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Abstract

We investigate the local well-posedness for quasilinear wave equations in R?*1.
Our work extends the geometric methods pioneered by Klainerman and Klainerman-
Rodnianski for similar problems in R3!. The main new ingredient of the argument is
the use of two new vectorfields, the scaling vectorfield S and the angular momentum
vectorfield €2, which complement the decay information provided by the Morawetz
vectorfield K.

1 Introduction

In this article we consider the following Cauchy problem:

0/ 6 — 9" (9)0:0;¢ = N(¢,09),

1
qb(O?x) = ¢0(9§), atgb(ovx) = qbl(z)? (t7$) e R™™. ( )

where the metric g(u) = (gij(w))ij=1,..» is a smooth, uniformly positive definite matrix

and the nonlinearity N(¢,d¢) is quadratic in d¢. Assuming that the initial data satisfies
(¢, ¢1) € H*(R™) x H*"1(R"), we will be interested in the local well-posedness of the initial

value problem (1), e.g. for what values of s there exists a unique local solution
6 € C(0,T), H*(R") 1 C1((0, T, ™ (R")).

The expected range for s is
n n+o
> —= 2
s > max{y, "% )

where the first exponent comes from scaling, while the second one, according to Linblad [9],

is connected with the concentration of null rays. Recently, Smith and Tataru [15] proved
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that this is the range in the case of the dimensions n = 2, 3 for general systems of quasilinear
wave equations, while Klainerman and Rodnianski [8] showed it in the particular case of the
Einstein vacuum equations (n = 3) . For ¢ a smooth solution of equation (1), we have the

following H®-energy estimate, true for any s > 0 :

10¢(t)]

wer S [19¢(0)]

- / 106(7)]| 5= ) (3)

In order to obtain a local well-posedness result, one needs to control the integral term in (3).

The ’classical” approach is by using the Sobolev inequality :

t
[ 1000z dr < - sup 000l )

where s needs to satisfy s > 7 4 1. Combining (3) and (4), together with a Picard iteration
argument, we obtain local well-posedness for s in the range s > 7 + 1. In the form pre-
sented above, the result appears in a paper by Hughes-Kato-Marsden [3]. Another way of
estimating the integral term fot |0¢(7)|| e dT, locally in time, is through Strichartz estimates
for [[0¢]Laee(n = 2) and [|0¢| 2 (n > 3). Using such estimates, Ponce and Sideris [11]
proved that the semilinear wave equation ¢ = |0¢|* is well-posed in H 3+%+€(R”) forn =2
and H %%“(Rn) when n > 3. The scheme to keep in mind when attempting to prove a
local well-posedness result for the equation (1), based on Strichartz estimates (and of course
energy estimates), is captured in the following:

Heuristic argument In view of the energy estimate (3), one can make the bootstrap as-
sumptions ¢ € C([0,T], H*(R™)) and 0¢ € L} L. This implies that the metric g = g(¢)
satisfies the same conditions. So under these assumptions for g, one needs to prove Strichartz
estimates for the wave operator O, = 902 — ¢ (t,x)0;0;, with s > so. This, in turn, will
imply local well-posedness in the space H*°.

The first results were proved by Kapitanski [4] and Mockenhaupt-Seeger-Sooge [10] for
smooth metrics. A significant improvement came later, when Smith [12] proved, for n = 2,3,
the full Strichartz estimates for metrics with C? coefficients. This is the sharp result, as it
was shown later by a counterexample in Smith-Sogge [13]. Smith relied on a technique based
on the approximation of the solution using a wave packet decomposition. This construction
turned out to be very important and was also used in the recent paper of Smith and Tataru
[15]. Observe that according to this scheme, in order to apply Smith’s result, one needs
H*-regularity of the coefficients, with s > & + 2, and so is not able to recover even the
classical result corresponding to s > 7 + 1. This is why one needs Strichartz-type estimates
for metrics with very rough coefficients. An important breakthrough took place when it was
first realized, independently by Bahouri-Chemin [1], [2] and Tataru [16], that in order to

go below this C? assumption on the coefficients, one needs to allow losses in the Strichartz



estimates which, though will not give the optimal expected result (2) for n = 2,3, it will
nevertheless improve the classical result (s > § + 1). More precisely, Bahouri-Chemin [1],
2] and Tataru [16] were able to show that for metrics with coefficients rougher than C? the

following Strichartz estimates hold

n >3, (5)
n=2. (6)

10¢llzzr0 S Nl O] 5341 + O] 53+
100/l S O] 5341 + O] 51+

(ST
N
|
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Both papers are based on a parametrix construction for the local linearized problem on
small time intervals, followed by a summation of the estimates obtained on each one of these
intervals. Bahouri and Chemin used Fourier integral operators, while Tataru’s proof relied on
the FBI transform to localize precisely in space and frequency. Using similar ideas, he further
improved in [17] the local well-posedness theory for equation (1) up to s > 4 + %,
n=2ands > § + %, for n > 3. A later paper by Smith and Tataru [14] showed that based
on the heuristic argument previously presented, one cannot improve this result of Tataru.

when

One needs to stress the idea that all these results were based on regularity assumptions on the
coefficients of the metric, without taking advantage of the special structure of the nonlinear
equation. An important next step was taken by Klainerman in [6] and by Klainerman and
Rodnianski in [7], leading to further improvements in the local well-posedness theory. The
main new observation is that, due to the quasilinear structure of the equation, the coefficients

g () of the equation (1) verify themselves an equation of the type
Oe97 = N’ (7)

where N’ depends only on ¢ and 9¢. The term [ g appears crucially in the structure of the
Raychaudhuri equation for one of the Ricci coefficients and so it allows us to prove that this
Ricci coefficient is smoother than it was previously believed. Based on elliptic estimates,
one can then show that all Ricci coefficients are smoother. Both papers, dealing with the
case n = 3, are based on a geometric approach, using the foliation of the spacetime by null
cones and commutation of the linearized local equation with the modified version of Morawetz
vectorfield in order to prove that the conformal energy associated with the linearized equation
is bounded. The first paper by Klainerman [6] reproved Tataru’s result [17], while the
second one [7] by Klainerman and Rodnianski improved it up to s > 2 + 1 + %g in
the case when n = 3. The recent papers who proved the sharp result, [8] and [15], used a
variation of the same idea explained above, the former one combining it with a wave packet
decomposition along the lines of [12]. Our work, which is in the spirit of Klainerman and
Rodnianski program, deals with the case n = 2. In this situation using only the Morawetz
vectorfield does not longer suffice to derive the needed decay information as in the case of

dimension n = 3. Instead, and this is the main novelty of our argument, we rely on two



other vectorfields, the scaling and the angular momentum vectorfield, which complement
the information provided by the Morawetz vectorfield. Using this method we improve the
previous result of Tataru [17], but we fail to match the sharp one s > %. Our main result is

the following:

Theorem 1.1 The Cauchy problem (1) with the metric g¥ satisfying the assumptions below,

18 locally well posed in H® for any s > sqg = % + %ﬁ. Moreover, ¢ satisfies the following

Strichartz type estimate*
106l154, 1 < T 6[0]]

e (8)

Conditions satisfied by the coefficients ¢ : The metric g = ¢ (z) is smooth and
uniformly positive definite with respect to bounded values of the parameter z € R. Namely,

there exist positive constants My, Ay such that for a sufficiently large integer k

!
sup |(%) g <My, YO0<I<k

|z|<Ao

M YEP < g7(2)& < Mol€)?, V2| < A, (9)

|z|<Ao <

l
N(¢,0¢) = Z NP ($)0,05¢,  sup y(di) NP()| <My, YVO<I<E.
a,B

First we will reduce the problem to the proof of the boundedness of the conformal energy
for the solution of the reduced linear equation. This reduction is by now classical, see [6],
[7] and [8]. It is based on the parradiferential calculus in which one localizes the solution to
a certain dyadic frequency A and the coefficients at frequency at most A%, for an a € (0, 1).
This is followed by a T'T*-type argument which reduces the Strichartz estimate to a disper-
sive inequality. Finally, using Sobolev and trace theorems specially adapted to our situation,
we showed how to reduce our dispersive inequality to a bound for the conformal energy
associated with the linearized local problem. Secondly we will turn our attention to the ge-
ometry of the null cones. Here the important tools are: the null frame {L, L, A}, the optical
function u, the lapse function b, the affine parameter s, the second fundamental form « and
the Ricci coefficients x, x,7,7,§. The main result is the proof of asymptotic properties for
the Ricci coefficients and for the lapse function. The last and the most important part of
the proof deals with the commutation between the wave operator [, and the special vec-
torfields: the Morawetz vectorfield K, the scaling vectorfield S and the angular momentum
vectorfield 2. When commuting we obtain error terms which are expressed relative to the

deformation tensor of these vectorfields. The deformation tensor is then estimated in terms

'We denote the initial data for the equation (1) by ¢[0] and say that ¢[0] € H® if (¢g, ¢1) € H® x H*~ L.



of the asymptotics for the Ricci coefficients, deduced in the previous step. Boundedness for

the conformal energy is finally obtained by careful integration of the error terms.

2  The reduction of theorem 1.1 to a dispersive in-
equality

As mentioned in the introduction, this reduction is essentially the same with the one
presented in [6], [7] and [8]. This is why we will only sketch its main steps and refer the

reader to [7] for more details. We start first with:

2.1 Bootstrap argument

In order to prove Theorem 1.1 we have to obtain the following inequality?

106l , 15 S 1061, 5 > 50 (10)

In view of the trivial Cauchy-Schwartz estimate

3
106l 2 L S T4||a¢||Lf‘

o, le = o, L&

and of the energy estimate (3), the proof of (10) is reduced to the following bootstrap

argument:

Theorem 2.1 If ¢ is a solution of (1), » € C([0,T], H*)NC'([0,T], H*™1), with T < 1 and
satisfying

HaquL?O’T]LgO + HaﬁbHLﬁiT]H;* <R (11)
then it will also verify
||a¢||LfO,T]Lgo < C<R)TS_SO||8¢HLF&T]H;*1 (12)

2.2 Paradifferential approximation and linearization of the prob-
lem
In order to prove (12), we will use a Littlewood-Paley decomposition. In case of the

low frequencies the required estimate follows trivially applying the Sobolev inequality. The

delicate problem is in the case of the high frequencies A > A, where apart from the truncation

2Throughout this paper we will use the notation A < B for A < C - B where C' is a universal constant.
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of the coefficients caused by the commutation of the wave operator [ly(4) with the Littlewood-
Paley operator Py, we will further truncate them up to frequency A%, a € (0, 1), using the

operator

We introduce the smooth metric

9250 = Sxag”(Sxad). (13)
The inhomogeneous equation satisfied by the dyadic piece ¢* is then the following one:

|jg§>\a ¢)\ _ 82¢)\ + g<>\aa 8]¢)\ a

(14)
¢A|t:0 - ¢Oa at¢A|t:0 = Cbi\
The right-hand side R§ has the Fourier support contained in the set
{¢: A<l <4n}
and satisfies
IR S CRIN T ex [06(1)]]5= [|(t) | - (15)

for any s > 1 and ¢t € [0, 7], the constants c, verifying >, ¢3 < 1. Theorem 2.1 is then an

immediate consequence of the following

Proposition 2.2 [If ¢ satisfies the assumptions of Theorem 2.1, then for each A > A, where

A is a fized large parameter, the following Strichartz estimate is true:

106 18 1o < C(R) AT ™[00 oo pys- (16)

[0 T] [0,T]
for constants ¢y verifying Y, 3 < 1.
For more details we refer the reader to Proposition 1.2 and Theorem 1.3 in [7].

Remark From now on, we can regard (14) as a linear equation with smooth coefficients,

depending on the parameter X.

