

Studies show that shape-sorter toys help young children to learn tactile and motor skills, shape and color identification, and equivariant stable homotopy theory.

Derived memes for spectral schemes, March 20, 2019

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

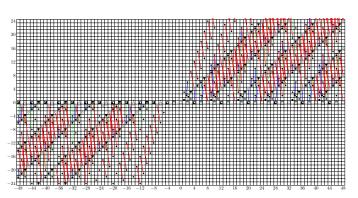
The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

ositivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill UCLA
Mike Hopkins Harvard University
Doug Ravenel University of Rochester



Electronic Computational Homotopy Theory Seminar
October 3, 2019

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Let $\ensuremath{\mathcal{M}}$ be a pointed topological symmetric monoidal model category

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let \mathcal{M} be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra

as functors

Modifying the model

Structure
The Crans-Kan

transfer theorem Equifibrant

enlargement Positivization

ositivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

For such a functor X,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

• For such a functor X, we denote its value on $j \in J$ by X_j ,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

 For such a functor X, we denote its value on j ∈ J by X_j, and the jth component of a map (natural transformation) f: X → Y by f_j. The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

- For such a functor X, we denote its value on j ∈ J by X_j, and the jth component of a map (natural transformation) f: X → Y by f_i.
- A map f: X → Y is defined to be a fibration or a weak equivalence if f_j is one for each j.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

- For such a functor X, we denote its value on j ∈ J by X_j, and the jth component of a map (natural transformation) f: X → Y by f_j.
- A map f: X → Y is defined to be a fibration or a weak equivalence if f_j is one for each j.
- Cofibrations are defined in terms of lifting properties.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

- For such a functor X, we denote its value on j ∈ J by X_j, and the jth component of a map (natural transformation) f: X → Y by f_j.
- A map f: X → Y is defined to be a fibration or a weak equivalence if f_j is one for each j.
- Cofibrations are defined in terms of lifting properties. Each f_j must be a cofibration for f to be one,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

OSILIVIZALIOIT

Let $\mathcal M$ be a pointed topological symmetric monoidal model category and let J be a small category, the indexing category. We define the projective model structure on $[J,\mathcal M]$, the category of functors $J\to \mathcal M$ (J-shaped diagrams in $\mathcal M$) as follows:

- For such a functor X, we denote its value on j ∈ J by X_j, and the jth component of a map (natural transformation) f: X → Y by f_j.
- A map f: X → Y is defined to be a fibration or a weak equivalence if f_j is one for each j.
- Cofibrations are defined in terms of lifting properties. Each
 f_j must be a cofibration for f to be one, but this is not
 sufficient.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J, \mathcal{M}]$ is tensored over \mathcal{M} .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categorie

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} ,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J, \mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K.$$

Similarly a map $g: K \to L$ in $\mathcal M$ induces a map

$$X \wedge K \xrightarrow{X \wedge g} X \wedge L \quad \text{in } [J, \mathcal{M}].$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K$$
.

Similarly a map $g: K \to L$ in \mathcal{M} induces a map

$$X \wedge K \xrightarrow{X \wedge g} X \wedge L$$
 in $[J, \mathcal{M}]$.

For each $j \in J$ we have the Yoneda functor $\mbox{$\sharpj in $[J,\mathcal{M}]$ defined by

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K$$
.

Similarly a map $g: K \to L$ in \mathcal{M} induces a map

$$X \wedge K \xrightarrow{X \wedge g} X \wedge L$$
 in $[J, \mathcal{M}]$.

For each $j \in J$ we have the Yoneda functor \mathcal{L}^{J} in $[J, \mathcal{M}]$ defined by

$$\left(\mathcal{F}^{j}\right)_{k}=J(j,k).$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K$$
.

Similarly a map $g: K \to L$ in \mathcal{M} induces a map

$$X \wedge K \xrightarrow{X \wedge g} X \wedge L \quad \text{in } [J, \mathcal{M}].$$

$$\left(\mathcal{F}^{j}\right) _{k}=J(j,k).$$

If J is an ordinary category, this is a set and therefore a coproduct of points (terminal objects) in the model category \mathcal{M} .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 $[J,\mathcal{M}]$ is tensored over \mathcal{M} . This means for for a functor X and object K in \mathcal{M} , we can define a new functor $X \wedge K$ by

$$(X \wedge K)_j = X_j \wedge K$$
.

Similarly a map $g: K \to L$ in $\mathcal M$ induces a map

$$X \wedge K \xrightarrow{X \wedge g} X \wedge L \quad \text{in } [J, \mathcal{M}].$$

$$\left(\mathcal{L}^{j}\right) _{k}=J(j,k).$$

If J is an ordinary category, this is a set and therefore a coproduct of points (terminal objects) in the model category \mathcal{M} .

If J is enriched over \mathcal{M} , each morphism object J(j,k) is an object in \mathcal{M} rather than a set.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Suppose in addition that ${\mathcal M}$ is cofibrantly generated

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categorie

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Suppose in addition that ${\cal M}$ is cofibrantly generated with generating sets ${\cal I}$ and ${\cal J}.$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Suppose in addition that $\mathcal M$ is cofibrantly generated with generating sets $\mathcal I$ and $\mathcal J$. Then $[J,\mathcal M]$ is also cofibrantly generated.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categorie

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Suppose in addition that \mathcal{M} is cofibrantly generated with generating sets \mathcal{I} and \mathcal{J} . Then $[J,\mathcal{M}]$ is also cofibrantly generated. Its generating sets are

$$F^{J}\mathcal{I} := \left\{ \text{ } \text{\mathbb{L}}^{j} \land f \text{ } \text{ } \text{ } f \in \mathcal{I}, j \in J \right\}$$
 and
$$F^{J}\mathcal{J} := \left\{ \text{ } \text{\mathbb{L}}^{j} \land f \text{ } \text{ } \text{ } f \in \mathcal{J}, j \in J \right\}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

ositivization

Suppose in addition that \mathcal{M} is cofibrantly generated with generating sets \mathcal{I} and \mathcal{J} . Then $[J,\mathcal{M}]$ is also cofibrantly generated. Its generating sets are

$$F^J \mathcal{I} := \left\{ \stackrel{}{\mathcal{L}}^j \wedge f \colon f \in \mathcal{I}, j \in J \right\}$$
 and $F^J \mathcal{J} := \left\{ \stackrel{}{\mathcal{L}}^j \wedge f \colon f \in \mathcal{J}, j \in J \right\}.$

Are you bored yet?

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Suppose in addition that \mathcal{M} is cofibrantly generated with generating sets \mathcal{I} and \mathcal{J} . Then $[J,\mathcal{M}]$ is also cofibrantly generated. Its generating sets are

$$F^J \mathcal{I} := \left\{ \stackrel{}{\mbox{\mathcal{L}}}^j \wedge f \colon f \in \mathcal{I}, j \in J \right\}$$
 and $F^J \mathcal{J} := \left\{ \stackrel{}{\mbox{\mathcal{L}}}^j \wedge f \colon f \in \mathcal{J}, j \in J \right\}.$

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON FUNCTOR CATEGORIES?

