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Studies show that shape-sorter toys help young children to
learn tactile and motor skills, shape and color identification,
and equivariant stable homotopy theory.
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category and let J be a small category,
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category and let J be a small category, the indexing category.
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category and let J be a small category, the indexing category.
We define the projective model structure on [J, M],
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A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:
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A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X,
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A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,

The eightfold way:
how to build the right
model structure on
orthogonal G-spectra

Ly

Mike Hill
Mike Hopkins
Doug Ravenel

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization



A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,
and the jth component of a map (natural transformation)
f: X = Ybyf.
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A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,
and the jth component of a map (natural transformation)
f: X = Ybyf.

e Amap f: X — Y is defined to be a fibration or a weak
equivalence if f; is one for each j.
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A naive model structure

Let M be a pointed topological symmetric monoidal model

category and let J be a small category, the indexing category.

We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,
and the jth component of a map (natural transformation)
f: X = Ybyf.

e Amap f: X — Y is defined to be a fibration or a weak
equivalence if f; is one for each j.

e Cofibrations are defined in terms of lifting properties.
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category and let J be a small category, the indexing category.
We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,
and the jth component of a map (natural transformation)
f: X = Ybyf.

e Amap f: X — Y is defined to be a fibration or a weak
equivalence if f; is one for each j.

e Cofibrations are defined in terms of lifting properties. Each
f; must be a cofibration for f to be one,
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A naive model structure

Let M be a pointed topological symmetric monoidal model
category and let J be a small category, the indexing category.
We define the projective model structure on [J, M], the
category of functors J — M (J-shaped diagrams in M) as
follows:

e For such a functor X, we denote its value on j € J by X,
and the jth component of a map (natural transformation)
f: X = Ybyf.

e Amap f: X — Y is defined to be a fibration or a weak
equivalence if f; is one for each j.

e Cofibrations are defined in terms of lifting properties. Each
f; must be a cofibration for f to be one, but this is not
sufficient.
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More about [J, M]
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More about [J, M]
[J, M] is tensored over M.
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M,
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XAK) =X AK.
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XANK)j=XiAK.
Similarly amap g : K — L in M induces a map

XNg

XAK XAL in [J, M].
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XNK)j=XiAK.
Similarly amap g : K — L in M induces a map

XNg

XAK XAL in [J, M].

For each j € J we have the Yoneda functor c]:j in [J, M]
defined by
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XNK)j=XiAK.
Similarly amap g : K — L in M induces a map

XAK 219

XAL in[J, M.

For each j € J we have the Yoneda functor c]:j in [J, M]
defined by

(Ot’)sz(j, K).
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XNK)j=XiAK.
Similarly amap g : K — L in M induces a map

XAK 219

XAL in[J, M.

For each j € J we have the Yoneda functor c]:j in [J, M]
defined by

(otj)k — J(j, k).

If J is an ordinary category, this is a set and therefore a

coproduct of points (terminal objects) in the model category M.
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More about [J, M]

[J, M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X A K by

(XNK)j=XiAK.
Similarly amap g : K — L in M induces a map

XNg

XAK XAL

in [J, M].

For each j € J we have the Yoneda functor c]:j in [J, M]
defined by

(Ot’)k — J(j, k).

If J is an ordinary category, this is a set and therefore a

coproduct of points (terminal objects) in the model category M.

If J is enriched over M, each morphism object J(j, k) is an
object in M rather than a set.
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More about [J, M] (continued)

The eightfold way:
how to build the right
model structure on
orthogonal G-spectra

Ly

Mike Hill
Mike Hopkins
Doug Ravenel

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization



More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated
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More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated with
generating sets Z and J.
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More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated with
generating sets Z and 7. Then [J, M] is also cofibrantly

generated.
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More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated with
generating sets Z and 7. Then [J, M] is also cofibrantly
generated. Its generating sets are

FJI;:{Ot’Af;feI,jeJ}

and FJJ::{JZjAf:fEJ7j€J}.
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More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated with
generating sets Z and 7. Then [J, M] is also cofibrantly
generated. Its generating sets are

FJI::{J:j/\f:feI,jeJ}

and FJJ::{Jij/\f:fEJJEJ}.

