otimes W$. Thus \tilde{R}_n is the symmetric W-algebra

$$\text{Symm}_W \left(\rho \oplus f \right).$$
The main theorem (continued)

\[\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \leq i \leq f \right) \]

with \(|x_{i,j}| = -2\)

\[\cong \text{Symm}_W \left(\overset{\rho \oplus f}{\rho} \right) . \]
The main theorem (continued)

\[\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \leq i \leq f \right) \]

with \(|x_{i,j}| = -2 \)

\[\cong \text{Symm}_W \left(\bar{\rho} \oplus f \right) . \]

Even though the \(x_{i,j} \)'s are not linearly independent, we define

\[\Phi' = \prod_{1 \leq i \leq f} \prod_{0 \leq j < p} x_{i,j} \]
The main theorem (continued)

\[\widetilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \leq i \leq f \right) \]

with \(|x_{i,j}| = -2\)

\[\cong \text{Symm}_W \left(\overline{\rho} \oplus f \right) . \]

Even though the \(x_{i,j}\)s are not linearly independent, we define

\[\Phi' = \prod_{1 \leq i \leq f} \prod_{0 \leq j < p} x_{i,j} \]

and complete \(\widetilde{R}_n[\Phi'^{\pm 1}]\) with respect to the kernel \(\overline{\mathfrak{m}}\) of the map
The main theorem (continued)

\[\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p]/\left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \leq i \leq f \right) \]

with \(|x_{i,j}| = -2 \)

\[\cong \text{Symm}_W (\rho \oplus f) . \]

Even though the \(x_{i,j} \)'s are not linearly independent, we define

\[\Phi' = \prod_{1 \leq i \leq f} \prod_{0 \leq j < p} x_{i,j} \]

and complete \(\tilde{R}_n[\Phi'^{\pm 1}] \) with respect to the kernel \(\tilde{m} \) of the map

\[\tilde{R}_n[\Phi'^{\pm 1}] \to \mathbb{F}_p[n][u^{\pm 1}] \quad \text{with} \quad x_{i,j} \mapsto u \quad \text{and} \quad \gamma u = u. \]
The main theorem (continued)

\[\tilde{R}_n = W[x_{i,j} : 1 \leq i \leq f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \leq i \leq f \right) \]

with \(|x_{i,j}| = -2 \)

\[\cong \text{Symm}_W \left(\bar{\rho} \oplus f \right). \]

Even though the \(x_{i,j} \)s are not linearly independent, we define

\[\Phi' = \prod_{1 \leq i \leq f} \prod_{0 \leq j < p} x_{i,j} \]

and complete \(\tilde{R}_n[\Phi'^{\pm 1}] \) with respect to the kernel \(\tilde{m} \) of the map

\[\tilde{R}_n[\Phi'^{\pm 1}] \to \mathbb{F}_p^n [u^{\pm 1}] \quad \text{with } x_{i,j} \mapsto u \text{ and } \gamma u = u. \]

to obtain

\[\hat{R}_n := \tilde{R}_n[\Phi'^{\pm 1}]^{\wedge}_{\tilde{m}}. \]
The main theorem (continued)

\[\hat{R}_n := \hat{R}_n[\Phi^\pm 1]_{\hat{m}_n} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W \left(\frac{\rho \oplus f}{C_p} \right). \]
The main theorem (continued)

\[\hat{R}_n := \tilde{R}_n[\Phi^{\pm 1}]_{\mathfrak{m}} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W \left(\overline{\rho}^{\oplus f} \right) . \]

Theorem

For \(n = (p - 1)f \), *the Lubin-Tate ring* \(E_n \) *is isomorphic to* \(\hat{R}_n \) *as an algebra over* \(W[C_p] \).
The main theorem (continued)

\[\hat{R}_n := \tilde{R}_n[\Phi'^\pm 1]_{\mathfrak{m}_n} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W \left(\frac{\rho \oplus f}{\cdot} \right). \]