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Stabilization

1.5

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^{G} ,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization



For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$ for each subgroup $H \subseteq G$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization



For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$ for each subgroup $H \subseteq G$.

Cofibrations are defined in terms of left lifting properties.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$ for each subgroup $H \subseteq G$.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$ for each subgroup $H \subseteq G$.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated. Its generating sets are

$$\mathcal{I}^{G} = \left\{ G_{+} \underset{H}{\wedge} (S_{+}^{n-1} \hookrightarrow D_{+}^{n}) \colon H \subseteq G, n \geq 0 \right\}$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

ositivization

For a finite group G, the category Sp^G of orthogonal G-spectra is such an enriched functor category $[J, \mathcal{M}]$.

The relevant model category is \mathcal{T}^G , the category of pointed G-spaces and equivariant maps. In it a map $f: K \to L$ is a weak equivalence or a fibration if the same is true of the fixed point map $f^H: K^H \to L^H$ for each subgroup $H \subseteq G$.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated. Its generating sets are

$$\mathcal{I}^{G} = \left\{ G_{+} \underset{H}{\wedge} (S_{+}^{n-1} \hookrightarrow D_{+}^{n}) \colon H \subseteq G, n \geq 0 \right\}$$

and

$$\mathcal{J}^G = \left\{ G_+ \underset{H}{\wedge} (I_+^n \hookrightarrow I_+^{n+1}) \colon H \subseteq G, n \geq 0 \right\}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal *G*-spect as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

OSILIVIZALION

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathcal{J}_G , which is enriched over \mathcal{T}^G .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathscr{T}^G . Its objects are finite dimensional orthogonal representations V of G.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathcal{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathcal{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectral s functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathscr{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W).

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-specti as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathscr{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spe as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space. It is a pointed G-space.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spe as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space. It is a pointed G-space.

For representations U, V and W there is a composition morphism in \mathcal{T}^{G} ,

$$j_{U,V,W}:\mathscr{J}_G(V,W)\wedge\mathscr{J}_G(U,V) o\mathscr{J}_G(U,W)$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spe as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Stabilization

1.7

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space. It is a pointed G-space.

For representations U, V and W there is a composition morphism in \mathcal{T}^{G} ,

$$j_{U,V,W}: \mathscr{J}_G(V,W) \wedge \mathscr{J}_G(U,V) \rightarrow \mathscr{J}_G(U,W)$$

induced by composition of orthogonal embeddings $U \rightarrow V \rightarrow W$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-sp as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Stabilization

1.7

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space. It is a pointed G-space.

For representations U, V and W there is a composition morphism in \mathcal{T}^G ,

$$j_{U,V,W}: \mathscr{J}_G(V,W) \wedge \mathscr{J}_G(U,V) \rightarrow \mathscr{J}_G(U,W)$$

induced by composition of orthogonal embeddings $U \rightarrow V \rightarrow W$. It is equivariant,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-sper as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

Stabilization

1.7

The relevant indexing category is the Mandell-May category \mathscr{J}_G , which is enriched over \mathcal{T}^G . Its objects are finite dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) $\mathscr{J}_G(V,W)$, let O(V,W) denote the space of (nonequivariant) orthogonal embeddings of V into W. It is a Stiefel manifold which could be empty. The group G acts on it by conjugation.

Each such embedding $t: V \to W$ defines an orthogonal complement $t(V)^{\perp} \subseteq W$. Thus we get a vector bundle over O(V, W). The morphism object $\mathscr{J}_G(V, W)$ is defined to be its Thom space. It is a pointed G-space.

For representations U, V and W there is a composition morphism in \mathcal{T}^{G} ,

$$j_{U,V,W}: \mathscr{J}_G(V,W) \wedge \mathscr{J}_G(U,V) \rightarrow \mathscr{J}_G(U,W)$$

induced by composition of orthogonal embeddings $U \rightarrow V \rightarrow W$. It is equivariant, even though the embeddings of vector spaces need not be.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spe is functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement Positivization

Stabilization

Equifibrant

17

The morphism object $\mathscr{J}_G(V,W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V,W) of (nonequivariant) orthogonal embeddings of V into W.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The morphism object $\mathcal{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

 For V = 0, the embedding space O(V, W) is a single point, The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

• For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The morphism object $\mathscr{J}_G(V,W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V,W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization Stabilization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.
- When V and W have the same dimension, the embedding space is the orthogonal group O(V),

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization Stabilization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.
- When V and W have the same dimension, the embedding space is the orthogonal group O(V), with an action of G defined in terms of its actions on V and W.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.
- When V and W have the same dimension, the embedding space is the orthogonal group O(V), with an action of G defined in terms of its actions on V and W. The vector bundle is zero dimensional,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.
- When V and W have the same dimension, the embedding space is the orthogonal group O(V), with an action of G defined in terms of its actions on V and W. The vector bundle is zero dimensional, so its Thom space $\mathscr{J}_G(V,W)$ is $O(V)_+$,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

The morphism object $\mathscr{J}_G(V, W)$ is the Thom space of the orthogonal complement vector bundle over the space O(V, W) of (nonequivariant) orthogonal embeddings of V into W.

Some examples:

- For V = 0, the embedding space O(V, W) is a single point, and $\mathscr{J}_G(0, W) = S^W$, the one point compactification of W.
- When the dimension of V exceeds that of W, then the embedding space is empty, and $\mathcal{J}_G(V, W)$ is a point.
- When V and W have the same dimension, the embedding space is the orthogonal group O(V), with an action of G defined in terms of its actions on V and W. The vector bundle is zero dimensional, so its Thom space \(\mathcal{J}_G(V, W) \) is O(V)_+, the orthogonal group with a disjoint base point.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

 a collection pointed G-spaces X_V, one for each representation V of G, and The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The Yoneda functor \downarrow^V becomes the Yoneda spectrum S^{-V}

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The Yoneda functor \sharp^V becomes the Yoneda spectrum S^{-V} defined by $(S^{-V})_W = \mathscr{J}_G(V, W)$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The Yoneda functor \sharp^V becomes the Yoneda spectrum S^{-V} defined by $(S^{-V})_W = \mathscr{J}_G(V,W)$. Its structure maps are composition morphisms in \mathscr{J}_G .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization Stabilization

1.9

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The Yoneda functor \sharp^V becomes the Yoneda spectrum S^{-V} defined by $(S^{-V})_W = \mathscr{J}_G(V,W)$. Its structure maps are composition morphisms in \mathscr{J}_G .

In particular,
$$(S^{-0})_W = \mathscr{J}_G(0, W) = S^W$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

An orthogonal *G*-spectrum *X* is an enriched functor $\mathscr{J}_G \to \mathcal{T}^G$. This means it consists of

- a collection pointed G-spaces X_V, one for each representation V of G, and
- structure maps $\mathscr{J}_G(V,W) \wedge X_V \to X_W$. In particular, X_V has an action of the orthogonal group O(V).

The Yoneda functor \sharp^V becomes the Yoneda spectrum S^{-V} defined by $(S^{-V})_W = \mathscr{J}_G(V,W)$. Its structure maps are composition morphisms in \mathscr{J}_G .

