What is the telescope conjecture?

Lecture 2

Morava’s vision and the chromatic spectral sequence

Doug Ravenel

University of Rochester

December 7, 2023
Recollections

The Lazard ring \(L = \mathbb{Z}[x_1, x_2, \ldots] \) is the graded ring (with \(|x_i| = 2i \)) over which the universal formal group law \(F_L \) is defined.
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$,

Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$, the map θ is an isomorphism.
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$, the map θ is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, (MU^*, MU_*MU).
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* CP^\infty$, the map θ is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, $(MU^*, MU_* MU)$. It represents the functor that assigns to each ring R...
The Lazard ring \(L = \mathbb{Z}[x_1, x_2, \ldots] \) is the graded ring (with \(|x_i| = 2i \)) over which the universal formal group law \(F_L \) is defined. This means that any formal group law \(F \) over any ring \(R \) is induced from \(F_L \) by a ring homomorphism \(\theta : L \to R \).

Quillen showed that for the formal group law \(F_{MU} \) that one sees in \(MU^* \mathbb{C}P^\infty \), the map \(\theta \) is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, \((MU^*, MU_\ast MU)\). It represents the functor that assigns to each ring \(R \) the groupoid of formal group laws over \(R \) and strict isomorphisms between them.
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$, the map θ is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, $(MU^*, MU^* MU)$. It represents the functor that assigns to each ring R the groupoid of formal group laws over R and strict isomorphisms between them.

We have $MU^* MU = MU^*[b_1, b_2, \ldots]$ with $|b_i| = 2i$.

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$, the map θ is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, $(MU^*, MU^* MU)$. It represents the functor that assigns to each ring R the groupoid of formal group laws over R and strict isomorphisms between them.

We have $MU_* MU = MU_* [b_1, b_2, \ldots]$ with $|b_i| = 2i$. There is an affine group scheme, i.e., a Hopf algebra, represented by the ring $B = \mathbb{Z}[b_1, b_2, \ldots]$.
Recollections

The Lazard ring $L = \mathbb{Z}[x_1, x_2, \ldots]$ is the graded ring (with $|x_i| = 2i$) over which the universal formal group law F_L is defined. This means that any formal group law F over any ring R is induced from F_L by a ring homomorphism $\theta : L \to R$.

Quillen showed that for the formal group law F_{MU} that one sees in $MU^* \mathbb{C}P^\infty$, the map θ is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, $(MU^*, MU^* MU)$. It represents the functor that assigns to each ring R the groupoid of formal group laws over R and strict isomorphisms between them.

We have $MU^* MU = MU^*[b_1, b_2, \ldots]$ with $|b_i| = 2i$. There is an affine group scheme, i.e., a Hopf algebra, represented by the ring $B = \mathbb{Z}[b_1, b_2, \ldots]$. The corresponding functor assigns to each R the group (under functional composition) G_R of formally invertible power series of the form
Recollections

The Lazard ring \(L = \mathbb{Z}[x_1, x_2, \ldots] \) is the graded ring (with \(|x_i| = 2i \)) over which the universal formal group law \(F_L \) is defined. This means that any formal group law \(F \) over any ring \(R \) is induced from \(F_L \) by a ring homomorphism \(\theta : L \to R \).

Quillen showed that for the formal group law \(F_{MU} \) that one sees in \(MU^* \mathbb{C}P^\infty \), the map \(\theta \) is an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, \((MU^*, MU \ast MU)\). It represents the functor that assigns to each ring \(R \) the groupoid of formal group laws over \(R \) and strict isomorphisms between them.

We have \(MU \ast MU = MU \ast [b_1, b_2, \ldots] \) with \(|b_i| = 2i \). There is an affine group scheme, i.e., a Hopf algebra, represented by the ring \(B = \mathbb{Z}[b_1, b_2, \ldots] \). The corresponding functor assigns to each \(R \) the group (under functional composition) \(G_R \) of formally invertible power series of the form

\[
f(x) = x + \sum_{i>0} b_i x^{i+1} \in R[[x]].
\]
There is an affine group scheme, i.e., a Hopf algebra, represented by the ring \(B = \mathbb{Z}[b_1, b_2, \ldots] \). The corresponding functor assigns to each \(R \) the group (under functional composition) \(G_R \) of formally invertible power series of the form

\[
 f(x) = x + \sum_{i>0} b_i x^{i+1} \in R[[x]].
\]
Recollections (continued)

There is an affine group scheme, i.e., a Hopf algebra, represented by the ring $B = \mathbb{Z}[b_1, b_2, \ldots]$. The corresponding functor assigns to each R the group (under functional composition) G_R of formally invertible power series of the form

$$f(x) = x + \sum_{i>0} b_i x^{i+1} \in R[[x]].$$

The group $G = G_{\mathbb{Z}}$ acts on $L \cong MU_*$ as follows.
Recollections (continued)

There is an affine group scheme, i.e., a Hopf algebra, represented by the ring $B = \mathbb{Z}[b_1, b_2, \ldots]$. The corresponding functor assigns to each R the group (under functional composition) G_R of formally invertible power series of the form

$$f(x) = x + \sum_{i>0} b_i x^{i+1} \in R[[x]].$$

The group $G = G_{\mathbb{Z}}$ acts on $L \cong MU_*$ as follows. We can conjugate F_L by f, defining

$$F^f_L(x, y) := f^{-1} F_L(f(x), f(y)).$$

This formal group law is induced by a ring automorphism $\theta_f : L \to L$.
The Adams-Novikov E_2-term

We have $MU_*MU = MU_*[b_1, b_2, \ldots]$ with $|b_i| = 2i$.
The Adams-Novikov E_2-term

We have $MU_* MU = MU_* [b_1, b_2, \ldots]$ with $|b_i| = 2i$. For any spectrum X, $MU_* X$ is a comodule over $MU_* MU$. For any such comodule M, we can define

$$\text{Ext} (M) := \text{Ext}_{MU_* MU} (MU_*, M).$$
The Adams-Novikov E_2-term

We have $MU_* MU = MU_* [b_1, b_2, \ldots]$ with $|b_i| = 2i$. For any spectrum X, $MU_* X$ is a comodule over $MU_* MU$. For any such comodule M, we can define

$$\text{Ext} (M) := \text{Ext}_{MU_* MU} (MU_*, M).$$

When $M = MU_* X$, this is the E_2-term of the Adams-Novikov spectral sequence converging (in favorable circumstances) to $\pi_* X$.
We have $MU_* MU = MU_* [b_1, b_2, \ldots]$ with $|b_i| = 2i$. For any spectrum X, $MU_* X$ is a comodule over $MU_* MU$. For any such comodule M, we can define

$$\text{Ext} (M) := \text{Ext}_{MU_* MU} (MU_*, M).$$

When $M = MU_* X$, this is the E_2-term of the Adams-Novikov spectral sequence converging (in favorable circumstances) to $\pi_* X$.

