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Abstract

We study small-ball probabilities for the stochastic heat equation with
multiplicative noise in the moderate-deviations regime. We prove the
existence of a small-ball constant and related it to other known quantities
in the literature. These small-ball estimates are known to imply Chung-
type laws of the iterated logarithm (LIL) at typical spatial points; these
points can be thought of as “points of flat growth.” For this result in a
similar context in SPDEs see, for example, the recent work of Chen [3].
We establish the existence of a new family of exceptional spatial points
where the Chung-type LIL fails.
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1 Introduction and main results

Let X = {X(t)}t∈T be a real-valued stochastic process with continuous sample
functions, where T is a compact, separable metric space. By a small-ball prob-
ability estimate we mean an approximation of log P{supt∈T |X(t)| 6 ε} that is
ideally valid uniformly for all small ε (say 0 < ε < 1). We seek to find asymp-
totic bounds, and the set T can also depend on the parameter ε. Such results
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were first developed by Chung [4] for the simple walk and for Brownian mo-
tion on R, in order to prove so-called Chung-type laws of the iterated logarithm
(LIL). More specifically, Chung’s work [4] for a 1-dimensional Brownian motion
X (set T = T (ε) = [0 , ε] with the usual Euclidean distance) implies that, with
probability one,

lim inf
ε↓0

(
log | log ε|

ε

)1/2

sup
s∈[0,ε]

|X(s)| = π√
8
.

The literature on small-ball probabilities and Chung-type LILs has since grown
considerably; see the survey paper of Li and Shao [20] for the development of
the theory up to earlier 2000s in the context of Gaussian processes. Dereich,
Fehringer, Maroussi, and Scheutzow [6], Klartag and Vershynin [13], and Kuelbs
and Li [14] discuss various connections between small-ball probability estimates
and other parts of mathematics, specifically approximation theory and quanti-
zation problems in Banach space theory. Much of the preceding is concerned
mainly with the so-called L∞ theory for Gaussian measures. A recent survey by
Nazarov and Petrova [24] describes up-to-date information, particularly for the
closely-related L2-type theory of small-ball estimates for Gaussian measures.
Here, we pursue aspects of some L∞-type problems for stochastic PDEs of a
parabolic type.

Let T = [−1 , 1] ∼= R/(2Z) denote the one-dimensional torus and consider
the following parabolic stochastic PDE (or SPDE) on R+ × T:[

∂tu(t , x) = ∂2xu(t , x) + σ(u(t , x))Ẇ (t , x) for all t > 0, x ∈ T,

subject to u(0 , x) = u0(x) for all x ∈ T.
(1.1)

where the forcing is comprised of a space-time white noise Ẇ = {Ẇ (t , x)}t>0 ,x∈T

on R+ × T with an interaction term σ : R → R that is a non-random and Lip-
schitz continuous function, and an initial data u0 : T → R that is non-random
and Lipschitz continuous.

Our goal is to continue the recent analyses of Athreya, Joseph, and Mueller
[2], Chen [3], and Foondun, Joseph, and Kim [7] to study small-ball probabilities
for a nonlinear system, such as (1.1), and discuss how they relate to sample
function properties of the solution to the SPDE (1.1). In the case that σ is
constant — and in fact for much more general Gaussian random fields that are
strongly locally non deterministic — some of this type of analysis was carried
out by Lee and Xiao [16] slightly earlier.1

These references show that, under appropriate conditions, one can establish
small-ball probability estimates that are sharp, at the logarithmic level, up to
a multiplicative constant [2, 7, 16]. Moreover, one can deduce Chung-type LILs

1Small–ball probability estimates are also available for a particular family of Gaussian
processes that solve semilinear hyperbolic SPDEs. They have a different form from the results
here and in Athreya, Joseph, and Mueller [2], Chen [3], and Foondun, Joseph, and Kim [7],
and require very different methods of analysis; see Martin [22], which is based in part on a
celebrated earlier theorem of Talagrand [28] on the small-ball problem for the Brownian sheet.
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for the solution to (1.1) under natural conditions [3,16]. In this paper, we study
(1.1) dynamically as a process t 7→ u(t , x), one value of x at a time, and show
that:

(1) The resulting processes have a tight small-ball estimate with a more-or-less
explicit small-ball constant; see Theorem 1.1 below. This appears to be
a first example of a family of infinite-dimensional Markov processes that
have tight, explicit small-ball probability rates, together with identifiable
small-ball constants; and

(2) In addition to a more traditional Chung-type LIL (Corollary 1.2), we prove
that one can find exceptional points x ∈ T at which other Chung-type LILs
hold; see Theorem 1.3. This finding illustrates a new phenomenon that
seems to be intimately linked to the infinite-dimensional setting, and also
requires novel proof ideas.

In order to describe our results, let F = {F (t)}t>0 denote a fractional Brow-
nian motion of index 1/4; see Mandelbrot and VanNess [23]. That is, F is a
continuous, centered Gaussian process such that F (0) = 0 and

E
(
|F (t)− F (s)|2

)
= |t− s|1/2 for all s, t > 0.

We can deduce from the works of Li [18], Li and Linde [19], and Shao [25] that

λ = − lim
ε↓0

ε4 log P

{
sup
t∈[0,1]

|F (t)| 6 ε

}
exists and is in (0 ,∞). (1.2)

The number λ is the so-called small-ball constant for F . It should be possi-
ble to combine (1.2) and Monte Carlo methods in order to find a reasonable
approximation to λ, but the exact numerical value of λ is not known.

Theorem 1.1. In addition to the preceding assumptions, suppose that σ is
bounded. Choose and fix an unbounded, non-increasing, deterministic function
φ : (0 , 1)→ (0 ,∞) that satisfies the following:

φ(ε) = O (|log ε|) as ε ↓ 0. (1.3)

Then, for every x ∈ T,

lim
ε↓0

1

φ(ε)
log P

{
sup
t∈[0,ε]

|u(t , x)− u0(x)| 6
(

ε

φ(ε)

)1/4
}

= −2λ

π
|σ(u0(x))|4.

As far as we know, the first paper on small-ball probabilities was Chung [4],
where the object of main interest was the simple walk on Z and, through that,
the Brownian motion on the line. Chung [4] was also the first to notice that
small-ball probabilities can be used to yield a matching law of the iterated log-
arithm (LIL). Thus, it should not come as a surprise that Theorem 1.1 too
implies a Chung-type LIL. Though we pause to point out that additional ef-
fort is required to show the next corollary, as it is valid under fewer technical
hypotheses than is Theorem 1.1.
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Corollary 1.2. Regardless of whether or not σ is bounded,

lim inf
ε↓0

(
log | log ε|

ε

)1/4

sup
t∈[0,ε]

|u(t , x)− u0(x)| =
(

2λ

π

)1/4

|σ(u0(x))|, (1.4)

a.s. for every x ∈ T , where λ was defined in (1.2).

To be sure of the order of the quantifiers, we note that Corollary 1.2 says
that for every non-random point x ∈ R there exists a P-null set off of which
(1.4) holds. We may view such points x as points of [relatively] “flat growth,”
for example as compared with points where iterated logarithm fluctuations are
observed; see [8]. Corollary 1.2 and Fubini’s theorem together show that the
collection of all points x ∈ T that satisfy (1.4) has full Lebesgue/Haar measure.
The remainder of our effort is concerned with studying many of the points x ∈ T
that are exceptional in the sense that they fail to satisfy (1.4). A standard
method for finding such points is to appeal to the theory of limsup random
fractals [11] and adapt it to the present small-ball setting for SPDEs. For large-
ball problems, this adaptation was done in [8], and we feel that similar methods
will yield exceptional points x ∈ T for which the rate const× (ε−1 log | log ε|)1/4
is replaced by rate const × (ε−1| log ε|)1/4 for suitable choices of “const.” We
have not tried to do that here. Instead, we document the existence of a more
subtle family of exceptional points x ∈ T whose existence requires new proof
ideas. In order to present that family we need some notation.

From now on, we will use the symbol to denote subsequential limits. More
precisely, whenever a, a1, a2, · · · ∈ R, then we might write “an  a as n → ∞”
as shorthand for “lim infn→∞ |an − a| = 0.”

Theorem 1.3. Choose and fix a non-random, nonnegative, extended real num-
ber χ ∈ [0 ,∞]. Then, regardless of whether or not σ is bounded, there a.s. exists
a random x ∈ T such that(

log | log ε|
ε

)1/4

sup
t∈[0,ε]

|u(t , x)− u0(x)| χ1/4|σ(u0(x))| as n→∞ (1.5)

If χ ∈ [0 , 2λ/π], then there in fact a.s. exists a random x ∈ T such that

lim inf
ε↓0

(
log | log ε|

ε

)1/4

sup
t∈[0,ε]

|u(t , x)− u0(x)| = χ1/4|σ(u0(x))|. (1.6)

We pause to insert a few problems that have eluded us.

Open Problem 1. Can (1.5) be upgraded to (1.6) when χ > 2λ/π? We suspect
the answer is “no.”

Open Problem 2. Based on an informal comparison with limsup random
fractals, we conjecture that the set of x ∈ T that satisfy either condition (1.5)
or (1.6) always has full Hausdorff dimension a.s.
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Above and throughout, we view T as the set [−1 , 1] and identify it with the
abelian group R/(2Z) in the customary manner: We use the additive notation
for T, and in fact move back and forth from interpreting T as the real interval
[−1 , 1] to the abelian group R/(2Z). In particular, we write “x− y” instead of
“x − y (mod 2)” or “xy−1” for x, y ∈ T, and designate 0 (not 1) as the group
identity. We also denote by dx an infinitesimal element of a Haar measure on
T and do not distinguish between the Lebesgue measure on [−1 , 1], normalized
to have total mass 2 and the Haar measure on T, similarly normalized.

We frequently set log+(a) = log(a ∨ exp(e)) for all a > 0.
Suppose A is a nice metric space and g : A → R is continuous. Then

we often write ‖g‖C(B) in place of supx∈B |g(x)| whenever B ⊆ A. When
B = [a , b] is a subinterval of R we might write ‖g‖C[a,b] in place of ‖g‖C([a,b]).

Throughout, the Lk(Ω)-norm of a random variable Z ∈ Lk(Ω) is denoted by
‖Z‖k := {E

(
|Z|k

)
}1/k for all 1 6 k <∞.

Let us conclude the Introduction with an outline of this paper. In Section
2, we investigate small ball probabilities for the constant-coefficient case σ ≡ 1
in (1.1). In Section 3, we consider the linearization of the nonlinear equation
(1.1) and present detailed estimates for the difference between the nonlinear one
and its linearization (see Proposition 3.1). We will use these estimates, along
with the results from Section 2, to prove Theorem 1.1. Sections 4 and 5 are
dedicated to the proofs of Corollary 1.2 and Theorem 1.3 by using Theorem 1.1
and introducing some novel ideas.

