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This paper is the final outcome of a joint summer research project in which

we canvassed mathematical competitions from around the world (William

Lowell Putnam Competition, International Mathematical Olympiad, regional

and national mathematical contests etc.), looking for real analysis problems.

The reason for that was the intention of the second author to prepare for the

Putnam contest. Our motivation for the selection process of the problems

is that varying nations have different mathematical cultures; for instance, in

Romania, the level of high-school analysis can compare to some extent with

the one of introductory real analysis taught in American universities (e.g.

the upper-division course Math 104 ”Introduction to Analysis” taught by

the first author at University of California, Berkeley).

To our surprise we were able to identify a common theme persisting

throughout the past twenty years. This theme is represented by 21 prob-

lems, involving a continuous function verifying a recursive based formula.

Our approach is as follows: first we present the problems, then we formulate

the main theoretical results and finally we apply them to solve the problems.

The findings of this article could prove useful to future participants of math-

ematical competitions as there was a distinct trend towards administering

problems fitting the criterions presented in this article.
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Problems

1.(IMO1 1983) [1] Find f : (0,∞) −→ (0,∞) continuous function satisfying:

f(x · f(y)) = f(x) · y, ∀x, y ∈ (0,∞)

limx→∞ f(x) = 0.

2.(ROM2 1983) [1] Let a, b ∈ (0, 1
2
) and f : R −→ R a continuous function

satisfying

f(f(x)) = a · f(x) + bx, ∀x ∈ R

Prove that f(0) = 0.

3.(ROM 1984) [1] Let a 6= 0,±1. Find all the functions f : R −→ R,

differentiable at 0, verifying

f(f(x)) = ax, ∀x ∈ R

4.(ROM 1985) [1] Let f : R −→ R be a continuous function such that

f(x2) =
f(x)

x
, ∀x 6= 0

Prove that f ≡ 0.

5.(ROM 1985) [1] Let f : R −→ R be a continuous function at 0 such that

f(ax) = b · f(x) + c, ∀x ∈ R

where 0 ≤ a ≤ 1, 1 < b and c ∈ R. Prove that f is constant.

6.(ROM 1985) [1] Find f : R −→ R a continuous function at 0 such that

f(x) − 2f(tx) + f(t2x) = x2, ∀x ∈ R

where t ∈ (0, 1) is a fixed number.

7.(ROM 1986) [1] Find f : R −→ R a continuous function at 0 such that

f(0) = 1986 and

f(x) − f(ax) = x3 + x2, ∀x ∈ R
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where a ∈ (0, 1) is a fixed number.

8.(ROM 1987,1998) [1] Find f : (0,∞) −→ (0,∞) continuous function sat-

isfying:

f(x · f(y)) = f(x
y
) · y2, ∀x, y ∈ (0,∞)

limx→∞ f(x) = 0

9.(ROM 1987) [1] Find all the continuous functions f : R −→ R, verifying

f(x) = f(2x + 1), ∀x ∈ R

10.(ROM 1989) [1] Find all the continuous functions f : R −→ R, verifying

f(x) = f(
3
√

x2 + 2x + 12), ∀x ∈ R

11.(ROM 1991) [1] Find f : R −→ R a continuous function at 0 such that

f(tx) − f(x) = tx, ∀x ∈ R

where t ∈ (0, 1) is a fixed number.

12.(ROM 1991) [1] Find f : R −→ R a continuous function at 0 such that

f(0) = 1 and

3f(x) − 5f(ax) + 2f(a2x) = x, ∀x ∈ R

where a ∈ (0, 1) is a fixed number.

13.(ROM 1994) [3] Find f : R −→ R a function differentiable at x = 6 such

that
f(x)

2
+ 3 = f(

x

2
+ 3), ∀x ∈ R

14.(WLP3 1996) [5] Let c > 0. Find all the continuous functions f : R −→ R,

verifying

f(x) = f(x2 + c), ∀x ∈ R
3William Lowell Putnam Competition
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15.(ROM 1998) [2] Find all the continuous functions f : R −→ R, verifying

f(x) = f(x2 +
1

4
), ∀x ∈ R

16.(ROM 2000) [4] Let k ≥ 2 be an integer and f : [0,∞) −→ R a continuous

function such that

f(x) = f(xk), ∀x ∈ [0,∞)

Prove that f is constant.

17.(ROM 2000) [4] Find f : (0,∞) −→ (0,∞) continuous function satisfy-

ing:

f(x · f(y)) = f(x
y
), ∀x, y ∈ (0,∞)

limx→∞ f(x) = 0

18.(WLP 2000) [5] Let f : R −→ R be a continuous function such that

f(2x2 − 1) = 2x · f(x), ∀x ∈ R

Prove that f ≡ 0 on [−1, 1].