In particular, $(S^{-0})_W = \mathscr{J}_G(0, W) = S^W$ and S^{-0} is the sphere spectrum.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization Stabilization

1.9

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use!

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

 The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

 The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization. The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups. For $H \subseteq G$ there is a change of group adjunction

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- It needs to play nicely with change of groups. For H ⊆ G
 there is a change of group adjunction

$$G_+ \underset{H}{\wedge} (-) : \mathcal{S}p^H \xrightarrow{\perp} \mathcal{S}p^G : i_H^G,$$

where i_H^G is the restriction functor.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

enlargement

Equifibrant

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups. For $H \subseteq G$ there is a change of group adjunction

$$G_+ \underset{H}{\wedge} (-) : \mathcal{S}p^H \xrightarrow{\perp} \mathcal{S}p^G : i_H^G,$$

where i_H^G is the restriction functor. It needs to be a Quillen adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups. For $H \subseteq G$ there is a change of group adjunction

$$G_+ \underset{H}{\wedge} (-) : \mathcal{S}p^H \xrightarrow{\perp} \mathcal{S}p^G : i_H^G,$$

where i_H^G is the restriction functor. It needs to be a Quillen adjunction. This means the class of cofibrations in $\mathcal{S}p^G$ needs to be enlarged

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

enlargement

Positivization

Stabilization

Equifibrant

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups. For $H \subseteq G$ there is a change of group adjunction

$$G_+ \underset{H}{\wedge} (-) : \mathcal{S}p^H \xrightarrow{\perp} \mathcal{S}p^G : i_H^G,$$

where i_H^G is the restriction functor. It needs to be a Quillen adjunction. This means the class of cofibrations in Sp^G needs to be enlarged to include cofibrations induced up from H.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

enlargement

Positivization

Stabilization

Equifibrant

The category Sp^G of orthogonal G-spectra is the enriched functor category $[\mathscr{J}_G, \mathcal{T}^G]$. Hence it has a projective model structure as boringly described above. It is NOT the one we want to use! It needs to be modified in three different ways.

- 1. The levelwise weak equivalences of the projective model structure need to be replaced by stable equivalences. This is a form of Bousfield localization.
- 2. It needs to play nicely with change of groups. For $H \subseteq G$ there is a change of group adjunction

$$G_+ \underset{H}{\wedge} (-) : \mathcal{S}p^H \xrightarrow{\perp} \mathcal{S}p^G : i_H^G,$$

where i_{μ}^{G} is the restriction functor. It needs to be a Quillen adjunction. This means the class of cofibrations in $\mathcal{S}p^{G}$ needs to be enlarged to include cofibrations induced up from H. When we have this for each H, we say the model structure is equifibrant.

The eightfold way: how to build the right orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

The Crans-Kan transfer theorem

Equifibrant enlargement Stabilization

Positivization

1 10

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^{G}$ needs to be modified in three different ways.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^{\mathcal{G}}$ needs to be modified in three different ways.

3. It needs to be positivized,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^{\mathcal{G}}$ needs to be modified in three different ways.

3. It needs to be positivized, a term to be defined later.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^G$ needs to be modified in three different ways.

3. It needs to be positivized, a term to be defined later. This is needed to define a model structure on the category of commutative ring spectra.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^G$ needs to be modified in three different ways.

3. It needs to be positivized, a term to be defined later. This is needed to define a model structure on the category of commutative ring spectra. It involves confining the class of cofibrations in a certain way.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^G$ needs to be modified in three different ways.

It needs to be positivized, a term to be defined later. This
is needed to define a model structure on the category of
commutative ring spectra. It involves confining the class of
cofibrations in a certain way. After we do this,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^G$ needs to be modified in three different ways.

3. It needs to be positivized, a term to be defined later. This is needed to define a model structure on the category of commutative ring spectra. It involves confining the class of cofibrations in a certain way. After we do this, the sphere spectrum S^{-0} will no longer be cofibrant.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The projective model structure on $\mathcal{S}p^G$ needs to be modified in three different ways.

3. It needs to be positivized, a term to be defined later. This is needed to define a model structure on the category of commutative ring spectra. It involves confining the class of cofibrations in a certain way. After we do this, the sphere spectrum S^{-0} will no longer be cofibrant. This strange state of affairs is unavoidable.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra

as functors

The Crans-Kan

Equifibrant enlargement

Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

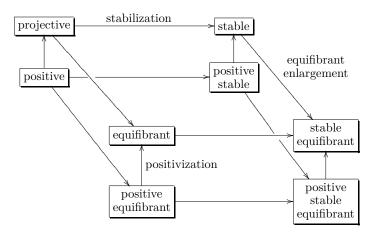
Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant

enlargement Positivization

Positivization



The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

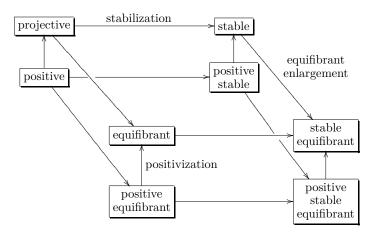
Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization



Each arrow denotes the identity functor as a left Quillen functor.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

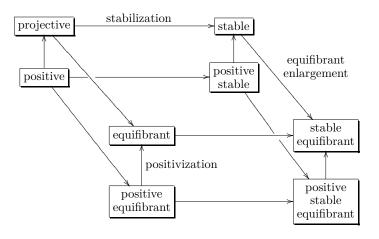
Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization



Each arrow denotes the identity functor as a left Quillen functor. The top four model structures were described by Mandell-May.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

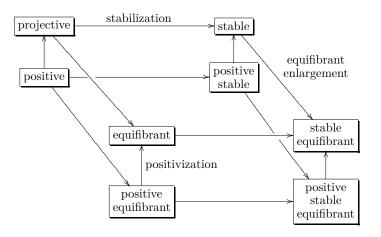
Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization



Each arrow denotes the identity functor as a left Quillen functor. The top four model structures were described by Mandell-May. Our model structure of choice is the positive stable equifibrant one on the lower right.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model

The Crans-Kan

Equifibrant enlargement

Positivization

The Crans-Kan transfer theorem

Definition

Let $\ensuremath{\mathcal{M}}$ be a cofibrantly generated model category,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The Crans-Kan transfer theorem

Definition

Let ${\mathcal M}$ be a cofibrantly generated model category, let ${\mathcal N}$ be a bicomplete category

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

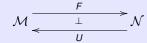
Equifibrant enlargement

Positivization

The Crans-Kan transfer theorem

Definition

Let $\mathcal M$ be a cofibrantly generated model category, let $\mathcal N$ be a bicomplete category and let



be a pair of adjoint functors.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

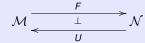
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Definition

Let $\mathcal M$ be a cofibrantly generated model category, let $\mathcal N$ be a bicomplete category and let



be a pair of adjoint functors. For cofibrant generating sets $\mathcal I$ and $\mathcal J$ be of $\mathcal M,$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Definition