2.3 Restriction to frequency dependent time intervals

In this part we will reduce the proof of Proposition 2.2 to the proof of precise Strichartz

estimates (without losses) on small time intervals. Using the bootstrap assumption (11)

H ¢HL4 L = R7

[o, T]

we will partition the time interval [0, 7] into smaller intervals I such that they satisfy the

following three conditions:



- their total number is comparable to A\ =%
- the size of each I is bounded by TA~(~9);
- for each I

1— 1—a

4aHa¢“LE‘o,T]L3‘° < RN 7. (17)

100 aree < A™

Estimate (16) will then follow as a result of summing the exact Strichartz estimates over
the intervals I. We will use Duhamel formula to work from now on with an homogeneous
equation. We choose a to satisfy®

—4
0<a—_ o748 V22 —4 < 1.
1 —4s+ 4sg

The precise Strichartz estimate to be proved is:

1PA 0| paree < C(R) LI[0[0]]] 74, (18)
where 1) is a solution of the linear wave equation
E]ggxal/} =0
with initial data v[0] such that
- 1
suppy[0] € {5 < [¢] <27}
and
€ =5— 5.
The metric g<y« verifies for all nonnegative integers m and for all subintervals I:
107" gerallprpge < ATUTVFR, (19)
10" ™ gerallpapee < AT MR, (20)
10" gerallpgpee < AT R, (21)
[0 gralloree < ATFTR, (22)
a2 —
107 (0" 9<ne) gz < ATHMR, (23)
10Oy pegeralliyrge < AR (24)

R depending only on the constants M, and R.

Remarks 1. The estimates (19)-(21) follow immediately as a result of applying Holder
inequality to the estimate (17).

2. The estimates (22)-(23) are deduced using Sobolev inequalities, while (24) appears in view

3The particular choice for v/22 — 4 will become later explicit.
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of the fact that O,g" verifies (7). It is very easy to check that our linear wave equation

Ly e = 0 is invariant under rescaling. Introducing

aa(t,T) = g<pa ()\_115, )\_13:),

olt.r) = v(5.3) =

the estimate (18) is then further reduced to the proof of
Proposition 2.3 If ¢ is a solution of the homogeneous equation:

g = —07¢ + 60,050 = 0, )
90|t:0 = Yo, 815<,0|t:0 =¥

on the time interval I = [0,t.] with t. < \* and the metric g\ verifies the scaled versions of

(19)-(24):

10" a1 S A~ (malma), (27)
10" gall o S A2, (28)
10" gall e S AT, (29)
[0 gl oo pge S ATH ™, (30)
109%™ gall pgera S A4, (31)
||8m|jg>\g)\“L}Lg° SATCremlmam, (32)

where a = 1— “4—2 and the parameter a such that a < /22 —4, then the following Strichartz

estimate holds true

1P Oellrsre S [t lll0] 22, (33)
P is the operator of projection on the set { : 3 < || < 2} in Fourier space and the
inequality holds with a constant independent of .

Remark: Compared to the case n = 3, we notice the presence of inequality (29). Note also
that (30)-(31) are different from the corresponding inequalities in [7], due to the different

scaling in dimension n = 2.

2.4 Reduction of the Strichartz estimate to the dispersive in-

equality

This part contains three steps and follows identically the corresponding structure in [7]:

1. Equation (26) can be replaced with the geometric wave equation



Oy = — \/_ ,(v/det gx 9,0) + V— g7\/det gr 9;6) =0 (34)

and this is due to the fact that the two wave operators differ only by lower order terms in
so far as the Strichartz estimates are concerned.

2. Using a modified version of the standard T7T* argument as in [6],[7], we can show that
the proof of the Strichartz estimate (33) is reduced to the proof of the following dispersive
inequality:

Theorem 2.4 Under the hypothesis of Proposition 2.3, if ¢ is a solution of the linear wave
equation

Oy 0= 0

Pli=o = @0,  OiPli=0 = ¢1

with initial data ¢[0] supported in the set {€ : & < |¢| < 2} in Fourier space, then for all
t <t, and a fized arbitrary small € > 0

PO LOOS— Il 36
[P 0d(t) |l T 1910/ 21 (36)

(35)

3. Considering the same partition of unity as in [7], together with the additivity of the L'
norm and the standard Sobolev inequality, we will decompose the initial data ¢[0] into a
1

sum of functions with almost disjoint supports contained in balls of radius 5 and therefore

reduce the dispersive inequality (36) to the following L? — L decay estimate:

Theorem 2.5 Under the hypothesis of Theorem 2.4, but with the initial data @[ty supported
in the ball B% (0), for allty <t < t., an arbitrary small € > 0, and a sufficiently large integer
m > 0,

HPacb(t)HL;o§( .y t| ZIIa Pltol |z (37)
— Lo

Remark We will postpone the last step of the reductwn until we have all the geometrical

ingredients needed in its proof.

3 The geometrical background of the problem

3.1 Basic geometric tools

From now on, in order to simplify notation, we will denote our underlying metric gi‘ﬁ = ¢°b.

Therefore we will work with the space-time Lorentz metric

Gopdr®ds’ = —dt* + gijda'dx?.
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An immediate consequence of this is the fact that T = 0, is geodesic (DrT = 0). We will
begin with the following

Definition 3.1 1.The spacelike hypersurfaces 3, are defined as the level hypersurfaces of
the time function t. The time axis I' is the integral curve of the unit vectorfield T = 0,
witiating at the origin.

2. The solution u of the eikonal equation:
9*°0udgu = 0 uw(l'NX,) =t (38)
15 called the optical function. In connection with u, we will also define
u =2t —u
and
s =1 — u.

C, denotes the level surfaces of function u, which are null cones with vertices on I'. We
define by
L, = —gaﬁf)auag

the normal to the hypersurface C,.
3. The function b given by
bl = — < L',@t > = @u (39)
is called the lapse function.
4. The collection of the following vectorfields

L=b' L=2T-01, (40)

together with an unit vectorfield A, tangent to Sy, = X N Cy, is called a null frame.
Regarding Sy, as embedded in ¥, we define the unit outward normal N.
5. The conformal energy for a function ¢ = ¢(t,x) in the interior region and the exterior

region s given respectively by

Enm(@)(t) = / (22106 + [6) - (1 — w)
o (41)
Eeat(6)(t) = / (12 (LOP + (JAGP) + - |Lof* + [62) - w

where w is a cut-off function equal to 1 in the region {u < %}, whose derivative satisfies
|Ow| < 71

The full conformal enerqgy is given by

E@)(t) = Eim(9)(t) + Eext(¢)(t) (42)



6. We introduce the following special vectorfields:

Q = s-A angular momentumvector field (43)
1

S = E(UL + ul) scalarvector field (44)
1

K = §(u2L + u?L)  Morawetzvector field (45)

The following facts are simple consequences of the previous definition:

Proposition 3.2 1. < L, L>=< L, L>=< L A>=<L,A>= 0,

<L L>=-2 <AA>=1

2. The function s defined by s = t — u is the affine parameter of the vectorfield L.
3. Lu=0, Lt=1Ls=1, Lu=2.

4. Lu =20"', Lt=1 Ls=1—-2b"', Lu=2—2b"

5. Au = At = As = Au = 0.

6. L=T+ N, L=T— N.

We recall the formula for the Ricci tensor

« 1 Q,
R/“’ = g ﬁRa#ﬁy = —g 6(63@%”’ + ao%l/gﬂﬁ - aiyga[@ - a{iﬁgﬂl’) +

2 (46)
+ gaﬁgv5 (FZﬁFiu - FZVFiB)
Relying on the previous proposition, in the particular case of Ry, = Rpapa, we have the
following remarkable decomposition
Proposition 3.3 ([7])
1
Ry = L(v) — §L°‘L5Dgga5 + E, (47)
the terms
v _af 1 af
v= L g 859041/ — =g L(gaﬂ) (48)

2
and E' satisfy the following bounds:

| <199, |E'| S 19g]*.

An immediate consequence of this proposition is the following

Corollary 3.4 The quantities v and

1
E=— §L°‘L5Dggag + FE

11



satisfy the estimates:

v A7 (49)
| sw [Bldp < 2 (50)
0 p+u,u

Proof The first estimate for v is straightforward due to the trivial bound |v| < |0g| and
the condition (30). For E we have the bound

|E] < 10g] + [Dygl.
Therefore using (28) and (32), we obtain:

et HDgg”L[lo’t*]Lgo S (51)

ts]

| sw 1E1dp <0012,
0 El

Sptuu

We will define now the Ricci coeflicients and use them to describe the Levi-Civitta connection
defined by g¢.

Theorem 3.5 We define the following tensors on S ,:

X =<DusL,A> x =<DuL,A>, (52)
1 1
77:§<DLL,A>, ﬂ:§<DLL7A>7 (53)
1
§:§<DLL>A>- (54)

Based on these, the connection D satisfies the following equations:

DLL = —KJNNL, DLL = 2HA + FLNNL; DLA = QL (55)
DLL = 277A + K,NNL, DLL = 2§A — H'NNLa DLA = nL + §L (56)
1 1
DaL = xA— kanL, DsL = xA + kanL, DA = §XL + §XL- (57)
Moreover:
X = —X — 2Kaa, (58)
n=0b"'Y(b) + kan, n = —FkKan, (59)
£ = Kay — 1. (60)

12



Remarks 1) The proof of this theorem follows exactly the same lines as the corresponding
result in [7], being just a simple application of the orthogonalities of the null frame {L, L, A}
and of the eikonal equation (38) together with the basic properties of the Levi-Civitta con-

nection.

2) We notice that we can express all the other Ricci coefficients in terms of just x, n, the
lapse function b and the second fundamental form k.

3) We notice also that due to the fact Si,, is a 1-dimensional surface, all our Ricci coefficients
can be treated as scalars. Therefore, if we denote by Y the induced covariant derivative on

Stu, the A-derivative of a Ricci coefficient will coincide with its V-derivative.
Corollary 3.6 We have the following commutation properties:

[L,L] = 2(n — n)A + snnvL — kNN,
[L,A] = — XA, (61)
LAl = —xA + (n — kan)L + £L.

Among the tools that play an important role in the proof of the asymptotic properties are

the transport and the elliptic equations satisfied by the different Ricci coefficients. The ones

that will be used extensively are:

Lemma 3.7 The following transport and elliptic equations hold:

L(x) = = (x)* = snnx — Ruir, (62)
L(n) = —xn + xn + %RALLLy (63)
L(b) = —bryn, (64)
L(x) = (x)* = (knn + 26a4)x = 2Y(1) + 20° + Rarpa. (65)

Proof In this proof we use the equations for connection D and basic formulae for the
curvature tensor. In what concerns the transport equations, we present the proof for (63),
the other two equations being deduced similarly. Using (53) and taking an L-derivative we

can write
1 1 1
L(n) =5 <DLDLLA> +5 <DL DiA>= - <D/DLA> +

1 1 1
+ 5 <'D[L’L]L,A> +§ <RLLL,A> +§ <'DLL,'DLA>

If we plug in the frame equations (55), (56), (57) and the commutation formula (61), we
obtain (63).

13



The deduction of the elliptic estimate (65) follows like this:
L(x) =< Dy DAL, A> + <DsL,DLA>= Ruppa+ < DaDL,A> +
+ <Dy al,A> + <DsL, DA >= Rarpa+ <Da(2nA + knynL), A >
+ <D _ya+@m-ranb+erly A> + < XA — kanL,nL + L >=
= Rapra + 2V(n) + snnvx — XX + 2(0 — Kan)n + 2nkan.

Corollary 3.8 If we write the elliptic equation (65) in the form

Y(n) +n* = H (66)

we have the following estimate

1¥nllzas + Iz, S 1H s, (67)

Proof We square equation (66) and integrate the resulting expression over S;,. Due to
the fact that fo Y(n)n* = 0, we obtain the identity

/3 (VP + ) = [ m

St,u

which implies (67).

3.2 Construction of the optical function u and the continuation

argument

We review here the main steps in the construction of u discussed in [7]. It will be, of
course, enough to describe its level hypersurfaces C,, which are the union of null geodesics
xr = x(s), starting on the time axis I' from the vertex (u,0) and having velocity in the
direction of the vector (1,w), with @ € S'. Relative to our Lorentz metric g, the equations

for such a geodesic is:

d?x’ . dad dzF

rv———=0 (@7kF=0,...,2
ds? + jk ds ds (Zv J ) ’ )7 (68)
dx

Z(0) = (L),

Obviously, these equations can then be rewritten in the form of a first order system for
6 dependent variables, and so, due to the basic existence theorem for ordinary differential
equations, we obtain a local solution. We are interested up to what value of s such a

local solution can be extended to. Heuristically, such a system can be approximated by the

following ODE :

dy
— + 7T 2 =0.
5, Ty

14



A local solution can then be continued up to the value of the parameter s = sy.., as long
as, for example,
Smax|L(8)| < 1.

