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”To ask the right question is harder than to answer it.”

- Georg Cantor

1 Introduction

“In most cases where a dynamical system exhibits chaotic behavior, it is associated with

the presence of a fractal.”1 In this report, we explore the middle-third Cantor set predom-

inantly; we introduce symbolic sequences as a way of representing it and also look at its

topological properties. To build towards it, we first introduce dynamical systems, starting

with a discussion of fractals. We see how the properties of fractals, such as self-similarity,

can be expressed mathematically and how dynamical systems exhibiting chaotic behavior

are closely related to them. This report is based on the content covered in lectures 1

through 3 and part of lecture 4 in chapter 1 of Y. Pesin and V. Climenhaga’s ‘Lectures

on Fractal Geometry and Dynamical Systems.’

2 Properties of Fractals

2.1 Intricate geometry and Self-similarity

Fractals are geometric structures characterized broadly by two properties:

• intricate geometry

• self-similarity

Consider a tree in the fall season. No matter from what scale we look at it, we see the

recurring branching structure, and these branches are not simple geometrical shapes such

as lines or cylinders; they are much more complicated.

2.2 Infinite length and Non-differentiability

Another unusual behavior associated with fractals is infinite length. Fractal curves are

also continuous everywhere and differentiable nowhere. To understand these behaviors,

1Lectures on Fractal Geometry and Dynamical Systems, Y. Pesin, V. Climenhaga
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let us consider the example below.

2.2.1 von Koch curve

Figure 1 illustrates the procedure for constructing the von Koch curve. Notice that the

Koch curve is multi-valued - a first indication that it is “unusual.”

Figure 1: Procedure to construct the von Koch curve

Let us try to compute the length of the Koch curve. From figure 1 we see that the nth

iteration will be a piecewise linear curve with 4n line segments of length 1
3n . Therefore,

the total length of the curve at the nth step is
(
4
3

)n
. This quantity goes to infinity as

n → ∞. Thus, although the Koch curve is bounded, it has infinite length.

Since each curve in figure 1 is piecewise linear, we can parametrize them as f1, f2, and
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so on, which are maps from [0, 1] → R2. The sequence {fn}∞n=1 converges uniformly, as

shown below:

We see that

supx∈[0,1]|fn+1(x)− fn(x)| ≤
1

3n

Thus, for m < n, we have

|fn − fm|∞ ≤ Σn−1
k=m|fk+1 − fk|∞ = Σn−1

k=m

1

3k
≤ 1

3m
1

1− 1
3

Hence, the limit exists and is continuous. Although, the limit f is not differentiable

anywhere.

3 Dynamics and Reiteration - a mathematical description

3.1 Discrete-time dynamical system

Consider the following map:

f : X → X

which says ∀ x ∈ X, f(x) ∈ X. Therefore, we can iterate f as many times without ever

escaping X. We define the range of f as the image of the domain:

f(X) := {f(x) : x ∈ X}

Knowing x (the initial state of the system), and the rule f that helps us determine the

image of x (the immediate next state of the system), we can determine the image of f(x),

or f(f(x)) = (f ◦ f)(x) = f2(x), and so on. In general, we see that

f(fn(x)) = fn+1(x)

and

fn+m = fn ◦ fm = fm ◦ fn

for n,m ∈ N.
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The sequence of points x, f(x), f2(x), ... is referred to as the trajectory of x. We may

think of each point xi ∈ X (for i = 1, 2, ..., n, n+1, ...) specifying a particular configuration

of some system. Then, f encodes a rule by which the system evolves from one state to

another. It is useful to think about the number of iterations n as the amount of time

elapsed, and the trajectory is the list of states that the system has passed through as time

went on. This is known as the discrete-time dynamical system, as n is quantized.

This set’s “identity element” is described as the case when the system is stagnant, i.e.,

when all xi’s are fixed.

If f(X) = X, then we say that the set X is invariant. If the domain X is invariant and f

is one-to-one, then the preimage of x, f−1(x), is called the inverse of f and it is unique.

We say that f is invertible and the map is defined to be f−1 : X → X (from codomain

to the domain but here both are X).