Let $\mathcal M$ be a cofibrantly generated model category, let $\mathcal N$ be a bicomplete category and let

$$\mathcal{M} \xrightarrow{F} \mathcal{N}$$

be a pair of adjoint functors. For cofibrant generating sets \mathcal{I} and \mathcal{J} be of \mathcal{M} , let $F\mathcal{I} = \{Fi \colon i \in \mathcal{I}\}$ and $F\mathcal{J} = \{Fj \colon j \in \mathcal{J}\}$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

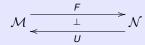
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Definition

Let ${\mathcal M}$ be a cofibrantly generated model category, let ${\mathcal N}$ be a bicomplete category and let



be a pair of adjoint functors. For cofibrant generating sets \mathcal{I} and \mathcal{J} be of \mathcal{M} , let $F\mathcal{I} = \{Fi \colon i \in \mathcal{I}\}$ and $F\mathcal{J} = \{Fj \colon j \in \mathcal{J}\}$. Then the above is a **transfer adjunction**, and (F, U) is a **transfer pair**, if

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

Stabilization

Definition

Let ${\mathcal M}$ be a cofibrantly generated model category, let ${\mathcal N}$ be a bicomplete category and let

$$\mathcal{M} \xrightarrow{F} \mathcal{N}$$

be a pair of adjoint functors. For cofibrant generating sets \mathcal{I} and \mathcal{J} be of \mathcal{M} , let $F\mathcal{I} = \{Fi \colon i \in \mathcal{I}\}$ and $F\mathcal{J} = \{Fj \colon j \in \mathcal{J}\}$. Then the above is a **transfer adjunction**, and (F, U) is a **transfer pair**, if

1 both $F\mathcal{I}$ and $F\mathcal{J}$ permit the small object argument in \mathcal{N} and

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Definition

Let ${\mathcal M}$ be a cofibrantly generated model category, let ${\mathcal N}$ be a bicomplete category and let

$$\mathcal{M} \xrightarrow{F} \mathcal{N}$$

be a pair of adjoint functors. For cofibrant generating sets \mathcal{I} and \mathcal{J} be of \mathcal{M} , let $F\mathcal{I} = \{Fi \colon i \in \mathcal{I}\}$ and $F\mathcal{J} = \{Fj \colon j \in \mathcal{J}\}$. Then the above is a **transfer adjunction**, and (F, U) is a **transfer pair**, if

- 1 both $F\mathcal{I}$ and $F\mathcal{J}$ permit the small object argument in \mathcal{N} and
- 2 U takes relative $F\mathcal{J}$ -cell complexes in \mathcal{N} to weak equivalences in \mathcal{M} .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

Stabilization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

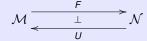
The Crans-Kan

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

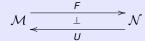
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on $\mathcal N$ (the **transferred model structure**),

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

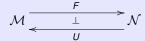
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on $\mathcal N$ (the **transferred model structure**), for which $\mathcal F\mathcal I$ and $\mathcal F\mathcal J$ are cofibrant generating sets,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

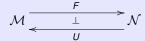
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on $\mathcal N$ (the **transferred model structure**), for which $\mathcal F\mathcal I$ and $\mathcal F\mathcal J$ are cofibrant generating sets, and the weak equivalences and fibrations are the maps taken by U to weak equivalences and fibrations in $\mathcal M$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

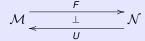
The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on \mathcal{N} (the **transferred model structure**), for which \mathcal{FI} and \mathcal{FJ} are cofibrant generating sets, and the weak equivalences and fibrations are the maps taken by U to weak equivalences and fibrations in \mathcal{M} . Furthermore, with respect to this model structure, (\mathcal{F}, U) is a Quillen pair.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

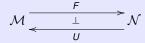
The Crans-Kan ransfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on \mathcal{N} (the **transferred model structure**), for which \mathcal{FI} and \mathcal{FJ} are cofibrant generating sets, and the weak equivalences and fibrations are the maps taken by U to weak equivalences and fibrations in \mathcal{M} . Furthermore, with respect to this model structure, (\mathcal{F}, U) is a Quillen pair.

This is our main tool for constructing new model structures.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

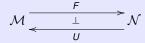
The Crans-Kan transfer theorer

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on $\mathcal N$ (the **transferred model structure**), for which $\mathcal F\mathcal I$ and $\mathcal F\mathcal J$ are cofibrant generating sets, and the weak equivalences and fibrations are the maps taken by U to weak equivalences and fibrations in $\mathcal M$. Furthermore, with respect to this model structure, $(\mathcal F, U)$ is a Quillen pair.

This is our main tool for constructing new model structures. Note that ${\mathcal N}$ does not have a model structure to begin with.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

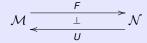
The Crans-Kan ransfer theorem

Equifibrant enlargement

Positivization

Crans-Kan Transfer Theorem

Let



be a transfer adjunction as above. Then there is a cofibrantly generated model structure on $\mathcal N$ (the **transferred model structure**), for which $\mathcal F\mathcal I$ and $\mathcal F\mathcal J$ are cofibrant generating sets, and the weak equivalences and fibrations are the maps taken by U to weak equivalences and fibrations in $\mathcal M$. Furthermore, with respect to this model structure, (F,U) is a Quillen pair.

This is our main tool for constructing new model structures. Note that $\mathcal N$ does not have a model structure to begin with. It gets one though the adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

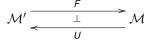
Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction



The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization Positivization

ositivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{\frac{F}{\bot}} \mathcal{N}$$

in which the right adjoint U preserves weak equivalences.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{F} \mathcal{N}$$

in which the right adjoint *U* preserves weak equivalences. It need not be a Quillen adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{\frac{F}{\bot}} \mathcal{N}$$

in which the right adjoint *U* preserves weak equivalences. It need not be a Quillen adjunction. Consider the following composite adjunction, which we will refer to as an enlarging adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{F} \mathcal{M}$$

in which the right adjoint U preserves weak equivalences. It need not be a Quillen adjunction. Consider the following composite adjunction, which we will refer to as an enlarging adjunction.

$$(X, X') \longmapsto (X, FX') \longmapsto X \vee FX'$$

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\perp} \mathcal{M} \times \mathcal{M} \xrightarrow{\perp} \mathcal{M} \times \mathcal{M} \xrightarrow{\perp} \mathcal{M}$$

$$(Y, UY) \longleftarrow (Y, Y) \longleftarrow Y,$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{F} \mathcal{M}$$

in which the right adjoint U preserves weak equivalences. It need not be a Quillen adjunction. Consider the following composite adjunction, which we will refer to as an enlarging adjunction.

$$(X, X') \longmapsto (X, FX') \longmapsto X \vee FX'$$

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\perp} \mathcal{M} \times \mathcal{M} \xrightarrow{\perp} \mathcal{M}$$

$$(Y, UY) \longleftrightarrow (Y, Y) \longleftrightarrow Y,$$

It is a transfer adjunction, so it induces a new model structure on $\mathcal{M}.$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement
Positivization

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{F} \mathcal{M}$$

in which the right adjoint U preserves weak equivalences. It need not be a Quillen adjunction. Consider the following composite adjunction, which we will refer to as an enlarging adjunction.

