The Hill-Lawson spectral sequence and the telescope conjecture

Doug Ravenel
University of Rochester

17 October, 2022
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.
In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres.
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence,
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, **but the filtration is different.**
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, but the filtration is different.

For \(p > 2 \), the classical Adams spectral sequence has an \(E_1 \)-term introduced by Peter May in his 1964 thesis, namely...
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, but the filtration is different.

For $p > 2$, the classical Adams spectral sequence has an E_1-term introduced by Peter May in his 1964 thesis, namely

$$P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0)$$

where $n \geq 0$, $i > 0$, and $j \geq 0$ with

$$v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^i-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{j+1}(p^i-1)-2,2}.$$
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, but the filtration is different.

For \(p > 2 \), the classical Adams spectral sequence has an \(E_1 \)-term introduced by Peter May in his 1964 thesis, namely

\[
P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0)
\]

where \(n \geq 0, i > 0, \) and \(j \geq 0 \) with

\[
v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^i-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^i-1)-2,2}.
\]

Here the superscripts are topological dimension and filtration, the \((x,y) \) convention.
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, but the filtration is different.

For $p > 2$, the classical Adams spectral sequence has an E_1-term introduced by Peter May in his 1964 thesis, namely

$$P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0)$$

where $n \geq 0$, $i > 0$, and $j \geq 0$ with

$$v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^j-1)-2,2}.$$

Here the superscripts are topological dimension and filtration, the (x,y) convention. For $p = 2$, there is a similar description with $b_{i,j} = h_{i,j}^2$.

Conclusion
The Hill-Lawson spectral sequence

This is joint work with Mike Hill and Tyler Lawson.

In a 2021 paper on operadic tensor products, they introduced a new spectral sequence converging to the stable homotopy groups of spheres. It looks a lot like the classical Adams spectral sequence, but the filtration is different.

For \(p > 2 \), the classical Adams spectral sequence has an \(E_1 \)-term introduced by Peter May in his 1964 thesis, namely

\[
P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0)
\]

where \(n \geq 0, \ i > 0 \), and \(j \geq 0 \) with

\[
v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^i-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^i-1)-2,2}.
\]

Here the superscripts are topological dimension and filtration, the \((x,y)\) convention. For \(p = 2 \), there is a similar description with \(b_{i,j} = h_{i,j}^2 \). In general it is a \(p \)-fold Massey product.
Again, for the Adams spectral sequence,

$$E_1 = P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0)$$

where $n \geq 0$, $i > 0$, and $j \geq 0$ with

$$v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{j+1}(p^i-1)-2,2}.$$
Again, for the Adams spectral sequence,

\[E_1 = P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0) \]

where \(n \geq 0, i > 0, \) and \(j \geq 0 \) with

\[v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^j-1)-2,2}. \]

The Hill-Lawson \(E_1 \)-term is

\[E_1 = P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0) \]

\[v_n \in E_1^{2p^n-2,p^n}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,p^{i+j}}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^j-1)-2,p^{i+j+1}}. \]
Again, for the Adams spectral sequence,

\[E_1 = P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0) \]

where \(n \geq 0, i > 0, \) and \(j \geq 0 \) with

\[v_n \in E_1^{2p^n-2,1}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,1}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^j-1)-2,2}. \]

The Hill-Lawson \(E_1 \)-term is

\[E_1 = P(v_n : n \geq 0) \otimes E(h_{i,j} : i > 0, j \geq 0) \otimes P(b_{i,j} : i > 0, j \geq 0) \]

\[v_n \in E_1^{2p^n-2,p^n}, \quad h_{i,j} \in E_1^{2p^i(p^j-1)-1,p^{i+j}}, \quad b_{i,j} \in E_1^{2p^{i+1}(p^j-1)-2,p^{i+j+1}}. \]

Note that the Hill-Lawson filtration is higher than that of Adams.
The MRS spectrum $\gamma(m)$

The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999. For each prime p, there is a p-local spherical fibration λ_p over the space ΩS^3 whose Thom spectrum is \mathbb{H}/p, the mod p Eilenberg-Mac Lane spectrum. We can restrict λ_p to various spaces over ΩS^3 to get more Thom spectra. In the 1950s Ioan James showed that ΩS^3 is homotopy equivalent to a certain CW-complex with a single cell in every even dimension. We denote its $2k$-skeleton by $J_k S^2$, the kth James construction on S^2, which is a certain quotient of $(S^2)^k$.

Inverting v_m

The Adams-Novikov spectral sequence

The localized Adams spectral sequence

The localized Hill-Lawson spectral sequence for $\gamma(m)$

Internal Steenrod operations for $\gamma(m)$

Some Hill-Lawson d_1 s

A possible E_2 structure

Conclusion
The MRS spectrum $y(m)$

The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999.

THE TRIPLE LOOP SPACE APPROACH TO THE TELESCOPE CONJECTURE

MARK MAHOWALD, DOUGLAS RAVENEL AND PAUL SHICK
The MRS spectrum $y(m)$

The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999.

The triple loop space approach to the telescope conjecture

For each prime p there is a p-local spherical fibration λ_p over the space $\Omega^2 S^3$ whose Thom spectrum is H/p, the mod p Eilenberg-Mac Lane spectrum.
The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999.

For each prime p there is a p-local spherical fibration λ_p over the space $\Omega^2 S^3$ whose Thom spectrum is H/p, the mod p Eilenberg-Mac Lane spectrum. We can restrict λ_p to various spaces over $\Omega^2 S^3$ to get more Thom spectra.
The MRS spectrum \(y(m) \)

The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999.