In general, f−n = f−1 ◦ f−1 ◦ f−1 ◦ ... ◦ f−1 n times.

Similarly, the preimge of Y ⊂ X, f−1(Y ) := {x ∈ X : f(x) ∈ Y }.

3.2 Exercise 1.1

3.2.1 (a) f(x) = |2x− 1|

Figure 2: f(x) = |2x− 1|
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Let us find the fixed point of f(x). A fixed point of a function f(x) is a point x such that

f(x) = x (i.e., the point(s) of the intersection of f(x) and the bisectrix).

(See appendix for the procedure to determine the trajectory.)

f(x) = x

i.e., |2x− 1| = x

or, 2x− 1 = ±x

For 2x− 1 = x, we have x = 1, which is a fixed point.

For 2x− 1 = −x, we get x = 1
3 , which is also a fixed point.

Next, we divide the x-axis into 5 regions: (−∞, 0),
(
0, 13
)
,
(
1
3 ,

1
2

)
,
(
1
2 , 1
)
, and (1,∞).

We pick a point x0 in each of these intervals and see where f(x0) lies to see how the

trajectory develops and what form it takes.

Let x0 ∈ (−∞, 0):

For −∞ < x0 < 0,

−∞ < 2x0 − 1 < 2(0)− 1,

or, ∞ > |2x0 − 1| > 1,

i.e., f(x0) ∈ (1,∞).

Note that at x0 = −1, the trajectory hits the limit point 1.

Hence, the trajectory diverges.

Let x0 ∈
(
0, 13
)
:

For 0 < x0 <
1
3 ,

2(0)− 1 < 2x0 − 1 < 2
(
1
3

)
− 1,

or, 1 > |2x0 − 1| > 1
3 ,

i.e., f(x0) ∈
(
1
3 , 1
)
.

Note, that at a point very close to x = 1
3 , the trajectory hits the limit point 1

3 . I was

unable to find all the periodic points.
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Hence, the point x0 keeps reiterating infinitely keeping the trajectory confined within the

interval
(
1
3 , 1
)
.

Let x0 ∈
(
1
3 ,

1
2

)
:

For 1
3 < x0 <

1
2 ,

2
(
1
3

)
− 1 < 2x0 − 1 < 2

(
1
2

)
− 1,

or, 1
3 > |2x0 − 1| > 0,

i.e., f(x0) ∈
(
0, 13
)
.

Hence, the point x0 keeps reiterating infinitely keeping the trajectory confined within the

interval
(
0, 13
)
.

Let x0 ∈
(
1
2 , 1
)
:

For 1
2 < x0 < 1,

0 < 2x0 − 1 < 1,

or, 0 < |2x0 − 1| < 1,

i.e., f(x0) ∈ (0, 1).

Let us examine the values that x0 must take for:

(a) −(2x0 − 1) > 1
2 ,
(
where x0 ∈

(
0, 13
))
:

=⇒ x0 <
1
4

Thus,
(
0, 13
)
=
(
0, 14
)
∪
(
1
4 ,

1
3

)
(b) (2x0 − 1) > 1

2 ,
(
where x0 ∈

(
1
2 , 1
))
:

=⇒ x0 >
3
4

Thus,
(
1
2 , 1
)
=
(
1
2 ,

3
4

)
∪
(
3
4 , 1
)

Hence, (0, 1) =
(
0, 14
)
∪
(
1
4 ,

1
3

)
∪
(
1
3 ,

1
2

)
∪
(
1
2 ,

3
4

)
∪
(
3
4 , 1
)
.

For x0 ∈
(
0, 14
)
, f(x0) ∈

(
1
2 , 1
)
.

For x0 ∈
(
1
4 ,

1
3

)
, f(x0) ∈

(
1
3 , 1
)
.

For x0 ∈
(
1
3 ,

1
2

)
, f(x0) ∈

(
0, 13
)
.

For x0 ∈
(
1
2 ,

3
4

)
, f(x0) ∈

(
0, 12
)
.
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For x0 ∈
(
3
4 , 1
)
, f(x0) ∈

(
1
2 , 1
)
.