Due to the bound that we have for |F§-k|,
|sz| S logl S A°°

and the fact that
LA SN

we can argue that such a geodesic can be extended up to the value of the affine parameter
s = t, —u. It can be shown that the transport equation (64) for the lapse function b implies
that our geodesic intersect each time slice ¥, t < t,. From the definitions, initial condition
of the optical function v and the geometry around the time axis I', we can check the following

Initial values For all ¢t € [0,t.], there exists a constant Ry > 0 such that:

, 1
hmsgp(lx— S+ n(s)l) < Ro,

. 1 1
imsup st (120~ Dlis. + IVl ) < B

S—

(69)
lim ([b(s) — 1] + | A(S,..) — 2s]) = 0

lim (°[D(x — )| + 21 ¥n(s)]) = 0.

We will rely on a continuation argument, used also in [7], whose essence we explain in the next
lines. We denote by s(¢) the maximum value of s = ¢ — u, for which the above initial values
can be extended in the neighborhood of I' with the additional condition s(t) < min{eR;",t}
where € < 1. So in this region that we denote by A C [0,t,] x R?, the following are true:

Bootstrap assumptions

1
= 2 ()] < Ro (70
1 1
st (1P0= Dllzs + 190 s, ) < o 7
s(t) < min{eRy",t}. (72)

We will show that under these assumptions, Ry can be chosen such that
min{eRy ', t} =t

and so from the maximality of A we will conclude that the assumptions will then hold in
the whole region
{(s,0)]s € [0,1],t € [0, 1.}

Throughout this section and the following one, we will prove estimates in the region A.
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3.3 Other geometric results

Based on the bootstrap assumptions (70)-(72), just as in [7], we can prove the following

result:

Proposition 3.9 A. Sobolev inequality For any smooth function f,
f: S — R, 1 <p<oo, we have the following Sobolev estimate:

_1 1
sup|f| < s [V lunisin + 577l luosen- (73)

t,u

B. Trace estimates For any function h, h: ¥, — R, h € H%“(Rz) and

A, = Uisﬁpﬁsstat—l?f we have the following inequalities:
1 1
1Al 220 S 1027 Fllzasn + 11027 fll 2y (74)

1£122(s,.) S IN(H)llz2an)

Remark These two results, in a more general form, can be found for the case n = 3 in

1
fllz2ay) + ngH%Q(AS)' (75)

[7]. They will also survive in the general form in the case n = 2, but not to create too much
confusion, we presented them in the form perfectly suitable to our situation. We remark
also that the proof that we have right now is almost identical with the original one, the only
difference with respect to the case n = 3 being the fact that we are no longer able to recover
the isoperimetric inequality. We hope to provide in the future a different proof for (73)-(75),
which would rely more on the special structure of Sy ,.*

The next result will be extensively used in the proof of the asymptotic properties for the
Ricci coefficients.

Transport lemma [f =4 is an S, ,-tangent covariant tensor satisfying the transport equa-
tion

L(Z4) + 0 xEa = Fha, (76)

with the initial condition s°Z4(s) — 0 as s — 0 and (t,z) = (t,s,w) € A, the following
estimates hold:
If o > —% then

- 4 [,
ol < [ o1Fl (77)
0
Additionally, if s"’%HEHLz(St’u) — 0 as s — 0, we have
- 4 (7,1
1=z < —= N 25y dp (78)

4This proof would take advantage of the fact that S; ,, is the intersection of the level sets for the functions
t and wu.
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If 0 >0 and F defined in the whole time slab [0,t,] X R?, we have also

E(a) < 4IF oy o (79)
If 0 >0, it follows that
_ 4
E(t,2)] < — supp - |F| (80)
p<s

Proof The transport equation (76) implies:

1d,_5 0.5 1 9
——|= B I - — )= F-=
P+ ZEP = —o(x— DEP+FE,

which further yields
d

1
£(520 217 = —205* (x — g)|E|2 +2s%F - E.
Integrating this equation with respect to s and taking into account the initial condition, we
obtain: ool [* ) 5 o
_ o ” - o o
Sl <20 [ #oh- SIERde+ o [ 1Pl dp (81)
0 0

Using now the fact that |[x — | < Ry, contained in the assumptions, together with the

—1 we can write

hypothesis, 0 > —3,

2|0 2 [
EfP<—-R S —/ |F - 2] dp.
i?s” <5 osiiy "+ = N |F - Eldp
Due to the fact that s < s(¢) and Rys(t) < 1, by the assumption (72), we can conclude that

4 §
—|2 20 —
sup |=° < — p | F - =| dp.
pSE)’ | T os% 0 | |

Finally using Gronwall inequality, we end up with

A,
E<s [ SR
$% Jo

This implies of course (77) and (80). (79) follows also immediately. To deduce (78) we
will continue from (81) by integrating it over the fixed surface S,. Due to the fact that

fSt,u frs- 027r f(s,w) dw, we obtain

S
f”Wﬂé@MSMﬂAp%WE%mwwwwk
S

+2/ﬁW4WWH@MMEMH&mw@-
0

Here applying twice Gronwall inequality, we come up with the desired result. Finally we
present integration results which will be useful in the sections which deal with commutation
of the D’Alembertian with the special vectorfields:
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Proposition 3.10 (Integration results) 1. If f and h are smooth functions defined on
Y, then the following estimate holds:
1 1
If - h-wllze) S 72 sup [l - £2()(E) (82)

0<u<i

2. In the context of our reduced linear problem, we can write the following integration by
parts:
[ viemo= [ ViOpvwt 00 sp BOE ()
[to,t] x[R2 [to,t} x[R2 Te[to,t]

provided the following conditions hold

IVllLoe(s,) S 7 A

t
_3 €
/ 72 sup (ILV 25,0 + IVVIE2s,.) dr S A
to 0<u

B
<3

Also we have the estimate:

Vet Lip-w| A7 sup E()(7) (84)

[to,t] xR?2 TEto,t]

if the previous conditions hold, relazed by the fact that we can drop the term [|[VV||12(s, .)-

Remark The proof of these integration formulae is straightforward, as in the case of their

corresponding ones for n = 3, presented in [7].

Now we are ready to prove

4  Asymptotics properties of the Ricci coefficients

The main result of this section is:

Theorem 4.1 For sufficiently large values of X\ and for the parameter a verifying
a < \/22—4, the Ricci coefficients x, n, any component R of the curvature, the lapse function

b and the second fundamental form k satisfy the following estimates:

1 _
sup x — ~| + sup | + sup | L(H) S A7

t,u t,u t,u

sup || + sup [V(b)| S sTA70 2+ 4 A0

t,u St,u

supli] S min{sA-5-079 4 1%, sha-o 74y

t,u

sup [b — 1| < min{sA=% A~(1-9)}

t,u

sup [L(b)| S sA™ (17
St,u
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—a—-1z24¢
IRl 22(s,0) + IVElL2(80) SATT2 T
I L(ka)] + |L(En)| | 22(sen) + LKA+ [L(EN)] | 22(500) S AT

_g—1za_. . _1l._a
V()] + Vo) sy S A5 4 5750
! —a—1z24e _1._a
ID(x — g)HLz(sw) F IV | 25wy + L) | L2500y SATEFH 4572 (85)
Iy-a
IL(O) 25,0 S %A

ILO) | 22(50) S SN2 F
_a_l_ia € 1 —a
IV(O) | 12(500) S SAT72 74520

1

—Q
7 T¢

First, we will obtain the estimates for the second fundamental form x and for the components

R of the curvature, using the bounds
k] < 10yl
IR| < 10°g] + 199l

and the trace estimate (74). Next, we investigate the Ricci coefficient x. To derive the
estimates, we use first the transport equation (62) together with the decomposition (47) of

the term Ry in order to infer that:
1 1
Lix =< +v) + 2xX(x - S +v) = B,

where |v| < |0g| and |E| < |0g|* are the terms that appear in the decomposition of Ry .

Integrating this equation, we will obtain the bound

1 —a
supx — | S A

t,u

and, as an immediate consequence, the estimate:
1 < \—a—15%+e —1y-a
I L(x — g)Hm(st,u) S A 2 T4 g7

Using again the special structure of Ry, we will then write the transport equation for the
quantity Y(y — % + v) and apply the Transport lemma in order to obtain the estimate for
IV (x — %)HL?(SM)- The estimate of the L derivative of x — % will be obtained in connection
with the estimates for . The third part of the proof deals with Ricci coefficient n. If we try
to investigate 7 using its transport equation (63), we will obtain the estimate supg, , [n| <

< M\2e7@-1 which is worse than the one claimed in the theorem. This is due to the fact that
the curvature component present in the transport equation for n does not have a special
decomposition. There is though a better way to estimate 1 and this is with the help of the

elliptic equation (65), which we can write in the form:

Y(n) +n° = H
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where H will be evaluated using its transport equation. We will take advantage of the elliptic
estimate (67)

IV 22, + I0llEas, . S 1Hz2s..)
and the bound that we already have for |[L(x — 1)||12(s,.). Thus, we obtain:

suply| S s2ATTT R p AT

t,u

An immediate application of this estimate is the bound for ||Ln||2(s, ). We make here two
important remarks. The first one is the fact that the estimate for n is worse than the one
for x — % and so this estimate is the one which dictates the range for a. Secondly, as in the
case n = 3, we do not have a good estimate for Ln. Finally, we turn our attention to the
lapse function b. We notice that estimates for all the quantities depending on b, with the
exception of Lb, are immediate consequences of previously obtained bounds . For Lb, we

write its transport equation and deduce the estimate using once again the Transport lemma.

4.1 Proof of the estimates for the second fundamental form ~ and

for the components R of the curvature

The obvious estimate |r| < [0g| implies

sup || S (199l L=z,

t,u

which coupled with (30) gives us the desired estimate. Any component R of the curvature
satisfies
|R| < 10%g| + 1991,
so using the trace estimate (74), we conclude that:
1
IR 25,00 S 10790 2,0y + (A(Stu))2 109170 (5
1 € l—g 1

SN0% 2% gl 2,y + 110772 gl 2w + (A(St)) 2 109100 (52 (86)

D e
Using the bound for a:

8%/\726 S )\f&flfT‘lJre’

and so, || R| r2s,.) S A~@"3*F< This implies also IVEl 25,0 S A~T3t We have the

following formulae for the derivatives of the second fundamental form &:

(DLk)(N,N) + 2k(DLN, N) = (Dpk)(N, N) + 2K7% 5
(DLk)(N,N) + 26(DLN, N) = (Dpk)(N, N) + 2(20 — kan)kan
(DAK)(N, N) + 2H(DAN, N) = (D,Mi)(N, N) + 2(X + IiAA)IiAN

L(KNN>
L(%NN)
V(knn)
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L(kaa) = (Drr)(A, A) + 26(DrA, A) = (Drk)(A, A) — 25?4N
L(kaa) = (Dpk)(A, A) + 2k(DLA, A) = (Drk)(A, A) + 2(kan — n)kan
Y(kaa) = (Dak)(A, A) + 26(DaA, A) = (Dak)(A, A) — 2(X + Kaa)kan
L(kan) = (Drr)(A,N) + k(DLA,N) + k(DLN, A)

= (Drk)(A,N) + kan(kaa — KnN)
L(kan) = (Dpr)(A,N) + k(DLA,N) + k(DLN, A)

= (Dpk)(A, N) = (Kaa — finn) (Fan — 2n)
Y(rkan) = (Dak)(A, N) + k(DsA, N) + k(D4N, A)

(

We will show the proof for the quantities depending on kyp, the ones depending on ka4
and x4y following in a similar manner. Using the bootstrap assumptions (70), (72) and the

inequality for supg, |/, by taking the L?(S;,) norm in the above formulae we obtain:

L) |25y SATO 7 H 4 53X~ < A0 730

L) lz2(siy S AT F T+ IRy + A7) S ATTTE 4 sTEA
G_l=a a 1 - ~1-a _
W () asin) S A5 4 sTA A (Ro+ — A1) SATTTE 5T

We notice that for the L derivatives the estimates are not the ones that we claimed, but as

soon as we have the estimate for 7, we will deduce them immediately.

4.2 Proof of the estimates for y — % and its derivatives
Let us remember first the transport equation for y:
L(x) = —x* — knnvXx — Rrp

where Ry; has the form
Ry = L(U) + F.

