ECHT Minicourse

What is the telescope conjecture?

Lecture 4

ν_h-periodic families and telescopes

Doug Ravenel
University of Rochester

December 14, 2023
In the previous three lectures we described
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory,
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.

- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.

Greek letter elements
Type h finite complexes
The telescope conjecture
References
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories $E(h)$ in Lecture 3.
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories $E(h)$ in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres:

- The discovery in the early 70s of periodic families known as Greek letter elements.

We will describe these now.
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.

- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.

- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories $E(h)$ in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres: the discovery in the early 70s of periodic families known as Greek letter elements.
In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic p in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories $E(h)$ in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres: the discovery in the early 70s of periodic families known as Greek letter elements. We will describe these now.
Greek letter elements

Recall the hth Greek letter sequence,

$$0 \rightarrow \sum ^{|v_{h-1}|} BP_{\ast} / I_{h-1} \overset{v_{h-1}}{\rightarrow} BP_{\ast} / I_{h-1} \rightarrow BP_{\ast} / I_{h} \rightarrow 0.$$
Greek letter elements

Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{\mid v_{h-1} \mid} BP_{\ast}/I_{h-1} \xrightarrow{v_{h-1}} BP_{\ast}/I_{h-1} \longrightarrow BP_{\ast}/I_{h} \longrightarrow 0.$$

where $I_{h} = (p, v_{1}, \ldots, v_{h-1})$, $v_{0} = p$ and $I_{0} = (0)$.
Greek letter elements

Recall the hth Greek letter sequence,

$$0 \longrightarrow \sum |v_{h-1}| \mathbb{BP}^* / I_{h-1} \overset{v_{h-1}}{\longrightarrow} \mathbb{BP}^* / I_{h-1} \longrightarrow \mathbb{BP}^* / I_h \longrightarrow 0.$$

where $I_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h.

For p odd this represents an element of order p in $\pi_{t|v_1| - 1} S$.

For $t = 1$, this dimension is $2p - 3$, and α_1 is the first positive dimensional element in the p-component of the stable homotopy groups of spheres. These α_ts comprise a v_1-periodic family.
Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{\lfloor v_{h-1} \rfloor} BP_* / I_{h-1} \xrightarrow{v_{h-1}} BP_* / I_{h-1} \longrightarrow BP_* / I_h \longrightarrow 0.$$

where $I_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h. We know

$$\text{Ext}^0(BP_*) \cong \mathbb{Z}(p) \quad \text{and} \quad \text{Ext}^0(BP_* / I_h) \cong \mathbb{Z}/p[v_h]$$

for each $h > 0$.
Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{\lfloor v_{h-1} \rfloor} \mathbb{B}P_*/I_{h-1}^{v_{h-1}} \longrightarrow \mathbb{B}P_*/I_{h-1} \longrightarrow \mathbb{B}P_*/I_h \longrightarrow 0,$$

where $I_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h. We know

$$\text{Ext}^0(\mathbb{B}P_*) \cong \mathbb{Z}(p) \quad \text{and} \quad \text{Ext}^0(\mathbb{B}P_*/I_h) \cong \mathbb{Z}/p[v_h]$$

for each $h > 0$. For each $t > 0$, we define

$$\alpha_t := \delta_1(v_1^t) \in \text{Ext}^{1,t\lfloor v_1 \rfloor}(\mathbb{B}P_*)$$
Recall the hth Greek letter sequence,

$$0 \longrightarrow \sum_{|v_{h-1}|} BP_* / I_{h-1} \xrightarrow{v_{h-1}} BP_* / I_{h-1} \longrightarrow BP_* / I_h \longrightarrow 0,$$

where $I_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h. We know

$$\text{Ext}^0 (BP_*) \cong \mathbb{Z}(p) \quad \text{and} \quad \text{Ext}^0 (BP_* / I_h) \cong \mathbb{Z}/p[v_h]$$

for each $h > 0$. For each $t > 0$, we define

$$\alpha_t := \delta_1 (v_1^t) \in \text{Ext}^1, t|v_1| (BP_*).$$

For p odd this represents an element or order p in $\pi_{t|v_1|-1} S$.
Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{\mid v_{h-1} \mid} BP_{\ast} / I_{h-1} \overset{v_{h-1}}{\longrightarrow} BP_{\ast} / I_{h-1} \longrightarrow BP_{\ast} / I_{h} \longrightarrow 0,$$

