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Chapter 1

Introduction

The human cell contains many mechanisms to transport nutrients, proteins and organelles. Smaller
molecules like glucose can diffuse to their target locations through the cytosol - the liquid inside the cell
- but larger molecules and organelles like mitochondria need to be carried from one location to another.
This is done by molecular motors (also referred to as motor proteins) like kinesin, myosin and dynein,
which move along track-like structures called microtubules (MTs) in the cell. One end of each molecular
motor is tethered to the cargo and the other is attached to the microtubule through one or more “heads”.
MTs have equally spaced grooves - chemical binding sites - in which the motors heads can bind. The
motor consumes adenosine triphosphate (ATP) and uses the resulting chemical energy to walk along the
microtubule by moving its heads alternately from one binding site to another. Hence, kinesin is also said
to “walk” hand-over-hand along the microtubule (where its heads are really legs) taking alternate steps
of 8 nm each. This mechano-chemical cycle has a discrete phase of waiting and a phase of continuous
motion which lead to sequential steps along MT. Single-molecule motility assays on kinesin since it’s
discovery nearly 25 years ago helped establish the field of single-molecule biophysics.

1.1 Motivation

Kinesin’s size is of order of nanometers, and being so small is considerably affected by the collisions with
the fluid molecules in its operating environment. To put the order of magnitude of these fluctuations
in perspective, consider the fact that kinesin consumes about 10-100 molecules of ATP per second
(Astumian 2002 [1]). ATP releases about 30 kJ of useful energy - the reaction’s Gibb’s free energy
- per hydrolysis and this corresponds to an input power of about 30106/(6.023 · 1023) ≈ 10−16 W .
On the other hand, the order of magnitude of thermal energy is kBT , and the relaxation time of the
collisions is about 10−13 secs, which gives a thermal power of 10−8 W . Thus, the thermal fluctuations
are nearly 10 times larger than the energy available to “drive” the motion. Yet kinesin manages walk
for lengths of the order of micrometers and the average length of kinesin’s walk is generally called it’s
processivity. The generally accepted explanation for this is that kinesin uses the energy available from
ATP to rectify - via conformational changes, it is generally believed - these thermal fluctuations and
drive itself unidirectionally, much like Feynman’s thermal ratchet. The first models for molecular motors
were such ratchet based models.

Molecular motors and MTs perform specialized functions in cells, and display remarkable organized,
cooperative behavior. For example, many cells carry whip-like appendages like cilia or flagella (Dillon
2000 [12]) whose inner core consists of a cytoskeletal structure called the axoneme. The building block
of the axoneme is the MT and each axoneme consists of several MTs aligned in parallel. Several dynein
motor proteins walk synchronously on the MTs and rock them back and forth alternately to produce
the flagellar “beating”. The cross section of an axoneme is shown in Fig. 1.1(a).
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In vivo and in vitro experiments (Nedelec 1997 [24]) show very interesting macroscopic organization
of MTs in the presence of motor proteins. Figure 1.1(b) shows experiments and simulations in which a
solution of MTs and motor proteins in a lab slide self-organize themselves into patterns (asters, vortices,
etc.). What is more interesting is that the system shows phase changes; i.e., in certain regimes of MT
and motor protein concentrations, certain specific types of patterns are formed.

(a) Axoneme (b) Self-Organization and Pattern Formation

Figure 1.1: Examples of cooperative Motor Protein and MT behavior

From a mathematical perspective, kinesin is a discrete, stochastic oscillator (see Fig. 1.2). It’s dy-
namics are hybrid, i.e., it has discrete and continuous parts, making it difficult to study using standard
tools. Creating a novel description of the emergent, cooperative phenomena in a such a random envi-
ronment is a considerable challenge, and this is what motivates our study. We will attempt to construct
a physically consistent (parametric, as opposed to non-parametric) coarse-grained model (as opposed to
an expensive molecular dynamics simulation) of kinesin using mostly known, experimentally determined
parts of its mechano-chemical cycle. It is expected that such a model will give us greater insight into
the physics of such nanoscale phenomena, and in the future, give us a place to start when attempting
to understand similar systems.

The most interesting aspect of this problem is cooperativity. Cooperativity, coupling and synchro-
nization between oscillators with continuous phase-space is an age old problem and has been studied
extensively. There seems to be a nearly infinite range of such problems in biology, each with it’s own
unique quirks. Examples include the seminal work of Winfree on synchronization between “relaxation
oscillators” (Winfree 1967 [38]), Mirollo and Strogatz’s work on integrate and fire models for firefly
sychronization (Mirollo 1990 [22]), Lacker and Peskin’s work on ova maturation (Lacker 1981 [21]), Ku-
ramoto’s work on coupled oscillator lattices (Strogatz 2000 [33]); the list is endless. However, there has
been very little attention given to coupling between enzymatic oscillators like kinesin; i.e., those with
discrete state space, other continuous variables of interest and with stochastic jumps between the states.
There have been recent attention given to this field of stochastic hybrid systems by control-theorists
(Hespanha 2005 [18], Hu 2000 [19]); we choose, however, to proceed from basic stochastic processes
theory to develop and extend the mathematical tools required to describe such systems and apply them
specifically to the problem of motor proteins.

1.2 Experiments and Kinesin’s Operating Mechanism

There are mainly two types of experiments done on kinesin. One type attempts to determine the many
aspects of kinesin’s chemistry and structure; these are mostly spectroscopic, kinetic and crystallographic
studies and present mainly a static picture. Many key questions remain unanswered, but a general
consensus regarding mechanism and structure has emerged. The other kind of experiment is the motility
assay, where dynamic measurements of kinesin’s processivity are made. The results of these experiments
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Figure 1.2: Discrete Stochastic Oscillator: schematic representation of two coupled enzymes E1 and E2
cycling through a series of states. S-MT and W-MT represent strong and weak binding to the MT.

are described in further detail below.

1.2.1 Kinesin’s Structure and Chemistry

The kinesin motor protein consists of two globular domains referred or “heads”. These heads are joined
together by a long coiled-coiled α-helix structure called the tether or cargo-linker, which attaches to the
cargo the motor transports.

The microtubule is a polymer of α and β tubulin dimers - tubulins are one of several members of a
small family of globular proteins. These tubulin dimers polymerize to form protofilaments, which bundle
together to form the cylindrical, hollow structure of the MT. The most important features of the MT
that contribute to motor function are their polarity and the chemical binding-sites for the kinesin head
on the MT spaced approximately 8 nm apart. The polarity of the MT results from the asymmetry of
the monomer unit which gives each protofilament a plus-end and minus-end. This polarity determines
the direction in which a particular motor protein walks. Each of kinesin’s has a special region which
interacts strongly with MT binding-sites and another little enzymatic pocket where nucleotides bind
and hydrolyze. The MT binding region allosterically regulares the activity of the nucleobinding pocket;
i.e., kinesin hydrolyses ATP much faster when bound to a MT. The heads are approximately 10 nm in
diameter, and they attach and detach alternately from the binding sites on the MT to march forward.
Note that since the heads are so small, they must be significantly affected by thermal fluctuations as
they diffuse from one binding site to the other.

Connecting each head to the tether is a small sequence of amino acid residues called the neck-linker.
When nucleotides bind to the head, the neck-linker undergoes a conformational change. This change is
thought to produce the “power-stroke” in kinesin’s cycle, throwing the trailing head forward towards
the next binding site on the MT (Rice 1999 [29]). Once thrown forward, the head is close to the forward
binding site, but it is not quite there. This is why it is believed that diffusion plays such an important
role - the head now diffuses about in the medium until it is close enough to the next binding site and
gets pulled in because of their mutual affinity.

Kinesin’s chemistry is it’s most extensively studied aspect, since reactions can be probed by more
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tractional methods. The peculiar difficulty here is that kinesin is a single molecule. Each intermediate
step in it’s chemical cycle is also closely associated with a particular part of the mechanical cycle.
Indeed, the coordination between the chemical cycles is believed to occur through internal mechanical
strain. These difficulties have been overcome by particularly elegant fluorescence and mutant studies that
have revealed several important aspects of kinesin’s function (Guydosh 2006 [16], Rosenfeld 2003 [30]).
Good estimates for the reaction rates of each chemical step (Cross 2004 [10]) have also been found
experimentally. Each head of kinesin is an ATPase and is competent to hydrolyze ATP on it’s own.
When two heads are strongly coupled together in the kinesin dimer, their enzymatic cycles operate in
synchrony and out-of-phase.

Several structures have been found that may help communicate the identity of the nucleotide bound
to each head to different parts of the molecule. It is also found that the binding affinity of the head for
the binding-site is strongly affected by which particular nucleotide is bound to it (Uemura 2002 [35]), and
plays an important role in maintaining synchrony between the enzymatic cycles and ensuring processivity.
So, we must track the chemical steps along with the associated binding affinity for the head. Let the
E · (nucleotide) represent the enzymatic state of a kinesin head. Let S represent strong affinity for the
microtubule and W represent weak affinity, where the head is free to diffuse in the medium. A typical
reaction cycle for a single kinesin head can be expressed as:

E · empty(S) starting state
E · empty(S) +ATP 
 E ·ATP (S) ATP binding
E ·ATP (S) → E ·ADP · Pi(S) hydrolysis
E ·ADP · Pi (S) → E ·ADP + Pi(W ) Pi release
E ·ADP (W ) → E · empty(S) +ADP ADP release

(1.1)

Putting all the findings from the experiments together, a generally accepted description of the mech-
anism is as follows (see also Fig. 1.3:

1. The starting state is one in which kinesin has just finished taking a step. The leading head is
bound to the MT strongly. The trailing head has just finished hydrolysing ATP and so has ADP
bound to it. This head is weakly bound to the MT.

2. ATP binds to the leading head, and produces a conformational change in the molecule that pulls
the trailing head forward and closer to the next forward binding side. This is a rapid step that
takes place nearly instantaneously.

3. Then, while the bound ATP molecule is being hydrolyzed by one kinesin head, the other begins
a biased diffusional search for the next binding site. While this is happening, the other head is
hydrolyzing it’s ATP molecule.

4. When the binding site is found, the former trailing head binds strongly to it. Now, ATP binding
to the (now new) leading head is prevented by the gating mechanism. When the hydrolysis is
complete, Pi is released and ADP remains in the binding site. The old trailing head is now the
new leading head and the motor is back to the original enzymatic state. During this cycle, kinesin
has in which it has consumed exactly one molecule of ATP and advanced it’s cargo by 8 nm (the
head has diffused 16 nm).