Due to Proposition 3.3, v satisfies |v| < |0g| and the error term E has the property
|E| < 10g]* 4+ |O,g|. Using this decomposition we can write the transport equation in the
form:
1 1 1, 1
L(X—g+v)+2x(x—g+v):(x—g) +2X(U—§HNN>—E (87)

Due to the bootstrap assumption |x — %| < Ry :
9 1
sSlx—=+v/—=0 as s—0
s
We are now in a position to apply (77) with ¢ = 2. Therefore we can infer that:
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1 4 [ 1 1
swplv=+0l S 5 [ =5 + 20w = rww) = Bl (58)

t,u
Using again the above bootstrap assumption and the fact that sRy < 1, together with the

estimates for v and F, obtained in Corollary 3.4, we conclude that:

1 1 - R _
sup |x — g| < 4sR} + 8s(Ro + g)/\_“ + A2 < 70 + A7 (89)

t,u

which implies the desired estimate for supg, , [x — 1.

Remark From now on, throughout the rest of this section, this argument will be considered
implicit and so we will ignore in the deduction of further estimates the integral terms which
are part of the bootstrap argument. For more details see section 5.7 in [7].

An immediate consequence of this result is the estimate for ||L(x — 1)/ 12(s,.). Writing once

again the transport equation in the form

1 1
L(X_g) = _X2+?_HNNX_RLL

we obtain by taking the L*(S;,) norm:

l1—a

1 = = 2 P = l1—a —
ILOC= Dllzasin € s2ATTATTH D)+ NTEFC SN L g (90)

For the other two derivatives of y — % we need the following
Lemma 4.2 The term v and the error E satisfy
[P0l s,y S A2 H 4 572N

| : o1)
/ p%||DE||L2(SP+u,u) dp 5 )\2a—2a_%+6
0

Proof: v contains terms of the type L"g*’95g,,, so its derivatives would depend on:

IL"D(9*")d390n| S |0g]
IL" 9"’ Ddggan| < 0%
ID(LY)g*d390w| S |D(LY)]|0g]-

For the first two terms the estimates are immediately due to the bounds that we have for x

and R: 1 7
||LV’D<gaﬁ)aﬂgauHLQ(St,u) S 55)\*2a

v _af —a—1z24e (92)
IL7 9% DIpgan | L2(s0.) S A2

For the third term, we show how to obtain the estimate in the case when the derivative is

Y, for L, respectively L, the approach is similar.
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V(L")

V(g" < L,0, >) =
YV(g"") Ly + g™ < DaL,d, > 4+g"™ < L, DA, >
Y(g"*) Ly + g"*ACLsTY, + g Aux — g™ Lukan

Using the assumptions and the estimates proved so far we conclude :

-1
ID(L)g" Oagn] S AN+,

which yields

1

ID(L)9*"0sganllr2(si) S 57277 (93)
Putting together (92) and (93) we obtain the estimate for | Dv|| 2, ,). The error term E

has the expression
1 14 14
B = =S L' LDy + L'L 9% gys(T)5T0, — 17, T05)—
- L(Lu)gaﬁaﬁgau - LVL(gaﬁ)aﬂgaw
so for its derivatives we have to deal with the following types of terms:

5 1
'D(L")L Dgg;w| N ;|Dgg| =

< a—2
0,0 L& N)\

— [ P05 o S 1Tl
|L¥ LDy | S [00g9| =
— [ P 10Dl o 5 105, e S 0
D)L 005515 S <00 =
— [ P00 i 0 S 1001 1 S X
L L D)y T | < 10 =
— [ P02y S X
|L#LYg*P g,5DT) oT0, | < 109]10°g] =
= / P2 (110911029l 2(5, 10y dp S sTATT T
0
L(L*)D(g™)Dsg0u] S 1(09)*] =
— [ P02y X
|L(LY)g*" D (Da9ar)| < 109|079 =

* 1 1. s0-a)
— / 110911021l 25, 0y dp < sEAS T
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1
IDL(L")g*"0390/| < 109(10%9] + [0g)* + g\(’)g! + [0(knN)|) =

s ) 1
=>/ p2110g1(10%g| + 991" + ~10g| + [0(kn ) 2(5p ) AP S
0

3(1

a—2 a—2-a 1y g-30-a . —2a 3 95— U-a) i,
SATE4sA + 52\ 2 + SAT 52\ 2

Using the bound s < A% we obtain the desired result. Having obtained the estimates for

v and F, we can proceed to the investigation of the other two derivatives of x — % The

L derivative will be discussed later in connection with . We deal now with the angular
derivative Y. The estimate is obtained using the transport equation for this quantity. To
simplify the notation we denote y — % by w. Let us remember first the transport equation

for this quantity:
L(w+v) + 2x(w +v) = (w—l—v)Q—i—gv—v?—/{NNx—E.
Taking the angular derivative of this expression we obtain:
A(L(w +v)) 4+ 24(w)(w + v) + 2xA(w + v) = 2A(w + v)(w + v)+
+ A(%v — v — kyyx — E)
Using the commutator [L, A] = —x A, we can write the previous equation in the form:
L(Y(w +v)) + 3xV(w +v) = 2Y(v)(w + v) + W(zv —v® — kynx — E) (94)
We will apply (78) with o = 3. Therefore, the only thing to be verified is that
sg||77(w + )25, — 0 as s —0

But this is true, because due to the bootstrap assumption (71) and the estimates for the

derivatives of v we have:

5
52| V(W) L2s,.) < Ros”

5

53| V()| r2(s,0) S s2ATTE T 4 20T

So applying the above mentioned estimate, we infer that:
sHV(w + 0225 S / E2X (0w + )+ T =0 — ke = B)lls, e
Using the estimates for w = x — %, v and derivatives of v and E, we conclude that:
I¥(w)llzags,) S A+ 572070 (95)
Finally we investigate L(x — ). We take advantage of the elliptic equation (65)
L(x) —x* — (knn +2644)x = 2Y(1) + 20> + Rarpa
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Let us denote L(x) — x? by 6 and the whole left side of the above equality by ©. First we

can write:
L(0) 4 2x0 = 2(n — n)V(x) + 36nnx® + ((kvn)? + 2R1r — L(knn))x + kv Ror — L(RLL)

This equation implies then
L(@) + 2X@ = 2(@ — ’I'/)W(X) + 2(’€NN — HAA)XQ + 2( — T(ENN) — L(HAA)+
+ (kvn)® + svnvkaa + Rop)x + 2(knn + kaa)Ror — L(Rpp)
We will denote by F' the right hand side of the above equation. Taking advantage of the
special structure for L(Rprr):
—L(Rp) = —L(L(v) + E) = —L(L(v)) — L(E) + [L, L](v) =
= —L(L(v)) = L(E) 4+ 2(n — n)¥(v) + knn(L(v) — L(v))
we can conclude that

L(©+ L(v)) +2x(0+ L(v)) = F' = L(E) +2(n —n)¥(v) + (kxny +2X)L(v) — Ky L(v) = W.

(96)
where we denoted by F”, all the terms in F' but the last one. We rely once again on (78)
with o = 2. The bootstrap assumption (71) and the estimate (91) imply

s%H@ + L(U)HLQ(St’u) —0 as s—0
Applying the result mentioned above, we deduce:
3 5o
6 + Lllizsin S [ #HIWlisyvn.do (97)
0

Evaluating all the terms in F’ we obtain:

1 3 3 —a—1z24¢ —iy-a

;g/lﬂWﬂ—mVWmm@wwdpgA e 4 5mH)
0

1 ¥ 1, 3

—3/ P2 15002 | 28,0y dp S 872N

S2 0

1 ° 3 2 —a—159 ¢ -Iy-a

L D10k + (0 X s,y dp S AT 4 57 EN

S2 0

1 s 3 < —a—ﬂ—w

= [ PRI DRl dp 5 27

For all the other terms in W, we use the estimates (91) to argue that:

1 s _
S PPIL(E) |12, 0 dp S sTENTZHZOT
S 0

(VI3

¥ s Caleal. 1. &
/pw@—mwmm@wmmsx ey g
0

= —a—ize . _1l._a
o [ AT+ DIV s,y dp S A2 57
0

VA
| = Bl =

Njw

S
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This allows to conclude:
1© + L(v) || 22(500) S AT L gm0

which in turn implies

1—a

1Ol L2(s,) S A2

g gTaNe (98)

based on the estimates that we have for v. We will deal now with b, because the estimate

for [b — 1| will help us finish the proof for L(x — %) The transport equation for b is
L(b) = —bkny
We can apply (77) with o = 0, because the initial values (69) imply
b—1 —0 as s—0
Therefore, we obtain:
b—1| < /8 k| dp < min{sA=% A1} (99)
0

Rewriting © as

b=t —1 1
+ (; —x%) = (knn + 2644)X

we can infer that

1 1 1
| L(x — g)HH(St,u) S 1Oz s,..) + gﬂb — lz2s,.) + Hg — X*lle2(sen) + XN 22500

SATTTE e TN
(100)

which concludes our discussion.

4.3 Proof of the estimates for n and its derivatives

We remember what we have denoted by ©
© =2Y(n) + 20" + Rarpa

We can write then
Y(n)+n'=H

where H = %(@ — Rappa) satisfies
25, S A7 4+ 57207"
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Using (67), we can conclude that

,a,ﬂ € _1 —a
IV llz2(si) S 1H 1 22(s00) S A T Tep g2

S E I B (101)
s, S [ Hllose S A5 4 5

We use the transport equation satisfied by 7

1
L(n) +xn= —xKan + §RALLL

with the initial conditions
sn — 0
1
s2{nllr2¢s,.) — 0

as s — 0, satisfied due to the assumption (70). Applying (80) with o = 1, we conclude:

sup |n| < sgpp(\n“x\ +|R]) < g\ —a—(1—a) 4 \-a

St,u P>

1 * 1 —a—1=%4e Iy _a
Inllz2(s00) S s P2 KX+ BRI 225,00 dp S SATT7 72 T4 52X
0

At this point we take advantage of the Sobolev inequality (73) to infer that:

1 _1 1\ g l-a_. —a
sup [n| < s2 V)l raese.) + 5 2Inlleegs,) S s2A7" 2 T+ A (102)

t,u

Due to this result and the transport equation for n we obtain that L(n) satisfies the same
estimate as V(7). Here we remark that these estimates for 1 imply the desired inequalities
for the L derivatives of the second fundamental form x. As in [17], for the case n = 3,
we do not have a good estimate for L(n). This finishes the discussion concerning 7 and its

derivatives.

4.4 Proof of the estimates for b and its derivatives

We notice that already in the course of the proof for y — % we obtained
=115 [ Ikldp S minfsh A7 0-0)
0

Due to the transport equation L(b) = —bryy we infer immediately that
sup [L(b)] S A™°
St,u (103)
Iy-a
L) L2(s1.) S 52X
The formula Y(b) = b(n — kan), together with the inequalities satisfied by n and k:
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sup [k[ S AT,

t,u

1, _g—1l=ea —a
sup|[n| S s2ATTETOH AT
t,u

provide us immediately with the estimates

sup V(b)) S sEATF 4 A
Stou (104)
—~ 1l—a 1 —
IV (O)l|z2(s,,) S SAT* 2 T+ 5227
For L(b) we write its transport equation
L(L(b)) = L(L(b)) + [L, L](b) = b((rwn)* +2(kan)” = L(kny) — 207) (105)

Due to the initial values (69), we have
L(b) — 0
5 HILO s — 0
as s — 0. We apply (77) and (78) with ¢ = 0 to deduce that:

sup [L(B)] S sA-o-010

St,u (106)
—~ l—a

ILOD) 225,y S S 72 7€

This concludes the proof of the asymptotic estimates.

5 The reduction of Theorem 2.5 to conformal energy

estimates

We recall first, that according to Theorem 2.5, the estimate to be proved is:

1P 06(t)]|e S T t| ZH@’“ oltolll 2
— o

for a sufficiently large integer m, where ¢ solves the equation L,¢ = 0, the metric g satisfies
(27)-(32), P is the operator of projection on the set {£ : 1 < [¢| < 2} in Fourier space and
the initial data ¢[t] is supported in the ball B (0). The argument here follows to some
extent the same lines as the one in Section 7, [8]. For the interior region, due to the fact
that P is an operator acting on the scale of size 1 and 1 — w is a cut-off function with the

scale of size t > 1, we can basically write
Po¢-(1—w) = P(0¢- (1 —w))

28



1

Therefore, using Bernstein inequality and the fact that |[0w| < ¢!, we have the following

chain of estimates:
[POG - (1 —w)l|Lezy S N1OP09 - (1 —w)|lr2(sy)

1
S 070 (1= w)llras,y + 7196 - (1 = w)llz2(2,) (107)

N

S B4 00)(1)

Remark In the interior region the decay is t=1, better than the overall decay estimate of
t=%. This consideration will turn out to be crucial in further steps of the proof.
For the exterior region, let us first remark that, due to % < s < t, we can consider s = t.