2 The linear case

As is commonly done [5,30], we interpret the SPDE (1.1) as the following random
integral equation:

u(t , x) = (pt ∗ u0)(x) +

ˆ
(0,t)×T

pt−s(x , y)σ(u(s , y))W (dsdy), (2.1)

for all t > 0 and x ∈ T, where p denotes the heat kernel on T; that is, for all
r > 0 and x, y ∈ T,

pr(x , y) =

∞∑
n=−∞

Gr(x− y + 2n), where Gr(a) =
exp{−a2/(4r)}√

4πr
, (2.2)

for every a ∈ R. It is well known that in short times the solution to (1.1) is very
close to a constant multiple of the solution to the following linearized version of
(1.1); see [9, 12]. Therefore, we reserve the letter Z specifically for the solution
to the following SPDE.

∂tZ(t , x) = ∂2xZ(t , x) + Ẇ (t , x) for all t > 0, x ∈ T,

subject to Z(0 , x) = 0 for all x ∈ T.
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According to (2.1), we may write the solution Z as the following Wiener integral
process,

Z(t , x) =

ˆ
(0,t)×T

pt−s(x , y)W (dsdy) for all t > 0, (2.3)

where the kernel p was defined in (2.2). In this section, we study the specializa-
tion of Theorem 1.1 to the Gaussian random field Z, viewed as an approximation
for the process u.

Proposition 2.1. Choose and fix an unbounded, non-increasing, deterministic
function φ : (0 , 1)→ (0 ,∞) that satisfies (1.3). Then,

lim
ε→0+

[φ(ε)]−1 log P
{
‖Z(t)‖C[0,ε] 6 (ε/φ(ε))

1/4
}

= −2λ/π,

where λ was defined in (1.2).

As Z is a nice Gaussian random field, we will prove Proposition 2.1 by
following a similar route to that taken in [16], and then appeal to the results
in [19,21,25] in order to prove the existence of the small-ball constant and then
to identify that constant. It should be pointed out that scaling plays a role in
the methods of the latter three references. Thus, a certain amount of additional
effort is expended in order to overcome the lack of scaling for Z.

2.1 The linear heat equation on free space

So far, Ẇ (t , x) = ∂2t,xW (t , x) where W denotes a space-time Brownian sheet
that is indexed by (t , x) ∈ R+ × [−1 , 1]. Without loss of generality, and in a
standard manner, we can extend the domain of definition of the Brownian sheet
W so that it is in fact a space-time Brownian sheet on the full space R+ × R.
This canonically extends the domain of the definition of the white noise Ẇ to
all of R+ × R as well. With this in mind, let us consider the stochastic heat
equation, [

∂tH(t , x) = ∂2xH(t , x) + Ẇ (t , x) for all t > 0, x ∈ R,

subject to H(0 , x) = 0 for all x ∈ R.
(2.4)

The solution to this SPDE is, by virtue of definition and similarly to (2.1), the
following Gaussian random field which is defined as a Wiener integral process,

H(t , x) =

ˆ
(0,t)×R

Gt−s(x , y)W (dsdy) for all t > 0 and x ∈ R, (2.5)

where G was defined in (2.2). The following result is a precise small-ball estimate
for the process H at a given spatial point, say x = 0, in terms of the same small-
ball constant λ that was introduced in (1.2).

Proposition 2.2. limε↓0 ε
4 log P{supt∈[0,1] |H(t , 0)| 6 ε} = −2λ/π.
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It is well-known that one can decompose t 7→ H(t , 0) as a constant multiple
of a fractional Brownian motion F with index 1/4 plus a continuous Gaussian
random field T that is independent of Z and has C∞ sample functions away from
t = 0; see [17] (Lemma 2.3 below). One can expect the small-ball probability
of the rougher process F to dominate that of the smoother Gaussian process T .
Therefore, it remains to make this assertion rigorous. This effort is complicated
by the fact that, near t = 0, the random field T is not smooth; in fact, T and
F are equally smooth locally near t = 0. The crux of the argument hinges on
estimating how quickly T begins to “look like a C∞ process,” together with a
suitable quantitative way to interpret the quoted sentence. This effort will be
summarized in Proposition 2.4 below. Proposition 2.2 is proved subsequently
in §2.3.

We begin by studying an auxiliary process T .

2.2 An auxiliary Gaussian process

Let V denote a one-parameter white noise on R; that is, V is the weak derivative
of a two-sided Brownian motion indexed by R. Consider the centered Gaussian
process T = {T (t)}t>0 that is defined by T (0) = 0 and

T (t) =
1√
2π

ˆ ∞
−∞

(
1− e−tz

2/2

z

)
V (dz) for t > 0. (2.6)

We shall assume throughout that V and the noise W in (2.4) are independent.
Let us recall the following structural decomposition of H(t) in terms of the
process T and a fractional Brownian motion of index 1/4.

Lemma 2.3 (Lei and Nualart [17]). The centered Gaussian process T is contin-
uous. Moreover, its restriction to [η ,∞) is almost surely C∞ for every η > 0.
Finally,

F (t) =
H(t , 0) + T (t)

(2/π)1/4
[t > 0]

defines a standard fractional Brownian motion of index 1/4.

The final part of Lemma 2.3 is proved via a direct computation of the co-
variance function of F . With this aim in mind, let d denote the usual canonical
distance that is associated to the Gaussian process T ; that is,

d(s , t) = ‖T (t)− T (s)‖2 for all s, t > 0. (2.7)

The regularity assertions of Lemma 2.3 were proved by showing that:

(a) d(s , t) . |t− s|1/4 uniformly for all s, t > 0; and

(b) d(s , t) 6 Cη|t− s| whenever s, t > η,
(2.8)

where Cη is a number that depends on η but not (s , t). The main result of
this section is the following lower bound on the small-ball probability of T .
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Note that, in addition to the assertions in Lemma 2.3, parts (a) and (b) of (2.8)
show that while F is smooth away from the origin, it scales roughly as fractional
Brownian motion of index 1/4 near the origin. Nevertheless, the following shows
that the small-ball probability of T is significantly larger than that of a fractional
Brownian motion with index 1/4.

Proposition 2.4. There exists a constant L > 1 such that

P
{
‖T‖C[0,1] 6 r

}
> L−1 exp(−L/r) for all r > 0.

The proof of Proposition 2.4 requires a few preliminary steps. The first is
a careful estimate on the canonical distance that improves (2.8); it in fact the
following interpolates between (a) and (b) of (2.8).

Lemma 2.5. There exists a number c > 0 such that

d(s , t) 6 c|t− s|1/4
[

1 ∧
(
|t− s|
s ∧ t

)3/4
]

for all s, t > 0.

Proof. The definition of the Wiener integral in (2.6) yields the following: For
every t, ε > 0,

d(t+ ε , t) =

√
t

π

ˆ ∞
0

(
1− e−εy

2/(2t)

y

)2

e−y
2

dy.

Since 1− exp(−c) 6 1 ∧ c for all c > 0, this yields

[d(t+ ε , t)]2 6
ε2

4πt3/2

ˆ √2t/ε

0

y2e−y
2

dy +

√
t

π

ˆ ∞
√

2t/ε

e−y
2

y2
dy = J1 + J2,

notation being clear from context. On one hand, uniformly for all t > ε > 0,

J1 6
ε2

4πt3/2

ˆ ∞
0

y2e−y
2

dy ∝ ε2

t3/2
and

J2 6

√
t

π

ˆ ∞
√

2t/ε

e−y
2

y2
dy � ε3/2

t
e−2t/ε .

ε2

t3/2
,

where we have appealed to l’Hôpital’s rule to estimate J2, as well as the fact
that A1/2 exp(−A) . 1 uniformly for all A > 1. On the other hand, when ε > t,
we have

J1 6
ε2

4πt3/2

ˆ √2t/ε

0

y2 dy .
√
ε, J2 6

√
t

π

ˆ ∞
√

2t/ε

e−y
2

y2
dy .

√
t

ˆ ∞
√

2t/ε

dy

y2
.
√
ε,

valid uniformly for all ε > t > 0. The lemma follows from putting together the
two cases.
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We plan to use Lemma 2.5 to compute a sharp metric entropy bound for the
process T on [0 , ε]. In order to do that, we will need a good covering method
which will turn out to depend on the solution to a nice difference equation.
Choose and fix a number c > 0 and consider the initial-value problem,

g′ = cg3/4 on (0 ,∞), subject to g(0) = 0,

whose only increasing solution is g(t) = (ct/4)4. The following is an asymptot-
ically analogous result for a discrete version of the preceding ODE.

Proposition 2.6. Choose and fix some c > 0 and define a1 = 1 and an+1 =

an + ca
3/4
n for every n ∈ N. Then, an ∼ (cn/4)4 as n→∞ in N.

Proof. By induction, an+1 > an for all n ∈ N. We first show that limm→∞ am =

∞. Indeed, an > a1 = 1 for all n ∈ N and hence an+1 − an = ca
3/4
n > c. This

proves the sub-optimal result that an > cn for all n ∈ N, which is nevertheless
good enough to ensure that an →∞ as n→∞.

Now we extend the sequence {an}n∈N to a function f : [1 ,∞)→ [1 ,∞) by
linear interpolation. Specifically, let

f(t) = abtc + c(t− btc)a3/4btc for all t > 1,

where btc denotes the greatest integer 6 t. Note that f is differentiable on
(1 ,∞) \ N, and

f ′(s) = ca
3/4
bsc = c[h(s)]3/4[f(s)]3/4 for all s ∈ (1 ,∞) \ N, (2.9)

where
h(t) =

abtc

f(t)
=

abtc

abtc + c(t− btc)a3/4btc
for every t > 1.

Since 0 6 t − btc 6 1 and abtc → ∞ as t → ∞, we have h(t) → 1 boundedly
as t → ∞. And of course h(t) 6 1 for all t > 1. We can write (2.9) as
df/f3/4 = ch3/4 ds and integrate from 1 to t [ds] in order to find that

f(t) =

(
1 +

c

4

ˆ t

1

[h(s)]3/4 ds

)4

,

for every t ∈ [1 ,∞) \ N and hence every t > 1 by continuity. Since f(n) = an
for all n ∈ N and h(s)→ 1 boundedly as s→∞, this proves the result.