$$(X, X') \longmapsto (X, FX') \longmapsto X \vee FX'$$

$$M \times M' \xrightarrow{\perp} M \times M \xrightarrow{\perp} M$$

$$(Y, UY) \longleftarrow (Y, Y) \longleftarrow Y,$$

It is a transfer adjunction, so it induces a new model structure on \mathcal{M} . It has the same weak equivalences but more cofibrations than the original one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

OSITIVIZATION

Suppose we have pointed model categories $\mathcal M$ and $\mathcal M'$ with an adjunction

$$\mathcal{M}' \xrightarrow{F} \mathcal{M}$$

in which the right adjoint *U* preserves weak equivalences. It need not be a Quillen adjunction. Consider the following composite adjunction, which we will refer to as an enlarging adjunction.

$$(X, X') \longmapsto (X, FX') \longmapsto X \vee FX'$$

$$M \times M' \xrightarrow{\stackrel{M \times F}{\longleftarrow}} M \times M \xrightarrow{\stackrel{V}{\longleftarrow}} M$$

$$(Y, UY) \longleftarrow (Y, Y) \longleftarrow Y,$$

It is a transfer adjunction, so it induces a new model structure on \mathcal{M} . It has the same weak equivalences but more cofibrations than the original one. They include the images under F of cofibrations in \mathcal{M}' .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\mathcal{M} \times F} \mathcal{M} \times \mathcal{M} \xrightarrow{V} \mathcal{M}$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\mathcal{M} \times F} \mathcal{M} \times \mathcal{M} \xrightarrow{V} \mathcal{M}$$

to induce a new model structure on \mathcal{M} .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\stackrel{\mathcal{M} \times F}{\bot}} \mathcal{M} \times \mathcal{M} \xrightarrow{\stackrel{V}{\longleftarrow}} \mathcal{M}$$

to induce a new model structure on $\mathcal{M}.$ The case of interest for us is

$$\mathcal{M} = \mathcal{S}p^G$$
 and $\mathcal{M}' = \prod_{H \subset G} \mathcal{S}p^H$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

enlargement

Positivization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\stackrel{\mathcal{M} \times F}{\bot}} \mathcal{M} \times \mathcal{M} \xrightarrow{\stackrel{V}{\longleftarrow} \bot} \mathcal{M}$$

to induce a new model structure on $\mathcal{M}.$ The case of interest for us is

$$\mathcal{M} = \mathcal{S}p^G$$
 and $\mathcal{M}' = \prod_{H \subset G} \mathcal{S}p^H$.

The product here is over all proper subgroups H. The functor U is built out of restriction functors i_H^G ,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

ositivization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\stackrel{\mathcal{M} \times F}{\bot}} \mathcal{M} \times \mathcal{M} \xrightarrow{\stackrel{V}{\longleftarrow} \bot} \mathcal{M}$$

to induce a new model structure on $\mathcal{M}.$ The case of interest for us is

$$\mathcal{M} = \mathcal{S}p^G$$
 and $\mathcal{M}' = \prod_{H \subset G} \mathcal{S}p^H$.

The product here is over all proper subgroups H. The functor U is built out of restriction functors i_H^G , and F is built out of induction functors

$$X \mapsto G_+ \underset{H}{\wedge} X$$
 for $X \in \mathcal{S}p^H$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

Stabilization

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\stackrel{\mathcal{M} \times F}{\bot}} \mathcal{M} \times \mathcal{M} \xrightarrow{\stackrel{V}{\longleftarrow} \bot} \mathcal{M}$$

to induce a new model structure on $\ensuremath{\mathcal{M}}$. The case of interest for us is

$$\mathcal{M} = \mathcal{S}p^G$$
 and $\mathcal{M}' = \prod_{H \subset G} \mathcal{S}p^H$.

The product here is over all proper subgroups H. The functor U is built out of restriction functors i_H^G , and F is built out of induction functors

$$X \mapsto G_+ \underset{H}{\wedge} X$$
 for $X \in \mathcal{S}p^H$.

We call this process equifibrant enlargement.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

OSILIVIZALION

We are using an adjunction of the form

$$\mathcal{M} \times \mathcal{M}' \xrightarrow{\stackrel{\mathcal{M} \times F}{\bot}} \mathcal{M} \times \mathcal{M} \xrightarrow{\stackrel{V}{\longleftarrow} \bot} \mathcal{M}$$

to induce a new model structure on $\mathcal{M}.$ The case of interest for us is

$$\mathcal{M} = \mathcal{S}p^G$$
 and $\mathcal{M}' = \prod_{H \subset G} \mathcal{S}p^H$.

The product here is over all proper subgroups H. The functor U is built out of restriction functors i_H^G , and F is built out of induction functors

$$X\mapsto G_+ \underset{H}{\wedge} X \qquad \text{for } X\in \mathcal{S}p^H.$$

We call this process equifibrant enlargement. The resulting model structure on Sp^G plays nicely with the norm and with geometric fixed points.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Positivization

OSILIVIZALION

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

As in the start of this talk, let ${\cal M}$ be a pointed topological symmetric monoidal cofibrantly generated model category,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^* : \mathcal{M}^J \to \mathcal{M}^K$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^* : \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i . (This notation for the right Kan extension is new.)

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

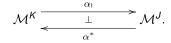
The Crans-Kan transfer theorem Equifibrant

enlargement

sitivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i . (This notation for the right Kan extension is new.) Consider the adjunction



The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i . (This notation for the right Kan extension is new.) Consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{1}} \mathcal{M}^{J}$$

In terms of the projective model structure on $\mathcal{M}^{\mathcal{K}},$ this is a transfer adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

USILIVIZALIUIT

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i . (This notation for the right Kan extension is new.) Consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{1}} \mathcal{M}^{J}$$
 $\stackrel{\alpha_{1}}{\longleftarrow} \mathcal{M}^{J}$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. The Crans-Kan transfer theorem gives us a new model structure on \mathcal{M}^J

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

JOHNYIZANON

As in the start of this talk, let $\mathcal M$ be a pointed topological symmetric monoidal cofibrantly generated model category, and let J be a small category. Suppose further that J has a full subcategory K with inclusion functor $\alpha:K\to J$.

