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Abstract

We investigate the local well-posedness for quasilinear wave equations in R2+1.
Our work extends the geometric methods pioneered by Klainerman and Klainerman-
Rodnianski for similar problems in R3+1. The main new ingredient of the argument is
the use of two new vectorfields, the scaling vectorfield S and the angular momentum
vectorfield Ω, which complement the decay information provided by the Morawetz
vectorfield K.

1 Introduction

In this article we consider the following Cauchy problem:

∂2
t φ− gij(φ)∂i∂jφ = N(φ, ∂φ),

φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), (t, x) ∈ R1+n.
(1)

where the metric g(u) = (gij(u))i,j=1,...,n is a smooth, uniformly positive definite matrix

and the nonlinearity N(φ, ∂φ) is quadratic in ∂φ. Assuming that the initial data satisfies

(φ0, φ1) ∈ Hs(Rn)×Hs−1(Rn), we will be interested in the local well-posedness of the initial

value problem (1), e.g. for what values of s there exists a unique local solution

φ ∈ C([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs−1(Rn)).

The expected range for s is

s > max{n
2
,
n+ 5

4
} (2)

where the first exponent comes from scaling, while the second one, according to Linblad [9],

is connected with the concentration of null rays. Recently, Smith and Tataru [15] proved
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that this is the range in the case of the dimensions n = 2, 3 for general systems of quasilinear

wave equations, while Klainerman and Rodnianski [8] showed it in the particular case of the

Einstein vacuum equations (n = 3) . For φ a smooth solution of equation (1), we have the

following Hs-energy estimate, true for any s > 0 :

‖∂φ(t)‖Hs−1 . ‖∂φ(0)‖Hs−1 · exp(

∫ t

0

‖∂φ(τ)‖L∞x dτ) (3)

In order to obtain a local well-posedness result, one needs to control the integral term in (3).

The ’classical’ approach is by using the Sobolev inequality :∫ t

0

‖∂φ(τ)‖L∞x dτ ≤ t · sup
0≤τ≤t

‖∂φ(τ)‖Hs−1
x

(4)

where s needs to satisfy s > n
2

+ 1. Combining (3) and (4), together with a Picard iteration

argument, we obtain local well-posedness for s in the range s > n
2

+ 1. In the form pre-

sented above, the result appears in a paper by Hughes-Kato-Marsden [3]. Another way of

estimating the integral term
∫ t

0
‖∂φ(τ)‖L∞x dτ , locally in time, is through Strichartz estimates

for ‖∂φ‖L4
t L∞x

(n = 2) and ‖∂φ‖L2
t L∞x

(n ≥ 3). Using such estimates, Ponce and Sideris [11]

proved that the semilinear wave equation �φ = |∂φ|2 is well-posed in H
n
2
+ 3

4
+ε(Rn) for n = 2

and H
n
2
+ 1

2
+ε(Rn) when n ≥ 3. The scheme to keep in mind when attempting to prove a

local well-posedness result for the equation (1), based on Strichartz estimates (and of course

energy estimates), is captured in the following:

Heuristic argument In view of the energy estimate (3), one can make the bootstrap as-

sumptions φ ∈ C([0, T ], Hs(Rn)) and ∂φ ∈ L1
tL

∞
x . This implies that the metric g = g(φ)

satisfies the same conditions. So under these assumptions for g, one needs to prove Strichartz

estimates for the wave operator �g = ∂2
t − gij(t, x)∂i∂j, with s ≥ s0. This, in turn, will

imply local well-posedness in the space Hs0.

The first results were proved by Kapitanski [4] and Mockenhaupt-Seeger-Sooge [10] for

smooth metrics. A significant improvement came later, when Smith [12] proved, for n = 2, 3,

the full Strichartz estimates for metrics with C2 coefficients. This is the sharp result, as it

was shown later by a counterexample in Smith-Sogge [13]. Smith relied on a technique based

on the approximation of the solution using a wave packet decomposition. This construction

turned out to be very important and was also used in the recent paper of Smith and Tataru

[15]. Observe that according to this scheme, in order to apply Smith’s result, one needs

Hs-regularity of the coefficients, with s > n
2

+ 2, and so is not able to recover even the

classical result corresponding to s > n
2

+ 1. This is why one needs Strichartz-type estimates

for metrics with very rough coefficients. An important breakthrough took place when it was

first realized, independently by Bahouri-Chemin [1], [2] and Tataru [16], that in order to

go below this C2 assumption on the coefficients, one needs to allow losses in the Strichartz
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estimates which, though will not give the optimal expected result (2) for n = 2, 3, it will

nevertheless improve the classical result (s > n
2

+ 1). More precisely, Bahouri-Chemin [1],

[2] and Tataru [16] were able to show that for metrics with coefficients rougher than C2 the

following Strichartz estimates hold

‖∂ϕ‖L2
t L∞x

. ‖ϕ(0)‖
H

n
2 +1

2+1
4

+ ‖ϕ(0)‖
H

n
2−

1
2+1

4
n ≥ 3, (5)

‖∂ϕ‖L4
t L∞x

. ‖ϕ(0)‖
H

n
2 +3

4+1
8

+ ‖ϕ(0)‖
H

n
2−

1
4+1

8
n = 2. (6)

Both papers are based on a parametrix construction for the local linearized problem on

small time intervals, followed by a summation of the estimates obtained on each one of these

intervals. Bahouri and Chemin used Fourier integral operators, while Tataru’s proof relied on

the FBI transform to localize precisely in space and frequency. Using similar ideas, he further

improved in [17] the local well-posedness theory for equation (1) up to s > n
2

+ 5
6
, when

n = 2, and s > n
2

+ 2
3
, for n ≥ 3. A later paper by Smith and Tataru [14] showed that based

on the heuristic argument previously presented, one cannot improve this result of Tataru.

One needs to stress the idea that all these results were based on regularity assumptions on the

coefficients of the metric, without taking advantage of the special structure of the nonlinear

equation. An important next step was taken by Klainerman in [6] and by Klainerman and

Rodnianski in [7], leading to further improvements in the local well-posedness theory. The

main new observation is that, due to the quasilinear structure of the equation, the coefficients

gij(φ) of the equation (1) verify themselves an equation of the type

�gg
ij = N ′ (7)

where N ′ depends only on φ and ∂φ. The term �gg appears crucially in the structure of the

Raychaudhuri equation for one of the Ricci coefficients and so it allows us to prove that this

Ricci coefficient is smoother than it was previously believed. Based on elliptic estimates,

one can then show that all Ricci coefficients are smoother. Both papers, dealing with the

case n = 3, are based on a geometric approach, using the foliation of the spacetime by null

cones and commutation of the linearized local equation with the modified version of Morawetz

vectorfield in order to prove that the conformal energy associated with the linearized equation

is bounded. The first paper by Klainerman [6] reproved Tataru’s result [17], while the

second one [7] by Klainerman and Rodnianski improved it up to s > n
2

+ 1
2

+ 2−
√

3
2

in

the case when n = 3. The recent papers who proved the sharp result, [8] and [15], used a

variation of the same idea explained above, the former one combining it with a wave packet

decomposition along the lines of [12]. Our work, which is in the spirit of Klainerman and

Rodnianski program, deals with the case n = 2. In this situation using only the Morawetz

vectorfield does not longer suffice to derive the needed decay information as in the case of

dimension n = 3. Instead, and this is the main novelty of our argument, we rely on two
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other vectorfields, the scaling and the angular momentum vectorfield, which complement

the information provided by the Morawetz vectorfield. Using this method we improve the

previous result of Tataru [17], but we fail to match the sharp one s > 7
4
. Our main result is

the following:

Theorem 1.1 The Cauchy problem (1) with the metric gij satisfying the assumptions below,

is locally well posed in Hs for any s > s0 = 7
4

+ 5−
√

22
4

. Moreover, φ satisfies the following

Strichartz type estimate1

‖∂φ‖L4
[0,T ]

L∞x
≤ c T s−s0‖φ[0]‖Hs . (8)

Conditions satisfied by the coefficients gij : The metric gij = gij(z) is smooth and

uniformly positive definite with respect to bounded values of the parameter z ∈ R. Namely,

there exist positive constants M0, A0 such that for a sufficiently large integer k

sup
|z|≤A0

|
(
d

dz

)l

gij| ≤M0, ∀ 0 ≤ l ≤ k

M−1
0 |ξ|2 ≤ gij(z)ξiξj ≤M0|ξ|2, ∀|z| ≤ A0,

N(φ, ∂φ) =
∑
α,β

Nαβ(φ)∂αφ∂βφ, sup
|z|≤A0

|
(
d

dz

)l

Nαβ(z)| ≤M0, ∀ 0 ≤ l ≤ k.

(9)

First we will reduce the problem to the proof of the boundedness of the conformal energy

for the solution of the reduced linear equation. This reduction is by now classical, see [6],

[7] and [8]. It is based on the parradiferential calculus in which one localizes the solution to

a certain dyadic frequency λ and the coefficients at frequency at most λa, for an a ∈ (0, 1).

This is followed by a TT ∗-type argument which reduces the Strichartz estimate to a disper-

sive inequality. Finally, using Sobolev and trace theorems specially adapted to our situation,

we showed how to reduce our dispersive inequality to a bound for the conformal energy

associated with the linearized local problem. Secondly we will turn our attention to the ge-

ometry of the null cones. Here the important tools are: the null frame {L,L,A}, the optical

function u, the lapse function b, the affine parameter s, the second fundamental form κ and

the Ricci coefficients χ, χ, η, η, ξ. The main result is the proof of asymptotic properties for

the Ricci coefficients and for the lapse function. The last and the most important part of

the proof deals with the commutation between the wave operator �g and the special vec-

torfields: the Morawetz vectorfield K, the scaling vectorfield S and the angular momentum

vectorfield Ω. When commuting we obtain error terms which are expressed relative to the

deformation tensor of these vectorfields. The deformation tensor is then estimated in terms

1We denote the initial data for the equation (1) by φ[0] and say that φ[0] ∈ Hs if (φ0, φ1) ∈ Hs ×Hs−1.
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of the asymptotics for the Ricci coefficients, deduced in the previous step. Boundedness for

the conformal energy is finally obtained by careful integration of the error terms.

2 The reduction of theorem 1.1 to a dispersive in-

equality

As mentioned in the introduction, this reduction is essentially the same with the one

presented in [6], [7] and [8]. This is why we will only sketch its main steps and refer the

reader to [7] for more details. We start first with:

2.1 Bootstrap argument

In order to prove Theorem 1.1 we have to obtain the following inequality2

‖∂φ‖L1
[0,T ]

L∞x
. ‖∂φ(0)‖Hs−1

x
, s > s0 (10)

In view of the trivial Cauchy-Schwartz estimate

‖∂φ‖L1
[0,T ]

L∞x
≤ T

3
4‖∂φ‖L4

[0,T ]
L∞x

and of the energy estimate (3), the proof of (10) is reduced to the following bootstrap

argument:

Theorem 2.1 If φ is a solution of (1), φ ∈ C([0, T ], Hs)∩C1([0, T ], Hs−1), with T ≤ 1 and

satisfying

‖∂φ‖L4
[0,T ]

L∞x
+ ‖∂φ‖L∞

[0,T ]
Hs−1

x
≤ R (11)

then it will also verify

‖∂φ‖L4
[0,T ]

L∞x
≤ C(R)T s−s0‖∂φ‖L∞

[0,T ]
Hs−1

x
(12)

2.2 Paradifferential approximation and linearization of the prob-

lem

In order to prove (12), we will use a Littlewood-Paley decomposition. In case of the

low frequencies the required estimate follows trivially applying the Sobolev inequality. The

delicate problem is in the case of the high frequencies λ ≥ Λ, where apart from the truncation

2Throughout this paper we will use the notation A . B for A ≤ C ·B where C is a universal constant.
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of the coefficients caused by the commutation of the wave operator �g(φ) with the Littlewood-

Paley operator Pλ, we will further truncate them up to frequency λa, a ∈ (0, 1), using the

operator

Sλa =
∑
µ<λa

Pµ.

We introduce the smooth metric

gij
≤λa = Sλagij(Sλaφ). (13)

The inhomogeneous equation satisfied by the dyadic piece φλ is then the following one:

�̄g≤λaφ
λ = −∂2

t φ
λ + gij

≤λa∂i∂jφ
λ = Ra

λ,

φλ|t=0 = φλ
0 , ∂tφ

λ|t=0 = φλ
1 .

(14)

The right-hand side Ra
λ has the Fourier support contained in the set

{ξ : λ ≤ |ξ| ≤ 4λ}

and satisfies

‖Ra
λ(t)‖Ḣs . C(R)λ1−acλ ‖∂φ(t)‖L∞x ‖φ(t)‖Ḣs (15)

for any s > 1 and t ∈ [0, T ], the constants cλ verifying
∑

λ c
2
λ ≤ 1. Theorem 2.1 is then an

immediate consequence of the following

Proposition 2.2 If φ satisfies the assumptions of Theorem 2.1, then for each λ ≥ Λ, where

Λ is a fixed large parameter, the following Strichartz estimate is true:

‖∂φλ‖L4
[0,T ]

L∞x
≤ C(R) cλT

s−s0‖∂φ‖L∞
[0,T ]

Hs−1
x

(16)

for constants cλ verifying
∑

λ c
2
λ ≤ 1.

For more details we refer the reader to Proposition 1.2 and Theorem 1.3 in [7].

Remark From now on, we can regard (14) as a linear equation with smooth coefficients,

depending on the parameter λ.

2.3 Restriction to frequency dependent time intervals

In this part we will reduce the proof of Proposition 2.2 to the proof of precise Strichartz

estimates (without losses) on small time intervals. Using the bootstrap assumption (11)

‖∂φ‖L4
[0,T ]

L∞x
≤ R ,

we will partition the time interval [0, T ] into smaller intervals I such that they satisfy the

following three conditions:
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- their total number is comparable to λ1−a;

- the size of each I is bounded by Tλ−(1−a);

- for each I

‖∂φ‖L4
IL∞x

≤ λ−
1−a
4 ‖∂φ‖L4

[0,T ]
L∞x

≤ Rλ−
1−a
4 . (17)

Estimate (16) will then follow as a result of summing the exact Strichartz estimates over

the intervals I. We will use Duhamel formula to work from now on with an homogeneous

equation. We choose a to satisfy3

0 < a =
8− 4s

1− 4s+ 4s0

<
√

22− 4 < 1.

The precise Strichartz estimate to be proved is:

‖Pλ ∂ψ‖L4
IL∞x

≤ C(R) |I|ε‖ψ[0]‖
Ḣ

7
4+ε , (18)

where ψ is a solution of the linear wave equation

�̄g≤λaψ = 0

with initial data ψ[0] such that

supp ψ̂[0] ∈ {1

2
λ ≤ |ξ| ≤ 2λ}

and

ε = s− s0.

The metric g≤λa verifies for all nonnegative integers m and for all subintervals I:

‖∂1+mg≤λa‖L1
IL∞x

≤ λ−(1−a)+amR̄, (19)

‖∂1+mg≤λa‖L2
IL∞x

≤ λ−
1−a
2

+amR̄, (20)

‖∂1+mg≤λa‖L4
IL∞x

≤ λ−
1−a
4

+amR̄, (21)

‖∂1+mg≤λa‖L∞I L∞x ≤ λ
a2

4
+amR̄, (22)

‖∂m
x (∂2g≤λa)‖L∞I L2

x
≤ λ

a2

4
+amR̄, (23)

‖∂m�̄g≤λag≤λa‖L1
IL∞x

≤ λ−(1−a)+amR̄ (24)

R̄ depending only on the constants M0 and R.