N
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More about [J, M] (continued)

Suppose in addition that M is cofibrantly generated with
generating sets Z and 7. Then [J, M] is also cofibrantly
generated. Its generating sets are

FJI::{J:j/\f:feI,jeJ}

and FJJ::{Jij/\f:fGJJEJ}.

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?

Are you bored yet? &
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Orthogonal G-spectra as functors
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Orthogonal G-spectra as functors

For a finite group G, the category Sp€ of orthogonal G-spectra
is such an enriched functor category [J, M].
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Orthogonal G-spectra as functors

For a finite group G, the category Sp€ of orthogonal G-spectra
is such an enriched functor category [J, M].

The relevant model category is 7€, the category of pointed
G-spaces and equivariant maps. Initamap f: K — Lis a
weak equivalence or a fibration if the same is true of the fixed
point map f* : K — " for each subgroup H C G.

Cofibrations are defined in terms of left lifting properties.
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Orthogonal G-spectra as functors

For a finite group G, the category Sp€ of orthogonal G-spectra
is such an enriched functor category [J, M].

The relevant model category is 7€, the category of pointed
G-spaces and equivariant maps. Initamap f: K — Lis a
weak equivalence or a fibration if the same is true of the fixed
point map f* : K — " for each subgroup H C G.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated.
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Orthogonal G-spectra as functors

For a finite group G, the category Sp€ of orthogonal G-spectra
is such an enriched functor category [J, M].

The relevant model category is 7€, the category of pointed
G-spaces and equivariant maps. Initamap f: K — Lisa
weak equivalence or a fibration if the same is true of the fixed
point map f* : K — " for each subgroup H C G.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated. lts generating sets are

IG:{Gw(sz—‘ < D"): HgG,nZO}
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Orthogonal G-spectra as functors

For a finite group G, the category Sp€ of orthogonal G-spectra

is such an enriched functor category [J, M].

The relevant model category is 7€, the category of pointed
G-spaces and equivariant maps. Initamap f: K — Lisa
weak equivalence or a fibration if the same is true of the fixed

point map f* : K — " for each subgroup H C G.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated. lts generating sets are

and

IG:{Gw(sz—‘ < D"): HgG,nZO}

jG:{G+Q(IQ<—>IQ+‘): HC G,nzo}.
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Orthogonal G-spectra as functors (continued)
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, which is enriched over TC.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W.
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Orthogonal G-spectra as functors (continued) how to buid the right
The relevant indexing category is the Mandell-May category e e
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
o(v,w).
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space. It is a pointed G-space.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in 7€,

jU,V,W : j@(v, W) A jg(U, V) — jg(U, W)
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in 7€,

jU,V,W : f@(v, W) A jg(U, V) — fg(U, W)

induced by composition of orthogonal embeddings
Uu—vVv-Ww.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in 7€,

jU,V,W : f@(v, W) A jg(U, V) — fg(U, W)

induced by composition of orthogonal embeddings
U— V — W. ltis equivariant,
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
_Za, Which is enriched over TC. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) Za(V, W),
let O(V, W) denote the space of (nonequivariant) orthogonal
embeddings of V into W. It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V — W defines an orthogonal
complement t(V)+ C W. Thus we get a vector bundle over
O(V, W). The morphism object 7g(V, W) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in 7€,

jU,V,W : j@(v, W) A jg(U, V) — jg(U, W)

induced by composition of orthogonal embeddings
U — V — W. ltis equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)

The morphism object _#g(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W)
of (nonequivariant) orthogonal embeddings of V into W.
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Orthogonal G-spectra as functors (continued)

The morphism object _#g(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W)
of (nonequivariant) orthogonal embeddings of V into W.