In the p-local setting, it is more convenient to look at

$$BP_* X = BP_* \otimes_{MU_*} MU_* X,$$
The Adams-Novikov E_2-term

We have $MU_\ast MU = MU_\ast [b_1, b_2, \ldots]$ with $|b_i| = 2i$. For any spectrum X, $MU_\ast X$ is a comodule over $MU_\ast MU$. For any such comodule M, we can define

$$\text{Ext } (M) := \text{Ext}_{MU_\ast MU} (MU_\ast, M).$$

When $M = MU_\ast X$, this is the E_2-term of the Adams-Novikov spectral sequence converging (in favorable circumstances) to $\pi_\ast X$.

In the p-local setting, it is more convenient to look at

$$BP_\ast X = BP_\ast \otimes_{MU_\ast} MU_\ast X,$$

which is a comodule over $BP_\ast BP$.
The Adams-Novikov E_2-term

We have $MU_*MU = MU_*[b_1, b_2, \ldots]$ with $|b_i| = 2i$. For any spectrum X, MU_*X is a comodule over MU_*MU. For any such comodule M, we can define

$$\text{Ext}(M) := \text{Ext}_{MU_*MU}(MU_*, M).$$

When $M = MU_*X$, this is the E_2-term of the Adams-Novikov spectral sequence converging (in favorable circumstances) to π_*X.

In the p-local setting, it is more convenient to look at

$$BP_*X = BP_* \otimes_{MU_*} MU_*X,$$

which is a comodule over BP_*BP. For any such comodule M, we can define

$$\text{Ext}(M) := \text{Ext}_{BP_*BP}(BP_*, M).$$
Invariant prime ideals

Fix a prime number p throughout.
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h.

Landweber's theorem says they are the only ones which are also comodules over BP^*. There is a short exact sequence of comodules

$$0 \to \Sigma \mid v_{h-1} \mid BP^* / I_{h-1} v_h / BP^* / I_{h-1} / BP^* / 0,$$

where $I_0 = (0)$ and $v_0 = p$. The (h)th Greek letter sequence.
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h. In 1973 Peter Landweber showed that they are the only prime ideals in MU_* that are invariant under the action of G.
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h. In 1973 Peter Landweber showed that they are the only prime ideals in MU_\ast that are invariant under the action of G.

We will use the same notation for the analogous prime ideals in BP_\ast.
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h. In 1973 Peter Landweber showed that they are the only prime ideals in MU_* that are invariant under the action of G.

We will use the same notation for the analogous prime ideals in BP_*. Landweber’s theorem says they are the only ones which are also comodules over BP_*BP.
Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h. In 1973 Peter Landweber showed that they are the only prime ideals in MU_* that are invariant under the action of G.

We will use the same notation for the analogous prime ideals in BP_*. Landweber’s theorem says they are the only ones which are also comodules over $BP_* BP$. There is a short exact sequence of comodules

$$0 \rightarrow \Sigma^{v_{h-1}} \frac{BP_* / I_{h-1}}{v_{h-1}} \rightarrow \frac{BP_* / I_{h-1}}{BP_* / I_h} \rightarrow 0,$$

where $I_0 = (0)$ and $v_0 = p$.
Invariant prime ideals

Fix a prime number p throughout. For each $h > 0$, we have a prime ideal

$$I_h = (p, v_1, \ldots, v_{h-1}) \subseteq L,$$

which is related to formal group laws of height (at p) at least h. In 1973 Peter Landweber showed that they are the only prime ideals in MU_* that are invariant under the action of G.

We will use the same notation for the analogous prime ideals in BP_*. Landweber’s theorem says they are the only ones which are also comodules over BP_*BP. There is a short exact sequence of comodules

$$0 \longrightarrow \Sigma^{\mid v_{h-1}} BP_* / I_{h-1} \overset{v_{h-1}}\longrightarrow BP_* / I_{h-1} \longrightarrow BP_* / I_h \longrightarrow 0,$$

where $I_0 = (0)$ and $v_0 = p$, the (h)-th Greek letter sequence.
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it.
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up.
I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{\mathbb{F}}_p$.

\begin{itemize}
 \item Each point in V corresponds to a formal group law over \mathbb{F}_p.
 \item V has an action of $G = G_{\mathbb{F}_p} \rtimes \mathbb{F}_p$ for which each orbit is an isomorphism class of formal group laws over \mathbb{F}_p. Hence there is one orbit for each height.
 \item For each $x \in V$, the isotropy or stabilizer group $G_x = \{ \gamma \in G : \gamma(x) = x \}$ is the automorphism group of the corresponding formal group law. When x has height h, this group is isomorphic to the Morava stabilizer group S_h.
\end{itemize}
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $\theta : L \rightarrow \overline{F}_p$.

- Each point in V corresponds to a formal group law over \overline{F}_p.
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{\mathbb{F}}_p$.

- Each point in V corresponds to a formal group law over $\overline{\mathbb{F}}_p$.
- V has an action of $G = G_{\overline{\mathbb{F}}_p} \times \overline{\mathbb{F}}_p^\times$ for which each orbit is an isomorphism class of formal group laws over $\overline{\mathbb{F}}_p$.
I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- Each point in V corresponds to a formal group law over \overline{F}_p.
- V has an action of $G = G_{\overline{F}_p} \times \overline{F}_p^\times$ for which each orbit is an isomorphism class of formal group laws over \overline{F}_p. Hence there is one orbit for each height.
I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $	heta : L \to \overline{F}_p$.

- Each point in V corresponds to a formal group law over \overline{F}_p.
- V has an action of $G = G_{\overline{F}_p} \times \overline{F}_p^{\times}$ for which each orbit is an isomorphism class of formal group laws over \overline{F}_p. Hence there is one orbit for each height.
- For each $x \in V$, the isotropy or stabilizer group $G_x = \{ \gamma \in G : \gamma(x) = x \}$
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- Each point in V corresponds to a formal group law over \overline{F}_p.
- V has an action of $G = G_{\overline{F}_p} \times \overline{F}_p^\times$ for which each orbit is an isomorphism class of formal group laws over \overline{F}_p. Hence there is one orbit for each height.
- For each $x \in V$, the isotropy or stabilizer group $G_x = \{ \gamma \in G : \gamma(x) = x \}$ is the automorphism group of the corresponding formal group law.
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten it. It was the subject of an unpublished AMS Bulletin announcement that he recently dug up. You can find it on my archive.

Let \(V \) denote the “vector space” of ring homomorphisms \(\theta : L \rightarrow \overline{F}_p \).

- Each point in \(V \) corresponds to a formal group law over \(\overline{F}_p \).
- \(V \) has an action of \(G = G_{\overline{F}_p} \times \overline{F}_p^\times \) for which each orbit is an isomorphism class of formal group laws over \(\overline{F}_p \). Hence there is one orbit for each height.
- For each \(x \in V \), the isotropy or stabilizer group
 \[G_x = \{ \gamma \in G : \gamma(x) = x \} \]
 is the automorphism group of the corresponding formal group law. When \(x \) has height \(h \), this group is isomorphic to the Morava stabilizer group \(S_h \).
Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms $	heta : L \to \overline{\mathbb{F}}_p$.