THE TRIPLE LOOP SPACE APPROACH TO THE TELESCOPE CONJECTURE

MARK MAHOWALD, DOUGLAS RAVENEL AND PAUL SHICK

For each prime \(p \) there is a \(p \)-local spherical fibration \(\lambda_p \) over the space \(\Omega^2 S^3 \) whose Thom spectrum is \(H/p \), the mod \(p \) Eilenberg-Mac Lane spectrum. We can restrict \(\lambda_p \) to various spaces over \(\Omega^2 S^3 \) to get more Thom spectra.

In the 1950s Ioan James showed that \(\Omega S^3 \) is homotopy equivalent to a certain CW-complex with a single cell in every even dimension.
The MRS spectrum $y(m)$

The following can be found in a paper I wrote with Mark Mahowald and Paul Shick in 1999.

The triple loop space approach to the telescope conjecture

For each prime p there is a p-local spherical fibration λ_p over the space $\Omega^2 S^3$ whose Thom spectrum is H/p, the mod p Eilenberg-Mac Lane spectrum. We can restrict λ_p to various spaces over $\Omega^2 S^3$ to get more Thom spectra.

In the 1950s Ioan James showed that ΩS^3 is homotopy equivalent to a certain CW-complex with a single cell in every even dimension. We denote its $2k$-skeleton by $J_k S^2$, the kth James construction on S^2.

Conclusion
For each prime p there is a p-local spherical fibration λ_p over the space $\Omega^2 S^3$ whose Thom spectrum is H/p, the mod p Eilenberg-Mac Lane spectrum. We can restrict λ_p to various spaces over $\Omega^2 S^3$ to get more Thom spectra.

In the 1950s Ioan James showed that ΩS^3 is homotopy equivalent to a certain CW-complex with a single cell in every even dimension. We denote its $2k$-skeleton by $J_k S^2$, the kth James construction on S^2, which is a certain quotient of $(S^2)^{\times k}$.
Definition

For a prime p and positive integer m,
The MRS spectrum $y(m)$ (continued)

Definition

For a prime p and positive integer m, let $y(m)$ denote the Thom spectrum of the restriction of λ_p induced by the map

$$\Omega J_{p^{m-1}} S^2 \to \Omega J_\infty S^2 \cong \Omega^2 S^3.$$
The MRS spectrum $y(m)$ (continued)

Definition

For a prime p and positive integer m, let $y(m)$ denote the Thom spectrum of the restriction of λ_p induced by the map

$$\Omega J_{p^{m-1}} S^2 \to \Omega J_{\infty} S^2 \simeq \Omega^2 S^3.$$

This spectrum has some pleasant properties.
The MRS spectrum \(y(m) \) (continued)

Definition

For a prime \(p \) and positive integer \(m \), let \(y(m) \) denote the Thom spectrum of the restriction of \(\lambda_p \) induced by the map

\[
\Omega J_{p^{m-1}} S^2 \to \Omega J_\infty S^2 \cong \Omega^2 S^3.
\]

This spectrum has some pleasant properties. Recall that

\[
H_* H/p \cong E(\tau_0, \tau_1, \ldots) \otimes P(\xi_1, \xi_2, \ldots)
\]

with \(|\tau_i| = 2p^i - 1 \) and \(|\xi_i| = 2p^i - 2 \).
The MRS spectrum $y(m)$ (continued)

Definition

For a prime p and positive integer m, let $y(m)$ denote the Thom spectrum of the restriction of λ_p induced by the map

$$\Omega J_{p^m-1} S^2 \to \Omega J_{\infty} S^2 \simeq \Omega^2 S^3.$$

This spectrum has some pleasant properties. Recall that

$$H_* H/p \cong E(\tau_0, \tau_1, \ldots) \otimes P(\xi_1, \xi_2, \ldots)$$

with $|\tau_i| = 2p^i - 1$ and $|\xi_i| = 2p^i - 2$.

This is the dual Steenrod algebra A_*.
For a prime p and positive integer m, let $y(m)$ denote the Thom spectrum of the restriction of λ_p induced by the map

$$\Omega J_{p^{m-1}} S^2 \to \Omega J_{\infty} S^2 \simeq \Omega^2 S^3.$$

This spectrum has some pleasant properties. Recall that

$$H^* H/p \simeq E(\tau_0, \tau_1, \ldots) \otimes P(\xi_1, \xi_2, \ldots)$$

with $|\tau_i| = 2p^i - 1$ and $|\xi_i| = 2p^i - 2$.

This is the dual Steenrod algebra A_*.

It turns out that

$$H_* y(m) \simeq E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m).$$
The MRS spectrum $y(m)$ (continued)

\[H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m). \]
The MRS spectrum $y(m)$ (continued)

$$H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m).$$

This implies that the Adams spectral sequence for $y(m)$ has

$$E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j} : i > 0, j \geq 0)$$

where $n \geq 0$, $i > 0$, and $j \geq 0$.
The MRS spectrum $y(m)$ (continued)

\[H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m). \]

This implies that the Adams spectral sequence for $y(m)$ has

\[E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j} : i > 0, j \geq 0) \]

where $n \geq 0$, $i > 0$, and $j \geq 0$.

We have added m to each (first) subscript.
The MRS spectrum $y(m)$ (continued)

$$H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m).$$

This implies that the Adams spectral sequence for $y(m)$ has

$$E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j} : i > 0, j \geq 0)$$

where $n \geq 0$, $i > 0$, and $j \geq 0$.