19.(ROM 2000) [4] Letf : R −→ R+ a continuous function at 0 such that

f(2x) · f(3x) = 32x, ∀x ∈ R

Prove that f(x) = 2x, ∀x ∈ R.

20.(ROM 2000) [4] Let k > 1 be an integer. Find f : R −→ R a continuous

function at 0 such that

k · f(kx) = f(x) + kx, ∀x ∈ R

21.(WLP 2001) [1] Let a, b ∈ (0, 1
2
) and f : R −→ R a continuous function

satisfying

f(f(x)) = a · f(x) + bx, ∀x ∈ R

Prove that there exists c ∈ R such that f(x) = c · x, ∀x ∈ R.
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Theoretical results

Proposition 1. Let D ⊆ R and h : D −→ R, g : D −→ D two functions

such that h is continuous at a point L ∈ D and

h(x) = h(g(x)), ∀x ∈ D

If ∀x ∈ D, limn gn(x)4 = L, then h is necessarily constant on D.

Proof. Fix x ∈ D. Then, using the hypothesis, we obtain

h(x) = h(g(x)) = h(g(g(x))) = · · · = h(gn(x))

This implies, due to the continuity of h at L,

h(x) = lim
n

h(gn(x)) = h(lim
n

gn(x)) = h(L)

Since x was chosen arbitrarily, it follows that:

h(x) = h(L), ∀x ∈ D

Therefore, h is constant on D.

Proposition 2. i) If (xn)n is a sequence defined by xn+1 = axn +b, ∀n ≥ 0,

then:

xn = x0 + nb, a = 1

xn = an · (x0 − b
1−a

) + b
1−a

, a 6= 1

ii)If (xn)n is a sequence defined by xn+1 = axn + bxn−1, ∀n ≥ 1, then:

xn = (c1 + nc2) · λn, a2 + 4 · b = 0

xn = c1λ
n
1 + c2λ

n
2 , a2 + 4 · b 6= 0

where c1, c2 are constants and λ, λ1, λ2 are solutions for the equation z2−
−az − b = 0.

Proof. We will prove both results in the non-trivial cases:

4g1(x) = g(x), g2(x) = g(g(x)) etc.
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i) a 6= 1. We can write the equation in the form

xn+1 −
b

1− a
= a · (xn −

b

1− a
), ∀n ≥ 0

which clearly gives the desired formula.

ii) a2 + 4 · b 6= 0. Using the fact that λ1 + λ2 = a and λ1λ2 = −b, we can

infer that

xn+1 − λ1xn = λ2 · (xn − λ1xn−1) ∀n ≥ 1

which again, in a few steps, implies the result.

Solutions

Problems 1, 8, 17: Taking y = 1 in the main equations we obtain in all the

cases f(x · f(1)) = f(x), which implies also:

f(x) = f(x · f(1)) = f(
x

f(1)
)

Taking now in Proposition 1 either g(x) = x · f(1) or g(x) = x · 1
f(1)

depending on whether f(1) > 1 or f(1) < 1, we obtain, using limx→∞ f(x) =

0, that f ≡ 0, contradiction. Therefore f(1) = 1. Plugging in right now

x = y for Problem 1, x = y2 for Problem 8 and x = y for Problem 17 we

obtain, respectively:

f(x · f(x)) = x · f(x), ∀x ∈ (0,∞)

f(x2 · f(x)) = x2 · f(x), ∀x ∈ (0,∞)

f(x · f(x)) = 1, ∀x ∈ (0,∞)

Denoting x · f(x) = a for Problems 1, 17 and x2 · f(x) = a for Problem 8, by

induction, we can infer that:

f(a2n
) = a2n

, ∀n ∈ Z

f(a2n
) = a2n

, ∀n ∈ Z

f(a2n
) = 1, ∀n ∈ Z

6



These relations, combined once again with the hypothesis limx→∞ f(x) = 0,

imply that a = 1 and so the solutions for the three problems are respectively:

f(x) = 1
x
, ∀x ∈ (0,∞)

f(x) = 1
x2 , ∀x ∈ (0,∞)

f(x) = 1
x
, ∀x ∈ (0,∞)

Problems 2, 21: The two solutions for z2 − az − b = 0 satisfy

−1 < λ1 =
a−

√
a2 + 4b

2
< 0 < λ2 =

a +
√

a2 + 4b

2
< 1, |λ1| < λ2

Let us fix x ∈ R. According to Proposition 2, applied for xn = fn(x), we

obtain

fn(x) = c1(x) · λn
1 + c2(x) · λn

2 , ∀n ∈ N

where the two constants depend on x. This implies limn fn(x) = 0, ∀x ∈ R,

which prompts

0 = lim
n

fn+1(x) = f(lim
n

fn(x)) = f(0)