Recollections

The Adams-Novikov E_2-term
Invariant prime ideals
Morava’s vision
The Morava stabilizer group
The change-of-rings isomorphism
The chromatic spectral sequence
Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- There are G-invariant finite codimensional linear subspaces

 $$V = V_1 \supset V_2 \supset V_3 \supset \cdots$$

 where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$.

Recollections
The Adams-Novikov E_2-term
Invariant prime ideals
Morava’s vision
The Morava stabilizer group
The change-of-rings isomorphism
The chromatic spectral sequence
Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- There are G-invariant finite codimensional linear subspaces

$$V = V_1 \supset V_2 \supset V_3 \supset \cdots$$

where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$. We will call this the Morava filtration of V.
Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- There are G-invariant finite codimensional linear subspaces $V = V_1 \supset V_2 \supset V_3 \supset \cdots$

where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$. We will call this the Morava filtration of V.

- The height h orbit is $V_h - V_{h+1}$.

Morava’s vision (continued)
Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- There are G-invariant finite codimensional linear subspaces

 $$V = V_1 \supset V_2 \supset V_3 \supset \cdots$$

 where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$. We will call this the Morava filtration of V.

- The height h orbit is $V_h - V_{h+1}$. It is the set of \overline{F}_p-valued homomorphisms on $v_h^{-1}L/I_h$.

Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{F}_p$.

- There are G-invariant finite codimensional linear subspaces

 $V = V_1 \supset V_2 \supset V_3 \supset \cdots$

 where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$. We will call this the Morava filtration of V.

- The height h orbit is $V_h - V_{h+1}$. It is the set of \overline{F}_p-valued homomorphisms on $v_h^{-1}L/I_h$. We use this fact later.
Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms $\theta : L \to \overline{\mathbb{F}}_p$.

- There are G-invariant finite codimensional linear subspaces

 \[V = V_1 \supset V_2 \supset V_3 \supset \cdots \]

 where $V_h = \{ \theta \in V : \theta(v_1) = \cdots = \theta(v_{h-1}) = 0 \}$. We will call this the Morava filtration of V.

- The height h orbit is $V_h - V_{h+1}$. It is the set of $\overline{\mathbb{F}}_p$-valued homomorphisms on $v_h^{-1}L/I_h$. We use this fact later.

- The height ∞ orbit is the linear subspace

 \[\bigcap_{h>0} V_h. \]
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_p^h.

We need some notation.
Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}.

W denotes the Witt ring for \mathbb{F}_{p^h}.

We will see that it is the endomorphism ring of our formal group law.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height \(h \) formal group law over a field \(K \) of characteristic \(p \) containing \(\mathbb{F}_{p^h} \).

We need some notation.

- \(W := W(\mathbb{F}_{p^h}) \) denotes the Witt ring for \(\mathbb{F}_{p^h} \). It is the extension of the \(p \)-adic integers \(\mathbb{Z}_p \) obtained by adjoining the \((p^h - 1)\)th roots of unity. It is a complete local ring with residue field \(\mathbb{F}_{p^h} \).
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field \mathbb{F}_{p^h} and an extension of \mathbb{Z}_p of degree h.
Here we describe the endomorphism ring and automorphism group of a height \(h \) formal group law over a field \(K \) of characteristic \(p \) containing \(\mathbb{F}_{p^h} \).

We need some notation.

- \(W := W(\mathbb{F}_{p^h}) \) denotes the Witt ring for \(\mathbb{F}_{p^h} \). It is the extension of the \(p \)-adic integers \(\mathbb{Z}_p \) obtained by adjoining the \((p^h - 1)\)th roots of unity. It is a complete local ring with residue field \(\mathbb{F}_{p^h} \) and an extension of \(\mathbb{Z}_p \) of degree \(h \). It has an automorphism \(\sigma \) that lifts the Frobenius automorphism (\(p \)th power map) in the residue field.
Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field \mathbb{F}_{p^h} and an extension of \mathbb{Z}_p of degree h. It has an automorphism σ that lifts the Frobenius automorphism (pth power map) in the residue field. We denote the image of $w \in W$ under σ by w^σ.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field \mathbb{F}_{p^h} and an extension of \mathbb{Z}_p of degree h. It has an automorphism σ that lifts the Frobenius automorphism (pth power map) in the residue field. We denote the image of $w \in W$ under σ by w^σ.

- End_h denotes the \mathbb{Z}_p-algebra obtained from W by adjoining an indeterminate S.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing F_p^h.

We need some notation.

- $W := W(F_p^h)$ denotes the Witt ring for F_p^h. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field F_p^h and an extension of \mathbb{Z}_p of degree h. It has an automorphism σ that lifts the Frobenius automorphism (pth power map) in the residue field. We denote the image of $w \in W$ under σ by w^σ.

- End_h denotes the \mathbb{Z}_p-algebra obtained from W by adjoining an indeterminate S with $Sw = w^\sigma S$ for $w \in W$.
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing \mathbb{F}_{p^h}.

We need some notation.

- $W := W(\mathbb{F}_{p^h})$ denotes the Witt ring for \mathbb{F}_{p^h}. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field \mathbb{F}_{p^h} and an extension of \mathbb{Z}_p of degree h. It has an automorphism σ that lifts the Frobenius automorphism (pth power map) in the residue field. We denote the image of $w \in W$ under σ by w^σ.

- End_h denotes the \mathbb{Z}_p-algebra obtained from W by adjoining an indeterminate S with $Sw = w^\sigma S$ for $w \in W$ and setting $S^h = p$.
Here we describe the endomorphism ring and automorphism group of a height h formal group law over a field K of characteristic p containing F_p^h.

We need some notation.

- $W := W(F_p^h)$ denotes the Witt ring for F_p^h. It is the extension of the p-adic integers \mathbb{Z}_p obtained by adjoining the $(p^h - 1)$th roots of unity. It is a complete local ring with residue field F_p^h and an extension of \mathbb{Z}_p of degree h. It has an automorphism σ that lifts the Frobenius automorphism (pth power map) in the residue field. We denote the image of $w \in W$ under σ by w^σ.

- End_h denotes the \mathbb{Z}_p-algebra obtained from W by adjoining an indeterminate S with $Sw = w^\sigma S$ for $w \in W$ and setting $S^h = p$. We will see that it is the endomorphism ring of our formal group law.
The Morava stabilizer group (continued)

To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(F_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S_i$$

where $e_i \in F_{p^h}$ for each i, meaning that each e_i is either zero or a $(p^h - 1)$th root of unity. Recall that the logarithm of F_h is

$$\log(x) = \sum_{k \geq 0} x^{p^k h} p^k = x + x^{p^h} + x^{p^{2h}} + \cdots$$

Now let $\omega \in W$ satisfy $\omega^{p^h} = \omega$. Then $\log(\omega x) = \omega \log(x)$, so F_h has an endomorphism $x \mapsto \omega x$. The endomorphism for $\sum_{i \geq 0} e_i S_i \in \text{End}_h$ is $x \mapsto \sum_{i \geq 0} F_h e_i x^{p^i} \in F_{p^h}$.
The Morava stabilizer group (continued)

To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(\mathbb{F}_p^h)$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i,
The Morava stabilizer group (continued)

To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(F_p^h)$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i,

meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.
The Morava stabilizer group (continued)

To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(F_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i,

meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.