We have added m to each (first) subscript. There is a Hill-Lawson spectral sequence having a similar E_1-term in which each element has filtration divisible by p^m.
We can invert v_m on the spectrum level as follows.
Inverting ν_m

We can invert ν_m on the spectrum level as follows. James showed that

$$\Sigma \Omega S^3 \cong \bigvee_{k>0} S^{2k+1},$$
Inverting v_m

We can invert v_m on the spectrum level as follows. James showed that

$$\Sigma \Omega S^3 \simeq \bigvee_{k>0} S^{2k+1},$$

so for each $k > 0$ we get a James-Hopf map

$$\Omega S^3 \to \Omega S^{2k+1}.$$
Inverting \(v_m \)

We can invert \(v_m \) on the spectrum level as follows. James showed that

\[
\Sigma \Omega S^3 \simeq \bigvee_{k>0} S^{2k+1},
\]

so for each \(k > 0 \) we get a **James-Hopf map**

\[
\Omega S^3 \to \Omega S^{2k+1}.
\]

When \(k = p^m \), its \(p \)-local homotopy theoretic fiber is our friend \(J_{p^m-1} S^2 \).
Inverting v_m

We can invert v_m on the spectrum level as follows. James showed that

$$\Sigma \Omega S^3 \simeq \bigvee_{k>0} S^{2k+1},$$

so for each $k > 0$ we get a James-Hopf map

$$\Omega S^3 \to \Omega S^{2k+1}.$$

When $k = p^m$, its p-local homotopy theoretic fiber is our friend $J_{p^{m-1}} S^2$. It follows that there is a fiber sequence

$$\Omega^3 S^{2p^m+1} \to \Omega J_{p^{m-1}} S^2 \to \Omega^2 S^3,$$

which Thomifies to

$$\Sigma^\infty \Omega^3 S^{2p^m+1} \to y(m) \to H/p.$$
The composite

\[S^{2p^m-2} \to \sum_\infty \Omega^3 S^{2p^m+1} \to y(m) \]
The composite

\[S^{2p^m - 2} \to \sum_{\infty} \Omega^3 S^{2p^m + 1} \to y(m) \]

leads to a self map

\[\sum^{2p^m - 2} y(m) \xrightarrow{v_m} y(m). \]
Inverting v_m (continued)

The composite

$$S^{2p^m-2} \to \sum_{\infty} \Omega^3 S^{2p^m+1} \to y(m)$$

leads to a self map

$$\Sigma^{2p^m-2} y(m) \xrightarrow{v_m} y(m).$$

It is known to induce an isomorphism in Morava K-theory $K(m)_*$.
The composite

\[S^{2p^m - 2} \to \sum_{\infty} \Omega^3 S^{2p^m + 1} \to y(m) \]

leads to a self map

\[\Sigma^{2p^m - 2} y(m) \xrightarrow{v_m} y(m). \]

It is known to induce an isomorphism in Morava K-theory \(K(m)_* \). We can iterate it to form a telescope, the homotopy colimit of

\[\vdots \]

\[\sum_{-2}^2 y(m) \xrightarrow{v_m} \sum_{-1}^2 y(m) \]

\[\vdots \]
Inverting v_m (continued)

The composite

$$S^{2p^m-2} \to \sum_{\infty} \Omega^3 S^{2p^m+1} \to y(m)$$

leads to a self map

$$\Sigma^{2p^m-2}y(m) \xrightarrow{v_m} y(m).$$

It is known to by induce an isomorphism in Morava K-theory $K(m)_*$. We can iterate it to form a telescope, the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|}y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|}y(m) \xrightarrow{} \ldots,$$

which we denote by $Y(m)$.
The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|}y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|}y(m) \rightarrow \ldots$$
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \rightarrow \ldots.$$

It admits a map to $L_{K(m)} y(m)$.
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \xrightarrow{} \ldots.$$

It admits a map to $L_{K(m)} y(m)$, which the height m form of the telescope conjecture says is an equivalence.
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \longrightarrow \ldots$$

It admits a map to $L_{K(m)}y(m)$, which the height m form of the telescope conjecture says is an equivalence. Thus showing $Y(m)$ and $L_{K(m)}y(m)$ are different for $m > 1$ would disprove the telescope conjecture.
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \longrightarrow \ldots.$$

It admits a map to $L_{K(m)} y(m)$, which the height m form of the telescope conjecture says is an equivalence. Thus showing $Y(m)$ and $L_{K(m)} y(m)$ are different for $m > 1$ would disprove the telescope conjecture. They are known to be the same for $m = 1$.

Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \rightarrow \ldots.$$

It admits a map to $L_{K(m)} y(m)$, which the height m form of the telescope conjecture says is an equivalence. Thus showing $Y(m)$ and $L_{K(m)} y(m)$ are different for $m > 1$ would disprove the telescope conjecture. They are known to be the same for $m = 1$.

There is a well understood Adams-Novikov spectral sequence converging to $\pi_\ast L_{K(m)} y(m)$.

The Hill-Lawson spectral sequence and the telescope conjecture

Doug Ravenel

The Hill-Lawson spectral sequence

The localized Adams spectral sequence

The localized Hill-Lawson spectral sequence for $y(m)$

Internal Steenrod operations for $y(m)$

Some Hill-Lawson d_1's

A possible E_2 structure

Conclusion
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \rightarrow \ldots.$$

It admits a map to $L_{K(m)} y(m)$, which the height m form of the telescope conjecture says is an equivalence. Thus showing $Y(m)$ and $L_{K(m)} y(m)$ are different for $m > 1$ would disprove the telescope conjecture. They are known to be the same for $m = 1$.

There is a well understood Adams-Novikov spectral sequence converging to $\pi_* L_{K(m)} y(m)$.