The directionality of kinesin is fixed by the biased diffusional search, and a “gating” mechanism that
is most-likely mediated by internal strain (Block 2007 [6]) that ensures that each step in the chemical
cycle occurs sequentially in the correct order. The gating mechanism ensures that the diffusing head
regains its affinity for the MT (or equivalently in terms of modelling, prevents ATP from binding to the
new leading head) only after the trailing head finishes hydrolyzing it’s ATP molecule and releases ADP.
If this gating is not present, there is the possibility that ADP will be bound to both heads, reducing
both their affinities for the microtubule, thereby accelerating complete detachmentment of the motor
from the MT.
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Figure 1.3: A generally accepted mechanism for the chemical and mechanical steps [30]

1.2.2 Motility Assays

Optical trap experiments are used to obtain a dynamical picture of each individual motor protein. A
latex or silica bead about 1 µm in diameter is attached to the protein as it operates. The optical trap is
an arrangement of lasers that can be used to exert a force on the bead (Svoboda 1993 [34]). There are
many variants to this experiment differing on minor details, but essentially they all measure the bead
position as a function of time. The experimental setup and a typical realization of bead position vs.
time is shown in Fig. 1.4

Usually, the average velocity of the bead is one of the quantities used to quantify the processivity of
the motor. Motility assays try to quantify the dependence of the bead velocity on the applied external
load and ATP concentration. It is these motility assays that we will use to calibrate and test our model.

1.3 Objective

There are many models that make quantitative predictions about kinesin’s motility. Some are purely
kinetic models that do not include any description of the mechanical dynamics; some are purely stochas-
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Force – velocity graphs

A typical bead position vs. 

time plot

The typical motility assay 

using optical “tweezer”

Figure 1.4: The typical setup of a motility assay and the data that is obtained from them - from [16], [5]

tic, i.e., simple Markov-chain type models that are naively fit to the data (Fisher 2001 [13]); some deal
with the problem very abstractly by considering the entire motor as a single particle undergoing a Brow-
nian motion in a fluctuating potential (Astumian 2000 [1], Reimann 2002 [28], Badoual 2002 [3], Bier
1997 [4]). The first physically consistent model that combined mechanical, kinetic and stochastic aspects
of kinesin’s cycle was the Peskin-Oster model (Peskin 1995 [25]). Other notable models that try to use
detailed mechanics are Aztberer 2006 [2], Hendricks 2006 [17] and Derenyi 1996 [11]. Our analysis is
based on the Peskin-Oster model which is henceforth referred to as the PO model. We first attempt to
address the strong and weak aspects of the PO model, extend it, and develop the tools required for a
more general approach. Then, we apply it to the case of two coupled motors and discuss the predictions
the model makes about synchronization, velocities, randomness, etc.

Chapter 2 provides a short description of modelling the mechanics and chemistry and discusses some
of the mathematics used in the later sections. Only the most essential aspects of the mathematics has
been retained in the main text and involved “proofs”, justifications and notes have been banished to
the Appendix. Chapter 3 discusses and elaborates on different aspects of the PO model, and suggest
methods of refinement and extensions. Chapter 4 discusses the application of some standard methods in
the theory of stochastic processes to this particular problem, namely the concepts of first passage time
and renewal theory. Chapter 5 talks about modelling the motion of multiple motors. Chapter 6 contains
the summary and conclusion.
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Chapter 2

Technical Introduction

This chapter has three main sections: in the first section we derive the equations of motion of the bead-
kinesin system in a typical experimental setup, and quote the important results from Brownian motion
theory. In the second, we describe typical chemical reaction schemes used in single molecule enzymology
and their description using Markov chains. In the third, we introduce renewal theory, and quote some
important results that will prove invaluable in the subsequent chapters.

2.1 Equations of Motion: The Diffusion Equations

2.1.1 Overdamped Dynamics

In a typical experiment, the two main components of the “nanotransport” system that have sufficient
mass and show significant displacements to be of interest are the cargo and the kinesin heads - the
enzymatic region which hydrolyzes ATP and moves from one binding site to another on the microtubule.
The first approximation that comes to mind is to model these as point masses. We are only interested in
their motion in the direction along the MT since this is the only coordinate measured in an experiment.
The success of already existing models justifies this assumption. 3D models also exist which better take
into account the actual structure of kinesin, but this makes the problem less susceptible to analysis and
one would have to resort to Monte-Carlo simulations.

Consider the dynamics of a small particle in a fluid. Most of this material is based on Purcell’s
beautiful paper on swimming bacteria (Purcell 1977 [26]), with a few extensions to make our analysis
more rigorous. When a very small particle moves through a fluid, its motion is characterized by its
mass m, a length scale related to its size L and velocity v, and the properties of the fluid in which it is
moving - density ρ and viscosity µ. When the Reynolds number of the flow around the particle is low
(Re = ρLv/µ � 1), we can neglect the inertial terms in the Navier-Stokes equations which govern the
flow, and derive what is known as Stokes’ Law. Stokes’ Law defines a friction coefficient γ = 6πLµ,
which can be used to include the effect of viscous fluid drag in the equations of motion of the particle
as follows:

mxtt(t) + γxt(t) = F. (2.1)

It is important to discuss scales in this equation. First, note that when a particle is dragged in
a liquid with a constant force, the solution for the velocity has the form v(t) ∼ Ae−t/T + v∞, where
T = m/γ is a time-constant for the exponentially decaying term, and v∞ = F/γ is the terminal velocity.
This implies that when the force is suddenly removed, the particle comes to halt within a distance of
v0T (where v0 is it’s velocity when the force is removed) in a time T . These time and length scales are
important; when they are very small, it means that inertia plays no role in the dynamics of the particle.

11



Notice that there is a “force scale” µ2/ρ inherent in the liquid properties. Clearly, when we drag an
object in a fluid with a force that is of this order of magnitude, the particle reaches a terminal velocity
of µ2/ργ and its Reynolds number is just 1. This implies that when the “dragging” force is much lower
than µ2/ρ, Re� 1.

For kinesin operating in the cell, the parameters of interest have the following values: the cytoplasm
has a viscosity and density close to that of water (µ ≈ 10−5N/m2sec, ρ ≈ 1000kg/m3), the bead is
moving with a velocity of about 500 nm/sec, has a mass of 10−15 kg and a radius of about 1 µm - this
gives a friction coefficient of about 10−8 Ns/m. A kinesin head is many orders of magnitude smaller than
the bead and consequently, its Reynolds number is even lower. The force-scale discussed above is 10−9 N
for water and we deal with forces of the order of pN , which guarantees that our Reynold’s number will
be rather small. The important thing here is that the time constant is T ≈ 10−15/(10−8)2 = 10−7 sec
which is small when compared to the stepping time-scales, which is of the order of ms. This means that
we can just drop inertia in the governing equations; such motion is called overdamped.

The only complication here is that there is elasticity: the tether is elastic and so is the optical trap. If
modelled as springs, we must include additional terms of the form kspx in Eq. (2.1). The spring constant
is approximately the sum of the optical trap stiffness and the tether stiffness, and that gives it an order
of magnitude of 10−3 N/m. One obtains,

mxtt + γxt + kspx = F (t). (2.2)

Equation 2.2 has two eigenvalues, λ = (−γ ± 4)/2m where 4 =
√
γ2 − 4km. 4 is always less

than γ when it is real. When 4 is complex, it adds oscillations to the system. We can also write the
eigenvalues in terms of the more familiar non-dimensional damping ratio −γ/2

√
km which has a value

of about 10. This means that both eigenvalues are negative: one corresponds to the fast time scale and
is approximately −γ/m as before, and the other can be found by expanding the square root in a Taylor
series and is −ksp/γ which is also large. Hence the dynamics continue to be overdamped.

2.1.2 The Effect of Thermal Noise: Stochastic Differential Equations

One other term we must include is a “noise”, i.e., a random force f(t) which is delta-correlated in time
and represents the effect of thermal fluctuations. Why is noise significant here? One way of explaining
this is energy argument detailed in Section 1.1. The other is the direct relation to the observed Brownian
Motion of larger particles. The motor and the bead, being much smaller, must clearly also be affected.
This phenomenon is well understood using Einstein’s relationship and the fluctuation-dissipation theorem
of statistical mechanics. Then, we may write:

γ
dxi
dt

=
∂V (X)
∂xi

+ fi(t), (2.3)

where X is a vector containing the coordinates of interest {xi}, V (X) is the system potential energy
and fi(t) is a random force on each particle i. Because of the presence of the noise, we no longer
speak of a deterministic position, but a probability density function p(x) of the position random variable
X. Such equations are known as Langevin equations and are most efficiently handled using the tools
of Stochastic Diffusion Processes. ODEs like Eq. (2.3) above are usually cast in the Ito form of the
Stochastic Differential Equation (Cox 1977 [9]). Let X(t) represent the position of the particle. Then
we can write an equation for the increment dX(t) as:

γdX(t) = −V ′(x)dt+ σZ(t)
√
dt, (2.4)

where Z(t) here is a purely random Gaussian process with zero mean and unit variance, and it is used
to represent the effect of noise. The equation essentially means that the change in X(t), given X(t) = x
in a small time dt is a normal variate with mean V ′(x)dt/γ and variance σ2/γdt. Let p(x, t;x0) be
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the probability density for X(t) with initial condition X(0) = x0. Then, we can write the forward and
backward Kolmogorov equations for the density as:

1
2
σ2p(x, t;x0)x,x + (V ′(x)p)x − pt = 0 ,(Fokker-Planck or Forward Equation) (2.5)

1
2
σ2p(x, t;x0)x0,x0 − V ′(x0)px0 − pt = 0 .(Backward Equation) (2.6)

While the above equation is written only for one spatial coordinate, X(t) can also be a vector with
many components. The generalization is obvious is be stated in the context of bead and head diffusion
in Section 2.1.3.

2.1.3 The Ornstein-Uhlenbeck Process

Now that we have setup the basic stochastic differential equations, we must establish some relationships
between the thermal energy kBT , and the strength of the “noise” (σ) that appears in Eq. (2.5) - these are
known standard results. It is useful to study this particular process because of its relationship to over-
damped particles diffusing in elastic potentials. For example, at each state of the motor, the bead and
head have some equilibrium positions; i.e., they diffuse in some potential well that is well-approximated
by:

V (x) =
1
2
Kspring(x− x0)2 + fx. (2.7)

The Ornstein-Uhlenbeck process was originally developed to show how the velocity of a particle in
a fluid relaxes to the Maxwell-Boltzmann distribution (Uhlenbeck 1930 [36]). It also solves the problem
of non-differentiability of sample path’s in Wiener’s original Brownian motion. The equation is just
Newton’s law in terms of the velocity U with an extra random force term, which can be expressed as:

dU(t) = −βU(t)dt+ σZ(t)
√
dt, (2.8)

where β is just γ/m. Then, we can solve the Fokker-Planck equation Eq. (2.5) and obtain the probability
density of the velocity p(u, t;u0) as a function of time, given an initial velocity u0. One way to solve the
equation is to take the bilateral Laplace transform of the density and solve for the moment generating
function (φ(θ, t) =

∫∞
−∞ e−uθp(u, t;u0)du) or cumulant generating function K(θ, t) = log(φ(t)). It turns

out that U(t) is normally distributed with mean and variance:

E[U(t)] = u0e
−βt, (2.9)

V ar[U(t)] =
σ2(1− e−2βt)

2β
. (2.10)

That is, the velocity relaxes to a normal distribution with zero mean and variance σ2/2β with a
time scale of 1/β. Comparing this with the Maxwell-Boltzmann equilibrium distribution for velocity, we
can relate the intensity of the noise to the thermal energy as σ/2β = kBT/m, and define a convenient
quantity called the diffusion coefficient D = kBT/γ - this is Einstein’s relationship. This allows us to
write the Fokker-Planck equation in terms of purely physical variables instead of a “noise intensity”.