Due to the equation, we also notice that f is one-to-one and so, being con-

tinuous, it must be strictly increasing or strictly decreasing. Again, using

the equation, we deduce that f cannot be bounded as x → ±∞ and so, f

must be onto and hence invertible. This implies also:

fn(x) = c1(x) · λn
1 + c2(x) · λn

2 , ∀n ∈ Z

Now suppose f is increasing and that c1(x) 6= 0. Then for n sufficiently large,

c1(x) ·λ−n
1 dominates c2(x) ·λ−n

2 , so (f−n(x))n alternates in sign but increases

in absolute value as n increases. For suitable N we will have f−N−2(x) >

> f−N(x) > 0, but f−N−1(x) < f−N+1(x) < 0. In other words A > B, but

f(A) < f(B), contradicting the fact that f is increasing. So we must have

c1(x) = 0, ∀x ∈ R. Hence

f(x) = λ2x, ∀x ∈ R
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Similarly it is treated the case when f is decreasing.

Problem 3: Taking x = f(y) in the main equation, we deduce

f(ay) = f 3(y) = a · f(y)

which implies f(0) = 0 and

f(x)

x
=

f(ax)

ax
, ∀x 6= 0

We can apply Proposition 1 either for h(x) = f(x)
x

and g(x) = ax or

h(x) = f(x)
x

and g(x) = x
a
, depending on whether |a| ≤ 1 or |a| > 1. Due to

the differentiability of f at 0, we obtain:

f(x)

x
= f ′(0), ∀x 6= 0

which implies that either

f(x) =
√

a · x, ∀x ∈ R

or

f(x) = −
√

a · x, ∀x ∈ R

Problem 4: We can write the equation satisfied by f in the form

x2 · f(x2) = x · f(x), ∀x ∈ R

For |x| < 1 we apply Proposition 1 with h(x) = x · f(x) and g(x) = x2, to

obtain

x · f(x) = 0, ∀x ∈ [−1, 1]

For |x| > 1, we take advantage of the fact that f is odd and so it is enough

to prove the claim for x > 1. In this case we apply the same proposition, but

with h(x) = x · f(x) and g(x) =
√

x, to obtain

x · f(x) = f(1), ∀x > 1

Continuity of f then ends the problem.
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Problem 5: We apply the first part of the Proposition 2 for xn = f(anx)

to deduce

f(anx) = bn · (f(x)− c

1− b
) +

c

1− b
, ∀n ∈ N

Using now the continuity of f , we conclude that f ≡ c
1−b

.

Problem 6: In this instance we use the second part of Proposition 2 for

xn = f(tnx)− ( tnx
1−t2

)2, which verifies

xn+1 − 2xn + xn−1 = 0, ∀n ∈ N

This implies, using the continuity of f at 0, that:

f(x) = (
x

1− t2
)2 + C, ∀x ∈ R

where C ∈ R is a constant.

Problem 7: Consider h(x) = f(x) + x3

a3−1
+ x2

a2−1
. Then our equation can be

written as

h(x) = h(ax), ∀x ∈ R

Applying now Proposition 1 for h and g(x) = ax, we obtain that:

h(x) = h(0), ∀x ∈ R

Therefore f(x) = − x3

a3−1
− x2

a2−1
+ 1986, ∀x ∈ R.

Problem 9: If we try to apply Proposition 1 for g(x) = 2x + 1, the

sequence (gn(x))n will be divergent for ∀x 6= 1. The way out of this is to

write the equation in the form

f(y) = f(
y − 1

2
), ∀ y ∈ R

due to g−1(y) = y−1
2

, the inverse of the function g. Direct application of the

same proposition yields:

f(y) = f(−1), ∀ y ∈ R
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Problem 10: A standard sequence analysis shows that, for g(x) = 3
√

x2 + 2x + 12,

we have

lim
n

gn(x) = 3, ∀x ∈ R

and so f(x) = f(3), ∀x ∈ R.

Problem 11: As in Probelm 7 we write the main equation in the form

f(tx)− t2x

t− 1
= f(x)− tx

t− 1
, ∀x ∈ R

to conclude that:

f(x) =
tx

t− 1
+ C, ∀x ∈ R

where C ∈ R is a constant.