∴ x0 ∈ (0, 1) keeps f(x0) ∈ (0, 1). Hence, the set of values x must take is:

{x : |2x− 1| < 1} =

{
x >

1

2
: (2x− 1) < 1

}
∪
{
x ≤ 1

2
: −(2x− 1) < 1

}

Let x0 ∈ (1,∞):

For 1 < x0 < ∞,

1 < 2x0 − 1 < ∞,

or, 1 < |2x0 − 1| < ∞,

i.e., f(x0) ∈ (1,∞).

Hence, the trajectory diverges.

3.2.2 (b) g(x) = |x− 2|

Figure 3: g(x) = |x− 2|

Let us find the fixed point of g(x). A fixed point of a function g(x) is a point x such that

g(x) = x.
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g(x) = x

i.e., |x− 2| = x

or, x− 2 = ±x

For x− 2 = x, we have 0 = 2, which is absurd.

For x− 2 = −x, we get x = 1, which is our fixed point.

Next, we divide the x-axis into 4 regions: (−∞, 0), (0, 1), (1, 2), and (2,∞).

We pick a point x0 in each of these intervals and see where g(x0) lies to see how the

trajectory develops and what form it takes.

Let x0 ∈ (−∞, 0):

For −∞ < x0 < 0,

−∞ < x0 − 2 < 0− 2,

or, ∞ > |x0 − 2| > 2

i.e., g(x0) ∈ (2,∞).

Note that the trajectory hits the limit point at x0 = −1.

In this interval, f(x) = 2 − x. So, f(f(x)) = f(2 − x) = 2 − (2 − x) = x. f(f(f(x))) =

f(x) = 2− x. f(f(f(f(x)))) = f(2− x) = x. As we see, this “oscillatory” behavior keeps

on going. Thus, the trajectory is confined in (0,2).

Let x0 ∈ (0, 1):

For 0 < x0 < 1,

0− 2 < x0 − 2 < 1− 2,

or, 2 > |x0 − 2| > 1

i.e. g(x0) ∈ (1, 2).

Let x0 ∈ (1, 2):

For 1 < x0 < 2,

1− 2 < x0 − 2 < 2− 2,

or, 1 > |x0 − 2| > 0
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i.e. g(x0) ∈ (0, 1).

Hence, for x0 ∈ (0, 2), g(x0) ∈ (0, 2) and so we see a looping behavior. Notice that every

point in (0, 2) is a point with period 2; f2(x) = 2−(2−x) = x [f(x) = 2−x for x ∈ (0, 2)].

Furthermore, the trajectories revolve around (1, 1), as 1 is a fixed point and acts as a

‘basin.’

Let x0 ∈ (2,∞):

For 2 < x0 < ∞,

2− 2 < x0 − 2 < ∞,

or, 0 < |x0 − 2| < ∞

i.e. g(x0) ∈ (0,∞).

Let f(x) ∈ (2,∞). Then, f2(x) = f(f(x)) = f(x− 2) = (x− 2)− 2 = x− 4.

Similarly, f3(x) = f(f(f(x))) = f(f(x− 2)) = f(x− 4) = (x− 4)− 2 = x− 6.

Hence, if for i = 1, 2, ..., k − 1, f i(x) ∈ (2,∞), then fk(x) = x− 2k.

The trajectory is confined in (0,2).

Thus, we have a periodic orbit for x0 ∈ (0, 1)∪ (1, 2). For x0 ∈ (−∞, 0)∪ (2,∞), the orbit

returns to the periodic orbit region which is that for 0 < x < 2.

3.3 The coding of the trajectory of x - a paradox

Define the following continuous map:

f : A → A

where A ⊂ R2. This restricts the entire trajectory of x to A.