~

Using the Sobolev inequality (73), we can infer that

1 1
|POG|| Lo,y S t2IVPOD| 12(5,.) + t—%HP%HLQ(st,u) (108)

For the second term, applying the trace estimate (75) together with the fact that ¢ > 1, we

conclude that:

1 1 1 1 1
_;HP8¢|’L2(St,u) 5 _;HNP&bH;(zt cxt) |’P8¢H22(zt ext) + ;HPaﬂﬁHL?(Et,en) 5
& tz ’ ’ (109)

AN

In the case of the first term in (108), again due to (75), it follows that:
1 : : :
BIVPOS| 125, S BINTPOI s, - IVPOSN Eags, .y + VPOl s,y (110)
1
For [[NYPO¢| 72, .,y we use the trivial estimate

INVPOSFais, .y S 106l 7as, ..y S E5(00)(D), (111)

while for ||V PO 2(x,..,) it will be enough to prove that it decays like % , Or more precisely:

IVPOS| r2(sy ) S S E2(00)(2). (112)

~

Commuting P with ¥ directly as in Lemma 7.1, [8], together with the null-frame equations

contained in Theorem 3.5, we obtain the following chain of estimates:
IVPOS| L2(5 c0r) S SU§’|8a6ﬁ||L°°(zt,m) NOollr2(s) + 1PVOD|r2(540r) S

< max{ ||| cans 120 e 6l (500 } - 100] 220 + (V0] 2, 0y (113)
1 — 1 — —a 1 1 1 ]_ 1
S (G + AT+ AT BN @6)(1) + S BHO0)(1) S S FHO0)(1),
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The inequality used here:

—_

tEATO e < 7 (114)

is the one that gives the range a < /22 — 4. Putting together (108)-(112), we infer that:

|POS] (s S T2E2(0)(1) (115)
Thus, due to (107) and (115), Theorem 2.5 will be an immediate consequence of the following:

Theorem 5.1 If ¢ is a solution of the linear wave equation

Dg¢ - 07

(116)
¢’t:0 = ¢07 8t¢’t:0 = ¢1

with the metric g verifying the condition (27)-(32), a < /22 — 4 and the initial data ¢|[t]
supported in the ball B%(O), then:

sup E(09)(r) S E(96)(to) (117)

TEto,t+]

6 Outline of the proof of Theorem 5.1

In the case of dimension n = 3, Klainerman and Rodnianski proved the corresponding decay
estimate using only the Morawetz vectorfield K. They relied on the following generalized

energy estimate:

Q(K,0)(0) 2 E(9)(1), (118)

p
where
n—1
2

QU 0)(6) = {(ILo + wILOP + (2 + )| AGP) + (n— 16Dk — "6,

As it was first remarked by Klainerman in [5], this inequality is no longer true in the case of

dimension n = 2. It survives however in the form:

QK. 2)(0) + 1972, 2 E(o)(1). (119)

p3M

Due to the fact that we do not control ||¢[|12(s,), we will have to use (119) with ¢ — 0y¢, the
quantity ||0¢||r2(x,) being bounded through the classical energy estimate. This modification
will help us recover the desired estimate (117) only in the interior region. The novelty of our

argument comes in the deduction of the required estimate in the exterior region. We will
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use two other vectorfields, S and 2. We will commute them with the D’Alembertian [y,

according to the formula:
1
0,(X¢) — X(O,0) = “7% - DyDsp + D* *7on - DX — §D*trx7r-pws = 7, (120)

where
Xag = DuXp + DX,

is the deformation tensor of the vectorfield X relative to the metric g. For the equation

O,(X¢) = Z we will use the classical energy estimate (see also (125)):

¢ t
||8X¢(t)||L2(Et) 5 (||8X¢(t0)||L2(2t0) + / ||Z(7', ')HLZ(ET) dT) . ecfto ||6tg(T»')||LOO(ET)dT‘ (121)
to

As it can be seen from (117), the goal will be to prove that:

/ 1Z(r, Moy dr < A sup E(99)(7). (122)
to

TE[to,t]

We will express Z in equation (120) relative to the null frame {L, L, A}. Accordingly, the

deformation tensor %

7 appears in terms of the Ricci coefficients y, n, the lapse function b
and the second fundamental form k. Therefore, in order to estimate Z in (122), we will
need the bounds provided by the Asymptotics Theorem 4.1 in section 4. A typical term that
appears in (122), which comes from the combination

Q .
7D Dro, is

t t
/ -5 L06] sogsy dr < / Il - Is - LOB| o) dr <
to to
t
1
< [ e dr sup E506)()

to Te[to,t]

The estimate provided by Theorem 4.1 for 7 is

T §
[l Loos,y S ATz

Hence, to obtain the estimate (122), we need the condition
t
/ )\af?zf% dr < )\Qaf?zf%+e < )€
to

which gives the range a < /22 — 4. The last section will gather the estimates obtained
in the next two sections for the vectorfields K, 2 and respectively S, and so conclude the

argument.
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7 Energy estimates involving the Morawetz vectorfield
K

The central result of this section will be:

Theorem 7.1 Under the assumptions of Theorem 5.1 :

E(0:9)(t) S E(09)(to) + A sup E(99)(7) (123)

TE[to,t+]

In order to prove this theorem we start first with

Lemma 7.2 ([7]) If w is a solution of the equation Ogw = f, Qup is the energy momentum

tensor associated to this equation
1 174
Qop = Oqwisw — 5905(9“ d,wo,w) ,
X is a vectorfield with the deformation tensor

Xr0s = DaXp + DpX,,

O is a scalar function, 7 = X7 — Og and
~ -1 -1
QX,Y) = QX,Y) + =0 -w-Yw — —=w?Y(0),
then the following identity holds:
A A 1 aB X ~ n—1 2
QX.0)= | QX,9) + 5 QY X g — w?0,0 +
St DI 2 [to,t] xR™ 8 [to,t] xR
0o 1 (124)
+/ (Xw + Ow)f.
[to,t] xR™

Proof Differentiating directly in the formula for (),3, we obtain:
DPQap = Dyw f.
If we consider the 1-form P, = Q,3X”, previous equation leads to
D°P, = Xuw f + %QaﬁXﬁaﬁa

which we can detail as:
-1 n—1

w2DgO —




Denoting
P, =P, +

it follows that:

n—1

_ 1 —1
DP, = 5@"‘5)(7?&5 + (Xw + nTOw)f — w? 0,0

Integrating this equation over the domain [tg,t] x R", we obtain (124).

Corollary 7.3 For w a solution of the equation Uyw = f, the following estimate holds:

t t
||aw(t)||L2(2t) S (||6w(t0)||L2(2t0) —I— / ||f(7', ')”LZ(ET) dT) . ecfto ”atg(‘r")”LOO(ET)dT (125)
to

Proof Taking in the previous lemma, X = 0, and O = 0, we can rewrite (124) in the
form:
%/2 (0w]? + g0 - D) = %/E (0w]? + g0 - D) +
' 0 (126)

1
w5l @A [ ow
[to,t]xR™ [to,t]xR™

Using the fact that the metric ¢ is uniformly elliptic and bounded, we obtain

t
0w 7205 S 10w (to) 5205, ) + /t (189 () |z sy - [0w0(T) 2o,y + (127)
0

+ 1f (D2, - 10w(T) L2,y dr

Applying Gronwall inequality to this equation concludes the proof.
Proposition 7.4 Under the assumptions of Theorem 5.1 :

E(0:0)(t) S E(9:9)(to) + A7 sup E(9¢)(7) +

TE[to,t*}

+ L Qo Koy + (KO + 706)0,(040)]

[to,t] xR2

(128)

Proof In the Lemma 7.2, we will choose w = 0;¢, n = 2, X = K and O = 4t, this
last choice being motivated by the fact that in Minkowski space tr X7 = 4t and that we are
looking for an O which would make X7 small. (124) then becomes:

_ _ 1 . 1

Aoy = [ Quay+ [ QURm, -5 [ @erom+
[to,t] xR?2 [to,t] xR2

S St 2

(129)
+ / (Kdié + 70,6)0,(0:0).
[to,t] xIR?2

We take apart the term Q(K,d;) and write it in the more convenient form:
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_ 1
Q(K,0) = Q(K,0) + t-0i¢- Oudp — 5 (9,0)°
1 1 1
= ZQ2|L8,5¢\2 + ZUQ‘LatQSP + Z(ﬂz + U2)|Aat¢|2 + t- 8t¢ . atth—
1
3 (0e)?
We will be interested in the particular term:
Et Et

We separate and integrate by parts the term involving N,¢:

—/2 (t—u)NO - 0p = —/ ;(t—u) N((0i9)?) =

¢

—_

2

l\D

1
= / —(N(t —u) + (x + Kaa)(t —u))(0,0)* / —(b7' + sx + 5kaa)(0,0)?
Et Et
Using the asymptotic estimates:
|b - 1| 5 Aie:
1 -a
X — =]+ |s[ £ A7,
s
we conclude that:

- / (t— W)NO - D — / (1+ O ) (Br0)?
pN p"
Hence
/ Q(K,0,) = / (1@2![@@\2 + 1u2‘L8t¢’2 + l(ﬂz + u?)|Adyp|* +
N v, 4 4 4 (130)
+ 50606 + (5 + O )(@0))

Using the expression for S, it follows naturally that:

/ H2|Lat¢|2 + U2|Lat¢|2 + (@2 + U2)|Aat¢|2 S Q(K,0,) + <8t¢)27
¢

pa

which of course implies
E@)(t) S | QUK. ) + 04 72s,)- (131)
¢

Applying the energy estimate (125), for our reduced linear problem ;¢ = 0, we can infer
that:
H@¢(t>”L2(2t) 5 ||a¢(t0)||L2(Zt0) . eCftO Hatg(T,')HLOO(ET)dT7
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which due to
109l Lire S A

yields
100()|| 250y < [100(t0) || L2(s4y) (132)
This estimate allows us to write (131) in the form:
E@9)(t) S | QK,0) + E(0i)(to) (133)
pI
Checking easily that Oy(t) = ¢“k;; , the integral term — 3 Jito.1xm2(0e0)°0g(7) can be esti-
mated as:

1 t y
=5 [ @PTOIE [ 1000 sl s dr
[to,t]XRQ to

SAC sup E(09)(7)

TG[to,t*]

(134)

Putting together (133) and (134) with the obvious inequality

Q(K,0) < E(0:9)(to),

3t

we obtain (128).

Proposition 7.5 The deformation tensor X of the Morawetz vectorfield

K= %(uQL bl
satisfies
Krrp = —2u® kvy
Kﬂ'@ = 2u(4(bt — 1) — uknn)
Kran = u?x + u’x
Krapp = —4(u+ b 'u) + (v? + v)knn
Brpa = —2u"kay
K

T4 = w4+ (N + Kan)

Proof Using the formula for K, we can write:
1 1
K rap = §u2(< DoL,05 >+ < DgL,0s >) + §g2(< D,L,05 >+ < DsL,0, >)+
1 1 1 1
+ 5(90/&2 < L, ag > + §8gu2 <L,0,>+ §aag2 < L,ag > + §8gg2 < L,0, >
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This implies
Kppp = w? <DL, L > +u><DyL,L>+Lu?) <L L>+Lw)<L,L>=
= —2u2/<¢NN
Kppp = u? <DL, L>+u?<DyL,L>+Lw?) <L L>+Lw)) <L L>=
=u?(—2knn) + (—4u)(2 —2b71) = 2u(4(b' — 1) — ukyy)
Kraa=u®> < DAL, A>+u®> <DoL,A>+AWW?) < L,A> +A@W?) < L, A >=

= u’x + u’x

KWLAZ% (<DLLA>+<DAL,L>)+% 2(< DLL,A >+ <DuL,L>)+
+;L(u2)<LA>+ L )<L,L>+%L(g2)<L,A>+§A(g2)<L,L>—
= %u2 (27 — 2KkAN) = —2u® kAN

KWLAZ%U2(<'DLL,A>+ <DAL,L>)+% (< DL, A >+ <DuL,L>)+
+;L( )<L,A>+%A(u2)<L,L>+%_(g2)<L,A>+%A(g2)<L,L>:

= ¢+ v(n+ kan)

1 1
o = 5u2(< DL, L >+ <DyL,L>)+ 5 u u*(< DL, L >+ <DyL,L>)+
1 1
+ L) <L L>+5L(w’) <L, L >+ QL(uQ) <L,L>+ 5&@) <L,L>=
=ulkyy + W rny — dubt — 4u

This concludes the proof of this proposition. Next, we will analyze the integral term in (128)

which involves the deformation tensor X7. In this direction, we can prove the next

Lemma 7.6 Under the assumptions of Theorem 5.1 :

1 B 1 1 _
| (—Qaﬁ Kos — Su2(x — D06 - 0,(010) -w)| <A sup E(@)(r) (135)
[to,t] x R2 2 4 S TE€[to,t]

Proof Detailing the term Q*° 7,5, we obtain:
1 g . 1
QY Kitap = 4(K7TLL|L3t¢|2 + B Logl?) + 2( Taa(LOwg - Lo + [Ad9|*) +
+ BT |AG) — KTLa Add - L0 — "Tpa A LOw

Using the expressions for the deformation tensor of K provided by Proposition 7.5, we have
the following set of estimates:

| TLLl Lo’ S A [uLdyof?

| TLLlLO@ | S A" |uldrof?