Some examples:
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of (nonequivariant) orthogonal embeddings of V into W. A T
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model structure on
orthogonal G-spectra

The morphism object _#5(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W) Ml
of (nonequivariant) orthogonal embeddings of V into W. A T

Doug Ravenel

Some examples: Functor categories
e For V = 0, the embedding space O(V, W) is a single Modiling the model
point, and _#5(0, W) = S, the one point compactification 1. crans kan
Of W transfer theorem

Equifibrant
enlargement
e When the dimension of V exceeds that of W, then the Positivization
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embedding space is empty, and _¢g(V, W) is a point.

e When V and W have the same dimension, the embedding
space is the orthogonal group O(V),



Orthogonal G-spectra as functors (continued) how to buid the right

model structure on
orthogonal G-spectra

The morphism object _#5(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W) ML
of (nonequivariant) orthogonal embeddings of V into W. A T

Doug Ravenel

Some examples: Functor categories
e For V = 0, the embedding space O(V, W) is a single Modiling the model
point, and _#5(0, W) = S, the one point compactification 1. crans kan
of W transfer theorem
Equifibrant
enlargement
e When the dimension of V exceeds that of W, then the Positivization
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embedding space is empty, and _¢g(V, W) is a point.

e When V and W have the same dimension, the embedding
space is the orthogonal group O(V), with an action of G
defined in terms of its actions on V and W.
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model structure on
orthogonal G-spectra

The morphism object _#5(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W) ML
of (nonequivariant) orthogonal embeddings of V into W. A T

Doug Ravenel

Some examples: Functor categories
° Fo_r V = 0, the embedding space O(V, _W) is a singlg . Modifing the model
point, and _#5(0, W) = S, the one point compactification 1. crans kan
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e When V and W have the same dimension, the embedding
space is the orthogonal group O(V), with an action of G
defined in terms of its actions on V and W. The vector
bundle is zero dimensional,
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Orthogonal G-spectra as functors (continued) how to build the right

model structure on
orthogonal G-spectra

The morphism object _#5(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W) ML
of (nonequivariant) orthogonal embeddings of V into W. A T

Doug Ravenel

Some examples: Functor categories
° Fo_r V = 0, the embedding space O(V, _W) is a singlg . Modifing the model
point, and _#5(0, W) = S, the one point compactification 1. crans kan
of W transfer theorem
) Equifibrant
enlargement
e When the dimension of V exceeds that of W, then the Positivization

Stabilization

embedding space is empty, and _¢g(V, W) is a point.

e When V and W have the same dimension, the embedding
space is the orthogonal group O(V), with an action of G
defined in terms of its actions on V and W. The vector
bundle is zero dimensional, so its Thom space #g(V, W)
is O(V),



Orthogonal G-spectra as functors (continued)

The morphism object _#5(V, W) is the Thom space of the
orthogonal complement vector bundle over the space O(V, W)
of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

e For V =0, the embedding space O(V, W) is a single
point, and _#5(0, W) = SY, the one point compactification
of W.

e When the dimension of V exceeds that of W, then the
embedding space is empty, and _¢g(V, W) is a point.

e When V and W have the same dimension, the embedding
space is the orthogonal group O(V), with an action of G
defined in terms of its actions on V and W. The vector
bundle is zero dimensional, so its Thom space #g(V, W)
is O(V)., the orthogonal group with a disjoint base point.
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Orthogonal G-spectra as functors (continued)
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.
This means it consists of
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and

e structure maps Zg(V, W) A Xy — Xw.
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and

e structure maps _Zg(V, W) A Xy — Xw. In particular, Xy
has an action of the orthogonal group O(V).
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and

e structure maps _Zg(V, W) A Xy — Xw. In particular, Xy
has an action of the orthogonal group O(V).

The Yoneda functor & Y becomes the Yoneda spectrum S—V
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and

e structure maps _Zg(V, W) A Xy — Xw. In particular, Xy
has an action of the orthogonal group O(V).

The Yoneda functor & Y becomes the Yoneda spectrum S—V
defined by (S~")w = Zg(V, W).
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Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor 75 — TE.

This means it consists of

e a collection pointed G-spaces Xy, one for each
representation V of G, and

e structure maps _Zg(V, W) A Xy — Xw. In particular, Xy
has an action of the orthogonal group O(V).