Remarks 1. The estimates (19)-(21) follow immediately as a result of applying Hölder

inequality to the estimate (17).

2. The estimates (22)-(23) are deduced using Sobolev inequalities, while (24) appears in view

3The particular choice for
√

22− 4 will become later explicit.
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of the fact that �gg
ij verifies (7). It is very easy to check that our linear wave equation

�̄g≤λaψ = 0 is invariant under rescaling. Introducing

gλ(t, x) = g≤λa(λ−1t, λ−1x),

ϕ(t, x) = ψ

(
t

λ
,
x

λ

)
,

(25)

the estimate (18) is then further reduced to the proof of

Proposition 2.3 If ϕ is a solution of the homogeneous equation:

�̄gλ
ϕ = −∂2

t ϕ+ gij
λ ∂i∂jϕ = 0,

ϕ|t=0 = ϕ0, ∂tϕ|t=0 = ϕ1

(26)

on the time interval I = [0, t∗] with t∗ ≤ λa and the metric gλ verifies the scaled versions of

(19)-(24):

‖∂1+mgλ‖L1
IL∞x

. λ−(1−a)(m+1), (27)

‖∂1+mgλ‖L2
IL∞x

. λ−
2−a
2
−(1−a)m, (28)

‖∂1+mgλ‖L4
IL∞x

. λ−
4−a
4
−(1−a)m, (29)

‖∂1+mgλ‖L∞I L∞x . λ−ā−(1−a)m, (30)

‖∂2+mgλ‖L∞I L2
x

. λ−ā−(1−a)m, (31)

‖∂m�̄gλ
gλ‖L1

IL∞x
. λ−(2−a)−(1−a)m, (32)

where ā = 1− a2

4
and the parameter a such that a <

√
22− 4, then the following Strichartz

estimate holds true

‖P ∂ϕ‖L4
IL∞x

. |t∗|ε‖ϕ[0]‖L2
x
, (33)

P is the operator of projection on the set {ξ : 1
2
≤ |ξ| ≤ 2} in Fourier space and the

inequality holds with a constant independent of λ.

Remark: Compared to the case n = 3, we notice the presence of inequality (29). Note also

that (30)-(31) are different from the corresponding inequalities in [7], due to the different

scaling in dimension n = 2.

2.4 Reduction of the Strichartz estimate to the dispersive in-

equality

This part contains three steps and follows identically the corresponding structure in [7]:

1. Equation (26) can be replaced with the geometric wave equation
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�gλ
φ = − 1√

det gλ

∂t(
√

det gλ ∂tφ) +
1√

det gλ

∂i(g
ij
λ

√
det gλ ∂jφ) = 0 (34)

and this is due to the fact that the two wave operators differ only by lower order terms in

so far as the Strichartz estimates are concerned.

2. Using a modified version of the standard TT ∗ argument as in [6],[7], we can show that

the proof of the Strichartz estimate (33) is reduced to the proof of the following dispersive

inequality:

Theorem 2.4 Under the hypothesis of Proposition 2.3, if φ is a solution of the linear wave

equation

�gλ
φ = 0,

φ|t=0 = φ0, ∂tφ|t=0 = φ1

(35)

with initial data φ[0] supported in the set {ξ : 1
2
≤ |ξ| ≤ 2} in Fourier space, then for all

t ≤ t∗ and a fixed arbitrary small ε > 0

‖P ∂φ(t)‖L∞x .
1

(1 + |t|) 1
2
−ε
‖φ[0]‖L1

x
. (36)

3. Considering the same partition of unity as in [7], together with the additivity of the L1

norm and the standard Sobolev inequality, we will decompose the initial data φ[0] into a

sum of functions with almost disjoint supports contained in balls of radius 1
2

and therefore

reduce the dispersive inequality (36) to the following L2 − L∞ decay estimate:

Theorem 2.5 Under the hypothesis of Theorem 2.4, but with the initial data φ[t0] supported

in the ball B 1
2
(0), for all t0 ≤ t ≤ t∗, an arbitrary small ε > 0, and a sufficiently large integer

m > 0,

‖P ∂φ(t)‖L∞x .
1

(1 + |t− t0|)
1
2
−ε

m∑
k=1

‖∂kφ[t0]‖L2
x
. (37)

Remark We will postpone the last step of the reduction until we have all the geometrical

ingredients needed in its proof.

3 The geometrical background of the problem

3.1 Basic geometric tools

From now on, in order to simplify notation, we will denote our underlying metric gαβ
λ = gαβ.

Therefore we will work with the space-time Lorentz metric

gαβdx
αdxβ = − dt2 + gijdx

idxj.
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An immediate consequence of this is the fact that T = ∂t is geodesic (DTT = 0). We will

begin with the following

Definition 3.1 1.The spacelike hypersurfaces Σt are defined as the level hypersurfaces of

the time function t. The time axis Γ is the integral curve of the unit vectorfield T = ∂t,

initiating at the origin.

2. The solution u of the eikonal equation:

gαβ∂αu∂βu = 0 u(Γ ∩ Σt) = t (38)

is called the optical function. In connection with u, we will also define

u = 2t − u

and

s = t − u.

Cu denotes the level surfaces of function u, which are null cones with vertices on Γ. We

define by

L′ = −gαβ∂αu∂β

the normal to the hypersurface Cu.

3. The function b given by

b−1 = − < L′, ∂t >= ∂tu (39)

is called the lapse function.

4. The collection of the following vectorfields

L = bL′ L = 2T − L , (40)

together with an unit vectorfield A, tangent to St,u = Σt ∩ Cu, is called a null frame.

Regarding St,u as embedded in Σt, we define the unit outward normal N .

5. The conformal energy for a function φ = φ(t, x) in the interior region and the exterior

region is given respectively by

Eint(φ)(t) =

∫
Σt

(
t2 · |∂φ|2 + |φ|2

)
· (1− ω)

Eext(φ)(t) =

∫
Σt

(
t2 · (|Lφ|2 + (|Aφ|2) + u2 · |Lφ|2 + |φ|2

)
· ω

(41)

where ω is a cut-off function equal to 1 in the region {u ≤ t
2
}, whose derivative satisfies

|∂ω| . t−1.

The full conformal energy is given by

E(φ)(t) = Eint(φ)(t) + Eext(φ)(t) (42)
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6. We introduce the following special vectorfields:

Ω = s · A angularmomentumvectorfield (43)

S =
1

2
(uL + uL) scalar vectorfield (44)

K =
1

2
(u2L + u2L) Morawetz vectorfield (45)

The following facts are simple consequences of the previous definition:

Proposition 3.2 1. < L,L >=< L,L >=< L,A >=< L,A >= 0,

< L, L >= −2, < A,A >= 1.

2. The function s defined by s = t − u is the affine parameter of the vectorfield L.

3. Lu = 0, Lt = Ls = 1, Lu = 2.

4. Lu = 2b−1, Lt = 1, Ls = 1 − 2b−1, L u = 2 − 2b−1.

5. Au = At = As = Au = 0.

6. L = T + N, L = T − N.

We recall the formula for the Ricci tensor

Rµν = gαβRαµβν =
1

2
gαβ

(
∂2

µβgαν + ∂2
ανgµβ − ∂2

µνgαβ − ∂2
αβgµν

)
+

+ gαβgγδ

(
Γγ

µβΓδ
αν − Γγ

µνΓ
δ
αβ

) (46)

Relying on the previous proposition, in the particular case of RLL = RLALA, we have the

following remarkable decomposition

Proposition 3.3 ([7])

RLL = L(v) − 1

2
LαLβ�ggαβ + E ′, (47)

the terms

v = Lνgαβ∂βgαν −
1

2
gαβL(gαβ) (48)

and E ′ satisfy the following bounds:

|v| . |∂g| , |E ′| . |∂g|2.

An immediate consequence of this proposition is the following

Corollary 3.4 The quantities v and

E = − 1

2
LαLβ�ggαβ + E ′
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satisfy the estimates:

|v| . λ−ā (49)∫ s

0

sup
Sρ+u,u

|E| dρ . λa−2 (50)

Proof The first estimate for v is straightforward due to the trivial bound |v| . |∂g| and

the condition (30). For E we have the bound

|E| . |∂g|2 + |�gg|.

Therefore using (28) and (32), we obtain:∫ s

0

sup
Sρ+u,u

|E| dρ . ‖∂g‖2
L2

[0,t∗]
L∞x

+ ‖�gg‖L1
[0,t∗]

L∞x
. λa−2. (51)

We will define now the Ricci coefficients and use them to describe the Levi-Civitta connection

defined by g.

Theorem 3.5 We define the following tensors on St,u:

χ =< DAL,A >, χ =< DAL,A >, (52)

η =
1

2
< DLL,A >, η =

1

2
< DLL,A >, (53)

ξ =
1

2
< DLL,A > . (54)

Based on these, the connection D satisfies the following equations:

DLL = −κNNL, DLL = 2ηA + κNNL, DLA = ηL. (55)

DLL = 2ηA + κNNL, DLL = 2ξA − κNNL, DLA = ηL + ξL. (56)

DAL = χA− κANL, DAL = χA + κANL, DAA =
1

2
χL +

1

2
χL. (57)

Moreover:

χ = −χ − 2κAA, (58)

η = b−1∇/ (b) + κAN , η = −κAN , (59)

ξ = κAN − η. (60)
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Remarks 1) The proof of this theorem follows exactly the same lines as the corresponding

result in [7], being just a simple application of the orthogonalities of the null frame {L,L,A}
and of the eikonal equation (38) together with the basic properties of the Levi-Civitta con-

nection.

2) We notice that we can express all the other Ricci coefficients in terms of just χ, η, the

lapse function b and the second fundamental form κ.

3) We notice also that due to the fact St,u is a 1-dimensional surface, all our Ricci coefficients

can be treated as scalars. Therefore, if we denote by ∇/ the induced covariant derivative on

St,u, the A-derivative of a Ricci coefficient will coincide with its ∇/ -derivative.

Corollary 3.6 We have the following commutation properties:

[L,L] = 2(η − η)A + κNNL − κNNL,

[L,A] = −χA,
[L,A] = −χA + (η − κAN)L + ξL.

(61)

Among the tools that play an important role in the proof of the asymptotic properties are

the transport and the elliptic equations satisfied by the different Ricci coefficients. The ones

that will be used extensively are:

Lemma 3.7 The following transport and elliptic equations hold:

L(χ) = − (χ)2 − κNNχ − RLL, (62)

L(η) = −χη + χη +
1

2
RALLL, (63)

L(b) = − bκNN , (64)

L(χ)− (χ)2 − (κNN + 2κAA)χ = 2∇/ (η) + 2η2 +RALLA. (65)

Proof In this proof we use the equations for connection D and basic formulae for the

curvature tensor. In what concerns the transport equations, we present the proof for (63),

the other two equations being deduced similarly. Using (53) and taking an L-derivative we

can write

L(η) =
1

2
< DLDLL,A > +

1

2
< DLL,DLA >=

1

2
< DLDLL,A > +

+
1

2
< D[L,L]L,A > +

1

2
< RLLL,A > +

1

2
< DLL,DLA >

If we plug in the frame equations (55), (56), (57) and the commutation formula (61), we

obtain (63).
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The deduction of the elliptic estimate (65) follows like this:

L(χ) =< DLDAL,A > + < DAL,DLA >= RALLA + < DADLL,A > +

+ < D[L,A]L,A > + < DAL,DLA >= RALLA + < DA(2ηA + κNNL), A >

+ < D−χA +(η−κAN )L + ξLL,A > + < χA− κANL, ηL + ξL >=

= RALLA + 2∇/ (η) + κNNχ − χχ + 2(η − κAN)η + 2ηκAN .

Corollary 3.8 If we write the elliptic equation (65) in the form

∇/ (η) + η2 = H (66)

we have the following estimate

‖∇/ η‖L2(St,u) + ‖η‖2
L4(St,u) . ‖H‖L2(St,u) (67)

Proof We square equation (66) and integrate the resulting expression over St,u. Due to

the fact that
∫

St,u
∇/ (η)η2 = 0, we obtain the identity∫

St,u

(
|∇/ η|2 + |η|4

)
=

∫
St,u

H2

which implies (67).

3.2 Construction of the optical function u and the continuation

argument

We review here the main steps in the construction of u discussed in [7]. It will be, of

course, enough to describe its level hypersurfaces Cu, which are the union of null geodesics

x = x(s), starting on the time axis Γ from the vertex (u, 0) and having velocity in the

direction of the vector (1, $), with $ ∈ S1. Relative to our Lorentz metric g, the equations

for such a geodesic is:

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
= 0 (i, j, k = 0, . . . , 2),

dx

ds
(0) = (1, $) .

(68)

Obviously, these equations can then be rewritten in the form of a first order system for

6 dependent variables, and so, due to the basic existence theorem for ordinary differential

equations, we obtain a local solution. We are interested up to what value of s such a

local solution can be extended to. Heuristically, such a system can be approximated by the

following ODE :
dy

ds
+ Γ(s) y2 = 0 .

14



A local solution can then be continued up to the value of the parameter s = smax, as long

as, for example,

smax|Γ(s)| � 1 .

Due to the bound that we have for |Γi
jk|,

|Γi
jk| . |∂g| . λ−ā

and the fact that

t∗ λ
−ā . λa−ā � 1

we can argue that such a geodesic can be extended up to the value of the affine parameter

s = t∗− u. It can be shown that the transport equation (64) for the lapse function b implies

that our geodesic intersect each time slice Σt, t ≤ t∗. From the definitions, initial condition

of the optical function u and the geometry around the time axis Γ, we can check the following

Initial values For all t ∈ [0, t∗], there exists a constant R0 > 0 such that:

lim sup
s−→0

(
|χ− 1

s
|+ |η(s)|

)
< R0,

lim sup
s−→0

s
1
2

(
‖D(χ− 1

s
)‖L2(St,u) + ‖∇/ (η)‖L2(St,u)

)
< R0,

lim
s→0

(
|b(s)− 1|+ |A(St,u)− 2πs|

)
= 0

lim
s→0

(
s3|D(χ− 1

s
)|+ s2|∇/ η(s)|

)
= 0.

(69)

We will rely on a continuation argument, used also in [7], whose essence we explain in the next

lines. We denote by s(t) the maximum value of s = t − u, for which the above initial values

can be extended in the neighborhood of Γ with the additional condition s(t) ≤ min{εR−1
0 , t}

where ε� 1. So in this region that we denote by ∆ ⊂ [0, t∗]× R2, the following are true:

Bootstrap assumptions

|χ− 1

s
|+ |η(s)| ≤ R0, (70)

s
1
2

(
‖D(χ− 1

s
)‖L2(St,u) + ‖∇/ (η)‖L2(St,u)

)
≤ R0, (71)

s(t) ≤ min{εR−1
0 , t}. (72)

We will show that under these assumptions, R0 can be chosen such that

min{εR−1
0 , t} = t

and so from the maximality of ∆ we will conclude that the assumptions will then hold in

the whole region

{(s, t)|s ∈ [0, t], t ∈ [0, t∗]} .