Suppose we know two things: the explicit map f and the initial point x. Then, we can

exactly compute each point fn(x), n ∈ N in the trajectory of x. The map f seems entirely

deterministic.
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Now, suppose we divide A into two subdomains A1 and A2 such that A1 ∪ A2 = A; i.e.

every x ∈ A lies in exactly one of the two subdomains. We now focus only on in which

of the two subdomains does fn lie for n = 1, 2, ... In this way, we assign each iterate a

number 1, if it lies in A1 or 2, if it lies in A2 and form a coding of the trajectory of x as

a sequence of 1’s and 2’s. As an example, let x ∈ A1, f(x) ∈ A2, f
2(x) ∈ A2, f

3(x) ∈ A1,

and so on. This trajectory will be coded as 1221... But this means the trajectory of x

will randomly jump between A1 and A2, and this implies that even if we know in which

subdomain x, f(x), f2(x), ... lie, we cannot determine where fn+1(x) will lie. We can only

provide a probabilistic description of this phenomenon. This means, then, that f is not

entirely deterministic! A paradox! It is our aim to resolve this paradox in a future study

and learn how and why such behavior arises from dynamical systems associated with

fractal sets.

4 Population models

We find that simple population models such as f(x) = rx where x is the initial population

and r > 1 ∈ R, give rise to trajectories that diverge; ‘a small population will grow to be

arbitrarily large’ quickly (or for r < 1, the population converges to 0; all ‘members die

quickly’). These models are, however, unrealistic.

Hence, a revised model is introduced:

f : [0, 1] → [0, 1]

so that

f(x) = rx(1− x) (1)

4.1 Conjugacy

We observe that f defined in (1) is equivalent to g(x) = x2 + c. That is, we can find the

value of c ∈ R, some interval I ⊂ R and a change of coordinates h : [0, 1] → I so that

g(h(x)) = h(f(x)) (2)
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(2) says, if we first apply h, we go from [0, 1] to I. Then applying g takes us from I to I;

and if we first apply f , we go from [0, 1] to [0, 1]. Then applying h takes us from [0, 1] to

I. Either way, we end up at the same point. Hence, using h (conjugacy), the dynamics

of f can be studied using the dynamics of g (conjugates). Let us work out an example.

4.2 Exercise 1.2 - Explicit change of coordinates

Let h(x) = ax+ b. We have g(x) = x2 + c and f(x) = rx(1− x).

Now,

g(h(x)) = h(f(x))

∴ g(ax+ b) = h(rx− rx2)

∴ (ax+ b)2 + c = a(rx− rx2) + b

∴ a2x2 + 2abx+ b2 + c = −arx2 + arx+ b

Comparing the coefficients of x2 and x and the constant terms on both sides, we have

that

a2 = −ar =⇒ a = −r; (a ̸= 0)

2ab = ar =⇒ b = r
2

b2 + c = b =⇒ c = r
2 − r2

4

Hence, h(x) = −rx+ r
2 .

We note that f : [0, 1] → [0, 1]. For any r ̸= 0, the maximum of f is at x = 1
2 . Thus

f
(
1
2

)
= r

4 , which tells us that 0 ≤ r ≤ 4.

Let us examine the interval [0, 4] as [0, 2) ∪ [2, 4]:

For r ∈ [0, 2), c ∈
[
0, 14
)
.

For r ∈ [2, 4], c ∈ [−2, 0].

Thus, for r ∈ [0, 4], c ∈
[
−2, 14

]
.
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Figure 4: f(x) = rx(1− x)

4.3 Exercise 1.3 - Behavior of trajectories

Let us have 3 cases for what values c can take:

Case 1: c = 0

As evident from figure 4 above, the parabola intersects the bisectrix (the line y = x) at

the points (0, 0) and (1, 1).

For any point x0 ∈ (0, 1), the trajectory converges to (0, 0), which means the origin acts

as an attracting point.

Points 0 and 1 are also the fixed points for g(x) = x2. Thus, for these points, the trajectory

never moves.

For the point x0 > 1, the trajectory converges to the point (1, 1) and so the point (1, 1)

acts as an attracting point.

For a point x0 < 0, the trajectory diverges to infinity.

Case 2: c = 0.25
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Figure 5: g(x) = x2

At this value of c, g(x) is tangent to the bisectrix. The bisectrix intersects g(x) at the

point (0.5, 0.5) as evident from figure 5.