where $I_{h} = (p, v_{1}, \ldots, v_{h-1})$, $v_{0} = p$ and $I_{0} = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_{h}. We know

$$\text{Ext}^{0}(BP_{\ast}) \cong \mathbb{Z}_{(p)} \quad \text{and} \quad \text{Ext}^{0}(BP_{\ast} / I_{h}) \cong \mathbb{Z} / p[v_{h}]$$

for each $h > 0$. For each $t > 0$, we define

$$\alpha_{t} := \delta_{1}(v_{1}^{t}) \in \text{Ext}^{1, t \mid v_{1} \mid}(BP_{\ast}).$$

For p odd this represents an element of order p in $\pi_{t \mid v_{1} \mid - 1} S$. For $t = 1$, this dimension is $2p - 3$.
Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma |v_{h-1}| \, BP_* / l_{h-1} \overset{\nu_{h-1}}{\longrightarrow} BP_* / l_{h-1} \longrightarrow BP_* / l_h \longrightarrow 0.$$

where $l_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $l_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h. We know

$$\text{Ext}^0(\, BP_* \,) \cong \mathbb{Z}(p) \quad \text{and} \quad \text{Ext}^0(\, BP_* / l_h \,) \cong \mathbb{Z}/p[v_h]$$

for each $h > 0$. For each $t > 0$, we define

$$\alpha_t := \delta_1(\, v_1^t \,) \in \text{Ext}^{1, t|v_1|}(\, BP_* \,).$$

For p odd this represents an element of order p in $\pi_{t|v_1|-1} S$. For $t = 1$, this dimension is $2p - 3$, and α_1 is the first positive dimensional element in the p-component of the stable homotopy groups of spheres.
Recall the hth Greek letter sequence,

$$0 \rightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \rightarrow BP_*/I_h \rightarrow 0.$$

where $I_h = (p, v_1, \ldots, v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h. We know

$$\text{Ext}^0(BP_*) \cong \mathbb{Z}(p) \quad \text{and} \quad \text{Ext}^0(BP_*/I_h) \cong \mathbb{Z}/p[v_h]$$

for each $h > 0$. For each $t > 0$, we define

$$\alpha_t := \delta_1(v_1^t) \in \text{Ext}^{1, t|v_1|}(BP_*).$$

For p odd this represents an element or order p in $\pi_{t|v_1| - 1}S$. For $t = 1$, this dimension is $2p - 3$, and α_1 is the first positive dimensional element in the p-component of the stable homotopy groups of spheres.

These α_ts comprise a v_1-periodic family.
Greek letter elements (continued)

To repeat, the \(\alpha \) sequence,

\[
0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.
\]
To repeat, the α sequence,

$$0 \rightarrow BP_* \xrightarrow{p} BP_* \rightarrow BP_*/(p) \rightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1(\nu_1^t) \in \text{Ext}^{1,t|\nu_1|}(BP_*)$$
To repeat, the α sequence,

$$0 \rightarrow BP_* \overset{p}{\rightarrow} BP_* \rightarrow BP_*/(p) \rightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1 (\nu_1^t) \in \text{Ext}^{1,t\mid \nu_1\mid} (BP_*).$$

This algebraic construction has a geometric antecedent.
Greek letter elements (continued)

To repeat, the α sequence,

$$0 \longrightarrow BP_* \overset{p}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1(\nu_1^t) \in \text{Ext}^{1, t|\nu_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum.
Greek letter elements (continued)

To repeat, the α sequence,

$$0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1(v_1^t) \in \text{Ext}^1, t|v_1| (BP_*).$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).$$
To repeat, the α sequence,

\[0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*/(p) \longrightarrow 0. \]

enables us to define

\[\alpha_t := \delta_1 \left(\nu_1^t \right) \in \text{Ext}^{1,t|\nu_1|}(BP_*) \]

This algebraic construction has a geometric antecedent.

Let \(V(0) \) the cofiber of the degree \(p \) map of the sphere spectrum. Adams showed that for \(p \) odd, there is a map

\[\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0) \]

inducing multiplication by \(\nu_1 \).
To repeat, the α sequence,

$$0 \longrightarrow BP_* \overset{p}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1(v_1^t) \in \text{Ext}^{1,t|v_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2} V(0) \overset{\alpha}{\longrightarrow} V(0)$$

inducing multiplication by v_1.