Recall that the logarithm of F_h is

$$\log(x) = \sum_{k \geq 0} \frac{x^{p^{kh}}}{p^k} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots.$$
To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(F_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i, meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.

Recall that the logarithm of F_h is

$$\log(x) = \sum_{k \geq 0} \frac{x^{p^{kh}}}{p^k} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots.$$

Now let $\omega \in W$ satisfy $\omega^{p^h} = \omega$.

The Morava stabilizer group (continued)
To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(F_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i, meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.

Recall that the logarithm of F_h is

$$\log(x) = \sum_{k \geq 0} \frac{x^{p^{kh}}}{p^k} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \ldots.$$

Now let $\omega \in W$ satisfy $\omega^{p^h} = \omega$. Then $\log(\omega x) = \omega \log(x)$,
The Morava stabilizer group (continued)

To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(\mathbb{F}_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^{p^h} = e_i$ for each i, meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.

Recall that the logarithm of F_h is

$$\log(x) = \sum_{k \geq 0} \frac{x^{p^kh}}{p^k} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots.$$

Now let $\omega \in W$ satisfy $\omega^{p^h} = \omega$. Then $\log(\omega x) = \omega \log(x)$, so F_h has an endomorphism $x \mapsto \omega x$.
To describe the action of End_h on the mod p reduction of the Honda formal group law F_h of height h over $W = W(\mathbb{F}_{p^h})$, we note first that each element $e \in \text{End}_h$ can be written uniquely as
\[\sum_{i \geq 0} e_i S^i \] where $e_i^{p^h} = e_i$ for each i, meaning that each e_i is either zero or a $(p^h - 1)$th root of unity.

Recall that the logarithm of F_h is
\[\log(x) = \sum_{k \geq 0} \frac{x^{p^{kh}}}{p^k} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots. \]

Now let $\omega \in W$ satisfy $\omega^{p^h} = \omega$. Then $\log(\omega x) = \omega \log(x)$, so F_h has an endomorphism $x \mapsto \omega x$.

The endomorphism for
\[\sum_{i \geq 0} e_i S^i \in \text{End}_h \] is
\[x \mapsto \sum_{i \geq 0} F_h e_i x^{p^i} \in \mathbb{F}_{p^h}[X]. \]
Again, each element $e \in \text{End}_h$ can be written uniquely as
\[
\sum_{i \geq 0} e_i S^i \quad \text{where } e_i^{p^h} = e_i \text{ for each } i.
\]
The Morava stabilizer group (continued)

Again, each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} \ e_i \ S^i \quad \text{where} \quad e_{i}^{p^{h}} = e_i \quad \text{for each} \ i.$$

Here are some additional properties of End_h:
Again, each element \(e \in \text{End}_h \) can be written uniquely as
\[
\sum_{i \geq 0} e_i S^i \quad \text{where} \quad e_i^{p^h} = e_i \quad \text{for each} \quad i.
\]

Here are some additional properties of \(\text{End}_h \):

- Each such expression with \(e_0 \neq 0 \) is invertible. The *Morava stabilizer group* \(S_h \) is the group of units \(\text{End}_h^\times \).
The Morava stabilizer group (continued)

Again, each element $e \in \text{End}_h$ can be written uniquely as

$$\sum_{i \geq 0} e_i S^i$$

where $e_i^p^h = e_i$ for each i.

Here are some additional properties of End_h:

- Each such expression with $e_0 \neq 0$ is invertible. The Morava stabilizer group S_h is the group of units End_h^x. We also have the extended Morava stabilizer group $G_h = S_h \rtimes \text{Gal}(F_p^h : F_p)$. $\text{Div}_h : = \text{End}_h \otimes Z_p$ is a division algebra over the p-adic numbers Q_p with Brauer invariant $1/h$, in which End_h is a maximal order.
Again, each element $e \in \text{End}_h$ can be written uniquely as
\[\sum_{i \geq 0} e_i S^i \] where $e_i^{p^h} = e_i$ for each i.

Here are some additional properties of End_h:

- Each such expression with $e_0 \neq 0$ is invertible. The Morava stabilizer group S_h is the group of units End_h^\times. We also have the extended Morava stabilizer group $\mathcal{G}_h = S_h \rtimes \text{Gal}(\mathbb{F}_{p^h} : \mathbb{F}_p)$.
Again, each element $e \in \text{End}_h$ can be written uniquely as
$$\sum_{i \geq 0} e_i S^i$$
where $e_i^{\mathbb{P}^h} = e_i$ for each i.

Here are some additional properties of End_h:

- Each such expression with $e_0 \neq 0$ is invertible. The Morava stabilizer group \mathbb{S}_h is the group of units End_h^\times. We also have the extended Morava stabilizer group
 $$\mathbb{G}_h = \mathbb{S}_h \rtimes \text{Gal}(\mathbb{F}_p^h : \mathbb{F}_p).$$

- $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a division algebra over the p-adic numbers \mathbb{Q}_p with Brauer invariant $1/h$,
Again, each element $e \in \text{End}_h$ can be written uniquely as
\[\sum_{i \geq 0} e_i S^i \] where $e_i^{p^h} = e_i$ for each i.

Here are some additional properties of End_h:

- Each such expression with $e_0 \neq 0$ is invertible. The Morava stabilizer group \mathbb{S}_h is the group of units End_h^\times. We also have the extended Morava stabilizer group
\[G_h = \mathbb{S}_h \rtimes \text{Gal}(\mathbb{F}_{p^h} : \mathbb{F}_p). \]

- $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a division algebra over the p-adic numbers \mathbb{Q}_p with Brauer invariant $1/h$, in which End_h is a maximal order.
The division algebra \(\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) contains every degree \(h \) field extension of \(\mathbb{Q}_p \).
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

Recollect the prime ideals End_h and the Morava stabilizer group S_h. The change-of-rings isomorphism $\text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h. The finite subgroups of G_h have been classified by Bujard. The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins. The subgroup of order p^i in $S_{p^i - 1}$ for p odd was used earlier in the solution of the odd primary Kervaire invariant problem. We know the mod p cohomology of S_1 and S_2 for all primes, and of S_3 for $p \geq 5$. We also know H^1 and H^2 for all heights. S_h has cohomological dimension $h/2$ when $p - 1$ does not divide h. $H^* S_4$ for $p > 5$ has been announced by Andrew Salch.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order p in S_{p-1} for p odd was used earlier in the solution of the odd primary Kervaire invariant problem.
The Morava stabilizer group (continued)

The division algebra \(\text{Div}_h := \text{End}_h \otimes_{Z_p} Q_p \) contains every degree \(h \) field extension of \(Q_p \). Its maximal order \(\text{End}_h \) contains the ring of integers of every such field. This means that \(S_h \) has an element of order \(p^i \) iff \((p - 1)p^{i-1}\) divides \(h \).