Recall the Gaussian process T and associated intrinsic metric d respec-
tively from (2.6) and (2.7). Let N denote the metric entropy of the process
{T (t)}t∈[0,1]. That is, for every r > 0, define N (r) to be the smallest collec-
tion of open d-balls of radius r > 0 needed to cover the closed interval [0 , 1].
We shall recall the following result which is stated explicitly in Talagrand [29,
Lemma 2.2], whose proof follows from combining the entropy estimates of Ta-
lagrand [27, Section 3] together with a deep theorem of Kuelbs and Li [14]. A
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detailed concrete proof of the following can be found in Section 7 of the lecture
notes by Ledoux [15].2

Lemma 2.7 (Talagrand [27]). Suppose N 6 ψ on (0 , 1) for a function ψ :
(0 , 1) → R+ that satisfies ψ(r) � ψ(r/2) uniformly for all r ∈ (0 , 1). Then
there exists K > 0 such that P{‖T‖C[0,1] 6 ε} > K−1 exp(−Kψ(ε)) for all
ε > 0.

Armed with Lemma 2.7, we can present the following.

Proof of Proposition 2.4. It suffices to prove that the asserted inequality of the
proposition is valid for all ε ∈ (0 , 1/2). With that aim in mind, let us choose
and fix a real number ε ∈ (0 , 1) [N.B.: not ε ∈ (0 , 1/2)], and define a0 = 0,

a1 = 1. Then define iteratively aj+1 = aj + ca
3/4
j for all j ∈ N, where c > 0 was

defined in Lemma 2.5. Also define

tj = aj(2ε/c)
4 for j ∈ Z+.

According to Lemma 2.5, d(t0 , t1) 6 2ε, and

d(tj , tj+1) 6 c|tj+1 − tj |/t3/4j = 2ε for all j ∈ N.

In other words, d(tj , tj+1) 6 2ε for all j ∈ Z+. It follows readily from this
that N (ε) 6 1 + max{j > 0 : aj 6 (c/(2ε))4}, uniformly for all r ∈ (0 , 1).
Proposition 2.6 assures us that aj & j4 uniformly for all j ∈ N large. Therefore,
we can see that there exists C > 0 such that N (ε) 6 C/ε uniformly for every
ε ∈ (0 , 1). Apply Lemma 2.7 with ψ(ε) = C/ε to conclude the proof.

2.3 Proof of Proposition 2.2

With the results of the preceding subsections under way, we are ready to verify
Proposition 2.2. But first we pause to recall the following specialization of [1].

Lemma 2.8 (Anderson [1]). If X is a centered Gaussian random variable X
with values in C[0 , 1], then P{‖X + f‖C[0,1] 6 r} 6 P{‖X‖C[0,1] 6 r} for every
f ∈ C[0 , 1] and r > 0.

Define T as was done in (2.6), using a noise V that is independent of W
and hence also the solution H to (2.4). Let F be the corresponding fractional
Brownian motion with index 1/4, as was introduced in Lemma 2.3. Because H
and T are independent processes, we first condition on T and then appeal to
Anderson’s inequality (Lemma 2.8) in order to see that, for all ε > 0,

P
{
‖F‖C[0,1] 6 (π/2)1/4ε

}
6 sup
f∈C[0,1]

P
{
‖H(· , 0) + f‖C[0,1] 6 ε

}
= P

{
‖H(· , 0)‖C[0,1] 6 ε

}
.

(2.10)

2In fact, the 2-parameter process (T 	T )(t , s) = T (t)−T (s) satisfies P{‖T 	T‖C([0,1]2) 6

ε} > K−1 exp{−Kψ(ε)}. Lemma 2.7 follows from this formulation since T (0) = 0.
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This yields a lower bound on the small-ball probability for t 7→ H(t , 0) in terms
of the better-studied small-ball probability for fractional Brownian motion. For
a complementary inequality let us choose and fix some number ρ ∈ (0 , 1) and
observe from the independence of H and T that for all ε > 0,

P
{
‖H(· , 0)‖C[0,1] 6 ρε

}
·P
{
‖T‖C[0,1] 6 (1− ρ)ε

}
6 P

{
‖F‖C[0,1] 6 (π/2)1/4ε

}
.

Apply Proposition 2.4 with r = (1 − ρ)ε in order to find a number L > 0 such
that for all ε > 0,

P
{
‖H(· , 0)‖C[0,1] 6 ρε

}
6 LP

{
‖F‖C[0,1] 6 (π/2)1/4ε

}
· eL/[(1−ρ)ε]. (2.11)

Relabel ε as ρε in order to see from (2.10) and (2.11) that for all ε > 0,

P
{
‖F‖C[0,1] 6 (π/2)1/4ε

}
6 P

{
‖H(· , 0)‖C[0,1] 6 ε

}
6 LP

{
‖F‖C[0,1] 6 (π/2)1/4ε/ρ

}
eLρ/[(1−ρ)ε].

Apply (1.2) to see that, as ε ↓ 0,

−2λ+ o(1)

π
6 ε4 log P

{
‖H(· , 0)‖C[0,1] 6 ε

}
6 −2λρ4 + o(1)

π
.

Since ρ ∈ (0 , 1) was arbitrary, we may let ρ tend upward to 1 in order to
complete the proof of Proposition 2.2.

2.4 Proof of Proposition 2.1

We now prove Proposition 2.1. The first step is to establish the analogue of
Proposition 2.1 for the more regular process H. The following summarizes that
result.

Lemma 2.9. For every unbounded, non-increasing, deterministic function φ :
(0 , 1)→ (0 ,∞),

lim
ε→0+

[φ(ε)]−1 log P
{
‖H(· , 0)‖C[0,ε] 6 (ε/φ(ε))

1/4
}

= −2λ/π.

Proof. The random field H inherits scaling properties from white noise and the
free-space heat operator. In particular,{

ρ−1/4H(ρt , ρ1/2x) ; t > 0, x ∈ R
}
d
= {H(t , x) ; t > 0, x ∈ R}, (2.12)

for all ρ > 0. In particular, for every ε > 0,

P
{
‖H(· , 0)‖C[0,ε] 6 (ε/φ(ε))

1/4
}

= P
{
‖H(· , 0)‖C[0,1] 6 [φ(ε)]−1/4

}
.

The result follows from the above, Proposition 2.2, and the fact that φ(ε)→∞
as ε→ 0+.
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In the next step in the proof of Proposition 2.1 we show that H(t , 0) is very
close to Z(t , 0). Since H and Z are Gaussian, it suffices to measure closeness
using the variance.

Lemma 2.10. E(|H(t , 0)− Z(t , 0)|2) 6 5t for all t > 0.

Proof. We can compare (2.3) to (2.5) in order to see that E(|H(t , 0)−Z(t , 0)|2) =
2J1 + J2, where

J1 =

ˆ t

0

ds

4πs

ˆ 1

−1
dy

∣∣∣∣∣
∞∑
n=1

exp

(
− (y + 2n)2

4s

)∣∣∣∣∣
2

,

J2 =

ˆ t

0

ds

ˆ
|y|>1

dy [Gt−s(y)]2.

Both terms can be estimated by direct means. Indeed,

J1 6
ˆ t

0

ds

πs

ˆ 1

−1
dy

∣∣∣∣∣
∞∑
n=1

exp

(
−n

2

4s

)∣∣∣∣∣
2

=
2

π

ˆ t

0

∣∣∣∣∣
∞∑
n=1

exp

(
−n

2

4s

)∣∣∣∣∣
2

ds

s
, and

J2 =

ˆ t

0

ds

ˆ
|y|>1

dy [Gs(y)]2 =

ˆ t

0

ds√
8πs

ˆ
|z|>
√
2

dz Gs(z),

thanks to the fact that [Gs(y)]2 = (4πs)−1/2Gs(y
√

2) for all s > 0 and y ∈ R,
and a change of variables. Since

∑∞
n=1 exp{−n2/(4s)} 6

´∞
0

exp{−y2/(4s)}dy =√
πs, it follows that J1 6 2t. And a familiar Gaussian tail bound yields

ˆ
|z|>
√
2

dz Gs(z) 6 exp{−1/(2s)},

and hence

J2 6
ˆ t

0

exp

(
− 1

2s

)
ds√
8πs
6

t√
8eπ
6 t,

thanks to the elementary fact that s−1/2 exp{−1/(2s)} 6 e−1/2 for all θ > 0.
Combine the bounds for J1 and J2 in order to deduce the lemma.

In the next stage of the proof of Proposition 2.1 we show that the somewhat
crude approximation offered by Lemma 2.10 is good enough to yield the closeness
of the respective small-ball probabilities of t 7→ H(t , 0) and t 7→ Z(t , 0). In fact,
a little extra effort produces the following much better result.

Lemma 2.11. Let φ : (0 ,∞) → R+ be an unbounded, nonincreasing, deter-
ministic function that satisfies the local growth condition (1.3). Then,

lim sup
ε↓0

√
εφ(ε) log P

{
‖H − Z‖C([0,ε]×T) > (ε/φ(ε))

1/4
}
6 − 1

10
.
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Proof. Let D(t , x) = H(t , x)− Z(t , x) for all t > 0. Clearly, D is a continuous
and centered Gaussian process with

E
(
|D(t , x)|2

)
6 5t, and

E
(
|D(t , x)−D(s , y)|2

)
. |t− s|1/2 + |x− y|,

(2.13)

valid uniformly for all s, t ∈ [0 , 1] and x, y ∈ T. The first inequality in (2.13) is
from Lemma 2.10 and stationarity, and the second is a well-known fact that is
used frequently in the regularity theory of SPDEs [30, pp. 319–320]. Therefore,
the theory of Gaussian processes (in particular its connection to metric entropy)
yields a positive number c such that

0 6 E sup
s∈[0,ε]

sup
y∈T

D(s , y) 6 c |ε log ε|1/2 uniformly for all ε ∈ (0 , 1/e];

see Ledoux [15]. Moreover, by concentration of measure [15] and (2.13),

P

{
sup
s∈[0,ε]

sup
y∈T

∣∣∣∣∣D(s , y)− E

[
sup
s∈[0,ε]

sup
y∈T

D(s , y)

]∣∣∣∣∣ > z
}

6 2 exp

(
− z2

2 sups∈[0,ε] Var[D(s , 0)]

)
6 2e−z

2/(10ε) for all z, ε > 0.

Thus we see that, for every z > 0 and ε ∈ (0 , 1/e],

P
{
‖H − Z‖C([0,ε]×T) > c |ε log ε|1/2 + z

}
6 2e−z

2/(10ε).

This and the moderate-deviations condition (1.3) together imply the lemma.

We have laid the groundwork and are now prepared for the following con-
clusion to the results of this section.

Proof of Proposition 2.1. Choose and fix an arbitrary number ρ ∈ (0 , 1). In
accord with Lemmas 2.9 and 2.11,

P
{
‖Z(· , 0)‖C[0,1] 6 (ε/φ(ε))

1/4
}

6 P
{
‖H(· , 0)‖C[0,ε] 6 (1 + ρ) (ε/φ(ε))

1/4
}

+ P
{
‖H(· , 0)− Z(· , 0)‖C[0,ε] > ρ (ε/φ(ε))

1/4
}

6 exp

{
− (2λ/π) + o(1)

(1 + ρ)4
φ(ε)

}
+ exp

{
−ρ

4 + o(1)

6
√
εφ(ε)

}
as ε ↓ 0.