For any point x0 ∈ [0, 0.5), the trajectory converges to the point (0.5, 0.5). Hence,

(0.5, 0.5) is attracting, for this case.

At x0 = 0.5, the trajectory never moves, as 0.5 is a fixed point.

For x0 > 0.5, the trajectory moves away from the point (0.5, 0.5) and goes to infinity.

Thus, (0.5, 0.5) is a repelling point for this case.

For x0 ∈ (−0.5, 0], the trajectory converges to the point (0.5, 0.5). Hence, (0.5, 0.5) is an

attracting point for this case as well.

For x0 ∈ (−∞,−0.5), the trajectory diverges from the point (0.5, 0.5). Hence, (0.5, 0.5)

is a repelling point for this case as well.

In conclusion, the point (0.5, 0.5) is neither attracting nor repelling.

Case 3: c → ∞
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Figure 6: g(x) = x2 + 0.25

For all x0 i.e. x0 = 0, x0 > 0, and x0 < 0 the trajectories escape to infinity.

5 Towards the Symbolic Sequences

We examined the complex behavior of trajectories of the map g(x) = x2+c in the previous

section. However, this complex behavior is attributed to the non-linearity of the map,

which also makes it difficult to explore further. Hence, we look at piecewise linear maps in

this section, which are tractable, unlike non-linear maps, and whose trajectories exhibit

chaotic behavior.

Consider the map

f : D = I1 ∪ I2 =

[
0,

1

3

]
∪
[
2

3
, 1

]
→ [0, 1]

defined to be piecewise linear on the intervals I1 =
[
0, 13
]
and I2 =

[
2
3 , 1
]
, and such that

f(I1) = f(I2) = [0, 1], shown below. Here, [0, 1] is also the range of the function;

R = f(D) = {f(x) : x ∈ D}

Notice, for any x0 ∈ D, f(x0) /∈ D. So, f cannot be iterated further. Thus, our first task
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is to construct a domain on which f2 is defined.

For f2 to be defined on a domain, both x and f(x) must lie in the domain of f . That is,

we must have x0 ∈ D ∩ f−1(D), where f−1(D) = {x ∈ D : f(x) ∈ D} and so

x0 ∈ D ∩ f−1(D) = {x : x ∈ D and f(x) ∈ D}

We find that the domain on which f2 is defined consists of 4 intervals, I11 =
[
0, 19
]
,

I21 =
[
2
3 ,

7
9

]
, I12 =

[
2
9 ,

1
3

]
, and I22 =

[
8
9 , 1
]
.

We see that:

f(I11) = f
([
0, 19
])

= I1; f
2(I11) = f(I1) = f

([
0, 13
])

= [0, 1].

f(I12) = f
([

2
9 ,

1
3

])
= I2; f

2(I12) = f(I2) = f
([

2
3 , 1
])

= [0, 1].

f(I21) = f
([

2
3 ,

7
9

])
= I1; f

2(I21) = f(I1) = [0, 1].

f(I22) = f
([

8
9 , 1
])

= I2; f
2(I21) = [0, 1].

Observe that each interval Iw1w2 where w1, w2 = 1, 2 can be written as

Iw1w2 = Iw1 ∩ f−1(Iw2) (3)

Let us verify it:

For the interval I11, w1 = 1, w2 = 1.

I1 ∩ f−1(I1) =
[
0, 13
]
∩
[
0, 19
]
=
[
0, 19
]
= I11

For the interval I12, w1 = 1, w2 = 2.

I1 ∩ f−1(I2) =
[
0, 13
]
∩
[
2
9 ,

1
3

]
=
[
2
9 ,

1
3

]
= I12

For the interval I21, w1 = 2, w2 = 1.

I2 ∩ f−1(I1) =
[
2
3 , 1
]
∩
[
2
3 ,

7
9

]
=
[
2
3 ,

7
9

]
= I21

For the interval I22, w1 = 2, w2 = 2.