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \overset{i}{\longrightarrow} \Sigma^{t|v_1|} V(0) \overset{\alpha^t}{\longrightarrow} V(0) \overset{j}{\longrightarrow} S^1,$$
Greek letter elements (continued)

To repeat, the α sequence,

$$0 \longrightarrow \text{BP}_* \overset{p}{\longrightarrow} \text{BP}_* \longrightarrow \text{BP}_*/(p) \longrightarrow 0.$$

enables us to define

$$\alpha_t := \delta_1(v_1^t) \in \text{Ext}^{1, t|v_1|}(\text{BP}_*)$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2} V(0) \overset{\alpha}{\longrightarrow} V(0)$$

inducing multiplication by v_1.

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \overset{i}{\longrightarrow} \Sigma^{t|v_1|} V(0) \overset{\alpha^t}{\longrightarrow} V(0) \overset{j}{\longrightarrow} S^1,$$

where i is the inclusion of the bottom cell.
To repeat, the \(\alpha \) sequence,

\[
0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.
\]

enables us to define

\[
\alpha_t := \delta_1(\nu_1^t) \in \text{Ext}^{1,t|\nu_1|}(BP_*).
\]

This algebraic construction has a geometric antecedent.

Let \(V(0) \) the cofiber of the degree \(p \) map of the sphere spectrum. Adams showed that for \(p \) odd, there is a map

\[
\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0)
\]

inducing multiplication by \(\nu_1 \).

Then the homotopy element \(\alpha_t \) is the composite

\[
S^{t|\nu_1|} \xrightarrow{i} \Sigma^{t|\nu_1|} V(0) \xrightarrow{\alpha^t} V(0) \xrightarrow{j} S^1,
\]

where \(i \) is the inclusion of the bottom cell and \(j \) is the pinch map onto the top cell.
Greek letter elements (continued)

To repeat, the α sequence,

$$
0 \longrightarrow BP_* \overset{p}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.
$$

enables us to define

$$
\alpha_t := \delta_1(v_1^t) \in \Ext^{1, t|v_1|}(BP_*)
$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$
\Sigma^{2p-2} V(0) \overset{\alpha}{\longrightarrow} V(0)
$$

inducing multiplication by v_1.

Then the homotopy element α_t is the composite

$$
S^{t|v_1|} \overset{i}{\longrightarrow} \Sigma^{t|v_1|} V(0) \overset{\alpha^t}{\longrightarrow} V(0) \overset{j}{\longrightarrow} S^1,
$$

where i is the inclusion of the bottom cell and j is the pinch map onto the top cell. Again the α_t's comprise a v_1-periodic family.
We can construct a ν_2-periodic family as follows.
Greek letter elements (continued)

We can construct a v_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map.
We can construct a ν_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

$$\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).$$

inducing multiplication by ν_1.
We can construct a \(\nu_2 \)-periodic family as follows. Let \(V(1) \) be the cofiber of the Adams map

\[
\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).
\]

inducing multiplication by \(\nu_1 \). It is a CW-spectrum of the form

\[
V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.
\]
Greek letter elements (continued)

We can construct a ν_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

$$
\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).
$$

inducing multiplication by ν_1. It is a CW-spectrum of the form

$$
V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.
$$

Independently Larry Smith and Hirosi Toda showed that for $p \geq 5$, there is a map
Greek letter elements (continued)

We can construct a ν_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

\[\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0). \]

inducing multiplication by ν_1. It is a CW-spectrum of the form

\[V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}. \]

Independently Larry Smith and Hirosi Toda showed that for $p \geq 5$, there is a map

\[\Sigma^{|2p^2-2|} V(1) \xrightarrow{\beta} V(1). \]
We can construct a ν_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

$$\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).$$

inducing multiplication by ν_1. It is a CW-spectrum of the form

$$V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.$$

Independently Larry Smith and Hirosi Toda showed that for $p \geq 5$, there is a map

$$\Sigma^{2p^2 - 2} V(1) \xrightarrow{\beta} V(1)$$

inducing multiplication by ν_2 in $BP_*(-)$.
We can construct a \(\nu_2 \)-periodic family as follows. Let \(V(1) \) be the cofiber of the Adams map

\[
\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).
\]

inducing multiplication by \(\nu_1 \). It is a CW-spectrum of the form

\[
V(1) = S^0 \cup p \ e^1 \cup_{\alpha_1} e^{2p-1} \cup p \ e^{2p}.
\]

Independently Larry Smith and Hirosi Toda showed that for \(p \geq 5 \), there is a map

\[
\Sigma^{2p^2-2} V(1) \xrightarrow{\beta} V(1)
\]

inducing multiplication by \(\nu_2 \) in \(BP_*(\cdot) \).