744l A0 [P| S A uAd |
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\KﬁLL’Aat(/b’z‘ N )‘_a‘UAat¢’2
|K~LA A@tgb Lat¢| < )\ a|uLatgb| |uA8t¢|

$FLa ADG - LOG| S (A" + 720" ) uldig)| - [uAd,g|

These estimates imply directly:

1 1
[ (39 - SRata0-Lo0)| SN sw B@OD.  (130)
[to t]XR2

Te[tovt*}

Due to the fact that )

- 1
Kiaa = U2(X+ g) +u?(x — g)

and because
|U (X+ )Laﬂﬁ Lat¢| < )\ a|ULat¢| |uLc9tgb|

BV L(?tqb Loy (1 —w)| <A Y7000 - (1 —w)|?
we can rewrite (136) in the form:

| ot <2QaﬁKﬁa5 - iu (X—E)Lattb LOo - w>| <A sup E(9¢)(T).  (137)

TE[tO t*]
We are in a position to apply one of our integration results, (83), for the second term in the
above integral. It will follow that:
1 1 1, 1
-u (X——)Lﬁtgzﬁ Loip-w = —u (x — =)0 - Oy(0r0) - w+
[to,t] [to,t] S

«R2 4= 1] xR2 4= (138)
+ O(X™°) sup E(0¢)(7)

Te[tozt*]

provided the conditions set in Proposition 3.10 are fulfilled. Let us verify them using the

asymptotic estimates:

t

1 1 "1 —a—1z9 e -1 y-a
— - sup ]|Y7(4_(X——))|\L2(Sm)d7 < / 72 (A et + 777N dr

to T2 O<u<—

S A
b1 1 by Clay 1
[ 5 sw LGt s gdr $ [ P 5 o
to T2 0<u<} 4 § to

+ 73 AT dr S A
This concludes, of course, the proof of our lemma. Having in mind (128) and (135), in order

to obtain (123), we are left to prove:

’/{ iy (Kc‘w + 70 + igz(x — %)aﬂb-w)ﬂg(&t(ﬁ)' < A sup E(99)(r).  (139)

TE[to,t]

37



Let us concentrate for a moment on 0,(0;¢). We have the formula:
O, (0i¢) = —0ig” - 0:0;¢0 — Oy(trr) - Bp — (T') - ;0. (140)

Due to this formula we can split 0, (09,¢) into two parts: A which contains only second order
derivatives for ¢ and B which gathers the first order derivatives of ¢. Accordingly, we will
prove (139) by considering first the part related to B and then the part related to A. We do
it like this because some of the information obtained by proving the ” B-part” will be used
in proving the ” A-part”. We will further divide our argument into the one concerning the

interior part of the integral and the one concerning its exterior part.

7.1 Estimate of the B-part
Due to the formula (140):

B = —0,(tr) - 0y — 0,(TL) - 0;0 = (|0%g| + |0g|*) - 0 (141)
First we prove the interior estimate:

Proposition 7.7 Under the assumptions of Theorem 5.1 :

‘/[ G Taf@'(l—@)B\ S AT sup E(0g)(7). (142)

Te[to,t*]

Proof Estimating directly we obtain
[ Ko srae-wB=| [ (2000 +2L00) +700) -1 -w)- B
[to,t] xR? to,t] x R2

< / T EY06)(r) - (18] + 1092) - 06 (1 — )|l 12y dr <

to

S / TE5(5¢)(T)||8293¢(1—w)IILz(zT)dT+/7E§(3¢)(T)|II39I2-0¢(1—W)Ilp(zT)dT

to to

The second term is easily estimated as follows:
t ) ,
[ Eb00)r) - llogl - 9601 - )lacs, dr S
to

S / 7 E2(00)(r) - 1109l (s - 106(1 = )l i2(s,) d7 S / TN B(09)(r)dr S

to to

S AT sup E(09)(7),

Te[tovt*]
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while for the first one we have to be more subtle in our approach, because we do not control
106(1 — w) || Loo(s,). We proceed like this:

/ TE2(09)(7) - 0% - 06 - (1 — )| 12, dr S

to

t
< / 7 E2(09)(7) - [0°9]l o) - [06(1 = W)l pacs
to

where
1 1 1

p q 2
Due to Bernstein inequality we have the estimate:

182l rsy S 272107 125,
Using Sobolev inequality we obtain:
106 - (1 = lzszny S 187750~ (1 = w)lzzcso.
Estimating the last term by interpolation, we infer that:
10 (1 = )2ty 106+ (1=l <
B3 (99)(7).

Putting altogether the last four estimates, we obtain:

_2
10756 (1 — w)|| 12,y S
S

/T-Eé(acb)(T)'H@zg-% (I=w)lee)dr S / 71N B(09)(r) dr S

to

S AC sup E(09)(1)

Te[to,t*]

for ¢ large enough, which ends the proof of this result. Therefore, we are left to prove that:

Proposition 7.8 Under the assumptions of Theorem 5.1 :

‘/ (K@gb + (r + igz(x — é))@tgb) cw - B‘ S AT sup E(0¢)(7). (143)
[to,t] X R2

TEto,t+]

Proof Using the integral estimate (82) corresponding to the exterior region, we obtain:
Ko + (1 + su*(x— =)0 ) -w- B| S
[to,t xR2 4 §
t
1
S [ mBHO0) ) 10| + 109]) - 06 wllags, dr S
to
t
S / 72+ sup [[[0%g] + 199l [| s,y - E(0)(T) dT S
to OSUS%
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A\

t
/ T2 (AT 4 raAT) L B(09) (1) dr S
to
S AT sup E(09) (7).
TE[to,tx]

This concludes the discussion concerning B.

7.2 Estimate of the A-part
According to formula (140)

A= —0,g"-0,0;,¢0 = g - . (144)
We will prove that:

Proposition 7.9 Under the assumptions of Theorem 5.1 :

'/[t - (K@tqzﬁ + Tatﬁb) . (1 - W>)A’ 5 A™¢ sup E(8¢>(7—) (145)

TE[to,t*]

Proof Estimating directly, as in Proposition 7.7, we obtain
‘/ (Ko + 70,6) - (1 —w))A‘ <
[to,t}XR2
t
1
S / T E2(99)(7) - |0g] - [0%0] - (1 = )| r2(s,) dT S
t

< / 10g]l (s, - E@8)(r) dr < A~ sup E(96)(7)

TE[to,t*}

We investigate now the exterior part of the integral. Due to the fact that in the exterior
region, in the energy expression, all the terms but the L-derivative come with a weight

comparable to 7, we can infer that:

1 1
‘ / (Kaﬂb + (T + —QQ(X - —))8t¢) cwe A
[to,t] xR2 4 S

t
< / T BH09)(r) - | A - wllpzmy dr S (146)

S

to
t
< t 109 Le<(s,) - E(0¢)(T)dT < A7 sup E(99)(7),

TG[to,t*]
where A’ differs from A just through the term which involves two L-derivatives on ¢. We can
further simplify our investigation by replacing D D¢ = DpDor-_r¢ with L(0:¢), because
the difference between these two terms is of A’-type. Therefore, the expression to estimate
is:

[ (K00 + (v jutc- D)ao) o r L),
[to,t] xR2 S
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where A, = T = —2kyy. This is the coefficient of D1 Dr¢ in the expression of A, as
it can easily by commuting the wave operator U, with the vectorfield 7" = 9. Using the

trivial estimate |AL| < [0g|, we immediately obtain:

| / W2 L(00) - Ay - L(0k)| <
[to, ] x R2 t (147)
< / 109l sy - E@6)(r)dr S A sup E(96)(7).

Te[to,t*]

We will investigate now the term

[ - D)o e Ar- L@w)
[to,t] x R2 S

Again, we are in a position to apply one of our integration estimates, (84), provided
(7’ + }1 u?(x — %)) - Ay, verifies the conditions imposed in Proposition 3.10. We check them

one by one:
1 1
(7 + 20— ) ALl S (7 + 7N 9g] £ X
t 1 1 1
L L+ 2at- 1) A s 5

to T2 0<u<y

tq 1
S / (A * sup [IL(r+ 300¢— )l + (A7) sup ||L<AL>||L2<SW>) dr
t

o T3 0<u<i 0<u<z

N

t
1 - l-a _ 1
/ —. (T%)\—a + T)\—a—%-l—e + T%)\—Qa + 7_2)\—2(1—174-6) dr
t

0o T2

S AT sup E(09)(7)

TE[t0,tx]

This allows to conclude:

‘/[t o (7 + lgz(x—2))8@.@.14,@(6@)' < A sup E(9¢)(7) (148)

4 TE [tO ;t*]

Remark Already at this stage with the estimates obtained so far, we have:

‘/[t AxR? (T + EQQ(X_ é)) Cw - 5t¢-|jg(0t¢)‘ < A sup E(99)(7) (149)

TE[to,t*}

The last term to consider is
[ 100) AL L00) -
[to,¢] X R2
We will use once again (83). The conditions to be satisfied are:
W Ap| S72 A4S TN
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t t
1 1.4 _
— - sup [V Ap)llas..) dr S / (T L AT dr S A

to T2 0<u<i - ’ to

t t

1 2 Ly—a—1z24e —a —€

— - sup [|L(u” Ap)lrxs,dr S (T2ATTTTTO 4+ AT dr S A

to T2 0<u<i to

Therefore, we can write:

/ W L(O) - Ay - L) - w =
[to,t] xR?2

(150)
= / u - Ap w0 0y(0:0) + ON™) sup E(9¢)(7)
[to,t] xR2 TE[t0,tx]
Taking into account the previous Remark and the fact that u* Ay, is ”dominated” by
T + iQQ(X - 9’ we claim that we will also obtain
| / ' Ap w00 0g(00)| S A sup E(09)(7). (151)
[to,t] xR2 TE[to,t*]

This concludes the argument for this section.