Throughout this section and the following one, we will prove estimates in the region ∆.
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3.3 Other geometric results

Based on the bootstrap assumptions (70)-(72), just as in [7], we can prove the following

result:

Proposition 3.9 A. Sobolev inequality For any smooth function f ,

f : St,u → R, 1 < p <∞, we have the following Sobolev estimate:

sup
St,u

|f | . s1− 1
p‖∇/ f‖Lp(St,u) + s−

1
p‖f‖Lp(St,u). (73)

B. Trace estimates For any function h, h : Σt → R, h ∈ H
1
2
+ε(R2) and

∆s = ∪ 1
4
s≤ρ≤sSt,t−ρ, we have the following inequalities:

‖f‖L2(St,u) . ‖∂
1
2
−εf‖L2(Σt) + ‖∂

1
2
+εf‖L2(Σt). (74)

‖f‖2
L2(St,u) . ‖N(f)‖L2(∆s)‖f‖L2(∆s) +

1

s
‖f‖2

L2(∆s)
. (75)

Remark These two results, in a more general form, can be found for the case n = 3 in

[7]. They will also survive in the general form in the case n = 2, but not to create too much

confusion, we presented them in the form perfectly suitable to our situation. We remark

also that the proof that we have right now is almost identical with the original one, the only

difference with respect to the case n = 3 being the fact that we are no longer able to recover

the isoperimetric inequality. We hope to provide in the future a different proof for (73)-(75),

which would rely more on the special structure of St,u.
4

The next result will be extensively used in the proof of the asymptotic properties for the

Ricci coefficients.

Transport lemma If ΞA is an St,u-tangent covariant tensor satisfying the transport equa-

tion

L(ΞA) + σ χΞA = FA, (76)

with the initial condition sσΞA(s) −→ 0 as s −→ 0 and (t, x) = (t, s, ω) ∈ ∆, the following

estimates hold:

If σ > −1
2

then

|Ξ(t, x)| ≤ 4

sσ

∫ s

0

ρσ |F | dρ (77)

Additionally, if sσ− 1
2‖Ξ‖L2(St,u) −→ 0 as s −→ 0, we have

‖Ξ‖L2(St,u) ≤
4

sσ− 1
2

∫ s

0

ρσ− 1
2‖F‖L2(Su+ρ,u) dρ (78)

4This proof would take advantage of the fact that St,u is the intersection of the level sets for the functions
t and u.
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If σ ≥ 0 and F defined in the whole time slab [0, t∗]× R2, we have also

|Ξ(t, x)| ≤ 4‖F‖L1
[0,t∗]

L∞x
. (79)

If σ > 0, it follows that

|Ξ(t, x)| ≤ 4

σ
sup
ρ≤s

ρ · |F | (80)

Proof The transport equation (76) implies:

1

2

d

ds
|Ξ|2 +

σ

s
|Ξ|2 = −σ(χ− 1

s
)|Ξ|2 + F · Ξ,

which further yields

d

ds
(s2σ · |Ξ|2) = −2σs2σ(χ− 1

s
)|Ξ|2 + 2s2σF · Ξ.

Integrating this equation with respect to s and taking into account the initial condition, we

obtain:

|Ξ(t, x)|2 ≤ 2|σ|
s2σ

∫ s

0

ρ2σ|χ− 1

s
||Ξ|2 dρ+

2

s2σ

∫ s

0

ρ2σ|F · Ξ| dρ. (81)

Using now the fact that |χ − 1
s
| ≤ R0, contained in the assumptions, together with the

hypothesis, σ > −1
2
, we can write

sup
ρ≤s

|Ξ|2 ≤ 2|σ|
2σ + 1

R0s sup
ρ≤s

|Ξ|2 +
2

s2σ

∫ s

0

ρ2σ|F · Ξ| dρ.

Due to the fact that s ≤ s(t) and R0s(t) � 1, by the assumption (72), we can conclude that

sup
ρ≤s

|Ξ|2 ≤ 4

s2σ

∫ s

0

ρ2σ|F · Ξ| dρ.

Finally using Gronwall inequality, we end up with

|Ξ| ≤ 4

sσ

∫ s

0

ρσ|F | dρ.

This implies of course (77) and (80). (79) follows also immediately. To deduce (78) we

will continue from (81) by integrating it over the fixed surface St,u. Due to the fact that∫
St,u

f ≈ s ·
∫ 2π

0
f(s, ω) dω, we obtain

s2σ−1‖Ξ‖2
L2(St,u) ≤ 4|σ|

∫ s

0

ρ2σ−1‖Ξ‖2
L2(Sρ+u,u) dρ+

+ 2

∫ s

0

ρ2σ−1‖F‖L2(Sρ+u,u)‖Ξ‖L2(Sρ+u,u) dρ.

Here applying twice Gronwall inequality, we come up with the desired result. Finally we

present integration results which will be useful in the sections which deal with commutation

of the D’Alembertian with the special vectorfields:
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Proposition 3.10 (Integration results) 1. If f and h are smooth functions defined on

Σt, then the following estimate holds:

‖f · h · ω‖L2(Σt) . t−
1
2 sup

0≤u≤ t
2

‖h‖L2(St,u) · E
1
2 (f)(t) (82)

2. In the context of our reduced linear problem, we can write the following integration by

parts: ∫
[t0,t]×R2

V · Lψ · Lψ · ω =

∫
[t0,t]×R2

V ·�gψ · ψ · ω + O(λ−ε) sup
τ∈[t0,t]

E(ψ)(τ) (83)

provided the following conditions hold

‖V ‖L∞(Sτ,u) . τ · λ−ε∫ t

t0

τ−
3
2 sup

0≤u≤ τ
2

(
‖LV ‖L2(Sτ,u) + ‖∇/ V ‖L2(Sτ,u)

)
dτ . λ−ε

Also we have the estimate:∣∣ ∫
[t0,t]×R2

V · ψ · Lψ · ω
∣∣ . λ−ε sup

τ∈[t0,t]

E(ψ)(τ) (84)

if the previous conditions hold, relaxed by the fact that we can drop the term ‖∇/ V ‖L2(Sτ,u).

Remark The proof of these integration formulae is straightforward, as in the case of their

corresponding ones for n = 3, presented in [7].

Now we are ready to prove

4 Asymptotics properties of the Ricci coefficients

The main result of this section is:

Theorem 4.1 For sufficiently large values of λ and for the parameter a verifying

a <
√

22−4, the Ricci coefficients χ, η, any component R of the curvature, the lapse function

b and the second fundamental form κ satisfy the following estimates:

sup
St,u

|χ− 1

s
|+ sup

St,u

|κ|+ sup
St,u

|L(b)| . λ−ā

sup
St,u

|η|+ sup
St,u

|∇/ (b)| . s
1
2λ−ā− 1−a

2
+ε + λ−ā

sup
St,u

|η| . min{sλ−ā−(1−a) + λ−ā, s
1
2λ−ā− 1−a

2
+ε + λ−ā}

sup
St,u

|b− 1| . min{sλ−ā, λ−(1−a)}

sup
St,u

|L(b)| . sλ−ā−(1−a)

18



‖R‖L2(St,u) + ‖∇κ‖L2(St,u) . λ−ā− 1−a
2

+ε

‖ |L(κA·)|+ |L(κN ·)| ‖L2(St,u) + ‖ |L(κA·)|+ |L(κN ·)| ‖L2(St,u) . λ−ā− 1−a
2

+ε

‖ |∇/ (κA·)|+ |∇/ (κN ·)| ‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā

‖D(χ− 1

s
)‖L2(St,u) + ‖∇/ (η)‖L2(St,u) + ‖L(η)‖L2(St,u) . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

‖L(b)‖L2(St,u) . s
1
2λ−ā

‖L(b)‖L2(St,u) . sλ−ā− 1−a
2

+ε

‖∇/ (b)‖L2(St,u) . sλ−ā− 1−a
2

+ε + s
1
2λ−ā

(85)

First, we will obtain the estimates for the second fundamental form κ and for the components

R of the curvature, using the bounds

|κ| . |∂g|
|R| . |∂2g|+ |∂g|2,

and the trace estimate (74). Next, we investigate the Ricci coefficient χ. To derive the

estimates, we use first the transport equation (62) together with the decomposition (47) of

the term RLL in order to infer that:

L(χ− 1

s
+ v) + 2χ(χ− 1

s
+ v) ≈ E ,

where |v| . |∂g| and |E| . |∂g|2 are the terms that appear in the decomposition of RLL.

Integrating this equation, we will obtain the bound

sup
St,u

|χ− 1

s
| . λ−ā

and, as an immediate consequence, the estimate:

‖L(χ− 1

s
)‖L2(St,u) . λ−ā− 1−a

2
+ε + s−

1
2λ−ā .

Using again the special structure of RLL, we will then write the transport equation for the

quantity ∇/ (χ − 1
s

+ v) and apply the Transport lemma in order to obtain the estimate for

‖∇/ (χ− 1
s
)‖L2(St,u). The estimate of the L derivative of χ− 1

s
will be obtained in connection

with the estimates for η. The third part of the proof deals with Ricci coefficient η. If we try

to investigate η using its transport equation (63), we will obtain the estimate supSt,u
|η| .

. λ2a−ā−1, which is worse than the one claimed in the theorem. This is due to the fact that

the curvature component present in the transport equation for η does not have a special

decomposition. There is though a better way to estimate η and this is with the help of the

elliptic equation (65), which we can write in the form:

∇/ (η) + η2 = H

19



where H will be evaluated using its transport equation. We will take advantage of the elliptic

estimate (67)

‖∇/ (η)‖L2(St,u) + ‖η‖2
L4(St,u) . ‖H‖L2(St,u)

and the bound that we already have for ‖L(χ− 1
s
)‖L2(St,u). Thus, we obtain:

sup
St,u

|η| . s
1
2λ−ā− 1−a

2
+ε + λ−ā .

An immediate application of this estimate is the bound for ‖Lη‖L2(St,u). We make here two

important remarks. The first one is the fact that the estimate for η is worse than the one

for χ− 1
s

and so this estimate is the one which dictates the range for a. Secondly, as in the

case n = 3, we do not have a good estimate for Lη. Finally, we turn our attention to the

lapse function b. We notice that estimates for all the quantities depending on b, with the

exception of Lb, are immediate consequences of previously obtained bounds . For Lb, we

write its transport equation and deduce the estimate using once again the Transport lemma.

4.1 Proof of the estimates for the second fundamental form κ and

for the components R of the curvature

The obvious estimate |κ| . |∂g| implies

sup
St,u

|κ| . ‖∂g‖L∞(Σt)

which coupled with (30) gives us the desired estimate. Any component R of the curvature

satisfies

|R| . |∂2g|+ |∂g|2,

so using the trace estimate (74), we conclude that:

‖R‖L2(St,u) . ‖∂2g‖L2(St,u) + (A(St,u))
1
2‖∂g‖2

L∞(Σt)

. ‖∂2+ 1
2
+εg‖L2(Σt) + ‖∂2+ 1

2
−εg‖L2(Σt) + (A(St,u))

1
2‖∂g‖2

L∞(Σt)

. λ−ā− 1−a
2

+ε + s
1
2λ−2ā.

(86)

Using the bound for a:

s
1
2λ−2ā . λ−ā− 1−a

2
+ε,

and so, ‖R‖L2(St,u) . λ−ā− 1−a
2

+ε. This implies also ‖∇κ‖L2(St,u) . λ−ā− 1−a
2

+ε. We have the

following formulae for the derivatives of the second fundamental form κ:

L(κNN) = (DLκ)(N,N) + 2κ(DLN,N) = (DLκ)(N,N) + 2κ2
AN

L(κNN) = (DLκ)(N,N) + 2κ(DLN,N) = (DLκ)(N,N) + 2(2η − κAN)κAN

∇/ (κNN) = (DAκ)(N,N) + 2κ(DAN,N) = (DAκ)(N,N) + 2(χ+ κAA)κAN
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L(κAA) = (DLκ)(A,A) + 2κ(DLA,A) = (DLκ)(A,A)− 2κ2
AN

L(κAA) = (DLκ)(A,A) + 2κ(DLA,A) = (DLκ)(A,A) + 2(κAN − η)κAN

∇/ (κAA) = (DAκ)(A,A) + 2κ(DAA,A) = (DAκ)(A,A)− 2(χ+ κAA)κAN

L(κAN) = (DLκ)(A,N) + κ(DLA,N) + κ(DLN,A)

= (DLκ)(A,N) + κAN(κAA − κNN)

L(κAN) = (DLκ)(A,N) + κ(DLA,N) + κ(DLN,A)

= (DLκ)(A,N)− (κAA − κNN)(κAN − 2η)

∇/ (κAN) = (DAκ)(A,N) + κ(DAA,N) + κ(DAN,A)

= (DAκ)(A,N) + (κAA − κNN)(χ+ κAA).

We will show the proof for the quantities depending on κNN , the ones depending on κAA

and κAN following in a similar manner. Using the bootstrap assumptions (70), (72) and the

inequality for supSt,u
|κ|, by taking the L2(St,u) norm in the above formulae we obtain:

‖L(κNN)‖L2(St,u) . λ−ā− 1−a
2

+ε + s
1
2λ−2ā . λ−ā− 1−a

2
+ε

‖L(κNN)‖L2(St,u) . λ−ā− 1−a
2

+ε + s
1
2λ−ā(R0 + λ−ā) . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

‖∇/ (κNN)‖L2(St,u) . λ−ā− 1−a
2

+ε + s
1
2λ−ā(R0 +

1

s
+ λ−ā) . λ−ā− 1−a

2
+ε + s−

1
2λ−ā.

We notice that for the L derivatives the estimates are not the ones that we claimed, but as

soon as we have the estimate for η, we will deduce them immediately.

4.2 Proof of the estimates for χ− 1
s and its derivatives

Let us remember first the transport equation for χ:

L(χ) = −χ2 − κNNχ−RLL

where RLL has the form

RLL = L(v) + E.

Due to Proposition 3.3, v satisfies |v| . |∂g| and the error term E has the property

|E| . |∂g|2 + |�gg|. Using this decomposition we can write the transport equation in the

form:

L(χ− 1

s
+ v) + 2χ(χ− 1

s
+ v) = (χ− 1

s
)2 + 2χ(v − 1

2
κNN) − E (87)

Due to the bootstrap assumption |χ− 1
s
| ≤ R0 :

s2|χ− 1

s
+ v| → 0 as s→ 0

We are now in a position to apply (77) with σ = 2. Therefore we can infer that:
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sup
St,u

|χ− 1

s
+ v| . 4

s2

∫ s

0

ρ2|(χ− 1

ρ
)2 + 2χ(v − 1

2
κNN) − E| dρ. (88)

Using again the above bootstrap assumption and the fact that sR0 � 1, together with the

estimates for v and E, obtained in Corollary 3.4, we conclude that:

sup
St,u

|χ− 1

s
| ≤ 4sR2

0 + 8s(R0 +
1

s
)λ−ā + λa−2 ≤ R0

2
+ λ−ā, (89)

which implies the desired estimate for supSt,u
|χ− 1

s
|.

Remark From now on, throughout the rest of this section, this argument will be considered

implicit and so we will ignore in the deduction of further estimates the integral terms which

are part of the bootstrap argument. For more details see section 5.7 in [7].

An immediate consequence of this result is the estimate for ‖L(χ− 1
s
)‖L2(St,u). Writing once

again the transport equation in the form

L(χ− 1

s
) = −χ2 +

1

s2
− κNNχ−RLL

we obtain by taking the L2(St,u) norm:

‖L(χ− 1

s
)‖L2(St,u) . s

1
2λ−ā(λ−ā +

2

s
) + λ−ā− 1−a

2
+ε . λ−ā− 1−a

2
+ε + s−

1
2λ−ā (90)

For the other two derivatives of χ− 1
s

we need the following

Lemma 4.2 The term v and the error E satisfy

‖Dv‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā∫ s

0

ρ
1
2‖DE‖L2(Sρ+u,u) dρ . λ2a−2ā− 1

2
+ε

(91)

Proof: v contains terms of the type Lνgαβ∂βgαν , so its derivatives would depend on:

|LνD(gαβ)∂βgαν | . |∂g|2

|LνgαβD∂βgαν | . |∂2g|
|D(Lν)gαβ∂βgαν | . |D(Lν)||∂g|.