This induces a precomposition functor $\alpha^*: \mathcal{M}^J \to \mathcal{M}^K$. It has both a left and a right adjoint. They are the left and right Kan extensions $\alpha_!$ and α_i . (This notation for the right Kan extension is new.) Consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{1}} \mathcal{M}^{J}$$
 $\stackrel{\alpha_{1}}{\longleftarrow} \mathcal{M}^{J}$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. The Crans-Kan transfer theorem gives us a new model structure on \mathcal{M}^J which differs from the projective one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

OUNTERNO

For a full subcategory K of J,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{!}} \mathcal{M}^{J}$$

In terms of the projective model structure on $\mathcal{M}^{\mathit{K}},$ this is a transfer adjunction.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{\kappa} \xrightarrow{\frac{\alpha_!}{\bot}} \mathcal{M}^{J}.$$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. For a functor X in \mathcal{M}^K , in favorable cases we have

$$(\alpha_! X)_j = \begin{cases} X_j & \text{for } j \in \text{Im} \alpha \\ * & \text{otherwise} \end{cases}$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization Stabilization

1.18

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\frac{\alpha_{!}}{\longleftarrow}} \mathcal{M}^{J}$$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. For a functor X in \mathcal{M}^K , in favorable cases we have

$$(\alpha_! X)_j = \begin{cases} X_j & \text{for } j \in \text{Im} \alpha \\ * & \text{otherwise} \end{cases}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J which differs from the projective one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\frac{\alpha_{!}}{\bot}} \mathcal{M}^{J}$$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. For a functor X in \mathcal{M}^K , in favorable cases we have

$$(\alpha_1 X)_j = \begin{cases} X_j & \text{for } j \in \text{Im}\alpha \\ * & \text{otherwise} \end{cases}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J which differs from the projective one. In it a map $f: X \to Y$ is a weak equivalence or a fibration if f_j is one for each $j \in \operatorname{Im} \alpha$,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{!}} \mathcal{M}^{J}$$
 $\stackrel{\alpha_{!}}{\longleftarrow} \alpha^{*}$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. For a functor X in \mathcal{M}^K , in favorable cases we have

$$(\alpha_! X)_j = \begin{cases} X_j & \text{for } j \in \text{Im} \alpha \\ * & \text{otherwise} \end{cases}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J which differs from the projective one. In it a map $f: X \to Y$ is a weak equivalence or a fibration if f_j is one for each $j \in \operatorname{Im} \alpha$, but not necessarily for other objects j of J.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{\kappa} \xrightarrow{\frac{\alpha_{1}}{\bot}} \mathcal{M}^{J}$$

In terms of the projective model structure on \mathcal{M}^K , this is a transfer adjunction. For a functor X in \mathcal{M}^K , in favorable cases we have

$$(\alpha_1 X)_j = \begin{cases} X_j & \text{for } j \in \text{Im}\alpha \\ * & \text{otherwise} \end{cases}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J which differs from the projective one. In it a map $f: X \to Y$ is a weak equivalence or a fibration if f_j is one for each $j \in \operatorname{Im} \alpha$, but not necessarily for other objects j of J. It has more weak equivalences and fibrations than the projective model structure.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

For a full subcategory K of J,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{!}} \mathcal{M}^{J}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J with more weak equivalences and fibrations, and therefore fewer cofibrations, than the projective one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{!}} \mathcal{M}^{J}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J with more weak equivalences and fibrations, and therefore fewer cofibrations, than the projective one. A map $f: X \to Y$ is an induced cofibration only when f_j is an isomorphism for each j not in the subcategory K.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\frac{\alpha_{!}}{\bot}} \mathcal{M}^{J}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J with more weak equivalences and fibrations, and therefore fewer cofibrations, than the projective one. A map $f: X \to Y$ is an induced cofibration only when f_j is an isomorphism for each j not in the subcategory K. This also means that there are fewer cofibrant objects.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

sitivization

For a full subcategory K of J, consider the adjunction

$$\mathcal{M}^{K} \xrightarrow{\alpha_{!}} \mathcal{M}^{J}$$

The Crans-Kan transfer theorem gives us an induced model structure on \mathcal{M}^J with more weak equivalences and fibrations, and therefore fewer cofibrations, than the projective one. A map $f: X \to Y$ is an induced cofibration only when f_j is an isomorphism for each j not in the subcategory K. This also means that there are fewer cofibrant objects.

We call this new model structure on [J, M] a confinement of the projective one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

sitivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{Sp}^G = [\mathscr{J}_G, \mathcal{T}^G].$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{Sp}^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization Stabilization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{S}p^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

We say an orthogonal representation V of G is positive if its invariant subspace V^G is nontrivial.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{S}p^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

We say an orthogonal representation V of G is positive if its invariant subspace V^G is nontrivial. The subcategory we want is \mathcal{J}_G^+ , whose objects are positive representations.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{S} p^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

We say an orthogonal representation V of G is positive if its invariant subspace V^G is nontrivial. The subcategory we want is \mathcal{J}_G^+ , whose objects are positive representations.

The positive model structure on $\mathcal{S}p^G$ is the one induced by the transfer adjunction

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{Sp}^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

We say an orthogonal representation V of G is positive if its invariant subspace V^G is nontrivial. The subcategory we want is \mathscr{J}_G^+ , whose objects are positive representations.

The positive model structure on $\mathcal{S}p^G$ is the one induced by the transfer adjunction

$$\mathcal{Sp}_{+}^{G} := [\mathscr{J}_{G}^{+}, \mathcal{T}^{G}] \xrightarrow{\alpha_{!}} [\mathscr{J}_{G}, \mathcal{T}^{G}] = \mathcal{Sp}^{G}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

OSITIVIZATION

We want to confine the projective model structure on the category of orthogonal *G*-spectra

$$\mathcal{S}p^G = [\mathscr{J}_G, \mathcal{T}^G].$$

For this we need a full subcategory of \mathcal{J}_G .

We say an orthogonal representation V of G is positive if its invariant subspace V^G is nontrivial. The subcategory we want is \mathcal{J}_G^+ , whose objects are positive representations.

The positive model structure on $\mathcal{S}p^G$ is the one induced by the transfer adjunction

$$\mathcal{S}p_+^G := [\mathscr{J}_G^+, \mathcal{T}^G] \xrightarrow{\alpha_!} \mathscr{\downarrow} \mathscr{J}_G, \mathcal{T}^G] = \mathcal{S}p^G.$$

We call this type of confinement positivization.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Stabilization

1.20

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra

as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\mathrm{Comm}\,\mathcal{S}p^G$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\mathrm{Comm}\,\mathcal{S}p^G$.

We want to define a model structure on it.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization
Stabilization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\mathrm{Comm}\,\mathcal{S}p^G$.

We want to define a model structure on it. The issue here is not equivariant, so we assume for simplicity that the group is trivial.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

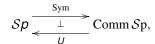
The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization
Stabilization

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\operatorname{Comm} \mathcal{S}p^G$.

We want to define a model structure on it. The issue here is not equivariant, so we assume for simplicity that the group is trivial. We want to define a transfer adjunction



The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\operatorname{Comm} \mathcal{S}p^G$.

We want to define a model structure on it. The issue here is not equivariant, so we assume for simplicity that the group is trivial. We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\text{Sym}} \text{Comm } \mathcal{S}p,$$

where *U* is the forgetful functor,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\operatorname{Comm} \mathcal{S}p^G$.

We want to define a model structure on it. The issue here is not equivariant, so we assume for simplicity that the group is trivial. We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\overset{\text{Sym}}{\longleftarrow}} \text{Comm}\,\mathcal{S}p,$$

where U is the forgetful functor, and Sym is the free commutative algebra functor

$$X \mapsto \operatorname{Sym}(X) := \bigvee_{n \geq 0} \operatorname{Sym}^n X,$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

Positivization Positivization

Positivization: why do it?

The category $\mathcal{S}p^G$ is closed symmetric monoidal under smash product, so we can speak of commutative ring objects in it, also known as E_{∞} -ring spectra. We denote the category of such spectra by $\operatorname{Comm} \mathcal{S}p^G$.