8 Energy estimates involving the scaling vectorfield S

and the angular momentum vectorfield ()

The main result of this section is:

Theorem 8.1 Under the assumptions of Theorem 5.1 :

1059 122y S 1105 120y + A€ sup ]E%<a¢><f> (152)
TEto,tx

1096] 122y S 110920 | 125, + A sup ]E%@szs)(ﬂ (153)
TE[Lo,l«

First we prove some preliminary results:

8.1 Commutation results

Here we will record the commutation formula between a vectorfield X and the D’Alembertian

[y. This result will be used crucially in this section. We start first with

Lemma 8.2 (/6]) For a vectorfield X with the deformation tensor *m and a 1-form V on

a space-time manifold with metric g and corresponding connection D, we have
Do(LxVa) = Lx(DoVa) + *TonnV? (154)
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where

ooy = %(Da XTor + Do X Tar — Dy ¥ Tae).
Proof The formula for the Lie derivative gives us :
LxVo = X7-DV, +V,-D X"
This implies:
D,(LxV,) = X7 -D,D,V, + D, X" -D,V, + D,V,- D, X" + V,-D,D,X".
On the other hand:
Lx(D,V,) = X”-D,D,V, + D,X"-D,V, + D,V, - D, X".
Subtracting term by term these relations, we end up with:

D,(LxVy) — Lx(D,V.) = X' (DyD,V,, — DyDyVo) + V- DD X
= RoporV'X* + V- D, Dy X"

We investigate the XT'y,» term, which we can detail as
1
XFCw')\ = §<DQD0XA + DQDAXU + DUDQX)\ + DUDAXQ - D)\IDQXO' - DADUXQ>
1
= §(DGDO‘X)\ + DJDoaX)\ + Ra,uoc)\Xu + Roaua)\Xu) = DUDozX)\ + Ra)\auXM

This, of course, concludes the proof of the lemma. We are now ready to state and prove our

main commutation result:

Proposition 8.3 (/6]) For an arbitrary vectorfield X with the deformation tensor *x, trace
tr¥n = go‘ﬁ Xﬁag

and traceless part

trXﬂgag,

XA X
flag = Taf = n+1

we have the following commutation formula:

1
0,(X¢) — X(O,0) = *7°° - DyDsgp + D* *mon - Do — §D’\trX7T'D)\q§

o o X - 1 1 1
=X 790 . D, Dy + D* Xstor - D ¢ + (n——i—l — 5)D’\trX7r-D,\gz5+ p— tr X - 0,0
(155)
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Proof Using the decomposition O, = ¢**D,Dg, we can infer that:

0y(X¢) — X(Oy¢) = g*"DaDs(Dx¢) — Lx(9*"DaDsd) = ¢*"Du(Dx Dy +
+ DX D,p) — Lx(9*°)DaDsd — ¢*°Lx(DoaDso) = g°°(DuLxDsp—
— LxDaDsg) + (9°7 - D, X" + ¢" - D, X*)D, Dy

Here we take advantage of (154) to conclude that:

1
0,(X6) = X(040) = ¢" - 5(Da “min + D ¥mar = Dy Vo) D6+
1
+ X7 . D, Dt = D* *Tor - D ¢ — 52)% X1 Dyo + X7 . D, Dso,

which ends the proof. An immediate consequence of this result is the following:

Lemma 8.4 Under the assumptions of Theorem 5.1:

1

0,(Q¢) = 7% . D, Dyp + D*mon - D¢ — E'D)\tr 2. Dyo (156)
1

0,(S¢) = 7% - D,Dsdp + D* 7oy - D ¢ — EDW St-Dro (157)

8.2 Proof of estimate (153)

We start first with:
Proposition 8.5 The deformation tensor S of the angular momentum vectorfield
QO=s-A

satisfies
QT(’LL =0

QW@ =4s(n — Kan)

QTI'AA =0
QT('LL = —2s(n — Kan) (158)
Qrpa=—sx+1

Qrpa = —sx+1-— 2b~*

Q

tri'm = —"mpp + Pmaa = 25(n — Kay)

Proof Using the expression for {2, we can infer that:

Uras = 5(< DaA,05 > + < DA, 0y >) + Ons < A, 05 > +05s < A,0, >
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This implies:

O = 25 <DLAL> +2L(s) < A/L>=0

Qrpp = 25 <DLAL> +2L(s) < AL >= 25 (—2§) = 4s(n — kan)

Qraa = 25 < DyA A > +2A(s) < A, A>=0

Qrpa = s(<K DA A> + <DyAL>) + L(s) < A, A> +A(s) <A L>=
= —sy +1

Crpa = s(<K DLAA> + <D A L>) + L(s) < A,A> +A(s) < AL >=

=—-sx+1-— 2b~*
L = s(K DLAL> + <DLAL>) + L(s) <A L> +L(s) <A L>=
= s(—QQ —2n) = —2s(n — Kan).

Using the energy estimate (125) applied to equation (156), we obtain:

1096l L2s,) S 109625, +

t
1
+ / |78 - Dy D + D* oy - DV — §D>‘trﬂ7r - Dl 12, dT
to
Detailing the first integral term, we infer that:
t t
/ 17 Do Dl 2(s,) d7 S / (||Q7TLLDLDL¢||L2(ET) + |7 DLDLo| L2y +
to to

+ |®74aDaDad r2(sy + [|*72aDaDLO || 125y + | 7LaDLDad || 1205 )+

- ||Q7TLLDLDL¢||L2(ZT)) dr

The first and the third terms of the right hand side vanishes due to the formulae in Propo-

sition 8.5. Investigating one by one the remaining terms we obtain:

t t
| IPrDiDwol sy dr S [ st = k)LL) + haew L) cs, dr S
to to

N |=

< /t(l + /\_‘_17')(7'%)\_&_I_TGJFe + A ME2(0¢) (1) dr <

to

<A sup E2(96)(r)

Te[t(),t*}

t t
1
[ PraaDiolls. dr S [ lstc= DAL - 346 — kL) |as, dr
to to

=

(09)(7) dr

<A sup E2(99)(r)

TE[to,t]

t
S [meaae

to

45



t t
/ |2 A DL D 2o dr < / I(—sy + 1= 2 (L(AS) + ran L)z, dr
to to

< / (TA™2 + X" E2(9¢)(7) dr

to

<A sup E2(96)(7)

Te[tovt*]

t t
/ |2, DDl 2wy dr < / 57 = ) (L(L6) — kL + 26ax AD) | r2ss) dr
to to

D=

t
< / (1 + A7) (T2 A2 AR

to

<A sup E2(96)(7)

TE[t(),t*]

(09)(7) dr

The other two terms that we encounter in the commutation formula (156) will be considered
together. Lowering the upper indices we obtain:

1
D5 - D — §D°‘(tr97r) -Dop =

1 1 1 1
= (ZDLQWLL—FZIDLQW@—§'DAQ7TAL+ZL(75TQ7T>> L(ZH‘ ( )
159
1 1 1 1
+(4_1 LQWLL—FZ—JLDLQWLL— EDAQWAL+ZL<tTQ7T)) Lgb—|—
1 1 1
+(_§ LQTFLA—QDLQWLA—F'DAQWAA—§A(tT‘Q7T))-A¢
Detailing each parenthesis, we can infer that:
1 g - 1 Q 1 Q RS Q
Dy 7w+ <D wpp — 5Da mar + S L(tr ) = —(L("7rp) — 20 Tar—
4 4 2 4 4
1
N s 2§Q7TAL + kny o) + Z(L(QW@) +4kan Mrap — 26nN Cmpr)—
1 1 1
- §(A(Q7TAL) - §X Q7TLL - EXQWLL - XQT(AA — KRAN QWAL) + ZL(_QWLL)

Remark We notice here the cancellation of 1 L(%my) with the last term 1 L(—%mpL). These
terms contain Ln for which, as mentioned before, we do not have good estimates. We wouldn’t
have been able to prove our result, unless this cancellation took place.

1 1 1 1 1
— LQWLL + —DL Q?TLL — —DA Q?TAL + —L(t’f’Qﬂ') = —(L(QWLL) — 47’]97TAL—
4 4 2 4 4
1
— QHNN Q?TLL) —+ Z‘:(L(QWLL> + QKAN Q?TAL — KNN Q?TLL + RKNN Qﬂ'LL) — Q(A(QWAL)—
1 4 1

1
T X TLL EXQ'/TLL — X Taa+ kan Tar) + ZL(_Q@L)
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1 1 1 1
— §'DLQ7TLA — §'DL QWLA —I—DA QWAA — 514(757”071') = _E(L(QWLA> — 27]Q7TAA—

— knn tmap — 0Oy — L) — §(L(Q7TLA> + 2K an “Taa — Ky ALt

1
+ KAN Q?TLL) + (A(QWAA) - XQWLA - XQWLA) + §A(Q7TLL)

Taking into account the explicit formulae for the different components of the deformation

tensor provided in Proposition 8.5, we can reduce the above expressions to

1 1 1 1
30" moe 4 3D e = 5Da g + G L(trm) = Lis(y — kaw)) -
1 1
- QA(_SX+ 1—2v71) — 5(77 + ran)(—sx +1—2b"")+ (160)
1
+ (U—HAN)(§+sx+SI<;AA — SKNN)
1 1 1 1 1
—DLQWLL + —DL QWLL — —DA QWAL + —L(tT‘QW) = ——A(—SX + 1)—
1
—n(=sx +1) = 5sx(n — ran)
1 g 1 g Q 1 Q 1
— §DL TrA — §DL A+ Do man — EA(tr ) = —§L(—3X +1)—
1 1
—sL(=sx+1- 201) — A(s (n — kan)) + (ZENN — X)(=sx+1— 20 1)+ (162)

2 2

+ (%KNN —X)(=sx+1)—s(n— Kan)?

All the terms in these expressions which do not have a derivative with respect to the null
frame {L, L, A} and which we denote generically by X, can be estimated in the L*-norm as
follows

X < (1+ A07) (T2 A% 2 e 4 A7) (163)

Then, the integral expressions corresponding to these terms satisfy:

t t
/ 1X 0] z2(s dr < / (1 A7) (FEA=554 4 \ ) B} (96) () dr
to to ) (164)
<A sup BH00)(7)
TEto,t+]

We denote the terms which involve derivatives by Y. For their corresponding integrals we
split the discussion into the interior part, where we will use a similar argument as in the
case of Morawetz vectorfield K, and the exterior part, where we will take advantage of the
integral estimate (82):

t t t
[ WY 00l dr s [ 1Y 06wl dr+ [ 1Y 001 = w)lis, dr
to to to
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' t
5/ 75 sup ||Y||L2<sw>Ez(a¢)(r)d7+/ T Y (1 = w)llzas,) B2 (00)(7) dr
to

0<u<? to

t t
< / r b sup Y lias..) BFO6)(r) dr + / b sup [|Vilzss, . B (06)(r) dr
to

0<u<t to 5 <ust
A typical "Y”-term is, for example, L(s(n— ran)). Using the asymptotic estimates (85), we
can evaluate it as follows:
S slILn = kan)llezes. + 11— savlizas, .
S s(ATTTE 4 TN 4osE (5T AT 4 AT
<

_ 1— 1 =
sATT Tt 4 og3 \ 7

I L(s(n — Kan))|| 22(s,.0)

Hence, the general estimate for Y is:

sup [|Y[|2(s, ) S TATTE T 472N (165)

0<u<rt

Therefore the integral above can be evaluated by:

t t
/ 1Y 90| L2(s,) dTS/ (TEAT T AT ER(99) () dr
to to ) (166)
S AT sup E2(99)()
Te[t07t*}

This concludes the proof of estimate (153).