For a quadratic potential V (x) as in equation Eq. (2.7), Eq. (2.4) has the exact same form as Eq. (2.8),
but with an origin shift. Then we conclude that the overdamped particle relaxes to its equilibrium
position, the minimum of V (x) at x = x0 − f/Kspring, with a time constant given by γ/Kspring and
an equilibrium variance of kBT/Kspring. If we plug in typical values of tether stiffness and diffusion
coefficient for the bead in a motility assay, we find that the bead relaxes to its mean position within
a µs time-scale with a standard deviation in distance of about 0.5 nm. Notice that the variance is
independent of the particulars of the particle, but only on the steepness of the potential and the strength
of the thermal fluctuations.

13



At any time, the only elements of our model that are diffusing together are the bead and one of
the heads - this is obvious, since otherwise the motor would detach. We denote their coordinates and
diffusion coefficients as x and D with the subscripts b and h denoting the bead and head respectively.
Let p(xb, xh) be the joint probability density and let V (xh, xb) be the potential energy. The governing
equation then generalizes to:

Db
∂2p

∂x2
b

+Dh
∂2p

∂x2
h

+
Dh

kBT

∂

∂xh

( ∂V
∂xh

p
)

+
Db

kBT

∂

∂xb

( ∂V
∂xb

p
)
− ∂p

∂t
= 0. (2.11)

2.1.4 First Passage Time for Diffusion Processes

A useful concept to quantify the time required for a Brownian particle to traverse a certain distance
is the First-Passage Time (Siegert 1951 [32], Cox 1977 [9]). To this end, we set “barriers” at x = a, b.
These barriers serve to restrict the process to a finite spatial interval. We will use two different kinds of
barriers: absorbing and reflecting. The reflecting barrier serves only to restrict the particle to a certain
range, and the absorbing barrier gobbles up the particle when it hits it, signifying the end of the process.
These so-called barriers just appear as boundary conditions for the diffusion equations. The chemical
binding sites on the MT are exactly analogous to such absorbing barriers. When the kinesin head is
diffusing and comes across a barrier, it binds, effectively ending its diffusion.

Let g(t|x0) be the first passage time density, defined for the random variable T = sup{t|x(t) < a}
where X(t) is the stochastic process defined by Eq. (2.4). The equation for g(t|x0) is most conve-
niently written in terms of its Laplace transform (or characteristic function) defined as g∗(s|x0) =∫∞

0
e−stg(t|x0)dt. To obtain a governing equation for g∗, we note that the distribution of function

P (x, t;x0; t0) satisfies the backward equation (Eq. (2.5)) - by integrating over x - and notice that
X(t) ≤ a⇒ T > t. In other words, −g(t|x0) = ∂P (a, t;x0; t0)/∂t. Then, we can Laplace transform the
backward equation to obtain,

D
d2g∗

dx2
0

−D 1
kBT

dV (x0)
dx0

dg∗

dx0
− sg∗ = 0 (2.12)

A problem of particular interest to us is diffusion between two absorbing barriers. Suppose there are
two barriers at x = a, x = b and b < a. Then it is clear that g(t|x0) = δ(t) ⇒ g∗(s|x0) = 1 for x0 = a
and x0 = b, where δ(t) is the Dirac-delta function. If absorption occurs, it must occur at either a or
b, and so we define the functions g−(t|x0) as the probability density of being absorbed at b before it
reaches a and a corresponding function g+(t|x0). Clearly, the events being mutually exclusive, it follows
that g(t|x0) = g+(t|x0) + g−(t|x0). Then the Laplace transforms of g+ and g− satisfy Eq. (2.12) with
the boundary conditions,

g∗+(s|a) = 1, g∗+(s|b) = 0, (2.13)
g∗−(s|a) = 0, g∗−(s|b) = 1. (2.14)

Another quantity we are interested in is the limiting probability of being absorbed at a and not b
and vice-versa. Call these probabilities π+(x0) and π−(x0). Then,

π+(x0) =
∫ ∞

0

g+(t|x0)dt = g∗+(0, x0). (2.15)

Setting s = 0 in Eq. (2.12), we can solve for the limiting probabilities. Clearly, the solution is:

π+(x0) =

∫ x0

b
exp(V (x)

kBT
)dx∫ a

b
exp(V (x)

kBT
)dx

, b < x0 < a. (2.16)
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Clearly the solution is valid only if V (x0) is differentiable and hence well-behaved in the interval
[a, b]. Then, π+ +π− = 1 for each x0 if the interval is finite - we supply no proof , but it is a known fact
that every point is visited infinitely often in the Ornstein-Uhlenbeck process.

A useful property of Laplace transforms for non-negative random variables such the first-passage
time T , is that it serves as the moment generating function (mgf). If we want to extract the nth moment
of the random variable associated with the mgf,

E[Tn] = (−1)n lim
s→0

dn

dsn

∫ ∞
0

e−stg(t)dt = (−1)n lim
s→0

dng∗(s)
dsn

. (2.17)

2.2 Chemistry

The chemistry of a single enzyme is simply modelled using the theory of Markov processes. A typical
reaction scheme for an enzyme which consumes ATP and goes through n−1 intermediate steps denoted
by Ik, 2 ≤ k ≤ n is:

E +ATP
f1,r2−−−→ I2

f2,r3−−−→ I3
f2,r3−−−→ · · · fn,rn−−−→ E + by-products, (2.18)

where fi denotes the rate of the forward reaction from state i and ri denotes the rate of the backward
reaction from state i. Note that the intermediate states represent states of the enzyme; by-products like
ADP and Pi may appear in some intermediate reaction, but their concentrations in the bulk are not
going to be significantly affected by the activity of a single motor protein.

2.2.1 Markovian Approximation

The states of the enzyme may be considered as states of a Markov process and we may write a linear
differential equation describing the evolution of the probability of each state following Qian 2002 [27].
In short, let X(t) be a stochastic process taking values in E, Ik and let P(t) be a vector containing the
probabilities of being in each state. Then we may write the forward equation for a Markov Process with
discrete state space as:

d

dt
P = QP, (2.19)

where Q is a stochastic matrix containing the transition rates as entries. For a simple two-step reaction
scheme, let X(t) take values in {E1, E ·ATP,E2} with corresponding probabilities pX(t). The subscripts
1 and 2 have been put in to distinguish between an initial and a final state, although they both represent
the same state of the enzyme. The equation we obtain is easily solved by putting in an initial condition,
and we can track the evolution of the probabilities with time.

E1 +ATP
kf ,kb−−−→ E ·ATP khf ,khb−−−−−→ E2 +ADP (2.20)

Q =

 −kf kb 0
kf −(kb + khf ) khb
0 khf −khb

 (2.21)

2.2.2 First Passage Time for the Chemistry

As in the case of diffusion processes, the first passage time of the enzyme through the reaction sequence is
to be an important random variable. Consider the process defined by Eq. (2.20). Define T = inf{t|X(t) =
E2, X(0) = E1}. Just as we did in Section 2.1.4 for diffusion process, we make the final state absorbing
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by setting khb = 0 and find that the distribution and moment generating function of T are given by,

P{T < t} = F (t) = pE2(t), (2.22)

E[e−sT ] =
∫ ∞

0

e−st
dF (t)

dt
= sp∗i (s)− pi(0). (2.23)

Then, after a little bookwork, it follows that E[T ] = a+b/kf , where a and b are some combination of
the rest of the rate constants. In fact, we could say that this is a general form of the mean first passage
time for a general reaction as in Eq. (2.18). Usually, it is justifiable to assume that the first step depends
linearly on ATP concentration for a single molecule, and is the only step with any ATP dependence.
Hence what this shows is that the mean first passage time for an enzyme through its enzymatic cycle
from initial to final state is inversely proportional to the ATP concentration (since kf = kb[ATP ]).

2.2.3 Non-Markovian Substeps

An important assumption in the above discussion on the stochastic properties assumes that the inter-
arrival times of the chemical events is exponentially distributed with density ke−kt; i.e., the process is
Markovian in character. The most important property of such a distribution and Markov processes is
it’s “memorylessness”. That is, the future evolution of the process from time t = u given that it is at
some state at that time X(u) = A, is independent of how the process got to A.

This assumption is good to make for the first step of ATP binding to the single-enzyme. The chance
that the enzyme encounters an ATP molecule is pretty much independent of the time it has spent
waiting for it; at each instant, it is equally likely that the enzyme might encounter and capture an ATP
molecule. Intuitively, the subsequent steps like hydrolysis, however, do depend on the time at which
they start. That is, the probability density function for the time of hydrolysis is no-longer exponential,
but rather something more like a Gamma distribution. Assuming such a distribution for the process
destroys it’s Markovian character and we may no-longer write an equation like Eq. (2.20).

Nevertheless, there are ways to handle such processes, and one such way is to work with the first
passage time and moment generating functions instead of dealing directly with probabilities. The other is
to approximate non-Markovian densities with a series of artificial Markovian stages. Both are described
below.

Using Moment Generating functions

To generalize the technique used in Section 2.2.1 for the first passage time to Non-Markovian inter-arrival
times for chemical events, we exploit the fact that convolution corresponds to a product in Laplace space.
For example, let there be two states A and B with the densities of interarrival times of the events taking
the process from A to B be fA,B(t), rB,A. Let gA(t), gB(t) (which we can call “hit probabilities”) be
the densities of the event X(t) = A, X(t−) = B and X(t) = B, X(t−) = A for t > 0, let X(0) = A and
let the superscript ∗ denote the Laplace transform of the corresponding function. Then,

gA(t) =
∫ t

0

gB(τ)rB,A(t− τ)dτ, (2.24)

gB(t) =
∫ t

0

gA(τ)fA,B(t− τ)dτ + fA,B(t), (2.25)

⇒ g∗A(s) = g∗B(s)r∗B,A(s), (2.26)
g∗B(s) = g∗A(s)f∗A,B(s) + f∗A,(s). (2.27)

Consider a reaction sequence of the form specified in Eq. (2.18) and stochastic process X(t) taking
values in {1, 2, ..n} representing the chemical state. We want the first passage time from site 1 to site n
- labelled here as T . Define the “just hit state i” functions Ti = t if X(t) = i and X(t−) 6= i, and let the
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corresponding densities be gi(t) and let fi(t− τ)dt represent the probability that a transition took place
from i to i + 1 in the time interval (t, t + dt), but there was no transition from i − 1 given X(τ) = i.
Define ri(t− τ) correspondingly. Then, for n ≥ 5 (with the cases n = 3, 4 being similar),

g∗1 = r∗2g
∗
2 , (2.28)

g∗2 = f∗1 g
∗
1 + r∗3g

∗
3 + f∗1 , (2.29)

g∗k = f∗k−1g
∗
k−1 + r∗k+1g

∗
k+1 k ∈ {3, ..n− 2}, (2.30)

g∗n−1 = f∗2 g
∗
n−2. (2.31)

As before, we are looking for the function sp∗n(s) - where pn(t) represents the probability of being in
state n - given by p∗n(s) = F ∗n(s)g∗n−1. It turns out that a general formula for the mgf of the first passage
time T is of the form

sp∗n(s) =
s
∏n−2
i f∗i F

∗
n−1

1−
∑n−2

1 f∗i r
∗
i+1 + f∗1 f

∗
3 r
∗
2r
∗
3 + · · ·

. (2.32)

The higher order terms in the denominator can be specified in words as all products of the form
(f∗n1

)(r∗n1+1)(f∗n2
)(r∗n2+1) · · · , where the nk are combinations of the indices where no nk, nj are adjacent

in each term. Just as in Eq. (2.17), we can find moments of all orders using the generating function.