Since ρ ∈ (0 , 1) can be as close to zero as we want, this and (1.3) together imply
that

lim sup
ε↓0

[φ(ε)]−1 log P
{
‖Z(· , 0)‖C[0,ε] 6 (ε/φ(ε))

1/4
}
6 −2λ/π.

13



Likewise, we appeal to Lemmas 2.9 and 2.11 as follows:

exp

{
− (2λ/π) + o(1)

(1− ρ)4
φ(ε)

}
= P

{
‖H(· , 0)‖C[0,ε] 6 (1− ρ) (ε/φ(ε))

1/4
}

6 P
{
‖Z(· , 0)‖C[0,ε] 6 (ε/φ(ε))

1/4
}

+ P
{
‖H(· , 0)− Z(t , 0)‖C[0,ε] > ρ (ε/φ(ε))

1/4
}

6 P
{
‖Z(· , 0)‖C[0,ε] 6 (ε/φ(ε))

1/4
}

+ exp

{
−ρ

4 + o(1)

6

√
φ(ε)

ε

}
as ε ↓ 0.

Since ρ ∈ (0 , 1) can be as close to zero as we want, this and (1.3) together
imply that lim infε↓0[φ(ε)]−1 log P{‖Z(· , 0)‖C[0,ε] 6 (ε/φ(ε))1/4} > −2λ/π, and
concludes the proof of the proposition.

3 Linearization, and proof of Theorem 1.1

Consider the space-time random field E that is defined by setting, for all t > 0
and x ∈ T,

E (t , x) = u(t , x)− (pt ∗ u0)(x)− σ(u0(x))Z(t , x).

Thus, the random variable E (t , x) measures the linearization error of the solu-
tion to (1.1) at the space-time point (t , x) ∈ R+×T. It is known that E (t , x) ≈ 0
when t ≈ 0; this was done independently and nearly at the same time in [12]
and [9]. The method of [12] provided detailed bounds for the moments of sup |E |
but with suboptimal t-dependent rates, and the method of [9] provided a.s. es-
timates for sup |E |, with nearly sharp control of the size of sup |E |, but only
under extra smoothness conditions on σ; specifically σ was assumed to be in Cr

for a large enough r > 3. Our next proposition improves both of these results.
It yields a rate that is unimproveable to leading order, does not require addi-
tional smoothness for σ, and provides quantitative bounds on P{E ≈ 0}. More
precisely, we have

Proposition 3.1. If σ is bounded, then for every ν > 0 there exists a = a(ν) ∈
(0 , 1) such that

P
{
‖E ‖C([0,t]×T) > at

1/2 log+(1/t)
}
. tν uniformly for every t ∈ (0 , 1).

The preceding appears to be a result that is useful only when t ≈ 0. However,
it is possible to combine it with the Markov property of the solution to improve
itself. We will not delve into this topic since we do not need it at present.

The proof of Proposition 3.1 requires a few preliminary calculations. Before
we commence with those, let us quickly deduce the following analogue of a
result in [9] but valid with no additional smoothness assumptions on σ and with
a slightly tighter error rate at the sharp leading order of t1/2. We will not need
Corollary 3.2 in the sequel and mention it only to record the fact for potential
later use elsewhere.
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Corollary 3.2. Regardless of whether or not σ is bounded, there exists an a.s.-
finite random variable V such that ‖E (t)‖C(T) 6 V t1/2 log+(1/t) uniformly for
all t ∈ [0 , 1].

Proof. The proof uses a stopping-time argument. Choose and fix a real number
N > 0, and define uN the same as u – see (1.1) – but with σ replaced by σN

σN (x) =


σ(N) if x > N,

σ(x) if −N < σ(x) 6 N,

σ(−N) if x 6 −N.

That is, uN (0) = u0, and

uN (t , x) = (pt ∗ u0)(x) +

ˆ
(0,t)×R

pt−s(x , y)σN (uN (s , y))W (dsdy),

for t > 0 and x ∈ T. Define

TN = inf
{
t > 0 : ‖uN (t)‖C(T) > N

}
[inf ∅ =∞].

Then, TN is a stopping time with respect to the filtration F generated by the
noise. Basic properties of the Walsh stochastic integral and the continuity of u
and uN together imply that

P {uN (t) = u(t) for all t < TN} = 1, (3.1)

whence also TN = inf{t > 0 : ‖u(t)‖C(T) > N} almost surely. Therefore, we
apply Proposition 3.1 with ν = 1 in order to see that there exists a > 0 such
that

P

{
sup
t∈[0,ε]

‖E (t)‖C(T) > aε
1/2|log ε| ;TN > 1

}

= P

{
sup
t∈[0,ε]

‖uN (t)− pt ∗ u0 − σ(u0)Z(t)‖C(T) > aε
1/2|log ε| ;TN > 1

}

6 P

{
sup
t∈[0,ε]

‖uN (t)− pt ∗ u0 − σ(u0)Z(t)‖C(T) > aε
1/2|log ε|

}
. ε,

uniformly for all ε ∈ (0 , 1). Replace ε by exp(−n) as n ranges over N and sum
over n to deduce from the Borel-Cantelli lemma that

lim sup
n→∞

sup
t∈[0,exp(−n)]

‖E (t)‖C(T)

e−n/2n
6 a a.s. on {TN > 1}. (3.2)

If exp(−n− 1) 6 ε 6 exp(−n) and n ∈ N, then

sup
s∈[0,ε]

‖E (s)‖C(T)

ε1/2|log ε|
6 sup
t∈[0,exp(−n)]

‖E (t)‖C(T)

e−(n−1)/2n
.
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Therefore, (3.2) implies that

P

{
lim sup
ε↓0

sup
s∈[0,ε]

‖E (s)‖C(T)

ε1/2|log ε|
6

a

e1/2

}
> P{TN > 1} for all N > 0.

Because (3.1) and the a.s.-continuity of u together imply that limN→∞ TN =∞
a.s., this proves that

lim sup
ε↓0

sup
s∈[0,ε]

‖E (s)‖C(T)

ε1/2|log ε|
6

a√
e

a.s.

In particular, the above limsup is finite almost surely. This is another way to
state the corollary.

Now we begin proof of Proposition 3.1 in earnest. Let us define a metric ∆
on space-time R+ × T by setting

∆ ((t , x) , (s , y)) = |t− s|1/4 + |x− y|1/2 for all s, t > 0 and x, y ∈ T.

It might help to recall that we are using the additive notation for elements of T.
In particular, |x− y|1/2 is shorthand for |x− y (mod 2)|1/2 whenever x, y ∈ T.

The following is a consequence of the large-deviations result of Sowers [26]
and well-known relations between tails of a Gaussian law and its moments.
Results of the following type are well known and typically used to prove that
the process u is continuous all the way up to and including the boundary of
[−1 , 1], keeping in mind also that ±1 are identified with one another here.

Lemma 3.3 (Sowers [26]). If σ is bounded, then

‖u(t , x)− u(s , y)‖k .
√
k∆
(
(t , x) , (s , y)

)
,

uniformly for all x, y ∈ T, s, t > 0, and k > 2.

Next, we present an exponential tail estimate for the linearization error E ,
valid when σ is bounded.

Lemma 3.4. If σ is bounded, then there exists γ > 0 such that

sup
t∈(0,1]

sup
x∈T

E exp

(
γ

∣∣∣∣E (t , x)√
t

∣∣∣∣) <∞.

Proof. Compare (2.1) with (2.3) in order to see that

E (t , x) =

ˆ
(0,t)×T

pt−s(x , y) [σ(u(s , y))− σ(u(0 , x))] W (dsdy),

for all t > 0 and x ∈ T. Thanks to the Young’s inequality for stochastic
convolutions (see Khoshnevisan [10, Proposition 5.2]), we have the following for
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every real number k > 2, t > 0, and x ∈ T:

‖E (t , x)‖2k 6 4k

ˆ t

0

ds

ˆ
T

dy [pt−s(x , y)]2 ‖σ(u(s , y))− σ(u(0 , x))‖2k

6 4k[Lip(σ)]2
ˆ t

0

ds

ˆ
T

dy [pt−s(x , y)]2 ‖u(s , y)− u(0 , x)‖2k

. k2
ˆ t

0

ds

ˆ
T

dy [pt−s(x , y)∆((0 , x) , (s , y))]
2
.

(3.3)

Thanks to (2.2), (t , a) 7→ pr(a) − Gr(a) is bounded uniformly on R+ × T. In
this way, we find that

‖E (t , x)‖2k . k
2

ˆ t

0

ds

ˆ ∞
−∞

dy [Gs(y)]2
(√
t− s+ |y|

)
+k2
ˆ t

0

ds

ˆ
T

dy
(√
s+ |y|

)
,

uniformly for all t > 0, x ∈ T, and k > 2. Direct computation yields the bound,

ˆ t

0

ds

ˆ
T

dy
(√
s+ |y|

)
∝ t3/2 + t, valid uniformly for all t > 0.

Similarly, we find that for all t > 0,

ˆ t

0

ds

ˆ ∞
−∞

dy [Gs(y)]2
√
t− s =

ˆ t

0

√
t− sG2s(0) ds ∝ t, and

ˆ t

0

ds

ˆ ∞
−∞

dy [Gs(y)]2|y| =
ˆ t

0

ds

s

ˆ ∞
−∞

dy [G1(y/
√
s)]2|y|

=

ˆ t

0

ds

ˆ ∞
−∞

dw [G1(w)]2|w| ∝ t,

where the constants of proportionality do not depend on t. It follows from the
preceding effort that there exists B > 0 such that

sup
t∈(0,1]

sup
x∈T

E
(
|E (t , x)|k

)
6 (Bk)ktk/2 uniformly for all k > 2.

By Jensen’s inequality, the preceding in fact holds uniformly for all t > 0,
x ∈ T, and k > 1. Among other things, this and Stirling’s formula together
yield a constant C > 0 such that

sup
t∈(0,1]

sup
x∈T

E

(∣∣∣∣E (t , x)√
t

∣∣∣∣k
)
6 Ckk! uniformly for all k ∈ Z+.

Choose and fix an arbitrary γ ∈ (0 , C) and sum the above inequality over all
k ∈ Z+ in order to deduce the lemma.

Remark 3.5. We can make an adjustment to the preceding proof in order to
see that the distribution of E (t , x) in fact has Gaussian tails when σ is bounded.