The finite subgroups of \(G_h \) have been classified by Bujard.

The subgroup of order 8 in \(S_4 \) for \(p = 2 \) odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order \(p \) in \(S_{p-1} \) for \(p \) odd was used earlier in the solution of the odd primary Kervaire invariant problem.

We know the mod \(p \) cohomology of \(S_1 \) and \(S_2 \) for all primes,
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order p in S_{p-1} for p odd was used earlier in the solution of the odd primary Kervaire invariant problem.

We know the mod p cohomology of S_1 and S_2 for all primes, and of S_3 for $p \geq 5$.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order p in S_{p-1} for p odd was used earlier in the solution of the odd primary Kervaire invariant problem.

We know the mod p cohomology of S_1 and S_2 for all primes, and of S_3 for $p \geq 5$. We also know H^1 and H^2 for all heights.
The division algebra $\text{Div}_h := \text{End}_h \otimes \mathbb{Z}_p \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order p in S_{p-1} for p odd was used earlier in the solution of the odd primary Kervaire invariant problem.

We know the mod p cohomology of S_1 and S_2 for all primes, and of S_3 for $p \geq 5$. We also know H^1 and H^2 for all heights. S_h has cohomological dimension h^2 when $p - 1$ does not divide h.
The division algebra $\text{Div}_h := \text{End}_h \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ contains every degree h field extension of \mathbb{Q}_p. Its maximal order End_h contains the ring of integers of every such field. This means that S_h has an element of order p^i iff $(p - 1)p^{i-1}$ divides h.

The finite subgroups of G_h have been classified by Bujard.

The subgroup of order 8 in S_4 for $p = 2$ odd was used in the solution of Kervaire invariant problem with Hill and Hopkins.

The subgroup of order p in S_{p-1} for p odd was used earlier in the solution of the odd primary Kervaire invariant problem.

We know the mod p cohomology of S_1 and S_2 for all primes, and of S_3 for $p \geq 5$. We also know H^1 and H^2 for all heights. S_h has cohomological dimension h^2 when $p - 1$ does not divide h. H^*S_4 for $p > 5$ has been announced by Andrew Salch.
Recall that Morava’s height h orbit is the set of $\overline{\mathbb{F}}_p$-valued ring homomorphisms on $v_h^{-1}L/I_h$.

This implies the following change-of-rings isomorphism due to Miller and myself:

$$\text{Ext} \left(v_h^{-1} L/ I_h, H^* \left(S_{h}; \mathbb{F}_p \right) \right)$$

This is not quite right; there are caveats having to do with grading. Details can be found in Chapter 6 of the green book, which describes methods for computing the cohomology group on the right.
Recall that Morava’s height h orbit is the set of $\overline{\mathbb{F}}_p$-valued ring homomorphisms on $\nu_h^{-1}L/I_h$. This implies the following change-of-rings isomorphism due to Miller and myself:
Recall that Morava’s height h orbit is the set of \mathbb{F}_p-valued ring homomorphisms on $v_h^{-1} L/I_h$. This implies the following change-of-rings isomorphism due to Miller and myself:

$$\text{Ext} \left(v_h^{-1} BP_* / I_h \right) \cong H^* (S_h; \mathbb{F}_p)$$
Recall that Morava’s height h orbit is the set of \mathbb{F}_p-valued ring homomorphisms on $v_h^{-1}L/I_h$. This implies the following change-of-rings isomorphism due to Miller and myself:

$$\text{Ext} \left(v_h^{-1}BP_* / I_h \right) \cong H^* (\mathbb{S}_h; \mathbb{F}_p)$$

This is not quite right; there are caveats having to do with grading.
The change-of-rings isomorphism

Recall that Morava’s height h orbit is the set of $\overline{\mathbb{F}}_p$-valued ring homomorphisms on $v_h^{-1} L/I_h$. This implies the following change-of-rings isomorphism due to Miller and myself:

$$\text{Ext} \left(v_h^{-1} BP_* / I_h \right) \cong H^* (\mathbb{S}_h; \overline{\mathbb{F}}_p)$$

This is not quite right; there are caveats having to do with grading. Details can be found in Chapter 6 of the green book,
Recall that Morava’s height h orbit is the set of \mathbb{F}_p-valued ring homomorphisms on $v_h^{-1}L/I_h$. This implies the following change-of-rings isomorphism due to Miller and myself:

$$\text{Ext} \left(v_{h}^{-1} \mathcal{B}P_{*}/I_{h} \right) \cong H^{*}(\mathbb{S}_{h}; \mathbb{F}_p)$$

This is not quite right; there are caveats having to do with grading. Details can be found in Chapter 6 of the green book, which describes methods for computing the cohomology group on the right.
The chromatic spectral sequence

Periodic phenomena in the Adams-Novikov spectral sequence

By Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson
We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term.
We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term. We will construct a long exact sequence of BP_*BP-comodules of the form...
The chromatic spectral sequence

We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term. We will construct a long exact sequence of $BP_* BP$-comodules of the form

$$0 \to BP_* \to M^0 \to M^1 \to M^2 \to M^3 \to \ldots$$
We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term. We will construct a long exact sequence of BP_*BP-comodules of the form

$$0 \rightarrow BP_* \rightarrow M^0 \rightarrow M^1 \rightarrow M^2 \rightarrow M^3 \rightarrow \ldots$$

called the chromatic resolution.
We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term. We will construct a long exact sequence of $BP_\ast BP$-comodules of the form

$$0 \longrightarrow BP_\ast \longrightarrow M^0 \longrightarrow M^1 \longrightarrow M^2 \longrightarrow M^3 \longrightarrow \ldots$$

called the chromatic resolution. Then standard homological algebra gives a spectral sequence of the form

$$E_2^{h,s} = \text{Ext}^s(M^h) \Longrightarrow \text{Ext}^{s+h}(BP_\ast)$$
The chromatic spectral sequence

We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E_2-term. We will construct a long exact sequence of $BP_\ast BP$-comodules of the form

$$0 \rightarrow BP_\ast \rightarrow M^0 \rightarrow M^1 \rightarrow M^2 \rightarrow M^3 \rightarrow \ldots$$

called the chromatic resolution. Then standard homological algebra gives a spectral sequence of the form

$$E_2^{h,s} = \text{Ext}^s(M^h) \rightarrow \text{Ext}^{s+h}(BP_\ast)$$

called the chromatic spectral sequence.
The chromatic spectral sequence (continued)

The chromatic spectral sequence

$$E_2^{h,s} = \text{Ext}^s(M^h) \Longrightarrow \text{Ext}^{s+h}(BP_*)$$
The chromatic spectral sequence

\[E_2^{h,s} = \text{Ext}^s(M^h) \Rightarrow \text{Ext}^{s+h}(BP_*) \]

Roughly speaking, its \(h \)th column, \(\text{Ext}(M^h) \), displays \(\nu_h \)-periodic phenomena.
The chromatic spectral sequence (continued)

Roughly speaking, its hth column, $\Ext (M^h)$, displays ν_h-periodic phenomena. This decomposition of the Adams-Novikov E_2-term into its various frequencies is our reason for the use of the word chromatic.
The chromatic spectral sequence (continued)

We will construct a long exact sequence of $BP_\ast BP$-comodules of the form

$$0 \rightarrow BP_\ast \rightarrow M^0 \rightarrow M^1 \rightarrow M^2 \rightarrow M^3 \rightarrow \ldots$$

called the chromatic resolution.
The chromatic spectral sequence (continued)

We will construct a long exact sequence of $BP_\ast BP$-comodules of the form

$$0 \to BP_\ast \to M^0 \to M^1 \to M^2 \to M^3 \to \ldots$$

called the chromatic resolution.