Method of Stages

A useful tool to approximate non-Markovian transition densities is the method of stages. It is used very
often in modeling biological systems. Suppose we have a non-negative random variable T that could
represent a life-time of an individual, a service time, etc. X usually has a density which has a single
finite maxiumum and looks rather like a Gamma or Erlang distribution. Then, we can introduce k
artificial stages, the ith stage being exponentially distributed with parameter λi - that is, we use a sum
of exponentially distributed random variables to approximate the density. This is exactly what is being
done when additional ‘substeps’ are introduced into a stochastic process that describes the chemical
cycle of an enzyme or indeed, the mechanico-chemical cycle of a molecular motor (Fisher 2001 [13]).

There are two different ways of implementing the method of stages: one is when the stages are
traversed in series, like in a chemical reaction sequence, and the other is when the stages are taken in
parallel and in each realization of X the ith is chosen a probability, say πi.

A series implementation of the method of stages amounts to approximating the Laplace transform
(mgf) of the non-Markovian density as a rational function. If we expand the rational function in par-
tial fraction form, the Laplace transform can be inverted and the density can be written as a linear
combination of exponential distributions. The mgf and the corresponding density can be written as:

k∏
i=1

λi
λi + s

, (2.33)

k∑
i=1

wiλi
λi + s

. (2.34)

The mean and variance of this can be fit to the observed mean and variance in an experiment, say,
to determine the values of the λi. The mean and variance are easily found to be:

E[X] =
k∑
i=1

1
λi
, (2.35)

V ar[X] =
k∑
i=1

∑k
i=1(1/λi)2

(
∑k
i=1 1/λi)2

. (2.36)
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2.3 Renewal Theory

A very powerful tool in the analysis of kinesin’s walk is renewal theory - it’s application to our problem
will become clear after Chapter 3. Here, we just state some important results that we use in the next
few sections. The following material is taken from the texts by Cinlar 1975 [8], Karlin 1975 [20], Ross
1983 [31] and Grimmett 2001 [15]

A renewal process {N(t), t ≥ 0} is a nonnegative, integer valued stochastic process that registers
successive occurrences of an event during the time interval (0, t]. The time interval between events are
positive, independent, identically distributed random variables, {Xk}∞k=1 such that Xi is the elapsed
time from the (i− 1)th event until the occurrence of the ith event. Let the distribution of function of Xk

be F (t) - for us, this distribution will usually be continuous and the density will exist. Another basic
stipulation is that F (0) = 0, meaning that P{Xk > 0} = 1. Define,

Sn =
∑n
i=1Xi, i ≥ 1 Waiting Time

P{Si ≤ t} ⇔ P{N(t) ≥ i} Basic Identity
E[N(t)] = M(t) The Renewal Function

(2.37)

Let µ and σ be the mean and variance of Xk. Some results we will use are as follows:

The Renewal Function The following relation is obvious from the definitions:

M(t) = E[N(t)] =
∞∑
j=1

Fj(t) (2.38)

Asymptotic Relationship An important result which intuition and the Strong Law of Large Numbers
tells us should be true, is that the asymptotic relation N(t) ∼ t/µ holds. In fact, the it holds more
strongly for the mean M(t) as,

lim
t→∞

1
t
M(t) =

1
µ
. (2.39)

Central Limit Theorem for Renewal Processes Since the sequence {Xk}∞k=1 contains identical,
independently distributed random variables, a version of the central limit theorem holds. Using
the fundamental identity relating Si and N(t) from Eq. (2.37), it is true that N(t) is asymptotically
normal with mean t/µ and variance σ2t/µ3. More precisely,

lim
t→∞

P

{
N(t)− t/µ√

tσ2/µ3
< x

}
= Φ(x), (2.40)

where Φ(x) is the standard normal distribution.

A central result in the theory of renewal processes concerns the certain types of equations called re-
newal equations and their solution and long-time behavior. Many quantities of interest can be computed
using this result. Although we will not use it explicitly, we state it here for the sake of completeness.
An integral equation of the form (with known a(t) and F (x)),

A(t) = a(t) +
∫ t

0

A(t− x)dF (x) t ≥ 0 (2.41)

is called a renewal equation. Its solution is unique and is written in terms of the renewal function M(t).
With certain restrictions on the interarrival time distribution F (x), we can comment on the long term
behavior of A(t) and its increments. The important relations are:

A(t) = a(t) +
∫ t

0

a(t− x)dM(x), (2.42)

lim
t→∞

A(t) =
1
µ

∫ ∞
0

a(x)dx for µ <∞. (2.43)
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An important random variable connected with the renewal process is the current life or age random
variable δt defined in terms of the waiting time Sn given in Eq. (2.37). It represents the time that has
elapsed since the last renewal. We will have use for it when we use the tools of renewal theory to better
understand the PO model for kinesin. The current life is defined as:

δt = t− SN(t). (2.44)

2.3.1 Renewal Reward Processes

Another variant of the renewal process that is of interest to us is the Renewal-Reward Process. Sup-
pose associated with the ith lifetime is a second random variable Hi, and suppose that Hi are iden-
tically distributed and are independent. Hi is allowed to be dependent on Xi, but that the pairs
(X1, H1), (X2, H2) · · · are independent. Then define the cumulative process R(t),

R(t) =
N(t)∑
k=1

Hk, (2.45)

lim
t→∞

E[R(t)]
t

=
E[Hk]
E[X]

. (2.46)

The rewards Hk need not accumulate only at the end or beginning of the renewal interval, but can
increase continuously. Then, the cumulative reward is just R̃(t) = R(t) + HN(t)+1 arising from the
already elapsed part of the renewal interval. If R(t) accumulates in a monotone manner, then we can
use the Strong Law to get an asymptotic result. The result in terms of the expectation can also be
obtained using the renewal theorem as follows:

R(t) ≤ ˜R(t) ≤
N(t)+1∑
k=1

Hk, (2.47)

∑N(t)
k=1 Hk

t
=
∑N(t)
k=1 Hk

N(t) + 1
N(t) + 1

t

a.s−−→ E[H]
E[X]

. (2.48)

The variance of a renewal process can be computed easily in case N(t) is independent of {Hk}N(t)
1 .

Let N be an N valued random variable independent of a sequence Hi of random variables and let
R =

∑k
i=1Hi. Let µN , µH , σ2

N and σ2
H be the variance and mean of N and H. Then, the variance of

R takes the form,

V ar[R] = µ2
Hσ

2
N + µNσ

2
H . (2.49)

Many problems have a natural formulation in terms of such renewal reward processes, and one such
problem is the random walk.
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Chapter 3

Modelling: The Peskin-Oster Model

3.1 An Emperical Model

We begin by examining a sample path of the bead as shown in Fig. 1.4 and the head stepping pattern
obtained by attaching a flouresencent tracer (Yildiz 2004 [39]). A first-approximation is to say that this
resembles a Poisson counting process (or a continuous time random walk) as shown in Fig. 3.1(b)

(a) Location of the head vs. time from [39] showing
kinesin steps (head location here)

T = Tdiff + Tchemical

Xbead 

(distance)

8 nm

Time

Curve fit for velocity v

8 8
[ ] [ ]

[ ]total total

nm nm
E v E

T E T
 

(b) A schematic of the approximation to the sample
path

Figure 3.1: Approximating the sample-path of the bead as steps in a poisson process

To be precise, let the bead either jumps backwards or forward at a some time T , a random variable.
Note that T is distributed with density λe−λt for a Poisson stepping process. The plot of bead position
vs. time suggests evidence that the bead diffusion is much faster than the chemical “dwell” times spent
waiting for a reaction to complete or a nucleotide to bind.

More recent experimental work using kinesin mutants and ATP analogs(Guydosh 2006 [16]) has
shown that ATP binds primarily to the leading, MT bound head, through an internal-strain “gating”
mechanism. This was anticipated in Peskin and Oster’s work, where they found that the ratio of the
rates of ATP binding to the forward head to the backward head had to be greater than 20 to obtain
good fits of the model to measured data. It is also found that backward steps are very rare and occur
at the rate of one backward step to every 100 forward steps at moderate loads (Svoboda 1993 [34]).

Then it makes sense (as a first approximation) to drop the possibility of backward steps altogether.
Of course, this is not really a good approximation when the forces are large. Then, diffusion limits the
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rates of stepping, and backward steps become more important. Including backward steps is not too
difficult, and we will discuss this in a later section. We can assume that the diffusing head binds to the
forward site with probability 1, and as shown in the previous section, we can reduce the coupled diffusion
processes to the diffusion of the bead alone and not worry about the head. Then the two dominant, rate
limiting processes are the diffusion of the bead and the chemical reaction times, which we assume occur
sequentially. For now, let us assume that the chemical processes are independent of load, and the load
dependence of the velocity is brought in through the diffusion of the bead alone. However, we must state
that it is believed that some form of chemical dependence on load should exist, because of the fact that
the communication required for gating - lowering the rate of ATP binding of the forward head when the
rear head is hydrolysing ATP - most likely occurs through the internal strain generated when stepping.

Let v be the velocity, and E[·], V ar[·] represent the expectation and variance operations. The succes-
sive total cycle times, under conditions of constant load, form a sequence of independently distributed
random variables. It follows from the results on renewal processes (Section 2.3) that we can write the
steady-state velocity in terms of the total number completed cycles N(t) as,

v = L lim
t→∞

N(t)
t

=
L

E[T ]
nm/sec, (3.1)

T = Tdiff + Tchem, (3.2)

where L ≈ 8 nm is the distance between binding sites on a MT.

A model for the diffusion time is to use the first passage time to an absorbing barrier 8 or 16 nm
away in some potential. It has been claimed in the literature that the mean first passage time grows
exponentially as a function of load - clearly this depends on the potential we choose. Let us assume that
the mean diffusion time is indeed exponential. The mean chemical time must be inversely related to the
ATP concentration (Section 2.2.2) and so we can choose a model of the form,

E[Tchemical] = a+
b

ATP
, (3.3)

E[Tdiffusion] = c1e
fc2 . (3.4)

The graphs in Fig. 3.2 show the model fit and a spline fit to the data. The ◦ markers are for the
model curves and the � markers are for the spline fit to the data.

The fits using this equation are shown in Fig. 3.2 and seem to capture trends rather well. However,
the potential we must throw in to get the exponential dependence is ad-hoc and we must come up with
a physically justifiable reason for choosing this form. What is more, since this “model” is deterministic,
we have no hope of calculating stochastic properties like the randomness parameter.