Then the element

\[
\beta_t := \delta_1 \delta_2 \nu_2^t \in \Ext^{2,t|\nu_2| - |\nu_1|} (BP_*)
\]

is represented by the composite
Greek letter elements (continued)

We can construct a ν_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

$$
\Sigma^{2p-2} V(0) \xrightarrow{\alpha} V(0).
$$

inducing multiplication by ν_1. It is a CW-spectrum of the form

$$
V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.
$$

Independently Larry Smith and Hirosi Toda showed that for $p \geq 5$, there is a map

$$
\Sigma^{2p^2-2} V(1) \xrightarrow{\beta} V(1)
$$

inducing multiplication by ν_2 in $BP_*(-)$. Then the element

$$
\beta_t := \delta_1 \delta_2 \nu_2^t \in \text{Ext}^{2, t|\nu_2|-|\nu_1|}(BP_*)
$$

is represented by the composite

$$
S^{t|\nu_2|} \xrightarrow{i} \Sigma^{t|\nu_2|} V(1) \xrightarrow{\beta^t} V(1) \xrightarrow{j} S^{2p}.
$$
Algebraically we can do a similar thing at all heights and at all primes.
Algebraically we can do a similar thing at all heights and at all primes. We can define

$$\eta_t^{(h)} := \delta_1 \delta_2 \ldots \delta_h(v_t^h) \in \text{Ext}^{h, t|v_h| w_h}(BP_*)$$
Algebraically we can do a similar thing at all heights and at all primes. We can define

\[\eta_t^{(h)} := \delta_1 \delta_2 \ldots \delta_h(v_h^t) \in \text{Ext}^{h,t|v_h| - w_h}(BP_*) \]

where \(\eta^{(h)} \) denotes the \(h \)th letter of the Greek alphabet.
Greek letter elements (continued)

Algebraically we can do a similar thing at all heights and at all primes. We can define

\[\eta_t^{(h)} := \delta_1 \delta_2 \ldots \delta_h(v_h^t) \in \text{Ext}^{h,t|v_h|-w_h}(BP_*) \]

where \(\eta^{(h)} \) denotes the \(h \text{th letter} \) of the Greek alphabet and \(w_h = |v_1| + \cdots + |v_{h-1}| \).
Greek letter elements (continued)

Algebraically we can do a similar thing at all heights and at all primes. We can define

$$\eta_t^{(h)} := \delta_1 \delta_2 \cdots \delta_h(v^t_h) \in \text{Ext}^{h,t|v_h|-w_h}(BP_*),$$

where $\eta^{(h)}$ denotes the hth letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ^t for $p \geq 7$.
Algebraically we can do a similar thing at all heights and at all primes. We can define

$$\eta_t^{(h)} := \delta_1 \delta_2 \cdots \delta_h(v_t^h) \in \text{Ext}^{h,t|v_h| - w_h}(BP_*)$$

where $\eta^{(h)}$ denotes the hth letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t^p for $p \geq 7$. Nobody knows how to construct a map
Algebraically we can do a similar thing at all heights and at all primes. We can define

$$\eta_t^{(h)} := \delta_1 \delta_2 \ldots \delta_h (v_t^h) \in \text{Ext}^{h, t|v_h| - w_h} (BP_*)$$

where $\eta^{(h)}$ denotes the hth letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \geq 7$. Nobody knows how to construct a map

$$\Sigma^{2p^4 - 2} V(3) \xrightarrow{\delta} V(3)$$
Greek letter elements (continued)

Algebraically we can do a similar thing at all heights and at all primes. We can define

$$\eta_t^{(h)} := \delta_1 \delta_2 \ldots \delta_h(v^t_h) \in \text{Ext}^{h, t|v_h| - w_h}(BP_*)$$

where $\eta^{(h)}$ denotes the hth letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \geq 7$. Nobody knows how to construct a map

$$\sum|2p^4 - 2| V(3) \xrightarrow{\delta} V(3)$$

inducing multiplication by v_4 in $BP_*(-)$ at any prime.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h - 1)_* X = 0$,
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_* X \neq 0$.