There are localized forms of both the Adams and Hill-Lawson spectral sequences that converge to $\pi_* Y(m)$.
Inverting v_m (continued)

The telescope $Y(m)$ is the homotopy colimit of

$$y(m) \xrightarrow{v_m} \Sigma^{-|v_m|} y(m) \xrightarrow{v_m} \Sigma^{-2|v_m|} y(m) \rightarrow \ldots$$

It admits a map to $L_{K(m)} y(m)$, which the height m form of the telescope conjecture says is an equivalence. Thus showing $Y(m)$ and $L_{K(m)} y(m)$ are different for $m > 1$ would disprove the telescope conjecture. They are known to be the same for $m = 1$.

There is a well understood Adams-Novikov spectral sequence converging to $\pi_* L_{K(m)} y(m)$.

There are localized forms of both the Adams and Hill-Lawson spectral sequences that converge to $\pi_* Y(m)$. The latter is a new tool for studying the telescope conjecture.
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_m^{-1}P(v_m, \ldots, v_{2m})$.

This is an exterior algebra on m odd dimensional generators tensored with an even dimensional localized polynomial ring. Each v_m+i has filtration 0, and each $h_{m+i,j}$ has filtration 1.

The spectral sequence collapses for large primes. The exterior algebra is the cohomology of a certain open subgroup of the mth Morava stabilizer group. It is cofinite with index $p^m 2^{p^m - m(p^m - 1)}$.

Conclusion
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_{K(m)} y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_m^{-1} P(v_m, \ldots, v_{2m})$.

This is an exterior algebra on m^2 odd dimensional generators tensored with an even dimensional localized polynomial ring.
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_{m}^{-1}P(v_{m}, \ldots, v_{2m})$.

This is an exterior algebra on m^2 odd dimensional generators tensored with an even dimensional localized polynomial ring. Each v_{m+i} has filtration 0, and each $h_{m+i,j}$ has filtration 1.
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_m^{-1}P(v_m, \ldots, v_{2m})$.

This is an exterior algebra on m^2 odd dimensional generators tensored with an even dimensional localized polynomial ring. Each v_{m+i} has filtration 0, and each $h_{m+i,j}$ has filtration 1. The spectral sequence collapses for large primes.
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_K(m)y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_m^{-1} P(v_m, \ldots, v_{2m}).$

This is an exterior algebra on m^2 odd dimensional generators tensored with an even dimensional localized polynomial ring. Each v_{m+i} has filtration 0, and each $h_{m+i,j}$ has filtration 1. The spectral sequence collapses for large primes.

The exterior algebra is the cohomology of a certain open subgroup of the mth Morava stabilizer group.
The Adams-Novikov spectral sequence

The Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{m+i,j} : 1 \leq i, j + 1 \leq m),$$

where $R_m = v_m^{-1}P(v_m, \ldots, v_{2m})$.

This is an exterior algebra on m^2 odd dimensional generators tensored with an even dimensional localized polynomial ring. Each v_{m+i} has filtration 0, and each $h_{m+i,j}$ has filtration 1. The spectral sequence collapses for large primes.

The exterior algebra is the cohomology of a certain open subgroup of the mth Morava stabilizer group. It is cofinite with index $\rho^{m^2-m}(\rho^m - 1)$.

Internal Steenrod operations for $y(m)$

Some Hill-Lawson d_1's

Conclusion
To repeat, the Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{n+i,j} : 1 \leq i, j + 1 \leq h).$$
To repeat, the Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{h+i,j} : 1 \leq i, j + 1 \leq h).$$

The localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j})$$

where $i > 0$ and $0 \leq j \leq m - 1$

and $R_m = v_m^{-1} P(v_m, \ldots, v_{2m}).$
To repeat, the Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{n+i,j} : 1 \leq i, j + 1 \leq h).$$

The localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j})$$

where $i > 0$ and $0 \leq j \leq m - 1$

and $R_m = v_m^{-1} P(v_m, \ldots, v_{2m})$.

The Adams filtration of each v_{m+i} is 1 instead of 0.
To repeat, the Adams-Novikov E_2-term for $L_{K(m)}y(m)$ is

$$R_m \otimes E(h_{n+i,j} : 1 \leq i, j + 1 \leq h).$$

The localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j})$$

where $i > 0$ and $0 \leq j \leq m - 1$

and $R_m = v_m^{-1} P(v_m, \ldots, v_{2m}).$

The Adams filtration of each v_{m+i} is 1 instead of 0. Unlike the Adams-Novikov E_2-term, it is infinitely generated over $R_m.$
The localized Adams spectral sequence (continued)

To repeat, the localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j}).$$
The localized Adams spectral sequence (continued)

To repeat, the localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j}).$$

We conjectured that there are differentials

$$d_{2p^i}h_{m+i,j} = v_mb_{i+j,m-1-j}^{p^i}$$

for $0 \leq j \leq m-1$ and $i+j > m$.

and no others.
To repeat, the localized Adams E_2-term for $Y(m)$ is

$$R_m \otimes E(h_{m+i,j}) \otimes P(b_{m+i,j}).$$

We conjectured that there are differentials

$$d_{2p^i} h_{m+i,j} = v_m b_{i+j,m-1-j}^{p^i}$$

for $0 \leq j \leq m - 1$ and $i + j > m$.

and no others. This would leave

$$E_\infty = R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j})/(b_{m+i,j}^{p^{m-1-j}}).$$
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m)$$

$$\otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m - 2)/(b^{p^{m-1}-j}_{m+i,j}).$$
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m)$$

$$\otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m - 2) / (b_b^{m-1-j})$$.

For $m = 1$ this reads $R_1 \otimes E(h_{2,0})$,

$$\otimes P(b_{2+i,j} : i > 0, 0 \leq j \leq m - 2) / (b_b^{m-1-j})$$.