Figure 3.2: Emperical model fits to the data from [5]
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We need to analyze the experimental setup in greater detail to come up with a better model. The
discussion in the following section will show that it is not the diffusion time that is affected by the load,
but rather it is the probability of binding forwards or backwards that is the most significant factor.

3.2 The Peskin-Oster Model

3.2.1 Model Description

The Peskin-Oster model and other variants based on it (Peskin 1995 [25], Atzberger 2006 [2], Fisher
2001 [13]) have been fairly successful in predicting various aspects of kinesin’s mechanism. It is interesting
to study the model to understand and justify the various assumptions that can be made. Moreover, it
is essential for us to establish the theory and assumptions before we can extend it to multiple-motors.

The model is one dimensional, tracking only coordinates along the MT, and the chemistry is assumed
to have only two steps, ATP binding and subsequent hydrolysis. The bead is attached to the elastic
tether, which is assumed to obey Hooke’s law. This is a reasonable assumption which is well-justified
by the analysis in Atzberger 2006 [2], which obtains tether energies from experimental data. The other
end is attached to a “hinge-point” to which both motors are attached - crystallographic studies show
that the heads are attached to each other to a single point by their neck-linkers. The neck-linkers are
modelled as elastic elements.

Let us define two binding states for each head as S (strongly bound to the MT) and W (weakly
bound to the MT). The bead, hinge, bound head and free head locations will be called xb, xh, xbnd
and x. The hinge point is defined to be in-between the two heads at all times. The various steps in the
mechanical cycle of this model can be summarized as follows:

1. The motor starts in the state S · S. In this state, the motor is rigid and the bead undergoes a
Brownian motion in some potential well established by various elastic components of the system.
Then, xbnd1 = 0, xbnd2 = 8, xh = 4.

2. Now, ATP binds to one of the two heads and the system undergoes a transition S · S → S ·W ,
i.e., one of the heads is now weakly bound and is free to diffuse in a potential biased towards the
next forward binding site. This biasing potential is another modelling input and one simple choice
is to assume it is quadratic. Suppose ATP binds to the forward head. Then, xbnd = 8 nm, xh =
8 + x0, x = 8 + 2x0

3. While the ATP hydrolysis is taking place, the free head and the bead diffuse together, governed
by an equation of the form given by Eq. (2.11).

4. As soon as ATP hydrolysis completes, the free head regains its affinity for the MT and quickly
finds a free binding site to attach to. The potential in which the head diffuses is biased in the
forward direction, by defining a “power stroke”. That is, the minimum of the biasing potential
located close to the forward bind site.

5. Once this binding takes place, ATP hydrolysis is completed and the by-products of the hydrolysis
are ejected from the nucleotide binding pocket. This brings the system back to its original state
S · S with both heads free of nucleotide. One of the heads has travelled a distance of 16 nm and
the bead has moved 8 nm, the spacing on the MT.

The model paramters are:

• βb = ATP binding constant for the forward head or unbinding rate constant for the backward
head.

• βf = ATP binding constant for the backward head or unbinding rate constant for the forward
head.
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• α = hydrolysis rate of ATP.

• L = distance between two binding sites on the MT (8 nm).

• x0 = “power stroke” distance, or equilibrium position of the diffusing head. This is positive and
biased towards the forward binding site.

• Kth,Kbias = tether and bias potential stiffness (both quadratic).

xbead

xhinge

xdiffusing head

Figure 3.3: Schematic of the PO model [25]

There are just two distinct states of the motor in the model - either both heads are attached to the
MT or one head is attached and the other is diffusing. The absolute position of the motor is kept track
of by indexing the binding sites on the MT with integers. Peskin and Oster keep track of the position
and chemical state of the motor simultaneously by allowing the index to take half-integer values - this
is an elegant method, but can be easily dispensed with while using the tools of renewal theory. That
is, when both motors are bound to the MT, the state s = k is some integer. The leading head is at kL
and the other is at (k − 1)L, with the hinge in-between at (k − 1/2)L. After ATP binds, if the rear
head comes unbound, s = k + 1/2, xbnd = kL, (k − 1)L ≤ x ≤ (k + 1)L. If the leading head is released,
s = k − 1/2, xbnd = (k − 1)L, (k − 2)L ≤ x ≤ kL. For a single motor, it will not prove essential to keep
track of the index k to get steady-state behavior, but we leave it in here for use in the discussion on
multiple-motors. Let I represent the set of integers, and let H be the set of half-integers. To summarize:

xbnd(k) =
{
kL, k ∈ I(
k − 1

2

)
L. k ∈ H. (3.5)

The diffusion equations governing the motion of the bead and head must be solved in two poten-
tials, one for each kind of state. We can write these potentials in the two states as φ1(f, xb, k) and
φ2(f, xb, x, k), in terms of the bead position, state index and free head location (or equivalently, the
hinge xh = (xbnd + x)/2), as follows:

φ1(f, xb, xh, k) = f(xb − xh) +
1
2
Kth(xb − xh)2, (3.6)

φ2(f, xb, x, k) = f(xb − xh) +
Kth

2

(
xh − xb

)2

+W (xh − xbnd), (3.7)

where W (x) denotes an interaction potential (whose form they don’t specify) that biases the diffusion
of the head towards forward binding-site. Following [2], we also model the interaction potential as
W (x) = 1/2Kbias(x− x0)).
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The PDEs Eq. (2.11) for the coupled diffusion of the bead and head are difficult to solve in general,
but certain observations simplify the problem considerably. The bead is about nearly a 1000 times larger
than the head and since the diffusion coefficient is inversely proportional to size, we can set Dh → ∞.
This essentially amounts to a separation of time-scales. It implies that the head rapidly equilibriates
with the bead. Then dividing Eq. (2.11) by Dh and setting it to ∞, we get:

∂2p

∂x2
h

+
1

kBT

∂

∂xh

( ∂V
∂xh

p
)

= 0. (3.8)

Note that now ρ(x|xb) is a conditional probability, meaning it represents the position of the head,
given bead position. The solution to this equation is the Boltzmann equilibrium density:

ρ(x|xb, k) =
exp
(
−φ2(xb,x,k)

kBT

)
∫ (k+1/2)L

−(k−3/2)L
exp
(
−φ2(xb,x,k)

kBT

)
dx
. (3.9)

Then using the identity for the joint density p(x, xb) = ρ(xh|xb)p(xb) and integrating over the allowed
range for xh (between the binding sites), we can write an effective potential for the bead in which it
diffuses with its own Db, mathematically independent of the head location. The effective potential takes
the form:

φeff = −kBT log

(∫ (k+1/2)L

−(k−3/2)L

exp

(
−φ2(xb, x, k)

kBT

))
. (3.10)

Once ATP hydrolysis completes, we can employ the previously mentioned separation of time-scales
and do a fast-time scale analysis to find whether the head binds forwards or backwards. Peskin and Oster
present a slightly different method of finding this probability using the Fokker-Planck equation, but the
formula is immediate from the backward equation and the first passage time formulation (Section 2.1.4).
Given some xb, x the eventual probability of absorption at the forward binding site is given by an
equation similar to Eq. (2.15). Then, to find the total probability of binding forwards pt(xb, k), given
bead position xb can be written as,

π(x, xb) =

∫ x
b
exp(Φ(xb,x

′)
kBT

)dx′∫ a
b
exp(V (x′)

kBT
)dx′

, (3.11)

pt(xb, k) =
∫ (k+1/2)L

−(k−3/2)L

π(x, xb)ρ(x|xb, k)dx. (3.12)

Peskin and Oster make the claim that the bead diffusion time is insignificant - that is, that the bead
settles down into the Boltzmann density ρbead(xb, k) nearly instantaneously in the effective potential.
Then, the total probability of binding forwards P (f) can be written as:

P (f) =
∫ ∞
−∞

pt(xb, k)ρbead(xb, k)dxb. (3.13)

A Markov chain can be constructed on the stochastic process X(t) = j, where j is the state variable
that keeps track of the motors “phase” and its location. Let Cj(t) be the probability of finding the
system in state j. For integer j,

dCj
dt

= αPCj−1/2 + α(1− P )Cj+1/2 − (βb + βf )Cj , (3.14)

dCj+1/2

dt
= βbCj + βfCj+1 − αCj+1/2. (3.15)
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The mean and variance of X(t) - denoted by M(t) and V (t) - can be obtained from Eq. (3.14) by
summing with appropriate weighting of each equation over the index j. The solution is presented here
for later comparison:

L
dM(t)

dt
=

Lα

α+ γ

((
p− 1

2

)
γ +

δ

2

)
, (3.16)

L2 dV (t)
dt

=
L2αγ

α+ γ

1−
4
(
α
(
P (f)− 1

2

)
− δ

2

) (
γ
(
P (f)− 1

2

)
− αδ

2γ

)
(α+ γ)2

 (3.17)

3.2.2 Fits using the Peskin-Oster model

Since we have made some slight changes to the PO model, namely, a simpler biasing potential W (x)
and fits to more recent data (Block 2003 [5]) at different ATP concentrations, we compute the fits once
again. The fit parameters we obtain will come in handy when we extend the model to multiple motors -
i.e., we are able to make a uniform comparison between single and multiple-motor predictions. Since we
only seek a qualitative comparison, the quality of the fit itself is not of prime importance in our study.

We continue to use the same parameters and procedure from [2] and [25] to fit for the higher ATP
concentration. Then γ is changed, keeping the ratio of βb/βf constant, to obtain a fit for the lower
ATP concentration. The predicted randomness parameter using these parameters are plotted against
the experimental data. It is noted here that the predicted randomness for the higher ATP concentration
is marginally higher than the data, indicating that there may be more steps in the chemistry.
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Figure 3.4: Fits to the velocity and randomness parameter from [5] using the Peskin-Oster model
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3.3 Some Aspects of the Peskin-Oster Model

3.3.1 The Head Conditional Density

Consider the head density given by Eq. (3.9). To calculate the probability of binding forwards or
backward, Peskin and Oster restrict the head’s location to within the binding sites by normalizing the
density. Then the mean location E[x|xb] =

∫ b
a
xρ(x|xb, k), clearly, must lie between a and b. Variables

a and b specify the finite interval of integration ((k − 3/2)L, (k + 1/2)L) and are used in the following
few sections purely for notational convenience. There is a reason for restricting the head: the formula
derived for the binding probability from the backward equation, Eq. (2.16) is valid only if the point from
which the diffusion begins is in (a, b).

A few comments are in order here. For diffusion in some potential, V (x1, x2), if we can separate
the diffusion time-scales (or even otherwise), the joint equilibrium density ρ(x1, x2)ρ(x2) is given by the
conditional density and the effective potential as in Eq. (3.9) and Eq. (3.10). It is clear that the joint
density has maxima where V (x1, x2) has minima - let this be at some single point (x̄1, x̄2). If x1 is
artificially restricted to an interval (a, b) which is not infinite, the equilibrium position of x1 given by the
minimum of V (x1, x2) may lie outside this interval and this will in-turn change the equilibrium location
of x2 in its effective potential. In fact, the mean locations will be different even if the x̄1 lies in (a, b)
because of the restriction. The truncated and unrestricted densities are shown in Fig. 3.5. The new
mean locations due to the restriction are also indicated.