17



However, in order to achieve a Gaussian tail that is valid uniformly in t ∈ (0 , 1]
all the way down to t = 0, we need to normalize E (t , x) differently. A more
precise statement is this: There exists γ′ > 0 such that

sup
t∈(0,1]

sup
x∈T

E exp

(
γ′
∣∣∣∣E (t , x)

t1/4

∣∣∣∣2
)
<∞. (3.4)

To prove (3.4) we simply adjust the first line of (3.3) by bounding out the dif-
ference of the σ’s. In this way we obtain the following, thanks to the semigroup
property of the heat kernel and a standard bound on the heat kernel on T at
small times: Uniformly for all t ∈ (0 , 1], x ∈ T, and k > 2,

‖E (t , x)‖2k 6 16 sup
z∈R
|σ(z)|2k

ˆ t

0

ds

ˆ
T

dy [pt−s(x , y)]2

= 16 sup
z∈R
|σ(z)|2k

ˆ t

0

p2s(0 , 0) ds . k
√
t.

This inequality yields (3.4). By itself, the rate t1/4 renders the bound (3.4)
useless since the individual terms that define E are each of the order t1/4 in law
when t ≈ 0. However, the observation has its uses. For example, (3.4) is good
enough to ensure that, among other things, E (t , x) has Gaussian probability
tails.

The preceding remark can be followed up by our next lemma which de-
scribes unconditional Gaussian tails for the distribution of the spatio-temporal
increments of E when σ is bounded.

Lemma 3.6. If σ is bounded, then there exists a number γ0 > 0 such that

E exp

 sup
0<s<t61

sup
x,y∈T
x 6=y

γ0

∣∣∣∣∣ E (t , x)− E (s , y)

∆((t , x) , (s , y))
√

log+(1/∆((t , x) , (s , y)))

∣∣∣∣∣
2
 <∞.

Proof. Since the random field Z is defined in the same way as the random field
u but with σ ≡ 1, Lemma 3.3 implies that

‖Z(t , x)− Z(s , y)‖k .
√
k∆((t , x) , (s , y)),

uniformly for all x, y ∈ T, s, t > 0, and k > 2. Therefore, the boundedness and
Lipschitz continuity of σ yield the bounds,

‖σ(u0(x))Z(t , x)− σ(u0(y))Z(s , y)‖k
6 ‖σ(u0(x))Z(t , x)− σ(u0(x))Z(s , y)‖k + |σ(u0(x))− σ(u0(y))|‖Z(s , y)‖k
.
√
k∆((t , x) , (s , y)) + |x− y|‖Z(s , y)‖k,

valid uniformly for all k > 2, s > 0, and y ∈ T. Since Z is a Gaussian random
field, a standard computation yields

‖Z(s , y)‖k .
√
k ‖Z(s , y)‖2 .

√
k s1/4,
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uniformly for all k > 2, s > 0, and y ∈ T. It follows that

‖σ(u0(x))Z(t , x)− σ(u0(y))Z(s , y)‖k 6
√
k∆((t , x) , (s , y)),

uniformly for all k > 2, s, t ∈ (0 , 1], and x, y ∈ T. It is well known that, because
u0 is Lipschitz continuous,

|(pt ∗ u0)(x)− (ps ∗ u0)(y)| . ∆((t , x) , (s , y)),

uniformly for all s, t ∈ (0 , 1] and x, y ∈ T.3 Therefore, the preceding bounds
together yield the inequality

‖E (t , x)− E (s , y)‖k .
√
k∆((t , x) , (s , y)),

valid uniformly for all s, t ∈ (0 , 1] and x, y ∈ T. Now a standard metric entropy
argument completes the proof.

We are ready to establish the following, which is a slightly weaker fixed-time
version of Proposition 3.1, and paves the way toward proving afterward that
proposition in complete generality.

Lemma 3.7. If σ is bounded, then for every ν > 0, there exists a number
K = K(ν) > 1 such that

P
{
‖E (t)‖C(T) > K

√
t log+(1/t)

}
. tν uniformly for all t ∈ (0 , 1).

Proof. Lemmas 3.4 and 3.6, and Chebyshev’s inequality together yield a number
C > 0 such that

sup
t>0

sup
x∈T

P
{
|E (t , x)| > 2β

√
t
}
. exp (−Cβ) , and

P

 sup
x,y∈T:
|x−y|6ε

|E (t , x)− E (t , y)| > θ
√
ε log(1/ε)

 . exp
(
−Cθ2

)
,

(3.5)

uniformly for every β, θ > 0. Define

Tn = ∪i∈[−n,n−1]∩Z {i/n} for all n ∈ N,

and remember that because of the group topology of the torus, the ends of
T = [−1 , 1] are identified with one another. This shows that every point in T is
within n−1 of some point in Tn. Because the cardinality of Tn is 6 4n uniformly

3 This follows for example, from the fact that we can write (pt ∗ u0)(x) = Eu0(x + Bt)
for a Brownian motion {Bt}t>0 on T with speed 2, so that |(pt ∗ u0)(x) − (ps ∗ u0)(y)| 6
‖u0(x+Bt)−u0(y+Bs)‖1 6 ‖u0‖C1/2(R){‖Bt−Bs‖1+ |x−y|}1/2, by the triangle inequality.
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for all n ∈ N, we can deduce from (3.5) that

P

{
‖E (t)‖C(T) >

2β

C

√
t

}

6 P

{
max
x∈Tn

|E (t , x)| > β

C

√
t

}
+ P

 sup
x,y∈T:
|x−y|61/n

|E (t , x)− E (t , y)| > β

C

√
t


. ne−β/2 + exp

(
− β2tn

C log+(n)

)
,

uniformly for all t ∈ (0 , 1), β > 0, and n ∈ N. We apply the preceding with

β = β(t) = 2κ log+(1/t) and n = n(t) = C b1/tc ,

where κ > ν ∨ 1 is a fixed number, in order to deduce the result.

We are ready to establish Proposition 3.1.

Proof of Proposition 3.1. Lemma 3.6 implies that there exists C > 0 such that

P

 sup
s,r∈(0,1]:
|s−r|6ε

‖E (s)− E (r)‖C(T) > θ ε
1/4 [log(1/ε)]

1/2

 . e−Cθ
2

, (3.6)

uniformly for all ε ∈ (0 , 1) and θ > 0. Now, let us choose and fix some t ∈ (0 , 1),
define

Sn,t = ∪j∈[n−1,n]∩N {jt/n} for all n ∈ N,

and observe that every point in [0 , t] is certainly within 1/n of some point in Sn,t.
Because the cardinality of Sn,t is . n uniformly for all n ∈ N, we can deduce
from Lemma 3.7 and eq. (3.6) that for every ν > 0 there exists K = K(ν) > 0
such that

P
{
‖E ‖C([0,t]×T) > 2K

√
t log+(1/t)

}
6 P

{
‖E ‖C(Sn,t×T) > K

√
t log+(1/t)

}
+ P

{
sup s,r6t:
|s−r|61/n

‖E (r)− E (s)‖C(T) > K
√
t log+(1/t)

}
. ntν+2 + exp

(
−CK2

√
n

log+(n)
t| log+(1/t)|2

)
,

uniformly for all n ∈ N and t ∈ (0 , 1). Apply the preceding with n = bt−2c to
complete the proof.

Proposition 3.1 forms the bulk of the effort of proving Theorem 1.1. Now
that we have proved the proposition, we can conclude the proof of Theorem 1.1,
which is the first primary offering of this work.
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Proof of Theorem 1.1. We can observe that

P
{

supt∈[0,ε] |u(t , x)− (pt ∗ u0)(x)| 6 (ε/φ(ε))
1/4
}

6 P
{

supt∈[0,ε] |σ(u0(x))Z(t , x)| 6 (ε/φ(ε))
1/4

+ aε1/2| log ε|
}

+ P
{

supt∈[0,ε] |E (t , x)| > aε1/2| log ε|
}
.

Thanks to (1.3), the first probability on the right-hand side decays at least
as rapidly as exp{−(2λσ4(u0(x))/π) + o(1))φ(ε)}. Therefore, we choose ν >
2λ|σ(u0(x))|/π too see that, as long as we pick a large enough (which we will),
Lemma 3.7 assures us that, as ε ↓ 0,

P
{

supt∈[0,ε] |u(t , x)− (pt ∗ u0)(x)| 6 (ε/φ(ε))
1/4
}

. exp

{
−
(

2λ[σ(u0(x))]4 + o(1)

π

)
φ(ε)

}
+ εν 6 exp

{
−
(

2λ[σ(u0(x))]4 + o(1)

π

)
φ(ε)

}
,

see (1.3). In order to derive a complementary bound, we write

P
{

supt∈[0,ε] |σ(u0(x))Z(t , x)| 6 (ε/φ(ε))
1/4

+ aε1/2| log ε|
}

6 P
{

supt∈[0,ε] |u(t , x)− (pt ∗ u0)(x)| 6 (ε/φ(ε))
1/4
}

+ P
{

supt∈[0,ε] |E (t , x)| > aε1/2| log ε|
}
,

and proceed in parallel to the previous part. This completes the proof since
(1.3) assures that

sup
t∈[0,ε]

‖pt ∗ u0 − u0‖C(T) 6 Lip(u0)
√
ε = o

(
(ε/φ(ε))1/4

)
,

as ε ↓ 0. This completes the proof.

4 Proof of Corollary 1.2

As was mentioned in the Introduction, one might anticipate some version of
Corollary 1.2, viewed as a natural byproduct of Theorem 1.1. However, it turns
out that the proof of Corollary 1.2 requires the introduction of a few subtle
ideas that are not altogether standard. Therefore, we use this section to hash
out the details of that argument. Throughout this section, let us define

ψ(t) =

(
t

log | log+(1/t)|

)1/4

for all t > 0,

and recall the Gaussian random field H from (2.4) and (2.5). The following is
the main step of the proof of Corollary 1.2.
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Proposition 4.1. For every x ∈ R,

lim inf
ε↓0

sup
t∈[0,ε]

|H(t , x)|
ψ(ε)

=

(
2λ

π

)1/4

a.s.

Before we prove Proposition 4.1, we pause to quickly verify Corollary 1.2.
Then, we concentrate on proving Proposition 4.1, which is the main portion of
the work.

Sketch of a conditional proof of Corollary 1.2 given Proposition 4.1. We may ap-
ply Lemma 2.11 [with φ(t) = δ−4 log log+(1/t)] to see that for every δ > 0 there
exists K = K(δ) > 0 such that

P

{
sup
t∈[0,ε]

|H(t , x)− Z(t , x)| > δψ(ε)

}
6 K exp

(
− 1√

Kε log | log ε|

)
, (4.1)

uniformly for all ε ∈ (0 , e−4). Because δ > 0 is arbitrary, the Borel-Cantelli
lemma then implies that, with probability one,

sup
t∈[0,ε]

‖H(t)− Z(t)‖C(T) = o(ψ(ε)) as ε ↓ 0.