Unfortunately we were unable to prove that the expected differentials all occur or that the $b_b^{m+i,j}$ are all permanent cycles.
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m)$$

$$\otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m - 2)/(b_{m+i,j}^{p^{m-1-j}}).$$

For $m = 1$ this reads $R_1 \otimes E(h_{2,0})$, which is also the Adams-Novikov E_2-term.
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m)$$

$$\otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m - 2)/(b_{m+i,j}^{p^{m-1-j}}).$$

For $m = 1$ this reads $R_1 \otimes E(h_{2,0})$, which is also the Adams-Novikov E_2-term.

For $m > 1$ the number of exterior generators is $(m^2 + m)/2$, which is fewer than the m^2 generators predicted by the telescope conjecture.
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m)$$

$$\otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m - 2)/(b_{m+i,j}^{p^{m-1-j}}).$$

For $m = 1$ this reads $R_1 \otimes E(h_{2,0})$, which is also the Adams-Novikov E_2-term.

For $m > 1$ the number of exterior generators is $(m^2 + m)/2$, which is fewer than the m^2 generators predicted by the telescope conjecture. For $m = 2$, the above reads

$$R_2 \otimes E(h_{3,0}, h_{3,1}, h_{4,0}) \otimes P(b_{2+i,0} : i > 0)/(b_{2+i,0}^{2i}).$$

Unfortunately we were unable to prove that the expected differentials all occur or that the $b_{m+i,j}$s are all permanent cycles.
The localized Adams spectral sequence (continued)

The conjectured localized Adams E_∞-term is

$$R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j} : i > 0, 0 \leq j \leq m-2)/(b_{m+i,j}^{m-1-j}).$$

For $m = 1$ this reads $R_1 \otimes E(h_{2,0})$, which is also the Adams-Novikov E_2-term.

For $m > 1$ the number of exterior generators is $(m^2 + m)/2$, which is fewer than the m^2 generators predicted by the telescope conjecture. For $m = 2$, the above reads

$$R_2 \otimes E(h_{3,0}, h_{3,1}, h_{4,0}) \otimes P(b_{2+i,0} : i > 0)/(b_{2+i,0}^1).$$

Unfortunately we were unable to prove that the expected differentials all occur or that the $b_{m+i,j}$s are all permanent cycles.
The localized Hill-Lawson spectral sequence

The Hill-Lawson E_1-term for the spectrum $y(m)$ is

$$E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j})$$

$$v_{m+n} \in E_1^{2p^{M+n-2},p^{n}}, \quad h_{m+i,j} \in E_1^{2p^i(p^{m+i}-1)-1,p^{i+j}}$$

$$b_{m+i,j} \in E_1^{2p^{i+1}(p^{m+i}-1)-2,p^{i+j+1}}$$
The localized Hill-Lawson spectral sequence

The Hill-Lawson E_1-term for the spectrum $y(m)$ is

\[E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j}) \]

\[v_{m+n} \in E_1^{2p^{M+n-2},p^n}, \quad h_{m+i,j} \in E_1^{2p^i(p^{m+i-1}-1),p^i+j} \]

\[b_{m+i,j} \in E_1^{2p^{i+1}(p^{m+i-1}-2),p^{i+j+1}}. \]

As we did for the (May) Adams E_1-term, we added m to all of the subscripts.
The localized Hill-Lawson spectral sequence

The Hill-Lawson E_1-term for the spectrum $y(m)$ is

$$E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j})$$

$$v_{m+n} \in E_1^{2p^{M+n-2}, p^n}, \quad h_{m+i,j} \in E_1^{2p^i(p^{m+i-1}-1), p^{i+j}}$$

$$b_{m+i,j} \in E_1^{2p^{i+1}(p^{m+i-1}-1)-2, p^{i+j+1}}.$$

As we did for the (May) Adams E_1-term, we added m to all of the subscripts. Here we have divided the previously defined filtrations by p^m.
The localized Hill-Lawson spectral sequence

The Hill-Lawson E_1-term for the spectrum $y(m)$ is

$$E_1 = P(v_{m+n} : n \geq 0) \otimes E(h_{m+i,j} : i > 0, j \geq 0) \otimes P(b_{m+i,j})$$

$$v_{m+n} \in E_1^{2p^{M+n-2}, p^n}, \quad h_{m+i,j} \in E_1^{2p^i(p^{m+i-1}-1), p^{i+j}}$$

$$b_{m+i,j} \in E_1^{2p^{i+1}(p^{m+i-1}-1)-2, p^{i+j+1}}.$$

As we did for the (May) Adams E_1-term, we added m to all of the subscripts. Here we have divided the previously defined filtrations by p^m.

Before discussing differentials we need to describe some internal structure of $y(m)$.
Recall that

\[H_\ast y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m) \subseteq A_\ast, \]

where \(A_\ast \) is the dual Steenrod algebra.
Recall that

\[H_*y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m) \subseteq A_*, \]

where \(A_* \) is the dual Steenrod algebra. This leads to a splitting

\[y(m) \wedge y(m) \cong \bigvee_\alpha \Sigma |\alpha| y(m) \]

with one summand for each monomial \(\alpha \) in \(H_*y(m) \),
The Hill-Lawson spectral sequence and the telescope conjecture