The Yoneda functor & Y becomes the Yoneda spectrum S—V
defined by (S~V)w = _Z5(V, W). Its structure maps are
composition morphisms in _#g.
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The eightfold way:

Orthogonal G-spectra as functors (continued) how to build the right
model structure on
orthogonal G-spectra

An orthogonal G-spectrum X is an enriched functor 75 — TE. M“”M_k il
This means it consists of Mike Hopkins

Doug Ravenel

Functor categories

e a collection pointed G-spaces Xy, one for each _
representation V of G, and

Modifying the model
structure

e structure maps _Zg(V, W) A Xy — Xw. In particular, Xy The Grars Kan
has an action of the orthogonal group O(V). Equiibrant
enlargement
Positivization
v o
The Yoneda functor &~ becomes the Yoneda spectrum S—V Stablization

defined by (S~V)w = _Z5(V, W). Its structure maps are
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In particular, (S~%)w = _#5(0, W) = SW and S0 is the sphere
spectrum.
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The projective model structure for orthogonal G-spectra

The category Sp€@ of orthogonal G-spectra is the enriched
functor category [_#g, 7).
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched

functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we

want to use!
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched
functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
want to use! It needs to be modified in three different ways.
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched

functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
want to use! It needs to be modified in three different ways.

1. The levelwise weak equivalences of the projective model
structure need to be replaced by stable equivalences.
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched

functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
want to use! It needs to be modified in three different ways.

1. The levelwise weak equivalences of the projective model
structure need to be replaced by stable equivalences. This
is a form of Bousfield localization.
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched

functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
want to use! It needs to be modified in three different ways.

1. The levelwise weak equivalences of the projective model
structure need to be replaced by stable equivalences. This
is a form of Bousfield localization.

2. It needs to play nicely with change of groups.
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The projective model structure for orthogonal G-spectra
The category Sp€@ of orthogonal G-spectra is the enriched

functor category [_#g, T¢]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
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where i§ is the restriction functor. It needs to be a Quillen
adjunction. This means the class of cofibrations in Sp@
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structure is equifibrant.
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three different ways.
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Each arrow denotes the identity functor as a left Quillen
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be a pair of adjoint functors. For cofibrant generating sets Z
and J beof M,let FZ={Fi:ieZ}and F7 ={Fj:je J}.
Then the above is a transfer adjunction, and (F, U) is a
transfer pair, if

@ both FZ and FJ permit the small object argument in A/
and

® U takes relative F.7-cell complexes in A/ to weak
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Crans-Kan Transfer Theorem
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Crans-Kan Transfer Theorem
Let
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be a transfer adjunction as above. Then there is a cofibrantly
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Crans-Kan Transfer Theorem
Let

M 1 N
U

be a transfer adjunction as above. Then there is a cofibrantly
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The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem
Let

M 1 N
U

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on A (the transferred model
structure), for which FZ and F 7 are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F, U) is a Quillen pair.

This is our main tool for constructing new model structures.
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The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem
Let
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U

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on A (the transferred model
structure), for which FZ and F 7 are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F, U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that A does not have a model structure to begin with.
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The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem
Let

M 1 N
U

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on A (the transferred model
structure), for which FZ and F 7 are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F, U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that AV does not have a model structure to begin with. It
gets one though the adjunction.
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Suppose we have pointed model categories M and M’ with an
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adjunction.
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Enlarging the class of cofibrations in a model category

Suppose we have pointed model categories M and M’ with an

adjunction
F
M L M
]

in which the right adjoint U preserves weak equivalences. It
need not be a Quillen adjunction. Consider the following
composite adjunction, which we will refer to as an enlarging
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Enlarging the class of cofibrations in a model category

Suppose we have pointed model categories M and M’ with an

adjunction
F
M L M
]

in which the right adjoint U preserves weak equivalences. It
need not be a Quillen adjunction. Consider the following
composite adjunction, which we will refer to as an enlarging
adjunction.

(X, X') —— (X, FX') ——= X \V FX'

MxF \Y
e ———
M x M’ 1 M x M 1 M
<~ -~
MxU A

(Y, UY) = (YY)~ Y,

It is a transfer adjunction, so it induces a new model structure
on M.
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Enlarging the class of cofibrations in a model category

Suppose we have pointed model categories M and M’ with an

adjunction
F
M L M
]

in which the right adjoint U preserves weak equivalences. It
need not be a Quillen adjunction. Consider the following
composite adjunction, which we will refer to as an enlarging
adjunction.