Because ε1/2| log ε| � ψ(ε) as ε ↓ 0, the preceding and Corollary 3.2 together
yield Corollary 1.2. We leave the remaining details to the interested reader.

Now we start to prove Proposition 4.1. From here on, let us choose a fixed
real number α > 0, and define

tn = exp
(
−n1+α

)
for every n ∈ N. (4.2)

Because α > 0, a Taylor expansion yields

tn+1

tn
6 exp (−(1 + α)nα) uniformly for all n ∈ N. (4.3)

Lemma 4.2. For every δ ∈ (0 , 1) there exists M = M(δ , α) such that, uni-
formly for all n ∈ N,

P
{
‖H‖C([0,tn+1]×[−1,1]) > δψ(tn)

}
6M exp

(
−exp ((1 + α)nα/2)

M
√

log+(n)

)
.

Proof. It is not hard to see that Var(H(t , 0)) ∝
√
t uniformly for all t > 0; this

is very well known, but also follows essentially immediately from the scaling
property (2.12) of the random field H. It is also well known that, for every
fixed T > 0, ‖H(t , x) − H(s , y)‖2 � |t − s|1/4 + |x − y|1/2 uniformly for all
x, y ∈ R and s, t ∈ [0 , T ]. In fact, Lemma 3.3 asserts this in a more general
context where σ can be nonlinear. A suitable version of Dudley’s metric entropy
theorem [15, Theorem 6.1] yields a constant L > 0 such that

E
(
‖H‖C([0,t]×[−1,1])

)
6 Lt1/4

√
log+(1/t) for all t ∈ (0 , 1).
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Now we may apply concentration of measure [15] in order to see that there exists
` > 0 such that

P
{
‖H‖C([0,tn+1]×[−1,1]) > Lt

1/4
n+1| log tn+1|1/2 + z

}
6 2 exp

(
− `z2√

tn+1

)
, (4.4)

for all n ∈ N ∩ [2 ,∞) and z > 0. Thanks to (4.3),

t
1/4
n+1| log tn+1|1/2 =

(
tn+1

tn

)1/4

| log tn+1|1/2 (log | log tn|)1/4 ψ(tn)

6 exp

(
− (1 + α)nα

4

)
(n+ 1)1/2(log n)1/4ψ(tn) 6

δ

2L
ψ(tn),

uniformly for all n large enough, and how large depends only on (δ , α). There-
fore, we plug into (4.4) z = δψ(tn)/2, and deduce the asserted inequality of
the lemma for large n after a few lines of computation. We may increase the
constant M , if it is needed, in order to obtain the lemma for all n ∈ N.

Next we adopt a localization idea of Lee and Xiao [16], and define a family
{Hn}n∈N of space-time Gaussian random fields by setting

Hn(t , x) =

ˆ
[tn+1,t)×R

Gt−s(y − x)W (dsdy), (4.5)

for all (t , x) ∈ [tn+1 , tn] × R. If n � 1 then Hn ≈ H. The following is a
careful way to say this, and contains also a tight quantitative bound on the
approximation error, necessary for small-ball probability estimates that follow.

Lemma 4.3. For every δ ∈ (0 , 1) there exists M = M(δ , α) > 0 such that,
uniformly for all n ∈ N,

P
{
‖H −Hn‖C([tn+1,tn]×[−1,1]) > δψ(tn)

}
6M exp

(
−exp ((1 + α)nα/2)

M
√

log+(n)

)
.

Proof. Because H(t , x) − Hn(t , x) =
´
(0,tn+1)×R Gt−s(y − x)W (dsdy) for all

n ∈ N, t ∈ [tn+1 , tn) and x ∈ R, the Wiener isometry implies that

E
(
|H(t , x)−Hn(t , x)|2

)
=

ˆ tn+1

0

ds

ˆ ∞
−∞

dy [Gt−s(y − x)]
2

=

ˆ t

t−tn+1

G2s(0) ds,

owing to the semigroup property of the heat kernel. Since G2s(0) = (8πs)−1/2,
it follows that

E
(
|H(t , x)−Hn(t , x)|2

)
∝
√
t−
√
t− tn+1 �

tn+1√
t
6
√
tn+1,

uniformly for all t ∈ [tn+1, tn], n ∈ N, and x ∈ R. Apply (4.3) to see that

sup
t∈[tn+1,tn]

sup
x∈R

E
(
|H(t , x)−Hn(t , x)|2

)
.
√
tn exp

(
− 1

2 (1 + α)nα
)
, (4.6)
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uniformly for every n ∈ N. Thanks to this and a metric entropy argument [15],
we can find constants L1 and L such that

E‖H −Hn‖C([tn+1,tn]×[−1,1])

6 L1t
1/4
n | log tn|1/2 exp

(
− 1

4 (1 + α)nα
)
6 Lt1/4n n(1+α)/2 exp

(
− 1

4 (1 + α)nα
)
,

uniformly for every n ∈ N. Therefore, (4.6) and concentration of measure [15]
together ensure that there exists a number K > 0 such that

P
{
‖H −Hn‖C([tn+1,tn]×[−1,1]) > Lt

1/4
n n(1+α)/2 exp

(
− 1

4 (1 + α)nα
)

+ z
}

6 2 exp

− z2

2 sup
t∈[tn+1,tn]

sup
x∈R

E (|H(t , x)−Hn(t , x)|2)

 6 2 exp

(
−z

2en
1+α/2

K
√
tn

)
,

uniformly for all z > 0 and n ∈ N. Let η ∈ (0 , δ) be an arbitrary num-
ber and apply the above with z = η1/4ψ(tn) and appeal to the fact that

t
1/4
n nα/2 exp{−n1+α/2} � z for all n large in order to deduce the assertion

of the lemma for all sufficiently large n. We may increase M further, if we need
to, in order to see that the lemma’s statement is valid for every n ∈ N.

We are now able to formulate a restricted small-ball estimate, for H, that
we shall need shortly.

Lemma 4.4. For every γ > 0,

lim
n→∞

1

log n
log P

{
‖H(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
= −2λ(1 + α)

πγ4
.

Proof. Choose and fix γ > 0. Since

P
{
‖H(· , 0)‖C[0,tn] 6 γψ(tn)

}
6 P

{
‖H(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
,

and because log log 1/tn = (1 +α) log n, Proposition 2.2 and scaling – see (2.12)
– together imply that

− 2λ(1 + α)

πγ4
6 lim inf

n→∞

1

log n
log P

{
‖H(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
. (4.7)

One can obtain a similar bound in the other direction as follows: Owing to
Lemma 4.2, for every δ ∈ (0 , γ) there exists M > 0 such that uniformly for all
n ∈ N,

P
{
‖H(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 P

{
‖H(· , 0)‖C[0,tn] 6 (γ + δ)ψ(tn)

}
+ P

{
‖H(· , 0)‖C[0,tn+1] > δψ(tn)

}
6 P

{
‖H(· , 0)‖C[0,tn] 6 (γ + δ)ψ(tn)

}
+M exp

(
−exp ((1 + α)nα/2)

M
√

log+(n)

)
.
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This proves that

lim sup
n→∞

1

log n
log P

{
‖H(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 −2λ(1 + α)

π(γ + δ)4
. (4.8)

The quantity on the left-hand side does not depend on δ ∈ (0 , γ). We therefore
obtain the lemma from (4.7) and (4.8) upon letting α ↓ 0.

When n� 1, the small-ball probability bound of Lemma 4.4 for the random
field H yields an analogous probability bound for the closely related field Hn,
viz.,

Lemma 4.5. For every γ > 0,

lim
n→∞

1

log n
log P

{
‖Hn(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
= −2λ(1 + α)

πγ4
.

Proof. Lemma 4.3 ensures that for every 0 < δ < γ there exists M > 0 such
that, uniformly for all n ∈ N,

P
{
‖Hn(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 P

{
‖H(· , 0)‖C[tn+1,tn] 6 (γ + δ)ψ(tn)

}
+ P

{
‖Hn(· 0)−H(· , 0)‖C[tn+1,tn] > δψ(tn)

}
6 P

{
‖H(· , 0)‖C[tn+1,tn] 6 (γ + δ)ψ(tn)

}
+M exp

(
−exp ((1 + α)nα/2)

M
√

log+(n)

)
.

Therefore, Lemma 4.4 ensures that

lim sup
n→∞

1

log n
log P

{
‖Hn(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 lim
n→∞

1

log n
log P

{
‖H(· , 0)‖C[tn+1,tn] 6 (γ + δ)ψ(tn)

}
= −2λ(1 + α)

π(γ + δ)4
.

In like manner, we can prove that

−2λ(1 + α)

π(γ − δ)4
= lim
n→∞

1

log n
log P

{
‖H(· , 0)‖C[tn+1,tn] 6 (γ − δ)ψ(tn)

}
6 lim inf

n→∞

1

log n
log P

{
‖Hn(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
.

Let δ ↓ 0 in order to deduce the lemma from the preceding two displays.

With the preceding preliminary results under way, we can now present the
following.

Proof of Proposition 4.1. By the stationarity of x 7→ H( · , x), it suffices to prove
that

lim inf
ε↓0

sup
t∈[0,ε]

|H(t , 0)|
ψ(ε)

=

(
2λ

π

)1/4

a.s. (4.9)
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The basic properties of the Wiener integral ensure that the events{
ω ∈ Ω : ‖Hn(· , 0)‖C[tn+1,tn](ω) 6 γψ(tn)

}
, n = 1, 2, . . . ,

are independent for every fixed choice of γ > 0. Therefore, Lemma 4.5 and a
standard appeal to the Borel-Cantelli lemma for independent events together
yield

lim inf
n→∞

sup
t∈[tn+1,tn]

|Hn(t , 0)|
ψ(tn)

=

(
2λ(1 + α)

π

)1/4

a.s.

Lemma 4.3 and the Borel-Cantelli lemma together imply that

‖H(· , 0)−Hn(t , ·)‖C([tn+1,tn]×[−1,1]) = o(ψ(tn)) as n→∞ a.s.

Therefore, we combine the preceding with Lemma 4.2 in order to deduce the
following:

lim inf
ε↓0

sup
t∈[0,ε]

|H(t , 0)|
ψ(ε)

6 lim inf
n→∞

sup
t∈[tn+1,tn]

|Hn(t , 0)|
ψ(tn)

=

(
2λ(1 + α)

π

)1/4

a.s.

Since the left-most quantity is independent of the sequence {tn}n∈N – and in
particular of α – we let α ↓ 0 to see that

lim inf
ε↓0

sup
t∈[0,ε]

|H(t , 0)|
ψ(ε)

6

(
2λ

π

)1/4

a.s.

This proves half of the assertion of (4.9). The other half follows readily from
Proposition 2.2, the scaling property (2.12) of H, and a direct application of
the Borel-Cantelli lemma.