For the first two terms the estimates are immediately due to the bounds that we have for κ

and R:
‖LνD(gαβ)∂βgαν‖L2(St,u) . s

1
2λ−2ā

‖LνgαβD∂βgαν‖L2(St,u) . λ−ā− 1−a
2

+ε
(92)

For the third term, we show how to obtain the estimate in the case when the derivative is

∇/ , for L, respectively L, the approach is similar.
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∇/ (Lν) = ∇/ (gνµ < L, ∂µ >) =

= ∇/ (gνµ)Lµ + gνµ < DAL, ∂µ > +gνµ < L,DA∂µ >

= ∇/ (gνµ)Lµ + gνµAζLδΓ
δ
ζµ + gνµAµχ− gνµLµκAN

Using the assumptions and the estimates proved so far we conclude :

|D(Lν)gαβ∂βgαν | . λ−ā(λ−ā +
1

s
),

which yields

‖D(Lν)gαβ∂βgαν‖L2(St,u) . s−
1
2λ−ā. (93)

Putting together (92) and (93) we obtain the estimate for ‖Dv‖L2(St,u). The error term E

has the expression

E = −1

2
LµLν�ggµν + LµLνgαβgγδ(Γ

γ
µβΓδ

αν − Γγ
µνΓ

δ
αβ)−

− L(Lν)gαβ∂βgαν − LνL(gαβ)∂βgαν ,

so for its derivatives we have to deal with the following types of terms:

|D(Lµ)Lν�ggµν | .
1

s
|�gg| =⇒

=⇒
∫ s

0

ρ
1
2‖1

ρ
|�gg|‖L2(Sρ+u,u) dρ . ‖�gg‖L1

[0,t∗]
L∞x

. λa−2

|LµLνD�ggµν | . |∂�gg| =⇒

=⇒
∫ s

0

ρ
1
2‖∂�gg|‖L2(Sρ+u,u) dρ . s‖∂�gg‖L1

[0,t∗]
L∞x

. sλ2a−3

|D(Lµ)LνgαβgγδΓ
γ
µβΓδ

αν | .
1

s
|∂g|2 =⇒

=⇒
∫ s

0

ρ
1
2‖1

ρ
(∂g)2‖L2(Sρ+u,u) dρ . ‖∂g‖2

L2
[0,t∗]

L∞x
. λa−2

|LµLνD(gαβ)gγδΓ
γ
µβΓδ

αν | . |∂g|3 =⇒

=⇒
∫ s

0

ρ
1
2‖(∂g)3‖L2(Sρ+u,u) dρ . sλa−2−ā

|LµLνgαβgγδDΓγ
µβΓδ

αν | . |∂g||∂2g| =⇒

=⇒
∫ s

0

ρ
1
2‖|∂g||∂2g|‖L2(Sρ+u,u) dρ . s

1
2λ−ā− 3(1−a)

2
+ε

|L(Lν)D(gαβ)∂βgαν | . |(∂g)3| =⇒

=⇒
∫ s

0

ρ
1
2‖(∂g)3‖L2(Sρ+u,u) dρ . sλa−2−ā

|L(Lν)gαβD(∂βgαν)| . |∂g||∂2g| =⇒

=⇒
∫ s

0

ρ
1
2‖|∂g||∂2g|‖L2(Sρ+u,u) dρ . s

1
2λ−ā− 3(1−a)

2
+ε

23



|DL(Lν)gαβ∂βgαν | . |∂g|(|∂2g|+ |∂g|2 +
1

s
|∂g|+ |∂(κNN)|) =⇒

=⇒
∫ s

0

ρ
1
2‖|∂g|(|∂2g|+ |∂g|2 +

1

s
|∂g|+ |∂(κNN)|)‖L2(Sρ+u,u) dρ .

. λa−2 + sλa−2−ā + s
1
2λ−ā− 3(1−a)

2
+ε + sλ−2ā + s

3
2λ−2ā− (1−a)

2
+ε

Using the bound s ≤ λa, we obtain the desired result. Having obtained the estimates for

v and E, we can proceed to the investigation of the other two derivatives of χ − 1
s
. The

L derivative will be discussed later in connection with η. We deal now with the angular

derivative ∇/ . The estimate is obtained using the transport equation for this quantity. To

simplify the notation we denote χ − 1
s

by w. Let us remember first the transport equation

for this quantity:

L(w + v) + 2χ(w + v) = (w + v)2 +
2

s
v − v2 − κNNχ− E.

Taking the angular derivative of this expression we obtain:

A(L(w + v)) + 2A(w)(w + v) + 2χA(w + v) = 2A(w + v)(w + v)+

+ A(
2

s
v − v2 − κNNχ− E)

Using the commutator [L,A] = −χA, we can write the previous equation in the form:

L(∇/ (w + v)) + 3χ∇/ (w + v) = 2∇/ (v)(w + v) +∇/ (
2

s
v − v2 − κNNχ− E) (94)

We will apply (78) with σ = 3. Therefore, the only thing to be verified is that

s
5
2‖∇/ (w + v)‖L2(St,u) −→ 0 as s −→ 0

But this is true, because due to the bootstrap assumption (71) and the estimates for the

derivatives of v we have:

s
5
2‖∇/ (w)‖L2(St,u) ≤ R0s

2

s
5
2‖∇/ (v)‖L2(St,u) . s

5
2λ−ā− 1−a

2
+ε + s2λ−ā

So applying the above mentioned estimate, we infer that:

s
5
2‖∇/ (w + v)‖L2(St,u) .

∫ s

0

ρ
5
2‖2∇/ (v)(w + v) +∇/ (

2

s
v − v2 − κNNχ− E)‖L2(Sρ+u,u)dρ

Using the estimates for w = χ− 1
s
, v and derivatives of v and E, we conclude that:

‖∇/ (w)‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā (95)

Finally we investigate L(χ− 1
s
). We take advantage of the elliptic equation (65)

L(χ)− χ2 − (κNN + 2κAA)χ = 2∇/ (η) + 2η2 +RALLA
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Let us denote L(χ) − χ2 by θ and the whole left side of the above equality by Θ. First we

can write:

L(θ) + 2χθ = 2(η − η)∇/ (χ) + 3κNNχ
2 + ((κNN)2 + 2RLL − L(κNN))χ+ κNNRLL − L(RLL)

This equation implies then

L(Θ) + 2χΘ = 2(η − η)∇/ (χ) + 2(κNN − κAA)χ2 + 2
(
− T (κNN)− L(κAA)+

+ (κNN)2 + κNNκAA +RLL

)
χ+ 2(κNN + κAA)RLL − L(RLL)

We will denote by F the right hand side of the above equation. Taking advantage of the

special structure for L(RLL):

−L(RLL) = −L(L(v) + E) = −L(L(v))− L(E) + [L,L](v) =

= −L(L(v))− L(E) + 2(η − η)∇/ (v) + κNN(L(v)− L(v))

we can conclude that

L(Θ+L(v))+2χ(Θ+L(v)) = F ′−L(E)+2(η− η)∇/ (v)+ (κNN +2χ)L(v)−κNNL(v) = W.

(96)

where we denoted by F ′, all the terms in F but the last one. We rely once again on (78)

with σ = 2. The bootstrap assumption (71) and the estimate (91) imply

s
3
2‖Θ + L(v)‖L2(St,u) −→ 0 as s −→ 0

Applying the result mentioned above, we deduce:

s
3
2‖Θ + L(v)‖L2(St,u) .

∫ s

0

ρ
3
2‖W‖L2(Sρ+u,u) dρ (97)

Evaluating all the terms in F ′ we obtain:

1

s
3
2

∫ s

0

ρ
3
2‖(η − η)∇/ (χ)‖L2(Sρ+u,u) dρ . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

1

s
3
2

∫ s

0

ρ
3
2‖κ(χ)2‖L2(Sρ+u,u) dρ . s−

1
2λ−ā

1

s
3
2

∫ s

0

ρ
3
2‖(∂κ+ (κ)2)χ‖L2(Sρ+u,u) dρ . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

1

s
3
2

∫ s

0

ρ
3
2‖(|κ|+ |χ|)|R|‖L2(Sρ+u,u) dρ . λ−ā− 1−a

2
+ε

For all the other terms in W , we use the estimates (91) to argue that:

1

s
3
2

∫ s

0

ρ
3
2‖L(E)‖L2(Sρ+u,u) dρ . s−

1
2λ−2ā+2a− 1

2
+ε

1

s
3
2

∫ s

0

ρ
3
2‖(η − η)∇/ (v)‖L2(Sρ+u,u) dρ . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

1

s
3
2

∫ s

0

ρ
3
2‖(|κ|+ |χ|)|∂v|‖L2(Sρ+u,u) dρ . λ−ā− 1−a

2
+ε + s−

1
2λ−ā
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This allows to conclude:

‖Θ + L(v)‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā

which in turn implies

‖Θ‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā (98)

based on the estimates that we have for v. We will deal now with b, because the estimate

for |b− 1| will help us finish the proof for L(χ− 1
s
). The transport equation for b is

L(b) = −bκNN

We can apply (77) with σ = 0, because the initial values (69) imply

|b− 1| −→ 0 as s −→ 0

Therefore, we obtain:

|b− 1| .
∫ s

0

|κ| dρ . min{sλ−ā, λ−(1−a)} (99)

Rewriting Θ as

Θ = L(χ− 1

s
) + 2

b−1 − 1

s2
+ (

1

s2
− χ2)− (κNN + 2κAA)χ

we can infer that

‖L(χ− 1

s
)‖L2(St,u) . ‖Θ‖L2(St,u) +

1

s2
‖b− 1‖L2(St,u) + ‖ 1

s2
− χ2‖L2(St,u) + ‖κχ‖L2(St,u)

. λ−ā− 1−a
2

+ε + s−
1
2λ−ā

(100)

which concludes our discussion.

4.3 Proof of the estimates for η and its derivatives

We remember what we have denoted by Θ

Θ = 2∇/ (η) + 2η2 +RALLA

We can write then

∇/ (η) + η2 = H

where H = 1
2
(Θ−RALLA) satisfies

‖H‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā
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Using (67), we can conclude that

‖∇/ (η)‖L2(St,u) . ‖H‖L2(St,u) . λ−ā− 1−a
2

+ε + s−
1
2λ−ā

‖η‖2
L4(St,u) . ‖H‖L2(St,u) . λ−ā− 1−a

2
+ε + s−

1
2λ−ā

(101)

We use the transport equation satisfied by η

L(η) + χη = −χκAN +
1

2
RALLL

with the initial conditions
sη −→ 0

s
1
2‖η‖L2(St,u) −→ 0

as s −→ 0, satisfied due to the assumption (70). Applying (80) with σ = 1, we conclude:

sup
St,u

|η| . sup
ρ≤s

ρ(|κ||χ|+ |R|) . sλ−ā−(1−a) + λ−ā

‖η‖L2(St,u) .
1

s
1
2

∫ s

0

ρ
1
2‖|κ||χ|+ |R|‖L2(Sρ+u,u) dρ . sλ−ā− 1−a

2
+ε + s

1
2λ−ā

At this point we take advantage of the Sobolev inequality (73) to infer that:

sup
St,u

|η| . s
1
2‖∇/ (η)‖L2(St,u) + s−

1
2‖η‖L2(St,u) . s

1
2λ−ā− 1−a

2
+ε + λ−ā (102)

Due to this result and the transport equation for η we obtain that L(η) satisfies the same

estimate as ∇/ (η). Here we remark that these estimates for η imply the desired inequalities

for the L derivatives of the second fundamental form κ. As in [17], for the case n = 3,

we do not have a good estimate for L(η). This finishes the discussion concerning η and its

derivatives.

4.4 Proof of the estimates for b and its derivatives

We notice that already in the course of the proof for χ− 1
s

we obtained

|b− 1| .
∫ s

0

|κ| dρ . min{sλ−ā, λ−(1−a)}

Due to the transport equation L(b) = −bκNN we infer immediately that

sup
St,u

|L(b)| . λ−ā

‖L(b)‖L2(St,u) . s
1
2λ−ā

(103)

The formula ∇/ (b) = b(η − κAN), together with the inequalities satisfied by η and κ:
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sup
St,u

|κ| . λ−ā ,

sup
St,u

|η| . s
1
2λ−ā− 1−a

2
+ε + λ−ā ,

provide us immediately with the estimates

sup
St,u

|∇/ (b)| . s
1
2λ−ā− 1−a

2
+ε + λ−ā

‖∇/ (b)‖L2(St,u) . sλ−ā− 1−a
2

+ε + s
1
2λ−ā

(104)

For L(b) we write its transport equation

L(L(b)) = L(L(b)) + [L,L](b) = b ((κNN)2 + 2(κAN)2 − L(κNN)− 2η2) (105)

Due to the initial values (69), we have

L(b) −→ 0

s−
1
2‖L(b)‖L2(St,u) −→ 0

as s −→ 0. We apply (77) and (78) with σ = 0 to deduce that:

sup
St,u

|L(b)| . sλ−ā−(1−a)

‖L(b)‖L2(St,u) . sλ−ā− 1−a
2

+ε

(106)

This concludes the proof of the asymptotic estimates.

5 The reduction of Theorem 2.5 to conformal energy

estimates

We recall first, that according to Theorem 2.5, the estimate to be proved is:

‖P ∂φ(t)‖L∞x .
1

(1 + |t− t0|)
1
2
−ε

m∑
k=1

‖∂kφ[t0]‖L2
x

for a sufficiently large integer m, where φ solves the equation �gφ = 0, the metric g satisfies

(27)-(32), P is the operator of projection on the set {ξ : 1
2
≤ |ξ| ≤ 2} in Fourier space and

the initial data φ[t0] is supported in the ball B 1
2
(0). The argument here follows to some

extent the same lines as the one in Section 7, [8]. For the interior region, due to the fact

that P is an operator acting on the scale of size 1 and 1 − ω is a cut-off function with the

scale of size t ≥ 1, we can basically write

P∂φ · (1− ω) ≈ P (∂φ · (1− ω))
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Therefore, using Bernstein inequality and the fact that |∂ω| . t−1, we have the following

chain of estimates:

‖P∂φ · (1− ω)‖L∞(Σt) . ‖∂P (∂φ · (1− ω)‖L2(Σt)

. ‖∂2φ · (1− ω)‖L2(Σt) +
1

t
‖∂φ · (1− ω)‖L2(Σt)

.
1

t
E

1
2 (∂φ)(t)

(107)

Remark In the interior region the decay is t−1, better than the overall decay estimate of

t−
1
2 . This consideration will turn out to be crucial in further steps of the proof.

For the exterior region, let us first remark that, due to t
2

. s . t, we can consider s ≈ t.

Using the Sobolev inequality (73), we can infer that

‖P∂φ‖L∞(St,u) . t
1
2‖∇/P∂φ‖L2(St,u) +

1

t
1
2

‖P∂φ‖L2(St,u) (108)

For the second term, applying the trace estimate (75) together with the fact that t ≥ 1, we

conclude that:

1

t
1
2

‖P∂φ‖L2(St,u) .
1

t
1
2

‖NP∂φ‖
1
2

L2(Σt,ext)
· ‖P∂φ‖

1
2

L2(Σt,ext)
+

1

t
‖P∂φ‖L2(Σt,ext) .