We will do so by splicing together the chromatic short exact sequences.
The chromatic spectral sequence (continued)

We will construct a long exact sequence of BP_*BP-comodules of the form

$$0 \rightarrow BP_* \rightarrow M^0 \rightarrow M^1 \rightarrow M^2 \rightarrow M^3 \rightarrow \ldots$$

called the chromatic resolution.

We will do so by splicing together the chromatic short exact sequences

$$0 \rightarrow N^0 \coloneqq BP_* \rightarrow M^0 \rightarrow N^1 \rightarrow 0,$$

$$0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0,$$

$$0 \rightarrow N^2 \rightarrow M^2 \rightarrow N^3 \rightarrow 0,$$

and so on.
The chromatic spectral sequence (continued)

\[0 \rightarrow N^0 := BP_* \rightarrow M^0 \rightarrow N^1 \rightarrow 0, \]
0 → N^0 := BP_* → M^0 → N^1 → 0,

We set M^0 := BP_0 ⊗ Q, so N^1 = BP_* ⊗ Q/\mathbb{Z}(p), which we write as

N^1 = BP_* / p^\infty := \colim_i BP_* / p^i.

Inverting v_1 in the comodule category requires some care.
The chromatic spectral sequence (continued)

\[
0 \rightarrow N^0 := BP_* \rightarrow M^0 \rightarrow N^1 \rightarrow 0,
\]

We set \(M^0 := BP_0 \otimes \mathbb{Q} \), so
\[
N^1 = BP_* \otimes \mathbb{Q}/\mathbb{Z}(p),
\]
which we write as
\[
N^1 = BP_*/p^\infty := \operatorname{colim}_i BP_*/p^i.
\]

Our first chromatic short exact sequence is

\[
0 \rightarrow N^0 \xrightarrow{\cong} M^0 \xrightarrow{\cong} N^1 \xrightarrow{\cong} 0,
\]

\[
BP_* \quad p^{-1}BP_* \quad BP_*/(p^\infty)
\]
The chromatic spectral sequence (continued)

0 → N^0 := BP_* → M^0 → N^1 → 0,

We set M^0 := BP_0 ⊗ Q, so N^1 = BP_* ⊗ Q/\mathbb{Z}(p), which we write as

N^1 = BP_*/p^\infty := \operatorname{colim}_{i} BP_*/p^i.

Our first chromatic short exact sequence is

0 → N^0 → M^0 → N^1 → 0,

\begin{array}{c}
 BP_* \\
 \downarrow p^{-1}BP_* \\
 BP_*/(p^\infty)
\end{array}

We want the next one to be

0 → N^1 → M^1 → N^2 → 0,

\begin{array}{c}
 BP_*/(p^\infty) \\
 \downarrow v_1^{-1}BP_*/(p^\infty) \\
 BP_*/(p^\infty, v_1^\infty)
\end{array}
The chromatic spectral sequence (continued)

\[0 \longrightarrow N^0 := BP_* \longrightarrow M^0 \longrightarrow N^1 \longrightarrow 0, \]

We set \(M^0 := BP_0 \otimes \mathbb{Q} \), so \(N^1 = BP_* \otimes \mathbb{Q}/\mathbb{Z}(p) \), which we write as

\[N^1 = BP_*/p^\infty := \text{colim}_i BP_*/p^i. \]

Our first chromatic short exact sequence is

\[0 \longrightarrow N^0 \overset{\text{id}}{\longrightarrow} M^0 \overset{p^{-1}BP_*}{\longrightarrow} N^1 \overset{\text{id}}{\longrightarrow} 0, \]

\[BP_* \quad p^{-1}BP_* \quad BP_*/(p^\infty) \]

We want the next one to be

\[0 \longrightarrow N^1 \overset{\text{id}}{\longrightarrow} M^1 \overset{\text{id}}{\longrightarrow} N^2 \overset{\text{id}}{\longrightarrow} 0, \]

\[BP_*/(p^\infty) \quad v_1^{-1}BP_*/(p^\infty) \quad BP_*/(p^\infty, v_1^\infty), \]

but inverting \(v_1 \) in the comodule category requires some care.
The chromatic spectral sequence (continued)

We want a short exact sequence of comodules

\[
0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0,
\]

\[
BP^* / (p^\infty) \rightarrow v_1^{-1} BP^* / (p^\infty) \rightarrow BP^* / (p^\infty, v_1^\infty),
\]

but inverting \(v_1 \) in the comodule category requires some care.
We want a short exact sequence of comodules

\[0 \to N^1 \to M^1 \to N^2 \to 0, \]

\[BP_* / (p^\infty) \to v_1^{-1} BP_* / (p^\infty) \to BP_* / (p^\infty, v_1^\infty), \]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(BP_* \)-module \(v_1^{-1} BP_* \).
The chromatic spectral sequence (continued)

We want a short exact sequence of comodules

\[0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0, \]

\[BP_*/(p^\infty) \rightarrow v_1^{-1}BP_*/(p^\infty) \rightarrow BP_*/(p^\infty, v_1^\infty), \]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(BP_* \)-module \(v_1^{-1}BP_* \). Since \(\eta_R(v_1) = v_1 + pt_1 \),
We want a short exact sequence of comodules

\[0 \to N^1 \to M^1 \to N^2 \to 0, \]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(BP_* \)-module \(v_1^{-1}BP_* \). Since \(\eta_R(v_1) = v_1 + pt_1 \), formally we have

\[\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i. \]
The chromatic spectral sequence (continued)

We want a short exact sequence of comodules

\[0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0, \]

\[BP_*/(p^\infty) \quad v_1^{-1}BP_*/(p^\infty) \quad BP_*/(p^\infty, v_1^\infty), \]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(BP_* \)-module \(v_1^{-1}BP_* \). Since \(\eta_R(v_1) = v_1 + pt_1 \), formally we have

\[\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i. \]

When \(k < 0 \), this sum is infinite and therefore does not lie in \(v_1^{-1}BP_*BP \).
We want a short exact sequence of comodules

\[
0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0, \\
\xrightarrow{\text{BP}_*/(p^\infty)} \quad \xrightarrow{v_1^{-1} \text{BP}_*/(p^\infty)} \quad \xrightarrow{\text{BP}_*/(p^\infty, v_1^\infty)},
\]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(\text{BP}_* \)-module \(v_1^{-1} \text{BP}_* \). Since \(\eta_R(v_1) = v_1 + pt_1 \), formally we have

\[
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
\]

When \(k < 0 \), this sum is infinite and therefore does not lie in \(v_1^{-1} \text{BP}_* \text{BP} \). This means that \(v_1^{-1} \text{BP}_* \) is not a comodule.
We want a short exact sequence of comodules

\[0 \rightarrow N^1 \rightarrow M^1 \rightarrow N^2 \rightarrow 0, \]

\[BP_*/(p^\infty) \quad \nu_1^{-1} BP_*/(p^\infty) \quad BP_*/(p^\infty, v_1^\infty), \]

but inverting \(v_1 \) in the comodule category requires some care.