(X, X') —— (X, FX') ——= X \V FX'

MxF \Y
e ———
M x M’ 1 M x M 1 M
<~ -~
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(Y, UY) = (YY)~ Y,

It is a transfer adjunction, so it induces a new model structure
on M. It has the same weak equivalences but more
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Enlarging the class of cofibrations in a model category

Suppose we have pointed model categories M and M’ with an
adjunction

M’ L M
U

in which the right adjoint U preserves weak equivalences. It
need not be a Quillen adjunction. Consider the following
composite adjunction, which we will refer to as an enlarging
adjunction.

(X, X') —— (X, FX') ——= X \V FX'

MxF \Y
e ———
M x M’ 1 M x M 1 M
<~ -~
MxU A

(Y, UY) = (YY)~ Y,

It is a transfer adjunction, so it induces a new model structure
on M. It has the same weak equivalences but more
cofibrations than the original one. They include the images
under F of cofibrations in M’.
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The eightfold way:
how to build the right
model structure on
orthogonal G-spectra

Ly

Mike Hill
Mike Hopkins
Doug Ravenel
Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Positivization

Stabilization
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(continued)

We are using an adjunction of the form

MxF \Y
_ B —
M x M’ 1 M x M 1 M
MxU A

to induce a new model structure on M. The case of interest for
usis
M = T] sp”.
HcG

The product here is over all proper subgroups H. The functor
U is built out of restriction functors i, and F is built out of
induction functors

M=8p% and

X G X for X € Sp'.
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Enlarging the class of cofibrations in a model category
(continued)

We are using an adjunction of the form

MxF \Y
_ B —
M x M’ 1 M x M 1 M
MxU A

to induce a new model structure on M. The case of interest for
usis
M = T] sp”.
HcG

The product here is over all proper subgroups H. The functor
U is built out of restriction functors i, and F is built out of
induction functors

M=8p% and

X G X for X € Sp'.

We call this process equifibrant enlargement.
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Enlarging the class of cofibrations in a model category
(continued)

We are using an adjunction of the form

MxF \Y
_— _—
M x M’ 1 M x M 1 M
MxU A

to induce a new model structure on M. The case of interest for

usis
M = T] sp”.
HcaG

M=8p% and

The product here is over all proper subgroups H. The functor

U is built out of restriction functors i, and F is built out of
induction functors

X G X for X e SpH'.

We call this process equifibrant enlargement. The resulting
model structure on Sp@ plays nicely with the norm and with
geometric fixed points.
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let J be a small category. Suppose further that J has a full
subcategory K with inclusion functor o : K — J.

This induces a precomposition functor a* : MY — MX_ It has
both a left and a right adjoint. They are the left and right Kan
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extensions «; and «;. (This notation for the right Kan extension
is new.) Consider the adjunction

The eightfold way:
how to build the right
model structure on
orthogonal G-spectra

Ny

Mike Hill
Mike Hopkins
Doug Ravenel
Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Stabilization



Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
symmetric monoidal cofibrantly generated model category, and
let J be a small category. Suppose further that J has a full
subcategory K with inclusion functor o : K — J.

This induces a precomposition functor a* : MY — MX_ It has
both a left and a right adjoint. They are the left and right Kan
extensions «; and «;. (This notation for the right Kan extension
is new.) Consider the adjunction

MK L M.
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In terms of the projective model structure on MX, this is a
transfer adjunction.
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let J be a small category. Suppose further that J has a full
subcategory K with inclusion functor o : K — J.

This induces a precomposition functor a* : MY — MX_ It has
both a left and a right adjoint. They are the left and right Kan
extensions «; and «;. (This notation for the right Kan extension
is new.) Consider the adjunction

MK 1 M.
B
o

In terms of the projective model structure on MX, this is a
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Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
symmetric monoidal cofibrantly generated model category, and
let J be a small category. Suppose further that J has a full
subcategory K with inclusion functor o : K — J.