.
1

t
1
2

E
1
2 (∂φ)(t)

(109)

In the case of the first term in (108), again due to (75), it follows that:

t
1
2‖∇/P∂φ‖L2(St,u) . t

1
2‖N∇/P∂φ‖

1
2

L2(Σt,ext)
· ‖∇/P∂φ‖

1
2

L2(Σt,ext)
+ ‖∇/P∂φ‖L2(Σt,ext) (110)

For ‖N∇/P∂φ‖
1
2

L2(Σt,ext)
we use the trivial estimate

‖N∇/P∂φ‖
1
2

L2(Σt,ext)
. ‖∂φ‖

1
2

L2(Σt,ext)
. E

1
4 (∂φ)(t), (111)

while for ‖∇/P∂φ‖L2(Σt,ext) it will be enough to prove that it decays like 1
t

, or more precisely:

‖∇/P∂φ‖L2(Σt,ext) .
1

t
E

1
2 (∂φ)(t). (112)

Commuting P with ∇/ directly as in Lemma 7.1, [8], together with the null-frame equations

contained in Theorem 3.5, we obtain the following chain of estimates:

‖∇/P∂φ‖L2(Σt,ext) . sup
α,β

‖∂αe
β
A‖L∞(Σt,ext) · ‖∂φ‖L2(Σt) + ‖P∇/ ∂φ‖L2(Σt,ext) .

. max{‖χ‖L∞(Σt,ext), ‖η‖L∞(Σt,ext), ‖κ‖L∞(Σt,ext)} · ‖∂φ‖L2(Σt) + ‖∇/ ∂φ‖L2(Σt,ext)

. (
1

t
+ λ−ā + t

1
2λ−ā− 1−a

2
+ε)E

1
2 (∂φ)(t) +

1

t
E

1
2 (∂φ)(t) .

1

t
E

1
2 (∂φ)(t).

(113)
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The inequality used here:

t
1
2λ−ā− 1−a

2
+ε .

1

t
(114)

is the one that gives the range a <
√

22− 4. Putting together (108)-(112), we infer that:

‖P∂φ‖L∞(St,u) . t−
1
2E

1
2 (∂φ)(t) (115)

Thus, due to (107) and (115), Theorem 2.5 will be an immediate consequence of the following:

Theorem 5.1 If φ is a solution of the linear wave equation

�gφ = 0,

φ|t=0 = φ0, ∂tφ|t=0 = φ1

(116)

with the metric g verifying the condition (27)-(32), a <
√

22 − 4 and the initial data φ[t0]

supported in the ball B 1
2
(0), then:

sup
τ∈[t0,t∗]

E(∂φ)(τ) . E(∂φ)(t0) (117)

6 Outline of the proof of Theorem 5.1

In the case of dimension n = 3, Klainerman and Rodnianski proved the corresponding decay

estimate using only the Morawetz vectorfield K. They relied on the following generalized

energy estimate: ∫
Σt

Q(K, ∂t)(φ) & E(φ)(t), (118)

where

Q(K, ∂t)(φ) =
1

4

(
u2|Lφ|2 + u2|Lφ|2 + (u2 + u2)|Aφ|2

)
+ (n− 1)tφ∂tφ −

n− 1

2
φ2.

As it was first remarked by Klainerman in [5], this inequality is no longer true in the case of

dimension n = 2. It survives however in the form:∫
Σt

Q(K, ∂t)(φ) + ‖φ‖2
L2(Σt)

& E(φ)(t). (119)

Due to the fact that we do not control ‖φ‖L2(Σt), we will have to use (119) with φ→ ∂tφ, the

quantity ‖∂φ‖L2(Σt) being bounded through the classical energy estimate. This modification

will help us recover the desired estimate (117) only in the interior region. The novelty of our

argument comes in the deduction of the required estimate in the exterior region. We will
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use two other vectorfields, S and Ω. We will commute them with the D’Alembertian �g,

according to the formula:

�g(Xφ)− X(�gφ) = Xπαβ · DαDβφ+ Dα Xπαλ · Dλφ− 1

2
Dλtr Xπ · Dλφ = Z, (120)

where
Xπαβ = DαXβ + DβXα

is the deformation tensor of the vectorfield X relative to the metric g. For the equation

�g(Xφ) = Z we will use the classical energy estimate (see also (125)):

‖∂Xφ(t)‖L2(Σt) .
(
‖∂Xφ(t0)‖L2(Σt0 ) +

∫ t

t0

‖Z(τ, ·)‖L2(Στ ) dτ
)
· eC

R t
t0
‖∂tg(τ,·)‖L∞(Στ ) dτ

. (121)

As it can be seen from (117), the goal will be to prove that:∫ t

t0

‖Z(τ, ·)‖L2(Στ ) dτ . λ−ε sup
τ∈[t0,t]

E
1
2 (∂φ)(τ). (122)

We will express Z in equation (120) relative to the null frame {L,L,A}. Accordingly, the

deformation tensor Xπ appears in terms of the Ricci coefficients χ, η, the lapse function b

and the second fundamental form κ. Therefore, in order to estimate Z in (122), we will

need the bounds provided by the Asymptotics Theorem 4.1 in section 4. A typical term that

appears in (122), which comes from the combination
ΩπLLDLDLφ , is∫ t

t0

‖η · s · L∂φ‖L2(Στ ) dτ .
∫ t

t0

‖η‖L∞(Στ ) · ‖s · L∂φ‖L2(Στ ) dτ .

.
∫ t

t0

‖η‖L∞(Στ ) dτ sup
τ∈[t0,t]

E
1
2 (∂φ)(τ)

The estimate provided by Theorem 4.1 for η is

‖η‖L∞(Στ ) . λa−ā− 1
2
+ε

Hence, to obtain the estimate (122), we need the condition∫ t

t0

λa−ā− 1
2 dτ . λ2a−ā− 1

2
+ε . λ−ε,

which gives the range a <
√

22 − 4. The last section will gather the estimates obtained

in the next two sections for the vectorfields K, Ω and respectively S, and so conclude the

argument.
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7 Energy estimates involving the Morawetz vectorfield

K

The central result of this section will be:

Theorem 7.1 Under the assumptions of Theorem 5.1 :

E(∂tφ)(t) . E(∂tφ)(t0) + λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) (123)

In order to prove this theorem we start first with

Lemma 7.2 ([7]) If w is a solution of the equation �gw = f , Qαβ is the energy momentum

tensor associated to this equation

Qαβ = ∂αw∂βw −
1

2
gαβ(gµν∂µw∂νw) ,

X is a vectorfield with the deformation tensor

Xπαβ = DαXβ + DβXα ,

O is a scalar function, X π̃ = Xπ − Og and

Q̄(X, Y ) = Q(X,Y ) +
n− 1

4
O · w · Y w − n− 1

8
w2 Y (O) ,

then the following identity holds:∫
Σt

Q̄(X, ∂t) =

∫
Σt0

Q̄(X, ∂t) +
1

2

∫
[t0,t]×Rn

Qαβ X π̃αβ −
n− 1

8

∫
[t0,t]×Rn

w2�gO+

+

∫
[t0,t]×Rn

(Xw +
n− 1

4
Ow)f.

(124)

Proof Differentiating directly in the formula for Qαβ, we obtain:

DβQαβ = Dαw f.

If we consider the 1-form Pα = QαβX
β, previous equation leads to

DαPα = Xw f +
1

2
Qαβ

Xπαβ ,

which we can detail as:

DαPα =
1

2
X π̃αβ Qαβ + (Xw +

n− 1

4
Ow)f − n− 1

8
w2�gO−

− n− 1

4
Dµ(O · w · Dµw − 1

2
DµO · w2).
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Denoting

P̄α = Pα +
n− 1

4
O · w · Dαw − n− 1

8
w2DαO ,

it follows that:

DαP̄α =
1

2
Qαβ X π̃αβ + (Xw +

n− 1

4
Ow)f − n− 1

8
w2 �gO

Integrating this equation over the domain [t0, t]× Rn, we obtain (124).

Corollary 7.3 For w a solution of the equation �gw = f , the following estimate holds:

‖∂w(t)‖L2(Σt) .
(
‖∂w(t0)‖L2(Σt0 ) +

∫ t

t0

‖f(τ, ·)‖L2(Στ ) dτ
)
· eC

R t
t0
‖∂tg(τ,·)‖L∞(Στ ) dτ

(125)

Proof Taking in the previous lemma, X = ∂t and O = 0, we can rewrite (124) in the

form:
1

2

∫
Σt

(|∂tw|2 + gij∂iw · ∂jw) =
1

2

∫
Σt0

(|∂tw|2 + gij∂iw · ∂jw) +

+
1

2

∫
[t0,t]×Rn

Qαβ · ∂tgαβ +

∫
[t0,t]×Rn

∂tw · f
(126)

Using the fact that the metric gij is uniformly elliptic and bounded, we obtain

‖∂w(t)‖2
L2(Σt)

. ‖∂w(t0)‖2
L2(Σt0 ) +

∫ t

t0

(
‖∂tg(τ)‖L∞(Στ ) · ‖∂w(τ)‖2

L2(Στ ) +

+ ‖f(τ)‖L2(Στ ) · ‖∂w(τ)‖L2(Στ )

)
dτ

(127)

Applying Gronwall inequality to this equation concludes the proof.

Proposition 7.4 Under the assumptions of Theorem 5.1 :

E(∂tφ)(t) . E(∂tφ)(t0) + λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) +

+ |
∫

[t0,t]×R2

1

2
Qαβ K π̃αβ + (K∂tφ + τ ∂tφ)�g(∂tφ)|

(128)

Proof In the Lemma 7.2, we will choose w = ∂tφ, n = 2, X = K and O = 4t, this

last choice being motivated by the fact that in Minkowski space tr Kπ = 4t and that we are

looking for an O which would make K π̄ small. (124) then becomes:∫
Σt

Q̄(K, ∂t) =

∫
Σt0

Q̄(K, ∂t) +
1

2

∫
[t0,t]×R2

Qαβ K π̃αβ −
1

2

∫
[t0,t]×R2

(∂tφ)2�g(τ) +

+

∫
[t0,t]×R2

(K∂tφ + τ ∂tφ)�g(∂tφ).

(129)

We take apart the term Q̄(K, ∂t) and write it in the more convenient form:
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Q̄(K, ∂t) = Q(K, ∂t) + t · ∂tφ · ∂ttφ −
1

2
(∂tφ)2

=
1

4
u2|L∂tφ|2 +

1

4
u2|L∂tφ|2 +

1

4
(u2 + u2)|A∂tφ|2 + t · ∂tφ · ∂ttφ−

− 1

2
(∂tφ)2

We will be interested in the particular term:∫
Σt

t · ∂tφ · ∂ttφ =

∫
Σt

∂tφ · (S∂tφ − (t− u)N∂tφ).

We separate and integrate by parts the term involving N∂tφ:

−
∫

Σt

(t− u)N∂tφ · ∂tφ = −
∫

Σt

1

2
(t− u)N((∂tφ)2) =

=

∫
Σt

1

2
(N(t− u) + (χ + κAA)(t− u))(∂tφ)2 =

∫
Σt

1

2
(b−1 + sχ + sκAA)(∂tφ)2

Using the asymptotic estimates:

|b − 1| . λ−ε ,

|χ − 1

s
| + |κ| . λ−ā ,

we conclude that:

−
∫

Σt

(t− u)N∂tφ · ∂tφ =

∫
Σt

(1 + O(λ−ε))(∂tφ)2

Hence ∫
Σt

Q̄(K, ∂t) =

∫
Σt

(1

4
u2|L∂tφ|2 +

1

4
u2|L∂tφ|2 +

1

4
(u2 + u2)|A∂tφ|2 +

+ S∂tφ · ∂tφ + (
1

2
+ O(λ−ε))(∂tφ)2

) (130)

Using the expression for S, it follows naturally that:∫
Σt

u2|L∂tφ|2 + u2|L∂tφ|2 + (u2 + u2)|A∂tφ|2 .
∫

Σt

Q̄(K, ∂t) + (∂tφ)2,

which of course implies

E(∂tφ)(t) .
∫

Σt

Q̄(K, ∂t) + ‖∂tφ‖2
L2(Σt)

. (131)

Applying the energy estimate (125), for our reduced linear problem �gφ = 0, we can infer

that:

‖∂φ(t)‖L2(Σt) . ‖∂φ(t0)‖L2(Σt0 ) · eC
R t

t0
‖∂tg(τ,·)‖L∞(Στ ) dτ

,
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which due to

‖∂g‖L1
t L∞x

. λ−(1−a) ,

yields

‖∂φ(t)‖L2(Σt) . ‖∂φ(t0)‖L2(Σt0 ) (132)

This estimate allows us to write (131) in the form:

E(∂tφ)(t) .
∫

Σt

Q̄(K, ∂t) + E(∂tφ)(t0) (133)

Checking easily that �g(t) = gijκij , the integral term − 1
2

∫
[t0,t]×R2(∂tφ)2�g(τ) can be esti-

mated as:

| − 1

2

∫
[t0,t]×R2

(∂tφ)2�g(τ)| .
∫ t

t0

‖∂tφ(t)‖2
L2(Στ )‖gijκij‖L∞(Στ ) dτ

. λ−ε sup
τ∈[t0,t∗]

E(∂tφ)(τ)
(134)

Putting together (133) and (134) with the obvious inequality∫
Σt0

Q̄(K, ∂t) . E(∂tφ)(t0) ,

we obtain (128).