Consider the \(BP_* \)-module \(\nu_1^{-1} BP_* \). Since \(\eta_R(v_1) = v_1 + pt_1 \), formally we have

\[\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i. \]

When \(k < 0 \), this sum is infinite and therefore does not lie in \(\nu_1^{-1} BP_* BP \). This means that \(\nu_1^{-1} BP_* \) is not a comodule. We claim that \(\nu_1^{-1} BP_* / p^\infty \) is one nevertheless.
The following sum is infinite for $k < 0$.

$$\eta_R(v^k_1) = (v^1_1 + pt^1_1)^k = \sum_{i \geq 0} (k^i_1)p^i_1v^k_1 - i_1t^i_1.$$

Each element in BP^* / p^∞ can be written as a fraction of the form x^{p^j} where $j > 0$ and $x \in BP^*$ is not divisible by p. This element is killed by p^j.

It follows that $\eta_R(x^{p^j}) = \sum_{0 \leq i < j} (k^i_1)v^k_1 - i_1t^i_1\eta_R(x)$

This sum is finite for all k, unlike the previous one, so $v^1_1BP^* / p^\infty$ is a comodule as claimed.
The chromatic spectral sequence (continued)

The following sum is infinite for $k < 0$.

$$
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
$$
The chromatic spectral sequence (continued)

The following sum is infinite for $k < 0$.

$$
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
$$

Each element in BP_* / p^∞ can be written as a fraction of the form
The chromatic spectral sequence (continued)

The following sum is infinite for $k < 0$.

$$
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
$$

Each element in BP_* / p^∞ can be written as a fraction of the form

$$
\frac{x}{p^j}
$$

where $j > 0$ and $x \in BP_*$ is not divisible by p.

The following sum is infinite for \(k < 0 \).

\[
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
\]

Each element in \(BP_* / p^\infty \) can be written as a fraction of the form

\[
\frac{x}{p^j}
\]

where \(j > 0 \) and \(x \in BP_* \) is not divisible by \(p \).

This element is killed by \(p^j \).
The following sum is infinite for $k < 0$.

$$\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.$$

Each element in BP_* / p^∞ can be written as a fraction of the form

$$\frac{x}{p^j}$$

where $j > 0$ and $x \in BP_*$ is not divisible by p.

This element is killed by p^j. It follows that

$$\eta_R \left(\frac{v_1^k x}{p^j} \right) = \sum_{0 \leq i < j} \binom{k}{i} \frac{v_1^{k-i} t_1^i \eta_R(x)}{p^{j-i}}.$$
The chromatic spectral sequence (continued)

The following sum is infinite for $k < 0$.

$$
\eta_R(v_1^k) = (v_1 + pt_1)^k = \sum_{i \geq 0} \binom{k}{i} p^i v_1^{k-i} t_1^i.
$$

Each element in BP_* / p^∞ can be written as a fraction of the form

$$\frac{x}{p^j}$$

where $j > 0$ and $x \in BP_*$ is not divisible by p.

This element is killed by p^j. It follows that

$$
\eta_R \left(\frac{v_1^k x}{p^j} \right) = \sum_{0 \leq i < j} \binom{k}{i} v_1^{k-i} t_1^i \eta_R(x) \frac{1}{p^{j-i}}.
$$

This sum is finite for all k, unlike the previous one, so $v_1^{-1} BP_* / p^\infty$ is a comodule as claimed.
Thus we have our second **chromatic short exact sequence**

\[0 \longrightarrow N^1 \longrightarrow M^1 \longrightarrow N^2 \longrightarrow 0 \]

\[BP_*/(p^\infty) \quad \nu_1^{-1} BP_*/(p^\infty) \quad BP_*/(p^\infty, v_1^\infty). \]
Thus we have our second chromatic short exact sequence

\[
\begin{array}{cccccc}
0 & \rightarrow & N^1 & \rightarrow & M^1 & \rightarrow & N^2 & \rightarrow & 0 \\
\| & & \| & & \| & & \\
BP_*/(p^\infty) & \rightarrow & \nu_1^{-1}BP_*/(p^\infty) & \rightarrow & BP_*/(p^\infty, v_1^\infty).
\end{array}
\]

In a similar manner we can work by induction on \(h \) and construct
Thus we have our second chromatic short exact sequence

\[
0 \to N^1 \to M^1 \to N^2 \to 0
\]

\[
BP_*/(p^\infty) \xrightarrow{v_1^{-1}} BP_*/(p^\infty) \to BP_*/(p^\infty, v_1^\infty).
\]

In a similar manner we can work by induction on \(h \) and construct

\[
0 \to N^h \to M^h \to N^{h+1} \to 0
\]

\[
BP_*/(p^\infty, \ldots, v_{h-1}^\infty) \xrightarrow{v_h^{-1}N^h} BP_*/(p^\infty, \ldots, v_h^\infty).
\]
The chromatic spectral sequence (continued)

Thus we have our second **chromatic short exact sequence**

\[
0 \longrightarrow N^1 \longrightarrow M^1 \longrightarrow N^2 \longrightarrow 0
\]

\[
BP^* / (p^\infty) \quad v_1^{-1} BP^* / (p^\infty) \quad BP^* / (p^\infty, v_1^\infty).
\]

In a similar manner we can work by induction on \(h \) and construct

\[
0 \longrightarrow N^h \longrightarrow M^h \longrightarrow N^{h+1} \longrightarrow 0
\]

\[
BP^* / (p^\infty, \ldots, v_{h-1}^\infty) \quad v_h^{-1} N^h \quad BP^* / (p^\infty, \ldots, v_h^\infty).
\]

Splicing these together for all \(h \) gives the desired long exact sequence,

\[
0 \longrightarrow BP^* \longrightarrow M^0 \longrightarrow M^1 \longrightarrow M^2 \longrightarrow M^3 \longrightarrow M^4 \longrightarrow \cdots.
\]
Recall that the change-of-ring-isomorphism gives us a handle on $\text{Ext} \left(v_h^{-1} BP_* / I_h \right)$.
Recall that the change-of-ring-isomorphism gives us a handle on $\Ext(v_h^{-1}BP_*/I_h)$. For $h = 1$, consider the short exact sequence
The chromatic spectral sequence (continued)