Doug Ravenel

The Hill-Lawson spectral sequence

The MRS spectrum $y(m)$

Inverting v_m

The Adams-Novikov spectral sequence

The localized Adams spectral sequence

The localized Hill-Lawson spectral sequence for $y(m)$

Internal Steenrod operations for $y(m)$

Recall that

$$H_*y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m) \subseteq A_*,$$

where A_* is the dual Steenrod algebra. This leads to a splitting

$$y(m) \wedge y(m) \cong \bigvee_{\alpha} \sum|\alpha| y(m)$$

with one summand for each monomial α in $H_*y(m)$, and to maps (cohomology operations)

$$y(m) \xrightarrow{\theta^\alpha} \sum|\alpha| y(m).$$
Recall that

\[H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m) \subseteq A_*, \]

where \(A_* \) is the dual Steenrod algebra. This leads to a splitting

\[y(m) \wedge y(m) \cong \bigvee_{\alpha} \Sigma^{\vert \alpha \vert} y(m) \]

with one summand for each monomial \(\alpha \) in \(H_* y(m) \), and to maps (cohomology operations)

\[y(m) \xrightarrow{\theta_{\alpha}} \Sigma^{\vert \alpha \vert} y(m). \]

These lead to right actions of a certain quotient of the Steenrod algebra (the dual of \(H_* y(m) \)).
Recall that

\[H_* y(m) \cong E(\tau_0, \ldots, \tau_{m-1}) \otimes P(\xi_1, \ldots, \xi_m) \subseteq A_* , \]

where A_* is the dual Steenrod algebra. This leads to a splitting

\[y(m) \wedge y(m) \cong \bigvee_{\alpha} \Sigma|\alpha| y(m) \]

with one summand for each monomial α in $H_* y(m)$, and to maps (cohomology operations)

\[y(m) \xrightarrow{\theta^\alpha} \Sigma|\alpha| y(m) . \]

These lead to right actions of a certain quotient of the Steenrod algebra (the dual of $H_* y(m)$) on each of our spectral sequences.
Internal Steenrod operations for $y(m)$

The action of internal Steenrod operations in the Hill-Lawson E_1-term for each $i > 0$ is shown below.

\[
\begin{align*}
\beta : v_{m+i} &\xrightarrow{P^1} v_{m+i-1}^p \xrightarrow{P^p} v_{m+i-2}^{p^2} \xrightarrow{P^{p^2}} \cdots \\
\beta : h_{m+i,0} &\xrightarrow{P^1} h_{m+i-1,1} \xrightarrow{P^p} h_{m+i-2,2} \xrightarrow{P^{p^2}} \cdots \\
h_{m+i,m} &\xrightarrow{\beta} b_{m+i,m-1}^p \xrightarrow{P^1} b_{m+i,m-2}^{p^2} \xrightarrow{P^p} b_{m+i,m-3}^{p^2} \xrightarrow{P^{p^2}} \cdots
\end{align*}
\]
The action of internal Steenrod operations in the Hill-Lawson E_1-term for each $i > 0$ is shown below.

\[
\begin{align*}
\beta \downarrow & \\
\nu_{m+i} & \xrightarrow{P^1} \nu_{m+i-1}^p & \xrightarrow{P^p} \nu_{m+i-2}^{p^2} & \xrightarrow{P^{p^2}} \cdots \\
\beta \downarrow & \\
h_{m+i,0} & \xrightarrow{P^1} h_{m+i-1,1} & \xrightarrow{P^p} h_{m+i-2,2} & \xrightarrow{P^{p^2}} \cdots \\
\beta \downarrow & \\
h_{m+i,m} & \xrightarrow{P^1} b_{m+i,m-1}^p & \xrightarrow{P^p} b_{m+i,m-2}^{p^2} & \xrightarrow{P^{p^2}} \cdots \\
\end{align*}
\]

Elements shown above that are linked by these operations all have the same Hill-Lawson filtration.
The action of internal Steenrod operations in the Hill-Lawson E_1-term for each $i > 0$ is shown below.

\[
\begin{align*}
 v_{m+i} & \xrightarrow{P^1} v_{m+i-1}^p & \xrightarrow{P^p} v_{m+i-2}^{p^2} & \xrightarrow{P^{p^2}} \cdots \\
 h_{m+i,0} & \xrightarrow{P^1} h_{m+i-1,1} & \xrightarrow{P^p} h_{m+i-2,2} & \xrightarrow{P^{p^2}} \cdots \\
 h_{m+i,m} & \xrightarrow{\beta} b_{m+i,m-1}^p & \xrightarrow{P^p} b_{m+i,m-2}^{p^2} & \xrightarrow{P^{p^2}} \cdots \\
\end{align*}
\]

Elements shown above that are linked by these operations all have the same Hill-Lawson filtration. This is not true for the Adams and Novikov filtrations.
Internal Steenrod operations for \(y(m) \)

(continued)

The action of internal Steenrod operations in the Hill-Lawson \(E_1 \)-term for each \(i > 0 \) is shown below.

\[
\begin{align*}
& v_{m+i} \xrightarrow{P_1} v_{m+i-1} \xrightarrow{P^0} v_{m+i-2} \xrightarrow{P^0} \cdots \\
& h_{m+i,0} \xrightarrow{P_1} h_{m+i-1,1} \xrightarrow{P^0} h_{m+i-2,2} \xrightarrow{P^0} \cdots \\
& h_{m+i,m} \xrightarrow{\beta} b_{m+i,m-1} \xrightarrow{P_1} b_{m+i,m-2} \xrightarrow{P^0} b_{m+i,m-3} \xrightarrow{P^0} \cdots
\end{align*}
\]

Elements shown above that are linked by these operations all have the same Hill-Lawson filtration. This is not true for the Adams and Novikov filtrations. Each sequence has finite length because one of the subscripts in it eventually gets too small.
Some Hill-Lawson d_1s

It is easy to show that $d_1 v_{2m+i} = v_m h_{m+i,m}$.