5 Proof of Theorem 1.3

Throughout this section, we choose and fix a real number θ > 0, and define

D(n) = ∪ j∈Z+:
06j6θ2n

{
j2−n

}
for all n ∈ Z+, so that |D(n)| ∼ θ2n as n→∞.

Also here and throughout, we choose and fix a second real number q > 0 and de-
fineDq(1),Dq(2), . . . to be the following “slowed down” version ofD(1),D(2), . . .:

Dq(m) = D(n) whenever m ∈ N satisfies 2n/q 6 m < 2(n+1)/q.

Note in particular that:
1. Dq(m) ⊆ Dq(m+ 1) for every m ∈ Z+;
2. ∪∞m=0Dq(m) coincides with the set of all dyadic rationals in [0 , θ]; and
3. |Dq(m)| � mq, uniformly for all m ∈ N.

We will use these properties, sometimes without explicit mention, in the sequel.
Finally, we choose and fix α > 0 throughout this section, and recall the sequence
{tn}n∈N = {tn(α)}n∈N from (4.2).
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Proposition 5.1. As n→∞,

1

log n
log P

{
min

x∈Dq(n)
sup

t∈[tn+1,tn]

|H(t , x)| 6 γψ(tn)

}

=
1 + o(1)

log n
log P

{
min

x∈Dq(n)
sup

t∈[tn+1,tn]

|Hn(t , x)| 6 γψ(tn)

}
→ −

(
2λ(1 + α)

πγ4
− q
)
,

provided that γ > 0 renders the above limit negative; that is, provided that γ
satisfies

0 < γ <

(
2λ(1 + α)

πq

)1/4

. (5.1)

The proof of Proposition 5.1 requires first taking three preliminary steps
which, in turn, hinge on the introduction of two new objects. Namely, we define
for every n ∈ N,

R(n) =
[
x−

√
tn| log tn| , x+

√
tn| log tn|

]
, and

In(t , x) =

ˆ
[tn+1,t)×R(n)

Gt−s(y − x)W (dsdy),
(5.2)

for all (t , x) ∈ [tn+1 , tn]×R. Recall the random fields {Hn}∞n=1 from (4.5). Our
next result shows that Hn and In are close, on a suitable scale, and with high
probability. The following constitutes the first step of the proof of Proposition
5.1.

Lemma 5.2. For every δ ∈ (0 , 1) and for every closed interval J ⊂ R, there
exists M = M(δ , α , J) > 0 such that

P
{
‖Hn − In‖C([tn+1,tn]×J) > δψ(tn)

}
6M exp

(
−

exp
(
n1+α

)
M
√

log+(n)

)
,

uniformly for all n ∈ N.

Proof. Without too much loss in generality we consider only the case that
J = [−1 , 1]. The general case is proved by making simple adjustments to
the following.

Thanks to (4.5) and (5.2),

E
(
|Hn(t , x)− In(t , x)|2

)
=

ˆ t−tn+1

0

ds

ˆ
y∈R:|y|>2

√
tn log(1/tn)

dy [Gs(y)]
2

6
ˆ tn−tn+1

0

ds

ˆ
y∈R:|y|>2

√
tn log(1/tn)

dy [Gs(y)]
2

∝
ˆ tn−tn+1

0

ds√
s

ˆ
y∈R:|y|>2

√
tn log(1/tn)

dy Gs

(
y/
√

2
)
.
ˆ tn

0

exp

(
− tn log(1/tn)

s

)
ds√
s
,
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uniformly for all t ∈ [tn+1 , tn], x ∈ R, and n ∈ N, thanks to the well-known fact
that P{|X| > r} 6 2 exp(−r2/(4s)) for all r > 0 if X has a centered normal dis-
tribution with variance 2s for some s > 0. If s 6 tn, then exp(−tn log(1/tn)/s) 6
tn. This yields

sup
t∈[tn+1,tn]

sup
x∈R

E
(
|Hn(t , x)− In(t , x)|2

)
. t3/2n , (5.3)

valid uniformly for every n ∈ N. Therefore, a metric entropy argument [15]
yields the following: Uniformly for all n ∈ N,

E‖Hn − In‖C([tn+1,tn]×[−1,1]) . t
3/4
n

√
log(1/tn) . t1/4n e−n

1+α/4,

with room to spare. Now we apply concentration of measure [15] in conjunction
with (5.3) in order to see that there exist Ki = Ki(α) > 0 [i = 1, 2] such that,
uniformly for all n ∈ N and z > 0,

P
{
‖Hn − In‖C([tn+1,tn]×[−1,1]) > K1t

1/4
n e−n

1+α/4 + z
}
6 2e−K2z

2/t3/2n . (5.4)

Choose and fix some δ ∈ (0 , 1). For all sufficiently large n ∈ N,

K2t
1/4
n exp

(
−n

1+α

4

)
6
δ

2
ψ(tn),

and how large depends only on (δ , α). Therefore, we plug z = δψ(tn)/2 into
(5.4) in order to conclude the proof.

Our next lemma provides the second step in the proof of Proposition 5.1.

Lemma 5.3. For every γ > 0,

lim
n→∞

(log n)−1 log P
{
‖In(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
= −2λ(1 + α)/(πγ4).

Proof. The proof of Lemma 5.3 follows the same pattern as did the proof of
Lemma 4.5, but uses respectively Lemma 4.5 and Lemma 5.2 in place of Lemmas
4.3 and 4.4. We leave the remaining details to the interested reader.

The following probability evaluation is the third, and final, preliminary step
in our proof of Proposition 5.1.

Lemma 5.4. We have

lim
n→∞

1

log n
log P

{
min

x∈Dq(n)
sup

t∈[tn+1,tn]

|In(t , x)| 6 γψ(tn)

}
= −

(
2λ(1 + α)

πγ4
− q
)
,

for every γ that satisfies (5.1).
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Proof. If x1, x2, . . . ∈ R satisfy the following for all distinct i, j ∈ N,

|xi − xj | > 2
√
tn| log tn| = 2 exp

(
−n

1+α

2

)
n(1+α)/2,

then {In( · , xi)}∞i=1 are obtained by integrating white noise over disjoint sets.
In particular, the above condition on x1, x2, . . . ensures that {In( · , xi)}∞i=1 are
i.i.d. random variables. If x, y are two distinct points in Dq(n), then

|x− y| > 2−bq log2 nc � n−q � 2 exp

(
−n

1+α

2

)
n(1+α)/2,

valid for all n large, where how large depends only on (α , q). Thus, we can see
that {In( · , x)}x∈Dq(n) is an i.i.d. sequence and hence, for every γ > 0,

P
{

minx∈Dq(n) supt∈[tn+1,tn] |In(t , x)| 6 γψ(tn)
}

= 1−
(

1− P
{

supt∈[tn+1,tn] |In(t , x)| 6 γψ(tn)
})|Dq(n)|

= 1−
(

1− exp

{
−2λ(1 + α) + o(1)

πγ4
log n

})|Dq(n)|
[by Lemma 5.3],

as n→∞. Since there exists C > 0 since |Dq(n)| > Cnq for all n ∈ N, condition
(5.1) implies that

lim inf
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |In(t , x)| 6 γψ(tn)

}
> −

(
2λ(1 + α)

πγ4
− q
)
.

(5.5)

Conversely, since |Dq(n)| � nq uniformly for n ∈ N, Boole’s inequality and
the apparent stationarity of x 7→ In( · , x) yields the following, valid uniformly
for all n ∈ N:

P
{

minx∈Dq(n) supt∈[tn+1,tn] |In(t , x)| 6 γψ(tn)
}

. nqP
{
‖In(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
.

(5.6)

Therefore, in light of (5.5), it remains to prove that

lim sup
n→∞

(log n)−1 log P
{
‖In(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 −2λ(1 + α)

πγ4
. (5.7)

Let us choose and fix some δ ∈ (0 , γ), as close to zero as we wish but fixed, and
appeal to Lemma 5.2 in order to find a constant M = M(δ , α) > 0 such that

P
{
‖In(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 P

{
‖Hn(· , 0)‖C[tn+1,tn] 6 (γ + δ)ψ(tn)

}
+M exp

(
−

exp
(
n1+α

)
M
√

log+(n)

)
,
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uniformly for all n ∈ N. This and Lemma 4.5 together imply that

lim sup
n→∞

1

log n
log P

{
‖In(· , 0)‖C[tn+1,tn] 6 γψ(tn)

}
6 −2λ(1 + α)

π(γ + δ)4
.

Send δ ↓ 0 to deduce (5.7) and hence the lemma.

We are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Choose and fix 0 < δ < γ, where δ is fixed but small
enough to ensure that

γ + δ <

(
2λ(1 + α)

πq

)1/4

. (5.8)

Lemma 5.2 assures us that there exists M = M(δ , α) > 0 such that, uniformly
for all n ∈ N,

P
{

minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 γψ(tn)
}

(5.9)

6 P
{

minx∈Dq(n) supt∈[tn+1,tn] |In(t , x)| 6 (γ + δ)ψ(tn)
}

+M exp

(
−

exp
(
n1+α

)
M
√

log+(n)

)

6 P
{

minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 (γ + 2δ)ψ(tn)
}

+ 2M exp

(
−

exp
(
n1+α

)
M
√

log+(n)

)
.

Therefore, Condition (5.8) and Lemma 5.4 together imply that the quantity in
the middle line of (5.9) behaves, as n→∞, as n−`(δ)+o(1), where

`(δ) = q − 2λ(1 + α)

π(γ + δ)4
.

Consequently,

lim sup
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 γψ(tn)

}
6 −`(δ),

(5.10)

lim inf
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 (γ + 2δ)ψ(tn)

}
> −`(δ).

Send δ ↓ 0 such that (5.8) holds. The first line of (5.10) yields the following,
valid under Condition (5.1) alone:

lim sup
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 γψ(tn)

}
6 −`(0).

And we can set γ′ = γ + 2δ to deduce from the second line in (5.10) that

lim inf
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 γ′ψ(tn)

}
> −`(δ),
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for every pair (γ′, δ) that satisfies

2δ < γ′ < 3δ +

(
2λ(1 + α)

πq

)1/4

.

Once again send δ ↓ 0 to deduce from the preceding effort the following: For
every γ > 0 that satisfies (5.1),

lim
n→∞

1

log n
log P

{
minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)| 6 γψ(tn)

}
= −`(0).

To complete the proof, we rehash the above argument but replace the role of
the ordered pair (Hn , In) with that of (H ,Hn) and use Lemma 4.3 instead of
Lemma 5.2. We leave the remaining details to the interested reader.

Recall that  denotes subsequential convergence. With that in mind, we
have the following which is a stronger form of (1.5) when σ ≡ 1 and the SPDE
is on the line rather than the torus.