I2 ∩ f−1(I2) =
[
2
3 , 1
]
∩
[
8
9 , 1
]
=
[
8
9 , 1
]
= I22
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Let us summarize our process thus far:

To find the domain of f , we removed the middle-third from [0, 1] leaving 21 = 2 intervals

of length 1
31

= 1
3 . To find the domain of f2, we removed the middle-third of each of the

two intervals earlier, leaving 22 = 4 intervals of length 1
32

= 1
9 each. We encounter the

same problem as before: f2 cannot be iterated further. And so, to find the domain

of f3, we follow the pattern and recognize that we will have to remove the middle-

third of each of the four intervals earlier to be left with 23 = 8 intervals (which will

be I111, I112, I121, I211, I222, I221, I122, I212) of length 1
33

= 1
27 each, and so on. Therefore,

the domain of fn consists of 2n closed intervals of length 1
3n each.

Hence, from (1), we can say that Iw1w2...wn = Iw1 ∩ f−1(Iw2) ∩ ... ∩ f−1(n−1)(Iwn) , where

each wk is either 1 or 2. Let us verify that for two intervals in the n = 3 case:

For the interval I111, w1 = 1, w2 = 1, w3 = 1.

I1 ∩ f−1(I1) ∩ f−2(I1) =
[
0, 13
]
∩
[
0, 19
]
∩
[
0, 1

27

]
=
[
0, 1

27

]
= I111.

For the interval I112, w1 = 1, w2 = 1, w3 = 2.

I1 ∩ f−1(I1) ∩ f−2(I2) =
[
0, 13
]
∩
[
2
9 ,

1
3

]
∩
[
2
27 ,

1
9

]
=
[
2
27 ,

1
9

]
= I112.

The others follow similarly.

We notice that for any n, Iv1v2...vn ∩ Iw1w2...wn = ϕ for (v1, v2, ..., vn) ̸= (w1, w2, ..., wn).

5.1 Defining the middle-third Cantor Set

Based on the discussion above, we can say that

f−1(D) ∩ Iw1w2...wn = Iw1w2...wn1 ∪ Iw1w2...wn2

Thus, we can write the domain of definition of the nth iterate of f as

Dn = f−(n−1)(D) =
⋃

w1w2...wn

Iw1w2...wn
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Hence, for n → ∞, the domain on which every iterate fn is defined can be written as

C =
⋂
n≥1

( ⋃
w1w2...wn

Iw1w2...wn

)
(4)

which is the standard middle-third Cantor set.

I couldn’t explain why this set is a repeller as claimed in the referred book.

5.2 Dynamics of f

To study some applications of C, let’s start with exploring the dynamics of f : C → C.

For x1, x2 ∈ C (x1 and x2 are very close to one another),

d(f(x1), f(x2)) = 3d(x1, x2)

Let us check it:

For x1 = 0 and x2 =
1
9 , f(x1) = 0 and f(x2) =

1
3 .

d(x1, x2) = x2 − x1 =
1
9 − 0 = 1

9 .

d(f(x1), f(x2)) = f(x2)− f(x1) =
1
3 − 0 = 1

3 .

Clearly, d(f(x1), f(x2)) =
1
3 = 3 ·

(
1
9

)
= 3d(x1, x2).

Therefore, for fn, we have

d(fn(x1), f
n(x2)) = 3nd(x1, x2)

for fk(x1) and fk(x2) in the same interval for 1 ≤ k < n. (Suppose n = 1. Let x1 = 0 and

x2 = 8
9 . Then, f(x1) = f(0) = 0 and f(x2) = f

(
8
9

)
= 2

3 . Then, d(x1, x2) =
8
9 , however,

d(f(x1), f(x2)) =
2
3 ̸= 3d(x1, x2).)

Let us verify it:

Fix n = 2. For x1 = 0 and x2 =
1
9 , f

2(x1) = f2(0) = 0 and f2(x2) = f2
(
1
9

)
= 1.

d(x1, x2) =
1
9 (from above).

d(f2(x1), f
2(x2)) = f2(x2)− f2(x1) = 1− 0 = 1.