Some Hill-Lawson d_1s
Some Hill-Lawson d_1s

It is easy to show that $d_1 v_{2m+i} = v_m h_{m+i,m}$. Differentials must commute with internal Steenrod operations, so for each $i > 0$ we get a diagram
Some Hill-Lawson d_1s

It is easy to show that $d_1 v_{2m+i} = v_m h_{m+i,m}$. Differentials must commute with internal Steenrod operations, so for each $i > 0$ we get a diagram

$$
\begin{align*}
 v_{m} h_{m+i,m} \xrightarrow{\beta} v_{m} b_{m+i,m-1} & \xrightarrow{p^1} v_{m} b_{m+i,m-2}^p & \xrightarrow{p^p} \cdots \\
 d_1 \uparrow & \quad d_1 \uparrow & \quad d_1 \uparrow \\
 v_{2m+i} \xrightarrow{\beta} h_{2m+i,0} & \xrightarrow{p^1} h_{2m+i-1,1} & \xrightarrow{p^p} \cdots
\end{align*}
$$

These d_1s correspond to the $d_p j$s that Mahowald, Shick and I wanted in the localized Adams spectral sequence! I will call them Steenrod differentials. This is why I like the Hill-Lawson spectral sequence.
Some Hill-Lawson d_1s

It is easy to show that $d_1v_{2m+i} = v_m h_{m+i,m}$. Differentials must commute with internal Steenrod operations, so for each $i > 0$ we get a diagram

\[
\begin{array}{cccccc}
 v_m h_{m+i,m} & \xrightarrow{\beta} & v_m b_{m+i,m-1} & \xrightarrow{p^1} & v_m b_{m+i,m-2} & \xrightarrow{p^p} \\
 d_1 \uparrow & & d_1 \uparrow & & d_1 \uparrow & \\
 v_{2m+i} & \xrightarrow{\beta} & h_{2m+i,0} & \xrightarrow{p^1} & h_{2m+i-1,1} & \xrightarrow{p^p} \\
\end{array}
\]

These d_1s correspond to the d_ps that Mahowald, Shick and I wanted in the localized Adams spectral sequence!
Some Hill-Lawson d_1s

It is easy to show that $d_1 v_{2m+i} = v_m h_{m+i,m}$. Differentials must commute with internal Steenrod operations, so for each $i > 0$ we get a diagram

$$
\begin{align*}
&v_m h_{m+i,m} \xrightarrow{\beta} v_m b_{m+i,m-1} \xrightarrow{P^1} v_m b^p_{m+i,m-2} \xrightarrow{P^p} \cdots \\
&v_{2m+i} \xrightarrow{\beta} h_{2m+i,0} \xrightarrow{P^1} h_{2m+i-1,1} \xrightarrow{P^p} \cdots
\end{align*}
$$

These d_1s correspond to the d_{pi}s that Mahowald, Shick and I wanted in the localized Adams spectral sequence! I will call them Steenrod differentials.
Some Hill-Lawson d_1s

It is easy to show that $d_1 v_{2m+i} = v_m h_{m+i,m}$. Differentials must commute with internal Steenrod operations, so for each $i > 0$ we get a diagram

$$
\begin{align*}
v_m h_{m+i,m} & \xrightarrow{\beta} v_m b_{m+i,m-1} & \xrightarrow{p^1} v_m b_{m+i,m-2} & \xrightarrow{p^p} \\
& \uparrow d_1 & \uparrow d_1 & \uparrow d_1 \\
v_{2m+i} & \xrightarrow{\beta} h_{2m+i,0} & \xrightarrow{p^1} h_{2m+i-1,1} & \xrightarrow{p^p} \\
& & & \\
\end{align*}
$$

These d_1s correspond to the $d_\rho j$s that Mahowald, Shick and I wanted in the localized Adams spectral sequence! I will call them Steenrod differentials.

This is why I like the Hill-Lawson spectral sequence.
A possible E_2 structure

Since $y(m)$ is the Thom spectrum associated with a loop map (but not a double loop map),
A possible E_2 structure

Since $y(m)$ is the Thom spectrum associated with a loop map (but not a double loop map), it is an E_1 ring spectrum, but not an E_2 one.
Since $y(m)$ is the Thom spectrum associated with a loop map (but not a double loop map), it is an E_1 ring spectrum, but not an E_2 one.

It is known that any E_1 ring spectrum R has an E_2 center $Z(R)$, AKA its topological Hochschild cohomology.
A possible E_2 structure

Since $y(m)$ is the Thom spectrum associated with a loop map (but not a double loop map), it is an E_1 ring spectrum, but not an E_2 one.

It is known that any E_1 ring spectrum R has an E_2 center $\mathcal{Z}(R)$, AKA its topological Hochschild cohomology. $H_\ast \mathcal{Z}(y(m))$ is accessible and gives the impression that

$$\mathcal{Z}(y(m)) \cong F(J_{p^m-1}S^2, y(m)),$$

a certain function spectrum.
Since $y(m)$ is the Thom spectrum associated with a loop map (but not a double loop map), it is an E_1 ring spectrum, but not an E_2 one.

It is known that any E_1 ring spectrum R has an E_2 center $\mathcal{Z}(R)$, AKA its topological Hochschild cohomology. $H_* \mathcal{Z}(y(m))$ is accessible and gives the impression that

$$\mathcal{Z}(y(m)) \simeq F(J_{p^{m-1}} S^2, y(m)),$$

a certain function spectrum. Its Hill-Lawson filtration may or may not be compatible with its E_2 structure.

A possible E_2 structure
Since \(y(m) \) is the Thom spectrum associated with a loop map (but not a double loop map), it is an \(E_1 \) ring spectrum, but not an \(E_2 \) one.