Proposition 7.5 The deformation tensor Kπ of the Morawetz vectorfield

K =
1

2
(u2L + u2L) ,

satisfies
KπLL = −2u2 κNN

KπLL = 2u(4(b−1 − 1)− uκNN)

KπAA = u2χ+ u2χ

KπLL = −4(u+ b−1u) + (u2 + u2)κNN

KπLA = −2u2κAN

KπLA = u2ξ + u2(η + κAN)

Proof Using the formula for K, we can write:

Kπαβ =
1

2
u2(< DαL, ∂β > + < DβL, ∂α >) +

1

2
u2(< DαL, ∂β > + < DβL, ∂α >)+

+
1

2
∂αu

2 < L, ∂β > +
1

2
∂βu

2 < L, ∂α > +
1

2
∂αu

2 < L, ∂β > +
1

2
∂βu

2 < L, ∂α >

35



This implies

KπLL = u2 < DLL,L > +u2 < DLL,L > +L(u2) < L,L > +L(u2) < L,L >=

= −2u2κNN

KπLL = u2 < DLL,L > +u2 < DLL,L > +L(u2) < L,L > +L(u2) < L,L >=

= u2(−2κNN) + (−4u)(2− 2b−1) = 2u(4(b−1 − 1)− uκNN)

KπAA = u2 < DAL,A > +u2 < DAL,A > +A(u2) < L,A > +A(u2) < L,A >=

= u2χ+ u2χ

KπLA =
1

2
u2(< DLL,A > + < DAL,L >) +

1

2
u2(< DLL,A > + < DAL,L >)+

+
1

2
L(u2) < L,A > +

1

2
A(u2) < L,L > +

1

2
L(u2) < L,A > +

1

2
A(u2) < L,L >=

=
1

2
u2 (2η − 2κAN) = −2u2 κAN

KπLA =
1

2
u2(< DLL,A > + < DAL,L >) +

1

2
u2(< DLL,A > + < DAL,L >)+

+
1

2
L(u2) < L,A > +

1

2
A(u2) < L,L > +

1

2
L(u2) < L,A > +

1

2
A(u2) < L,L >=

= u2ξ + u2(η + κAN)

KπLL =
1

2
u2(< DLL,L > + < DLL,L >) +

1

2
u2(< DLL,L > + < DLL,L >)+

+
1

2
L(u2) < L,L > +

1

2
L(u2) < L,L > +

1

2
L(u2) < L,L > +

1

2
L(u2) < L,L >=

= u2 κNN + u2 κNN − 4u b−1 − 4u

This concludes the proof of this proposition. Next, we will analyze the integral term in (128)

which involves the deformation tensor Kπ. In this direction, we can prove the next

Lemma 7.6 Under the assumptions of Theorem 5.1 :

|
∫

[t0,t]×R2

(
1

2
Qαβ K π̃αβ −

1

4
u2(χ − 1

s
)∂tφ ·�g(∂tφ) · ω

)
| . λ−ε sup

τ∈[t0,t∗]

E(∂φ)(τ) (135)

Proof Detailing the term Qαβ K π̃αβ, we obtain:

Qαβ K π̃αβ =
1

4
(K π̃LL|L∂tφ|2 + K π̃LL|L∂tφ|2) +

1

2
(K π̃AA(L∂tφ · L∂tφ + |A∂tφ|2) +

+ K π̃LL|A∂tφ|2) − K π̃LAA∂tφ · L∂tφ − K π̃LAA∂tφ · L∂tφ

Using the expressions for the deformation tensor of K provided by Proposition 7.5, we have

the following set of estimates:

|K π̃LL|L∂tφ|2| . λ−ā|uL∂tφ|2

|K π̃LL|L∂tφ|2| . λ−ā|uL∂tφ|2

|K π̃AA|A∂tφ|2| . λ−ā|uA∂tφ|2
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|K π̃LL|A∂tφ|2| . λ−ā|uA∂tφ|2

|K π̃LAA∂tφ · L∂tφ| . λ−ā|uL∂tφ| · |uA∂tφ|

|K π̃LAA∂tφ · L∂tφ| . (λ−ā + τ
1
2λ−ā− 1−a

2
+ε)|uL∂tφ| · |uA∂tφ|

These estimates imply directly:

|
∫

[t0,t]×R2

(
1

2
Qαβ K π̃αβ −

1

4
K π̃AA L∂tφ · L∂tφ

)
| . λ−ε sup

τ∈[t0,t∗]

E(∂φ)(τ). (136)

Due to the fact that
K π̃AA = u2(χ+

1

s
) + u2(χ− 1

s
)

and because

|u2(χ+
1

s
)L∂tφ · L∂tφ| . λ−ā|uL∂tφ| · |uL∂tφ|

|K π̃AA L∂tφ · L∂tφ · (1− ω)| . λ−ā|τ ∂∂tφ · (1− ω)|2

we can rewrite (136) in the form:

|
∫

[t0,t]×R2

(
1

2
Qαβ K π̃αβ −

1

4
u2(χ− 1

s
)L∂tφ · L∂tφ · ω

)
| . λ−ε sup

τ∈[t0,t∗]

E(∂φ)(τ). (137)

We are in a position to apply one of our integration results, (83), for the second term in the

above integral. It will follow that:∫
[t0,t]×R2

1

4
u2(χ− 1

s
)L∂tφ · L∂tφ · ω =

∫
[t0,t]×R2

1

4
u2(χ− 1

s
) ∂tφ ·�g(∂tφ) · ω+

+ O(λ−ε) sup
τ∈[t0,t∗]

E(∂φ)(τ)
(138)

provided the conditions set in Proposition 3.10 are fulfilled. Let us verify them using the

asymptotic estimates:

|1
4
u2(χ− 1

s
)| . τ 2 · λ−ā . τ · λ−ε∫ t

t0

1

τ
3
2

· sup
0≤u≤ t

2

‖∇/ (
1

4
u2(χ− 1

s
))‖L2(Sτ,u) dτ .

∫ t

t0

τ
1
2 (λ−ā− 1−a

2
+ε + τ−

1
2 · λ−ā) dτ

. λ−ε∫ t

t0

1

τ
3
2

· sup
0≤u≤ t

2

‖L(
1

4
u2(χ− 1

s
))‖L2(Sτ,u) dτ .

∫ t

t0

τ
1
2 (λ−ā− 1−a

2
+ε + τ−

1
2 · λ−ā +

+ τ
1
2 · λ−2ā) dτ . λ−ε

This concludes, of course, the proof of our lemma. Having in mind (128) and (135), in order

to obtain (123), we are left to prove:∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ + τ ∂tφ +

1

4
u2(χ− 1

s
) ∂tφ · ω

)
�g(∂tφ)

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ). (139)
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Let us concentrate for a moment on �g(∂tφ). We have the formula:

�g(∂tφ) = −∂tg
ij · ∂i∂jφ − ∂t(trκ) · ∂tφ − ∂t(Γ

j
ii) · ∂jφ. (140)

Due to this formula we can split �g(∂tφ) into two parts: A which contains only second order

derivatives for φ and B which gathers the first order derivatives of φ. Accordingly, we will

prove (139) by considering first the part related to B and then the part related to A. We do

it like this because some of the information obtained by proving the ”B-part” will be used

in proving the ”A-part”. We will further divide our argument into the one concerning the

interior part of the integral and the one concerning its exterior part.

7.1 Estimate of the B-part

Due to the formula (140):

B = − ∂t(trκ) · ∂tφ − ∂t(Γ
j
ii) · ∂jφ = (|∂2g| + |∂g|2) · ∂φ (141)

First we prove the interior estimate:

Proposition 7.7 Under the assumptions of Theorem 5.1 :∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ + τ ∂tφ) · (1− ω)

)
B

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ). (142)

Proof Estimating directly we obtain∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ+ τ∂tφ)(1− ω

)
B

∣∣∣∣ =

∣∣∣∣ ∫
[t0,t]×R2

(u2L(∂tφ) + u2L(∂tφ) + τ∂tφ) · (1− ω) ·B
∣∣∣∣

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖(|∂2g| + |∂g|2) · ∂φ · (1− ω)‖L2(Στ ) dτ .

.
∫ t

t0

τE
1
2 (∂φ)(τ)‖∂2g∂φ(1− ω)‖L2(Στ ) dτ +

∫ t

t0

τE
1
2 (∂φ)(τ)‖|∂g|2 · ∂φ(1− ω)‖L2(Στ ) dτ

The second term is easily estimated as follows:∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖|∂g|2 · ∂φ(1− ω)‖L2(Στ ) dτ .

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖|∂g|2‖L∞(Σt) · ‖∂φ(1− ω)‖L2(Στ ) dτ .

∫ t

t0

τ · λ−2ā · E(∂φ)(τ) dτ .

. λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) ,
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while for the first one we have to be more subtle in our approach, because we do not control

‖∂φ(1− ω)‖L∞(Σt). We proceed like this:∫ t

t0

τ ·E
1
2 (∂φ)(τ) · ‖∂2g · ∂φ · (1− ω)‖L2(Στ ) dτ .

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖∂2g‖Lp(Στ ) · ‖∂φ(1− ω)‖Lq(Στ ) dτ ,

where
1

p
+

1

q
=

1

2
.

Due to Bernstein inequality we have the estimate:

‖∂2g‖Lp(Στ ) . λ
1
2
− 1

p‖∂2g‖L2(Στ ).

Using Sobolev inequality we obtain:

‖∂φ · (1− ω)‖Lq(Στ ) . ‖∂2− 2
qφ · (1− ω)‖L2(Στ ).

Estimating the last term by interpolation, we infer that:

‖∂2− 2
qφ · (1− ω)‖L2(Στ ) . ‖∂2φ · (1− ω)‖

1− 2
q

L2(Στ ) · ‖∂φ · (1− ω)‖
2
q

L2(Στ ) .

. τ−1+ 2
q · E

1
2 (∂φ)(τ).

Putting altogether the last four estimates, we obtain:∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖∂2g · ∂φ · (1− ω)‖L2(Στ ) dτ .

∫ t

t0

τ
2
q · λ

1
q
−ā · E(∂φ)(τ) dτ .

. λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ)

for q large enough, which ends the proof of this result. Therefore, we are left to prove that:

Proposition 7.8 Under the assumptions of Theorem 5.1 :∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ +

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ

)
· ω ·B

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ). (143)

Proof Using the integral estimate (82) corresponding to the exterior region, we obtain:∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ +

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ

)
· ω ·B

∣∣∣∣ .

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖(|∂2g| + |∂g|2) · ∂φ · ω‖L2(Στ ) dτ .

.
∫ t

t0

τ
1
2 · sup

0≤u≤ τ
2

‖|∂2g| + |∂g|2‖L2(Sτ,u) · E(∂φ)(τ) dτ .
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.
∫ t

t0

τ
1
2 · (λ−ā− 1−a

2
+ε + τ

1
2λ−2ā) · E(∂φ)(τ) dτ .

. λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ).

This concludes the discussion concerning B.

7.2 Estimate of the A-part

According to formula (140)

A = −∂tg
ij · ∂i∂jφ = ∂g · ∂2φ. (144)

We will prove that:

Proposition 7.9 Under the assumptions of Theorem 5.1 :∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ + τ ∂tφ) · (1− ω)

)
A

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ). (145)

Proof Estimating directly, as in Proposition 7.7, we obtain∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ + τ ∂tφ) · (1− ω)

)
A

∣∣∣∣ .

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖|∂g| · |∂2φ| · (1− ω)‖L2(Στ ) dτ .

.
∫ t

t0

‖∂g‖L∞(Στ ) · E(∂φ)(τ) dτ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ)

We investigate now the exterior part of the integral. Due to the fact that in the exterior

region, in the energy expression, all the terms but the L-derivative come with a weight

comparable to τ , we can infer that:∣∣∣∣ ∫
[t0,t]×R2

(
K∂tφ +

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ

)
· ω · A′

∣∣∣∣ .

.
∫ t

t0

τ · E
1
2 (∂φ)(τ) · ‖A′ · ω‖L2(Στ ) dτ .

.
∫ t

t0

‖∂g‖L∞(Στ ) · E(∂φ)(τ) dτ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) ,

(146)

where A′ differs from A just through the term which involves two L-derivatives on φ. We can

further simplify our investigation by replacing DLDLφ = DLD2T−Lφ with L(∂tφ), because

the difference between these two terms is of A′-type. Therefore, the expression to estimate

is: ∫
[t0,t]×R2

(
K∂tφ +

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ

)
· ω · AL · L(∂tφ) ,
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where AL = TπLL = −2κNN . This is the coefficient of DLDLφ in the expression of A, as

it can easily by commuting the wave operator �g with the vectorfield T = ∂t. Using the

trivial estimate |AL| . |∂g|, we immediately obtain:

|
∫

[t0,t]×R2

u2 · L(∂tφ) · AL · L(∂tφ)| .

.
∫ t

t0

‖∂g‖L∞(Στ ) · E(∂φ)(τ) dτ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ).

(147)

We will investigate now the term∫
[t0,t]×R2

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ · ω · AL · L(∂tφ)

Again, we are in a position to apply one of our integration estimates, (84), provided(
τ + 1

4
u2(χ− 1

s
)
)
· AL verifies the conditions imposed in Proposition 3.10. We check them

one by one:

|
(
τ +

1

4
u2(χ− 1

s
)
)
· AL| . (τ + τ 2λ−ā) · |∂g| . λ−ε∫ t

t0

1

τ
1
2

· sup
0≤u≤ τ

2

‖L
((
τ +

1

4
u2(χ− 1

s
)
)
· AL

)
‖L2(Sτ,u) dτ .

.
∫ t

t0

1

τ
1
2

(
λ−ā sup

0≤u≤ τ
2

‖L
(
τ +

1

4
u2(χ− 1

s
)
)
‖L2(Sτ,u) + (τ + τ 2λ−ā) sup

0≤u≤ τ
2

‖L(AL)‖L2(Sτ,u)

)
dτ

.
∫ t

t0

1

τ
1
2

· (τ
1
2λ−ā + τλ−ā− 1−a

2
+ε + τ

3
2λ−2ā + τ 2λ−2ā− 1−a

2
+ε) dτ

. λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ)

This allows to conclude:∣∣∣∣ ∫
[t0,t]×R2

(
τ +

1

4
u2(χ− 1

s
)
)
∂tφ · ω · AL · L(∂tφ)

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) (148)

Remark Already at this stage with the estimates obtained so far, we have:∣∣∣∣ ∫
[t0,t]×R2

(
τ +

1

4
u2(χ− 1

s
)
)
· ω · ∂tφ ·�g(∂tφ)

∣∣∣∣ . λ−ε sup
τ∈[t0,t∗]

E(∂φ)(τ) (149)

The last term to consider is ∫
[t0,t]×R2

u2 · L(∂tφ) · AL · L(∂tφ) · ω

We will use once again (83). The conditions to be satisfied are:

|u2AL| . τ 2 · λ−ā . τ · λ−ε
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∫ t

t0

1

τ
3
2

· sup
0≤u≤ t

2

‖∇/ (u2AL)‖L2(Sτ,u) dτ .
∫ t

t0

(τ
1
2λ−ā− 1−a

2
+ε + λ−ā) dτ . λ−ε

∫ t

t0

1

τ
3
2

· sup
0≤u≤ t

2

‖L(u2AL)‖L2(Sτ,u) dτ .
∫ t

t0

(τ
1
2λ−ā− 1−a

2
+ε + λ−ā) dτ . λ−ε

Therefore, we can write:∫
[t0,t]×R2

u2 · L(∂tφ) · AL · L(∂tφ) · ω =

=

∫
[t0,t]×R2

u2 · AL · ω · ∂tφ ·�g(∂tφ) + O(λ−ε) sup
τ∈[t0,t∗]

E(∂φ)(τ)
(150)

Taking into account the previous Remark and the fact that u2AL is ”dominated” by

τ + 1
4
u2(χ− 1

s
), we claim that we will also obtain∣∣ ∫

[t0,t]×R2

u2 · AL · ω · ∂tφ ·�g(∂tφ)
∣∣ . λ−ε sup

τ∈[t0,t∗]

E(∂φ)(τ). (151)

This concludes the argument for this section.

8 Energy estimates involving the scaling vectorfield S

and the angular momentum vectorfield Ω

The main result of this section is:

Theorem 8.1 Under the assumptions of Theorem 5.1 :

‖∂Sφ‖L2(Σt) . ‖∂Sφ‖L2(Σt0 ) + λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ) (152)

‖∂Ωφ‖L2(Σt) . ‖∂Ωφ‖L2(Σt0 ) + λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ) (153)

First we prove some preliminary results:

8.1 Commutation results

Here we will record the commutation formula between a vectorfieldX and the D’Alembertian

�g. This result will be used crucially in this section. We start first with

Lemma 8.2 ([6]) For a vectorfield X with the deformation tensor Xπ and a 1-form V on

a space-time manifold with metric g and corresponding connection D, we have

Dσ(LXVα) = LX(DσVα) + XΓασλV
λ (154)
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where
XΓασλ =

1

2
(Dα

Xπσλ + Dσ
Xπαλ − Dλ

Xπασ).

Proof The formula for the Lie derivative gives us :

LXVα = Xγ · DγVα + Vγ · DαX
γ

This implies:

Dσ(LXVα) = Xγ · DσDγVα + DσX
γ · DγVα + DσVγ · DαX

γ + Vγ · DσDαX
γ.