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\hat{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W \left(\frac{\rho \oplus f}{\cdot} \right)) \).
The main theorem (continued)

\[\hat{R}_n := \hat{R}_n[\Phi'^{\pm 1}]_{\mathfrak{m}_n} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W \left(\hat{\rho}^{\oplus f} \right). \]

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\hat{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W (\hat{\rho}^{\oplus f})) \). That symmetric algebra is easy to describe modulo free summands over \(W[C_p] \),
The main theorem (continued)

\[\tilde{R}_n := \tilde{R}_n[\Phi^\pm 1]^\wedge_{\hat{m}_n} \quad \text{and} \quad \tilde{R}_n \cong \text{Symm}_W \left(\rho^\oplus f \right). \]

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\tilde{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W (\rho^\oplus f)) \). That symmetric algebra is easy to describe modulo free summands over \(W[C_p] \), which contribute nothing to cohomology in positive degrees.
The main theorem (continued)

\(\hat{R}_n := \tilde{R}_n[\Phi'^{\pm 1}]_{\tilde{m}_n} \) and \(\tilde{R}_n \cong \text{Symm}_W \left(\overline{\rho} \oplus f \right) \).

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\hat{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W (\overline{\rho} \oplus f)) \). That symmetric algebra is easy to describe modulo free summands over \(W[C_p] \), which contribute nothing to cohomology in positive degrees.

We know that
The main theorem (continued)

\[\hat{R}_n := \tilde{R}_n[\Phi'\pm 1]_{m_n} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W (\overline{\rho}^\oplus f) . \]

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\hat{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W (\overline{\rho}^\oplus f)) \). That symmetric algebra is easy to describe modulo free summands over \(W[C_p] \), which contribute nothing to cohomology in positive degrees.

We know that

\[\text{Symm}^\ell (\overline{\rho}) \equiv \begin{cases} \mathbb{Z} & \text{for } \ell \equiv 0 \mod p \\ \overline{\rho} & \text{for } \ell \equiv 1 \mod p \\ 0 & \text{otherwise} \end{cases} \]
The main theorem (continued)

\[\hat{R}_n := \hat{R}_n[\Phi'^{\pm 1}]_{\mathbb{m}} \quad \text{and} \quad \hat{R}_n \cong \text{Symm}_W (\overline{\rho}^{\oplus f}) . \]

Theorem

For \(n = (p - 1)f \), the Lubin-Tate ring \(E_n \) is isomorphic to \(\hat{R}_n \) as an algebra over \(W[C_p] \).

This means that \(H^*(C_p; E_n) \) is closely related to \(H^*(C_p; \text{Symm}_W (\overline{\rho}^{\oplus f})) \). That symmetric algebra is easy to describe modulo free summands over \(W[C_p] \), which contribute nothing to cohomology in positive degrees.

We know that

\[
\text{Symm}^\ell (\overline{\rho}) \equiv \begin{cases}
\mathbb{Z} & \text{for } \ell \equiv 0 \text{ mod } p \\
\overline{\rho} & \text{for } \ell \equiv 1 \text{ mod } p \\
0 & \text{otherwise}
\end{cases}
\]

and that \(\overline{\rho} \otimes \overline{\rho} \equiv \mathbb{Z} \).
A classical example: $p = 2$ and $n = 1$

For $p = 2$,

• E_1 is the 2-adic completion of complex K-theory spectrum K.
• The group G_1 is the group of 2-adic units, which is isomorphic to $\{±1\} × \mathbb{Z}_2$.
• For a generator $γ \in C_2$ (namely $-1 \in \mathbb{Z} × 2$), we have $γ(u_i) = (-1)^iu_i$.
• The homotopy fixed point spectrum E_{hC_2} is the 2-adic completion of the real K-theory spectrum KO. It follows that as $\mathbb{Z}C_2$-modules, $π_{2i}E_1 = \mathbb{Z}_2$ for i even $\mathbb{Z}_2 ⊗ ρ$ for i odd where $ρ$ is isomorphic to the integers with the sign action.
A classical example: $p = 2$ and $n = 1$

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

For $p = 2$,
A classical example: \(p = 2 \) and \(n = 1 \)

For \(p = 2 \),

- \(E_1 \) is the 2-adic completion of complex K-theory spectrum \(K \).
- The group \(G_1 \) is the group of 2-adic units, which is isomorphic to \(\{ \pm 1 \} \times \mathbb{Z}_2 \).
A classical example: $p = 2$ and $n = 1$

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.

- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\} \times \mathbb{Z}_2$.

- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^\times$), we have $\gamma(u^i) = (-1)^i u^i$.

A classical example: $p = 2$ and $n = 1$

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\} \times \mathbb{Z}_2$.
- For a generator $\gamma \in \mathcal{C}_2$ (namely $-1 \in \mathbb{Z}_2^\times$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{h\mathbb{C}_2}$ is the 2-adic completion of the the real K-theory spectrum KO.
A classical example: p = 2 and n = 1

For \(p = 2 \),

- \(E_1 \) is the 2-adic completion of complex K-theory spectrum \(K \).
- The group \(\mathbb{G}_1 \) is the group of 2-adic units, which is isomorphic to \(\{ \pm 1 \} \times \mathbb{Z}_2 \).
- For a generator \(\gamma \in C_2 \) (namely \(-1 \in \mathbb{Z}_2^\times \)), we have \(\gamma(u^i) = (-1)^i u^i \).
- The homotopy fixed point spectrum \(E_1^{hC_2} \) is the 2-adic completion of the the real K-theory spectrum \(KO \).

It follows that as \(\mathbb{Z} C_2 \)-modules,
A classical example: $p = 2$ and $n = 1$

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\} \times \mathbb{Z}_2$.
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^\times$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the real K-theory spectrum KO.

It follows that as $\mathbb{Z}C_2$-modules,

\[
\pi_{2i} E_1 = \begin{cases}
\mathbb{Z}_2 & \text{for } i \text{ even} \\
\mathbb{Z}_2 \otimes \bar{\rho} & \text{for } i \text{ odd}
\end{cases}
\]
A classical example: $p = 2$ and $n = 1$

For $p = 2$,

- E_1 is the 2-adic completion of complex K-theory spectrum K.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\} \times \mathbb{Z}_2$.
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^\times$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the real K-theory spectrum KO.

It follows that as $\mathbb{Z}C_2$-modules,

$$\pi_{2i} E_1 = \begin{cases} \mathbb{Z}_2 & \text{for } i \text{ even} \\ \mathbb{Z}_2 \otimes \bar{\rho} & \text{for } i \text{ odd} \end{cases}$$

where $\bar{\rho}$ is isomorphic to the integers with the sign action.
As $\mathbb{Z}C_2$-modules,

$$\pi_{2i}E_1 = \begin{cases}
\mathbb{Z}_2 & \text{for } i \text{ even} \\
\mathbb{Z}_2 \otimes \bar{\rho} & \text{for } i \text{ odd}
\end{cases}$$
A classical example: \(p = 2 \) and \(n = 1 \)

(continued)

As \(\mathbb{Z}C_2 \)-modules,

\[
\pi_{2i}E_1 = \begin{cases}
\mathbb{Z}_2 & \text{for } i \text{ even} \\
\mathbb{Z}_2 \otimes \bar{\rho} & \text{for } i \text{ odd}
\end{cases}
\]

It follows that the \(E_2 \)-term of the homotopy fixed point spectral sequence is

\[
E_2^{s,t} = H^s(C_2; \pi_tE_2) = \begin{cases}
\mathbb{Z}_2 & \text{for } s = 0 \text{ and } t \text{ divisible by 4} \\
0 & \text{for } s = 0 \text{ and } t \equiv 2 \mod 4 \\
\mathbb{Z}/2 & \text{for } s > 0, t \text{ even, and } s \equiv t \mod 2 \\
0 & \text{otherwise.}
\end{cases}
\]
The homotopy fixed point spectral sequence for $\pi_* KO$
The homotopy fixed point spectral sequence for $\pi_* KO$

Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$.
The homotopy fixed point spectral sequence for $\pi_* KO$

Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E_2^{1,2}$.
The homotopy fixed point spectral sequence for $\pi_\ast KO$

Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E_2^{1,2}$.