Recall that the change-of-ring-isomorphism gives us a handle on $\text{Ext}(v^{-1}_h BP_*/I_h)$. For $h = 1$, consider the short exact sequence

$$
0 \longrightarrow M_1^0 \xrightarrow{\cong} M_1^1 \xrightarrow{p} M_1^1 \longrightarrow 0.
$$

$$
\begin{align*}
0 & \longrightarrow v_1^{-1} BP_*/(p) \xrightarrow{\cong} v_1^{-1} BP_*/(p^\infty) \xrightarrow{\cong} v_1^{-1} BP_*/(p^\infty)
\end{align*}
$$
Recall that the change-of-ring-isomorphism gives us a handle on $\text{Ext} \left(v_1^{-1} BP_{\ast} / I_h \right)$. For $h = 1$, consider the short exact sequence

\[0 \rightarrow M_1^0 \rightarrow M_1^1 \rightarrow M_1^1 \xrightarrow{p} M_1^1 \rightarrow 0. \]

\[v_1^{-1} BP_{\ast} / (p) \rightarrow v_1^{-1} BP_{\ast} / (p^\infty) \rightarrow v_1^{-1} BP_{\ast} / (p^\infty) \]

This leads to a Bockstein spectral sequence of the form
Recall that the change-of-ring-isomorphism gives us a handle on $\text{Ext} \left(v^{-1}_h BP_* / I_h \right)$. For $h = 1$, consider the short exact sequence

$$0 \rightarrow M_1^0 \rightarrow M_1 \rightarrow M_1^1 \rightarrow 0.$$

This leads to a Bockstein spectral sequence of the form

$$\text{Ext} \left(M_1^0 \right) \otimes P(a_0) \rightarrow \text{Ext} \left(M_1^1 \right).$$

$$x \otimes a_0^i \rightarrow \frac{x}{p^{i+1}}.$$
The chromatic spectral sequence (continued)

For $h = 2$ we have two short exact sequences
For $h = 2$ we have two short exact sequences

$$
0 \rightarrow M_1^1 \rightarrow M^2 \xrightarrow{p} M^2 \rightarrow 0
$$

\[v_2^{-1} BP_* / (p, v_1^\infty) \]

\[v_2^{-1} BP_* / (p^\infty, v_1^\infty) \]
For $h = 2$ we have two short exact sequences

\[
\begin{array}{ccccccccc}
0 & \rightarrow & M_1^1 & \rightarrow & M^2 & \rightarrow & M^2 & \rightarrow & 0 \\
& \parallel & v_2^{-1}BP_*/(p, v_1^\infty) & \parallel & v_2^{-1}BP_*/(p^\infty, v_1^\infty) \\
\end{array}
\]

and

\[
\begin{array}{ccccccccc}
0 & \rightarrow & M_0^2 & \rightarrow & \Sigma |v_1| M_1^1 & \rightarrow & M_1^1 & \rightarrow & 0. \\
& \parallel & v_2^{-1}BP_*/(p, v_1) & \parallel & v_1 & \parallel & x & \rightarrow & x \\
\end{array}
\]
The chromatic spectral sequence (continued)

For $h = 2$ we have two short exact sequences

$$
\begin{array}{ccccccc}
0 & \rightarrow & M_1^1 & \rightarrow & M^2 & \rightarrow & M^2 \\
\| & & \| & & p & & \\
& & v_2^{-1}BP_*/(p, v_1^\infty) & & v_2^{-1}BP_*/(p^\infty, v_1^\infty) & & 0
\end{array}
$$

and

$$
\begin{array}{ccccccc}
0 & \rightarrow & M_0^2 & \rightarrow & \Sigma |v_1| M_1^1 & \rightarrow & M_1^1 \\
\| & & \| & & v_1 & & \\
v_2^{-1}BP_*/(p, v_1) & & X/\Sigma |v_1| M_1^1 & & X/pv_1 & & 0
\end{array}
$$

Each one leads to a Bockstein spectral sequence, making the desired $\text{Ext}(M^2)$ two steps removed from the known $\text{Ext}(v_2^{-1}BP_*/(p, v_1))$.
More generally we have a short exact sequence of comodules

\[0 \rightarrow \Sigma |v_i| M_{i+1}^{h-i-1} \rightarrow \Sigma |v_i| M_i^{h-i} \rightarrow M_i^{h-i} \rightarrow 0 \]
The chromatic spectral sequence (continued)

More generally we have a short exact sequence of comodules

\[0 \to \sum |v_i| M^h_{i+1} \to \sum |v_i| M^h_i \xrightarrow{v_i} M^h_i \to 0 \]

for \(0 \leq i < h \), where \(M^h_0 = M^h \) and \(v_0 = 0 \).
More generally we have a short exact sequence of comodules

$$0 \longrightarrow \sum |v_i| M_{i+1}^{h-i-1} \longrightarrow \sum |v_i| M_i^{h-i} \longrightarrow M_i^{h-i} \longrightarrow 0$$

for $0 \leq i < h$, where $M_0^h = M^h$ and $v_0 = 0$. This leads to a Bockstein spectral sequence.
More generally we have a short exact sequence of comodules

\[0 \to \sum |v_i| M_{i+1}^{h-i-1} \to \sum |v_i| M_i^{h-i} \to M_i^{h-i} \to 0 \]

for \(0 \leq i < h \), where \(M_0^h = M^h \) and \(v_0 = 0 \). This leads to a Bockstein spectral sequence

\[\text{Ext} \left(M_{i+1}^{h-i-1} \right) \otimes P(a_i) \rightsquigarrow \text{Ext} \left(M_i^{h-i} \right) \]

\[\frac{x}{pv_1 \cdots v_{i-1} v_i v_{i+1} \cdots v_{h-1} \otimes a_j^i \rightsquigarrow \frac{x}{pv_1 \cdots v_{i-1} v_i^{j+1} \cdots v_{h-1}}}. \]
More generally we have a short exact sequence of comodules

\[0 \longrightarrow \sum |v| M^{h-i-1}_{i+1} \longrightarrow \sum |v| M^{h-i}_{i} \xrightarrow{v_i} M^{h-i}_{i} \longrightarrow 0 \]

for \(0 \leq i < h\), where \(M^h_0 = M^h\) and \(v_0 = 0\). This leads to a Bockstein spectral sequence

\[\operatorname{Ext}(M^{h-i-1}_{i+1}) \otimes P(a_i) \xrightarrow{\times} \operatorname{Ext}(M^{h-i}_i) \]

This makes \(\operatorname{Ext}(M^h)\) \(h\) steps removed from the cohomology of \(S^h\).

\(x\text{ pv}_1 \cdots v_{i-1} v_i v_{i+1}^{j+1} \cdots v_{h-1}^{j-1} \otimes a^j_i \xrightarrow{\times} p v_1 \cdots v_{i-1} v_i^{j+1} \cdots v_{h-1}^{j-1} \)
Computations with these Bockstein spectral sequence can be quite delicate.
Computations with these Bockstein spectral sequence can be quite delicate. Nearly all of them published since 1977 have been due to Katsumi Shimomura and various coauthors.
THANK YOU!