However, the mean locations will not prove to be an issue in kinesin’s walk, since the process effectively
stochastically renews itself once the motor steps, and the step size is 8 nm, no matter what.
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Figure 3.5: Trucation of the probability density of the head for different bead locations

Nevertheless, since the equilibrium standard deviation for our problem given by Eq. (2.9) is about
3 − 4 nm for both the head and the bead and as long as x̄1 lies comfortably within the interval (a, b),
the mean positions of the bead and the head will be quite close to (x̄1, x̄2). It is not necessary for us to
check this analytically, because it turns out that it is not a factor at all (see Section 4.1).

One way out is to not restrict the head at all, and redefine the probability of binding forwards. Note
that the Ornstein Uhlenbeck process is recurrent in the sense that starting from any x0, every point is
reached eventually with probability 1 (Cox 1977 [9]). So if x0 > b, it will bind to b definitely and will
not if x0 < a. Then,

pt(xb, k) =


0 −∞ < x < a∫ a
−b π(xb, x)ρ(x|xb, k)dx a ≤ x ≤ b

1 b < x <∞
. (3.18)
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However, if we do not restrict the head, the head may bind to other binding sites outside the region
(a, b). So, another way around this is to solve for the equilibrium density after restricting the head
using appropriate boundary conditions at the end points of the region of interest, say, by using reflecting
barriers.

3.3.2 The Effective Potential

One assumption made in Section 3.3.1 is that the effective potential was assumed to be quadratic (for
the variance and time-scale estimates to apply). This is indeed true when the head is unrestricted as
can be checked by direct integration, but when it is restricted in the fashion of Peskin and Oster, the
stiffness of the effective potential does indeed change and is no longer quadratic. If it is significantly
different from quadratic, then formulas in Section 2.1.3 do not apply. We then have no real estimate of
the time-scales of diffusion and of the variance, both important to the PO model.

What we can do is estimate the deviation from quadraticity of the effective potential by finding
second and higher derivatives in the Taylor expansion of the potential about the mean location (and
finding bounds). Consider the system potential energy φ2(x, xb) defined by Eq. (3.6) and the effective
potential φeff (xb). The bead equilibrium position is where the derivative of φeff (xb) vanishes at some
x̄b, where

dφeff (xb)
dxb

=

∫ b
a
∂φ2(xb,x)

∂xb
exp

(
−φ2(xb,x)
kBT

)
∫ b
a
exp

(
−φ2(xb,x)
kBT

dx
) . (3.19)

Since the exponential is a positive, continuous function, for each fixed xb, the mean-value theorem
for integration applies to the integral in the numerator. Also note from Eq. (3.6) that for every fixed xc,
there exists an corresponding x̄b such that the ∂φ2(x̄b, xc)/∂xb vanishes. Then, we obtain,

∫ b
a
∂φ2(xb,x)

∂xb
exp

(
−φ2(xb,x)
kBT

)
∫ b
a
exp

(
−φ2(xb,x)
kBT

dx
) =

∂φ2(xb, xc(xb))
∂xb

a < xc(xb) < b (3.20)

x̄b = − f

Kth
+

1
2

(
xc(x̄b) +

(
k − 1

2

)
L

)
(3.21)

Further, note that dkφ2(xb, x)/dxkb is Kth for k = 2 and identically zero for all higher derivatives.
Using this fact we can write:

dkφeff (xb)
dxkb

∣∣∣
x̄b

=


Kth −

∫ b
a

1
kBT

(
∂φ2(xb,x)

∂xb

)2
exp
(
−φ2(xb,x)
kBT

)
∫ b
a
exp
(
−φ2(xb,x)
kBT

dx
) , k = 2

∫ b
a

(
1

kBT

)k−1( ∂φ2(xb,x)
∂xb

)k
exp
(
−φ2(xb,x)
kBT

)
∫ b
a
exp
(
−φ2(xb,x)
kBT

dx
) , k = 3

(3.22)

For each k > 1, there is a xck(xb) ∈ (a, b) such that the mean value theorem applies to integrand in
numerator of the RHS of Eq. (3.22). After a little algebraic manipulation we obtain,

∫ b
a

(
1

kBT
∂φ2
∂xb

)k
exp

(
−φ2(xb,x)
kBT

)
∫ b
a
exp

(
−φ2(xb,x)
kBT

dx
) ∣∣∣

x̄b
=
(
∂φ2

∂xb

)k
=
(

1
2
Kth (xck − xc)

)k
. (3.23)

There are more terms in higher derivatives, but the key is that they of the form (Kth)m(KthL)n/(kBT )n−1,
where m,n are positive integers. Thus, all we require is that (KthL)2/(kBT ) is small. We use Kth =
0.25 pN/nm - it’s actually about 0.15 pN/nm [2] - the thermal energy is around 4.14 pN · nm and
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L = 8 nm - so we seem to be in safe territory. To gain further confidence, we plotted the effective
potentials for a range of forces in Fig. 3.6 which shows that the potential remains nearly quadratic,
and has a stiffness not very different from 0.25 pN/nm, thus placing a definite time-scale on the bead
diffusion for all forces. This time-scale is γ/Kth of the order of 1 µs and thus it is reasonable to assume
that the bead diffusion is nearly instantaneous compared to the chemical times.
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Figure 3.6: Effective potentials on the bead for different loads and quadratic fits to them

3.3.3 Substeps in the Model

One important feature of the model is that it shows substeps. We must go through the construction
of the model to see why: the dynamics begin in the state when both heads are bound to the MT and
the bead is at its equilibrium location. Once ATP binds, one head is freed and the bead settles into a
new equilibrium position, waiting for hydrolysis to take place. The hydrolysis time used by Peskin and
Oster (from Gilbert 1995 [14]) is on average about 0.0025 sec. Once hydrolysis completes, the motor
steps forward (or backward) and the bead moves a total distance of 8 nm. Moreover, this substep is of
variable size; its size depends on load. A plot of this substep is shown in Fig. 3.7. The figure also shows
the effect of restricting the head between the binding sites on the substep size. Note that if the head
is unrestricted, its mean position may not be in between the sites of interest, and substeps may also be
negative. This is one good physical reason to restrict the head location.

In the PO model, when the bead and head are both diffusing, the bead is assumed to move by
exactly half of the site-spacing - hence the indexing by half-integers in Eq. (3.14). In the light of the
above paragraph this is clearly not true and there is, in fact, a load dependence for the size of the
substep. However, as shown in the following chapter, this will not make a difference to the long-time
mean location or even variance of the bead. To summarize, substeps exist in the PO model, but their
size does not appear in the formulas for the steady-state velocity and randomness parameter.

There have been differing opinions on whether kinesin shows substeps or not. Some believe that
it does, and various groups conducting different experiments have found substeps of differing lengths
and duration [37], [6]. Carter and Cross (Carter 2005 [7]) however, performed rigorous analysis of the
position time series obtained from the experiment and determined that there are no substeps even on
the µs time scale.

Since this is just a model - and one-dimensional in any case - various aspects remain purely hypotheses.
The modelling choices will become clearer as a three dimensional picture of kinesin’s walk emerges from
further experiments. We might be tempted to hypothesize that there might be a rotational aspect to
the head’s motion as it steps hand-over-hand (Yildiz 2004 [39]). The origin of the force-production in
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Figure 3.7: Substep size as a function of load for an unrestricted and restricted head

kinesin, it is generally believed, might be from a conformational change in the neck-linker region. This
might induce a rotational strain in the coiled tether which throws the rear-head forwards.
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Chapter 4

Extensions to the Peskin-Oster
Model

As we have seen earlier, the PO model has some deficiencies, and our objective here is to provide some
extensions based on renewal theory. One of the main focuses is to include the effects of non-Markovian
chemical processes for the hydrolysis, a greater number of steps in the chemical reaction itself and a
diffusion time, if needed.

4.1 Renewal Theory Formulation of the Peskin-Oster Model

Let kinesin’s cycle be as described in the PO model. We now allow the hydrolysis process to be made up
of k chemical steps as in Eq. (2.18), and allow the transitions densities to be non-Markovian. Suppose
we need to account for the diffusion of the bead. If we can assume that it is one of the steps of the
sequential chemical process - i.e., no processes are taking place in parallel - a good model, as stated
before is the first passage time. We may summarize the steps in the model as follows:

1. We begin in the state where both heads are strongly bound to the MT. ATP binds to either the
forward head or backward head with rates βb and βf . The arrival time for this event Tb, clearly,
must be exponentially distributed with density (βb + βf )exp(−(βb + βf )t)

2. Once ATP binds, the bead comes to a new equilibrium position, hydrolysis begins and this is a
sequence of k chemical steps. The time required for this to take place is written as Th +Td1 where
the subscripts h and d1 correspond to hydrolysis and the first bead diffusion

3. When hydrolysis completes, the head searches for the next binding site and binds forwards (back-
wards) with probability p (1− p).

4. The bead then diffuses to its new equilibrium position in Td2 and the cycle is complete.

Then consider the sequence of total times {Ti}, the renewal process constructed on it N(t) with
renewal function M(t), variance V (t), the associated reward sequence {Hi} and cumulative reward R(t)
defined as:

Ti = Tb + Th + Td1 + Td2 , (4.1)

R(t) =
N(t)∑
k=1

Hk. (4.2)
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Hi =

 L
0
−L

with probability

βb
βb+βf

p
βb

βb+βf
(1− p) + βf

βb+βf
p

βf
βb+βf

(1− p)
. (4.3)

This defines a renewal reward process with limiting mean and variance MR(t), VR(t) of the cumulative
reward function given by Eq. (2.45) and Eq. (2.49). In the case of the Peskin-Oster model, Tdi = 0, the
hydrolysis and binding rates are exponential with rates α and (βb + βf ). As before, γ = βb + βf and
δ = βb − βf and,

E[Ti] =
αγ

α+ γ
(4.4)

E[Hi] = L

(
δ

2γ
+
(
p− 1

2

))
(4.5)

velocity =
E[Hi]
E[Ti]

=
Lα

α+ γ

((
p− 1

2

)
γ +

δ

2

)
(4.6)

To fit the randomness parameter, we need to find the limiting variance of the reward process. This is
obtained from Eq. (2.49) and simplified using the variance and mean of the renewal process from Eq. (2.3)
to obtain,

lim
t→∞

VR(t)
t

= µ2
Hi

V (t)
t

+
M(t)
t

σ2
Hi , (4.7)

lim
t→∞

VR(t)
t

=
L2αγ

α+ γ

{
1−

4
(
α
(
P (f)− 1

2

)
− δ

2

) (
γ
(
P (f)− 1

2

)
− αδ

2γ

)
(α+ γ)2

 . (4.8)

The equations for the velocity and variance are identical to the PO model in Eq. (3.16). It is
interesting to note that even though we have not included the substeps in the reward function - the haf
states in Eq. (3.14) - the mean and variance are still identical (but see also Eq. (2.47)). As discussed in
Chapter 5, it turns out that even for two motors pulling a load, the long-time variance and mean are
independent of the substep size.