The indicated d_3s can be established by equivariant methods,
The homotopy fixed point spectral sequence for $\pi_* KO$.

Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E^1_2$. The indicated d_3s can be established by equivariant methods, or by the requirement that the spectral sequence must converge to the known value of $\pi_* KO$.
Here is the homotopy fixed point spectral sequence for $E_{2}^{hC_{3}}$.

Squares and bullets denote copies of W_{9} and F_{9}. Green and blue lines indicate multiplication by $\alpha_{1} \in E_{1,2}$ and the Massey product operation $\langle \alpha_{1}, \alpha_{1}, - \rangle$. The composite is multiplication by $\beta_{1} \in E_{2,12}$.

TMF at $p = 3$

Doug Ravenel

- Historical introduction
- $K(n)$ localization
- Properties of E_{n} and G_{n}
- Finding a root of unity
- Group cohomology
- The main theorem
- A classical example
- **TMF at $p = 3$**
- Larger primes
Here is the homotopy fixed point spectral sequence for $E_2^{hc_3}$ with copies of WC_3 in $\pi_* E_2$ omitted.
Here is the homotopy fixed point spectral sequence for $E_{2}^{hC_{3}}$ with copies of WC_{3} in $\pi_{*}E_{2}$ omitted.
Here is the homotopy fixed point spectral sequence for $E_{2}^{hC_{3}}$ with copies of WC_{3} in $\pi_{*}E_{2}$ omitted.

Squares and bullets denote copies of $W(F_{9})$ and F_{9}.
Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction
$K(n)$ localization
Properties of E_n and \mathbb{G}_n
Finding a root of unity
Group cohomology
The main theorem
A classical example
TMF at $p = 3$
Larger primes

TMF at $p = 3$

Here is the homotopy fixed point spectral sequence for $E^{hC_3}_2$ with copies of WC_3 in $\pi_* E_2$ omitted.

Squares and bullets denote copies of $W(\mathbb{F}_9)$ and \mathbb{F}_9. Green and blue lines indicate multiplication by $\alpha_1 \in E_2^{1,4}$.
Here is the homotopy fixed point spectral sequence for $E_{2}^{hC_{3}}$ with copies of WC_{3} in $\pi_{\ast}E_{2}$ omitted.

Squares and bullets denote copies of $W(\mathbb{F}_{9})$ and \mathbb{F}_{9}. Green and blue lines indicate multiplication by $\alpha_{1} \in E_{2}^{1,4}$ and the Massey product operation $\langle \alpha_{1}, \alpha_{1}, - \rangle$.
Here is the homotopy fixed point spectral sequence for $E_{2}^{hC_{3}}$ with copies of WC_{3} in $\pi_{*}E_{2}$ omitted.

Squares and bullets denote copies of $W(F_{9})$ and F_{9}. Green and blue lines indicate multiplication by $\alpha_{1} \in E_{2}^{1,4}$ and the Massey product operation $\langle \alpha_{1}, \alpha_{1}, - \rangle$. The composite is multiplication by $\beta_{1} \in E_{2}^{2,12}$.

\[\begin{array}{cccccccc}
-18 & -12 & -6 & 0 & 6 & 12 & 18 \\
\end{array} \]
This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for TMF is 72-periodic.

The picture above can be "spread out" by enlarging the group \mathbb{C}_3 by adjoining the fourth roots of unity in \mathbb{W}. Extending by the Galois group converts each copy of \mathbb{W} and \mathbb{F}_9 to \mathbb{Z}_3 and \mathbb{F}_3.