This induces a precomposition functor a* : MY — MX_ It has
both a left and a right adjoint. They are the left and right Kan
extensions «; and «;. (This notation for the right Kan extension
is new.) Consider the adjunction

MK 1 M.
B
o

In terms of the projective model structure on MX, this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MY which differs from the projective
one.
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Back to functor categories (continued)

For a full subcategory K of J,
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction. For a functor X in MX, in favorable cases

we have X foricl
o G forj € Ima
(o0 X); = { x  otherwise
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction. For a functor X in MX, in favorable cases

we have X foricl
o G forj € Ima
(o0 X); = { x  otherwise

The Crans-Kan transfer theorem gives us an induced model
structure on MY which differs from the projective one.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction. For a functor X in MX, in favorable cases

we have X toricl
o G forj € Ima
(o0 X); = { x  otherwise

The Crans-Kan transfer theorem gives us an induced model
structure on MY which differs from the projective one. In it a
map f: X — Y is a weak equivalence or a fibration if f; is one
foreachj € Ima,
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction. For a functor X in MX, in favorable cases

we have X toricl
o G forj € Ima
(o0 X); = { x  otherwise

The Crans-Kan transfer theorem gives us an induced model
structure on MY which differs from the projective one. In it a
map f: X — Y is a weak equivalence or a fibration if f; is one
for each j € Im «, but not necessarily for other objects j of J.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK n M.

*
(e

In terms of the projective model structure on MK, this is a
transfer adjunction. For a functor X in MX, in favorable cases

we have X toricl
o G forj € Ima
(o0 X); = { x  otherwise

The Crans-Kan transfer theorem gives us an induced model
structure on MY which differs from the projective one. In it a
map f: X — Y is a weak equivalence or a fibration if f; is one
for each j € Im «, but not necessarily for other objects j of J. It

has more weak equivalences and fibrations than the projective

model structure.
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Back to functor categories (continued)

For a full subcategory K of J,
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK T MY,

a*

The Crans-Kan transfer theorem gives us an induced model
structure on MY with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

MK T MY,

a*

The Crans-Kan transfer theorem gives us an induced model
structure on MY with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one. A
map f: X — Y'is an induced cofibration only when f; is an
isomorphism for each j not in the subcategory K.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

(&7}

MK L M.

The Crans-Kan transfer theorem gives us an induced model
structure on MY with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one. A
map f: X — Y'is an induced cofibration only when f; is an
isomorphism for each j not in the subcategory K. This also
means that there are fewer cofibrant objects.
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Back to functor categories (continued)

For a full subcategory K of J, consider the adjunction

(&7}

MK L M.

The Crans-Kan transfer theorem gives us an induced model
structure on MY with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one. A
map f: X — Y'is an induced cofibration only when f; is an
isomorphism for each j not in the subcategory K. This also
means that there are fewer cofibrant objects.

We call this new model structure on [J, M] a confinement of
the projective one.
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A relevant example of confinement how to buid the right
model structure on
orthogonal G-spectra
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A relevant example of confinement

We want to confine the projective model structure on the
category of orthogonal G-spectra

SpC =1[ 2679
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A relevant example of confinement

We want to confine the projective model structure on the
category of orthogonal G-spectra

SpC =1[ 2679

For this we need a full subcategory of 7.
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A relevant example of confinement

We want to confine the projective model structure on the
category of orthogonal G-spectra

Spf =1[ 76, TC.
For this we need a full subcategory of 7.

We say an orthogonal representation V of G is positive if its
invariant subspace V¢ is nontrivial. The subcategory we want
is /g, whose objects are positive representations.

The positive model structure on Sp€ is the one induced by the
transfer adjunction

[e%]

Sp¢=176TC __ L+ [ JaTCl=8p"

(o3
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A relevant example of confinement

We want to confine the projective model structure on the
category of orthogonal G-spectra

SpC =1[ 2679

For this we need a full subcategory of 7.

We say an orthogonal representation V of G is positive if its
invariant subspace V¢ is nontrivial. The subcategory we want
is /g, whose objects are positive representations.

The positive model structure on Sp€ is the one induced by the
transfer adjunction

[e%]

Spf =476 _ 2

(o3

[fG,TG] = SpG.

We call this type of confinement positivization.
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Positivization: why do it?
The category Sp€ is closed symmetric monoidal under smash
product,
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spectra by Comm SpS.

We want to define a model structure on it. The issue here is
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The category Sp€ is closed symmetric monoidal under smash
product, so we can speak of commutative ring objects in it, also
known as E..-ring spectra. We denote the category of such
spectra by Comm SpS.