On the other hand:

LX(DσVα) = Xγ · DγDσVα + DσX
γ · DγVα + DσVγ · DαX

γ.

Subtracting term by term these relations, we end up with:

Dσ(LXVα) − LX(DσVα) = Xγ(DσDγVα − DγDσVα) + Vγ · DσDαX
γ

= RαµσλV
µXλ + Vγ · DσDαX

γ

We investigate the XΓασλ term, which we can detail as

XΓασλ =
1

2
(DαDσXλ + DαDλXσ + DσDαXλ + DσDλXα − DλDαXσ − DλDσXα)

=
1

2
(DαDσXλ + DσDαXλ + RσµαλX

µ + RαµσλX
µ) = DσDαXλ + RαλσµX

µ

This, of course, concludes the proof of the lemma. We are now ready to state and prove our

main commutation result:

Proposition 8.3 ([6]) For an arbitrary vectorfield X with the deformation tensor Xπ, trace

tr Xπ = gαβ Xπαβ

and traceless part
X π̂αβ = Xπαβ −

1

n+ 1
tr Xπ gαβ ,

we have the following commutation formula:

�g(Xφ) − X(�gφ) = Xπαβ · DαDβφ + Dα Xπαλ · Dλφ − 1

2
Dλtr Xπ · Dλφ

=X π̂αβ · DαDβφ+Dα X π̂αλ · Dλφ + (
1

n+ 1
− 1

2
)Dλtr Xπ · Dλφ+

1

n+ 1
tr Xπ ·�gφ

(155)
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Proof Using the decomposition �g = gαβDαDβ, we can infer that:

�g(Xφ)− X(�gφ) = gαβDαDβ(DXφ)− LX(gαβDαDβφ) = gαβDα(DXDβφ+

+ DβX
γ · Dγφ)− LX(gαβ)DαDβφ− gαβLX(DαDβφ) = gαβ(DαLXDβφ−

− LXDαDβφ) + (gαγ · DγX
β + gβγ · DγX

α)DαDβφ

Here we take advantage of (154) to conclude that:

�g(Xφ) − X(�gφ) = gαβ · 1

2
(Dα

Xπβλ + Dβ
Xπαλ − Dλ

Xπαβ)Dλφ+

+ Xπαβ · DαDβφ = Dα Xπαλ · Dλφ − 1

2
Dλtr Xπ · Dλφ + Xπαβ · DαDβφ,

which ends the proof. An immediate consequence of this result is the following:

Lemma 8.4 Under the assumptions of Theorem 5.1:

�g(Ωφ) = Ωπαβ · DαDβφ + Dα Ωπαλ · Dλφ − 1

2
Dλtr Ωπ · Dλφ (156)

�g(Sφ) = Sπ̂αβ · DαDβφ + Dα Sπ̂αλ · Dλφ − 1

6
Dλtr Sπ · Dλφ (157)

8.2 Proof of estimate (153)

We start first with:

Proposition 8.5 The deformation tensor Ωπ of the angular momentum vectorfield

Ω = s · A

satisfies
ΩπLL = 0

ΩπLL = 4s(η − κAN)

ΩπAA = 0

ΩπLL = −2s(η − κAN)

ΩπLA = −sχ+ 1

ΩπLA = −sχ+ 1− 2b−1

trΩπ = −ΩπLL + ΩπAA = 2s(η − κAN)

(158)

Proof Using the expression for Ω, we can infer that:

Ωπαβ = s (< DαA, ∂β > + < DβA, ∂α >) + ∂αs < A, ∂β > + ∂βs < A, ∂α >
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This implies:

ΩπLL = 2s < DLA,L > + 2L(s) < A,L >= 0

ΩπLL = 2s < DLA,L > + 2L(s) < A,L >= 2s (−2ξ) = 4s (η − κAN)

ΩπAA = 2s < DAA,A > + 2A(s) < A,A >= 0

ΩπLA = s (< DLA,A > + < DAA,L >) + L(s) < A,A > +A(s) < A,L >=

= − sχ + 1

ΩπLA = s(< DLA,A > + < DAA,L >) + L(s) < A,A > +A(s) < A,L >=

= − sχ + 1 − 2b−1

ΩπLL = s(< DLA,L > + < DLA,L >) + L(s) < A,L > +L(s) < A,L >=

= s(−2η − 2η) = − 2s(η − κAN).

Using the energy estimate (125) applied to equation (156), we obtain:

‖∂Ωφ‖L2(Σt) . ‖∂Ωφ‖L2(Σt0 ) +

+

∫ t

t0

‖Ωπαβ · DαDβφ + Dα Ωπαλ · Dλφ − 1

2
Dλtr Ωπ · Dλφ‖L2(Στ ) dτ

Detailing the first integral term, we infer that:∫ t

t0

‖ΩπαβDαDβφ‖L2(Στ ) dτ .
∫ t

t0

(
‖ΩπLLDLDLφ‖L2(Στ ) + ‖ΩπLLDLDLφ‖L2(Στ )+

+ ‖ΩπAADADAφ‖L2(Στ ) + ‖ΩπLADADLφ‖L2(Στ ) + ‖ΩπLADLDAφ‖L2(Στ )+

+ ‖ΩπLLDLDLφ‖L2(Στ )

)
dτ

The first and the third terms of the right hand side vanishes due to the formulae in Propo-

sition 8.5. Investigating one by one the remaining terms we obtain:∫ t

t0

‖ΩπLLDLDLφ‖L2(Στ ) dτ .
∫ t

t0

‖s(η − κAN)(L(Lφ) + κNNLφ)‖L2(Στ ) dτ .

.
∫ t

t0

(1 + λ−āτ)(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)E

1
2 (∂φ)(τ) dτ .

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖ΩπLADADLφ‖L2(Στ ) dτ .
∫ t

t0

‖s(χ− 1

s
)(A(Lφ)− χAφ− κANLφ)‖L2(Στ ) dτ

.
∫ t

t0

(τλ−2ā + λ−ā)E
1
2 (∂φ)(τ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)
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∫ t

t0

‖ΩπLADLDAφ‖L2(Στ ) dτ .
∫ t

t0

‖(−sχ+ 1− 2b−1)(L(Aφ) + κANLφ)‖L2(Στ ) dτ

.
∫ t

t0

(τλ−2ā + λ−ā)E
1
2 (∂φ)(τ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖ΩπLLDLDLφ‖L2(Στ ) dτ .
∫ t

t0

‖s(η − κAN)(L(Lφ)− κNNLφ+ 2κANAφ)‖L2(Στ ) dτ

.
∫ t

t0

(1 + λ−āτ)(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)E

1
2 (∂φ)(τ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

The other two terms that we encounter in the commutation formula (156) will be considered

together. Lowering the upper indices we obtain:

Dα Ωπαβ · Dβφ− 1

2
Dα(trΩπ) · Dαφ =

= (
1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ)) · Lφ+

+ (
1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ)) · Lφ+

+ (−1

2
DL

ΩπLA −
1

2
DL

ΩπLA +DA
ΩπAA −

1

2
A(trΩπ)) · Aφ

(159)

Detailing each parenthesis, we can infer that:

1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ) =

1

4
(L(ΩπLL)− 2η ΩπAL−

− κNN
ΩπLL − 2ξ ΩπAL + κNN

ΩπLL) +
1

4
(L(ΩπLL) + 4κAN

ΩπAL − 2κNN
ΩπLL)−

− 1

2
(A(ΩπAL)− 1

2
χ ΩπLL −

1

2
χ ΩπLL − χ ΩπAA − κAN

ΩπAL) +
1

4
L(−ΩπLL)

Remark We notice here the cancellation of 1
4
L(ΩπLL) with the last term 1

4
L(−ΩπLL). These

terms contain Lη for which, as mentioned before, we do not have good estimates. We wouldn’t

have been able to prove our result, unless this cancellation took place.

1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ) =

1

4
(L(ΩπLL)− 4η ΩπAL−

− 2κNN
ΩπLL) +

1

4
(L(ΩπLL) + 2κAN

ΩπAL − κNN
ΩπLL + κNN

ΩπLL)− 1

2
(A(ΩπAL)−

− 1

2
χ ΩπLL −

1

2
χ ΩπLL − χ ΩπAA + κAN

ΩπAL) +
1

4
L(−ΩπLL)
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− 1

2
DL

ΩπLA −
1

2
DL

ΩπLA +DA
ΩπAA −

1

2
A(trΩπ) = −1

2
(L(ΩπLA)− 2η ΩπAA−

− κNN
ΩπAL − η ΩπLL − ξ ΩπLL)− 1

2
(L(ΩπLA) + 2κAN

ΩπAA − κNN
ΩπAL+

+ κAN
ΩπLL) + (A(ΩπAA)− χ ΩπLA − χ ΩπLA) +

1

2
A(ΩπLL)

Taking into account the explicit formulae for the different components of the deformation

tensor provided in Proposition 8.5, we can reduce the above expressions to

1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ) = L(s(η − κAN))−

− 1

2
A(−s χ+ 1− 2b−1)− 1

2
(η + κAN)(−s χ+ 1− 2b−1)+

+ (η − κAN)(
1

2
+ s χ+ s κAA − s κNN)

(160)

1

4
DL

ΩπLL +
1

4
DL

ΩπLL −
1

2
DA

ΩπAL +
1

4
L(trΩπ) = −1

2
A(−s χ+ 1)−

− η(−s χ+ 1)− 1

2
s χ(η − κAN)

(161)

− 1

2
DL

ΩπLA −
1

2
DL

ΩπLA +DA
ΩπAA −

1

2
A(trΩπ) = −1

2
L(−s χ+ 1)−

− 1

2
L(−s χ+ 1− 2b−1)− A(s (η − κAN)) + (

1

2
κNN − χ)(−s χ+ 1− 2b−1)+

+ (
1

2
κNN − χ)(−s χ+ 1)− s(η − κAN)2

(162)

All the terms in these expressions which do not have a derivative with respect to the null

frame {L,L,A} and which we denote generically by X, can be estimated in the L∞-norm as

follows

|X| . (1 + λ−āτ)(τ
1
2λ−ā− 1−a

2
+ε + λ−ā) (163)

Then, the integral expressions corresponding to these terms satisfy:∫ t

t0

‖X ∂φ‖L2(Στ ) dτ .
∫ t

t0

(1 + λ−āτ)(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)E

1
2 (∂φ)(τ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

(164)

We denote the terms which involve derivatives by Y . For their corresponding integrals we

split the discussion into the interior part, where we will use a similar argument as in the

case of Morawetz vectorfield K, and the exterior part, where we will take advantage of the

integral estimate (82):∫ t

t0

‖Y ∂φ‖L2(Στ ) dτ .
∫ t

t0

‖Y ∂φω‖L2(Στ ) dτ +

∫ t

t0

‖Y ∂φ (1− ω)‖L2(Στ ) dτ .
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.
∫ t

t0

τ−
1
2 sup

0≤u≤ τ
2

‖Y ‖L2(Sτ,u)E
1
2 (∂φ)(τ) dτ +

∫ t

t0

τ−1 ‖Y (1− ω)‖L2(Στ )E
1
2 (∂φ)(τ) dτ

.
∫ t

t0

τ−
1
2 sup

0≤u≤ τ
2

‖Y ‖L2(Sτ,u)E
1
2 (∂φ)(τ) dτ +

∫ t

t0

τ−
1
2 sup

τ
2
≤u≤τ

‖Y ‖L2(Sτ,u)E
1
2 (∂φ)(τ) dτ

A typical ”Y ”-term is, for example, L(s(η−κAN)). Using the asymptotic estimates (85), we

can evaluate it as follows:

‖L(s(η − κAN))‖L2(Sτ,u) . s ‖L(η − κAN)‖L2(Sτ,u) + ‖η − κAN‖L2(Sτ,u)

. s (λ−ā− 1−a
2

+ε + s−
1
2 λ−ā) + s

1
2 (s

1
2 λ−ā− 1−a

2
+ε + λ−ā)

. s λ−ā− 1−a
2

+ε + s
1
2 λ−ā

Hence, the general estimate for Y is:

sup
0≤u≤τ

‖Y ‖L2(Sτ,u) . τ λ−ā− 1−a
2

+ε + τ
1
2 λ−ā (165)

Therefore the integral above can be evaluated by:∫ t

t0

‖Y ∂φ‖L2(Στ ) dτ .
∫ t

t0

(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)E

1
2 (∂φ)(τ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

(166)

This concludes the proof of estimate (153).

8.3 Proof of estimate (152)

As in the previous section, we start with:

Proposition 8.6 The deformation tensor Sπ of the scaling vectorfield

S =
1

2
(uL + uL)

satisfies
SπLL = −2uκNN

SπLL = 4(b−1 − 1)− 2uκNN

SπAA = uχ+ uχ

SπLL = −2(1 + b−1) + (u+ u)κNN

SπLA = −2uκAN

SπLA = uξ + u(η + κAN)

trSπ = −SπLL + SπAA = uχ+ uχ− (u+ u)κNN + 2(1 + b−1)
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Proof Using the above formula for S, we infer that:

Sπαβ =
1

2
u(< DαL, ∂β > + < DβL, ∂α >) +

1

2
u(< DαL, ∂β > + < DβL, ∂α >)+

+
1

2
∂αu < L, ∂β > +

1

2
∂βu < L, ∂α > +

1

2
∂αu < L, ∂β > +

1

2
∂βu < L, ∂α >

This implies

SπLL = u < DLL,L > +u < DLL,L > +L(u) < L,L > +L(u) < L,L >=

= −2uκNN

SπLL = u < DLL,L > +u < DLL,L > +L(u) < L,L > +L(u) < L,L >=

= u(−2κNN) + (−2)(2− 2b−1) = 4(b−1 − 1)− 2uκNN

SπAA = u < DAL,A > +u < DAL,A > +A(u) < L,A > +A(u) < L,A >=

= uχ+ uχ

SπLA =
1

2
u(< DLL,A > + < DAL,L >) +

1

2
u(< DLL,A > + < DAL,L >)+

+
1

2
L(u) < L,A > +

1

2
A(u) < L,L > +

1

2
L(u) < L,A > +

1

2
A(u) < L,L >=

=
1

2
u (2η − 2κAN) = −2uκAN

SπLA =
1

2
u(< DLL,A > + < DAL,L >) +

1

2
u(< DLL,A > + < DAL,L >)+

+
1

2
L(u) < L,A > +

1

2
A(u) < L,L > +

1

2
L(u) < L,A > +

1

2
A(u) < L,L >=

= uξ + u(η + κAN)

SπLL =
1

2
u(< DLL,L > + < DLL,L >) +

1

2
u(< DLL,L > + < DLL,L >)+

+
1

2
L(u) < L,L > +

1

2
L(u) < L,L > +

1

2
L(u) < L,L > +

1

2
L(u) < L,L >=

= uκNN + uκNN − 2b−1 − 2

As in the case of Ω, we will use the energy estimate (125) for the equation (157). This

implies:

‖∂Sφ‖L2(Σt) . ‖∂Sφ‖L2(Σt0 ) +

+

∫ t

t0

‖Sπ̂αβ · DαDβφ + Dα Sπ̂αλ · Dλφ − 1

6
Dλtr Sπ · Dλφ‖L2(Στ ) dτ

Using π̂ instead of π will affect only two terms:

Sπ̂LL = SπLL − 2 gLL = 2t κNN + 2(1− b−1)

Sπ̂AA = SπAA − 2 gAA = u(χ+
1

s
) + u(χ− 1

s
)
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As before, we will first deal with the terms which do not involve derivatives of the deformation

tensor:∫ t

t0

‖Sπ̂LLDLDLφ‖L2(Στ ) dτ .
∫ t

t0

‖uκNN(L(Lφ)− 2ξAφ+ κNNLφ)‖L2(Στ ) dτ

.
∫ t

t0

λ−ā‖uL(∂φ)‖L2(Στ ) + τλ−ā(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)‖∂φ‖L2(Στ ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖Sπ̂LLDLDLφ‖L2(Στ ) dτ .
∫ t

t0

‖(4(b−1 − 1)− 2uκNN)(L(Lφ) + κNNLφ)‖L2(Στ ) dτ

.
∫ t

t0

λ−ā‖τ L(∂φ)‖L2(Στ ) + τλ−2ā‖∂φ‖L2(Στ ) dτ .