It is known that any \(E_1 \) ring spectrum \(R \) has an \(E_2 \) center \(\mathcal{Z}(R) \), AKA its topological Hochschild cohomology. \(H_* \mathcal{Z}(y(m)) \) is accessible and gives the impression that

\[
\mathcal{Z}(y(m)) \simeq F(J_{p^{m-1}} S^2, y(m)),
\]

a certain function spectrum. Its Hill-Lawson filtration may or may not be compatible with its \(E_2 \) structure. If it is, the spectral sequence has certain Dyer-Lashof operations.
A possible E_2 structure (continued)

If we have the desired E_2 structure, we get the following diagram for each $i > 0$, where the horizontal arrows are Dyer-Lashof operations.
A possible E_2 structure (continued)

If we have the desired E_2 structure, we get the following diagram for each $i > 0$, where the horizontal arrows are Dyer-Lashof operations.

If we have the desired E_2 structure, we get the following diagram for each $i > 0$, where the horizontal arrows are Dyer-Lashof operations.

$$v_m h_{m+i, m} \xrightarrow{Q_1} v_m^p h_{m+i, m+1} \xrightarrow{Q_1} v_m^{p^2} h_{m+i, m+2} \xrightarrow{Q_1} \cdots$$

$$d_1$$

$$v_{2m+i} \xrightarrow{Q_0} v_{2m+i}^p$$

$$d_p$$

$$v_{2m+i}^p \xrightarrow{Q_0} v_{2m+i}^{p^2} \xrightarrow{Q_0} \cdots$$

$$d_{p^2}$$

These longer Hill-Lawson differentials correspond to d_1's in both the Adams and Adams-Novikov spectral sequences. I will call them Dyer-Lashof differentials.
If we have the desired E_2 structure, we get the following diagram for each $i > 0$, where the horizontal arrows are Dyer-Lashof operations.

These longer Hill-Lawson differentials correspond to d_1s in both the Adams and Adams-Novikov spectral sequences.
A possible \mathbb{E}_2 structure (continued)

If we have the desired \mathbb{E}_2 structure, we get the following diagram for each $i > 0$, where the horizontal arrows are Dyer-Lashof operations.

These longer Hill-Lawson differentials correspond to d_1's in both the Adams and Adams-Novikov spectral sequences.

I will call them Dyer-Lashoff differentials.
Conclusion

After taking these Steenrod and Dyer-Lashoff differentials into account, we would be left with

\[R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j})/\left(b_{m+i,j}^{p-1-j} \right). \]
Conclusion

After taking these Steenrod and Dyer-Lashoff differentials into account, we would be left with

\[R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j})/(b_{p_{m-1-j}}). \]

This is similar to the answer Mahowald, Shick and I were hoping for.
Conclusion

After taking these Steenrod and Dyer-Lashoff differentials into account, we would be left with

\[R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j})/(b_{m+i,j}^{p^{-1}-j}). \]

This is similar to the answer Mahowald, Shick and I were hoping for. However we still do not know how to show that the \(b_{m+i,j} \)s are all permanent cycles.
After taking these Steenrod and Dyer-Lashoff differentials into account, we would be left with

\[R_m \otimes E(h_{m+i,j} : i + j \leq m) \otimes P(b_{m+i,j})/(b_{m+i,j}^{p-1-j}). \]

This is similar to the answer Mahowald, Shick and I were hoping for. However we still do not know how to show that the \(b_{m+i,j} \)s are all permanent cycles.
THANK YOU!
The Hill-Lawson spectral sequence and the telescope conjecture

Doug Ravenel

The Hill-Lawson spectral sequence

The MRS spectrum $y(m)$

Inverting v_m

The Adams-Novikov spectral sequence

The localized Adams spectral sequence

The localized Hill-Lawson spectral sequence for $y(m)$

Internal Steenrod operations for $y(m)$

Some Hill-Lawson d_1's

A possible E_2 structure

Table of spectral sequence filtrations and dimensions

<table>
<thead>
<tr>
<th>Spectral sequence</th>
<th>v_{m+n}</th>
<th>$h_{m+i,j}$</th>
<th>$b_{m+i,j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams-Novikov</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Adams</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hill-Lawson</td>
<td>p^n</td>
<td>p^{i+j}</td>
<td>p^{i+j+1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{m+n}</td>
<td>$2p^{m+n} - 2$</td>
</tr>
<tr>
<td>$h_{m+i,j}$</td>
<td>$2p^i(p^{m+i} - 1) - 1$</td>
</tr>
<tr>
<td>$b_{m+i,j}$</td>
<td>$2p^{i+1}(p^{m+i} - 1) - 2$</td>
</tr>
</tbody>
</table>
Hill-Lawson differentials

Steenrod differentials:

\[
\begin{align*}
v_m h_{m+i, m} &\xrightarrow{\beta} v_m b_{m+i, m-1} \xrightarrow{\beta} v_m b_{m+i, m-2} \xrightarrow{P^1} \cdots \\
v_{2m+i} &\xrightarrow{\beta} h_{2m+i, 0} \xrightarrow{P^1} h_{2m+i-1, 1} \xrightarrow{P^p} \cdots
\end{align*}
\]

Dyer-Lashof differentials:

\[
\begin{align*}
v_m h_{m+i, m} &\xrightarrow{Q_1} v_m b_{m+i, m+1} \xrightarrow{Q_1} v_m b_{m+i, m+2} \xrightarrow{Q_0} \cdots \\
v_{2m+i} &\xrightarrow{Q_0} v_{2m+i} \xrightarrow{Q_0} v_{2m+i} \xrightarrow{Q_0} \cdots
\end{align*}
\]