If in the future we wish to investigate transient behavior of the variance or mean, where the effect of
substeps should be more apparent, we must more precisely define the cumulative reward process R(t).
We may define R(t) in terms of the renewal current life δt from Eq. (2.44), the time elapsed since the last
renewal. That is, we must include the possibility that from the both-heads-bound state, an ATP binding
event has occurred and hydrolysis has not yet been completed, throwing the motor into a half-integer
state, and the bead performs a substep of size 0 < L̃ < L. Let this substep be represented by a terminal
reward H̃, and R(t) =

∑N(t)
k=1 Hk + H̃(t), where

H̃ =

{
L̃ with probability

(
1− e−(βb+βf )δt

)
βb

βb+βf

−L̃ with probability
(
1− e−(βb+βf )δt

) βf
βb+βf

(4.9)

4.2 First Passage Time Formulation: The Imbedded Chain

Consider a random walk in continuous time X(t) taking values in the integers, with time-homogeneous
probability densities of transition forwards and backwards from site i given by λi(t), µi(t) respectively.
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Suppose the initial condition for the process is X(0) = 0. Then define the time-increments of the renewal
process as the first passage time to site 1. That is,

Ti = inf{t|X(0) = 0, X(t) = 1}′ (4.10)

Intuitively, each time the motor steps to the next site, the process ‘renews’ itself and is stochastically
identical thereafter. How do we calculate this first passage time? As before, we make site 1 an absorbing
barrier for the continuous time random walk, and define the “first-hit” densities gi(t) and their Laplace
transforms g∗i (s) for each site i < 1 as in Section 2.2 as,

g∗0 = λ∗0g
∗
−1 (4.11)

g∗k = λ∗k−1g
∗
k−1 + µ∗k+1g

∗
k+1 k ≤ 0 (4.12)

Again, we are looking for the mgf of the first passage time T defined as sp∗1(s) - where pn(t) represents
the probability of being in state 1 - given by p∗n(s) = Λ∗(s)g∗0 , where Λ∗(s) is the Laplace transform
of the distribution function of the event a forward takes place before a backward step takes place in
the interval (0, t). Of course, this is much harder to solve for because there are an infinite number of
equations, and our naive attempts with a generating function have proved futile. However, we can solve
it for the Poisson process as a “verification” (see Appendix).

Consider the question: what if the process does not ever hit site 1 with probability > 0? Such
processes are known as terminating renewal process, (Karlin 1975 [20]). The mean number of renewals
approach a finite value exponentially fast, meaning there is no mean velocity, and the process stops
moving in a finite time.

However, if the time (a random variable T ) until the next transition either forward or backward
(whose density is λi(t) + µi(t)) has finite mean, we can form another renewal process and we know that
there will be an infinite number of renewals on average from Eq. (2.3). Now, consider X(t) at the epochs
when events occur. X(t) at these epochs is a Markov chain (the imbedded chain). Then the problem
can be cast in the form of a gambler’s ruin problem [20], [15], and eventual probability of ever getting
to state 1 depends solely on the probabilities p and q of going forward or backward. For us,

p =
∫ ∞

0

λ(t)dt = lim
s→0

λ∗(s). (4.13)

Since the time until the next transition is finite, it follows that q = 1 − p, and the probability of
eventual absorption into state 1 given X(0) = 0 (and indeed any other initial state) is 1 if p ≥ q. If p < q
we just define the first passage time to site −1 as the renewal increment, and obtain a negative velocity.

4.2.1 Extension to Spatially Periodic Forces

Suppose the external force f(x) has a spatial periodicity that is an integer multiple N of the binding-site
spacing L. Then, we can define the first passage time to site N as our renewal variable and proceed as
described in the section above.

4.2.2 Computing Moments of the First Passage Time

While the construction of the renewal process using first-passage-time is fairly straightforward formally,
what we are generally interested in are the mean and the variance, i.e., the moments. Computing this
for non-exponential transition densities is hard, and so we resort to restricting the number of sites to a
finite number, and increasing that number till the moments converge numerically to a value.

To elaborate, define a continuous time random walk on sites {1, 0,−1,−2, · · · ,−N} with time-
homogeneous transition densities λ and µ as before. Restrict k to {−1, · · · ,−N + 1} in Eq. (4.11)
and make site −N absorbing. Adding the equation,
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g∗−N+1 = µg∗−N+2 (4.14)

to the Eq. (4.11), we can again solve for the mgf of the first-passage-time and take the limit s→ 0 of the
appropriate derivative numerically and get the moment we require, like in Eq. (2.17). Then, we make
N larger until the required moment converges to within a numerical tolerance.

4.2.3 Randomness Parameter

It has been claimed in the literature (Svoboda 1993 [34]) that the inverse of the so-called randomness
parameter r is a good measure of the number of “rate-limiting” steps in kinesin’s enzymatic cycle. This is
true for a Poisson process (Atzberger 2006 [2]) because if each “stepping” event consists of a sequence of
n identical exponentially distributed elementary events, 1/r = n. This, however, is not true if backward
steps, or even there is a probability p < 1 that the motor steps forward or stays put. For example, in
the PO model, this situation arises if βf = 0.

We can apply renewal theory to get general expressions for r. Let each element in the renewal
sequence Xk be made up of n identical exponentially distributed random variables with parameter λ.
Let the reward sequence Hk take values ±1 with probabilities p and q respectively with p > q. In terms
of the cumulative reward R(t), the randomness parameter can be defined as:

r = lim
t→∞

V ar[R(t)]
E[R(t)]

(4.15)

From Eq. (2.35), one can write:

E[Xk] =
n

λ
, (4.16)

V ar[Xk] =
n

λ2
, (4.17)

E[Hk] = p− q, (4.18)
V ar[Hk] = p+ q − (p− q)2. (4.19)

Then applying Eq. (2.49) for the variance of a reward process, we can write the randomness parameter
as,

r =
p− q
n

+
(p+ q)− (p− q)2

p− q
. (4.20)

Setting q = 0 in the above, we re-obtain 1/r = n for p = 1. Again, for q = 0, the inverse of the
randomness parameter 1/r is plotted against the probability p for a few values of n in Fig. 4.1. Note
that the randomness parameter serves its intended “purpose” only for n = 1 if there exists a possibility
of backward steps. One can also show that if p + q = 1, the randomness parameter “prediction”
for the number of steps in a process is off by a huge margin even when p is marginally less than 1.
The discovery of processive backstepping in kinesin (Carter 2005 [7]) precludes the possibility that the
randomness parameter will ever be useful in the study of kinesin.
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Chapter 5

Multiple Motors

5.1 Modelling

Here, we use the basic PO model to characterize the motion of two kinesin motors pulling the bead
cooperatively and make predictions regarding the cooperative behavior. The objective is to compare
this with single-motor experiments, and to serve as a more severe test of the model.

xb

j,x1 k,x2

Rb

Figure 5.1: Schematic of likely typical experimental setup

The model requires very little modification. All we have to do is to keep track of an extra coordinate,
that of the additional motor as shown schematically in Fig. 5.1. The state of the system is represented
by {j, k}, where j and k can both be either integers or half-integers. If j (or k) is a half-integer, as before,
it fixes the bound head location xm, as in the single-motor PO model. If j or k is a half-integer, this
means the head is unbound from the MT and is diffusing, and hence has another coordinate associated
with it, the positions xj and xk respectively. The bead position is denoted xb. There are three possible
combinations of states - depending on whether the each motor has a head diffusing or not - and three
associated potentials. The potential V is a function of the head locations (if applicable) xj , xk, bead
position xb and the separation between the motors k−j. The definitions of xbnd and xhj(k) are as before,
and are uniquely determined by xj(k). One obtains,

V (xj , xk, xb) = fxb +
Kth

2
(
xhj − xbnd

)2 +
Kth

2
(xhk − xb)

2 +W (xj , xk). (5.1)
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The biasing potential W (x) depends on the state (j, k). Let I represent the set of integers, and let
H be the set of half-integers. Then,

W (xj , xk) =


0 j ∈ I, k ∈ I
Kbias

2

(
xhk − (xbndj + x0)

)2
j ∈ I, k ∈ H

Kbias
2

(
xhj − (xbndj + x0)

)2 + Kbias
2

(
xhk − (xbndj + x0)

)2
j ∈ H, k ∈ H

. (5.2)

We continue to make the assumptions made in the original PO model for a single motor plus a few
more as follows

1. Each head equilibriates instantaneously with the bead when diffusing. This is still valid because
of the ratio of diffusion coefficients Dh/Db →∞/

2. The time scale of diffusion of the bead is still negligible. The tethers are in parallel, making the
effective potential nearly twice as stiff, which makes the time-scale smaller than that for a single
motor (see SecrefOU-process.

3. The head almost instantaneously binds to a binding site once hydrolysis completes. That is, the
probability that the hydrolysis processes of both motors complete in the time required for binding
is negligible.

It might turn out that when the motors are both perfectly synchronized, the hydrolysis processes
might be coupled together possibly through some load dependence. Including the possibility that the
hydrolysis processes complete together is not very hard. Here again, calculating the probabilities of
binding forward and backward for each reduces to a first-passage problem in two variables. In our
particular case, the problem is simple since the potentials that each head experiences are decoupled as
V (xj , xk, xb) = V1(xj , xb) + V2(xk, xb), clearly, from Eq. (5.1). In general the equations are elliptic (but
linear) and yield to simple finite-differencing schemes.

5.2 Simulation

As for a single motor, we construct a Markov chain, with the states and transitions as defined in Fig. 5.2.
The only complication here is that the state-space is infinite, and the entries of the Markov chain depend
on the state. We have to calculate each entry numerically, and there are limited analytical options - no
renewal theory to the rescue here.

To circumvent this problem, we resort to a truncation. We choose a sufficiently large number of
binding sites (−N,N), and make the boundaries absorbing, by stating that once either motor reaches
±N , they get absorbed and cannot move. We then simulate the governing differential equations for the
probabilities of being in each site, given different initial configurations.

Let Cj,k be the probability of being in state {j, k}. Let Pj,k represent the probability of binding
forwards for a motor - whether it is for the motor at j or k depends on whether they are integers or half-
integers. When the motors are both diffusing - j and k are both half-integers - and hydrolysis completes,
either motor binds instantaneously and we must calculate two probabilities of binding forwards for each
motor P1j,k, P2j,k associated with state {j, k}. The other chemical parameters are α, β and γ, the same
as the PO model. We need to write four different types of differential equations for the four different
kinds of states. Then, for −N + 1 < j, k < N − 1 one obtains,
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Figure 5.2: Possible State Transitions

dCj,k
dt

=



αPj−1/2,kCj−1/2,k + αPj,k−1/2Cj,k−1/2+
α(1− Pj+1/2,k)Cj+1/2,k + α(1− Pj,k+1/2)Cj,k+1/2+
−2(βb + βf )Cj,k j ∈ I, k ∈ I

αPj−1/2,kCj−1/2,k + α(1− Pj+1/2,k)Cj+1/2,k+
βbCj,k−1/2 + βfCj,k+1/2+
(βb + βf + α)Cj,k j ∈ I, k ∈ H

βbCj−1/2,k + βfCj+1/2,k+
βbCj,k−1/2 + βfCj,k+1/2 − 2αCj,k j ∈ H, k ∈ H

. (5.3)

In Eq. (5.3), note that for each differential equation, there are source terms from the neighbouring
states from which the system can enter that particular state and one decay term for the rate at which
the system leaves that particular state. So, for the boundary equations - if |j|, |k| > N − 1 in Eq. (5.3)
- drop appropriate decay term and source terms if j, k = ±N .