Hence Toda’s V_{h-1} has type h.

If $K(h)_* X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type. In particular any p-local finite spectrum X with nontrivial rational homology is Bousfield equivalent to $S(p)$.

References
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_* X \neq 0$. Hence Toda’s $V(h-1)$ has type h.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_* X \neq 0$. Hence Toda’s $V(h-1)$ has type h. If $K(h)_* X = 0$ for all h, then X is contractible.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_*X = 0$ implies $K(h - 1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_*X \neq 0$. Hence Toda’s $V(h - 1)$ has type h. If $K(h)_*X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_*X \neq 0$. Hence Toda’s $V(h-1)$ has type h. If $K(h)_*X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_* X \neq 0$. Hence Toda’s $V(h-1)$ has type h. If $K(h)_* X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.
Finite complexes of type h

For a p-local finite spectrum X, we know that $K(h)_* X = 0$ implies $K(h-1)_* X = 0$, and that $K(h)_* X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_* X \neq 0$. Hence Toda’s $V(h-1)$ has type h. If $K(h)_* X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.

In particular any p-local finite spectrum X with nontrivial rational homology is Bousfield equivalent to $S(p)$.

Finite complexes of type h (continued)

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be a p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K^*_h(-)$ and a nilpotent map in every other Morava K-theory. We call it a ν^h-self-map.

This map is asymptotically unique in the following sense. Given a second such map $\nu' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $\nu^e = (\nu')^{e'}$.

It follows that the cofiber C_{ν} has type $h+1$.

Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $\nu^{-1} X$ is independent of the choices of both X and ν. We denote it by $\langle T(h) \rangle$.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.
What is the telescope conjecture?

Review
Greek letter elements
Type h finite complexes
The telescope conjecture
References

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $\text{K}(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $v^e = (v')^{e'}$.

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.*

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type $h + 1$.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_\ast(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type $h + 1$. Hence we can produce finite spectra of all higher types by iterating this process.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be a p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_\ast(-)$ and a nilpotent map in every other Morava K-theory. We call it a ν_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $\nu' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $\nu^e = (\nu')^{e'}$.

If follows that the cofiber C_ν has type $h + 1$. Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $\nu^{-1} X$ is independent of the choices of both X and ν.
A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X be a p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(_)$ and a nilpotent map in every other Morava K-theory. We call it a ν_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $\nu' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $\nu^e = (\nu')^{e'}$.

If follows that the cofiber C_{ν} has type $h + 1$. Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $\nu^{-1} X$ is independent of the choices of both X and ν. We denote it by $\langle T(h) \rangle$.
Periodicity Theorem

Let X by p-local finite spectrum of type h.

The telescope conjecture
The telescope conjecture

Periodicity Theorem

Let \(X \) be a p-local finite spectrum of type \(h \). Then there is a map \(v : \Sigma^d X \to X \) for some \(d > 0 \) that induces an isomorphism in \(K(h)_*(-) \). We call it a \(v_h \) self-map.
The telescope conjecture

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$-equivalence,
The telescope conjecture

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$. We call it a ν_h self-map.

The map $X \to \nu^{-1} X$ is a $K(h)_*$-equivalence, so we have a map

$$\lambda : \nu^{-1} X \to L_{K(h)} X = L_h X,$$
The telescope conjecture

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$-equivalence, so we have a map

$$\lambda : v^{-1}X \to L_{K(h)}X = L_hX,$$

where the equality holds because the lower Morava K-theories vanish on X.
The telescope conjecture

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $\nu : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(_)$.

We call it a ν_h self-map.

The map $X \to \nu^{-1} X$ is a $K(h)_*$-equivalence, so we have a map

$$\lambda : \nu^{-1} X \to L_{K(h)} X = L_h X,$$

where the equality holds because the lower Morava K-theories vanish on X. The following appeared in [Rav84].
The telescope conjecture

Periodicity Theorem

Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$-equivalence, so we have a map

$$\lambda : v^{-1}X \to L_{K(h)}X = L_hX,$$

where the equality holds because the lower Morava K-theories vanish on X. The following appeared in [Rav84].