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖Sπ̂LADADLφ‖L2(Στ ) dτ .
∫ t

t0

‖2uκAN(L(Aφ)− ξLφ− ηLφ)‖L2(Στ ) dτ

.
∫ t

t0

λ−ā‖uL(∂φ)‖L2(Στ ) + τλ−ā(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)‖∂φ‖L2(Στ ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖Sπ̂LADLDAφ‖L2(Στ ) dτ .
∫ t

t0

‖(u ξ + u(η + κAN))(L(Aφ) + κANLφ)‖L2(Στ ) dτ

.
∫ t

t0

(τ
1
2λ−ā− 1−a

2
+ε + λ−ā)‖τ L(∂φ)‖L2(Στ ) + τλ−ā(τ

1
2λ−ā− 1−a

2
+ε + λ−ā)‖∂φ‖L2(Στ ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖Sπ̂LLDLDLφ‖L2(Στ ) dτ .
∫ t

t0

‖(2t κNN + 2(1− b−1))(L(Lφ)− κNNLφ+

+ 2κANAφ)‖L2(Στ ) dτ .
∫ t

t0

λ−ā‖τ L(∂φ)‖L2(Στ ) + τλ−2ā‖∂φ‖L2(Στ ) dτ

. λ−ε sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)∫ t

t0

‖Sπ̂AADADAφ‖L2(Στ ) dτ .
∫ t

t0

‖(2s(χ− 1

s
)− uκAA)(A(Aφ)− χLφ−

− trχLφ)‖L2(Στ ) dτ .
∫ t

t0

λ−ā‖τ A(∂φ)‖L2(Στ ) + τλ−2ā‖∂φ‖L2(Στ ) dτ +

+

∫ t

t0

‖1

s
κAAu∂φ‖L2(Στ )dτ . λ−ε sup

τ∈[t0,t∗]

E
1
2 (∂φ)(τ) +

∫ t

t0

‖1

s
κAAu∂φ(1− η̄)‖L2(Στ ) dτ

To conclude the analysis of these terms, we have to deal with the last integral.
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∫ t

t0

‖1

s
κAAu ∂φ(1− η̄)‖L2(Στ ) dτ .

∫ t

t0

1

τ
‖1

s
κAAu (1− η̄)‖L2(Στ )E

1
2 (∂φ)(τ) dτ .

.
∫ t

t0

‖1

s
κAA(1− η̄)‖L2(Στ ) dτ sup

τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

Due to the fact that

sup
St,u

|κ| . min{sλ−ā−(1−a), λ−ā}

the last L2-norm can be estimated as follows :

‖1

s
κAA(1− η̄)‖2

L2(Στ ) .
∫ 1

0

1

s2

∫
Sτ,u

|κ|2 dσ ds +

∫ τ
2

1

1

s2

∫
Sτ,u

|κ|2 dσ ds .

.
∫ 1

0

1

s2
s s2 λ−2ā−2(1−a) ds +

∫ τ
2

1

1

s2
s λ−2ā ds . λ−2ā−2(1−a) + λ−2ā ln τ

This result obviously implies:∫ t

t0

‖1

s
κAA(1− η̄)‖L2(Στ ) dτ . λ−ε (167)

Next we investigate the terms which involve derivatives of the trSπ. Before we start, let us

first write trSπ in the form

trSπ = 4 + 2b−1 + 2s(χ− 1

s
) − 2uκAA − 2t κNN

The expression to evaluate is
∫ t

t0
‖Dα(trSπ)Dαφ‖L2(Στ ) dτ . All the terms that appear from

the differentiation of trSπ, with the exception of u∇/ (κAA) and t∇/ (κNN), can be estimated in

a similar manner like the ”Y ”-term from the previous section. All these estimates yield the

desired upper bound λ−ε supτ∈[t0,t∗]E
1
2 (∂φ)(τ). We show the proof for the term involving

κAA. As before, we split the argument in the interior and the exterior part and use the

corresponding integral estimates:∫ t

t0

‖u∇/ (κAA)∂φ‖L2(Στ ) dτ .
∫ t

t0

τ
1
2 sup

0≤u≤ τ
2

‖∇/ (κAA)‖L2(Sτ,u)E
1
2 (∂φ)(τ) dτ+

+

∫ t

t0

‖∇/ (κAA)(1− ω)‖L2(Στ )E
1
2 (∂φ)(τ) dτ .

(
λ−ε +

∫ t

t0

‖∇/ (κAA)(1− ω)‖L2(Στ ) dτ
)
·

· sup
τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

We are left to investigate the norm under the last integral, for which we need the following

weak estimate:

sup
Sτ,u

|∇/ (κAA)| . s λ−ā−2(1−a)
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This is obtained immediately from the trivial bound

| d
ds

(∇/ (κAA))| . |∂3g| + |∂g| · |∂2g|

and the following estimate (30) satisfied by the metric g:

‖∂1+mgλ‖L∞t L∞x . λ−ā−(1−a)m ,

true for all integers 0 ≤ m. This implies then:

‖∇/ (κAA)(1− ω)‖2
L2(Στ ) .

∫ 1

0

∫
Sτ,u

|∇/ (κAA)|2 dσ ds +

∫ τ
2

1

∫
Sτ,u

|∇/ (κAA)|2 dσ ds .

.
∫ 1

0

s s2 λ−2ā−4(1−a) ds+

∫ τ
2

1

(λ−2ā−(1−a) + s−1λ−2ā) ds .

. λ−2ā−4(1−a) + τλ−2ā−(1−a) + λ−2ā ln τ

This estimate implies then ∫ t

t0

‖∇/ (κAA)(1− ω)‖L2(Στ ) dτ . λ−ε (168)

which is, of course, the desired bound. In order to conclude our argument we have to estimate

the term ∫ t

t0

‖Dα Sπ̂αβ · Dβφ‖L2(Στ ) dτ .

As in the discussion for the angular momentum vectorfield Ω, in the decomposition of the

expression above we encounter two type of terms:

- terms which contain derivatives of the deformation tensor, which we denote generically by

Y ′;

- terms which do not contain derivatives of the deformation tensor, which we denote generi-

cally by X ′. Through a very easy inspection, we have the estimates:

|Y ′| . |Y |+ |∇/ (κ)|

|X ′| . |X|+ |1
s
τ κ|

(169)

As it can obviously be seen, these terms were covered previously, so this concludes our

discussion concerning the scaling vectorfield S.

Remark Comparing with the investigation of Ω, the discussion regarding S had difficulties

in evaluating the interior part of the integral terms, namely singularities appeared due to

negative powers of s. This is determined by the fact that, for the interior region, in the

case of S, u appears as minimal weight, while for the discussion regarding Ω, due also to

Ω = s · A, s is the weight that appeared more often.
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9 The conclusion of the argument

At the end of section 5, we reduced the local well-posedness result up to the proof of Theorem

5.1, which we recall here in the form:

Theorem 9.1 Under the assumptions of Theorem 5.1 :

sup
τ∈[t0,t∗]

E(∂φ)(τ) . E(∂φ)(t0) (170)

With the estimates obtained in the course of the previous two chapters, we can prove now

this theorem. We will proceed as follows:

9.1 Proof of the estimate (170) in the exterior region {s & t
2}

First we prove the following

Lemma 9.2 Under the assumptions of Theorem 5.1 we have the following commutator es-

timates:
‖[∂,Ω]φ‖L2(Σt) . λ−ε‖∂φ‖L2(Σt)

‖[∂, S]φ‖L2(Σt) . ‖∂φ‖L2(Σt)

(171)

Proof It is obvious that the lemma will follow if we verify the commutator estimates for

∂ replaced with either L, L or A. For the angular momentum vectorfield Ω we have

[L,Ω] = L(s · A) − s · AL = (1− s χ)A ,

[L,Ω] = L(s · A) − s · AL = (1− 2 b−1 − s χ)A + 2s(κAN − η)N ,

[A,Ω] = A(s · A)− s · A2 = 0 ,

while for the scaling vectorfield S, the calculations go like this:

[L, S] =
1

2
L(u)L +

1

2
u[L,L] +

1

2
L(u)L +

1

2
u[L,L] = (−u(κAN + η))A+

+ (1− 1

2
uκNN)L +

1

2
uκNNL

[L, S] =
1

2
L(u)L +

1

2
u[L,L] +

1

2
L(u)L +

1

2
u[L,L] = (−u(κAN + η))A+

+ (1 − b−1 +
1

2
uκNN)L + (b−1 − 1

2
uκNN)L

[A, S] =
1

2
A(u)L +

1

2
u[A,L] +

1

2
A(u)L +

1

2
u[A,L] = (

1

2
utrχ +

1

2
uχ)A+

+ u(η − κAN)T

These equations together with the asymptotic estimates yield the desired outcome.

53



Lemma 9.3 Under the assumptions of Theorem 5.1, the following estimates hold:

‖u · A∂φ · η̄‖L2(Σt) . ‖Ω∂φ‖L2(Σt)

‖u · L∂φ · η̄‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖S∂φ‖L2(Σt) + ‖∂φ‖L2(Σt)

‖u · L∂φ · η̄‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖S∂φ‖L2(Σt) + ‖∂φ‖L2(Σt)

(172)

Proof The first estimate is almost trivial due to the fact that in the exterior region u ≈
t ≈ s. We can conclude

‖u · A∂φ · η̄‖L2(Σt) . ‖s · A∂φ‖L2(Σt) = ‖Ω∂φ‖L2(Σt)

Let us observe that it is enough to prove only the estimates for L, the ones for L following

immediately from

uL = 2S − uL

In order to prove the estimates for L we use the equation:

�gφ = −DLDLφ + DADAφ =

= −L(Lφ) + A(Aφ) − (κNN +
1

2
χ)Lφ − 1

2
χLφ = 0

(173)

This yields of course

|s · L(Lφ)| . |s · A(Aφ)| + |Lφ| + |Lφ|

which in turn implies:

‖u · L(Lφ) · η̄‖L2(Σt) . ‖s · L(Lφ)‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖∂φ‖L2(Σt) (174)

Next we investigate |u · L(Lφ)|. We proceed like this:

|u · L(Lφ)| = |2S(Lφ) − u · L(Lφ)| . |S(Lφ)| + |u · L(Lφ)| + |u · [L,L]φ| .

. |S(Lφ)| + |u · L(Lφ)| + |u(η + κAN)Aφ| + |uκNNNφ|

This estimate together with the previous one yield:

‖u · L(Lφ) · η̄‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖S∂φ‖L2(Σt) + ‖∂φ‖L2(Σt) (175)

Finally:

|s · L(Aφ)| . |s · A(Lφ)|+ |s · [L,A]φ| . |Ω(Lφ)|+ |s · χAφ|

which enables us to infer that

‖u · L(Aφ) · η̄‖L2(Σt) . ‖s · L(Aφ)‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖∂φ‖L2(Σt) (176)

Putting altogether the previous results, we finally conclude:

E
1
2
ext(∂φ)(t) . ‖u · A∂φ · η̄‖L2(Σt) + ‖u · L∂φ · η̄‖L2(Σt) + ‖u · L∂φ · η̄‖L2(Σt) +

+ ‖∂φ‖L2(Σt) . ‖Ω∂φ‖L2(Σt) + ‖S∂φ‖L2(Σt) + ‖∂φ‖L2(Σt) .

. E
1
2 (∂φ)(t0) + λ−ε sup

τ∈[t0,t∗]

E
1
2 (∂φ)(τ)

(177)
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9.2 Proof of the estimate (170) in the interior region {s . t
2}

Due to the result obtained in Theorem 7.1, for our purposes it will be enough to consider

Eint(∇φ), where ∇ designates spatial derivatives. We will prove the following result:

Theorem 9.4 Under the assumptions of Theorem 5.1 , we have the following estimate:

Eint(∇φ)(t) . Eint(∂tφ)(t) + E(∂φ)(t0) (178)

Proof The approach is direct, using integration by parts. When there is no ambiguity we

will write the terms symbolically.

Eint(∇φ)(t) = t2
∫

Σt

gij · ∂∂iφ · ∂∂jφ · (1− ω) +

∫
Σt

|∇φ|2 · (1− ω)

Due to the energy estimate (132), the second term is bounded easily by:∫
Σt

|∇φ|2 · (1− ω) . ‖∂φ(t0)‖L2(Σt0 ) . E(∂φ)(t0) (179)

For the first integral we proceed as follows:

t2
∫

Σt

gij · ∂∂iφ · ∂∂jφ · (1− ω) = t2
∫

Σt

gij · ∂t∂iφ · ∂t∂jφ · (1− ω) +

+ t2
∫

Σt

gij · gkl∂k∂iφ · ∂l∂jφ · (1− ω)

Obviously, the first term has the upper bound:

t2
∫

Σt

gij · ∂t∂iφ · ∂t∂jφ · (1− ω) . Eint(∂tφ)(t) , (180)

while for the second one we will use, as mentioned above, integration by parts

t2
∫

Σt

gij · gkl · ∂k∂iφ · ∂l∂jφ · (1− ω) =

= − t2
∫

Σt

gij · gkl · ∂iφ · ∂k∂l∂jφ · (1− ω) + t2
∫

Σt

g · ∂g · ∂φ · ∂2φ · (1− ω) +

+ t2
∫

Σt

g · g · ∂φ · ∂2φ · ∂ω = t2
∫

Σt

|∆φ|2 · (1− ω) +

+ t2
∫

Σt

g · ∂g · ∂φ · ∂2φ · (1− ω) + t2
∫

Σt

g · g · ∂φ · ∂2φ · ∂ω

Using the equation satisfied by φ, we can infer that:

∆φ = ∂ttφ + ∂g · ∂φ (181)

55



If we plug in this expression for ∆φ in the above computation and take into account the

estimates for ‖∂g‖L∞x , we obtain the following estimate:

t2
∫

Σt

gij · gkl ∂k∂iφ · ∂l∂jφ · (1− ω) . t2
∫

Σt

(
|∂ttφ|2 + |∂g|2 · |∂φ|2 +

+ |g| · |∂g| · |∂φ| · |∂2φ| + |g| · |g| · |∂φ| · |∂2φ| · |∂ω|
)
· (1− ω) .

. Eint(∂tφ)(t) + λ−εE(∂φ)(t0) + λ−εE
1
2 (∂φ)(t0) · E

1
2
int(∂φ)(t) +

+ E
1
2 (∂φ)(t0) · E

1
2
int(∂φ)(t)

(182)

Putting together (179),(180),(182), we conclude that

Eint(∇φ)(t) . Eint(∂tφ)(t) + E(∂φ)(t0) + E
1
2 (∂φ)(t0) · E

1
2
int(∂φ)(t)

which clearly implies the result claimed.

Remark The conclusion of this section, (170), will then be the cumulative result of (123),(177)

and (178).
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