The next step is to calculate the total probabilities for each relevant state. The procedure is essentially
that described in Section 3.2 for a single motor. If there is only one diffusing head (and suppose it is
k) determine the head density ρ(xk|xb) and determine the conditional probability of binding forward
π(xk, xb), using equations exactly like Eq. (3.11). The total probability Pj,k(f) follows immediately.

If both motors are diffusing, the conditional densities and probabilities continue to be independent,
ρ(xj |xb), ρ(xk|xb), pt(xj , xb) and pt(xk, xb) because of the way the potential decouples as mentioned
in Section 5.1 and the total probabilities of binding forwards can be written in terms of the the effective
potential (Veff (xb)) and bead density (ρbead(xb)) as,
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Veff (xb) = −kBT log

(∫ (k+1/2)L

−(k−3/2)L

exp
−V1(xk, xb)

kBT
dxk

∫ (j+1/2)L

−(j−3/2)L

exp
−V2(xj , xb)

kBT
dxj

)
, (5.4)

P1j,k(f) =
∫ ∞
−∞

pt(xj , xb)ρbead(xb)dxb, (5.5)

P2j,k(f) =
∫ ∞
−∞

pt(xk, xb)ρbead(xb)dxb. (5.6)

There are a few homogeneities in the problem we can exploit to ease computational effort: any
state (j, k) is identical to {0, k − j} (or {1/2, k − j} if j is a half-integer) but for an origin shift of jL.
Since the motors are identical, parameters like the probability of binding forward, potential energy, are
independent of the identity of the motor. When the motors are both diffusing, again because of the
obvious homogeneity, if state {j, k} has probabilities P1j,k, P2j,k, state {j1, k1} with j1 = k, k1 = j, has
probabilities P2j,k, P1j,k. These observations significantly reduce the number of calculations.

5.3 Results

The two motors were simulated on a grid with (−50, 50) binding sites at two ATP concentrations - the
same as the single-molecule data - for a range of forces (−4.5, 9.5) pN . The ODEs in Eq. (5.3) were
simulated for a time such that edge-effects, i.e., the effect of the absorbing binding sites at (−50, 50) on
the motor dynamics was negligible. Data was obtained for different initial configurations.

The multiple motor data is plotted against the single-motor predictions for the two different ATP
concentrations in Fig. 5.3. Notice that at strongly assisting loads, the mean velocity of the bead is lower
than the single-motor, owing to the fact that at least two ATP hydrolyses need to occur to move 8 nm.
However, because the load is shared between the two motors, the stall force is extended to nearly twice
the stall-force of a single motor. We will explore different aspects of the motor and bead dynamics in
the following sections.
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Figure 5.3: Two motors pulling a bead: force velocity data for different ATP concentrations compared
with single motor predictions using the PO model. The multiple motor data is obtained for differ-
ent initial motor configurations, and since the motors synchronize, the velocity predictions are nearly
identical.

5.3.1 Motor Dynamics

A general conclusion from the detailed numerical study performed is that the motor synchronize for all
different initial spatial separations for high and low ATP concentrations. The reason lies in the proba-
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bility of binding forwards depending on the relative states of the motors {j, k}. As mentioned before,
the probability depends only on the relative separation (j − k); moreover, there are two probabilities
when j and k are both half-integers. The probabilities are plotted in Fig. 5.4(a) for a low and high force
- clearly these are dependent solely on mechanical parameters - with j = 0 in Fig. 5.4(a) and j = 1/2
in Fig. 5.4(b). It is clearly seen that the lagging motor has a much larger tendency to bind forwards in
both cases: when the leading motor is bound firmly to the MT, and when it has bound ATP and one of
its heads is diffusing.
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Figure 5.4: Probabilities of motors binding to the forward site, and its dependence on the relative states
- spatial separation and phase - of the two motors
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Figure 5.5: Load sharing between the two motors for high and low ATP and load. The − − − line
shows the sum of the individual loads. It is a constant, as expected.

A more physical picture is seen in Fig. 5.5. Here, the mean load “felt” by each motor - i.e., the
extention of its tether - is plotted as a function of time. Figure 5.5 shows that while the total load, as
it must be, is constant and equal to the external force, the load on each individual motor varies until it
is shared equally on the two motors. Hence, it is unsurprising that the expected positions of the motor
locations synchronize. A plot of the individual motor positions( Fig. 5.6) shows a dynamic picture of
the motor synchronization process. We obtained plots for low and high ATP concentrations and loads
to indicate that this synchronization happens for the whole parameter range we considered. Note that
at low ATP, it takes a longer time for the load to be equally shared and for the motors to synchronize
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- this is a consequence of the lower rate of stepping. But at higher loads, synchronization happens
faster than at lower loads. The reason this happens is indicated by the probabilities of binding forward
in Fig. 5.4(a), which shows that the probability of binding forward for the leading motor falls to zero
quicker at higher loads than at lower loads. Another observation is that the leading motor “waits” for
the lagging motor to catch up. Again, this fact is easily reconciled with the data from Fig. 5.4.
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different initial separation. f = 0.5, ATP = 4.2 µM
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Figure 5.6: Motor position vs. time for different initial separations, loads and ATP. Note how the motors
synchronize under all conditions

5.3.2 Bead Variance and Randomness

The bead position and it’s standard deviation is easily obtained from the relative motor positions. To
calculate the randomness parameter, let xb(t) be the bead position so that,

r = lim
t→∞

V ar[xb(t)]
E[xb(t)]L

= lim
t→∞

V ar[xb(t)]
t

t

E[xb(t)]
1
L
. (5.7)

The most direct way to calculate the randomness parameter is to solve Eq. (5.3) for a long time
interval, and find the variance and expected value and take their ratio. However, it is noticed in Fig. 5.7(a)
that the randomness parameter has not quite reached it’s steady-state value. However, it is reasonable
to believe that if computed for a larger time interval, it will indeed reach a limiting value. We know
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from renewal theory for a single motor, that the rations E[xb(t)]/t and V ar[xb(t)]/t approach constant
limits as t → ∞. Since, essentially, this is also a renewal process - but with a much more complicated
reward function - a similar limit is to be expected. Hence, a better estimate of the randomness paratemer
would be to compute the slopes of the mean and variance of xb(t) for a large time t. This is shown
in Fig. 5.7(b).
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Figure 5.7: Evolution of the bead variance and randomness parameter with time for the higher ATP
concentration

The randomness parameter computed by the two methods is shown in Fig. 5.8 and is compared with
the single motor predictions. It is noticed that the randomness parameter is lower for all forces. A
not-very-convincing way to physically justify is this is to for each renewal - one motor completes a step
- the bead steps only by L/2, and one might argue based on the general properties of the randomness
parameter for Poisson processes that now both motors have to complete a step for the bead to move
8 nm.
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Chapter 6

Summary and Future Work

A short summary of the work done in this study are:

1. Mathematical justification of the various assumptions in the PO model, and some commentry on
it’s deficiencies.

2. Application of Renewal Theory to modeling kinesin and derivation of some known results as a
verification.

3. Different methods based on Renewal Theory to extend the pO model to incorporate more realistic
modelling of the chemistry, diffusion and variable forces.

4. Application of the PO model to multiple motors - specifically two - and a discussion of the various
predictions that it makes.

The potential for future work includes:

1. Application of the different methods outlined to make actual predictions for variable forces, non-
Markovian chemistry etc.

2. More complicated models for the different structural elements in kinesin starting with, say, a more
realistic potential energy.

3. Extending renewal theory to handle multiple minima in the potential to predict other aspects such
as detachment rates of kinesin. (Mogilner 2001 [23]).
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Appendix A

Renewal Theory for a Poisson
Random Walk

This Appendix is included merely because it contains a few useful techniques using probability generating
functions, and to illustrate the technique described in Section 4.2. Let X(t) be a stochastic process
giving the position of a Poisson stepper at time t. It steps up or down by integer increments when
a forward or backward stepping event take place. Let pi(t) be the probability that X(t) = i given
X(0) = 0. Now, what we wish to find is the “velocity” (v(t)) of the process dE[X(t)]/dt. Define
a probability generating function G(z, t) = Σi = −∞inftyzipi(t) and notice that the first moment is
M1 = E[X(t)] = limz→1∂G/∂z. Clearly, we are looking for v(t) = dM1/dt. Then one may write:

dpi(t)
dt

= λpi−1 + µpi+1 − (λ+ µ)pi (A.1)

Multiplying by zi summing the above

∂G(z, t)
∂t

= zλG+
µG

z
− (λ+ µ)G (A.2)

We can solve this equation easily with the obvious boundary conditions G(z, 0) = 1 and G(1, t) = 1
- since this is standard procedure, we will dispense with details. Then, we find that the velocity is given
by:

v(t) = λ− µ λ > µ > 0 (A.3)

We will now calculate the velocity using the first passage time, and the formulas of renewal theory
from Section 2.3, using a technique from the theory of immigration-emigration processes.

Let T now be the first passage time to site 1 with density f(t) and distribution F (t). Setup an
absorbing barrier at site X = 1 and write the Laplace transform of f(t) as:

Prob{T < t} = F (t) = pi(t), (A.4)

E[e−sT ] =
∫ ∞

0

e−st
dF (t)
dt

= sp∗i (s)− pi(0). (A.5)

Next we Laplace transform Eq. A.1 and make the necessary modifications to it to account for the
absorbing barrier as follows:
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dp1(t)
dt

= λp0, (A.6)

dp0(t)
dt

= λp1 − (λ+ µ)p0, (A.7)

dpi(t)
dt

= λpi−1 + µpi+1 − (λ+ µ)pi. (A.8)

Then redefine the generating function G(z, t) = Σ1
−∞z

−ipi(t) (which looks like a Laurent series).
The boundary conditions are the same as above, and we can write an equation in terms of the Laplace
transform of the generating function.

G∗ =
p∗1
z

+ p∗0 + zp∗−1 + · · · , (A.9)

G∗ =
p∗1(z2µ− (s+ λ+ µ)z + λ) + p∗1sz + z2

(z2µ− (s+ λ+ µ)z + λ)
. (A.10)

The above expression for G∗(s, z) must be analytic for in 0 < z ≤ 1 since Σ1
i=−∞pi(t) = 1. But we

can show that the denominator has one root z0(s) that is always in (0, 1] for all Re(s) > 0. Thus, the
numerator must also have a root at z0(s). This yields an expression for p∗1(s), and we can differentiate
it to extract the first moment of T . It turns out, after a little bookwork, that:

p∗1(s) =
(s+ λ+ µ)−

√
(s+ λ+ µ)2 − 4λµ
2sµ

, ∀λ > µ > 0, (A.11)

E[T ] = − lim
s→0

d

ds
(sp∗1(s)) =

1
λ− µ

. (A.12)
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