Telescope Conjecture

The map

$$\lambda : v^{-1}X \to L_{K(h)}X$$

is an equivalence.
The telescope conjecture (continued)

Telescope Conjecture

The map
\[\lambda \colon v^{-1}X \to L_{K(h)}X \]
is an equivalence.
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1} X \rightarrow L_{K(h)} X \]

is an equivalence.

This is trivially true for \(h = 0 \), and for \(h = 1 \) it was proved around 1980 by Mahowald for \(p = 2 \) and by Miller for \(p \) odd.
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This is trivially true for \(h = 0 \), and for \(h = 1 \) it was proved around 1980 by Mahowald for \(p = 2 \) and by Miller for \(p \) odd. In 1989 I began to think it was false for \(h \geq 2 \).
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This is trivially true for \(h = 0 \), and for \(h = 1 \) it was proved around 1980 by Mahowald for \(p = 2 \) and by Miller for \(p \) odd. In 1989 I began to think it was false for \(h \geq 2 \). This is now a theorem of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank.
The telescope conjecture (continued)

Telescope Conjecture

The map

$$\lambda : v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This is trivially true for $h = 0$, and for $h = 1$ it was proved around 1980 by Mahowald for $p = 2$ and by Miller for p odd. In 1989 I began to think it was false for $h \geq 2$. This is now a theorem of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank.

Jeremy, Tomer, myself, Ishan and Robert at Oxford University, June 9, 2023.

Photo by Matteo Barucco.
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_K(h)X \]

is an equivalence.
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : \nu^{-1} X \to L_{K(h)} X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(\nu^{-1} X \),
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(v^{-1}X \), the \(\nu_h \)-periodic telescope associated with the type \(h \) finite complex \(X \),...
Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(v^{-1}X \), the \(v_h \)-periodic telescope associated with the type \(h \) finite complex \(X \), with the more computationally accessible spectrum \(L_{K(h)}X \).
The telescope conjecture (continued)

Telescope Conjecture

The map
\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(v^{-1}X \), the \(v_h \)-periodic telescope associated with the type \(h \) finite complex \(X \), with the more computationally accessible spectrum \(L_{K(h)}X \).

For example, we know how to compute \(\pi_* L_{K(2)} V(1) \) for \(p \geq 5 \),
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(v^{-1}X \), the \(v_h \)-periodic telescope associated with the type \(h \) finite complex \(X \), with the more computationally accessible spectrum \(L_{K(h)}X \).

For example, we know how to compute \(\pi_* L_{K(2)} V(1) \) for \(p \geq 5 \), where \(V(1) \) is Toda’s 4-cell complex.
The telescope conjecture (continued)

Telescope Conjecture

The map

\[\lambda : v^{-1}X \to L_{K(h)}X \]

is an equivalence.

This conjecture equated the geometrically interesting object \(v^{-1}X \), the \(v_h \)-periodic telescope associated with the type \(h \) finite complex \(X \), with the more computationally accessible spectrum \(L_{K(h)}X \).

For example, we know how to compute \(\pi_* L_{K(2)} V(1) \) for \(p \geq 5 \), where \(V(1) \) is Toda’s 4-cell complex. It consists of exactly 12 \(v_2 \)-periodic families.
For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.
The telescope conjecture (continued)

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda's 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger.
For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence.
The telescope conjecture (continued)

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$,
For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.
For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_* V(1)$ but only sees 12 v_2-periodic families there.
The telescope conjecture (continued)

For example, we know how to compute $\pi_\ast L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_\ast v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_\ast L_{K(2)} V(1)$, but not to $\pi_\ast v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_\ast V(1)$ but only sees 12 v_2-periodic families there. How can this be?
The telescope conjecture (continued)

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_* V(1)$ but only sees 12 v_2-periodic families there. How can this be? One could have a v_2-periodic family (or many of them)
The telescope conjecture (continued)

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_* V(1)$ but only sees 12 v_2-periodic families there. How can this be? One could have a v_2-periodic family (or many of them) that are spread out over infinitely many Adams-Novikov filtrations.
THANK YOU!
References

[DHS88] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith.
Nilpotence and stable homotopy theory. I.

Nilpotence and stable homotopy theory. II.

[Rav84] Douglas C. Ravenel.
Localization with respect to certain periodic homology theories.