Problem 12: We pick xn = f(anx)− anx
2a2−5a+3

which verifies

2xn+1 − 5xn + 3xn−1 = 0, ∀n ∈ N

This implies, by Proposition 2, that:

xn = (3x0 − 2x1) + (2x1 − 2x0)(
3

2
)n, ∀n ∈ N

Using the continuity of the function at 0, it follows that x1 = x0 and so,

using the previous relation, we obtain also that

xn = x0, ∀n ∈ N

Using once again the continuity we conclude:

f(x) =
x

2a2 − 5a + 3
+ 1, ∀x ∈ R

Problem 13: Fix x ∈ R and define the sequence

x0 = x, xn+1 =
xn

2
+ 3, ∀n ∈ N

Applying the first part of Proposition 2 for this sequence, it follows that:

xn =
1

2n
· (x− 6) + 6, ∀n ∈ N
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and limn xn = 6. It can be seen immediately that f(6) = 6 and also

f(xn+1) =
f(xn)

2
+ 3, ∀n ∈ N

So using the same result as above, we infer that:

f(xn) =
1

2n
· (f(x)− 6) + 6, ∀n ∈ N

Combining the formulae for xn and f(xn), we write

f(xn)− f(6)

xn − 6
=

f(x)− f(6)

x− 6
, ∀n ∈ N

which, due to limn xn = 6 and the differentiability of f at 6, implies

f(x) = λ · (x− 6) + 6, ∀x ∈ R

where λ ∈ R is a fixed constant.

Problems 14, 15: First, we remark that f is even and so we can restrict our

analysis to [0,∞). We split the discussion into three cases:

0 < c < 1
4
: In this instance the equation x2 − x + c = 0 has two real roots

x1 =
1−

√
1− 4c

2
< x2 =

1 +
√

1− 4c

2

For 0 ≤ x < x2, we apply Proposition 1 for g(x) = x2 + c to obtain:

f(x) = f(x1), ∀x ∈ [0, x2)

For x2 < x, limn gn(x) = ∞ and, as in Problem 9, we will use the inverse

g−1(y) =
√

y − c to deduce

f(y) = f(lim
n

g−n(y)) = f(x2), ∀ y ∈ (x2, +∞)

This shows that the only solutions in this case are the constant functions.

c = 1
4
: As before, for 0 ≤ x ≤ 1

2
we apply Proposition 1 for g(x) = x2+ 1

4
,

while for 1
2

< x we use g−1(y) =
√

y − 1
4

to deduce

f(x) = f(
1

2
), ∀x ∈ [0,∞)
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c > 1
4
: In this case none of the above approaches works. If we define x0 = 0

and xn+1 = x2
n + c, then f is completely defined by prescribing its values on

[x0, x1) = [0, c), because f([xn, xn+1)) = f([x0, x1)), ∀n ∈ N.

Problem 16: We use the same technique as in Problem 4. For 0 ≤ x < 1 we

apply Proposition 1 with g(x) = xk to infer

f(x) = f(0), ∀x ∈ [0, 1)

while for x > 1 our choice will be g−1(x) = x
1
k , which shows:

f(x) = f(1), ∀x ∈ [1, +∞)

These facts prove that f is constant.

Problem 18: For x ∈ [−1, 1], there exists a θ ∈ [0, π] such that x = cos θ.

Substituting x = cos θ
2

in the main equation we obtain

f(cos θ)

sin θ
=

f(cos θ
2
)

sin θ
2

, ∀ θ ∈ (0, π)

Here we apply Proposition 1 with h(x) = f(cos x)
sin x

and g(x) = x
2

to deduce:

f(cos θ)

sin θ
= lim

x→1

f(x)√
1− x2

= 0, ∀ θ ∈ (0, π)

due to the fact f is differentiable at 1 and f ′(1) = 0 (these can be deduced

easily from the equation). Therefore f ≡ 0 on [−1, 1].

Problem 19: Consider h(x) = f(x)
2x . Then, the main equation can be rewrit-

ten as

h(2x) · h(3x) = 1, ∀x ∈ R

This implies:

h(x) = h(
4

9
x), ∀x ∈ R

We apply Proposition 1 for h and g(x) = 4
9
x to infer that

h(x) = h(0), ∀x ∈ R
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Using the hypothesis on values of f , it follows that:

h(x) = 1, ∀x ∈ R

which concludes the problem.

Problem 20: We take a similar approach to the ones in Problems 7,11 to

transform the recurrence formula into:

f(kx)− k2x

k2 − 1
=

1

k
· (f(x)− kx

k2 − 1
), ∀x ∈ R

Applying now Proposition 2 for xn = f(knx)− kn+1x
k2−1

, we obtain

f(knx)− kn+1x

k2 − 1
=

1

kn
· (f(x)− kx

k2 − 1
), ∀x ∈ R ,∀n ∈ Z

Taking now n → −∞, we conclude that

f(x) =
kx

k2 − 1
, ∀x ∈ R

Acknowledgment First author would like to thank his wife for the advice

of always following his heart in writing a paper like this one. Second author

would like to thank his fiance, the first author, and the UCLEADS program

for their invaluable support.

References

[1] Mathematical Gazette (in Romanian), 89-109 (1983-2003).

[2] Mircea Becheanu, Dan Brânzei, Marin Chirciu, Vasile Gorgotă, Sorin Ul-
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