Thus we are extending \mathbb{C}_3 by D_8, the group dihedral group of order 8 to get a group G_{24}.
This pattern of differentials is 18-periodic.
This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for TMF is 72-periodic.
This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for \(TMF \) is 72-periodic. The picture above can be “spread out” by enlarging the group \(C_3 \) by adjoining the fourth roots of unity in \(W \).
This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for TMF is 72-periodic. The picture above can be “spread out” by enlarging the group C_3 by adjoining the fourth roots of unity in W. Extending by the Galois group converts each copy of W and \mathbb{F}_9 to \mathbb{Z}_3 and \mathbb{F}_3.
This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for TMF is 72-periodic. The picture above can be “spread out” by enlarging the group C_3 by adjoining the fourth roots of unity in W. Extending by the Galois group converts each copy of W and \mathbb{F}_9 to \mathbb{Z}_3 and \mathbb{F}_3. Thus we are extending C_3 by D_8, the group dihedral group of order 8 to get a group G_{24}.
Some group theory

In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity $\zeta = -1 - \omega F_2$ with $i \zeta^i - 1 = \zeta - 1 = -1 + \omega F_2$.

Let $\phi \in \text{Gal}(F_9 : F_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to Q_8, and the group $C_3 \rtimes Q_8$ is the group of Goerss-Henn-Mahowald-Rezk.
In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$.

Let $\phi \in \text{Gal}(F_9:F_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to \mathbb{Q}_8, and the group $C_3 \rtimes \mathbb{Q}_8$ is the group G_{24} of Goerss-Henn-Mahowald-Rezk.
Some group theory

In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$
Some group theory

In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i \zeta^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(F_9 : F_3)$ be the Frobenius element.
Some group theory

In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(F_9 : F_3)$ be the Frobenius element. Then $\omega\phi$ commutes with ζ and has order 4.
In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(F_9 : F_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to Q_8.

\[\text{Some group theory}\]
In terms of the algebra $\text{End}(F_2)$ at $p = 3$, let $\omega \in \mathbb{W}$ be a primitive 8th root of unity, and $i = \omega^2$. Then we have a cube root of unity

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(F_9 : F_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to Q_8, and the group $C_3 \rtimes Q_8$ is the group G_{24} of Goerss-Henn-Mahowald-Rezk.
This is the homotopy fixed point spectral sequence for $E^h_{24} G_{24}$, which is $TMF_{K(2)}$, also known as EO_3.

It is known that the following elements in the Adams-Novikov E^2-term have nontrivial images here:

- β_1,
- $\beta_3 / 3$,
- β_4,
- $\beta_6 / 3$,
- β_9,
- $\beta_9 / 3$,
- β_7,
- $\beta_9 / 3$,
- β_{10},
- $|x|_{10}$.
TMF at $p = 3$ (continued)

This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_3.

It is known that the following elements in the Adams-Novikov E_2-term have nontrivial images here.

$\beta_1 \beta_3 / 3 \beta_4 \beta_6 / 3 \beta_9$, 9, $\beta_7 \beta_9 / 3$, $2 \beta_{10}$
This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_3.

It is known that the following elements in the Adams-Novikov E_2-term have nontrivial images here.
This is the homotopy fixed point spectral sequence for $E_{2}^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_{3}.

It is known that the following elements in the Adams-Novikov E_{2}-term have nontrivial images here.

<table>
<thead>
<tr>
<th>x</th>
<th>β_{1}</th>
<th>$\beta_{3/3}$</th>
<th>β_{4}</th>
<th>$\beta_{6/3}$</th>
<th>$\beta_{9,9}, \beta_{7}$</th>
<th>$\beta_{9/3,2}$</th>
<th>β_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>x</td>
<td>$</td>
<td>10</td>
<td>34</td>
<td>58</td>
<td>82</td>
<td>106</td>
</tr>
</tbody>
</table>
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$,
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p - 1$.
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p - 1$. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p - 1)^3$.