We want to define a model structure on it. The issue here is not equivariant, so we assume for simplicity that the group is trivial. We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\text{Sym}} \text{Comm } \mathcal{S}p,$$

where *U* is the forgetful functor, and Sym is the free commutative algebra functor

$$X \mapsto \operatorname{Sym}(X) := \bigvee_{n>0} \operatorname{Sym}^n X,$$

where Symⁿ is the *n*th symmetric product functor,

$$X\mapsto (X^{\wedge n})_{\Sigma_n}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

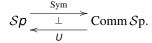
Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

We want to define a transfer adjunction



The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\text{Sym}} \text{Comm } \mathcal{S}p.$$

This means the functor Sym^n for each n must preserve weak equivalences between cofibrant objects in Sp.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\underset{\longrightarrow}{\text{Sym}}} \text{Comm } \mathcal{S}p.$$

This means the functor Sym^n for each n must preserve weak equivalences between cofibrant objects in $\operatorname{\mathcal{S}p}$. We need this to work for the stable model structure, which we have not yet defined.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\stackrel{\operatorname{Sym}}{\longleftarrow}} \operatorname{Comm} \mathcal{S}p.$$

This means the functor Sym^n for each n must preserve weak equivalences between cofibrant objects in $\operatorname{\mathcal{S}p}$. We need this to work for the stable model structure, which we have not yet defined. There is a map

$$s_1: S^{-1} \wedge S^1 \rightarrow S^{-0},$$

which is a stable weak equivalence.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\stackrel{\operatorname{Sym}}{\longleftarrow}} \operatorname{Comm} \mathcal{S}p.$$

This means the functor Sym^n for each n must preserve weak equivalences between cofibrant objects in $\operatorname{\mathcal{S}p}$. We need this to work for the stable model structure, which we have not yet defined. There is a map

$$s_1: S^{-1} \wedge S^1 \rightarrow S^{-0},$$

which is a stable weak equivalence. Applying $\ensuremath{\mathrm{Sym}^2}$ gives a map

$$\operatorname{Sym}^2 s_1 : \operatorname{Sym}^2 (S^{-1} \wedge S^1) \to \operatorname{Sym}^2 S^{-0} = S^{-0}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

ositivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\stackrel{\text{Sym}}{\longleftarrow}} \text{Comm}\,\mathcal{S}p.$$

This means the functor Sym^n for each n must preserve weak equivalences between cofibrant objects in $\operatorname{\mathcal{S}p}$. We need this to work for the stable model structure, which we have not yet defined. There is a map

$$s_1: S^{-1} \wedge S^1 \rightarrow S^{-0},$$

which is a stable weak equivalence. Applying $\ensuremath{\mathrm{Sym}^2}$ gives a map

$$\operatorname{Sym}^2 s_1 : \operatorname{Sym}^2 (S^{-1} \wedge S^1) \to \operatorname{Sym}^2 S^{-0} = S^{-0}.$$

These two spectra are wildly different, so we have a problem.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

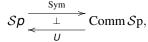
Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

sitivization

We want to define a transfer adjunction



The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\underset{U}{\underbrace{Sym}}} \operatorname{Comm} \mathcal{S}p,$$

but the functor $\ensuremath{\mathrm{Sym}^2}$ fails to preserve the stable weak equivalence

$$\textbf{S}_1: \textbf{S}^{-1} \wedge \textbf{S}^1 \rightarrow \textbf{S}^{-0}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\underset{\longrightarrow}{\text{Sym}}} \text{Comm } \mathcal{S}p,$$

but the functor Sym^2 fails to preserve the stable weak equivalence

$$s_1: S^{-1} \wedge S^1 \to S^{-0}$$
.

This difficulty was first noticed by Jeff Smith in the 1990s.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

ositivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\underset{\longrightarrow}{\text{Sym}}} \text{Comm}\,\mathcal{S}p,$$

but the functor Sym^2 fails to preserve the stable weak equivalence

$$\textbf{S}_1: \textbf{S}^{-1} \wedge \textbf{S}^1 \rightarrow \textbf{S}^{-0}.$$

This difficulty was first noticed by Jeff Smith in the 1990s. We need Sym² to preserve weak equivalences between cofibrant objects.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

sitivization

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\text{Sym}} \text{Comm } \mathcal{S}p,$$

but the functor Sym² fails to preserve the stable weak equivalence

$$\textbf{S}_1: \textbf{S}^{-1} \wedge \textbf{S}^1 \rightarrow \textbf{S}^{-0}.$$

This difficulty was first noticed by Jeff Smith in the 1990s. We need Sym² to preserve weak equivalences between cofibrant objects.

After positivizing the stable model structure on Sp, the sphere spectrum S^{-0} is no longer cofibrant,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

on vication

We want to define a transfer adjunction

$$\mathcal{S}p \xrightarrow{\underset{\longrightarrow}{\text{Sym}}} \text{Comm } \mathcal{S}p,$$

but the functor $\ensuremath{\mathrm{Sym}^2}$ fails to preserve the stable weak equivalence

$$s_1: S^{-1} \wedge S^1 \to S^{-0}$$
.

This difficulty was first noticed by Jeff Smith in the 1990s. We need Sym² to preserve weak equivalences between cofibrant objects.

After positivizing the stable model structure on Sp, the sphere spectrum S^{-0} is no longer cofibrant, and (Sym, U) above becomes a transfer pair as desired.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

sitivization

Bousfield localization may be the best construction in model category theory.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category ${\mathcal M}$ and make a new model structure on its underlying category by

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category ${\cal M}$ and make a new model structure on its underlying category by

keeping the same class of cofibrations and

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category ${\mathcal M}$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations. This often leads to a more interesting fibrant replacement functor.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel
Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations. This often leads to a more interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be factored as a trivial cofibration followed by a fibration.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations. This often leads to a more interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be factored as a trivial cofibration followed by a fibration. It often involves some delicate set theory.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations. This often leads to a more interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be factored as a trivial cofibration followed by a fibration. It often involves some delicate set theory. It requires $\mathcal M$ to have certain properties,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

Bousfield localization may be the best construction in model category theory. We start with a model category $\mathcal M$ and make a new model structure on its underlying category by

- · keeping the same class of cofibrations and
- expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before, and hence fewer fibrations. This often leads to a more interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be factored as a trivial cofibration followed by a fibration. It often involves some delicate set theory. It requires $\mathcal M$ to have certain properties, but there are no restrictions on how we expand the class of weak equivalences.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

• Let \mathcal{T} be the category of pointed topological spaces.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

• Let $\mathcal T$ be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

• Let \mathcal{T} be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions $\leq n$.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

 Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section. The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_* be your favorite homology theory. We can expand the class of weak equivalences in $\mathcal T$ by including all h_* -isomorphisms.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

oilization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_* be your favorite homology theory. We can expand the class of weak equivalences in \mathcal{T} by including all h_* -isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h .