8.3 Proof of estimate (152)
As in the previous section, we start with:

Proposition 8.6 The deformation tensor °m of the scaling vectorfield

S = %(uL—iryL)

satisfies
StiL = —2ukNN
Stpp =407 — 1) — 2ukyn
STan = ux + ux
Srrp = —21+b"") + (u+ kNN
Stpa = —2ukay
Stpa = ué + u(n + Kan)

trim = —Smpp + Smaa = ux + ux — (u+wryy +2(1+ 57"
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Proof Using the above formula for S, we infer that:
1 1
SMas = 5u(< DoL,05 > + < DyL, 0y >) + §g(< DoL,05 > + < DyL, 0y >)+
1 1 1 1
+ §8au <L,a/3 > +§8gu <L,0, > +§8ag < L,ag > +§85g< L,0, >

This implies
Strp = u<DpL,L>+u<DyL,L>+Lu)<LL>+Lu) <L, L>=
= —QUKNN
Stpp = u<DpL,L>+u<DyL,L>+L(u)<L,L>+Lu <L, L>=
=u(—2kyn) + (—2)(2—-2b"1) = 4(b7 — 1) — 2ukyy
San = u < DyL,A>—+u<DsL,A>+Au) <L, A>+Au) < L,A>=
=ux + ux
1 1
Stpa = 5u(< DL, A>+ <DsL,L>)+ 5g(< DL, A>+ <DyL, L >)+
1 1 1 1
+ §L(U) <L ,A> +§A(u) <L, L> +§L(g) <L,A>+§A(g) <L, L>=
1
= -u(2n —2kan) = —2ukaN

1
Tpa= —u(<DpL,A>+ <DuL,L>)+ —u(<DpL,A>+ <DuL,L>)+

0
—

[\]
[\]

1 1 1
L(u) <L,A>+§A(u) <L,L>+§L(g) <L,A>+§A(g) <L, L>=

n
DO =

1
oy = —u(<DLL,L >+ <D,L,L>)+ §g(< DpL,L >+ <DpL, L >)+
1 1 1
L(u) <L,L>+§L(u) <L,L>+§L(g) <L,L>+§L(g) <L, L >=
KNy + ukny — 207" — 2

As in the case of ), we will use the energy estimate (125) for the equation (157). This

implies:
10502z S 11059 2(s,) +

t
1
+ / 197°% . DyDgdp + D* sy - D ¢ — é'DAtTSﬂ"'D)\(éHLQ(ZT) dr
to

Using 7 instead of 7 will affect only two terms:

SﬁLL = SWLL — 291, = 2tkyn + 2(1 — b’l)
1

N 1
Sfan = "Tan— 2gaa = u(x + g) + u(x — g)
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As before, we will first deal with the terms which do not involve derivatives of the deformation

tensor:

t t
/ 157 L. DLDLo | 2(s,) dT S / |uknn(L(LY) — 26Ad + kyNLO)| 2(s,) dT
to to

t
< / A L@ |zcs,) + TAT (TN T 4 A |06 x5, d

to

<A sup E2(96)(7)

Te[tovt*}

t t
/ 1540, D. D16 12s dr < / 140 — 1) — 2urnn)(L(LS) + kun L) oo dr
to to

t
< / 7 LO6) 2wy + TA 00l 2y dr <

to

<A sup E2(96)(r)

Te[tovt*}

t t
/ 1°%LADADLY || r2s, ) dT S / 12u kan(L(AP) — ELP — L) L2(s,) dT
to to

t
5/ A"l L(99) || 2,y + TA (72N + A )00l 25, dT

to

<A sup Ez(96)(r)

Te[tovt*}

t t
[ I raDiDadll sy dr S [ g+ i+ rax))(L(AD) + KavLo)uac
to to

t
< / (T%)\_‘_’—%“ + AT L) || 125,y + T)\_‘_l(r%)\_‘_’—?”e + XN N0D| r2s,) dT

to

<A sup E2(99)(r)

TE[to,t+]

t t
/ 157, DLDLo |12, dT S / 12t kv + 21— b)) (L(Lo) — knnLlo+
to to

t
+ 2I§ANA¢)||L2(ET) dT 5/ /\_aHT L(a¢)”L2(ET) + 7')\_2‘_’H3g25||L2(2 )dT

to

<A sup B2 (99)(7)

~Y
TE[to,t*}

t t
. 1
| I raPaDablios dr S [ 2500 ) = wran)(Ad6) - xLo-
to to

t
— trxLo)||c2(s,) dr §/ AT A0 2y + TATHNOP L2, dT +

to

¢
+/ ||—/iAAu8gb||ng ydr SATC sup E2 (09) (T / ||—/$AAu8gz§(1— M2,
to

TE[to,tx]

To conclude the analysis of these terms, we have to deal with the last integral.
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||§I€AAU6¢(1—77)”L2 dT</ —||—/*€AAU(1— M2 B B2 (0¢) (1) dr <

to T
t

1 1
||g"‘fAA (1 =n)|r2s,ydr sup E2(0¢)(T)

TE[tO,t*]

Due to the fact that
sup |k| < min{sA73" 179 A~

t,u

the last L?-norm can be estimated as follows :

H—/-@AA(l - ||L2(E / / |k|* do ds +/ / k|* dods <

/—83A2a21ad +/ _S)\Qad8</\2a2(1a)+)\2a1n7_
1 52

This result obviously implies:
Lol
/ Hg IQAA(l —7_])HL2(ET) dTS A€ (167)
to

Next we investigate the terms which involve derivatives of the tr°n. Before we start, let us

first write tr°7 in the form
1
trom = 4 + 207" 4 2s(x — =) — 2ukaa — 2 kNN
S

The expression to evaluate is ft'; |D*(tr°7)Dad||r2(s,) dr. All the terms that appear from
the differentiation of tr°7, with the exception of u Y(k44) and t V(kny), can be estimated in
a similar manner like the ”Y”-term from the previous section. All these estimates yield the
desired upper bound A™¢sup, ¢, 1] Ez(8¢)(). We show the proof for the term involving
kaa. As before, we split the argument in the interior and the exterior part and use the

corresponding integral estimates:

M\»—l

/ 0 V()00 12,y dr < / b sup [V(san)lias, ) B2 (06)(r) drt

n / IV (k) (L = ) li2sy B2 (06)(7) dr < (A + / 1V (5an)(1 = ) z2qe dr):

sup  E7(9)(7)

TEto,t+]

We are left to investigate the norm under the last integral, for which we need the following

weak estimate:

sup [V (saa)| 5 547200
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This is obtained immediately from the trivial bound

d

- (V(raa))l < 0% + 109] - |0%]

and the following estimate (30) satisfied by the metric ¢:

10" ga | gepe S ATF 7™

Y

true for all integers 0 < m. This implies then:

[V(kaa)(1 —w Hp(z ) N/ / (kaa)|* do ds —|—/ / V(kaa)|? dods <

S/ Ss )\ 2a—4(1—a) d5+/ ()\—2&—(1—(1)+S—1)\—2&) dSS
0

1
S )\—2&—4(1—(1) +7_>\—2EL—(1—a) + )\—26 InT

This estimate implies then

/t 1V (5an)(1 — @)z, dr < A~ (168)

which is, of course, the desired bound. In order to conclude our argument we have to estimate

the term
/HDO‘SWW DP9\ 2,y dr

As in the discussion for the angular momentum vectorfield €2, in the decomposition of the
expression above we encounter two type of terms:

- terms which contain derivatives of the deformation tensor, which we denote generically by
Y’

- terms which do not contain derivatives of the deformation tensor, which we denote generi-

cally by X’. Through a very easy inspection, we have the estimates:
YIS Y]+ [V(k)]

1 (169)
XX+ L

As it can obviously be seen, these terms were covered previously, so this concludes our
discussion concerning the scaling vectorfield S.

Remark Comparing with the investigation of (2, the discussion regarding S had difficulties
in evaluating the interior part of the integral terms, namely singularities appeared due to
negative powers of s. This is determined by the fact that, for the interior region, in the
case of S, u appears as minimal weight, while for the discussion regarding §2, due also to

Q = s- A, s is the weight that appeared more often.

52



9 The conclusion of the argument

At the end of section 5, we reduced the local well-posedness result up to the proof of Theorem

5.1, which we recall here in the form:

Theorem 9.1 Under the assumptions of Theorem 5.1 :

sup E(99)(1) S E(09)(to) (170)

Te[to,t*]

With the estimates obtained in the course of the previous two chapters, we can prove now

this theorem. We will proceed as follows:

9.1 Proof of the estimate (170) in the exterior region {s > £}
First we prove the following

Lemma 9.2 Under the assumptions of Theorem 5.1 we have the following commutator es-

timates:

110, Qo L2z S A N9 2=y
110, S|Pl 2z S 100l L2y

Proof It is obvious that the lemma will follow if we verify the commutator estimates for

(171)

0 replaced with either L, L or A. For the angular momentum vectorfield {2 we have

while for the scaling vectorfield S, the calculations go like this:

1 1 1 1
[1,8) = LML + ulL L] + SLw)L + Jull,I) = (~ulway +7)A+

1 1
+ (1 — §UI€NN)L + §UI€NNL

1 1 1 1
L,5) = SLL + SulL L] + L)L + SulLI] = (~ulsay +1)A+
+ (1 — bt -+ %QHNN>L + (bil — %QHNN)L

1 1 1 1 1 1
[4,5] = SAML + Sul4 L] + SA@L + SulA,I] = (Gutry + Sux)A+

+ u(n — kan)T

These equations together with the asymptotic estimates yield the desired outcome.
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Lemma 9.3 Under the assumptions of Theorem 5.1, the following estimates hold:
lw- Ad¢ - |2y S (1209|1250
|u-LO¢ - |12y S 1920822z + 1509122,y + 100 L2(s0) (172)
lu-LO¢ - |2z S Q209 r2sy) + (1509|250 + 00| 22(s0)

Proof The first estimate is almost trivial due to the fact that in the exterior region u ~

~ s. We can conclude

lw-A0¢ - 1lr2zy S s+ A0l r2my = 1209 225,

Let us observe that it is enough to prove only the estimates for L, the ones for L following
immediately from

ul = 25 — ul
In order to prove the estimates for L we use the equation:
Ug¢ = —DrDro + DsDa¢ =
=~ L(L) + AAG) — (sn + 5016 — 5x L6 = 0

This yields of course

(173)

|s- LILo)| S |s - A(AD)| + |Lo| + |Lg|
which in turn implies:
lw- LILY) - |2y S Nls - LLD) L2z S 19200] 22y + 10912 (174)
Next we investigate |u - L(L¢)|. We proceed like this:
lu- L(Lo)| = [25(L¢) — u- L(L)| S [S(LP)| + [u- L(LP)| + |u-[L, L]¢| S
S S(Le)] + |u- L(LY)| + [u(n + £an)AP| + [usnyyNo|
This estimate together with the previous one yield:
- L(Lo) - |2z S Q00122 + 1500 2220 + 109|225 (175)
Finally:
|s- L(AQ)| S [s - A(LO)| + |s - [L, Alg] S [QULD)| + [s - x Ad|
which enables us to infer that
[u- L(AD) -l 12sy S NIs - LIAD) |12y S 1200|125y + 100] L2(s:,) (176)
Putting altogether the previous results, we finally conclude:
E&(09)(t) Sllu-A0d - 1lr2csy + llu- LO¢ - llrzs,) + lu- LOG - 7l racs,) +
+ 10¢ll2z) S 11920025y + 1500|125y + 109|222 S (177)
S E2(09)(to) + A sup E(09)(7)

TE[to,tx]
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9.2 Proof of the estimate (170) in the interior region {s < %

Due to the result obtained in Theorem 7.1, for our purposes it will be enough to consider

Eini(V¢), where V designates spatial derivatives. We will prove the following result:

Theorem 9.4 Under the assumptions of Theorem 5.1 , we have the following estimate:

Eint(VO)(t) S Eint(0:0)(t) + E(09)(to)

(178)

Proof The approach is direct, using integration by parts. When there is no ambiguity we

will write the terms symbolically.

Eini(Vo)(t) = t2/ g7 - 00,0 - 00,6 - (1 —w) + Vo|? - (1 —w)

Et Et

Due to the energy estimate (132), the second term is bounded easily by:

Vo] - (1 —w) S 106(t)r2z,,) S E(99)(to)

3t

For the first integral we proceed as follows:
t2/E g7 - 00;9- 00,6+ (1 —w) = 152/E g7 - 0,0, - 0,0;¢ - (1 — w) +
+ 252/E g7 - " 0L0b - 0,0, - (1 — w)
Obviously, the first term has the upper bound:
¢ [ 47006000 (1-w) S Buul0)(0),
while for the second one we will use, as mentioned above, integration by parts

tQ/ g7 g" - Ok0ip - 90,0 - (1 —w) =
3y

= —t2/ g7 - g 0,0 - 0,010, - (1 — w) —|—t2/ g-0g-0¢-9%p- (1 —w)+
Zt Et

+ t2/ g-g-0¢-0%¢ 0w = tz/ A2 (1 —w)+
Et Et
+ t2/ g-0g-0¢-0%¢- (1 —w) + t2/ g-g-0¢-0*¢- 0w
Et Et
Using the equation satisfied by ¢, we can infer that:

Ap = Ouop + 0g-0¢

95

(179)

(180)

(181)



If we plug in this expression for A¢ in the above computation and take into account the

estimates for ||dg||re, we obtain the following estimate:

¢ /Et 97 - " 00 - 00,0 - (1 —w) S 12 /Et (10uel® + |09/ - |09]* +
+ lgl- 1991 - 196] - 1%6] + Ig] - 19l - 1991 - [6%] - |ow]) - (1 = w) S
S Enal00)(1) + A E(96)(to) + A E4(96)(to) - E2,(00)(t) +
+ E3(39)(to) - E2,(06)(1)

Putting together (179),(180),(182), we conclude that

(182)

Eu(VO)1) S Bua@6)(t) + E(06)(to) + E3(06)(ts) - L, (06)(2)

which clearly implies the result claimed.
Remark The conclusion of this section, (170), will then be the cumulative result of (123),(177)
and (178).
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