Lemma 5.5. With probability one, the random set{
x ∈ R : sup

t∈[0,tn]

|H(t , x)|
ψ(tn)

 

(
2λ(1 + α)

π(1 + q)

)1/4

as n→∞

}

is dense in R.

Proof. Choose and fix two numbers

0 < ρ1 < 1 < ρ2, (5.11)

and define

γi =

(
2λ(1 + α)

π(ρi + q)

)1/4

for i = 1, 2. (5.12)

Note that γ1 > γ2.
Consider next the events E1,i, E2,i, . . . [i = 1, 2], where for every n ∈ N,

En,1 =
{
ω ∈ Ω : minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)|(ω) < γ1ψ(tn)

}
, and

En,2 =
{
ω ∈ Ω : minx∈Dq(n) supt∈[tn+1,tn] |Hn(t , x)|(ω) 6 γ2ψ(tn)

}
.

Thanks to (4.5) and basic properties of Wiener integrals, the events {En,1}∞n=1

are independent (say). Moreover, Proposition 5.1 tells us that for i = 1, 2,

P(En,i) = n−ρi+o(1) as n→∞.

Therefore, (5.11) and a standard appeal to the Borel-Cantelli lemma together
yield the following:

P (∩∞n=1 ∪∞l=n El,1) = 1 and P (∩∞n=1 ∪∞l=n El,2) = 0. (5.13)

31



Now consider the random sets defined by

An (ρ1 , ρ2) =

{
x ∈ R : γ2ψ(tn) < sup

t∈[tn+1,tn]

|Hn(t , x)|(ω) < γ1ψ(tn)

}
, (5.14)

for all n ∈ N and ρ1, ρ2 that satisfy (5.11). Then, (5.13) says that, with proba-
bility one,

An(ρ1 , ρ2) ∩ Dq(n) 6= ∅ for infinitely many n ∈ N.

Since Dq(n) ⊂ Dq(n+ 1), this implies that

∪∞k=nAk(ρ1 , ρ2) ∩ ∪∞m=1Dq(m) 6= ∅ for infinitely many n ∈ N, almost surely.

And because ∪∞m=1Dq(m) coincides with the collection of all dyadic rationals in
[0 , θ], it follows that

∪∞k=nAk(ρ1 , ρ2) ∩ [0 , θ] 6= ∅ for infinitely many n ∈ N, almost surely.

Because the random field x 7→ H( · , x) is stationary, the above continues to hold
if we replace [0 , θ] by any non-random, bounded, open interval J ⊂ R. This
implies in turn that, with probability one,

∪∞k=nAk(ρ1 , ρ2)∩J 6= ∅ i.o., ∀ bounded open interval J ⊂ R with rational ends,

where “i.o.” denotes “infinitely often,” and refers to the occurrence of the event
in question for infinitely-many [random] n ∈ N. A consequence of this is that,
with probability one,

∪∞k=nAk(ρ1 , ρ2) is dense in R i.o.

Since the [random] set ∪∞k=nAk(ρ1 , ρ2) is open for every n ∈ N, the Baire
category theorem ensures that, with probability one,

∩(ρ1,ρ2)∈Q2
+:

0<ρ1<1<ρ2

∩∞n=1 ∪∞k=n Ak(ρ1 , ρ2) is dense in R. (5.15)

Thanks to (5.12), we have proved that with probability one,{
x ∈ R : sup

t∈[tn+1,tn]

|Hn(t , x)|
ψ(tn)

 C1/4 as n→∞

}
is dense in R,

where C = 2λ(1+α)
π(1+q) . Therefore, Lemma 4.3, and a standard appeal to the Borel-

Cantelli lemma together yield the following a.s. statement:{
x ∈ R : sup

t∈[tn+1,tn]

|H(t , x)|
ψ(tn)

 C1/4 as n→∞

}
is dense in R. (5.16)

Yet another appeal to the Borel-Cantelli lemma, this time in conjunction with
Lemma 4.2, implies that with probability one supt∈[0,tn+1] supx∈[−1,1] |H(t , x)| =
o(ψ(tn)) as n→∞. This and (5.16) together yield the lemma.
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The following verifies a stronger form of (1.6) when σ ≡ 1 and the SPDE is
on R rather than T.

Lemma 5.6. With probability one, the random set{
x ∈ R : lim inf

ε↓0
sup
t∈[0,ε]

|H(t , x)|
ψ(ε)

=

(
2λ

π(1 + q)

)1/4

as ε→ 0

}
(5.17)

is dense in R.

Proof. The proof is similar to that of Lemma 5.5, but requires making a number
of subtle changes that we describe next. Perhaps most notably, and in contrast
with the proof of Lemma 5.5, we will use different sequences for the upper and
the lower bounds on the supremum of |H|.

For the upper bound, we follow the proof of Lemma 5.5 and let γ1 be as
was defined in (5.12) where ρ1 ∈ (0 , 1), but rather than use the random sets An
from (5.14), we define new random sets Ãn as follows:

Ãn (ρ1 , α) :=
{
x ∈ R : supt∈[0 ,tn] |H(t , x)|(ω) < γ1ψ(tn)

}
. (5.18)

We are including the parameter α, inherited through the choice of the sequence
{tn}n∈N [see (4.2)], for reasons that will become manifest soon. We follow closely
the proof of Lemma 5.5 in order to find that with probability one,

∪∞k=nÃk(ρ1 , α) is dense in R i.o..

Next, we introduce a sequence that is notably distinct from {tn}∞n=1: First,
choose and fix two numbers c and ρ2 that satisfy

0 < c < 1 < ρ2,

and define

sn = cn and γ2 =

(
2λ

π(ρ2 + q)

)1/4

.

Consider the event Ẽ1, Ẽ2, · · · where

Ẽn =
{
ω ∈ Ω : minx∈Dq(n) sups∈[0 ,sn] |H(s , x)|(ω) 6 γ2ψ(sn)

}
for every n ∈ N.

As was done in (5.6), we may appeal to Lemma 2.9 in order to deduce that

P(Ẽn) = n−ρ2+o(1) as n→∞.

Therefore, the Borel-Cantelli lemma yields

P
(
∩∞n=1 ∪∞l=n Ẽl

)
= 0.

Define random sets B1(ρ2), B2(ρ2), . . . ⊂ R via

Bn(ρ2) :=
{
x ∈ R : γ2ψ(sn) < supt∈[0 ,sn] |H(t , x)|

}
for n ∈ N.
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Then a similar argument as the proof of Lemma 5.5 shows us that, with prob-
ability 1,

∪∞l=mBl(ρ2) is dense in R i.o.

If there is a realization [ω ∈ Ω] for which the random open sets ∪∞k=nÃk(ρ1 , α)
and ∪∞l=mBl(ρ2) are dense, then, for that very realization, the random set

{∪∞k=nÃk(ρ1)} ∩ {∪∞l=mBl(ρ2)} is dense in R thanks to the Baire category the-

orem and the fact that ∪∞k=nÃk(ρ1 , α) and ∪∞l=mBl(ρ2) are open sets for every
n,m > 1. Therefore, we may apply the Baire category theorem, in much the
same way as we just did, one more time in order to establish that, with proba-
bility 1,

∩α∈Q+
∩(ρ1,ρ2)∈Q2

+:
0<ρ1<1<ρ2

∩∞n=1,m=1

{
∪∞k=nÃk(ρ1 , α)

}
∩ {∪∞l=mBl(ρ2)} is dense in R.

We can deduce (5.17) from the above, once we unpack the preceding.

Proof of Theorem 1.3. First, let us observe that with probability one, the ran-
dom set{

x ∈ T : sup
t∈[0,tn]

|Z(t , x)|
ψ(tn)

 

(
2λ(1 + α)

π(1 + q)

)1/4

as n→∞

}
is dense in T. (5.19)

Indeed, we may appeal to Lemma 2.11

lim
ε↓0

√
ε

log | log ε|
log P

{
‖H − Z‖C([0,ε]×T) >

(
δε

log | log ε|

)1/4
}
6 −
√
δ

10
.

In turn, this inequality and a standard application of the Borel-Cantelli lemma
together imply that ‖H−Z‖C([0,ε]×T) = o(ψ(ε)) a.s. as ε ↓ 0. Therefore, Lemma
5.5 implies (5.19).

Set

χ =
2λ(1 + α)

π(1 + q)
,

and observe that χ can take any value in (0 ,∞). This is because the numbers
q > 0 and α > 0 [see (4.2)] can be chosen otherwise arbitrarily.

Next we use Corollary 3.2 in order to deduce from (5.19) that{
x ∈ T : supt∈[0,tn] |u(t , x)− (pt ∗ u0)(x)|/ψ(tn) χ1/4|σ(u0(x))| as n→∞

}
is dense in T. Because u0 is Lipschitz continuous, this implies that almost surely,{

x ∈ T : supt∈[0,tn] |u(t , x)− u0(x)|/ψ(tn) χ1/4|σ(u0(x))| as n→∞
}

is dense in T. This proves (1.5) of Theorem 1.3 in the case that χ ∈ (0 ,∞). And
when χ ∈ (0 , 2λ/π), the very same argument works to prove (1.6), except we
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appeal to Lemma 5.6 in place of Lemma 5.5 everywhere and make adjustments
for the change accordingly.

For the proof of (1.6), the case χ = 2λ/π is covered already by Corollary 1.2.
For the proof of (1.5), the cases where χ = 0 and χ =∞ remain to be verified;
all else has been proved so far. The remaining two cases are handled analogously
by making adjustments to the preceding arguments. Therefore, we will describe
the changes for the proof of (1.5) in the case that χ = 0 and leave the requisite
argument for the remaining case [(1.5) when χ =∞] to the interested reader.

Choose and fix some ρ1 ∈ (0 , 1) and define, in analogy with (5.14),

Ān(q) =
{
x ∈ R : supt∈[tn+1,tn] |Hn(t , x)|(ω) < γ1ψ(tn)

}
,

where now we are emphasizing the dependence of Ān on q and not ρ1. Thanks
to (5.13), another category argument yields the following adaptation of (5.15):

∩q>0
q∈Q
∩∞n=1 ∪∞k=nĀk(q) 6= ∅ is dense in R.

Therefore, we obtain, using the same argument as before, the following adapta-
tion of (5.16):{

x ∈ R : supt∈[tn+1,tn] |H(t , x)|/ψ(tn) 0 as n→∞
}

is dense in R a.s.,

and hence{
x ∈ R : supt∈[0,tn] |H(t , x)|/ψ(tn) 0 as n→∞

}
is dense in R a.s.,

thanks to the same argument that was used at the very end of the proof of
Lemma 5.5. We now go through the proof of Theorem 1.3 line by line, making
only very small changes to adapt the argument, in order to formally justify
setting q = ∞ in order to finish the proof of the case where χ = 0. This
completes our presentation.
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