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory. We can expand the class of weak equivalences in T by including all h_{*}-isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h. We can do the same in the category of spectra.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_* be your favorite homology theory. We can expand the class of weak equivalences in \mathcal{T} by including all h_* -isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h . We can do the same in the category of spectra. The functors $L_{K(n)}$ and $L_{E(n)}$ are fundamental in chromatic homotopy theory.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement

Positivization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory. We can expand the class of weak equivalences in T by including all h_{*}-isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h. We can do the same in the category of spectra. The functors L_{K(n)} and L_{E(n)} are fundamental in chromatic homotopy theory.
- Let $Sp = [\mathcal{J}, \mathcal{T}]$ be the category of spectra with its projective model structure.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Silivization

Some examples of Bousfield localization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory. We can expand the class of weak equivalences in T by including all h_{*}-isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h. We can do the same in the category of spectra. The functors L_{K(n)} and L_{E(n)} are fundamental in chromatic homotopy theory.
- Let Sp = [J,T] be the category of spectra with its projective model structure. We can expand the class of weak equivalences to include all maps inducing isomorphisms in stable homotopy groups.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Sitivization

Some examples of Bousfield localization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory. We can expand the class of weak equivalences in T by including all h_{*}-isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h. We can do the same in the category of spectra. The functors L_{K(n)} and L_{E(n)} are fundamental in chromatic homotopy theory.
- Let Sp = [J, T] be the category of spectra with its projective model structure. We can expand the class of weak equivalences to include all maps inducing isomorphisms in stable homotopy groups. The resulting fibrant objects are precisely the Ω-spectra.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Sitivization

Some examples of Bousfield localization

- Let T be the category of pointed topological spaces. Weak equivalences are maps inducing isomorphisms of homotopy groups, and all objects are fibrant. We can expand the class of weak equivalences by requiring the to induce inducing isomorphisms of homotopy groups only in dimensions ≤ n. The resulting fibrant replacement functor is the nth Postnikov section.
- Let h_{*} be your favorite homology theory. We can expand the class of weak equivalences in T by including all h_{*}-isomorphisms. The resulting fibrant replacment functor is Bousfield's famous functor L_h. We can do the same in the category of spectra. The functors L_{K(n)} and L_{E(n)} are fundamental in chromatic homotopy theory.
- Let $\mathcal{Sp} = [\mathscr{J}, \mathcal{T}]$ be the category of spectra with its projective model structure. We can expand the class of weak equivalences to include all maps inducing isomorphisms in stable homotopy groups. The resulting fibrant objects are precisely the Ω -spectra. We call this process stabilization.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

Silivization

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

 Describe set or class of maps that are to become weak equivalences. The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

Positivization

Silivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

Describe the new fibrant replacement functor.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant

enlargement Positivization

ositivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

Describe the new fibrant replacement functor. It is usually the case that a map $f: X \to Y$ is a weak equivalence in the new model structure

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

Positivization

a la llia a di a a

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

Describe the new fibrant replacement functor. It is usually the case that a map $f: X \to Y$ is a weak equivalence in the new model structure iff the induced map between fibrant replacements is a weak equivalence in the original model structure.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

Describe the new fibrant replacement functor. It is usually the case that a map $f: X \to Y$ is a weak equivalence in the new model structure iff the induced map between fibrant replacements is a weak equivalence in the original model structure. For example, a map of spaces or spectra is a $K(n)_*$ -equivalence

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization:

Describe set or class of maps that are to become weak equivalences. You need not specify all of them. If you invite one to the party, she will bring all of her friends.

Describe the new fibrant replacement functor. It is usually the case that a map $f: X \to Y$ is a weak equivalence in the new model structure iff the induced map between fibrant replacements is a weak equivalence in the original model structure. For example, a map of spaces or spectra is a $K(n)_*$ -equivalence iff its $K(n)_*$ localization (fibrant replacement) is an ordinary weak equivalence.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Mike Hill Mike Hopkins Doug Ravenel

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Doug Ravenel

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows. Its Wth component is the composition morphism

$$(S^{-V} \wedge S^V)_W$$
 $(S^{-0})_W$

$$\downarrow \mathcal{J}_G(V, W) \wedge \mathcal{J}_G(0, V) \xrightarrow{j_{0,V,W}} \mathcal{J}_G(0, W).$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows. Its Wth component is the composition morphism

$$(S^{-V} \wedge S^{V})_{W}$$
 $(S^{-0})_{W}$

$$\mathcal{J}_{G}(V,W) \wedge \mathcal{J}_{G}(0,V) \xrightarrow{j_{0,V,W}} \mathcal{J}_{G}(0,W).$$

For $V \neq 0$ this map is a stable equivalence but not a projective one.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows. Its Wth component is the composition morphism

$$(S^{-V} \wedge S^{V})_{W}$$
 $(S^{-0})_{W}$

$$\parallel \qquad \qquad \parallel$$

$$\mathscr{J}_{G}(V,W) \wedge \mathscr{J}_{G}(0,V) \xrightarrow{j_{0,V,W}} \mathscr{J}_{G}(0,W).$$

For $V \neq 0$ this map is a stable equivalence but not a projective one.

2 To define the fibrant replacement RX of a spectrum X,

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal G-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows. Its Wth component is the composition morphism

$$(S^{-V} \wedge S^{V})_{W}$$
 $(S^{-0})_{W}$

$$\parallel \qquad \qquad \parallel$$

$$\mathscr{J}_{G}(V,W) \wedge \mathscr{J}_{G}(0,V) \xrightarrow{j_{0,V,W}} \mathscr{J}_{G}(0,W).$$

For $V \neq 0$ this map is a stable equivalence but not a projective one.

2 To define the fibrant replacement RX of a spectrum X, let ρ denote the regular representation of G.

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization

1.27

In general there are two ways to describe Bousfield localization. In the case of orthogonal *G*-spectra we can do both.

1 For each representation V, we define a stabilizing map $s_V: S^{-V} \wedge S^V \to S^{-0}$ as follows. Its Wth component is the composition morphism

$$(S^{-V} \wedge S^{V})_{W}$$
 $(S^{-0})_{W}$

$$\parallel \qquad \qquad \parallel$$

$$\mathscr{J}_{G}(V,W) \wedge \mathscr{J}_{G}(0,V) \xrightarrow{j_{0,V,W}} \mathscr{J}_{G}(0,W).$$

For $V \neq 0$ this map is a stable equivalence but not a projective one.

2 To define the fibrant replacement RX of a spectrum X, let ρ denote the regular representation of G. Then

$$(RX)_V = \underset{n}{\mathsf{hocolim}} \Omega^{n\rho} X_{V+n\rho}.$$

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

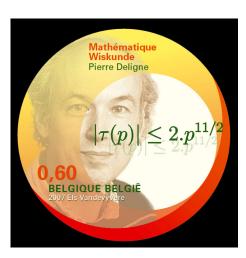
Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement Positivization

Silivization



Happy 75th birthday to Pierre Deligne!

The eightfold way: how to build the right model structure on orthogonal G-spectra

Functor categories

Orthogonal *G*-spectra as functors

Modifying the model structure

The Crans-Kan transfer theorem

Equifibrant enlargement

Positivization