Clearly, d(f2(x1), f
2(x2)) = 1 = 32 ·

(
1
9

)
= 32d(x1, x2).
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This is an illustration of the butterfly effect, which suggests sensitive dependence on initial

conditions - a small change in one state of a system can result in large differences in a

later state. It is interesting to note the difference between the divergence of trajectories of

the linear map x 7→ rx and those of the piecewise linear map we’re considering presently.

The trajectories of the x 7→ rx map diverge to infinity, while those of the piecewise linear

map remain bounded!

A natural question to ask is, ‘how big is the Cantor set?’ Let us consider its length. From

the discussion above, we can say that at the nth iteration, the length of the Cantor set

will be
(
2
3

)n
. However, this quantity approaches 0 as n → ∞. If we consider the portion

that is removed in every iteration, we see that the total length of the removed portion is

1

3
+ 2

(
1

9

)
+ 4

(
1

27

)
+ ... = Σ∞

n=1

2n

3n+1
=

1
3

1− 2
3

= 1

where the first term a = 1
3 and common ratio r = 2

3 . This means that the probability of

choosing a point randomly from the Cantor set is precisely 0.

Thus, we require a different way of ‘measuring’ the Cantor set. Let us consider the number

of points contained in the set and determine whether it is countable or uncountable.

Suppose we want to determine in which interval a point x ∈ C lies. We can find that by

writing

x ∈ Iw1 ∩ Iw1w2 ∩ ... ∩ Iw1w2...wn ∩ ...

This defines a map ϕ : C → Σ+
2 , where Σ+

2 = {1, 2}N = {(wk)
∞
k=1|wk = 1or 2, ∀ k ≥ 1}.

As we shall see, this map is a bijection.

5.2.1 Conjugacy 2.0

Let us introduce an equivalence between C and Σ+
2 . Recall

Iw1w2... = Iw1 ∩ f−1(Iw2) ∩ ...
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Call it h(w). Applying f to this h we get

f(h(w)) = f(Iw1 ∩ f−1(Iw2) ∩ ...

= [0, 1] ∩ Iw2 ∩ f−1(Iw3) ∩ f−2(Iw4) ∩ ...

= Iw2 ∩ f−1(Iw3) ∩ f−2(Iw4) ∩ ...

Call it h(w′) where w′ = (w2w3...). Here we have defined a shift map

σ : Σ+
2 → Σ+

2

so that

σ(w1w2...) = (w2w3...)

We observe that f(h(w)) = h(σ(w)). That is, either we first apply σ to go from Σ+
2 to

Σ+
2 and then apply h that will take us from Σ+

2 to C, or we first apply h to go from Σ+
2

to C and then apply f that will take us from C to C; we’re at the same place both ways.

Thus h is a conjugacy between the conjugates f and σ.

5.3 Exercise 1.4 - Binary expansion

Let us define a map f : [0, 1] → Σ+
2 where Σ+

2 = {wk|(wk)
∞
k=1 is 1 or 2 for k ≥ 1}, such

that f(x) = Σ∞
i=0(xi · 2−i) is the binary expansion of real numbers. We know that every

real number has a binary expansion. Thus, ∀x ∈ [0, 1], f(x) ∈ Σ+
2 . Since f(x) is bijective,

[0, 1] and Σ+
2 have the same cardinality and thus, so does the Cantor set.

5.4 Exercise 1.5 - Periodic points

From the definition of the shift map, we have that for x = 0.a1a2..., f(x) = 0.a2a3....

We are looking at
⋃

k{x : fk(x) = x}. Using the binary expansion of Cantor sets, we

conclude that fk(x) = x has 2k solutions.

Let us verify it using a graphical representation.
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From figure 1.12 in the referred book, we see that the graph of f1(x) = f(x) intersects

the bisectrix at 21 = 2 points. Hence, we have two periodic points for f(x).

From figure 1.14 in the referred book, we see that the graph of f2(x) intersects the

bisectrix at 22 = 4 points. Hence, we have four periodic points for f2(x).

Thus, we observe that for a fixed n, fn(x) intersects the bisectrix at 2n points, so we have

2n periodic points.