We want to define a model structure on it. The issue here is
not equivariant, so we assume for simplicity that the group is
trivial. We want to define a transfer adjunction

Sym
—_—
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U

Comm Sp,

where U is the forgetful functor, and Sym is the free
commutative algebra functor

X — Sym (X) := \/ Sym"X,
n>0

where Sym” is the nth symmetric product functor,

X (X/\n)):n.
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We want to define a transfer adjunction

Sym
Sp L Comm Sp.
u

This means the functor Sym” for each n must preserve weak
equivalences between cofibrant objects in Sp. We need this to
work for the stable model structure, which we have not yet
defined. There is a map

s1:S'AS" 5870

which is a stable weak equivalence. Applying Sym? gives a
map

Sym?sy : Sym?(S~" A S') — Sym?S70 = §70.
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equivalence
St S 'AS 5850

The eightfold way:
how to build the right
model structure on
orthogonal G-spectra

Ly

Mike Hill
Mike Hopkins
Doug Ravenel
Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Stabilization



Positivization: why do it? (continued)

We want to define a transfer adjunction

Sym
Sp 1 Comm Sp,
U

but the functor Sym? fails to preserve the stable weak
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St S 'AS 5850
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but the functor Sym? fails to preserve the stable weak
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This difficulty was first noticed by Jeff Smith in the 1990s. We
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We want to define a transfer adjunction

Sym
Sp 1 Comm Sp,
U

but the functor Sym? fails to preserve the stable weak
equivalence

St S 'AS 5850
This difficulty was first noticed by Jeff Smith in the 1990s. We
need Sym? to preserve weak equivalences between cofibrant
objects.
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Positivization: why do it? (continued)

We want to define a transfer adjunction

Sym
Sp 1 Comm Sp,
U

but the functor Sym? fails to preserve the stable weak
equivalence

St S 'AS 5850
This difficulty was first noticed by Jeff Smith in the 1990s. We
need Sym? to preserve weak equivalences between cofibrant
objects.

After positivizing the stable model structure on Sp, the sphere
spectrum S~C is no longer cofibrant, and (Sym, U) above
becomes a transfer pair as desired.
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Bousfield localization may be the best construction in model
category theory. We start with a model category M and make
a new model structure on its underlying category by

e keeping the same class of cofibrations and

e expanding the class of weak equivalences in some way.
This means there will be more trivial cofibrations than before,

and hence fewer fibrations. This often leads to a more
interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be
factored as a trivial cofibration followed by a fibration.
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category theory. We start with a model category M and make
a new model structure on its underlying category by

e keeping the same class of cofibrations and
e expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before,
and hence fewer fibrations. This often leads to a more
interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be
factored as a trivial cofibration followed by a fibration. It often
involves some delicate set theory.
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involves some delicate set theory. It requires M to have certain
properties,
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Bousfield localization how to build the right
model structure on
orthogonal G-spectra
MW
Bousfield localization may be the best construction in model Mike Hill
. Mike Hopkins
category theory. We start with a model category M and make Doug Ravenel
a new model structure on its underlying category by E——
e keeping the same class of cofibrations and e
e expanding the class of weak equivalences in some way. Modiling the model
This means there will be more trivial cofibrations than before, The Crans Kan
and hence fewer fibrations. This often leads to a more R

interesting fibrant replacement functor. SHIETZEIT

Positivization

The hard part of this is proving that each morphism can be I—

factored as a trivial cofibration followed by a fibration. It often
involves some delicate set theory. It requires M to have certain
properties, but there are no restrictions on how we expand the
class of weak equivalences.
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Some examples of Bousfield localization

e Let 7 be the category of pointed topological spaces. Weak
equivalences are maps inducing isomorphisms of
homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
dimensions < n.
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e Let 7 be the category of pointed topological spaces. Weak
equivalences are maps inducing isomorphisms of
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expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
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e Let h, be your favorite homology theory. We can expand
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equivalences are maps inducing isomorphisms of
homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
dimensions < n. The resulting fibrant replacement functor
is the nth Postnikov section.