We define $EO_p := E_{hG_{p-1}}$. In the E_2-term of the resulting homotopy fixed point spectral sequence we have $\alpha_1 \in E_{1,2}^{p-2}, \beta_1 \in E_{2,2}^{p-2}, \Delta \in E_{0,2}^{p(p-1)^2}$, with $E_2 = E_2(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta \pm 1)$. Here are the dimensions of these elements for small primes.

| p | $|\alpha_1|$ | $|\beta_1|$ | $|\Delta|$ |
|-----|-------------|-------------|-------------|
| 3 | 3 | 3 | 10 |
| 5 | 5 | 7 | 38 |
| 7 | 7 | 11 | 82 |
| 11 | 11 | 13 | 32 |
| 17 | 17 | 19 | 126 |

TMF at $p = 3$

Larger primes
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p - 1$. This subgroup of S_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p - 1)^3$. We define $EO_p := E_{hG}^{p-1}$.

Here are the dimensions of these elements for small primes.

<table>
<thead>
<tr>
<th>p</th>
<th>α_1</th>
<th>β_1</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>38</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>82</td>
<td>504</td>
</tr>
</tbody>
</table>
Larger primes

For \(p \geq 3 \) one has an extension \(H \) of \(C_p \) by \(C_{(p-1)^2} \), where a generator of the quotient acts on \(C_p \) by an automorphism of order \(p - 1 \). This subgroup of \(S_{p-1} \) can be extended by the Galois group \(C_{p-1} \) to give a maximal finite subgroup \(G \subseteq \mathbb{G}_{p-1} \) of order \(p(p - 1)^3 \). We define \(EO_p := E_{hG}^{p-1} \).

In the \(E_2 \)-term of the resulting homotopy fixed point spectral sequence we have
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p-1$. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

In the E_2-term of the resulting homotopy fixed point spectral sequence we have

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2},$$

with $E_2 = E_{p-1}^{hG}$.
Larger primes

For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p - 1$. This subgroup of S_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E^{hG}_{p-1}$.

In the E_2-term of the resulting homotopy fixed point spectral sequence we have

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2},$$

with

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$
For $p \geq 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order $p - 1$. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p - 1)^3$. We define $EO_p := E_{hG}^{p-1}$.

In the E_2-term of the resulting homotopy fixed point spectral sequence we have

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2},$$

with

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

Here are the dimensions of these elements for small primes.

| p | $|\alpha_1|$ | $|\beta_1|$ | $|\Delta|$ |
|-----|--------------|--------------|-------------|
| 3 | 3 | 10 | 24 |
| 5 | 7 | 38 | 160 |
| 7 | 11 | 82 | 504 |
In the homotopy fixed point spectral sequence for EO_p we have

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

with

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1} \Delta = \alpha_1 \beta_1^{p-1} \quad \text{and} \quad d_{2(p-1)^2+1}(\alpha_1 \Delta^{p-1}) = \beta_1^{(p-1)^2+1}.$$
Larger primes (continued)

In the homotopy fixed point spectral sequence for EO_p we have

$$E_2 = \{\alpha_1\} \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

with

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1}\Delta = \alpha_1\beta_1^{p-1} \quad \text{and} \quad d_{2(p-1)^2+1}(\alpha_1\Delta^{p-1}) = \beta_1^{(p-1)^2+1}.$$

From the Adams-Novikov E_2-term for the sphere spectrum we have

$$\theta_j := \beta_{p^j-1}/p^j \mapsto \beta_1\Delta^{(p^j-1)/(p-1)} \quad \text{for all } j \geq 1,$$
Larger primes (continued)

In the homotopy fixed point spectral sequence for EO_p we have

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

with

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1}\Delta = \alpha_1 \beta_1^{p-1} \quad \text{and} \quad d_{2(p-1)^2+1}(\alpha_1 \Delta^{p-1}) = \beta_1^{(p-1)^2+1}.$$

From the Adams-Novikov E_2-term for the sphere spectrum we have

$$\theta_j := \beta_{p^{j-1}/p-1} \mapsto \beta_1 \Delta^{(p^{j-1}-1)/(p-1)} \quad \text{for all } j \geq 1,$$

and for $p = 5$ only, we have

$$\gamma_3 \mapsto \alpha_1 \beta_1 \Delta^4 \quad \text{in dimension 685}.$$
THANK YOU

and have a wonderful retirement, Paul!