6 A Topological Consideration

In this section, we explore the cantor set from a topological point of view. (See appendix

for relevant definitions.)

6.1 Exercise 1.6

Compact: It is sufficient to prove that the Cantor set is bounded and closed. By

definition, the middle-third Cantor set is C =
⋃∞

n=0Cn, where we start with C0 = [0, 1]

and each Cn+1 is constructed by removing the open middle-third of each sub-interval Cn.

The interval [0, 1] bounds the Cantor set; the complement of the Cantor set is the set of

open intervals removed in the process. Hence, the Cantor set is closed.

Perfect: Since the Cantor set is closed, we have that C = C̄, where C̄ denotes the closure

of C. Hence, the Cantor set is perfect.

Totally disconnected: Let there be points x, y ∈ C, and let the distance between

them be denoted as |x − y|. We know that the length of an interval Cn ∈ C is given by

1
3n , n = 0, 1, 2, .... By the Archimedean property, ∃ some n such that |x − y| < 1

3n . This

suggests that x and y lie in different intervals, and we know that the Cantor set is a union

of disjoint closed sets. Hence, it is totally disconnected.
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7 Summary

In this report, we developed a basic understanding of fractals and briefly discussed their

properties: infinite length and non-differentiability. We saw that the von Koch curve

demonstrated these properties. We drew parallels between the construction of the von

Koch curve and that of the middle-third Cantor set and discovered that the presence of a

fractal is closely related to the chaotic behavior of trajectories in dynamical systems. We

learned to determine the trajectory of a point on a given map. Then, we built towards

the binary representation of the middle-third Cantor set using a piecewise linear map.

And finally, we looked at some primary topological properties of the middle-third Cantor

set.

In the following discussion of Cantor sets, we start by examining some more topological

properties rigorously and attempt to prove some theorems about countability.

8 Appendix

Accumulation point:

Figure 7: Accumulation Point

Compactness: For our purposes, if a set is closed and bounded, it is compact. (Proof

omitted.)

Convergence: Suppose xn is a sequence in a topological space X. It is said to converge

to some x ∈ X if for every neighborhood U of x, ∃ N ∈ N such that xn ∈ U ∀ n ≥ N.

Shown below is an example/illustration:
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Figure 8: Convergence

Homeomorphism: If f : X → Y is a map from a topological space X to a topological

space Y , then f is a homeomorphism if:

• f is bijective

• f is continuous

• f−1 exists and is continuous

We show that the above is an equivalence relation:

Reflexive: We want to show that X ∼ X.

Suppose f is the identity map. Then, idx : X → X so that idx = x is clearly a homeo-

morphism.

Symmetric: We want to show that if X ∼ Y , then Y ∼ X.

If f : X → Y is a homeomorphism, f−1 : Y → X exists by definition. Thus, Y ∼ X.

Transitive: We want to show that if X ∼ Y , Y ∼ Z, then X ∼ Z. Let f : X → Y and

g : Y → Z be homeomorphisms. Then, g(f(x)) : X → Z is also a homeomorphism 2.

Perfect: A set A ⊂ X where X is a topological space, is said to be perfect if every point

x ∈ A is an accumulation point for A.

Procedure to determine the trajectory of x: We start with a point, say x0, on the

x-axis. Then, find f(x0); i.e., follow the vertical line through the point (x0, 0) until it

intersects the graph of f . This point is (x0, f(x0)). Now we follow the horizontal line

from (x0, f(x0)) until it reaches the bisectrix. This point is (f(x0), f(x0)). Repeating the

2If f and g are homeomorphisms, they are bijective, continuous, and have continuous inverses and so
g(f(x)) is also bijective, continuous, and g(f(x))−1 = f−1(g−1) is also continuous.
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process gives us points (f(x0), f
2(x0)), (f

2(x0), f
2(x0)) and so on.

Totally disconnectedness: If for any x, y ∈ A ⊂ X where X is a topological space, ∃

disjoint open sets U, V such that x ∈ U and y ∈ V and A ⊂ U ∪ V , then A is said to be

totally disconnected.
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