Let h, be your favorite homology theory. We can expand
the class of weak equivalences in 7 by including all
h.-isomorphisms. The resulting fibrant replacment functor
is Bousfield’s famous functor L. We can do the same in
the category of spectra. The functors Lk, and Lg, are
fundamental in chromatic homotopy theory.
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Some examples of Bousfield localization

e Let 7 be the category of pointed topological spaces. Weak
equivalences are maps inducing isomorphisms of
homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
dimensions < n. The resulting fibrant replacement functor
is the nth Postnikov section.

Let h, be your favorite homology theory. We can expand
the class of weak equivalences in 7 by including all
h.-isomorphisms. The resulting fibrant replacment functor
is Bousfield’s famous functor L. We can do the same in
the category of spectra. The functors Lk, and Lg, are
fundamental in chromatic homotopy theory.

Let Sp = [ 7, T] be the category of spectra with its
projective model structure.
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the category of spectra. The functors Lk, and Lg, are
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Some examples of Bousfield localization

e Let 7 be the category of pointed topological spaces. Weak
equivalences are maps inducing isomorphisms of
homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
dimensions < n. The resulting fibrant replacement functor
is the nth Postnikov section.

Let h, be your favorite homology theory. We can expand
the class of weak equivalences in 7 by including all
h.-isomorphisms. The resulting fibrant replacment functor
is Bousfield’s famous functor L. We can do the same in
the category of spectra. The functors Lk, and Lg, are
fundamental in chromatic homotopy theory.

Let Sp = [ 7, T] be the category of spectra with its
projective model structure. We can expand the class of
weak equivalences to include all maps inducing
isomorphisms in stable homotopy groups. The resulting
fibrant objects are precisely the Q-spectra. We call this
process stabilization.
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More about stabilization
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More about stabilization

In general there are two ways to describe Bousfield

localization:
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@ Describe set or class of maps
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More about stabilization

In general there are two ways to describe Bousfield

localization:

@ Describe set or class of maps
that are to become weak
equivalences. You need not
specify all of them. If you invite
one to the party, she will bring
all of her friends.

® Describe the new fibrant replacement functor.
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® Describe the new fibrant replacement functor. It is usually |EEEEEETINN
the case thatamap f: X — Y is a weak equivalence in the
new model structure iff the induced map between fibrant
replacements is a weak equivalence in the original model
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® Describe the new fibrant replacement functor. It is usually |EEEEEETINN
the case thatamap f: X — Y is a weak equivalence in the
new model structure iff the induced map between fibrant
replacements is a weak equivalence in the original model
structure. For example, a map of spaces or spectra is a
K(n).-equivalence iff its K(n). localization (fibrant
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More about stabilization (continued)

In general there are two ways to describe Bousfield

localization.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map
sy:STYASY = S0 as follows.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map
sy: STV ASY = S0 asfollows. lts Wth component is the
composition morphism

(va/\ SV)W
Il
/G( \/7 W) A\ /G(O, V)

(S O)w
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map
sy: STV ASY = S0 asfollows. lts Wth component is the
composition morphism

(SVASY)w (S Ow
Il Il
/G( v, W) AN /G(O, V) /G(O, W)

For V # 0 this map is a stable equivalence but not a
projective one.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map

sy : SV ASY - S0 asfollows. Its Wth component is the
composition morphism

(S_V/\ SV)W
I
fG( Va W) A jG(Oa V)

For V # 0 this map is a stable equivalence but not a
projective one.

® To define the fibrant replacement RX of a spectrum X,
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map
sy: STV ASY = S0 asfollows. Its Wth component is the
composition morphism

(S_V/\ SV)W
I
fG( Va W) A /G(Oa V)

For V # 0 this map is a stable equivalence but not a
projective one.

® To define the fibrant replacement RX of a spectrum X, let
p denote the regular representation of G.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization. In the case of orthogonal G-spectra we can do
both.

@ For each representation V, we define a stabilizing map
sy: STV ASY = S0 asfollows. Its Wth component is the
composition morphism

(S_V/\ SV)W
I
fG( Va W) A /G(Oa V)

For V # 0 this map is a stable equivalence but not a
projective one.

® To define the fibrant replacement RX of a spectrum X, let
p denote the regular representation of G. Then

(S O)w
I
fG(Oa W)

Jo,v,w

(RX)y = hoclg)lim Q" Xvnp-
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