1 Review

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal
group laws, their classification and endomorphism rings in characteristic p in Lecture 1.

- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and
the chromatic filtration of the Adams-Novikov E_2-term in Lecture 2.

- The geometric form of the chromatic resolution defined using Bousfield localization with re-
spect to the theories $E(h)$ in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres: the dis-
covery in the early 70s of periodic families known as Greek letter elements. We will describe these
now.

2 Greek letter elements

Recall the hth Greek letter sequence,

\[0 \longrightarrow \Sigma^{v_{h-1}} \mathcal{B}_p \longrightarrow \mathcal{B}_p/I_{h-1} \longrightarrow \mathcal{B}_p/I_h \longrightarrow 0. \]

where $I_h = (p, v_1, \ldots, v_{h-1}), v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups
in which we denote the connecting homomorphism by δ_h. We know

\[\text{Ext}^0(\mathcal{B}_p) \cong \mathbb{Z}/(p) \quad \text{and} \quad \text{Ext}^0(\mathcal{B}_p/I_h) \cong \mathbb{Z}/p[v_h] \]

for each $h > 0$. For each $t > 0$, we define

\[\alpha_{t} := \delta_1(v'_1) \in \text{Ext}^{1/|v'_1|}(\mathcal{B}_p). \]

For p odd this represents an element or order p in $\pi_{|v'_1| - 1} S$. For $t = 1$, this dimension is $2p - 3$,
and α_1 is the first positive dimensional element in the p-component of the stable homotopy groups
of spheres.
These α_is comprise a v_1-periodic family.
To repeat, the α sequence,

$$
0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*/(p) \longrightarrow 0.
$$

enables us to define

$$
\alpha_i := \delta_1(v_1^i) \in \text{Ext}^1_{BP_*}(BP_*/(p)).
$$

This algebraic construction has a geometric antecedent.

Let $V(0)$ the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$
\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)
$$

inducing multiplication by v_1.

Then the homotopy element α_i is the composite

$$
S^{|v_1|} \xrightarrow{i} \Sigma^{|v_1|}V(0) \xrightarrow{\alpha^i} V(0) \xrightarrow{j} S^1,
$$

where i is the inclusion of the bottom cell and j is the pinch map onto the top cell. Again the α_is comprise a v_1-periodic family.

We can construct a v_2-periodic family as follows. Let $V(1)$ be the cofiber of the Adams map

$$
\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).
$$

inducing multiplication by v_1. It is a CW-spectrum of the form

$$
V(1) = S^0 \cup_p e^1 \cup \alpha_1 e^{2p-1} \cup_p e^{2p}.
$$

Independently Larry Smith and Hirosi Toda showed that for $p \geq 5$, there is a map

$$
\Sigma^{2p^2-2}V(1) \xrightarrow{\beta} V(1)
$$

inducing multiplication by v_2 in $BP_*(-)$.

Then the element

$$
\beta_i := \delta_1 \delta_2 v_2^i \in \text{Ext}^1_{BP_*}(BP_*/(p)).
$$

is represented by the composite

$$
S^{2|v_2|} \xrightarrow{i} \Sigma^{2|v_2|}V(1) \xrightarrow{\beta^i} V(1) \xrightarrow{j} S^{2p}.
$$

Algebraically we can do a similar thing at all heights and at all primes. We can define

$$
\eta_{(h)} := \delta_1 \delta_2 \ldots \delta_h(v_1^i) \in \text{Ext}^1_{BP_*}(BP_*/(p)).
$$

where $\eta_{(h)}$ denotes the hth letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ for $p \geq 7$. Nobody knows how to construct a map

$$
\Sigma^{2p^2-2}V(3) \xrightarrow{\delta} V(3)
$$

inducing multiplication by v_4 in $BP_*(-)$ at any prime.

3 Type h finite complexes

For a p-local finite spectrum X, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless X is contractible. We say that X has type h if h is the smallest integer with $K(h)_*X \neq 0$. Hence Toda’s $V(h-1)$ has type h. If $K(h)_*X = 0$ for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem. The Bousfield equivalence class of a p-local finite spectrum is determined by its type.
In particular any p-local finite spectrum X with nontrivial rational homology is Bousfield equivalent to $S(p)$.

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem. Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with $ed = e'd'$ and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type $h + 1$. Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $v^{-1}X$ is independent of the choices of both X and v. We denote it by $\langle T(h) \rangle$.

4 The telescope conjecture

Periodicity Theorem. Let X be p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some $d > 0$ that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$-equivalence, so we have a map

$$\lambda : v^{-1}X \to L_{K(h)}X = L_hX,$$

where the equality holds because the lower Morava K-theories vanish on X. The following appeared in [Rav84].

Telescope Conjecture. The map

$$\lambda : v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This is trivially true for $h = 0$, and for $h = 1$ it was proved around 1980 by Mahowald for $p = 2$ and by Miller for p odd. In 1989 I began to think it was false for $h \geq 2$. This is now a theorem of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank.

Jeremy, Tomer, myself, Ishan and Robert at Oxford University, June 9, 2023.

Photo by Matteo Barucco.

Telescope Conjecture. The map

$$\lambda : v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h-periodic telescope associated with the type h finite complex X, with the more computationally accessible spectrum $L_{K(h)}X$.

For example, we know how to compute $\pi_* L_{K(h)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.

For example, we know how to compute $\pi_* L_{K(h)} V(1)$ for $p \geq 5$, where $V(1)$ is Toda’s 4-cell complex. It consists of exactly 12 v_2-periodic families.
We do not know $\pi_*v_{2}^{-1}V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_*L_{K(2)}V(1)$, but not to $\pi_*v_{2}^{-1}V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_*V(1)$ but only sees $12v_2$-periodic families there. How can this be? One could have a v_2-periodic family (or many of them) that are spread out over infinitely many Adams-Novikov filtrations.

References

